[BL08] Breuer, T. and Lübeck, F.,
Browse,
ncurses interface and browsing applications,
Version 1.2
(2008)
(GAP package),
http://www.math.rwth-aachen.de/~Browse.
[BL96] Breuer, T. and Lux, K., The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra, 24 (7) (1996), 2293–2316.
[Bre06] Breuer, T., Multiplicity-Free Permutation Characters in GAP, part 2, http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/multfre2.pdf.
[CCNPW85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.,
Atlas of finite groups,
Oxford University Press,
Eynsham
(1985),
xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups,
With computational assistance from J. G. Thackray).
[Hig76] Higman, D. G., A monomial character of Fischer's baby monster, in Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York (1976), 277–283.
[Hoe01] Höhler, I., Vielfachheitsfreie Permutationsdarstellungen und die Invarianten zugehöriger Graphen, Examensarbeit, RWTH Aachen (2001).
[ILLSS95] Ivanov, A. A., Linton, S. A., Lux, K., Saxl, J. and Soicher, L. H., Distance-transitive representations of the sporadic groups, Comm. Algebra, 23 (9) (1995), 3379–3427.
[IM99] Ivanov, A. A. and Meierfrankenfeld, U., A computer-free construction of J_4, J. Algebra, 219 (1) (1999), 113–172.
[LLS95] Linton, S. A., Lux, K. and Soicher, L. H., The primitive distance-transitive representations of the Fischer groups, Experiment. Math., 4 (3) (1995), 235–253.
[LM03] Linton, S. A. and Mpono, S. A., Multiplicity-free permutation characters of covering groups of sporadic simple groups, preprint.
[Linton] Linton, S. A., private communication.
[Mue03] Müller, J., On endomorphism rings and character tables, Habilitationsschrift, RWTH Aachen (2003).
[Mue08a] Müller, J., On the action of the sporadic simple Baby Monster group on its conjugacy class 2B, LMS J. Comput. Math., 11 (2008), 15–27.
[Mue08b] Müller, J., On the multiplicity-free actions of the sporadic simple groups, J. Algebra, 320 (2008), 910-926.
[MNW07] Müller, J., Neunhöffer, M. and Wilson, R. A., Enumerating big orbits and an application: B acting on the cosets of Fi_23, J. Algebra, 314 (1) (2007), 75–96.
[NMP11] Naughton, L., Merkwitz, T. and Pfeiffer, G.,
TomLib,
The GAP Library of Tables of Marks,
Version 1.2.1
(2011)
(GAP package),
http://schmidt.nuigalway.ie/tomlib.
[Nor85] Norton, S. P., The uniqueness of the Fischer-Griess Monster, in Finite groups—coming of age (Montreal, Que., 1982), Amer. Math. Soc., Contemp. Math., 45, Providence, RI (1985), 271–285.
[PS97] Praeger, C. E. and Soicher, L. H., Low rank representations and graphs for sporadic groups, Cambridge University Press, Australian Mathematical Society Lecture Series, 8, Cambridge (1997), xii+141 pages.
[RW04a] Rowley, P. and Walker, L., A 11,707,448,673,375 vertex graph related to the baby monster. I, J. Combin. Theory Ser. A, 107 (2) (2004), 181–213.
[RW04b] Rowley, P. and Walker, L., A 11,707,448,673,375 vertex graph related to the baby monster. II, J. Combin. Theory Ser. A, 107 (2) (2004), 215–261.
generated by GAPDoc2HTML