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Abstract. For a Type T ∈ {I, II, III, IV} and length N where there exists no
self-dual Type T code of length N , upper bounds on the minimum weight of

the dual code of a self-orthogonal Type T code of length N are given, allowing
the notion of dual extremal codes. It is proven that the Hamming weight

enumerator of a dual extremal maximal self-orthogonal code of a given length

is unique.

1. Introduction. Let F be a finite field. A linear code is a subspace C ≤ FN . The
dual code of C is

C⊥ = {v ∈ FN |
N∑
i=1

vic
J
i = 0 for all c ∈ C},

where J is the identity or a field automorphism of order 2. If C ⊆ C⊥ then C is
called self-orthogonal and if C = C⊥ then C is called self-dual.

A famous result by Gleason and Pierce states that if a certain divisibility condi-
tion on the Hamming weights wt(c) := |{i ∈ {1, . . . , N} | ci 6= 0}| is imposed on the
codewords c ∈ C, there are basically four Types of codes:

Theorem 1.1. [Gleason-Pierce Theorem](cf. [12]) Let C = C⊥ ≤ FNq such that
wt(c) ∈ mZ for all c ∈ C and some m > 1. Then one of the following holds.

(I) q = 2 and m = 2 (self-dual binary codes),
(II) q = 2 and m = 4 (doubly-even self-dual binary codes),

(III) q = 3 and m = 3 (self-dual ternary codes),
(IV) q = 4, m = 2 and J 6= id (Hermitian self-dual quaternary codes),

(o) q = 4, m = 2 (certain Euclidean self-dual codes),
(d) q is arbitrary, m = 2 and C is permutation equivalent to an orthogonal sum
⊥N/2 (1, a) of self-dual codes of length 2 where either q is even and a = 1 or
q ≡ 1 (mod 4) and a2 = −1 or J has order 2 and and aaJ = −1.

The first four of the above are named Type I, II, III and IV, respectively. For
T ∈ {I, . . . , IV}, the respective integer m from Theorem 1.1 will be denoted by mT

throughout this paper. The Hamming weight enumerator

we(C)(x, y) :=
∑
c∈C

xN−wt(c)ywt(c) ∈ C[x, y],
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a homogeneous polynomial of degree N , counts the number of codewords of each
weight. Gleason showed that for a Type T ∈ {I, . . . , IV}, the weight enumerators
of self-dual Type T codes lie in a polynomial ring C[fT , gT ], where fT and gT
themselves are linear combinations of products of weight enumerators of self-dual
Type T codes ([4], see Theorem 4.1 in this paper).

This very powerful result provides an overview of the possible weight distributions
of such codes, and in particular allows to derive the upper bounds on the minimum
weight, d(C) := min06=c∈C wt(c), cited in Theorem 3.1. The closer the minimum
weight comes to this bound, the better the error-correcting capability of the code.
A self-dual code is called extremal if its minimum weight reaches the respective
upper bound.

Moreover, it follows immediately from Gleason’s Theorem that the length of
a self-dual Type T code is always a multiple of oT := min(deg(fT ),deg(gT )) =
gcd(deg(fT ),deg(gT )).

In this paper, we consider the case where N is no multiple of oT . By the above,
there exists no self-dual Type T code of lengthN , but one may still consider maximal
self-orthogonal codes - recall that a code C is called maximal self-orthogonal if C is
self-orthogonal and there exists no self-orthogonal code D which properly contains
C. The main theorem below gives upper bounds on the dual minimum weight d(C⊥)
of a maximal self-orthogonal Type T code C (and thus on the dual minimum weight
of any self-orthogonal Type T code), which gives rise to the notion of dual extremal
maximal self-orthogonal codes.

Theorem 1.2. Let T ∈ {I, . . . , IV} and let C be a maximal self-orthogonal Type T
code. Then d(C⊥) ≤ dmax(T,N), where dmax(T,N) is given in Table 1 below.

The bounds are, basically, developed in two ways, depending on the parameters
of C. If the code length N , writing n · oT ≤ N ≤ (n+ 1) · oT with some integer n, is
closer to (n+ 1) · oT , then one may extend C⊥ to a self-dual Type T code of length
(n + 1) · oT (cf. Section 2), and then use the well-known bounds on the minimum
weight of self-dual Type T codes and design theory to upper bound d(C⊥) (cf.
Section 3.2). If N is closer to n · oT then it is more appropriate to use the structure
of the complex vector space I(k)

T spanned by the dual Hamming weight enumerators
of maximal self-orthogonal codes of length equivalent to k (mod oT ), in Section
4. The case T = II and N ≡ 4 (mod 8) is exceptional here, since the extension
and shortening procedure introduced in this paper fail to construct a self-dual code
from a maximal self-orthogonal Type II code of length N ≡ 4 (mod 8). However,
one obtains upper bounds on d(C⊥) using the shadow of a self-dual Type I code of
length N and a result by Bachoc and Gaborit in [1] (cf. Section 3.4).

The structure of I(k)
T is investigated in Section 4. Clearly I

(k)
T is a module for

C[fT , gT ], since the orthogonal sum of a self-dual and a maximal self-orthogonal
code is again a maximal self-orthogonal code. As a C[fT , gT ]-module, I(k)

T is finitely
generated and free ([6, Ch. 10]).

Based on the latter observation, one obtains results on the weight distribution
similar to those in the case of self-dual Type T codes. In particular, it is shown
in Section 4 that the Hamming weight enumerator of a dual extremal maximal
self-orthogonal Type T code is uniquely determined.

2. Constructing self-dual codes from maximal self-orthogonal codes. Let
C be a maximal self-orthogonal code of Type T ∈ {I, . . . , IV} and length N = k +
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n ·oT , with 1 ≤ k ≤ oT −1. In what follows, two methods are presented to construct
a self-dual code from C. The first method, an extension of C⊥, applies whenever
k ≥ oT

2 . The thus extended self-dual code ext(C) will have length (n+1) ·oT . With
binary codes (Type I), this is nothing but the well-known procedure of adding an
overall parity check (cf. [8, Ch. 1]). The second method, a shortening of C, applies
when t ≤ oT

2 , and results in a self-dual code of length n · oT . This method is a
generalization of the puncturing process for Type I codes (see, again, [8, Ch. 1]).

An important preparation is the following basic result on the dimension of max-
imal self-orthogonal codes. By the theory of Witt groups (see [11, Ch.1,2]), the
isomorphism type of the quadratic module C⊥/C is independent from the choice of
C (see e.g. [6, Ch. ]). In particular we have the following.

Lemma 2.1. Let DT (N) be the dimension of a maximal self-orthogonal Type T
code C of length N = k+n ·oT , with 1 ≤ k ≤ oT −1, and let D′T (N) = N −DT (N)
be the dimension of C⊥. Then DT (N) (and hence D′T (N)) is well-defined, i.e.
independent from the choice of C.

For the extension and shortening procedures, the values of DT (N) and D′T (N)
are particularly important.

Lemma 2.2. Let N = k + n · oT , where n and k are integers and 1 ≤ k ≤ oT − 1.

(i) If k ≥ oT

2 then D′T (N) −DT (N) = oT − k and D′T (N) = (n+1)·oT

2 , except in
the case when T = II and k = 4.

(ii) If k ≤ oT

2 then D′T (N) −DT (N) = k and DT (N) = n·oT

2 , except in the case
when T = II and k = 4.

(iii) If k = 4 then DII(N) = n·oT

2 + 1.

Proof. For n = 0, the claim of the lemma is easily verified. Now if C is a maximal
self-orthogonal Type T code of length N and C ′ is a self-dual code of length oT , then
C ⊕ C ′ is a maximal self-orthogonal Type T code of length N + oT and dimension
DT (N) + oT

2 . Hence

D′T ((n+ 1) · oT ) = D′T (n · oT ) +
oT
2
.

The rest is induction on N , using the relation DT (N) = N −D′T (N).

2.1. Extension. This is a special way of gluing codes together (cf. [8, Ch.3, Sect.
11.11.1]). Assume that k ≥ oT

2 , but not T = II and k = 4. We construct a linear
map f : C⊥ → FoT−k with kernel C such that (f(c′), f(c′′)) = −(c′, c′′) for all
c′, c′′ ∈ C⊥. Then ext(C) := {(c′, f(c′)) | c′ ∈ C⊥} is a self-orthogonal Type T code
of length (n+ 1) · oT , which is even self-dual since according to Lemma 2.2,

dim(ext(C)) = dim(C⊥) =
(n+ 1) · oT

2
.

The map f will be explicitly given in Table 2.1, since the weight distribution of
the code ext(C) is the primary interest here. However, we shall mention that the
existence of f has the following theoretical background (see [11, Ch.1]): Let β(N)

denote the (Euclidian or Hermitian) scalar product on FN which defines orthogo-
nality in the context of the respective Type T . If C ≤ FN is a self-orthogonal Type
T code then one obtains another well-defined scalar product

β(N)/C : C⊥/C × C⊥/C → F, (c′ + C, c′′ + C) 7→ β(N)(c′, c′′).
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If C is maximal self-orthogonal then the space (C⊥/C,−β(N)/C) is isometric to
(FoT−k, β(oT−k)) (that the two spaces have the same dimension is already in Lemma
2.1, the rest is, again, a result of the theory of Witt groups). Hence the orthogonal
sum

(C⊥/C, β(N)/C)⊕ (FoT−k, β(oT−k))

contains a self-dual code C̃. Now for c′ ∈ C⊥, f(c′) is the unique element of FoT−k

such that (c′ + C, f(c′)) ∈ C̃, i.e. ext(C) = {(c′, f(c′)) | (c′ + C, f(c′)) ∈ C̃}.
Table 2.1 shows explicitly how to extend a maximal self-orthogonal Type T code.

There B denotes an ordered set of vectors in FN such that (b+C | b ∈ B) is a basis
for C⊥/C, and G is the Gram matrix of β(N)/C with respect to B. If T = II then,
additionally, the table gives the values of the quadratic form

Q : C⊥/C → Q/Z, c′ + C 7→ 1
4

wt(c′) + Z.

Note that, writing N = k+ n · oT as above, up to isometry G and Q do not depend
on n - for G, this has already been mentioned, and there is an analogous result for
quadratic forms (cf. [11, Ch.2]).

One observes that a word in C⊥ is extended to a word with the least possible
Hamming weight which is a multiple of mT . Technically speaking, the extension
procedure has the following effect on the Hamming weight enumerator.

Remark 1. Let C be a maximal self-orthogonal Type T code of length N =
n · oT + k, where oT

2 ≤ k ≤ n − 1, and let ext(C) be the self-dual Type T code of
length (n + 1) · oT obtained by extension of C as described above. If we(C⊥) =
xN +

∑N
i=d(C⊥) aix

N−iyi then

we(ext(C)) = xN+oT−k +
N+oT−k∑
i=d(C⊥)

bix
N+oT−k−iyi,

where

bi =
{
ai + ai−1 + · · ·+ ai−m(T )+1, i ≡ 0 (mod mT )

0 otherwise.

In particular, there exists an integer t, depending on the length of C, such that
d(C⊥) ≤ t ·mT ≤ d(ext(C)). This will be used in Section 3 to derive upper bounds
on d(C⊥).

2.2. Shortening. Assume that k ≤ oT

2 , but not T = II and k = 4. Moreover, as-
sume that DT (N) ≥ k. This only excludes the case N = k = 1, for T ∈ {I, . . . , IV},
or T ∈ {II, III} and k = N = 2. In these cases, the zero code of length 0 is
appropriate as the shortened code.

Otherwise, since DT (N) ≥ k, after some suitable permutation of the coordinates
the map

π : C → Fk, (c1, . . . , cN ) 7→ (cN−k+1, . . . , cN )

which maps a codeword to its last k components is surjective. There are possibly
lots of suitable coordinate permutations, which may result in different shortened
codes (cf. Example 1). However, in the context of this paper it suffices to consider
just any of these, keeping in mind that the obtained shortened code depends on this
choice.
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Since D′T (N) − DT (N) = k due to Lemma 2.2, there exists a subset B =
{v1, . . . , vk} ⊂ FN with 〈C, v1, . . . , vk〉 = C⊥. The vi may be chosen to satisfy

(vi, vj) = (π(vi), π(vj))

for all i, j ∈ {1, . . . , k}, possibly after adding suitable elements of C, due to the
surjectivity of π. Now we define a map f : C⊥ → FoT−k (given explicitly in Table
2.2) as in the case where k ≥ oT

2 , to obtain a self-orthogonal code E := {(c′, f(c′))}
of length (n+ 1) · oT and dimension D′T (N). In general, the code E is not self-dual.
However, the code D formed by the last oT coordinates of the vectors (vi, f(vi)), i ∈
{1, . . . , k} is self-orthogonal. Define

C(k) := {(c1, . . . , cn·oT
) | (c1, . . . , c(n+1)·oT

) ∈ E, (cn·oT +1, . . . , c(n+1)·oT
) ∈ D}.

This procedure is called subtraction of D from E (cf. [8]). The code C(k) is clearly
self-orthogonal. Its length is n · oT and, by Lemma 2.2, its dimension is

dim(ker(π)) + dim(C⊥/C) = dim(C)− k + k = dim(C) =
n · oT

2
.

Hence C(k) is a self-dual Type T code. From Table 2.2 one easily tells that there
exists an integer t, depending on the length of C, such that d(C⊥)− k ≤ t ·mT ≤
d(C(k)). It is not possible, though, to foretell the effect of the shortening procedure
on the weight distribution of C. Example 1 presents two ways of shortening a code,
such that the shortened codes have different weight enumerators.

Example 1. Let C be the maximal self-orthogonal ternary [13, 6, 3] code such that
C⊥ has generator matrix

B :=



1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 1 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 2 1
2 0 1 0 0 0 0 2 1 0 1 2 1


The first six rows of B form a generator matrix of C. One verifies that C is a direct
sum of the self-dual tetracode t4 of length 4 and the maximal self-orthogonal [9, 4, 3]
code e3+3 (see [6] for more details). A generator matrix of a shortening C(1) of C
is obtained by deleting the penultimate row and last column of B. Using Magma,
one verifies that

we(C(1)) = x12 + 8x9y3 + 240x6y6 + 464x3y9 + 16y12.

Let C ′ be the code obtained from C by a cyclic left coordinate shift. A generator
matrix for a shortening C ′(1) of C ′ is obtained from B by deleting the first row and
column. One observes that C ′(1) has a direct summand t4, while C(1) has not; hence
their weight enumerators must be distinct. In fact,

we(C ′(1)) = x12 + 24x9y3 + 192x6y6 + 512x3y9.

In conclusion, the weight distribution of the extended code only depends on the
weight distribution of the original code, while shortening does not even respect
permutation equivalence. In Section 5, it will be shown that no way of shortening
can be found such that
(1) shortening is well-defined on the weight enumerator level and, in this sense,
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(2) the ”shortening” of weight enumerators extends to a homomorphism U
(k)
T →

C[fT , gT ] of C[fT , gT ]-modules (cf. Section 1), such that
(3) a polynomial xN + ady

dxN−d + . . . aNy
N is ”shortened” to a polynomial of

the form xN−s + bd−sy
d−s + · · · + bN−sy

N−s, where s is the number of posi-
tions shortened, i.e. shortening allows to derive upper bounds on the minimum
distance even on the polynomial level.
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Table 1. Value of dmax(T,N)

T mT oT deg(gT ) N (mod deg(gT )) dmax(T,N)

I 2 2 8
1, 3 or 5 1 + 2bN8 c

7 3 + 2bN8 c

II 4 8 24

1, 9 or 17 1 + bN24c+ 3bN+7
24 c

2 bN+8
6 c

3,11 or 19 1 + 2bN24c+ bN+5
24 c+ bN+13

24 c
4 N+8

6

5 1 + 4bN24c
6 2 + 4bN24c

7, 13, 14 or 15 3 + 4bN24c
10 or 18 1 + bN8 c+ bN+8

24 c
12 N

6

20 N+4
6

21 5 + 4bN24c
22 6 + 4bN24c
23 7 + 4bN24c

III 3 4 12

1, 5 or 9 3 + 3bN12c
2 1 + 3bN12c

3, 6 or 7 2 + 3bN12c
10 4 + 3bN12c
11 5 + 3bN12c

IV 2 2 6
1 or 3 1 + 2bN6 c

5 3 + 2bN6 c
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Table 2. Extension

T oT k B f(B)

I 2 1
(v),

G(v) = (1)
f(v) = (1)

II 8 5

(u, v, w),
G(u, v, w) =

(
0 1 0
1 0 0
0 0 1

)
,

Q(u, v, w) = (1
2 ,

1
2 ,

1
4 )

f(u) = (1 1 0),
f(v) = (0 1 1),
f(w) = (1 1 1)

II 8 6
(u, v),

G(u, v) = ( 1 0
0 1 ) ,

Q(u, v) = (3
4 ,

3
4 )

f(u) = (1 0),
f(v) = (0 1)

II 8 7
(v),

G(v) = (1),
Q(v) = (3

4 )

f(v) = (1)

III 4 2
(u, v),

G(u, v) = ( 1 0
0 1 )

f(u) = (1 1),
f(v) = (1 2)

III 4 3
(v),

G(v) = (2)
f(v) = (1)

IV 2 1
(v),

G(v) = (1)
f(v) = (1)
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3. Bounds on the dual distance of self-orthogonal codes of Type I− IV. In
the previous section, two procedures have been described to obtain a self-dual Type
T code D from a maximal self-orthogonal Type T code C. Now the connection
between d(C) and d(D) is studied, to obtain an upper bound for d(C⊥) from upper
bounds that are known for d(D).

For self-orthogonal codes of length N = k + n · oT , where n and k are integers
with k ∈ { oT

2 , . . . , oT − 1} (cf. Section 3.2), the extension procedure is applied,
and the obtained bounds (cf. Theorem 3.5) are sharp for small N . An important
tool in developing these bounds is a result by Assmus and Mattson (cf. Theorem
3.4), which says that the words of minimum weight in an extremal self-dual code
(cf. Definition 3.3) hold a t-design, where t depends on the Type and length of the
code.

When k ∈ {1, . . . , oT

2 −1} (cf. Section 3.3), the shortening procedure applies, but
the thus obtained bounds on d(C⊥) are not satisfactory, not even for small N . In
Section 5, a different approach is pursued, using the algebraic structure of the space
spanned by the Hamming weight enumerators of maximal self-orthogonal codes, to
obtain the sharp upper bounds from Theorem 1.2.

In the exceptional case T = II and N ≡ 4 (mod 8), sharp upper bounds on d(C⊥)
are derived in Section 3.4.

3.1. Some known results on extremal self-dual codes. Recall that the Ham-
ming weight enumerators of self-dual Type T codes, for T ∈ {I, . . . , IV}, lie in a
polynomial ring C[fT , gT ], where fT , gT are themselves are linear combinations of
products of weight enumerators of self-dual Type T codes (cf. Section 1). This has
been used by several authors to derive upper bounds on the minimum distance of
these codes, as follows.

Theorem 3.1. (cf. [8, Ch.3, Th.28]) Let C be a self-dual Type T code of length N ,
where T ∈ {I, II, III, IV}. Then d(C) ≤ mT +mT b N

deg(gT )c.

For Type I codes, this bound can be improved using the concept of the shadow
of a code (cf. Section 3.4). The following is due to Rains ([10]).

Theorem 3.2. Let C be a self-dual Type I code of length N . Then d(C) ≤ 4+4bN24c,
except if N ≡ 22 (mod 24), in which case d(C) ≤ 6 + 4bN24c.

These very powerful results allow a notion of extremality for self-dual codes of
Type I-IV.

Definition 3.3. For T ∈ {II, III, IV}, a self-dual Type T code is called extremal
if its minimum weight equals the bound given in Theorem 3.1. A self-dual Type I
code is called extremal if its minimum weight equals the bound given in Theorem
3.2.

In either case, we denote the minimum weight of an extremal self-dual code of
Type T and length N by dmax(T,N). The set of all words of minimum weight in
an extremal code of Type II− IV has a particularly nice structure.

Theorem 3.4. [Assmus-Mattson, see [5, Th. 9.3.10]] Let T ∈ {II, III, IV} and
let C be an extremal self-dual Type T code of length N > 0. Then the words of
minimum weight in C hold a t(T,N)-design according to the following table.
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T II III IV

N (mod deg(gT )) 0 8 16 0 4 8 0 2 4

t(T,N) 5 3 1 5 3 1 5 3 1

In an extremal self-dual Type I code whose length is no multiple of 24, the words
of minimum weight in general do not hold a design. There are even extremal self-
dual Type I codes where the supports of the words of minimum weight are contained
in a proper subset of {1, . . . , N}. Hence we define t(I, N) = 0 for N 6≡ 0 (mod 24).
If N is a multiple of 24 then an extremal Type I code is also Type II, and of course
extremal in the sense of Type II. In this case the words of minimum weight form a
5-design. Correspondingly, we define t(I, N) = 5 if N ≡ 0 (mod 24).

3.2. Bounds in the extension case.

Theorem 3.5. Let T ∈ {I, . . . , IV} and let C be a self-orthogonal Type T code of
length N ≡ k (mod oT ), where k ≥ oT

2 . Let dmax(T,N + oT − k), t(T,N + oT − k)
be as in the previous section. Then

d(C⊥) ≤ dmax(T,N) := dmax(T,N + oT − k)−min(t(T,N + oT − k), oT − k).

Proof. Assume that d(C⊥) > dmax(T,N), and let δ := min(t(T,N+oT−k), oT−k).
Since always δ ≤ mT , the self-dual code ext(C) is extremal, and the words of
minimum weight in ext(C) have less than δ nonzero entries in their last oT − k
coordinates, since due to our assumption d(C) > d(ext(C))−δ. But for an arbitrary
δ-subset M of the last oT − k coordinates, there exists a word of minimum weight
in ext(C) whose support contains M , since δ ≤ t(T,N + oT − k) and the words of
minimum weight in ext(C) form a t(T,N + oT − k)-design. This is a contradiction,
and hence always d(C⊥) ≤ dmax(T,N).

Lemma 3.6. With the notation from Theorem 3.5, assume that oT − k ≤ t(T,N +
oT − k). Then ext establishes a correspondence between the set of all maximal self-
orthogonal Type T codes of length N and dual minimum weight dmax(T,N) and
the set of all extremal self-dual Type T codes of length N + oT − k. In this case,
ext inverts the puncturing process on these two sets, i.e. one obtains the dual of
a maximal self-orthogonal code C, with d(C⊥) = dmax(T,N), by deleting the last
oT − k coordinates in an extremal self-dual code of length N + oT − k.

Proof. If D is an extremal self-dual code of length N + oT − k, then D contains
a word of minimum weight whose support contains the last oT − k coordinate
positions. Hence deleting the last oT − k coordinates in D yields the dual of a
maximal self-orthogonal code C, with d(C⊥) = d(D)− δ = dmax(T,N).

Example 2. (i) There is in general no correspondence between the dual extremal
maximal self-orthogonal Type III codes of length N ≡ 6 (mod 12) and the
extremal self-dual Type III codes of length N + 2 (in this case, with the
notation from Theorem 3.5, oT − k = 2 and t(T,N + 2) = 1). For instance,
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the extremal ternary [20, 10, 6] code D with generator matrix (I10 | H), where

H =



1 1 1 2 2 0 0 1 2 2
1 1 1 2 2 0 2 0 1 1
1 2 1 0 0 1 1 2 2 1
1 2 1 0 2 0 2 1 2 1
2 0 1 2 0 2 1 2 2 1
1 0 0 1 1 0 1 0 2 0
0 0 0 1 1 1 1 2 0 0
1 0 0 1 1 0 0 2 0 1
1 0 0 2 1 1 1 2 2 1
0 1 0 2 1 1 1 2 1 2


,

(cf. [7, 9]) cannot be obtained by extending an extremal maximal self-orthogonal
Type III code of length 18. This is due to the fact that D contains codewords
of weight 6 whose penultimate and ultimate entries are both nonzero, so any
word in a ternary code of length 18 that extends to these must have minimum
weight 4 < 5 = dmax(III,18). Although the words of weight 6 in C do not
form a 2-design, every pair of coordinate positions is contained in the support
of at least 4 words of weight 6 in D. Hence extension of an extremal self-
orthogonal Type III code never leads to a permutation equivalent of D, i.e.
here ext does not even establish a correspondence between the permutation
equivalence classes of the respective codes.

(ii) Similarly, there is in general no correspondence between the extremal maxi-
mal self-orthogonal Type II codes of length N ≡ 13 or 14 (mod 24) and the
extremal self-dual Type II codes of length N + 3 or N + 2, respectively.

(iii) In all the other cases (i.e. except when T = III and N ≡ 6 (mod 12) or
T = II and N ≡ 13 or 14 (mod 24)), ext establishes a bijection between the
set of all dual extremal self-orthogonal codes of length N and the set of all
extremal self-dual codes of length N+oT −k, due to Theorem 3.5. The inverse
map consists in puncturing (and then changing to the dual code), i.e. in an
extremal self-dual code, the last oT − k coordinates can be omitted to obtain
the dual of a dual extremal maximal self-orthogonal code. Puncturing 1,2 or 3
coordinates in the extremal extended Golay code g24 = gII, for instance, leads
to an extremal [23, 12, 7] or [22, 12, 6] or [21, 12, 5] code, respectively.

3.3. Bounds in the shortening case. As announced above, in this case one
obtains only very weak bounds, using the fact that the minimum distance of the
shortened code is always less than or equal to the minimum distance of the original
code. The reason is that, contrarily to the extension case, shortening means a lot
of information loss. The following preliminary result is improved in Section 4.

Remark 2. Let C be a self-orthogonal Type T code of length N , where T ∈
{I, . . . , IV} and assume that N ≡ k (mod oT ), where k ∈ {1, . . . , oT

2 − 1}. Then
d(C⊥) ≤ dmax(T,N − k) + k.

3.4. Bounds from shadows. In this section, an upper bound on the dual distance
of a maximal self-orthogonal Type II code of length N ≡ 4 (mod 8) is given, using
the concept of the shadow (cf. [2]). For a self-dual Type I code D of length N which
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is not Type II, the shadow S(D) is the set of all vectors v ∈ FN2 such that

2
N∑
i=1

vidi ≡ wt(d) (mod 4)

for all d ∈ D. Equivalently, if C := {d ∈ D | wt(d) ≡ 0 (mod 4)} is the doubly-even
subcode of D, then S(D) = C⊥ − C. Note that dim(C) = dim(D) − 1, i.e. C is
a maximal self-orthogonal Type II code. The following has been shown in [1] (see
also [3]).

Theorem 3.7. Let C be a self-dual Type I code which is not Type II. Let d(S(C)) :=
min{wt(s) | s ∈ S(C)}. Then 2d(C) + d(S(C)) ≤ 4 + N

2 , unless N ≡ 22 (mod 24),
when 2d(C) + d(S(C)) ≤ 6 + N

2 .

Assume that N is even, but no multiple of 8, i.e. there exists a self-dual Type I
code, but no self-dual Type II code of length N . Let C be a maximal self-orthogonal
Type II code of length N , and let D be a self-dual Type I code which contains C,
i.e. C is the doubly-even subcode of D, and S(D) = C⊥−C. Then, due to Theorem
3.7,

d(C⊥) = min{d(S(D)), d(C)} ≤ 1
3

(2S(D) + d(C)) ≤ N + 8
6

.

Based on this observation, one easily concludes the proof of Theorem 1.2 in the case
T = II and N ≡ 4 (mod 8), and in the case T = II and N ≡ 2 (mod 24).

4. The weight distribution of a dual extremal code of Type I-IV is unique.
Using the structure of the ring C[fT , gT ], it is not hard to see that the weight enumer-
ator of an extremal self-dual code of Type T ∈ {I, . . . , IV} is uniquely determined
(cf. [8, Ch. 3]). For lengths where there exists no self-dual Type T code, this sec-
tion uses the structure of the complex vector space I(k)

T spanned by the Hamming
weight enumerator of maximal self-orthogonal Type T codes of length congruent
to k (mod oT ) as a C[fT , gT ]-module (free and finitely generated, cf. Section 4.1)
to prove an analogous result for maximal self-orthogonal Type T codes. It follows
from the fact that I(k)

T has the Weierstrass property that for every integer N ≡ k

(mod oT ) there exists a unique homogeneous polynomial p ∈ I(k)
T of the form

xN + a
δ((I

(k)
T )N )

yδ((I
(k)
T )N )xN−δ((I

(k)
T )N ) + · · ·+ aNy

N ,

where δ depends basically on the dimension of (I(k)
T )N ). On the one hand, in the

case k ≥ oT

2 , where Theorem 1.2 has been proven in the previous section, it turns
out that the dual weight enumerator of a dual extremal maximal self-orthogonal
Type T code of lenght N is the unique element of (I(k)

T )N of the above form.
On the other hand, the least non-vanishing term in p provides an upper bound

for the minimum weight of a maximal self-orthogonal Type T code C of length
N , and the weight enumerator of a code meeting that bound is of course unique.
This bound is easy to calculate for small values of N . For k < oT

2 and lengths
N exceeding a certain range, one obtains upper bounds on d(C⊥) exploiting the
fact that as d(C⊥) grows sufficiently large, one may shorten C to an extremal self-
dual code of almost the same length. But extremal self-dual codes do not exist for
sufficiently large N . The exact spectrum, i.e. the meaning of ”sufficiently large”, is
in [8, Ch. 9.3]. In conclusion, one thus obtains upper bounds on d(C⊥) also when
k < oT

2 , which completes the proof of Theorem 1.2.
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4.1. Gleason’s Theorem and maximal self-orthogonal codes.

Theorem 4.1. [Gleason’s Theorem] If C is a self-dual Type T code, where T ∈
{I, . . . IV}, then we(C) ∈ C[fT , gT ], where fT and gT are themselves linear combi-
nations of products of weight enumerators of self-dual Type T codes, according to
Table 4.1.

Table 4. Gleason Polynomials

T fT gT

I x2 + y2 x2y2(x2 − y2)2

II x8 + 14x4y4 + y8 x4y4(x4 − y4)4

III 4x4 + 8xy3 y3(x3 − y3)3

IV x2 + 3y2 y2(x2 − y2)2

The direct sum of a self-dual Type T code and a maximal self-orthogonal Type
T code is again a maximal self-orthogonal Type T code, and the weight enumerator
of a direct sum is the product of the weight enumerators of the summands. Hence,
if I(k)

T is as above, then

Remark 3. I(k)
T is a module for C[fT , gT ].

It has been shown in [6, Ch. 10] that for T ∈ {I, . . . , IV}, the module I(k)
T is

free and generated by finitely many weight enumerators of maximal self-orthogonal
Type T codes (see Table 4.3 in this paper).

4.2. The Weierstrass property. For a subspace W ⊆ C[x, y] and an integer N ,
let WN be the subspace of W formed by the homogeneous elements of degree N .

Definition 4.2. Let W ⊆ C[x, y] be a subspace and let

J := {j ∈ N | coef(p, yjxi) = 0 for all p ∈W and all i ∈ N}.

The space W is said to have the Weierstrass property if, for every N ∈ N, every
element of WN is uniquely determined by its first dim(WN ) coefficients which do
not belong to J , i.e. by the coefficients in xN , xN−1y, . . . , xN−(δ(WN )−1)yδ(WN )−1,
where

δ(WN ) = min{n ∈ N | |{0, . . . , n− 1} − J | = dim(WN )}.

It is well-known that the spaces C[fT , gT ], for T ∈ {I, . . . , IV}, have the Weier-
strass property (cf. [8, Ch. 3]). This allows to define extremality of self-dual Type
T codes. In what follows this concept is described for a general space W , which is
assumed to have the Weierstrass property: For every positive integer N there is an
injective linear map

WN → Cδ(WN ),

N∑
i=0

aiy
ixN−i 7→ (a0, . . . , aδ(WN )).

This gives rise to a notion of extremality, as follows.
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Definition 4.3. Assume that the space W ⊆ C[x, y] has the Weierstrass property.
Then for every positive integer N the space WN contains a unique element of the
form

xN + aδ(WN )y
δ(WN )xN−δ(WN ) + aδ(WN )+1y

δ(WN )+1xN−(δ(WN )+1) + · · ·+ aNy
N ,

i.e. where the sequence formed by the first δ(WN ) coefficients is (1, 0, . . . , 0). This
element is called the extremal element of WN .

Recall that for Hamming weight enumerators of maximal self-orthogonal Type T
codes, for T ∈ {I, . . . , IV} and k ≥ oT

2 , a notion of extremality has been introduced
in Section 3.2, using the fact that a self-orthogonal Type T code of length N satisfies
d(C⊥) ≤ dmax(T,N). In the subsequent section it is shown that the latter notion
of extremality coincides with the one defined via the Weierstrass property.

4.3. Proof of the uniqueness of the extremal weight enumerator. In this
section it is proven that the spaces I(k)

T spanned by the dual Hamming weight
enumerators of maximal self-orthogonal Type T codes of length N ≡ k (mod oT )
have the Weierstrass property, for T ∈ {I, . . . , IV} and k ∈ {1, . . . , oT − 1}. In
particular, the space (I(k)

T )N contains a unique extremal polynomial of the form

xN + a
δ((I

(k)
T )N )

yδ((I
(k)
T )N )xN−δ((I

(k)
T )N ) + · · ·+ aNy

N ,

i.e. where the sequence formed by the first δ((I(k)
T )N ) coefficients is (1, 0, . . . , 0).

Note that the coefficient a
δ((I

(k)
T )N )

may be zero. Now if k ≥ oT

2 then the weight
enumerator of an extremal maximal self-orthogonal Type T code is the extremal
element in (I(k)

T )N , since always dmax(T,N) ≤ δ((I(k)
T )N ) (cf. Remark 4). In partic-

ular, this completes the proof of the uniqueness of the extremal weight enumerator
for k ≥ oT

2 .
It remains to show that the spaces I(k)

T have the Weierstrass property. To this
aim a triangular basis of (I(k)

T )N is constructed below. The construction starts with
an appropriate basis for C[fT , gT ]. It is equivalent with the fact that the space
C[fT , gT ] has the Weierstrass property (cf. Section 4.2) that

Corollary 1. For every integer n which is a multiple of oT , the complex vector
space (C[fT , gT ])n has a basis (p0, . . . , psn

) which is of triangular shape, i.e. pi is a
multiple of ymT i, for i ∈ {0, . . . , s}.

Table 4.3 shows that for every k ∈ {1, . . . , oT −1}, the C[fT , gT ]-module I(k)
T has

a basis (q1, . . . , qtT,k
) which is triangular as well: If i is the largest integer such that

qj is a multiple of yi, then qj+1 is a multiple of yi+1, for j ∈ {1, . . . , tT,k − 1}.
Moreover, one observes that in most cases there are some regular ”gaps” in the

weight distribution of the qj , i.e. the set

J
(k)
T := {i ∈ Z | coef(qj(1, y), yi+mT z) = 0 for all j ∈ {1, . . . , tT,k} and all z ∈ Z}

is non-empty. Since all the weights of an element of C[fT , gT ] are multiples of mT ,
it even holds that coef(p(1, y), yi) = 0 for all i ∈ J (k)

T and all p ∈ I(k)
T .

One observes from Table 4.3 that, metaphorically speaking, if one ignores the
columns belonging to the coefficients of qj(1, y) at yi, for i ∈ J (k)

T , then the triangle
formed by the basis vectors qj is even isosceles. In particular,

tT,k = |{i ∈ {0, . . . , oT − 1 | i /∈ J (k)
T }}|.
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Now one forms a triangular basis of (I(k)
T )N , where N ≡ k (mod oT ), as follows.

For j ∈ {1, . . . , t}, let ηj := deg(qj). Then N − ηj is a multiple of oT . Choose a
basis Bj = {p0,j , . . . , ps,j} of (C[fT , gT ])N−ηj as in Corollary 1. Then

C :=
.
∪
tT,k

j=1 {qjb | b ∈ Bj}

is a basis of (I(k)
T )N which, if C = {c1, . . . , cu} is ordered appropriately, has the

property that if i is the largest integer such that cj is a multiple of yi, then cj+1 is
a multiple of yi+1. As an immediate consequence,

Corollary 2. The spaces I(k)
T , for T ∈ {I, . . . , IV} and k ∈ {1, . . . , oT − 1}, have

the Weierstrass property.

As announced above, the last necessary result, which is easy to verify by induction
on N , e.g., to prove the uniqueness of the extremal weight enumerator of a maximal
self-orthogonal Type T code is

Remark 4. dmax(T,N) ≤ δ((I(k)
T )N ).

In Table 4.3, all polynomials are given evaluated at x = 1 to shorten notation. A
small index indicates the total degree. If a polynomial p is symmetric, i.e. p(x, y) =
p(y, x), then its redundant coefficients are omitted, which is indicated by an index
sym. For instance, [y + 3y2 − 9y3 + 5y4 − 6y5 + 6y6]13,sym denotes the polynomial

x12y + 3x11y2 − 9x10y3 + 5x9y4 − 6x8y5 + 6x7y6

+6x6y7 − 6x5y8 + 5x4y9 − 9x3y10 + 3x2y11 + xy12.

In addition, Table 4.3 describes how these polynomials can be obtained from weight
enumerators of maximal self-orthogonal codes. For the notation of these codes, the
reader is referred to [6].
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5. Extremal polynomials and extremal codes. Let T ∈ {I, . . . , IV} and let
k,N be integers with 1 ≤ k ≤ oT − 1 and N ≡ k (mod oT ). Recall from Section 4
that there exists a unique extremal element p ∈ (U (k)

T )N , of the form

p(x, y) = xN + a
δ((I

(k)
T )N )

yδ((I
(k)
T )N )xN−δ((I

(k)
T )N ) + · · ·+ aNy

N .

Of course p is not necessarily the weight enumerator of a code. However, it is
interesting to observe that for small lengths N , say up to 4000, the position of the
least non-vanishing coefficient in p, i.e.

d(p) := min{i ∈ {δ((I(k)
T )N ), . . . , N} | ai 6= 0}

satisfies the upper bound on the dual minimum distance of a putative maximal self-
orthogonal Type T code of lenth N . This could probably be proven for arbitrary N
using the Bürmann-Lagrange formula. In this section, though, it is shown that the
extension procedure introduced in Section 2 can, to some extent, be useful to this
aim, too. Regrettably, the shortening process fails to provide any upper bounds
on d(p). It is shown in Theorem 5.2 that this is no weakness of this particular
shortening procedure, but that there exists no shortening procedure at all which is
useful to this aim.

5.1. A C[fT , gT ]-module homomorphism induced by code extension. As-
sume that N = k+n·oT , where k ≥ oT

2 (here we exclude the exceptional case T = II
and k = 4). Let C be a maximal self-orthogonal Type T code of length N . It is
easy to observe that if D is a self-dual Type T code, then ext(D⊕C) = D⊕ext(C).
This suggests to define a C[fT , gT ]-module homomorphism

α : I(k)
T → C[fT , gT ], we(Ci) 7→ we(ext(Ci)),

where the we(Ci) form a C[fT , gT ]-basis for I(k)
T . Recall that the weight distribution

of the extended code ext(C), of length N + oT − k, can easily be read off from the
weight distribution of C (cf. Remark 1). Hence

Remark 5. If C is a maximal self-orthogonal Type T code then α(we(C)) =
we(ext(C)), i.e. the map α extends the effect of the extension procedure on the
weight enumerator to a homomorphism of C[fT , gT ]-modules.

This allows to upper bound the generalized minimum distance of polynomials in
I
(k)
T .

Definition 5.1. Let p ∈ C[x, y] be a homogeneous polynomial of degree N , of the
form

p(x, y) = xN + ady
dxN−d + · · ·+ aNy

N .

Then the integer d =: d(p) is called the generalized minimum distance of p.

Corollary 3. If k ≥ oT

2 and p ∈ I(k)
T is homogeneous of degree N , such that d(p)

is defined, then d(p) ≤ d(α(p)) ≤ dmax(T,N + oT − k).

As mentioned above, explicit calculations (the author used Magma) show that
under the assumptions of Corollary 3, even d(p) ≤ dmax(T,N) for small lengths N .
The author conjectures that this holds for arbitrary N , but at the present state of
our knowledge, this question has to remain open for future research.
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5.2. C[fT , gT ]-module homomorphisms induced by shortening - a nonex-
istence result. In this section, assume that T ∈ {II, III} and N = k+ nȯT , where
k ∈ {1, . . . , oT

2 − 1}. We prove the nonexistence of a shortening procedure that is
well-defined on the weight enumerator level and gives rise to a C[fT , gT ]-module
homomorphism which allows to upper bound d(p), for p ∈ I(k)

T .

Theorem 5.2. There exists no C[fT , gT ]-module homomorphism α : I(k)
T → C[fT , gT ]

such that
(1) if C is a maximal self-orthogonal Type T code of length N , then α(C) is a

self-dual Type T code of length N − k and
(2) d(α(p)) ≥ d(p)− k for all p ∈ I(k)

T where d(p) is defined.

Proof. We give the proof in the case T = III and k = 1 (the other cases, i.e.
T = II and k ∈ {1, 2, 3}, are similar). The C[fT , gT ]-module I

(1)
III has a basis

(we(i1),we(e3+3 )), according to Table 4.3 (see alse [6, Ch. 10]). Assume that α is a
C[fIII, gIII]-module homomorphism that satisfies the first condition of the theorem.
Then α(we(i1)) = 1 and α(we(e3+3 )) = we(t4)2. Let p be the extremal element
of (I(1)

III )25, then d(p) = 7 = dmax(III, 25). But d(α(p)) = 3 < 7 − 1 = 6, which
contradicts the second condition. This shows the assertion.
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