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Abstract—We consider an extension of Massey’s construction
of secret sharing schemes using linear codes. We describe the
access structure of the scheme and show its connection to the dual
code. We use the g-fold joint weight enumerator and invariant
theory to study the access structure.

I. INTRODUCTION

A secret sharing scheme is a process of distributing a secret
to a set of participants in such a way that only certain subsets
of them can determine the secret. The set of all subsets which
can determine the secret is called the access structure of the
scheme. Secret sharing schemes were introduced in 1979 ([1],
[11]) and since then, different schemes were constructed. For a
general introduction to secret sharing schemes, see for instance
[13]. An important class of secret sharing schemes are those
which are based on linear codes. The relation between secret
sharing schemes and linear codes was first presented in [9].
The access structure of schemes based on self-dual codes was
analyzed in [6] using some properties of the codes.

In this work, we consider an extension of the construction
method in [10]. This construction is presented in Section 2. In
Section 3, we characterize the groups that can determine the
secret. In Sections 4-6, we describe the access structure of the
scheme by extending the techniques used in [6].

II. CODES AND SECRET SHARING SCHEMES

Let Fq stand for the finite field of order q, where q is a
prime power. The Hamming weight wt(~v) of a vector ~v in Fn

q

is the number of its non-zero coordinates while the support
of ~v is given by supp(~v) = {i : vi 6= 0, 1 ≤ i ≤ n}. An
[n, k, d] linear code C is a linear subspace of Fn

q where k
is the dimension and d is the minimum Hamming weight. A
generator matrix G for a code C is a matrix whose rows form
a basis for C. For any linear code C, we denote by C⊥ its
dual under the usual inner product. A code C is said to be
self-orthogonal if C ⊆ C⊥ and it is self-dual if C = C⊥.

We consider the following secret sharing scheme. Let P =
{P1, . . . , Pn} be the set of participants. Suppose we want to
share the secret ~s = (s1, s2, . . . , sl) ∈ Fl

q. Let C be an [l +
n, k, d] linear code over Fq with d > l. Consider a generator
matrix G = [G1, . . . , Gl, Gl+1, . . . , Gl+n] of C where Gi is
the ith column. To generate the shares, the dealer picks a

vector ~u such that ~uGi = si for 1 ≤ i ≤ l. A codeword
~c = ~uG is then computed. Now the share of Pi is cl+i for
i = 1, . . . , l. Note that when l = 1 then we have Massey’s
construction [10]. We also remark that this construction was
mentioned in [9] in the case of Reed-Solomon codes.

Let B = {Pi1 , . . . , Pim} ⊆ P . We have the following
result from [2]. The participants in B can recover the secret if
span(G1, . . . , Gl) ⊆ span(Gi1 , . . . , Gim

). The participants in
B have no information on the secret if span(G1, . . . , Gl)∩
span(Gi1 , . . . , Gim

) = ~0. Otherwise, the participants in B
have partial information on the secret.

The access structure Γ of the scheme is the collection of all
subsets of P that can recover the secret. An element B ∈ Γ is
called a minimal access group if no element of Γ is a proper
subset of B. For l = 1, it was shown in [10] that there is a
one-to-one correspondence between the set of minimal access
groups and the set of minimal codewords of C⊥ with first
coordinate equal to 1.

A scheme is said to be perfect if every group in the
access structure can determine the secret and every group not
in the access structure has no information about the secret.
If a scheme is not perfect then some groups have partial
information on the secret. The scheme that we consider here
is non-perfect for l ≥ 2.

The information rate of a scheme is the ratio of the size of
the secret and maximum size of the share. For perfect schemes,
the size of each share must be at least as large as the size of
the secret. An advantage of non-perfect schemes is that the
size of each share can be smaller than the size of the secret.
The information rate of the scheme above is l.

III. ACCESS STRUCTURE

We now describe the access structure of a scheme based on
a linear code C. In [4], it was shown that any group of size at
most d⊥ − l − 1 has no information about the secret and any
group of size at least n+ l−d+1 can recover the secret. Here
we show that no group of size at most d⊥l − l − 1 is in the
access structure, where d⊥l is the lth generalized Hamming
weight of C (cf. Corollary 2). Since d⊥l is not so easy to
determine for l ≥ 2, we also show that the size of an access
group is at least 3

2 (d⊥− l), where d⊥ is the minimum weight
of C⊥ (cf. Corollary 3). This bound is weaker than the one



given by d⊥l , but easier to calculate. We are going to use the
following proposition which is an extension of the approach
in [10].

Proposition 1: Let B = {Pi1 , . . . , Pim
} ⊆ P . Then the

participants in B can determine ~s if and only if there exist
codewords ~vj ∈ C⊥, 1 ≤ j ≤ l, satisfying the following
conditions:

i. The subvector of ~vj consisting of its first l coordinates is
equal to the jth unit vector ~ej in Fl

q.
ii. supp(~vj) ⊆ {j, i1, . . . , im}.

Proof: Suppose there exist codewords ~vj ∈ C⊥, 1 ≤ j ≤
l, satisfying conditions (i) and (ii). For j = 1, . . . , l, we have

~s · ~vj = cj +
m∑

r=1

αjrcir = 0

for some constants αjr, 1 ≤ r ≤ m, which are not all zero.
Hence, the secret ~s can be determined as a linear combination
of the shares of participants in B.

Suppose the participants in B can determine the secret. Then
for each j = 1, . . . , l, we have an equation of the form

cj =
m∑

r=1

βjrcir

for some constants βjr, 1 ≤ r ≤ m, which are not all zero.
The equation can be rewritten as

(c1, c2, . . . , cl, cl+1, . . . , cl+n)·

(~ej , 0, . . . ,−βj1, . . . ,−βjm, 0, . . . , 0) = 0.

Now the codewords (~ej , 0, . . . ,−βj1, . . . ,−βjm, 0, . . . , 0) are
in C⊥ and satisfy conditions (i) and (ii).

Example 1: Let C1 be the [8, 3, 4] linear code over F3 with
generator matrix

G =

 1 0 0 0 2 2 1 1
0 1 0 1 2 1 2 1
0 0 1 2 0 1 0 2

 .

We consider the scheme based on the dual of C1 with l = 2
(so we have 6 participants). Applying the proposition, we can
verify that the access structure consists of 4 groups of size 5
and 1 group of size 6.

Example 2: Consider the scheme based on the [8, 4, 4]
extended binary Hamming code with l = 3. In this case, we
have a total of 5 participants. There are 4 groups of size 4 and
1 group of size 5 in the access structure.

Corollary 2: Any group of d⊥l − l − 1 or less participants
is not in the access structure where d⊥l is the lth generalized
Hamming weight of C⊥.

Proof: The lth generalized Hamming weight of a linear
code is the minimum support of its subcodes of dimension
l. A minimal access group B = {Pi1 , . . . , Pim

} corresponds
to an [l + n, l] subcode D of C⊥ such that supp(D) =
{1, . . . , l, i1, . . . , im}. Hence, m ≥ d⊥l − l.

Corollary 3: If l ≥ 2 then any group of 3
2 (d⊥ − l) − 1 or

less participants is not in the access structure.

Proof: As in the proof of Corollary 2, a minimal access
group of size m corresponds to an [l + n, l] subcode D of C⊥
whose support has size l + m. Moreover, deleting the first l
coordinates of D as well as those coordinates which are not in
its support yields a binary [m, l] code of minimum weight at
least d⊥−l. Recall that A(N, δ) is the maximum size of a (not
necessarily linear) code of length N and minimum weight at
least δ. The above yields A(m, d⊥− l) ≥ 2l > 2. On the other
hand, it is well-known that A(N, δ) ≤ 2 whenever N ≤ 3

2δ−1.
This yields m ≥ 3

2 (d⊥ − l).
Proposition 4: When all participants come together and at-

tempt to determine the secret,
⌊

d−l
2

⌋
cheaters can be detected.

Proof: Deleting the first l coordinates of C results in a
code with minimum distance d− l.

IV. g-FOLD JOINT WEIGHT ENUMERATOR

We describe the connection between the g-fold joint weight
enumerator and the access structure. The g-fold joint weight
enumerator is a generalization of the joint weight enumerator
(see [5]).

Definition 1: Let A1, A2, . . . , Ag be codes of length n over
Fq. The g-fold joint weight enumerator of A1, A2, . . . , Ag is
defined as follows:

JA1,A2,...,Ag
(xa; a ∈ Fg

2)

=
∑

~c1∈A1,...,~cg∈Ag

∏
a∈Fg

2

xna(~c1,...,~cg)
a ,

where ~cj = (cj1, . . . , cjn), na(~c1, . . . ,~cg) = |{i|a =
(c1i, . . . , cgi)}|, and cji = 1 if cji 6= 0 and cji = 0 if cji = 0.
Here (xa; a ∈ Fg

2) is a 2g-tuple of variables with Fg
2, that is,

(x00...0, x00...1, . . . , x11...1).
First we consider the case l = 2, i.e. the secret ~s = (s1, s2).

For simplicity, we use the corresponding decimal representa-
tion of the subscripts of the variables in the g-fold joint weight
enumerator. Let T1 = {1} and T2 = {2} with indicator vectors
1T1 and 1T2 respectively. Consider the 4-fold joint weight enu-
merator J1T1 ,1T2 ,C⊥,C⊥(xa) where a ∈ F4

2. We are interested
in the coefficient x10x5. The coefficient is a polynomial in
x0x1x2x3 and it gives information on the number and supports
of pairs of codewords ~u,~v ∈ C⊥ whose first two coordinates
are (u1, 0) and (0, v2) respectively, where u1 and v2 are both
non-zero. In general, for secrets of length l we use the 2l-
fold joint weight enumerator J1T1 ,...,1Tl

,C⊥,...,C⊥(xa; a ∈ F2l
2 )

where a ∈ F2l
2 . The following theorem generalizes a result in

[6] where Jacobi polynomials were used.
Theorem 5: Let X1 be the subset of F2l

2 consisting of
all vectors whose first l coordinates are zero and let
X2 := {(~ej , ~ej) | j ∈ {1, . . . , l}}, where ~ej ∈ Fl

2 is
the jth unit vector. Then the coefficient of

∏
a∈X2

xa in
J1T1 ,...,1Tl

,C⊥,...,C⊥(xa; a ∈ F2l
2 ) is a polynomial p(xa; a ∈

X1). Identify X1 with {0, . . . , 2l − 1} via the binary number
representation and write

p =
∑

µ∈N2l
0

cµ

∏
a∈X1

xµa
a .

2



Then the number MC(m) of groups of size m in the access
structure of the scheme based on C satisfies

MC(m) ≤
∑

µ

cµ,

where the sum is over all µ with
∑2l−1

i=1 µi = m Moreover, if
m < 3

2d⊥ − 1 then equality holds.

Proof: The sum of the coefficients cµ, where
∑2l−1

i=1 µi =
m, equals the number of tuples (~v1, . . . , ~vl) of elements of C⊥
such that the projection of ~vj onto the first l coordinates is the
jth unit vector in Fl

2, and

| ∪l
j=1 supp(~vj) ∩ {l + 1, . . . , l + n}| = m.

Hence due to Proposition 1, every such tuple determines a
group in the access structure of the scheme based on C, and
every minimal access group occurs as a union of supports
of such a tuple. However, in general there may be different
tuples of codewords that correspond to the same access group.
In this situation, there exists a tuple (~v1, . . . , ~vl) as above and
an element ~c ∈ C⊥ such that

supp(~c) ⊆ ∪l
j=1 supp(~vj) ∩ {l + 1, . . . , l + n}.

Then for any j ∈ {1, . . . , l}, | supp(~c) ∩ supp(~vj) ∩ {l +
1, . . . , l + n}| ≥ wt(~c) + wt(~vj)− 1−m and hence

d⊥ ≤ wt(~c + ~vj)
≤ 1 + m− (wt(~c) + wt(~vj)− 1−m)

≤ 2m + 2− 2d⊥,

which yields m ≥ 3
2d⊥ − 1. Hence if m < 3

2d⊥ − 1 then
the sum of the coefficients cµ with

∑2l−1
i=1 µi = m equals the

number of access groups of size m.

If C is self-orthogonal then there exists a weaker condition
than the one in Theorem 5 under which the number of access
groups of size m can be read off from the 2l-fold joint weight
enumerator. To state this condition, we need the notion of the
code extension enumerator below.

Definition 2: Let D be a linear self-orthogonal [N, k, d]
code. The code extension enumerator is the complex poly-
nomial

PD(t) =
∑

c

td(〈c,D〉),

where the sum is over a system of representatives of D⊥/D.
Clearly deg(PD) ≤ d, and a summand td

′
in PD(t) gives

rise to a linear self-orthogonal [N, k + 1, d′] code.
Now consider a secret sharing scheme based on a binary

self-orthogonal linear code C and let (~v1, . . . , ~vl) be a tuple of
elements of C⊥ giving rise to an access group of size m, as in
Proposition 1. Let D be the linear code generated by the ~vj ,
where the columns where all the ~vj are zero are deleted. Then
D is a self-orthogonal [l + m, l] code of minimum distance at
least d⊥.

Assume that there exists another tuple of elements of C⊥
leading to the same access group, i.e. in Theorem 5, we

have strict inequality for MC(m). Then there exists a nonzero
element ~c ∈ C⊥ with supp(~c) ⊆ ∪l

j=1 supp(~vj) ∩ {l +
1, . . . , l+n}. Let (~c)′ ∈ Fl+m

2 be obtained from ~c by deleting
the coordinates where all the ~vi are zero. Then 〈(~c)′,D〉 has
minimum weight at least d⊥, hence gives rise to a summand
td(〈(~c)′,D〉) in PD(t), where d(〈(~c)′,D〉) ≥ d⊥. This yields

Corollary 6: Consider a secret sharing scheme based on
a self-orthogonal linear code C and let T be the set of all
tuples in C⊥ that give rise to an access group of size m (cf.
Proposition 1). For a tuple (~v1, . . . , ~vl) ∈ T , let D(~v1, . . . , ~vl)
be the code generated by the ~vj , in which the columns
where all the ~vj are zero are deleted. If for all such tuples,
all monomials in PD(~v1,...,~vl)(t) (except for the monomial
corresponding to 0 ∈ D⊥/D) have degree less than d⊥ then
equality holds in Theorem 5, i.e. the number of groups of size
m in the access structure of the scheme based on C can be
read off from J1T1 ,...,1Tl

,C⊥,...,C⊥ .

V. BINARY SELF-DUAL CODES

In this section, we focus on schemes based on binary self-
dual codes and the case l = 2. Based on the previous section,
we use J1T1 ,1T2 ,C,C(x0, . . . , x15) and determine the coefficient
of x10x5. Let us denote this coefficient by Z. Under some
conditions, we can determine Z using the biweight enumerator
of C.

Proposition 7: Let C be an [n, k, d] binary self-dual code.
If C has a 2-transitive automorphism group then

Z =
1

n(n− 1)
∂2

∂x2∂x3
JC,C(x0, x1, x2, x3)

=
1

n(n− 1)
∂2

∂x3∂x2
JC,C(x0, x1, x2, x3).

Proof: The first part of the proof is taken from [7]. We
can write the biweight enumerator as

JC,C(x0, x1, x2, x3) =
∑

Ai,j,k,lx
i
0x

j
1x

k
2xl

3

where Ai,j,k,l is the number of pairs of codewords with n00 =
i, n01 = j, n10 = k, n11 = l. For a given coefficient Ai,j,k,l

and coordinate position h, let Nh(i, j, k, l) be the set of all
pairs of codewords in C which contribute to Ai,j,k,l and with

01 pattern at h. It follows that
n∑

h=1

|Nh(i, j, k, l)| = jAi,j,k,l

since any pair in Nh has j positions with the 01 pattern.
Since the automorphism group is transitive then |Nh(i, j, k, l)|
is independent of h. Thus, |Nh(i, j, k, l)| = j

nAi,j,k,l and in
particular, |N2(i, j, k, l)| = j

nAi,j,k,l.
Let N ′

h(i, j, k, l) be the set of all pairs of codewords in
N2(i, j, k, l) with 10 pattern at position h. Using the arguments
above and since the automorphism group is 2-transitive, then
|N ′

h(i, j, k, l)| is independent of h and

|N ′
h(i, j, k, l)| = k

n− 1
|N2(i, j, k, l)|

=
kj

n(n− 1)
Ai,j,k,l.

3



The proposition now follows.
Since the following examples deal with self-dual codes, we

shall remark the following.
Proposition 8: For a secret sharing scheme with l = 2

based on a self-dual binary code C, the size of every minimal
group in the access structure is even.

Proof: A minimal access group of size m in the access
structure corresponds to a pair (~v1, ~v2) of words in C⊥ = C
such that ~v1 = (1 0 . . . ) and ~v2 = (0 1 . . . ) and m =
|(supp(~v1) ∪ supp(~v2))− {1, 2}|. The latter equals wt(~v1)−
1+ wt(~v2)− 1− | supp(~v1)∩ supp(~v2)|. Since C is self-dual,
the weight of every word in C is even. Moreover, the parity
of | supp(~v1)∩ supp(~v2)| equals the inner product of ~v1 with
~v2, hence is zero as well. Hence m is even.

Example 3: The automorphism group of the [8, 4, 4] ex-
tended Hamming code is 2-transitive and its biweight enu-
merator is

JC,C(x0, x1, x2, x3) = x8
3 + 14x4

2x
4
3 + x8

2+

14x4
3x

4
1 + 14x4

2x
4
1 + x8

1 + 168x2
0x

2
1x

2
2x

2
3 + 14x4

3x
4
0+

14x4
2x

4
0 + 14x4

1x
4
0 + x8

0.

We obtain Z = 4x3
1x

3
2 + 12x2

0x1x2x
2
3. When l = 2, the total

number of participants is 6. Since 3
2d⊥ − 1 = 5, we can read

off the number of access groups of size 4 as 12. The only
other access group is the one formed by all participants.

Example 4: The biweight enumerator of the [24, 12, 8] Go-
lay code g24 was computed in [8] and it is known that the
automorphism group of this code is 5-transitive. Applying the
proposition above, we obtain

Z = 6160x12
0 x3

1x
3
2x

4
3 + 22176x10

0 x5
1x

5
2x

2
3+

7392x10
0 x5

1x2x
6
3 + 7392x10

0 x1x
5
2x

6
3+

2640x8
0x

7
1x

7
2 + 73920x8

0x
7
1x

3
2x

4
3+

73920x8
0x

3
1x

7
2x

4
3 + 36960x8

0x
3
1x

3
2x

8
3+

36960x6
0x

9
1x

5
2x

2
3 + 12320x6

0x
9
1x2x

6
3+

36960x6
0x

5
1x

9
2x

2
3 + 266112x6

0x
5
1x

5
2x

6
3+

7392x6
0x

5
1x2x

10
3 + 12320x6

0x1x
9
2x

6
3+

7392x6
0x1x

5
2x

10
3 + 18480x4

0x
11
1 x3

2x
4
3+

147840x4
0x

7
1x

7
2x

4
3 + 73920x4

0x
7
1x

3
2x

8
3+

18480x4
0x

3
1x

11
2 x4

3 + 73920x4
0x

3
1x

7
2x

8
3+

6160x4
0x

3
1x

3
2x

12
3 + 36960x2

0x
9
1x

5
2x

6
3+

36960x2
0x

5
1x

9
2x

6
3 + 22176x2

0x
5
1x

5
2x

10
3 + 176x15

1 x7
2+

672x11
1 x11

2 + 176x7
1x

15
2 + 2640x7

1x
7
2x

8
3.

For the secret sharing scheme based on g24 with secret lenght
l = 2, the number of groups in the access structure of size
m = 10 can be read off from Z as 6160 due to Theorem 5,
since 10 < 3

2d⊥ − 1 = 11. For every tuple (~v1, ~v2) giving
rise to an access group of size m = 12, we can compute
PD(~v1,~v2)(t) explicitly, using the information on the pairs of
codewords that is given by Z. It turns out that in all the cases,
all monomials have degree less than 8, hence due to Corollary
6, the number of access groups of size 12 equals 36960.

VI. INVARIANT THEORY

Suppose C is an [n, k, d] binary self-dual code. We shall
apply invariant theory in describing the access structure,
similar to what was done in [6]. We consider the case l = 2.
Thus, we shall look at the 4-fold joint weight enumerator
J1T1 ,1T2 ,C,C(xa) where a ∈ F4

2.
If all the codewords of C have weights divisible by 4 then

we have a Type II code. Otherwise, we have a Type I code. In
[8], it was shown that the biweight enumerator of a Type I code
is invariant under the group G1 generated by all permutation
matrices, all 16 matrices diag(±1,±1,±1,±1), and

T1 =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 .

The biweight enumerator of a Type II code is invariant under
the group G2 generated by G1 and T2 = diag(1, i, 1, i) [7].

Let G stand for G1 or G2 depending on the type of code
we are dealing with. Following the arguments in [7] and [8,
Section III], and using the MacWilliams theorem in [5], we can
verify that J1T1 ,1T2 ,C,C(xa) is left invariant by every element
of G acting simultaneously on the following sets of variables:

V1 = {x0, x1, x2, x3}
V2 = {x4, x5, x6, x7}
V3 = {x8, x9, x10, x11}
V4 = {x12, x13, x14, x15}.

Hence, J1T1 ,1T2 ,C,C(xa) is a simultaneous invariant for the
diagonal action of G. As a consequence, we can extend
the results in [6] regarding the Molien series. Note that the
exponents of the variables in V4 are always zero, hence we
can just consider the remaining three sets. The vector space
of invariants that we are going to use is C[xa]Gi,j,k where
xa ∈ F4

2\V4 and i, j, k are the total degrees of the variables in
V1, V2, V3 respectively. The corresponding generalized Molien
series [12] is given by

ΦG(r, s, t) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

dim(C[xa]Gi,j,k)

=
1
|G|

∑
g∈G

1
det(I − rg)det(I − sg)det(I − tg)

.

Based on the previous section, we are interested in
dim(C[xa]Gr,1,1). Its generating function in the variable r is
given by

FG(r) =
∂

∂s∂t
ΦG(r, s, t)

∣∣∣∣
(s,t)=(0,0)

.

Using MAGMA [3], we obtain the following for Type I:

FG(r) = (r20 + r16 − 2r14 + 2r12 + r10 + r8 − r6 + 1)

/(r32 − 2r30 + 2r28 − 4r26 + 5r24 − 4r22 + 6r20

− 6r18 + 4r16 − 6r14 + 6r12 − 4r10 + 5r8 − 4r6

+ 2r4 − 2r2 + 1).

4



For Type II we have

FG(r) = (4r62 + 4r54 + 5r46 + 6r38 + 7r30

+ 3r22 + 2r14 + r6)

/(r96 − r88 − 2r72 + 2r64 − r56 + 2r48

− r40 + 2r32 − 2r24 − r8 + 1).

VII. CONCLUSION

We discuss an extension of Massey secret sharing scheme
and analyze the access structure using the dual code and the
g-fold joint weight enumerator. It would be worthwhile to
replace symmetry properties (group transitivity) by regularity
properties (combinatorial designs) in Prop. 7. Note that for
the scheme based on the extended Golay code, we were only
able to give a partial description of the access structure. For
future work, we consider the complete description of the
access structure. Another interesting problem is to determine
the access structure of schemes based on other families of
codes.
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on self-dual codes,” In Proceedings of IEEE Information Theory Work-
shop, ITW 2008, Porto, Portugal.

[7] W. Huffman, “The Biweight Enumerator of Self-Orthogonal Binary
Codes,” Discrete Mathematics, vol. 26, pp. 129-143, 1979.

[8] F. MacWilliams, C. Mallows and N. Sloane, “Generalizations of Glea-
son’s Theorem on Weight Enumerators of Self-Dual Codes,” IEEE
Transactions Information Theory, vol. 18, pp. 794-805, 1972.

[9] R. McEliece and D. Sarwate, “On Sharing Secrets and Reed-Solomon
Codes,” Communications of the ACM, vol. 24, pp. 583-584, 1981.

[10] J. L. Massey, “Some applications of coding theory in cryptography,”
in P.G Farrell (ed.), Codes and Ciphers, Cryptography and Coding IV,
Formara Lt, Esses, England, pp. 33-47, 1995.

[11] A. Shamir, “How to share a secret,” Comm. ACM, vol. 22, pp. 612-613,
November 1979.

[12] R. Stanley, “Invariants of Finite Groups and their Applications to
Combinatorics,” Bull. AMS vol. 3, pp. 475-497, 1979.

[13] D. Stinson, “An explication of secret sharing schemes,” Designs, Codes
and Cryptography, vol. 2, no. 4, pp. 357-390, 1992.

5


