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Abstract

For a module V over a finite semisimple algebra A we give the total number of self-dual codes in V . This enables us to
obtain a mass formula for self-dual codes in permutation representations of finite groups over finite fields of coprime
characteristic.

Key words: permutation codes, number of self-dual codes, mass formula, group ring codes

1. Introduction

In the classical sense, a code is a linear subspace of FN , where F is a finite field. Many codes
which are of interest in coding theory have the additional structure of a module over a ring R.
The cyclic codes, for instance, which are invariant under a cyclic shift of the coordinates, are the
ideals of the group ring FCN over the cyclic group CN of order N .

In this paper a code is a submodule of a right A-module V , where A is a finite dimensional
algebra over F. This includes the group codes considered by several authors – see for instance
(1; 5; 7) – which are ideals of a group algebra FG, where G is a finite group, and also the extended
cyclic codes considered in (10), which are FCN -submodules of FCN ⊕ F, where CN acts trivially
on the additional coordinate.

The module V will be assumed to carry a non-degenerate equivariant form ϕ (cf. Definition 2.2)
– in the case of group algebras A = FG these are non-degenerate G-invariant forms. For a code
C ≤ V we define the orthogonal code

C⊥ = C⊥,ϕ := {v ∈ V | ϕ(v, c) = 0 for all c ∈ C},

which is, again, a right A-module. If C = C⊥ then the code C is called self-dual.
The situation in which a self-dual code C ≤ V exists has been characterized in (15) in the

case where A = V = FG, using representation theoretic methods. In this paper the total number
M(V,ϕ) of self-dual codes in a generalA-module V over a semisimple algebraA is given, provided
that there exists at least one such code. It is shown that this number basically depends on the
composition factors of V , except if F has even characteristic and ϕ is symmetric. Still, the latter
case remains relatively transparent if A is a group algebra – then, M(V,ϕ) additionally depends on
the existence of an isotropic vector v ∈ V , i.e. ϕ(v, v) = 0.

The number M(V,ϕ) is determined via a Morita equivalence F given in Section 2, which maps
(V, ϕ) onto a module (U,ϕ′) over Z(A). In the case where A = FG is a group algebra and F is a
splitting field for G, this corresponds the Morita equivalence given in (16). Note that (16) includes
the modular case, i.e. the case where A is not semisimple. We show that the equivalence F pre-
serves the number of self-dual codes. Since A is semisimple, Z(A) is a ring-direct sum of fields.
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This reduces the determination of M(V,ϕ), in Subsection 3.3, basically to an enumeration of all
self-dual codes in a vector space endowed with a certain form. This situation is well understood;
enumeration formulae are given in (14) and (6), for instance, and are cited in Subsection 3.2 for
reader’s convenience.

In Section 4 we give a group Autweak(V ) which acts on the set C(V ) of self-dual codes in V , and
define some suitable subgroups Γ ≤ Autweak(V ) which respect certain properties of codes, like
the isometry type, or, in the case of group codes, the weight distribution.

The total number M(V,ϕ) of self-dual codes in V is then the sum of the orbit lengths under Γ
– the mass formula (Theorem 4.2) is a reformulation of this fact, which relates the ratio M(V,ϕ)

|Γ| to
the stabilizer orders of Γ-orbits, hence is a useful tool to prove completeness of a classification of
all self-dual codes in V . As an example, we classify in Subsection 4.2 the self-dual binary [48, 24]-
codes with an automorphism of order 23.

2. Morita theory for codes

Throughout this note, let A be a finite dimensional semisimple algebra over the finite field
F = Fq with q elements. Let be an involution of A and let V be a right A-module.

Definition 2.1 (i) A Hermitian form on V is a biadditive mapping φ : V × V → A such that

φ(v, wa) = φ(v, w)a and φ(v, w) = φ(w, v)

for all v, w ∈ V and a ∈ A. If φ is non-degenerate, i.e. if

rad(φ) := {v ∈ V | φ(v, w) = 0 for all w ∈ V } = {0}

then (V, φ) is called a Hermitian A-module.
(ii) Let Mod(A)

A be the category of Hermitian A-modules. The morphisms from the object (V, φ) to the ob-
ject (V ′, φ′) are theA-module homomorphisms ψ : V → V ′ satisfying φ′(ψ(v), ψ(w)) = φ(v, w) for
all v, w ∈ V . Since any such homomorphism is injective, the morphisms are also called monometries.

To introduce the notion of equivariant forms in Definition 2.2 we need the following two re-
marks.

Remark 1 WriteA = ⊕ti=1D
ni×ni
i , where theDi are field extensions of F. Then the involution satisfies

Mi = (Mαi

π(i))
tr, for Mi ∈ Dni×ni

i , where M tr is the transpose of the matrix M , π is a permutation on t
points and αi ∈ Aut(Di) is a field automorphism satisfying α2

i = id and is applied componentwise.

Remark 2 With the notation from Remark 1, the field F is naturally embedded into A via f 7→ f · 1 =
⊕ti=1fIni

, where Ini
∈ Dni×ni

i is the identity matrix. Hence F = F, according to Remark 1. The restriction
of to F is either the identity or a field automorphism of order 2. In the latter case F = Fq2 has q2 elements
and f = fq , for f ∈ F.

Definition 2.2 (i) An equivariant form on V (with respect to ) is a biadditive mapping ϕ : V ×V → F
such that

ϕ(va, w) = ϕ(v, wa), ϕ(v, w) = ϕ(w, v) and ϕ(v, wλ) = ϕ(v, w)λ

for all v, w ∈ V, a ∈ A and λ ∈ F. The form ϕ is called non-degenerate if rad(ϕ) = {0}, cf.
Definition 2.1. If ϕ is non-degenerate then (V, ϕ) is called an equivariant A-module.

(ii) Let Mod(F)
A be the category of equivariant A-modules, with the monometries as morphisms (cf. Defi-

nition 2.1).

It is well-known that the categories Mod(A)
A and Mod(F)

A are equivalent (cf. (11)). More precisely,
let Tracereg : A→ F be the reduced trace, i.e. if A = ⊕ti=1D

ni×ni
i and M = (M1, . . . ,Mt) ∈ A then

Trace(M) =
∑t
i=1 TrDi/F(Trace(Mi)).
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The functor
T : Mod(A)

A → Mod(F)
A , (V, φ) 7→ (V,Tracereg(φ))

establishes an equivalence. Note that Tracereg(φ) is non-degenerate whenever φ has this property,
since rad(Tracereg(φ)) = rad(φ), due to the non-degeneracy of Tracereg : A × A → F, (a, b) 7→
Tracereg(ab), cf. (3, Proposition 7.41).

In addition, the functor T preserves orthogonality (cf. Definition 2.3). This property ensures
that any (V, φ) ∈ Mod(A)

A contains as many self-dual codes as T ((V, φ)).

Definition 2.3 LetM,M′ be categories of Hermitian or equivariant modules over the algebras AM and
AM′ , respectively. A functor F :M→M′, (V, β) 7→ (F0(V ), F1(β)) is said to preserve orthogonality if

F0(C⊥,β) = F0(C)⊥,F1(β)

for every submodule C ≤ V .

The main result of this section is the following.

Theorem 2.4 There is an orthogonality-preserving equivalence between the categories Mod(F)
A and

Mod(E)
E , where E = Z(A) is the center of A, with the restriction of to E as involution.

The equivalence stated in Theorem 2.4 will be constructed as a composition

Mod(F)
A

T−1

−→ Mod(A)
A

F−→ Mod(E)
E ,

where T is as above. In what follows, the functor F will be constructed as tensoring with a pro-
generatorW , which is an (A,E)-bimodule. In order to also map the forms on the objects of Mod(A)

A

we have to specify the notion of Hermitian (and equivariant) forms on left modules.

Remark 3 For a left A-module W , we call a biadditive form φ : W ×W → A Hermitian iff

aφ(w,w′) = φ(aw,w′) and φ(w,w′) = φ(w′, w)

for all a ∈ A and w,w′ ∈W . If φ is non-degenerate then (W,φ) is called a Hermitian left A-module.
Similarly, we call a biadditive form ϕ : W ×W → F equivariant iff

ϕ(aw,w′) = ϕ(w, aw′), ϕ(λw,w′) = λϕ(w,w′) and ϕ(w′, w) = ϕ(w,w′)

for all a ∈ A, w,w′ ∈ W and λ ∈ F. If ϕ is non-degenerate then (W,ϕ) is called an equivariant left
A-module.

Remark 4 Let (W,ψ) be a Hermitian (resp. equivariant) left A-module. Consider W as a right module
WE over E = Z(A) via we := ew for w ∈ W and e ∈ E. Then (WE , ψ) is also a Hermitian (resp.
equivariant) right E-module, where the involution of E is the restriction of .

In order to transform A-valued forms into E-valued forms we need the following definition.

Definition 2.5 Let A ∼= ⊕ti=1D
ni×ni
i , where the Di are field extensions of F. Define

TraceA/E : A→ E, (M1, . . . ,Mt) 7→ (Trace(M1)In1 , . . . ,Trace(Mt)Int).

Finally, we need the notion of self-dual modules – note that this paper uses two different notions
of duality. An A-module S is called self-dual if S ∼= S∗ ∼= HomF(S,F) (cf. Definition 2.6), whereas
a submodule C ≤ (V, φ) is called self-dual if C = C⊥, where

C⊥ = {v ∈ V | φ(v, c) = 0 for all c ∈ C}.

To distinguish these two notions, and also since we are mainly interested in the coding-theoretic
applications (i.e. where V has a distinguished F-basis), we talk about self-dual codes in the latter
situation.
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Definition 2.6 Let S be a right A-module. Then the dual module S∗ is

S∗ = HomF(S,F) = {f : S → F | f is additive and f(sλ) = f(s)λ for all s ∈ S, λ ∈ F},
which is a right A-module via fa(s) := f(sa), for f ∈ S∗, a ∈ A and s ∈ S. The module S is called
self-dual iff S ∼= S∗.

Theorem 2.7 Let (W,ψ) be a Hermitian left A-module such that

ψ(w1, w2)w3 = TraceA/E(ψ(w3, w2))w1 (??)

for all w1, w2, w3 ∈W , and 1 ∈ Im(TraceA/E(ψ)) := {TraceA/E(ψ(w,w′)) | w,w′ ∈W}.
Consider W as a right module over E = Z(A) as in Remark 4. Define a functor

FW := F(W,ψ) : Mod(A)
A → Mod(E)

E , (V, φ) 7→ (V ⊗A AWE , φ⊗ ψ),

where φ⊗ ψ :=
(
(v ⊗ w, v′ ⊗ w′) 7→ TraceA/E(φ(v′, v)ψ(w,w′))

)
. Then FW preserves orthogonality.

Proof. It is easy to see that φ ⊗ ψ is always well-defined and equivariant, using the fact that φ
and ψ are Hermitian.

It remains to show that FW preserves orthogonality, i.e. that

FW (C)⊥,φ⊗ψ = FW (C⊥,φ)

for all submodules C ≤ V , where (V, φ) ∈ Mod(A)
A .

The inclusion FW (C⊥,φ) ⊆ FW (C)⊥,φ⊗ψ follows immediately from the definition of the form
φ⊗ ψ.

For the inclusion FW (C)⊥,φ⊗ψ ⊆ FW (C⊥,φ), write

V =⊥S∈S, S∼=S∗ VS ⊥{T,T∗}⊆S, T�T∗ VT⊕T∗ and

W =⊥S∈S, S∼=S∗ SW ⊥{T,T∗}⊆S, T�T∗ T⊕T∗W,
(†)

where S is a system of representatives for the isomorphism classes of simple A-modules, VX and
XW are the X-homogeneous components of V and W , respectively, for the simple module X ,
and VT⊕T∗ = VT ⊕ VT∗ and T⊕T∗W = TW ⊕ T∗W .

Note that the decompositions in (†) are orthogonal with respect to φ and ψ, respectively, since
these forms are Hermitian. In particular, the restriction of φ or ψ to a summand in (†) is non-
degenerate.

Now let (v′ ⊗ w′) ∈ FW (C)⊥,φ⊗ψ ⊆ V ⊗W and write

(v′ ⊗ w′) = (
∑
S∈S

v′S ⊗
∑
S∈S

Sw
′) =

∑
S∈S

(v′S ⊗ Sw
′),

where v′S ∈ VS and Sw
′ ∈ SW . Then

0 = (φ⊗ ψ)(c⊗ w, v′ ⊗ w′) =
∑
S∈S

TraceA/E(φ(v′S , c)ψ(w, Sw′))

for all c ∈ C and w ∈ W . In particular TraceA/E(φ(v′S , c)) = 0 for all c ∈ C and all S ∈ S, by
suitable choices of w ∈ W . Hence TraceA/E(φ(v′S , ca)) = TraceA/E(φ(v′S , c)a) = 0 for every c ∈ C
and a ∈ A. Due to the non-degeneracy of

TraceA/E : A×A→ E, (a′, a) 7→ TraceA/E(a′a),

this implies that φ(v′S , c) = 0 for all c ∈ C. Hence v′S ∈ C⊥,φ and

(v′ ⊗ w) =
∑
S∈S

(v′S ⊗ w) ∈ FW (C⊥,φ).

The fact that FW preserves orthogonality implies that φ⊗ ψ is non-degenerate since

rad(φ⊗ ψ) = FW (V )⊥,φ⊗ψ = FW (V ⊥,φ) = FW (rad(φ)) = {0}.
�

The functor F is now obtained by a particular choice of W in Theorem 2.7.
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Theorem 2.8 Let S be a system of representatives for the isomorphism classes of simple left A-modules,
and letW := ⊕S∈SS. Fix a non-degenerate Hermitian form ψ onW which satisfies

ψ(w1, w2)w3 = TraceA/E(ψ(w3, w2))w1 (??)

for all w1, w2, w3 ∈ W . Then F := F(W,ψ) : Mod(A)
A → Mod(E)

E is an equivalence of categories which
preserves orthogonality.

Note that condition (??) in Theorem 2.8 is natural and that there always exists a form ψ satisfy-
ing this condition, if A is a semisimple algebra with involution: Write A = ⊕ti=1D

ni×ni
i and let π

be a permutation on t points and αi ∈ Aut(Di) with Mi = (Mαi

π(i))
tr, for Mi ∈ Dni×ni

i (cf. Remark
1).

OnW ∼= ⊕ti=1D
ni×1
i there exists a non-degenerate Hermitian form

ψ :W ×W → A, (⊕ti=1di,⊕ti=1fi) 7→ ⊕ti=1di(f
αi

π(i))
tr,

which satisfies

ψ(di, fi)gi = di(fαi

π(i))
trgi = di TraceA/E(gi(fαi

π(i))
tr) = TraceA/E(ψ(gi, fi))di

for all di, fi, gi ∈ Dni×1
i and hence satisfies condition (??).

We now prove Theorem 2.8.

Proof. Let Wop be the set W with a right A-module structure given by w ∗ a := aw for a ∈ A
and w ∈ W .

The form ψ̂ :Wop ×Wop → A, (w,w′) 7→ ψ(w,w′) is then non-degenerate and Hermitian.
Note that Wop is also a left E-module (since W is a left A-module). Hence we can define a

functor

H : Mod(E)
E → Mod(A)

A , (U,ϕ) 7→ (U ⊗E Wop, ϕ⊗ ψ̂),

where

ϕ⊗ ψ̂(u⊗ w, u′ ⊗ w′) := ϕ(u′, u)ψ̂(w,w′).

In the following we show that H and F are inverse functors.
(i) First, let (V, φ) ∈ Mod(A)

A and show that F (H((V, φ))) and (V, φ) are isometric. Clearly, V ⊗A
W ⊗E Wop ∼= A as right A-modules via α : (v ⊗ w ⊗ ŵ) 7→ vψ̂(w, ŵ).

To see that α is an isometry, we calculate that

(φ⊗ψ)⊗ ψ̂(v ⊗ w ⊗ ŵ, v′ ⊗ w′ ⊗ ŵ′) = φ⊗ ψ(v′ ⊗ w′, v ⊗ w)ψ̂(ŵ, ŵ′)

= TraceA/E(φ(v, v′)ψ(w′, w))ψ̂(ŵ, ŵ′) = TraceA/E(ψ(φ(v, v′)w′, w))ψ̂(ŵ, ŵ′)

= ψ̂(ŵ, ŵ′ ∗ TraceA/E(ψ(φ(v, v′)w′, w))) = ψ̂(ŵ,TraceA/E(ψ(w, φ(v, v′)w′))ŵ′)
(??)
= ψ̂(ŵ, ψ(ŵ′, φ(v, v′)w′)w) = ψ̂(ŵ, w ∗ ψ(φ(v, v′)w′, ŵ′))

= ψ̂(ŵ, w)ψ(φ(v, v′)w′, ŵ′) = ψ̂(ŵ, w)φ(v, v′)ψ̂(w′, ŵ′)

= ψ̂(ŵ, w)φ(v, v′ψ̂(w′, ŵ′)) = φ(v′ψ̂(w′, ŵ′), v)ψ̂(w, ŵ)

= φ(v′ψ̂(w′, ŵ′), vψ̂(w, ŵ)) = φ(vψ̂(w, ŵ), v′ψ̂(w′, ŵ′))
= φ(α(v ⊗ w ⊗ ŵ), α(v′ ⊗ w′ ⊗ ŵ′))

for all (v ⊗ w ⊗ ŵ), (v′ ⊗ w′ ⊗ ŵ′) ∈ U ⊗W ⊗Wop.
(ii) Now let (U,ϕ) ∈ Mod(E)

E and show that H(F ((U,ϕ))) and (U,ϕ) are isometric. The natural
isomorphism γ : U ⊗EWop ⊗AW → U, (u⊗ ŵ⊗w) 7→ uTraceA/E(ψ̂(ŵ, w)) is an isometry
since
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(ϕ⊗ψ̂)⊗ ψ(u⊗ ŵ ⊗ w, u′ ⊗ ŵ′ ⊗ w′) = TraceA/E(ϕ⊗ ψ̂(u′ ⊗ ŵ′, u⊗ ŵ)ψ(w,w′))

= TraceA/E(ϕ(u, u′)ψ̂(ŵ′ŵ)ψ(w,w′)) = ϕ(u, u′) TraceA/E(ψ̂(ŵ′, ŵ ∗ ψ(w,w′)))

= ϕ(u, u′) TraceA/E(ψ̂(ŵ′, ψ(w′, w)ŵ)) = ϕ(u, u′) TraceA/E(ψ̂(ŵ′))
(??)
= ϕ(u, u′) TraceA/E(ψ̂(ŵ′,TraceA/E(ψ(ŵ, w))w′))

= ϕ(u, u′) TraceA/E(ψ̂(ŵ′, w′ TraceA/E(ψ(w, ŵ))))

= ϕ(u, u′) TraceA/E(ψ̂(ŵ′, w′)) TraceA/E(ψ(w, ŵ))

= ϕ(u, u′TraceA/E(ψ̂(ŵ′, w′))) TraceA/E(ψ̂(w, ŵ))

= ϕ(uTraceA/E(ψ̂(ŵ, w)), u′TraceA/E(ψ̂(ŵ′, w′)))
= ϕ(γ(u⊗ ŵ ⊗ w), γ(u′ ⊗ ŵ′ ⊗ w′))

for all (u⊗ ŵ ⊗ w), (u′ ⊗ ŵ′ ⊗ w′) ∈ U ⊗Wop ⊗W .
�

3. Enumeration of self-dual codes

The Morita equivalence F defined in Theorem 2.8 establishes a bijection between the self-dual
codes in (V, φ) and the self-dual codes in its Morita equivalent module F((V, φ)) ∈ Mod(E)

E , where
E = Z(A) is a direct sum of finite fields.

Except when q is even and is the identity, F((V, φ)) will be determined up to isometry by the
composition factors of V in Subsection 3.1. For every self-dual code C ≤ V , the image F(C) ≤
F(V ) is a direct sum of self-dual codes over finite fields, or over a ring L ⊕ L, where L is a finite
field. Enumeration formulae for codes of this kind have been given in (14), e.g. and are reproduced
in Subsection 3.2. As a corollary, the number of self-dual codes in (V, φ) is given in Subsection 3.3.

To fix some notation, let S denote a system of representatives for the isomorphism classes of
simple right A-modules. For S ∈ S, let DS := EndA(S) and let nS denote the multiplicity of the
simple module S in V .

3.1. Determination of the Morita equivalent module F((V, φ))

The module V decomposes into an orthogonal sum, which is respected by the functor F .

Remark 5 For S ∈ S, denote by VS the S-homogeneous component of V . Then there is an orthogonal
decomposition

V =⊥S∈S, S∼=S∗ VS ⊥{T,T∗}⊆S, T�T∗ (VT ⊕ VT∗). (?)

In particular, the restriction φU of φ to a summand U in (?) is non-degenerate and equivariant, and if
C ≤ V is a self-dual code then C ∩ U is a self-dual code in U with respect to φU .

Lemma 3.2 gives the images under F of the orthogonal summands of V . To this aim the follow-
ing result proven in (12) is useful.

Lemma 3.1 Let eS ∈ Z(A) be the central primitive idempotent belonging to the simple module S ∈ S.
Then eS = eS∗ . In particular S is self-dual if and only if eS = eS .

Lemma 3.2 Let S ∈ S, and let eS be the central primitive idempotent belonging to S. Let n be an integer,
and by F denote the Morita equivalence from Theorem 2.8.

(i) Assume that S ∼= S∗. There is a natural isomorphismDS
∼= eSZ(A), of which the image is invariant

under according to Lemma 3.1. Thus induces an involution (S) on DS , which will be further
investigated in Lemma 3.3.

Assume that Sn carries a non-degenerate equivariant form ϕ. Then F((Sn, ϕ)) ∼= ((DS)n, ϕ′),
where ϕ′ is equivariant with respect to (S).

If (Sn, ϕ) contains a self-dual code then so does F((Sn, ϕ)), since F preserves orthogonality.
Hence if F has odd characteristic then F((Sn, ϕ)) ∼=⊥

n
2
i=1 H is an orthogonal sum of hyperbolic

planes H . The same holds in even characteristic, if (S) is not the identity.
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If the characteristic of F is even and (S) is the identity then either F((Sn, φ)) is an orthogonal
sum of hyperbolic planes as above, or F((Sn, φ)) ∼=⊥

n
2−1
i=1 H ⊥W , where W ∼=

(
F2, ( 1 0

0 1 )
)
.

(ii) Assume that S � S∗, and consider again the natural isomorphism DS
∼= eSZ(A). Then DS = DS∗

according to Lemma 3.1 and hence the sumDS⊕DS∗ is invariant under . Let ϕ be a non-degenerate
equivariant form on (S⊕S∗)n. Then (S⊕S∗)n contains a self-dual code. Hence F((S⊕S∗)n, ϕ) ∼=
((DS)n ⊕ (DS)n, ϕ′) ∼=⊥ni=1 H is an orthogonal sum of hyperbolic planes, where ϕ′ is equivariant
with respect to the restriction of to DS ⊕DS∗ . Here (DS)n ⊕ (DS∗)n is a (DS ⊕DS∗)-module in
the natural way. Hence the self-dual codes in this module correspond to the subspaces of (DS)n.

Lemma 3.3 For a simple self-dualA-module S ∼= S∗ consider the natural embeddings F ↪→ DS ↪→ Z(A).
According to Lemma 3.2(i) the involution onA restricts to an involution onDS . This restriction is either
the identity on DS or a field automorphism of order 2. Clearly the latter holds if is non-trivial on F.

Assume that f = f for all f ∈ F. Then the following are equivalent.
(i) d = d for all d ∈ DS ,

(ii) over a field extension L ⊇ F with L ∼= DS , every composition factor of S is self-dual.

Proof. Let AL := A⊗F L and let (L) be the L-linear extension of to AL. Then d = d
(L)

for all
d ∈ DS ⊆ A, and hence is trivial on DS if and only if (L) is trivial on DS ⊗F L. Let e ∈ DS be
the central primitive idempotent belonging to S, and let e = e1 + . . .+ en be a decomposition into
mutually orthogonal central primitive idempotents ei of AL. The ei generate DS ⊗F L as a vector
space over L and hence (L) is trivial on DS ⊗F L if and only if it fixes all of the ei, i.e. if and only
if every composition factor eiAL of S ⊗F L satisfies eiAL = eiAL ∼= (eiAL)∗ (see Lemma 3.1). �

3.2. Enumeration of self-dual codes over finite fields

The formulae in this section are given in (14).

Lemma 3.4 (see Ex. 10.4 of (14)) Let F = Fq be a finite field, where q = r2, and let r ∈ Gal(Fq/Fr) be
the field automorphism of order 2. Let ϕ be a non-degenerate form on Fn which is equivariant with respect
to r. If (Fn, ϕ) contains a self-dual code then the number of self-dual codes in U equals

Υu(n, q) :=
n∏
i=1

(q
i
2 − (−1)i) (

n
2∏
j=1

(qj − 1))−1. (5)

Lemma 3.5 (see Ex. 11.3 of (14)) Let F = Fq be a finite field, where q is odd, and let ϕ be a non-degenerate
symmetric bilinear form on Fn. If (Fn, ϕ) contains a self-dual code then the number of self-dual codes in U
equals

Υ+
o (n, q) :=

n
2−1∏
i=0

(qi + 1). (6)

Lemma 3.6 (see Ex. 11.3 of (14)) Let F = Fq be a finite field, where q is even, and let ϕ be a non-
degenerate symmetric bilinear form on Fn such that (Fn, ϕ) ∼=⊥

n
2
i=1 is an orthogonal sum of hyperbolic

planes, i.e. totally isotropic. Then the number of self-dual codes in U equals

Υ+
o (n, q) :=

n
2∏
i=1

(qi + 1). (7)

The following lemma is an immediate corollary of Lemma 3.6.

Lemma 3.7 Let F = Fq be a finite field, where q is even. Let ϕ be a non-degenerate symmetric bilinear
form on Fn such that (Fn, ϕ) ∼=⊥

n
2−1
i=1 H ⊥ W , where W ∼=

(
F2, ( 1 0

0 1 )
)
. Then the number of self-dual

codes in (Fn, ϕ) equals
Υ−o (n, q) := Υ+

o (n− 2, q).

7



Moreover, we need an enumeration formula for vector spaces, cf. Lemma 3.2 (ii).

Lemma 3.8 Let U be a vector space over the finite field F = Fq , n := dim(U). Then the number of
subspaces of U equals

Ξ(n, q) :=
n∑
k=0

n−k−1∏
i=0

qn−i − 1
qn−k−i − 1

.

3.3. Enumeration of self-dual codes in (V, ϕ)

As before, let F = Fq be a finite field with q elements and let A be a finite semisimple algebra
over F.

Let S be a system of representatives for the isomorphism classes of simple right A-modules,
and for S ∈ S let dS := dimF(EndA(S)). By nS denote the multiplicity of S in V . The involution
restricts to an involution of the Morita equivalent algebraE = Z(A) = ⊕S∈S EndA(S) (cf. Lemma
3.3), and also to a field automorphism of F (cf. Remark 1), where F is naturally embedded into
Z(A) by f 7→ f · 1. The restriction to F is either the identity or a field automorphism of order 2
– we distinguish these two cases to enumerate the self-dual codes in (V, ϕ) ∈ Mod(F)

A , which in
what follows is assumed to contain at least one such code.

As corollaries from the previous Subsections we obtain the following enumeration formulae.

Corollary 3.9 If q = r2 and f = fr for all f ∈ Fq then the number of self-dual codes in (V, ϕ) equals

M(V,ϕ) =
∏

S∈S, S∼=S∗
Υu(nS , qdS )

∏
{T,T∗}⊆S, T�T∗

Ξ(nT , qdT ).

Corollary 3.10 Assume that q is odd and f = f for all f ∈ F. Let

S′ := {S ∈ S | S ∼= S∗ and e = e for all e ∈ EndA(S)}.

Then the number of self-dual codes in (V, ϕ) equals

M(V,ϕ) =
∏
S′∈S′

Υo(nS′ , qdS′ )
∏

S∈S−S′, S∼=S∗
Υu(nS , qdS )

∏
{T,T∗}⊆S, T�T∗

Ξ(nT , qdT ).

In the remaining case where q is even and φ is symmetric, it is in general not possible to de-
termine F((V, ϕ)) only from the composition factors of V , cf. Lemma 3.2(i). Yet this is possible if
A = FG is a group algebra over the finite group G.

It is well-known that if the field L, of even characteristic, is a splitting field for the finite groupG
of odd order then the trivial module is the only self-dual irreducible LG-module. An application
of Lemma 3.3 then yields that the restriction of to Z(A) = E = ⊕S∈S EndA(S) is non-trivial on
every of these summands, except for the summand belonging to the trivial module.

To investigate the number of self-dual codes in this summand under F one has to distinguish
whether (V, ϕ) is totally isotropic, i.e. whether ϕ(v, v) = 0 for all v ∈ V . As an application of
Lemma 3.2 one obtains

Corollary 3.11 Assume that A = FqG is a group algebra over the finite group G, where q is even and G
has odd order, and that f = f for all f ∈ F. By 1 denote the trivial FG-module.

The number of self-dual codes in (V, φ) equals

M(V,ϕ) = Υσ
o (n1, q)

∏
S∈S, 1�S∼=S∗

Υu(nS , qdS )
∏

{T,T∗}⊆S, T�T∗
Ξ(nT , qdT ),

where σ = + if (V, ϕ) is totally isotropic and, otherwise, σ = −.

8



3.4. Example: Binary extended cyclic codes

Let F = F2 and A = FCn, where Cn is the cyclic group with n elements for some odd integer n.
A binary extended cyclic code, as defined in (10), is an A-submodule of

V = A⊕ 1 = Fn+1,

where 1 is the trivial A-module, i.e. Cn acts on V by cyclic shifts of the first n coordinates and
fixes the (n + 1)st coordinate. The standard scalar product ϕ on V satisfies ϕ(v, v′) = ϕ(vg, v′g)
for all v, v′ ∈ V and g ∈ Cn, hence is equivariant with respect to the F-linear involution on FCn
given by g 7→ g−1 for g ∈ Cn.

The situation where a self-dual binary extended cyclic code exists has been characterized in (10)
as follows.

Theorem 3.12 There exists a self-dual binary extended cyclic code C ≤ V = FCn ⊕ 1 if and only if
−1 /∈< 2 >≤ (Z/pZ)∗ for all prime divisors p of n, i.e. the order of 2 mod p is odd.

Remark 6 If the order of 2 mod p is odd then 2 is a square mod p and hence p ≡8 ±1 by quadratic
reciprocity. If p ≡8 −1 then −1 is not a square and hence −1 /∈< 2 >≤ (Z/pZ)∗. However, if p ≡8 1 then
the order of 2 may be even or odd mod p. For p = 41 the order of 2 is 20, for p = 73 the order is 9.

We give an alternative criterion for the existence of self-dual binary extended cyclic codes and
determine their total number.

Theorem 3.13 There exists a self-dual binary extended cyclic code C ≤ V = FCn ⊕ 1 if and only if the
trivial module is the only self-dual irreducible FCn-module. In this case there are

M(V,ϕ) = 2
|S|−1

2

such codes, where S is a system of representatives for the isomorphism classes of simple right FCn-modules.

Proof. Assume that there exists a self-dual code C ≤ V . Then according to (15), Corollary 2.4,
every self-dual simple FCn-module occurs in a composition series of V with even multiplicity. On
the other hand, every simple FCn-module occurs in V with multiplicity 1, except for the trivial
module, which occurs in V with multiplicity 2. Hence

V ∼=⊥{T,T∗}⊆S, T�1 (T ⊕ T ∗) ⊥ 1 ⊥ 1. (F)

Conversely, if the trivial module is the only self-dual irreducible FCn-module then clearly V de-
composes as in (F). Let T ⊕T ∗ be a summand in (F) and let e be the central primitive idempotent
belonging to T . Then e is the central primitive idempotent belonging to T ∗ according to Remark
3.1, hence annihilates T . Thus

ϕ(t, t′) = ϕ(te, t′) = ϕ(t, t′e) = ϕ(t, 0) = 0

for all t, t′ ∈ T , i.e. T ⊆ T⊥. Choose a subset T ⊆ S−{1} such that for every non-trivial irreducible
A-module T , either T or T ∗ is contained in T . Then

C :=< T | T ∈ T > + < (1, . . . , 1) >

is a self-dual code in V .
An application of Corollary 3.11 then yields

M(V,ϕ) = Υ−o (2, 2)
∏

{T,T∗}⊆S, T�1

Ξ(1, 2dT ) = 2
|S|−1

2 ,

where the value of dT = dim(EndA(T )) is irrelevant since Ξ(1, 2dT ) counts the number of sub-
spaces of a one-dimensional vector space over a field of size 2dT . �

9



Example 3.14 (i) Binary extended cyclic codes of length 8. The order of 2 in the unit group F∗7
of F7 equals 3. More precisely, the subgroup of F∗7 generated by 2 has index 2 and the cosets are
F∗7 = {1, 2, 4}

.
∪ {3, 5, 6}. This yields central primitive idempotents e, f ∈ F2C7,

e = 1 + a+ a2 + a4 and f = 1 + a3 + a5 + a6,

where a is a generator of C7. These satisfy ef = 0 and e = f . Hence V = F2C7 ⊕ F2 = F8
2 contains

exactly the two self-dual codes

C =< V e, (1, . . . , 1) > and D =< V f, (1, . . . , 1) >

with generator matrices

MC :=


1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 0

1 1 1 0 1 0 0 0

0 1 1 1 0 1 0 0

 and MD :=


1 1 1 1 1 1 1 1

0 0 1 0 1 1 1 0

1 0 0 1 0 1 1 0

1 1 0 0 1 0 1 0

 .

These codes are permutation equivalent to the extended Hamming code e8 of length 8.
(ii) Let p be a prime with p ≡8 −1. Then there exist exactly 2

t
2 self-dual binary extended cyclic codes of

length p + 1, where t := [F∗p :< 2 >] is the index of the subgroup generated by 2 in the unit group
F∗p of Fp.

(iii) Self-dual binary codes over F2(C3 o C3). The wreath product

G := C3 o C3 = 〈(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9)〉

acts on 9 points, hence yields a permutation module Ṽ of dimension 9 over A = F2G. Let V :=
Ṽ ⊕ Ṽ ⊕ 1⊕ 1, then V decomposes as

V = T 2
6 ⊥ T 2

2 ⊥ 14,

where T2 and T6 are irreducible modules of dimension 2 and 6 over F2, both self-dual with an endo-
morphism ring isomorphic to F4. Hence the total number of self-dual codes in V equals

MV = Υ−o (4, 2) · Υu(2, 4)2 = 33 = 27.

3.5. Example: Doubly-even binary codes

A doubly-even binary code of length n is a subspaceC ≤ Fn2 such that the weight wt(c) of every
codeword c ∈ C, i.e. the number of its nonzero entries, is a multiple of 4. Self-dual doubly-even
codes with respect to the standard scalar product ϕ : Fn2 × Fn2 → F2 exist if and only if n is a
multiple of 8 (see for instance (8)).

The permutation group of a code is P (C) := {π ∈ Sn | Cπ = C}, where Sn is the symmetric
group on n points. In this subsection we view codes as modules over the group algebra F2G,
where G ≤ P (C) acts naturally by permuting the coordinates, and ask for the number of self-
dual doubly-even codes with a certain subgroupG ≤ Sn contained in their automorphism group,
i.e. for the self-dual codes in the F2G-module Fn2 .

We confine ourselves to the case where the order of G is odd, i.e. the group algebra F2G is
semisimple, in order to apply the results of Section 2. Hence in what follows assume that the
order of G is odd. Theorem 3.17 gives the number of G-invariant doubly-even self-dual codes,
provided that there exists at least one such code. (By a result proven in (4), such a code exists if
and only if n is a multiple of 8 and there exists any self-dual code in Fn2 .)

The group algebra F2G carries an F2-linear involution given by g 7→ g−1, for g ∈ G, and the
standard scalar product ϕ is equivariant with respect to this involution.

Clearly every self-dual code in V contains the all-ones vector one := (1, . . . , 1) ∈ V .The sub-
space < one >⊥≤ V consists exactly of the even-weight vectors in V . Moreover, every vector
v ∈< one >⊥ satisfies

wt(v + one) = n− wt(v) ≡4 wt(v).

Hence the quotient Ṽ :=< one >⊥ / < one > carries a well-defined quadratic form

q : Ṽ → F2, v + one 7→ wt(v)
2

mod 2,

10



with polar form
(ṽ, ṽ′) 7→ q(ṽ + ṽ′)− q(ṽ)− q(ṽ′) = ϕ̃(ṽ, ṽ′),

where ϕ̃ is the non-degenerate equivariant bilinear form on Ṽ naturally induced by ϕ via

ϕ̃ : Ṽ × Ṽ → F2, (v+ < one >, v′+ < one >) 7→ ϕ(v, v′).

This yields a correspondence between the doubly-even self-dual codes in V and the maximally
isotropic submodules of Ṽ – a self-dual code C ≤ V is doubly-even if and only if q vanishes
on C/ < one >≤ Ṽ , i.e. C/ < one > is maximally isotropic. This correspondence was already
established in (9) in the case where G acts trivially on V .

Again, let S be a system of representatives for the isomorphism classes of simple right F2G-
modules. Consider the decomposition

Ṽ =⊥S∈S, S∼=S∗ ṼS ⊥{T,T∗}⊆S, T�T∗ ṼT⊕T∗ ,

where ṼX is theX-homogeneous component of Ṽ , forX ∈ S, and ṼT⊕T∗ = ṼT ⊕ ṼT∗ . Then every
maximally isotropic submodule C̃ ≤ Ṽ is of the form

C̃ =⊥S∈S, S∼=S∗
(
C ∩ ṼS

)
⊥{T,T∗}⊆S, T�T∗

(
C ∩ ṼT⊕T∗

)
, (>)

and every summand C ∩ ṼS or C ∩ ṼT⊕T∗ is a maximally isotropic submodule of ṼS or ṼT⊕T∗ ,
respectively, since q is linear on C̃.

Hence the total number of maximally isotropic submodules of Ṽ is the product of the number
of maximally isotropic submodules in the summands of (>).

Theorem 3.15 Let U ≤ Ṽ be a submodule such that the trivial module 1 does not occur in U . Then every
self-dual code in U is doubly-even.

Proof. Let C̃ = C̃⊥ ≤ U be a self-dual code. Then q is linear on C̃, i.e. q ∈ HomF2G(C̃,1) with
kernel

ker(q) = {c ∈ C̃ | wt(c) ≡4 0} =: C̃0,

the doubly-even subcode of C̃. The image of q is isomorphic to a submodule of C̃. Since 1 does
not occur in C̃, this enforces that q vanishes on C̃, i.e. C̃ = C̃0 is doubly-even. �

Now consider the quadratic space (Ṽ1, q1) ∼= (Fn2 , q1), with non-degenerate polar form ϕ̃1, the
restriction of ϕ̃ to Ṽ1. Clearly V contains a doubly-even self-dual code if and only if (Ṽ1, q1) has
Witt index n

2 . The total number of maximally isotropic subspaces is then well-known and given
in (14), for instance.

Theorem 3.16 (see Ex. 11.3 of (14)) Let n := dim(Ṽ1). If V contains a doubly-even self-dual code then
the number of maximally isotropic subspaces of (Ṽ1, q1) equals

$(n) :=

n
2−1∏
i=0

(2i + 1).

Theorem 3.15 and 3.16 now enable us to determine the number of doubly-even self-dual codes
in V from the composition factors of V . Again, for a simple module X ∈ S, denote by nX the
multiplicity of X in V .

Theorem 3.17 If (V, ϕ) contains a doubly-even self-dual code then the total number of doubly-even self-
dual codes in V equals

M II
(V,ϕ) = $(n1 − 2)

∏
S∈S, 1�S∼=S∗

Υu(nS , qdS )
∏

{T,T∗}⊆S, T�T∗
Ξ(nT , qdT ).
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4. The mass formula

For a right A-module V carrying an equivariant form ϕ (cf. Definition 2.2), let

C(V ) := {C ≤ V | C = C⊥ = {v ∈ V | ϕ(v, c) = 0 for all c ∈ C}}.

One may be interested in an overview of the isometry types or weight distributions which
occur here, rather than in the set C(V ) itself. Hence in what follows, we define a finite group
Aut(V ) acting on C(V ) such that properties like the isometry type of C ∈ C(V ) or the weight
distribution are left invariant under the operation of suitable subgroups of Aut(V ).

4.1. Weak isometries of V and the mass formula

Definition 4.1 A bijective additive map ψ : V → V is called a weak isometry of V if ϕ(v, v′) =
ϕ(ψ(v), ψ(v′)) and ψ(va) = ψ(v)aα for some automorphism α of A and all v, v′ ∈ V . The weak isome-
tries form a group Autweak(V ), with the composition as multiplication, which contains as a subgroup
Aut(V ) := EndA(V ) ∩Autweak(V ), the isometries of V .

Clearly Autweak(V ) acts on C(V ). Now consider the action of some subgroup Γ ≤ Autweak(V ).
By [C] denote the orbit containing C. If

Γ(C) = {ψ ∈ Γ | ψ(C) = C}

is the stabilizer of C in Γ then [C] has length [Γ : Γ(C)] and we obtain

Theorem 4.2 (Mass formula)
MV

|Γ|
=

∑
[C]⊆C(V )

1
|Γ(C)|

.

The mass formula gives a method of classifying the self-dual codes in V with respect to a prop-
erty which is an invariant of the action of Γ on C(V ) – one may restrict to orbit representatives
and weight them by the reciprocal order of their automorphism group, until the value of the left
hand side of Theorem 4.2 has been reached. For instance, the group Aut(V ) has the isometry type
of C ∈ C(V ) as an invariant and hence Equation (4.2) can be used to classify the self-dual codes in
V up to isometry.

4.2. Example: Permutation modules

Let A = FG be a semisimple group algebra over the finite group G and let V be a permutation
module for G, i.e. V = Fk has a distinguished basis, with respect to which G acts as permutations
and which we assume to be an orthonormal basis. The existence of a distinguished basis enables
us to define the complete weight enumerator of a code C ≤ V ,

cwe(C) =
∑

(c1,...,ck)∈C

k∏
i=1

xci
∈ C[xf : f ∈ F].

The weight enumerator contains information on C which is of interest in coding theory, like
the minimum weight of C. It is invariant under permutations of the coordinates of C, that is,
cwe(Cπ) = cwe(C) for all C ∈ C(V ) and π ∈ Sk, where Sk is the symmetric group on k points.
In general, the permutation equivalent code Cπ is not contained in C(V ), i.e. Sk does not act on
C(V ).

If V is faithful then the action of G on V induces an embedding j : G ↪→ Sk. Let

N := NSk
(G) ≤ Autweak(V )

be the normalizer of j(G) in Sk. Every η ∈ N naturally induces a bijection v 7→ vη of V , which is a
weak automorphism of V – if αη is the F-linear automorphism of A = FG given by g 7→ αη(g) =
η−1gη then vgη = vηη−1gη = vηαη(g) for all v ∈ V and g ∈ G.
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Hence N acts on C(V ), yielding a mass formula

MV

|N |
=

∑
[C]N⊆C(V )

1
|N (C)|

, (>)

where [C]N is the orbit of N containing C and N (C) is the stabilizer of C under N .
Clearly the complete weight enumerator is an invariant of this operation. Another invariant is

the conjugacy class of P (C) in Sk, where P (C) = {σ ∈ Sk | Cσ = C} ≤ Sk is the permutation
group of C ∈ C(V ), since P (Cη) = η−1P (C)η for every η ∈ N .

In general there is no larger subgroup U with N ( U ⊆ Sk such that U acts on C(V ), since N
normalizes the Bravais group B(V ) := ∩C∈C(V )P (C), cf. Theorem 4.3.

Theorem 4.3 If B(V ) = G then N is the largest subgroup of Sk which acts on C(V ).

Proof. Let π ∈ Sk such that π acts on C(V ). Then π ∈ N since

G = B(V ) = ∩C∈C(V )P (Cπ) = π−1(∩C∈C(V )P (C))π = π−1B(V )π = π−1Gπ.

�

Example 4.4 Self-dual binary codes of length 48 with an automorphism of order 23. The extended
quadratic residue code q48 ≤ F48

2 is, up to permutation equivalence, the only self-dual [48, 24, 12]-code, i.e.
the only extremal binary self-dual code of length 48, cf. for instance (13). The code q48 has an automorphism
σ ∈ S48 of order 23 which acts on the coordinates of q48 with four orbits. Hence q48 is a submodule of

V = F2C23 ⊕ F2C23 ⊕ 1⊕ 1

over the semisimple algebra A = F2C23. The algebra A has three irreducible modules, which are the trivial
module 1, a module T of dimension 11 and its dual T ∗ � T with an endomorphism ring of dimension
dT = 11. Hence V has a decomposition V = 14 ⊥ (T ⊕ T ∗)2 and the total number of self-dual codes in V
equals

MV = Υ−o (4, 2) Ξ(2, 211) = 3 · (211 + 3) = 6153.

Considering normalizer equivalence, i.e. the orbits of NS48(σ) on the set C(V ) of all self-dual codes in V ,
there are only 14 equivalence classes of codes. Representatives C1, . . . , C14 for these classes can easily be
computed in MAGMA ((2)) using the mass formula (>), which then is

6153
46552

= 4 · 1
92

+
1

2024
+ 2 · 1

23276
+

1
1012

+ 4 · 1
46

+ 2 · 1
11638

.

The below-mentioned tabular lists the stabilizer ordersN (Ci) of the codes C1, . . . , C14 and gives the num-
ber of words of weight 24 in each code, which is helpful to distinguish codes which are not permutation
equivalent.
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i |N (Ci)| d(C) Number of words of weight 24

1 92 2 3754060

2 92 2 3765560

3 92 2 3749000

4 92 2 3759120

5 2024 2 2704156

6 23276 2 3829960

7 23276 2 3829960

8 1012 4 11092764

9 46 8 7691340

10 46 8 7691340

11 46 8 7701000

12 11638 8 7787940

13 11638 8 7787940

14 46 12 7681680

Explicit calculation in MAGMA shows that the codes C6 and C7 are permutation equivalent, and the
codes C12 and C13 are permutation equivalent but C9 and C10 are not. Hence there are, up to permutation
equivalence, 12 self-dual codes in V .
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