

Coxeter Groups and Parabolic Subgroups

A finite **Coxeter group** is a finite group W presented by a ge $S \subseteq W$ and braid relations and quadratic relations

 $\underbrace{stst...}_{m_{st}} = \underbrace{tsts...}_{m_{st}}$, (b.rel.) and $s^2 = 1$, (q.rel.)

for some integers $m_{st} \geq 2$. We call (W, S) a Coxeter system. If $J \subseteq S$, then $W_J := \langle J \rangle \leq W$, too, is a Coxeter group called parabolic subgroup of W and (W_J, J) is a Coxeter system.

Iwahori-Hecke Algebras and Parabolic Subalgebras

Let (W, S) be a Coxeter system, F a field and $q \in F^*$. Then t **Iwahori-Hecke algebra** $H_F(W,q)$ is the associative unital a presented by a generating set $\{T_s \mid s \in S\}$ and braid relation quadratic relations

 $\underbrace{T_s T_t T_s T_t \dots}_{s} = \underbrace{T_t T_s T_t T_s \dots}_{s} (b.rel.) \quad and \quad T_s^2 = q \cdot 1 + (q - 1)$

 \rightarrow Deformation of the group algebra If $J \subseteq S$ then the **parabolic subalgebra** $H_F(W_J, q)$ embeds into $H_F(W, S, q)$.

Parabolic Induction

Let $FH := H_F(W,q)$ and $FH_J := H_F(W_J,q) \leq FH$. Then the parabolic induction functor

 $F\text{-Ind}: FH_J\text{-mod} \to FH\text{-mod}; M \mapsto M \otimes_{FH_J} F$

between the categories of finitely generated (right) modules. It is exact and hence defines a homomorphism

 $F \operatorname{-Ind} : K_0(FH_J) \to K_0(FH)$

between the corresponding Grothendieck groups.

Objective

Describe the structure of F- Ind(M) for all FH-modules M if Ifield for both FH and FH_J .

Sub-objectives

Compute F-Ind(M).

Computing Parabolic Induction Maps of Iwahori-Hecke Algebras

Christoph Schoennenbeck, Advisor: Hiß

	Theorem [S.]: Simplicity of Induced M
enerating set	If $M \neq 0$ and $J \neq S$, then F - $Ind(M)$ is not solve the set two simple constituents, counting multiple
el.)	
	A Commuting Diagram from Specialisa
d a 1.	There exists a field k of characteristic zero and $kH := H_k(W, x)$ and $kH_J := H_k(W_J, x)$ are by we have well-defined decomposition maps
	$d^S: K_0(kH) o K_0(FH)$ and $d^J: H$
the	If we denote by k -Ind and F -Ind the induction respectively, the following is a commuting diag
algebra ns and	$K_0(kH_J) \xrightarrow{d^J} K_0(I)$
IS and	$k - \widehat{\operatorname{Ind}}$
T_s , (q.rel.).	$ \begin{array}{c} k \text{-Ind} \\ \downarrow \\ K_0(kH) \xrightarrow{d^S} K_0(kH) \end{array} $
naturally	
indearany	Computing $F-\widehat{Ind}$
	If d^J is surjective, let c^J be a rig
	$F-\widehat{\mathrm{Ind}} = d^S \circ k-\widehat{\mathrm{Ind}} \circ k$
here is a	How and when can this be applied?
here is a TH	
	How and when can this be applied? • Surjectivity: d^J is known to be surjective in • Computing k -Ind: This is easy using ordina • Computing d^S and d^J : This is hard, but it parameter choices. For W of exceptional type and char $(F) \le 5$. However, there are large fa are not yet known (e.g. W a symmetric group
	How and when can this be applied? • Surjectivity: d^J is known to be surjective in • Computing k -Ind: This is easy using ordina • Computing d^S and d^J : This is hard, but it parameter choices. For W of exceptional type and char $(F) \leq 5$. However, there are large fa
	How and when can this be applied? • Surjectivity: d^J is known to be surjective in • Computing k -Ind: This is easy using ordina • Computing d^S and d^J : This is hard, but it parameter choices. For W of exceptional type and char $(F) \le 5$. However, there are large fa are not yet known (e.g. W a symmetric group

odules

simple. In particular, it has at licities.

ntion

some $x \in k^*$ s.t. both split semisimple. Then

 $K_0(kH_J) \rightarrow K_0(FH_J).$

maps for kH_J and FH_J ram of homomorphisms:

 FH_J)

 $F-\widehat{\mathrm{Ind}}$

FH

ht inverse. Then $> c^{J}$.

most cases.

ary representation theory. has been solved for many e d^S is known unless $W \cong E_8$ amilies of cases where d^S or d^J p and char(F) > 0).

is approach is most useful for as helpful in obtaining

exceptional Weyl groups W, for $V \cong E_8$ for char(F) < 5.

An approach for type A_{n-1}

Simple Modules: The simple modules of both FH and FH_J are indexed by certain partitions of nand n-1 respectively.

Crystal Graph: The crystal graph is a graph with directed edges labeled by the elements of $\mathbb{Z} / e \mathbb{Z}$ whose vertices are certain partitions. It is defined completely combinatorially.

Ariki: Let D^{λ} be a simple FH_{J} -module indexed by the partition λ . Then the head and socle of F-Ind (D^{λ}) are multiplicity free and can be read off the crystal graph.

Grojnowski: A lower bound for the multiplicity of D^{μ} in

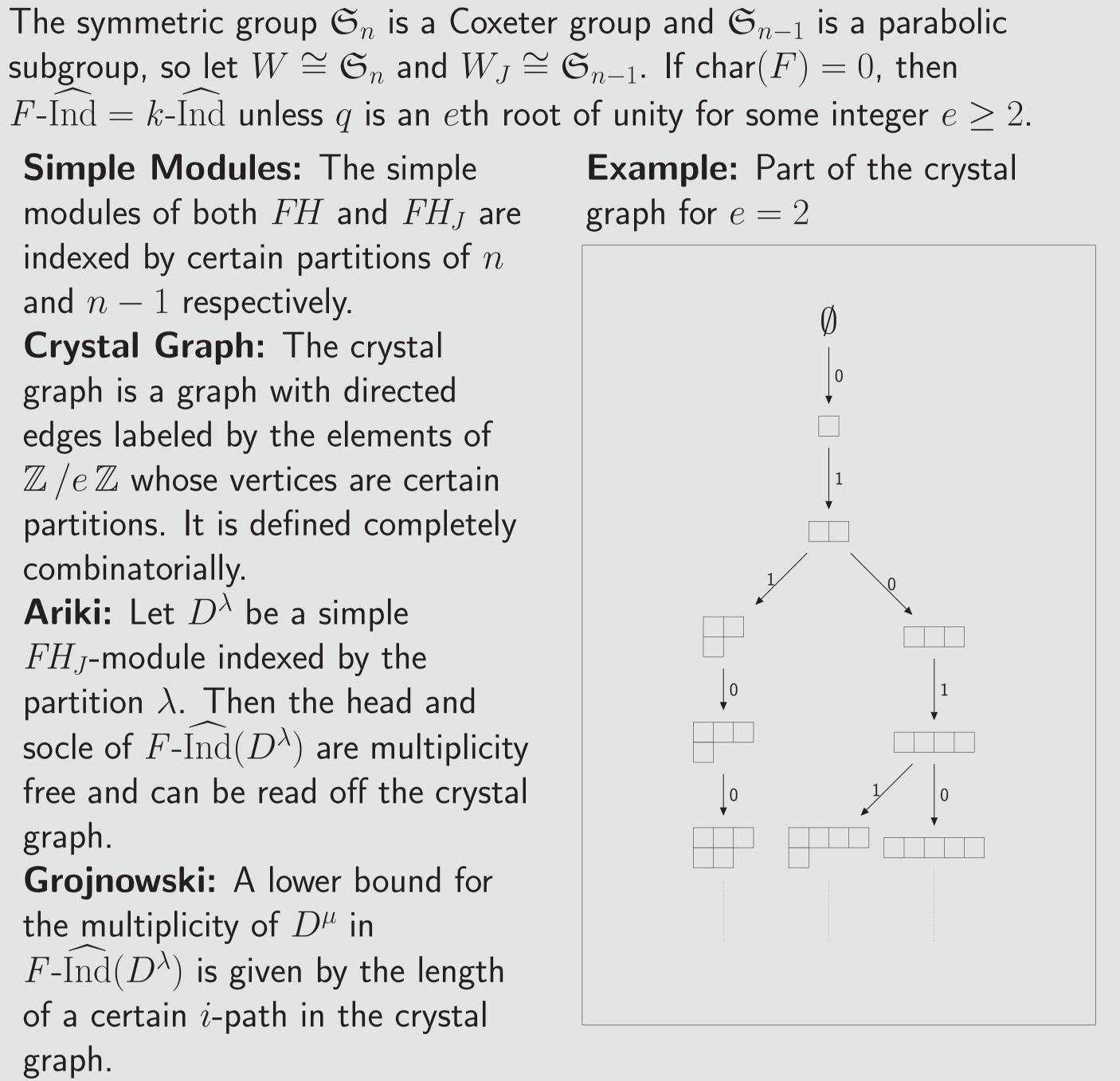
 $F-\operatorname{Ind}(D^{\lambda})$ is given by the length of a certain *i*-path in the crystal graph.

The General Case: Ariki-Koike Algebras

the crystal graph is defined on ℓ -multipartitions. \mathcal{H}_{n-1} -module has at least $\ell + 1$ simple constituents.

Ongoing & Future Work

- Use the KZ functor to exploit results on Cherednik algebras.



The above theory generalises to Ariki-Koike algebras for complex reflection groups of type $G(\ell, 1, n)$ for $\ell \geq 1$. In particular, it applies to Iwahori-Hecke algebras of type B_n as this is type G(2, 1, n). For an Ariki-Koike algebra **Theorem [S.]:** If \mathcal{H}_n is a cyclotomic Ariki-Koike algebra over \mathbb{C} for the complex reflection group $G(\ell, 1, n)$, then the induction of a non-zero

• For type A_n and B_n consider subgroups that are not A_{n-1} or B_{n-1} . • Apply the theory of e-weights, abaci etc. to further study the case A_n . • Use Clifford theory to carry the results on type B_n over to type D_n .