GAP Package mfer

Permutation Representations of Sporadic Groups — Bibliography

Bibliography in "Low Rank Representations and Graphs for Sporadic Groups" (pp. 134–138)
Bibliography in "On endomorphism rings and character tables"
Bibliography in "On the multiplicity-free actions of the sporadic simple groups"
Cross-referenced Collections

"Low Rank Representations and Graphs for Sporadic Groups" (pp. 134–138)

[Asc94] Aschbacher, M., Sporadic groups, Cambridge University Press, Cambridge Tracts in Mathematics, 104, Cambridge (1994), xii+314 pages.

[AS85] Aschbacher, M. and Scott, L., Maximal subgroups of finite groups, J. Algebra, 92 (1) (1985), 44–80.

[Ban72] Bannai, E., Maximal subgroups of low rank of finite symmetric and alternating groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18 (1971/72), 475–486.

[BI84] Bannai, E. and Ito, T., Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA (1984), xxiv+425 pages
(Association schemes).

[BL96] Breuer, T. and Lux, K., The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra, 24 (7) (1996), 2293–2316.

[BCN89] Brouwer, A. E., Cohen, A. M. and Neumaier, A., Distance-regular graphs, Springer-Verlag, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Berlin (1989), xviii+495 pages.

[BDD88] Buekenhout, F., Delandtsheer, A. and Doyen, J., Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A, 49 (2) (1988), 268–293.

[BDDKLS90] Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P. B., Liebeck, M. W. and Saxl, J., Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36 (1) (1990), 89–94.

[Bur11] Burnside, W., Theory of groups of finite order, Dover Publications Inc., New York (1955), xxiv+512 pages
(Reprint by photo-offset of the 2d edition [Cambridge, 1911]).

[But91] Butler, G., Fundamental algorithms for permutation groups, Springer-Verlag, Lecture Notes in Computer Science, 559, Berlin (1991), xii+238 pages.

[Cam81] Cameron, P. J., Finite permutation groups and finite simple groups, Bull. London Math. Soc., 13 (1) (1981), 1–22.

[CvL91] Cameron, P. J. and van Lint, J. H., Designs, graphs, codes and their links, Cambridge University Press, London Mathematical Society Student Texts, 22, Cambridge (1991), x+240 pages.

[CHR07] Campbell, C. M., Havas, G. and Robertson, E. F., Addendum to: "An elementary introduction to coset table methods in computational group theory" [in Groups—St. Andrews 1981, 1–45, Cambridge Univ. Press, Cambridge-New York, 1982; MR0679153] by J. Neubüser, in Groups—St. Andrews 1981, Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 71, Cambridge (2007), 361–364.

[Can84] Cannon, J. J., An introduction to the group theory language, Cayley, in Computational group theory (Durham, 1982), Academic Press, London (1984), 145–183.

[CP95] Cannon, J. and Playoust, C., An introduction to MAGMA, School of Mathematics and Statistics, University of Sydney (1995).

[CGGLMW92] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B. and Watt, S. M., First Leaves: A Tutorial Introduction to Maple V, Springer, New York (1992), 253 pages.

[CCNPW85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray).

[CNS88] Conway, J. H., Norton, S. P. and Soicher, L. H., The Bimonster, the group Y_555, and the projective plane of order 3, in Computers in algebra (Chicago, IL, 1985), Dekker, Lecture Notes in Pure and Appl. Math., 111, New York (1988), 27–50.

[CP92] Conway, J. H. and Pritchard, A. D., Hyperbolic reflections for the Bimonster and 3 Fi_24, in Groups, combinatorics & geometry (Durham, 1990), Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 165, Cambridge (1992), 24–45.

[CS88] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Springer-Verlag, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, New York (1988), xxviii+663 pages
(With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov).

[CS93] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Springer-Verlag, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, New York (1993), xliv+679 pages
(With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov).

[CS99] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Springer-Verlag, Third edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, New York (1999), lxxiv+703 pages
(With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov).

[CFYT94] Cooperman, G., Finkelstein, L., York, B. and Tselman, M., Constructing permutation representations for large matrix groups, in ISSAC '94. Proceedings of the international symposium on symbolic and algebraic computation, Association for Computing Machinery (ACM) (1994), 134–138.

[CKS76] Curtis, C. W., Kantor, W. M. and Seitz, G. M., The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc., 218 (1976), 1–59.

[Cuy89] Cuypers, H., Low rank permutation representations of the finite groups of Lie type, Part 1 of: Geometries and permutation groups of small rank, Doctoral thesis, Utrecht (1989).

[FIK90] Faradžev, I. A., Ivanov, A. A. and Klin, M. H., Galois correspondence between permutation groups and cellular rings (association schemes), Graphs Combin., 6 (4) (1990), 303–332.

[FK91] Faradžev, I. A. and Klin, M. H., Computer package for computations with coherent configurations, in ISSAC '91. Proceedings of the 1991 international symposium on Symbolic and algebraic computation, Association for Computing Machinery (ACM) (1991), 219–223.

[FKM94] Faradžev, I. A., Klin, M. H. and Muzichuk, M. E., Cellular rings and groups of automorphisms of graphs, in Investigations in algebraic theory of combinatorial objects, Kluwer Acad. Publ., Math. Appl. (Soviet Ser.), 84, Dordrecht (1994), 1–152.

[FT63] Feit, W. and Thompson, J. G., Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775–1029.

[Fis69] Fischer, B., Finite groups generated by 3-transpositions, University of Warwick Lecture Notes (1969).

[Fou69] Foulser, D. A., Solvable primitive permutation groups of low rank, Trans. Amer. Math. Soc., 143 (1969), 1–54.

[Gol95] Gollan, H. W., A new existence proof for Ly, the sporadic simple group of R. Lyons, Habilitationsschrift, Essen (1995).

[Gor68] Gorenstein, D., Finite groups, Harper & Row Publishers, New York (1968), xv+527 pages.

[Gor80] Gorenstein, D., Finite groups, Chelsea Publishing Co., Second edition, New York (1980), xvii+519 pages.

[Gor82] Gorenstein, D., Finite simple groups, Plenum Publishing Corp., University Series in Mathematics, New York (1982), x+333 pages
(An introduction to their classification).

[HS95] Hall, J. I. and Soicher, L. H., Presentations of some 3-transposition groups, Comm. Algebra, 23 (7) (1995), 2517–2559.

[Hal76] Hall Jr., M., Group properties of Hadamard matrices, J. Austral. Math. Soc. Ser. A, 21 (2) (1976), 247–256.

[Her74] Hering, C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geometriae Dedicata, 2 (1974), 425–460.

[Her85] Hering, C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II, J. Algebra, 93 (1) (1985), 151–164.

[Hig67] Higman, D. G., Intersection matrices for finite permutation groups, J. Algebra, 6 (1967), 22–42.

[Hig69] Higman, G., On the simple group of D. G. Higman and C. C. Sims, Illinois J. Math., 13 (1969), 74–80.

[Hig75] Higman, D. G., Coherent configurations. I. Ordinary representation theory, Geometriae Dedicata, 4 (1) (1975), 1–32.

[Hig76a] Higman, D. G., Coherent configurations. II. Weights, Geometriae Dedicata, 5 (4) (1976), 413–424.

[Hig76b] Higman, D. G., A monomial character of Fischer's baby monster, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 277–283.

[HS68] Higman, D. G. and Sims, C. C., A simple group of order 44,352,000, Math. Z., 105 (1968), 110–113.

[Hup57] Huppert, B., Zweifach transitive, auflösbare Permutationsgruppen, Math. Z., 68 (1957), 126–150.

[Isa76] Isaacs, I. M., Character theory of finite groups, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976), xii+303 pages
(Pure and Applied Mathematics, No. 69).

[Isa94] Isaacs, I. M., Character theory of finite groups, Dover Publications Inc., New York (1994), xii+303 pages
(Corrected reprint of the 1976 original [Academic Press, New York; MR0460423 (57 #417)]).

[Isa06] Isaacs, I. M., Character theory of finite groups, AMS Chelsea Publishing, Providence, RI (2006), xii+310 pages
(Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]).

[Iva92] Ivanov, A. A., A geometric characterization of Fischer's Baby Monster, J. Algebraic Combin., 1 (1) (1992), 45–69.

[Iva94] Ivanov, A. A., Presenting the Baby Monster, J. Algebra, 163 (1) (1994), 88–108.

[IKF82] Ivanov, A. A., Klin, M. H. and Faradžev, I. A., Primitive representations of nonabelian simple groups of order less than 10^6, Part 1, Moscow (1982)
(VNIISI Preprint, Russian).

[IKF84] Ivanov, A. A., Klin, M. H. and Faradžev, I. A., Primitive representations of nonabelian simple groups of order less than 10^6, Part 2, Moscow (1984)
(VNIISI Preprint, Russian).

[ILLSS95] Ivanov, A. A., Linton, S. A., Lux, K., Saxl, J. and Soicher, L. H., Distance-transitive representations of the sporadic groups, Comm. Algebra, 23 (9) (1995), 3379–3427.

[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[JW96] Jansen, C. and Wilson, R. A., The minimal faithful 3-modular representation for the Lyons group, Comm. Algebra, 24 (3) (1996), 873–879.

[Kan81] Kantor, W. M., Some geometries that are almost buildings, European J. Combin., 2 (3) (1981), 239–247.

[Kan85] Kantor, W. M., Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A, 38 (1) (1985), 66–74.

[KL82] Kantor, W. M. and Liebler, R. A., The rank 3 permutation representations of the finite classical groups, Trans. Amer. Math. Soc., 271 (1) (1982), 1–71.

[KPW89] Kleidman, P. B., Parker, R. A. and Wilson, R. A., The maximal subgroups of the Fischer group Fi_23, J. London Math. Soc. (2), 39 (1) (1989), 89–101.

[Leo80] Leon, J. S., On an algorithm for finding a base and a strong generating set for a group given by generating permutations, Math. Comp., 35 (151) (1980), 941–974.

[Lie87] Liebeck, M. W., The affine permutation groups of rank three, Proc. London Math. Soc. (3), 54 (3) (1987), 477–516.

[LPS88] Liebeck, M. W., Praeger, C. E. and Saxl, J., On the O'Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. Ser. A, 44 (3) (1988), 389–396.

[LPS90] Liebeck, M. W., Praeger, C. E. and Saxl, J., The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., 86 (432) (1990), iv+151.

[LS86] Liebeck, M. W. and Saxl, J., The finite primitive permutation groups of rank three, Bull. London Math. Soc., 18 (2) (1986), 165–172.

[LLS95] Linton, S. A., Lux, K. and Soicher, L. H., The primitive distance-transitive representations of the Fischer groups, Experiment. Math., 4 (3) (1995), 235–253.

[LW91] Linton, S. A. and Wilson, R. A., The maximal subgroups of the Fischer groups Fi_24 and Fi'_24, Proc. London Math. Soc. (3), 63 (1) (1991), 113–164.

[Mai1895] Maillet, E., Sur les isomorphes holoédriques et transitifs des groupes symmetriques ou alternés, J. Math. Pures Appl. (5), 1 (1895), 5–34.

[MM85] Mazurov, V. D. and Mazurova, N. P., Large subgroups of the simple group F_2, Mat. Zametki, 37 (2) (1985), 145–151, 299
(Russian).

[McK90] McKay, B. D., nauty user's guide (version 1.5), Technical report TR-CS-90-02, Australian National University, Computer Science Department, ANU (1990), http://cs.anu.edu.au/people/bdm/nauty/.

[McL69] McLaughlin, J., A simple group of order 898,128,000, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 109–111.

[MNP85] Meyer, W., Neutsch, W. and Parker, R., The minimal 5-representation of Lyons' sporadic group, Math. Ann., 272 (1) (1985), 29–39.

[Neu82] Neubüser, J., An elementary introduction to coset table methods in computational group theory, in Groups—St. Andrews 1981 (St. Andrews, 1981), Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 71, Cambridge (1982), 1–45.

[NST94] Neumann, P. M., Stoy, G. A. and Thompson, E. C., Groups and geometry, The Clarendon Press Oxford University Press, Oxford Science Publications, New York (1994), x+254 pages.

[PSY87] Praeger, C. E., Saxl, J. and Yokoyama, K., Distance transitive graphs and finite simple groups, Proc. London Math. Soc. (3), 55 (1) (1987), 1–21.

[Sch95] Schönert, M. e. a., GAP – Groups, Algorithms, and Programming – version 3 release 4, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1995).

[Sco80] Scott, L. L., Representations in characteristic p, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Amer. Math. Soc., Proc. Sympos. Pure Math., 37, Providence, R.I. (1980), 319–331.

[Sei74] Seitz, G. M., Small rank permutation representations of finite Chevalley groups, J. Algebra, 28 (1974), 508–517.

[Sim67] Sims, C. C., Graphs and finite permutation groups, Math. Z., 95 (1967), 76–86.

[Sim73] Sims, C. C., The existence and uniqueness of Lyons' group, in Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972), North-Holland, Amsterdam (1973), 138–141. North-Holland Math. Studies, Vol. 7.

[Soi85] Soicher, L. H., Presentations of some finite groups, Ph.D. thesis, Cambridge (1985).

[Soi87a] Soicher, L. H., Presentations for Conway's group Co_1, Math. Proc. Cambridge Philos. Soc., 102 (1) (1987), 1–3.

[Soi87b] Soicher, L. H., Presentations of some finite groups with applications to the O'Nan simple group, J. Algebra, 108 (2) (1987), 310–316.

[Soi88] Soicher, L. H., Presentations for some groups related to Co_1, in Computers in algebra (Chicago, IL, 1985), Dekker, Lecture Notes in Pure and Appl. Math., 111, New York (1988), 151–154.

[Soi90] Soicher, L. H., A new existence and uniqueness proof for the O'Nan group, Bull. London Math. Soc., 22 (2) (1990), 148–152.

[Soi91] Soicher, L. H., A new uniqueness proof for the Held group, Bull. London Math. Soc., 23 (3) (1991), 235–238.

[Soi93a] Soicher, L. H., The Lyons group has no distance-transitive representation, in Finite geometry and combinatorics (Deinze, 1992), Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 191, Cambridge (1993), 355–358.

[Soi93b] Soicher, L. H., GRAPE: a system for computing with graphs and groups, in Groups and computation (New Brunswick, NJ, 1991), Amer. Math. Soc., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 11, Providence, RI (1993), 287–291.

[Soi95] Soicher, L. H., Yet another distance-regular graph related to a Golay code, Electron. J. Combin., 2 (1995), Note 1, approx. 4 pp. (electronic).

[Suz69] Suzuki, M., A simple group of order 448,345,497,600, in Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York (1969), 113–119.

[Wei91] Weiss, R., A geometric characterization of the groups M_12, He and Ru, J. Math. Soc. Japan, 43 (4) (1991), 795–814.

[Wil86] Wilson, R. A., Maximal subgroups of sporadic groups, in Proceedings of Groups—St. Andrews 1985, Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 121, Cambridge (1986), 352–358.

[Wil98] Wilson, R. A., An atlas of sporadic group representations, in The atlas of finite groups: ten years on (Birmingham, 1995), Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 249, Cambridge (1998), 261–273.

"On endomorphism rings and character tables"

[BI84] Bannai, E. and Ito, T., Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA (1984), xxiv+425 pages
(Association schemes).

[Big74] Biggs, N., Algebraic graph theory, Cambridge University Press, London (1974), vii+170 pages
(Cambridge Tracts in Mathematics, No. 67).

[Big93] Biggs, N., Algebraic graph theory, Cambridge University Press, Second edition, Cambridge Mathematical Library, Cambridge (1993), viii+205 pages.

[Bre05] Breuer, T., Multiplicity-free permutation characters in GAP, part 2 (2005), http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/multfre2.pdf.

[BL96] Breuer, T. and Lux, K., The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra, 24 (7) (1996), 2293–2316.

[BM05] Breuer, T. and Müller, J., Character tables of endomorphism rings of multiplicity-free permutation modules of the sporadic simple groups, their automorphism groups, and their cyclic central extension groups (2005), http://www.math.rwth-aachen.de/~Juergen.Mueller/mferctbl/intro.html.

[BCN89] Brouwer, A. E., Cohen, A. M. and Neumaier, A., Distance-regular graphs, Springer-Verlag, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Berlin (1989), xviii+495 pages.

[BvL84] Brouwer, A. E. and van Lint, J. H., Strongly regular graphs and partial geometries, in Enumeration and design (Waterloo, Ont., 1982), Academic Press, Toronto, ON (1984), 85–122.

[Coh93] Cohen, H., A course in computational algebraic number theory, Springer-Verlag, Graduate Texts in Mathematics, 138, Berlin (1993), xii+534 pages.

[CCNPW85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray).

[Dix67] Dixon, J. D., High speed computation of group characters, Numer. Math., 10 (1967), 446–450.

[Fra37] Frame, J. S., The degrees of the irreducible components of simply transitive permutation groups, Duke Math. J., 3 (1) (1937), 8–17.

[Fra41] Frame, J. S., The double cosets of a finite group, Bull. Amer. Math. Soc., 47 (1941), 458–467.

[GR01] Godsil, C. and Royle, G., Algebraic graph theory, Springer-Verlag, Graduate Texts in Mathematics, 207, New York (2001), xx+439 pages.

[Hig75] Higman, D. G., Coherent configurations. I. Ordinary representation theory, Geometriae Dedicata, 4 (1) (1975), 1–32.

[Hig76a] Higman, D. G., Coherent configurations. II. Weights, Geometriae Dedicata, 5 (4) (1976), 413–424.

[Hig76b] Higman, D. G., A monomial character of Fischer's baby monster, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 277–283.

[Hoe01] Höhler, I., Vielfachheitsfreie Permutationsdarstellungen und die Invarianten zugehöriger Graphen, Examensarbeit, RWTH Aachen (2001)
(http://www.math.rwth-aachen.de/~Ines.Hoehler).

[Hub75] Hubaut, X. L., Strongly regular graphs, Discrete Math., 13 (4) (1975), 357–381.

[ILLSS95] Ivanov, A. A., Linton, S. A., Lux, K., Saxl, J. and Soicher, L. H., Distance-transitive representations of the sporadic groups, Comm. Algebra, 23 (9) (1995), 3379–3427.

[IM99] Ivanov, A. A. and Meierfrankenfeld, U., A computer-free construction of J_4, J. Algebra, 219 (1) (1999), 113–172.

[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[Lan83] Landrock, P., Finite group algebras and their modules, Cambridge University Press, London Mathematical Society Lecture Note Series, 84, Cambridge (1983), x+274 pages.

[LLS95] Linton, S. A., Lux, K. and Soicher, L. H., The primitive distance-transitive representations of the Fischer groups, Experiment. Math., 4 (3) (1995), 235–253.

[LM01] Linton, S. A. and Mpono, Z., Multiplicity-free permutation characters of covering groups of sporadic simple groups (2001), preprint.

[LN01] Lübeck, F. and Neunhöffer, M., Enumerating large orbits and direct condensation, Experiment. Math., 10 (2) (2001), 197–205.

[MM89] Mazurov, V. D. and Mazurova, N. P., The minimal permutation representation of the Thompson group, in Problems in algebra, No. 4 (Russian) (Gomelʹ, 1986), "Universitet·skoe", Minsk (1989), 115–123
(Russian).

[ORB2r0] Müller, J., Neunhöffer, M. and Noeske, F., ORB, Methods to enumerate Orbits (2008)
(GAP package), http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html.

[Nor75] Norton, S. P., F and other simple groups, Ph.D. thesis, Cambridge (1975).

[Nor85] Norton, S. P., The uniqueness of the Fischer-Griess Monster, in Finite groups—coming of age (Montreal, Que., 1982), Amer. Math. Soc., Contemp. Math., 45, Providence, RI (1985), 271–285.

[PS97] Praeger, C. E. and Soicher, L. H., Low rank representations and graphs for sporadic groups, Cambridge University Press, Australian Mathematical Society Lecture Series, 8, Cambridge (1997), xii+141 pages.

[Sch90] Schneider, G. J. A., Dixon's character table algorithm revisited, J. Symbolic Comput., 9 (5-6) (1990), 601–606
(Computational group theory, Part 1).

[Sch33] Schur, I., Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungsberichte der Preußischen Akademie der Wissenschaften (1933), 598–623.

[Sco77] Scott, L. L., Some properties of character products, J. Algebra, 45 (2) (1977), 259–265.

[Tam70] Tamaschke, O., Schur-Ringe, Bibliographisches Institut, Mannheim (1970), xvi+240 pages
(Vorlesungen an der Universität Tübingen im Sommersemester 1969, B. I-Hochschulskripten, 735a^*).

[Ter99] Terras, A., Fourier analysis on finite groups and applications, Cambridge University Press, London Mathematical Society Student Texts, 43, Cambridge (1999), x+442 pages.

[Wie64] Wielandt, H., Finite permutation groups, Academic Press, Translated from the German by R. Bercov, New York (1964), x+114 pages.

[Wil96] Wilson, R. A., Standard generators for sporadic simple groups, J. Algebra, 184 (2) (1996), 505–515.

[ATLAS] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas.

[GAP] GAP – Groups, Algorithms, and Programming, Version 4.2, The GAP Group (2000), http://www.gap-system.org.

"On the multiplicity-free actions of the sporadic simple groups"

[BI84] Bannai, E. and Ito, T., Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA (1984), xxiv+425 pages
(Association schemes).

[CTblLib1r1p3] Breuer, T., CTblLib, The GAP Character Table Library (2004)
(GAP package), http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib.

[Bre05] Breuer, T., Multiplicity-free permutation characters in GAP, part 2 (2005), http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/multfre2.pdf.

[BL96] Breuer, T. and Lux, K., The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra, 24 (7) (1996), 2293–2316.

[BM05] Breuer, T. and Müller, J., Character tables of endomorphism rings of multiplicity-free permutation modules of the sporadic simple groups, their automorphism groups, and their cyclic central extension groups (2005), http://www.math.rwth-aachen.de/~Juergen.Mueller/mferctbl/intro.html.

[BCN89] Brouwer, A. E., Cohen, A. M. and Neumaier, A., Distance-regular graphs, Springer-Verlag, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Berlin (1989), xviii+495 pages.

[MR1228206] Cohen, H., A course in computational algebraic number theory, Springer-Verlag, Graduate Texts in Mathematics, 138, Berlin (1993), xii+534 pages.

[CCNPW85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray).

[CR81] Curtis, C. W. and Reiner, I., Methods of representation theory. Vol. I, John Wiley & Sons Inc., New York (1981), xxi+819 pages
(With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication).

[CR90] Curtis, C. W. and Reiner, I., Methods of representation theory. Vol. I, John Wiley & Sons Inc., Wiley Classics Library, New York (1990), xxiv+819 pages
(With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication).

[MR1989434] Davidoff, G., Sarnak, P. and Valette, A., Elementary number theory, group theory, and Ramanujan graphs, Cambridge University Press, London Mathematical Society Student Texts, 55, Cambridge (2003), x+144 pages.

[Hig76a] Higman, D. G., Coherent configurations. II. Weights, Geometriae Dedicata, 5 (4) (1976), 413–424.

[Hig76b] Higman, D. G., A monomial character of Fischer's baby monster, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 277–283.

[Hoe01] Höhler, I., Vielfachheitsfreie Permutationsdarstellungen und die Invarianten zugehöriger Graphen, Examensarbeit, RWTH Aachen (2001)
(http://www.math.rwth-aachen.de/~Ines.Hoehler).

[Hub75] Hubaut, X. L., Strongly regular graphs, Discrete Math., 13 (4) (1975), 357–381.

[ILLSS95] Ivanov, A. A., Linton, S. A., Lux, K., Saxl, J. and Soicher, L. H., Distance-transitive representations of the sporadic groups, Comm. Algebra, 23 (9) (1995), 3379–3427.

[IM99] Ivanov, A. A. and Meierfrankenfeld, U., A computer-free construction of J_4, J. Algebra, 219 (1) (1999), 113–172.

[Lan83] Landrock, P., Finite group algebras and their modules, Cambridge University Press, London Mathematical Society Lecture Note Series, 84, Cambridge (1983), x+274 pages.

[LLS95] Linton, S. A., Lux, K. and Soicher, L. H., The primitive distance-transitive representations of the Fischer groups, Experiment. Math., 4 (3) (1995), 235–253.

[LM01] Linton, S. A. and Mpono, Z., Multiplicity-free permutation characters of covering groups of sporadic simple groups (2001), preprint.

[LN01] Lübeck, F. and Neunhöffer, M., Enumerating large orbits and direct condensation, Experiment. Math., 10 (2) (2001), 197–205.

[LMR94] Lux, K., Müller, J. and Ringe, M., Peakword condensation and submodule lattices: an application of the MEAT-AXE, J. Symbolic Comput., 17 (6) (1994), 529–544.

[MP07] Merkwitz, T. and Pfeiffer, G., TomLib, The GAP Library of Tables of Marks (2007)
(GAP package), http://www.gap-system.org/Datalib/tom.html.

[Mue03] Müller, J., On endomorphism rings and character tables, Habilitationsschrift, RWTH Aachen (2003)
(http://www.math.rwth-aachen.de/~Juergen.Mueller).

[Mue08a] Müller, J., On the action of the sporadic simple Baby Monster group on its conjugacy class 2B, LMS J. Comput. Math., 11 (2008), 15–27.

[MNRW02] Müller, J., Neunhöffer, M., Röhr, F. and Wilson, R., Completing the Brauer trees for the sporadic simple Lyons group, LMS J. Comput. Math., 5 (2002), 18–33 (electronic).

[MNW07] Müller, J., Neunhöffer, M. and Wilson, R. A., Enumerating big orbits and an application: B acting on the cosets of Fi_23, J. Algebra, 314 (1) (2007), 75–96.

[Nor85] Norton, S. P., The uniqueness of the Fischer-Griess Monster, in Finite groups—coming of age (Montreal, Que., 1982), Amer. Math. Soc., Contemp. Math., 45, Providence, RI (1985), 271–285.

[PSY87] Praeger, C. E., Saxl, J. and Yokoyama, K., Distance transitive graphs and finite simple groups, Proc. London Math. Soc. (3), 55 (1) (1987), 1–21.

[PS97] Praeger, C. E. and Soicher, L. H., Low rank representations and graphs for sporadic groups, Cambridge University Press, Australian Mathematical Society Lecture Series, 8, Cambridge (1997), xii+141 pages.

[Rin00] Ringe, M., The C-MeatAxe, Documentation, RWTH Aachen (1992)
(Version 2.4).

[Sch33] Schur, I., Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungsberichte der Preußischen Akademie der Wissenschaften (1933), 598–623.

[Wil96] Wilson, R. A., Standard generators for sporadic simple groups, J. Algebra, 184 (2) (1996), 505–515.

[ATLAS] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas.

[Zie96] Zieschang, P.-H., An algebraic approach to association schemes, Springer-Verlag, Lecture Notes in Mathematics, 1628, Berlin (1996), xii+189 pages.

[GAP] GAP – Groups, Algorithms, and Programming, Version 4.4, The GAP Group (2005), http://www.gap-system.org.

Cross-referenced Collections

[Atk84] (Atkinson, M. D., Ed.), Computational group theory, Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1984), xii+375 pages.

[BBDdCTH93] (Beutelspacher, A., Buekenhout, F., Doyen, J., De Clerck, F., Thas, J. A. and Hirschfeld, J. W. P., Eds.), Finite geometry and combinatorics, Proceedings of the Second International Conference held in Deinze, May 31–June 6, 1992, Cambridge University Press, London Mathematical Society Lecture Note Series, 191, Cambridge (1993), x+412 pages.

[BS69] (Brauer, R. and Sah, C., Eds.), Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam (1969), xiii+263 pp. (erratum, p. xiii) pages.

[CR82b] (Campbell, C. M. and Robertson, E. F., Eds.), Groups—St. Andrews 1981, Proceedings of the International Conference on Groups held at the Mathematical Institute, University of St. Andrews, St. Andrews, July 25–August 8, 1981, Cambridge University Press, London Mathematical Society Lecture Note Series, 71, Cambridge (1982), viii+360 pages.

[CR07] (Campbell, C. M. and Robertson, E. F., Eds.), Groups—St. Andrews 1981, Cambridge University Press, Revised edition, London Mathematical Society Lecture Note Series, 71, Cambridge (2007), xiv+374 pages
(Selected papers from the International Conference held at the University of St. Andrews, St. Andrews, July 25–August 8, 1981).

[CM80b] (Cooperstein, B. and Mason, G., Eds.), The Santa Cruz Conference on Finite Groups, American Mathematical Society, Proceedings of Symposia in Pure Mathematics, 37, Providence, R.I. (1980), xviii+634 pages
(Held at the University of California, Santa Cruz, Calif., June 25–July 20, 1979).

[CW98] (Curtis, R. and Wilson, R., Eds.), The atlas of finite groups: ten years on, Proceedings of the Conference on Group Theory and its Applications held in Birmingham, July 10–13, 1995, Cambridge University Press, London Mathematical Society Lecture Note Series, 249, Cambridge (1998), xviii+293 pages.

[FIKW94] (Faradžev, I. A., Ivanov, A. A., Klin, M. H. and Woldar, A. J., Eds.), Investigations in algebraic theory of combinatorial objects, Kluwer Academic Publishers Group, Mathematics and its Applications (Soviet Series), 84, Dordrecht (1994), xii+510 pages.

[FK93] (Finkelstein, L. and Kantor, W. M., Eds.), Groups and computation, Proceedings of the DIMACS Workshop held at Rutgers University, New Brunswick, New Jersey, October 7–10, 1991, American Mathematical Society, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 11, Providence, RI (1993), xx+313 pages.

[GHS73] (Gagen, T., Hale Jr., M. P. and Shult, E. E., Eds.), Finite groups '72, Proceedings of the Gainesville Conference on Finite Groups, University of Florida, Gainesville, Fla., March 23–24, 1972, North-Holland Publishing Co., Amsterdam (1973), vi+158 pp. (4 plates) pages
(North-Holland Mathematics Studies, Vol. 7).

[JV84] (Jackson, D. M. and Vanstone, S. A., Eds.), Enumeration and design, Academic Press (Harcourt Brace Jovanovich Publishers), Toronto, ON (1984), x+317 pages
(Papers from the conference on combinatorics held at the University of Waterloo, Waterloo, Ont., June 14–July 2, 1982).

[LS92a] (Liebeck, M. and Saxl, J., Eds.), Groups, combinatorics & geometry, Proceedings of the L.M.S. Symposium on Groups and Combinatorics held in Durham, July 5–15, 1990, Cambridge University Press, London Mathematical Society Lecture Note Series, 165, Cambridge (1992), xiv+489 pages.

[McK85] (McKay, J., Ed.), Finite groups—coming of age, Proceedings of the Canadian Mathematical Society conference held at Concordia University, Montreal, Que., June 15–28, 1982, American Mathematical Society, Contemporary Mathematics, 45, Providence, RI (1985), x+350 pages.

[RC86] (Robertson, E. F. and Campbell, C. M., Eds.), Proceedings of Groups—St. Andrews 1985, Cambridge University Press, London Mathematical Society Lecture Note Series, 121, Cambridge (1986), x+358 pages
(Held at the University of St. Andrews, St. Andrews, July 27–August 10, 1985).

[SG76] (Scott, W. R. and Gross, F., Eds.), Proceedings of the Conference on Finite Groups, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1976), xiii+565 pages
(Held at the University of Utah, Park City, Utah, February 10–13, 1975).

[She89] (Shemetkov, L. A., Ed.), Voprosy algebry. Vyp. 4, "Universitet$ \cdot $skoe", Minsk (1989), 183 pages
(Papers from the Tenth All-Union Symposium on Group Theory held in Gomelʹ, September 9–11, 1986).

[Tan88] (Tangora, M. C., Ed.), Computers in algebra, Marcel Dekker Inc., Lecture Notes in Pure and Applied Mathematics, 111, New York (1988), viii+162 pages
(Papers from the conference held at the University of Illinois at Chicago, Chicago, Illinois, December 1985).

[vzG94] (Von zur Gathen, J. e. a., Ed.), ISSAC '94. Proceedings of the international symposium on symbolic and algebraic computation, The Association for Computing Machinery, Association for Computing Machinery (ACM), Baltimore (1994)
(Held in Oxford, July 20–22, 1994).

[Wat91] (Watt, S. M., Ed.), ISSAC '91. Proceedings of the 1991 international symposium on Symbolic and algebraic computation, The Association for Computing Machinery, Association for Computing Machinery (ACM), New York (1991)
(Held in Bonn, July 15–17, 1991).


File created automatically by GAP on 8-Oct-2008.