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Abstract. We examine the crystal graph of the ŝle-module arising from an ŝle-
categorification to study the defining endo-functors of the categorification. This yields
lower bounds on the number of irreducible constituents of certain objects. We use Ariki’s
categorification result on Ariki-Koike algebras to obtain a new lower bound on the num-
ber of constituents of their parabolically induced modules. In particular this will imply
reducibility of every induced module.

Introduction

Denote by ŝle the affine Lie algebra of type A(1)
e−1, by U(ŝle) its enveloping algebra and by

Uu(ŝle) its quantum enveloping algebra. A large portion of the structure of certain classes
of Uu(ŝle)- and U(ŝle)-modules can be encoded in so-called crystal graphs via the concepts
of crystal bases and perfect bases, respectively, cf. e.g. [HK02, BK07]. These crystal
graphs have a nice combinatorial description stemming from the realisation of irreducible
highest weight modules as submodules of Fock spaces cf. [FLO+99]. We will exploit this
combinatorial description to study categories possessing a so-called ŝle-categorification of
a C-linear abelian category C, as defined in [Rou08]. One key ingredient to such a categori-
fication is a pair of adjoint endo-functors (U,V) of C which decompose as direct sums of e
summands and this decomposition yields an ŝle-module structure on the complexification
of the Grothendieck group of C, i.e. on C⊗ZR0(C).
If this ŝle-module is an element of the so-called category Oint of ŝle-modules, we combine
results by Shan and Chuang-Rouquier, cf. [Sha11, CR08], with a combinatorial observa-
tion to obtain a new lower bound on the number of constituents of images under V .
These results are applicable to a number of settings, in particular to category O of rational
Cherednik algebras and the representations of Ariki-Koike algebras, cf. [Sha11, Ari02].
Both are closely related to complex reflection groups of type G(r, 1, n), that is, groups of
the form (Z /r Z) o Sn, where Sn is the symmetric group on n letters. In both cases, the
functor V is given by parabolic induction, thus we can use our general result to study lower
bounds on the number of constituents of parabolically induced modules.

Motivated by this result on parabolic induction for certain Ariki-Koike algebras we go
on to prove analogous bounds for Ariki-Koike algebras with arbitray invertible parameters,
as not all parameter choices are covered by the ŝle-categorification result: If K is a field,
then the Ariki-Koike algebra over K is defined via generators and relations involving
parameters q,Q1, . . . ,Qr ∈ K∗. The ŝle-categorification result is known to hold in the case
that q , 1 is a root of unity of finite order and the parameters Q1, . . . ,Qr are so-called
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q-connected, cf. [Ari02, Thm 12.5]. Hence, to obtain a complete result we first reduce
the task of computing the number of constituents of induced modules to q-connected
parameters via the Morita equivalence result by Dipper-Mathas, cf. [DM02].
Then it remains to consider the cases that q is either 1 or has infinite order in K∗. While
the latter is handled quite similarly to our study of ŝle-categorification, the former requires
some hands-on computation.
The main result on parabolic induction of Ariki-Koike algebras with arbitrary invertible
parameters is then given in Theorem 2.22.

This article is structured as follows:
We establish the necessary vocabulary for the representation theory of ŝle, in particular
integrable modules, category Oint, perfect bases, and crystal graphs. Then we introduce
certain crystal graphs, study their combinatorics and indicate how to obtain the crystal
graphs of all elements of Oint from the ones we defined. After recalling the definition of
ŝle-categorification we present our main result in Theorem 1.15.
As an application we consider parabolic induction in rational cyclotomic Cherednik alge-
bras, cf. Theorem 1.18.

The second chapter is concerned with the study of Ariki-Koike algebras and their par-
abolic induction. To obtain the desired lower bound we reduce the task to the case of
so-called q-connected parameter sets and handle the cases not covered by Ariki’s ŝln-
categorification result separately.
We close by proving an analogue of Theorem 2.22 for the closely related degenerate cy-
clotomic Hecke algebras, cf. Theorem 2.24.

1. ŝle-categorification and crystal graphs

1.1. The Kac-Moody algebra and crystal graphs. We start of by defining the affine Lie
algebra ŝle, i.e. the Kac-Moody algebra of type A1

e−1 following [HK02]. Let e ≥ 2 be an
integer. We give the following definitions only for e ≥ 3, but for e = 2 the construction is
similiar, cf. [Kac90] for details.
Let h be a C-vector space with basis {h1, . . . , he−1, d} and {Λ0, . . . ,Λe−1, ∂} a C-basis of h∗

such that
Λi(h j) = δi, j, Λi(d) = ∂(hi) = 0, ∂(d) = 1,

for 0 ≤ i, j ≤ e − 1. For ease of notation we set Λz := Λz (mod e) for any integer z.
For 0 ≤ i ≤ e − 1 we define further elements of h∗ by

αi := −Λi−1 + 2Λi − Λi+1 + δ0,i∂.

The affine Lie algebra ŝle is the Lie algebra generated by the elements ei, fi for 0 ≤ i ≤
e − 1 and {h1, . . . , he−1, d} subject to the following relations:

[h, ei] = αi(h)ei,

[h, fi] = −αi(h) fi,

[ei, f j] = δi, jhi, [h, h′] = 0,
[ei, [ei, e j]] = [ fi, [ fi, f j]] = 0, if (i − j) ≡ ±1 (mod e),

[ei, e j] = [ fi, f j] = 0, if (i − j) . ±1 (mod e),

for h, h′ ∈ h and 0 ≤ i, j ≤ e − 1.
We call the Λi the fundamental weights of ŝle and ∂ the null root. Furthermore, the

αi are known as simple roots and the hi as simple co-roots We define the weight lattice
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P := Z ∂ ⊕
⊕e−1

i=0 ZΛi and the dominant integral weights P+ := Z ∂
⊕e−1

i=0 Z≥0 Λi. Finally,
we set P+ :=

⊕e−1
i=0 Z≥0 Λi, the classical dominant integral weights.

In the following we will be concerned with certain representations of ŝle or, equivalently,
of U(ŝle), its universal enveloping algebra. All modules studied here will have a weight
space decomposition: For an ŝle-module M and some λ ∈ h∗ denote by Mλ := {m ∈ M |
hm = λ(h)m for all h ∈ h} the weight space of M of weight λ.

An ŝle-representation is called integrable if the Chevalley generators ei and fi for 0 ≤
i ≤ e − 1 of ŝle act locally nilpotently. We say that an ŝle-module M is in category Oint if

• M is integrable,
• M has a weight space decomposition M = ⊕λMλ and Mλ is finite dimensional for

all λ,
• there exists a finite set F ⊆ P such that wt(M) ⊆ F +

∑e−1
j=0 Z≤0 αi, where αi is the

i’th simple root of ŝle and wt(M) is the set of weights λ in P such that Mλ , 0.

If M is inOint, then M decomposes as a direct sum of irreducible highest weight modules
L(λ) with weight λ, where λ is in P+, and every irreducible weight module L(λ) with λ in
P+ is an element of Oint.
Every module M in Oint has a perfect basis in the sense of [BK07], i.e. a basis B consisting
of weight vectors equipped with functions Ẽi, F̃i : B→ B∪̇{0} for 0 ≤ i ≤ e − 1 such that

• for b, b′ in B it is F̃i(b) = b′ if and only if Ẽi(b′) = b,
• It is Ẽi(b) , 0 if and only if eib , 0, where e0, . . . , en−1 and f0, . . . , fn−1 are again

the Chevalley generators of ŝle,
• if eib , 0, then

eib ∈ C∗ Ẽi(b) + V<`i(b)−1
i ,

where `i(v) := max{ j ≥ 0 | e j
i v , 0} and V<k

i := {v ∈ M | `i(v) < k}.

To a perfect basis of M we can associate an abstract crystal in the sense of [HK02,
Definition 4.5.1]. However, we will only be interested in its crystal graph. If M is in
Oint with a crystal basis B, then the crystal graph associated to B is a directed graph with

coloured edges, whose vertex set is B and for b, b′ in B there is an edge b
i
→ b′ with label

i if and only if F̃i(b) = b′.

Definition 1.1. A crystal graph isomorphism is an isomorphism of couloured graphs be-
tween crystal graphs of perfect bases, i.e. if B and C are perfect bases of modules M and

N, then a crystal isomorphism is a bijection φ : B→ C such that there is an edge b
i
→ b′ in

the crystal graph associated to B if and only if there is an edge φ(b)
i
→ φ(b′) in the crystal

graph associated to C.

For modules in Oint there is only one associated crystal graph:

Lemma 1.2. If B and B′ are two perfect bases of M ∈ Oint, then the crystal graphs as-
sociated to B and B′ are isomorphic. Thus, it makes sense to speak of the crystal graph
associated to M.

Proof. This follows from [BK07, Main Thm 5.37] just as in the proof of [Sha11, Thm
6.3]. �

Via Fock space theory it is possible to determine the crystal graph associated to any
module in Oint. This requires some groundwork:
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For r ∈ Z ≥ 0 set Z̃r
≥0 := {(s1, . . . , sr) | 0 ≤ s1 ≤ · · · ≤ sr < e} and for the time being fix

some positive integer r and let s = (s1, . . . , sr) ∈ Z̃r
≥0.

Let n be a non-negative integer. A partition of n is a tuple α = (α1, . . . , α`) of non-
increasing non-negative integers α1, . . . , α` such that |α| :=

∑`
i=1 αi = n. We write α ` n if

α is a partition of n. An r-multipartition of n is a tuple λ = (µ(1), . . . , λ(r)) where each λ(i)

is a partition and |λ| :=
∑r

i=1 |λ
(i)| = n. We write λ `r n if λ is an r-multipartition of n. The

Young diagram [λ] of an r-multipartition λ `r n is the set{
(a, b, c) | 1 ≤ λ(c)

a ≤ b, 1 ≤ c ≤ r
}
.

The elements of [λ] are called nodes. More generally, we call any element of
N×N×{1, . . . , r} a node. A node x is called an addable node of λ if x < [λ] and [λ]∪ {x} is
the Young diagram of an r-multipartition of n + 1. We write λ ∪ {x} for the corresponding
r-multipartition.
Similarly, x is called a removable node of λ if x ∈ [λ] and [λ] \ {x} is the Young diagram of
an r-multipartition of n − 1. We write λ \ {x} for the corresponding r-multipartition.

Definition 1.3. Let λ `r n. The residue of a node x = (a, b, c) ∈ [λ] (with respect to s) is
defined as res(x) := b − a + sc (mod e). If res(x) ≡ i (mod e) for 0 ≤ i ≤ e − 1, then we
call x an i-node.
Addable i-nodes are called i-addable and removable i-nodes are called i-removable.

Definition 1.4. For two nodes x := (a, b, c) and y := (a′, b′, c′) we say that x lies above or
higher than y if c < c′ or c = c′ and a < a′ or c = c′, a = a′ and b > b′. We also say that y
lies below or lower than x.
This is the abstract notion of the usual visual way of writing down the diagram of λ by
depicting the diagrams of the components below one another, starting with λ(1). This yields
a total order on the Young diagram [λ].

We follow [Ari02] to define a number of different objects to construct a certain crystal
graph.
We define normal, co-normal, good, and co-good nodes of λ `r n:
Choose some 1 ≤ i ≤ e−1 and write down the sequence of addable and removable i-nodes
sorted from highest to lowest. Encode every addable node with the symbol +i and every
removable one with the symbol −i. The resulting sequence is called the i-signature of λ.
Now recursively remove all pairs −i+i from this sequence until this is no longer possible
to finally obtain the reduced i-signature of λ, which we denote by we,s(λ).
The nodes corresponding to −i in we,s(λ) are called i-normal.
The nodes corresponding to +i in we,s(λ) are called i-co-normal.
The highest i-normal node is called i-good.
The lowest i-co-normal node is called i-co-good. A node is called normal (co-normal,
good, co-good) if it is i-normal (i-co-normal, i-good, i-co-good) for some i.

We use these operators to define some directed graph with coloured edges:

Definition 1.5. Let Pn,r be the set of all r-multipartitions of n and set Pr := ∪n∈Z≥0 Pn,r.
On Pr define operators ẽi and f̃i by

ẽi(λ) =

λ \ {x}, if x is the i-good node of λ
0, if λ does not have an i-good node

and

f̃i(λ) =

λ ∪ {x}, if x is the i-co-good node of λ
0, if λ does not have an i-co-good node.
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By Be(Fs) we denote the directed graph with vertex set Pr and edges λ
i
→ µ if and only if

f̃i(λ) = µ, or, equivalently, ẽi(µ) = λ.
Furthermore, we denote by Be(s) the subgraph of Be(Fs) defined by the connected com-
ponent containing the empty partition ∅ `r 0. We call the elements of Be(s) Kleshchev
multipartitions.
Finally, for λ ∈ Pr we define

ϕi(λ) := max
{

j ≥ 0 | f̃i
j
(λ) , 0

}
and εi(λ) := max

{
j ≥ 0 | ẽi

j(λ) , 0
}
.

To complete the definition for r = 0 we define Be(0) to the be directed graph with exactly
one vertex and no edges, where we denote by 0 the empty sequence and for consistency we
set Z̃0

≥0 := {0}.

Lemma 1.6 ( [Ari02, Thm 11.8][DVV17, Sec 1.5, 2.3.2], [Kas93, Thm 3.3.1] ). Let r ≥ 0
and t := (t1, . . . , tr) ∈ Zr. Then there is a well-defined ŝle-module Ft called the Fock space
with multi-charge t. It is isomorphic to the Fock space Fs for any s ∈ Z̃≥0

r
in Z̃≥0 such that

the multi-sets {t1 (mod e), . . . , tr (mod e)} and {s1 (mod e), . . . , sr (mod e)} are equal.
The crystal graph associated to Fs is isomorphic to Be(Fs). As it is isomorphic to the
crystal graph associated to Ft we will also refer to this crystal graph as Be(Ft).

Proposition 1.7. Let λ ∈ P+ be a dominant integral weight and define λ ∈ P+ as the
unique element such that λ ≡ λ (mod Z ∂). As the Λi are linearly independent, there
exists a unique r ≥ 0 and sλ = (s1, . . . , sr) ∈ Z̃r

≥0 such that λ = Λs1 + · · · + Λsr . Then
the crystal graph associated to the irreducible highest weight module L(λ) is isomorphic
to Be(sλ).

Proof. Denote by Uu(ŝle) the quantum enveloping algebra of ŝln, cf. [HK02]. Then there
exists a quantinization Lu(λ) of L(λ) such that the specialisation of Lu(λ) at u = 1 is iso-
morphic to L(λ). To Lu(λ), too, we can associate a directed graph via a crystal basis and
this, too, is unique up to graph isomorphism, and also called a crystal graph.
There exists a crystal basis of Lu(λ) such that its specialisation is a perfect basis of L(λ),
more precisely this is satisfied by an upper global basis of Lu(λ), and it follows that the
crystal graph associated to Lu(λ) is isomorphic to that of L(λ).
By [Ari02, Thm 11.11] the crystal graph of L(λ) is exactly Be(sλ), so it remains to show
that the crystal graphs of L(λ) and L(λ) are isomorphic.
If r = 0, this is trivial, as the irreducible highest weight module L(k∂) for an integer k has
C-dimension one and it is easy to see that the associated crystal graph is Be(0).
For r ≥ 1 one can use the affinization in [HK02, Section 10.1] to show that the crystal
graph of Lu(λ) is isomorphic to that of Lu(λ + k∂) for every integer k, and in particular
the crystal graph of Lu(λ) is isomorphic to that of Lu(λ). The same clearly holds for their
specialisations at u = 1. �

Corollary 1.8. Let M ∈ Oint and suppose that M � ⊕ jL(λ j) for λ j ∈ P+ is a decomposition
into irreducible highest weight modules. Then the crystal graph of M is isomorphic to∐

j Be(sλ j ), where
∐

denotes the disjoint union of graphs.

Following this we can obtain information about modules inOint via solely combinatorial
observations, so we study the graphs Be(s) and Be(Fs) in some more detail.

The first two results are well-known.

Lemma 1.9. Let r ≥ 1 and s ∈ Z̃r
≥0. If λ is a vertex in Be(s), then either λ = ∅ `r 0 or λ

has an i-good node.
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Lemma 1.10. Let r ≥ 1, λ `r n, and 0 ≤ i ≤ e − 1.
The number of i-co-normal nodes of λ is exactly ϕi(λ). Similarly, the number of i-normal
nodes of λ is exactly εi(λ).

The following is an easy but key observation on co-normal nodes:

Lemma 1.11. Let λ `r n. Then λ has exactly r more addable than removable nodes.
Hence, the number of co-normal nodes of λ is exactly r larger than the number of normal
nodes.
By Lemma 1.10 this is equivalent to saying that

∑
i (ϕi(λ) − εi(λ)) = r.

Proof. Consider the Young diagram of λ(1). If x is a removable node of λ(1) then there is an
addable node in the row directly below x and we can pair of removable and addable nodes
in this manner. But then we are left with the addable node in the very first row of λ(1),
which does not have a removable node above it. Hence, λ(1) has exactly one more addable
than removable node and the same holds true for λ(2), . . . , λ(r), so in total λ has exactly r
more addable than removable nodes.

Now for co-normal nodes:
At the beginning of the algorithm to determine all co-normal nodes all addable and remov-
able nodes are considered at once, since every node is an i-node for some i. Then they are
removed in pairs of addable and removable nodes, so the difference between their numbers
remains constantly equal to r. �

We follow [Sha11, 5.1] for the definition of ŝle-categorification in the sense of [Rou08]:

Definition 1.12. Set q := exp(2π
√
−1/e) ∈ C.

Let C be a C-linear artinian abelian category. For any functor F : C → C and any
X ∈ End(F) we call the generalised eigenspace of X acting on F with eigenvalue a ∈ C the
a-eigenspace of X in F.
Then an ŝle-categorification on C consists of

a) an adjoint pair (U,V) of exact functors C → C,
b) X ∈ End(U) and T ∈ End(U2), and
c) a decomposition C = ⊕λ∈P Cλ,

satisfying the following: Set Ui (resp. Vi) to be the qi-eigenspace of X in U (resp. in V) for
0 ≤ i ≤ e − 1. Then

i) it is U = ⊕e−1
i=0 Ui,

ii) the endomorphisms X and T satisfy the relations

(1UT ) ◦ (T1U) ◦ (1UT ) = (T1U) ◦ (1UT ) ◦ (T1U),
(T + 1U2 ) ◦ T − q1U2 = 0,
T ◦ (1U X) ◦ T = qX1U ,

iii) the map Ui 7→ ei and Vi 7→ fi for 0 ≤ i ≤ e−1 defines an integrable representation
of ŝle on the complexification K0(C) := C⊗ZR0(C) of the Grothendieck group,

iv) Ui(Cλ) ⊆ Cλ+αi and Vi(Cλ) ⊆ Cλ−αi , where αi is the i’th simple root of ŝle,
v) V is isomorphic to a left adjoint of U.

We fix a C-linear artinian abelian category C possessing an ŝle-categorification afforded
by an adjoint pair of functors (U,V) and endomorphisms X and T .

Proposition 1.13 ( [CR08, Prop 5.20], [Sha11, 6.2]). Let 0 ≤ i ≤ e − 1. Then the data
(Ui,Vi, X,T ) yields an sl2-categorification on C in the sense of [CR08, Sec 5].
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For an object M ∈ C set Ũi(M) := soc(Ui(M)) and Ṽi(M) := head(Vi(M)). If S is simple,
then Ũi(S ) is either simple or 0. Similarly, Ṽi(S ) is either 0 or simple. Moreover, if Ṽi(S ) ,
0, then the multiplicity of Ṽi(S ) in Vi(S ) is exactly max j{ j ≥ 0 | Ṽi

j
(S ) , 0}.

Proposition 1.14 ( [Sha11, Prop 6.2]). Let Irr(C) be the set of simple objects of C up to
isomorphism. The triple

({[S ] | S ∈ Irr(C)} , {Ũi | 0 ≤ i ≤ e − 1}, {Ṽi | 0 ≤ i ≤ e − 1})

is a perfect basis of K0(C).

These preliminaries allow us to prove our key result on ŝle-categorification:

Theorem 1.15. Suppose the ŝle-module K0(C) is in Oint and the decomposition into irre-
ducible highest weight modules is ⊕ jL(λ j) for λ j ∈ P+. Denote by B(C) the crystal graph
associated to its perfect basis from Proposition 1.14 and let

Ψ : B(C)→ ⊕ jBe(sλ j )

a crystal graph isomorphism as in Corollary 1.8.
Let S ∈ C be simple and s ∈ Z̃r

≥0 such that Ψ([S ]) ∈ Be(s).
Then V(S ) has at least r constituents.

Proof. Let `i(S ) := max j{ j ≥ 0 | Ṽi
j
(S ) , 0} for 0 ≤ i ≤ e− 1. Since V = ⊕iVi, we see that

V(S ) has at least
∑

i `i(S ) constituents by Proposition 1.13. As Ψ is a crystal isomorphism
and Ψ([S ]) is in Be(s), it follows from Lemma 1.11 that

∑
i `i(S ) =

∑
i ϕi(Ψ([S ])) is at least

r. �

We also get an analogous result if the ŝle-module decomposes as a direct sum of Fock
spaces via a nearly identical proof.

Corollary 1.16. Suppose the ŝle-module K0(C) is in Oint and has a decomposition into
Fock spaces K0(C) �

⊕
s Fs for s ∈ Z̃r

≥0 for r ≥ 1. Denote by B(C) the crystal graph
associated to K0(C) via Proposition 1.14. Then there is a crystal graph isomorphism

Ψ : B(C)→ ⊕sBe(Fs).

If S ∈ C is simple and Ψ([S ]) is in Be(Fs) for some s = (s1, . . . , sr), then V(S ) has at least
r constituents.

1.2. Rational cyclotomic Cherednik algebras. Fix integers r ≥ 1 and e ≥ 2 and let
t = (t1, . . . , tr) ∈ Zr. Then for every non-negative integer n we can define a cyclotomic
rational Cherednik algebra (or cyclotomic rational double affine Hecke algebra) Hn,t,e:
It is a quotient of the smash product of the complex group algebra C[W], where W is a
complex reflection group of type G(r, 1, n), with the tensor algebra of N ⊕ N∗, where N is
the n-dimensional vector space on which W acts naturally, cf. [Sha11, 3.1] for a precise
definition.
For every such rational Cherednik algebra there exists a module category On,t,e consisting
of allHn,t,e-modules that are finitely generated and acted locally nilpotently on by a certain
subalgebra ofHn,t,e.
In the following we setHn := Hn,t,e and On := On,t,e.
Bezrukavnikov and Etingof defined parabolic induction and restriction functorsOn → On+1
and On → On−1 (cf. [BE09]) which we will denote by Indn and Resn, respectively, in the
following. Set O := ⊕n∈Z≥0On and

Res := ⊕n≥0 Resn and Ind := ⊕n≥0 Indn .
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Proposition 1.17 ( [Sha11, Cor 4.5]). Category O possesses an ŝle-categorification for
which the pair of adjoint functors is given by (Res, Ind) and the ŝle-module K0(O) is in
category Oint. As an ŝle-module, K0(O) is isomorphic to the Fock spacce Ft.

By Corollary 1.16 this implies the following:

Theorem 1.18. Let 0 , M ∈ O. Then Ind(M) has at least r constituents. In particular, if
r ≥ 2, then Ind(M) is always reducible.

Remark 1.19. We can strengthen the result at least on a sub-class of modules by using
what we will later prove in Proposition 2.11: Let Hn be the Ariki-Koike algebra associated
to G(r, 1, n) with parameters q := exp(2π

√
−1/e) and Qi := qti (cf. Chapter 2 for a precise

definition). Then there exists a well-known exact functor KZn : On → Hn -mod and the
number of constituents of KZn(M) is a lower bound for the number of constituents of M
for any M ∈ O. Hence, the combination of [Sha11, Cor 2.3, Le 2.6] with Proposition 2.11
yields the following: If n ≥ 1 and M ∈ On such that KZn(M) , 0, then Indn(M) has at
least r + 1 constituents.

2. Parabolic induction on Ariki-Koike algebras

In the following we will use our previous results on crystal graphs to give a new lower
bound on the number of constituents of parabolically induced modules of Ariki-Koike al-
gebras. After some preliminaries on the object at hand we first reduce the problem to the
case of so-called q-connected parameters. Once this is done, we have to differentiate the
cases that the parameter q is either 1 or not equal to 1. In the second case we can mostly
apply our earlier results on ŝle-categorification, whereas for q = 1 some manual compu-
tation yields the corresponding result. Note that we treat the case of a generic parameter
independently, as we do not have an ŝle-categorification result in this case, but we are still
able to use our results on the crystal graphs Be(s).
We close with the analogous result for the closely related degenerate cyclotomic Hecke
algebra.

2.1. Preliminaries. Throughout this chapter let K be a field. For convenience we assume
K to be algebraically closed.

We begin with some preliminaries:
Let n and r be positive integers and q,Q1, . . . ,Qr invertible elements of K. Then the
Ariki-Koike algebra Hn,r(q; Q1, . . . ,Qr) is the unital associative K-algebra with generators
T0, . . . ,Tn−1 satisfying relations

(T0 − Q1) · · · (T0 − Qr) = 0
(Ti − q)(Ti + 1) = 0 for 1 ≤ i ≤ n − 1

T0T1T0T1 = T1T0T1T0

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n − 2
TiT j = T jTi for |i − j| > 1.

This algebras has been defined by Ariki-Koike and, independently, by Broué-Malle, cf.
[AK94, BM93]. It is obvious that a re-ordering of the Qi does not change the resulting
algebra. In the following we fix parameters and set Hn := Hn,r(q; Q1, . . . ,Qr).
It is well-known that the elements T1, . . .Tn−1 generate an Iwahori-Hecke algebra of type
An−1 with parameter q. Hence, as usual, for w ∈ Sn we set Tw := Ti1 · · · Tik whenever
w = si1 · · · sik is a reduced expression of w in the generators si := (i, i + 1). We define
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the Jucys-Murphy elements Li inductively by setting L1 := T0 and Li+1 := q−1TiLiTi for
1 ≤ i ≤ n − 1. It has been shown by Ariki and Koike in [AK94] that{

La1
1 · · · L

an
n Tw | w ∈ Sn, 0 ≤ a1, . . . , an ≤ r − 1

}
is a K-basis of Hn.

This implies that Hn is a subalgebra of Hn+1 and that Hn+1 is free as a left Hn-module.
Hence, there exists an exact induction functor

Indn := IndHn+1

Hn
: Hn -mod→ Hn+1 -mod; M 7→ M ⊗Hn Hn+1 .

As this functor is exact it yields a homomorphism of Grothendieck groups

R0(Hn)→ R0(Hn+1); [M] 7→ [Indn(M)],

where [M] is the class of the Hn-module M in the Grothendieck group. By slight abuse of
notation we denote this homomorphism, too, by Indn.

For every r-multipartition λ `r n there exists a well-defined finite dimensional Hn-
module S λ called a Specht module, defined in [DJM98].
On each Specht module S λ there exists a well-defined bilinear form whose radical rad S λ

is an Hn-submodule of S λ and we set Dλ := S λ/
(
rad S λ

)
. These modules fit neatly into

the concept of viewing Hn as a cellular algebra and in [DJM98] it is shown that the set{
Dλ | λ `r n, Dλ , 0

}
is a complete set of pairwise non-isomorphic Hn-modules.
Furthermore, they deduce that the Grothendieck group R0(Hn) is generated by{
[S λ] | λ `r n

}
.

2.2. Reduction to q-connected parameter sets. Many questions on the representation
theory of Ariki-Koike algebras have only been covered for so-called q-connected parameter
sets.

Definition 2.1. Two elements x and y of K are called q-connected if there exists an integer
k such that x = qky. We write x ∼q y. Clearly, this defines an equivalence relation on
K. We call a set or sequence X with elements in K q-connected if all elements of X are
q-connected. Finally, if X and Y are q-connected sets (or sequences) over K we say that
X and Y are q-connected if there exist elements x ∈ X and y ∈ Y such that x and y are
q-connected.

We set Q := (Q1, . . . ,Qr). As reordering of the Qi does not change the algebra Hn we
can assume without loss of generality that

Q = Q1

∐
· · ·

∐
Qt,

for q-connected sequences Qi which are pairwise not q-connected, where
∐

denotes the
concatenation of sequences. In particular, t is the number of ∼q-equivalence classes on Q.
For 1 ≤ j ≤ t define r j := |Q j |, the length of Q j. Throughout this section we denote by ⊗
the tensor product over K.

Theorem 2.2 ( [DM02, Thm 1.1]). There is a Morita equivalence

Hn ∼Morita Ht
n :=

⊕
0≤n1,...,nt≤n,∑

i ni=n

1 Hn1 ⊗ · · · ⊗
t Hnt ,
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where j Hm := Hm, r j (q,Q j) for 0 ≤ m ≤ n and 1 ≤ j ≤ t. In particular, there is an exact
functor

Fn : Hn -mod→ Ht
n -mod .

Remark 2.3. As the functor Fn is exact it induces a homomorphism on the corresponding
Grothendieck groups. By abuse of notation we will denote it, too, by Fn.
Note that the Grothendieck group of Ht

n is the direct sum of the Grothendieck groups of the
algebras 1 Hn+1 ⊗ · · · ⊗

t Hnt . The irreducible modules of 1 Hn+1 ⊗ · · · ⊗
t Hnt are exactly the

tensor products of irreducible modules of 1 Hn1 , . . . ,
t Hnt .

To study the functor Fn we first consider its images on Specht modules.

Proposition 2.4 ( [DM02, Prop 4.11]). Let λ = (λ(1), . . . , λ(r)) be an r-multipartition of
n. Then define 1λ to be the r1-multipartition consisting of the first r1 components of λ,
i.e. 1λ := (λ(1), . . . , λ(r1)). Then let 2λ be the r2-multipartition consisting of the next r2
components of λ, i.e. 2λ = (λ(r1+1), . . . , λ(r1+r2)),etc. In the end we have λ = 1λ

∐
· · ·

∐ tλ.
Then for the Specht module S λ it is

Fn(S λ) � S
1λ ⊗ · · · ⊗ S

tλ,

which is an Hs
n-module on which nearly all direct summands act as zero with the exception

of 1 H|1λ| ⊗ · · · ⊗ t H|tλ| .
A completely analogous result holds for the module Dλ, where we just replace every S by
D.

The induction Indn on Specht modules is well-understood by the following result by
Mathas:

Proposition 2.5 ( [Mat09, Thm A]). Let λ be an r-multipartition of n. The induced module
Indn(S λ) has a filtration 0 = I0 ⊆ I1 ⊆ · · · ⊆ Ia = Indn(S λ) such that for all 1 ≤ j ≤ a
the quotient I j/I j−1 is also a Specht-module. Moreover, the Specht modules appearing as
such quotients Ii/Ii−1 are exactly those indexed by the multipartitions of n + 1 obtained
by adding exactly one addable node to [λ] and every such multipartition appears exactly
once.

We now move towards an analogous result for Ht
n, at least on the level of Grothendieck

groups. This requires the definition of a number of homomorphisms R0(Ht
n)→ R0(Ht

n+1):
For 0 ≤ n1, . . . , nt ≤ n with

∑
i ni = n and 1 ≤ j ≤ t we define

j Ind(n1,...,nt)
n,t : R0

(
Ht

n

)
→ R0

(
Ht

n+1

)
by giving its image on classes of irreducible modules. If M is an irreducible module of
Ht

n that is not in
(

1 Hn1 ⊗ · · · ⊗
t Hnt

)
-mod, then set j Ind(n1,...,nt)

n,t ([M]) := 0. If M is an

irreducible module of Ht
n and in

(
1 Hn1 ⊗ · · · ⊗

t Hnt

)
-mod, then it is isomorphic to the

tensor product D1 ⊗ · · · ⊗ Dt for irreducible i Hni -modules Di. In this case we set

j Ind(n1,...,nt)
n,t ([M]) := [D1 ⊗ · · · ⊗ D j−1 ⊗

(
Ind

j Hn j+1

j Hn j

(
D j

))
⊗ D j+1 ⊗ · · · ⊗ Dt],

i.e. we apply the usual parabolic induction in the j-th component.
By Proposition 2.5 this immediately yields the following:

Lemma 2.6. For 1 ≤ i ≤ t with i , j let Mi ∈
i Hni -mod. Let α `r j n j be a multipartition.

Then it is
j Ind(n1,...,nt)

n,t ([M1 ⊗ · · · ⊗ S α ⊗ · · · ⊗ Mt]) =
∑

β`r j n j+1,
|β\α|=1

[
M1 ⊗ · · · ⊗ S β ⊗ · · · ⊗ Mt

]
,
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i.e. all partitions β obtained by adding exactly one node to α appear exactly once.

Now we set

Ind(n1,...,nt)
n,t :=

t∑
j=1

j Ind(n1,...,nt)
n,t

and finally

Indn,t :=
∑

0≤n1,...,nt≤n,∑
i ni=n

Ind(n1,...,nt)
n,t .

Theorem 2.7. The following diagram commutes:

R0 (Hn) R0
(
Ht

n
)

R0 (Hn+1) R0

(
Ht

n+1

)
Fn

Indn Indn,t

Fn+1

Proof. Let λ `r n and define 1λ, . . . , tλ as in Proposition 2.4. For 1 ≤ i ≤ t set ni := |iλ|. By
definition it is Indn,t([Fn(S λ)]) = Ind(n1,...,nt)

n,t ([Fn(S λ)]) and by Lemma 2.6 and the definition
of Ind(n1,...,nt)

n,t we have

Ind(n1,...,nt)
n,t ([Fn(S λ)]) =

t∑
j=1

∑
β`r j n j+1

|β\ jλ|=1

[S
1λ ⊗ · · · ⊗ S

j−1λ ⊗ S β ⊗ S
j+1λ ⊗ · · · ⊗ S

tλ].

For 1 ≤ j ≤ t and β `r j n j with |β \ jλ| = 1 let µ( j, β) `r n be the multipartition of
n + 1 obtained as the concatenation (1λ, . . . , β, . . . , tλ), where β is the j’th subsequence. By
Proposition 2.4 it is Fn+1([S µ( j,β)]) = [S

1λ ⊗ · · · ⊗ S
j−1λ ⊗ S β ⊗ S

j+1λ ⊗ · · · ⊗ S
tλ].

Clearly, the µ( j, β) run exactly over all multipartitions of n + 1 which are obtained from λ
by adding exactly one node and every such multipartition appears exactly once. Hence, by
Proposition 2.5 it is

Indn([S λ]) =

t∑
j=1

∑
β`r j n j+1

[S µ( j,β)]

and thus Fn+1(Indn([S λ])) = Indt
n(Fn([S λ])).

Since the classes of Specht modules generate the Grothendieck group of Hn this already
implies the commutativity of the diagram. �

Corollary 2.8. The homomorphisms Fn and Fn+1 obtained from the Morita equivalence
preserve the number of irreducible constituents. Hence, if λ = (λ(1), . . . , λ(r)) is an r-
multipartition of n such that Dλ , 0, then the number of irreducible constituents of the
module Indn(Dλ) is equal to that of Indn,t

(
D

1λ ⊗ · · · ⊗ D
tλ
)

by Proposition 2.4. By def-
inition, this is equal to the number obtained by summing the number of constituents of

Ind
j Hn j+1

j Hn j
(D

jλ) over all j, where n j := | jλ|.

Since j Hn j and j Hn j+1 are defined over q-connected parameters Q j we have now reduced
the problem of finding the number of constituents of induced modules to the q-connected
parameter case.
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Remark 2.9. A completely analogous result holds for restriction in place of induction.
The filtration in Proposition 2.5 has to be replaced by that in [Mat18] for restriction of
Specht modules. One has to pay attention when defining the partial restriction homomor-
phisms j Res(n1,...,nt)

n,t ; they are only defined for n j ≥ 1. Then they are defined on classes of
irreducibles via the usual parabolic restriction in the j’th component of the tensor product.
In total, we define the restriction on the Ht

n side to be

Resn,t =

t⊕
j=1

⊕
0≤n1,...,nt≤n,∑

i ni=n
n j≥1

j Res(n1,...,nt)
n,t .

Then the following diagram commutes:

R0 (Hn) R0
(
Ht

n
)

R0 (Hn−1) R0

(
Ht

n−1

)
Fn

Resn Resn,t

Fn−1

2.3. q-connected parameters. Assume that Q = (Q1, . . . ,Qr) is q-connected, as we have
just reduced our problem to this case.
We can further simplify the setting without loss of generality: Let a ∈ K∗. Then
Hn,r(q; Q1, . . . ,Qr) is isomorphic to Hn,r(q; aQ1, . . . , aQr) by replacing T0 with a−1T0.
Hence, if Q is q-connected we can assume without loss of generality that there exist non-
negative integers s1, . . . , sr such that Qi = qsi for 1 ≤ i ≤ r, and will assume this to be the
case from now on. Now let e ∈ Z≥0 ∪{∞} be the multiplicative order of q in K∗. Then we
can additionally assume that 0 ≤ s1, . . . , sr < e and as reordering of the Qi does not change
Hn we also assume s1 ≤ s2 ≤ · · · ≤ sr. Set s := (s1, . . . , sr) ∈ Z̃≥0.

In the following we will have to differentiate the cases q , 1 and q = 1.
Note that in the latter case people will often switch to considering so-called degenerate cy-
clotomic Hecke algebras instead, which are slightly different than the Ariki-Koike algebras
for q = 1 we consider here, but the definitions of Ariki-Koike algebras make sense, too,
for q = 1, so we see no reason to exclude this case. However, for completeness we will
remark in Theorem 2.24 how to handle degenerate cyclotomic Hecke algebras.

2.3.1. The case q , 1. Set H -mod :=
⊕

n≥0 Hn -mod and

Ind :=
⊕
n≥0

Indn Res :=
⊕
n≥0

Resn .

We first consider the case e < ∞. This is where our previous results do come in:

Proposition 2.10 ( [Sha10, Exp 5.2.5], [Ari02, Thm 12.5], [Ari06, Thm 6.1] ). The
functors Res and Ind constitute a pair of bi-adjoint functors on H -mod, yielding an
ŝle-categorification. The ŝle-module K0(H -mod) is isomorphic to the irreducible highest
weight module L(Λ) with Λ = Λs1 + · · · + Λsr . If we denote by Be(H) the crystal graph as-
sociated to K0(H -mod), then Be(H) is isomorphic to Be(s) and the pre-image of the vertex
∅ `r 0 is the class of the trivial module of the trivial algebra H0.

Proposition 2.11. Suppose 2 ≤ e < ∞. Let n ≥ 1 and 0 , M ∈ Hn -mod. Then Indn(M)
has at least r + 1 irreducible constituents. In particular, Indn(M) is reducible.

Proof. Since Ind is exact it suffices to consider the case that M is irreducible. Let Ψ :
Be(H) → Be(s) be the crystal graph isomorphism from Proposition 2.10. By Proposition
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1.13 and the fact that Ψ is a crystal isomorphism we see that the number of constituents of
Indn(M) is at least

∑e−1
i=0 ϕi(Ψ([M])). Since Ψ([M]) is not the empty partition, by Lemmas

1.9, 1.10, and 1.11 this number is at least r + 1. �

Now suppose e = ∞.
This case has been studied in detail by Vazirani in [Vaz02]. Here, too, we obtain a result
using crystal graphs. The crystal graph B∞(s) is defined just as for e < ∞, if we define
x ≡ y (mod ∞) if and only if x = y for integers x and y to extend the definition of the
residue to the case e = ∞. Note that B∞ is a crystal graph for Uu(ŝl∞).
For i ≥ 0 there exists a refined functor i-Indn Hn -mod → Hn+1 -mod, defined via taking
generalised eigenspaces of Jucys-Murphy elements, cf. e.g. [Ari06] for a definition. We
define i-Ind := ⊕n≥0 i-Indn.

Proposition 2.12 ( [Gro99, Vaz02]). The functors i-Ind satisfy the following:
a) i-Ind is exact.
b) For M ∈ Hn -mod it is Ind(M) � ⊕i≥0 i-Ind(M).
c) Let M ∈ Irr(H). Then f̃i(M) := head(i-Ind(M)) is either 0 or irreducible.
d) If M ∈ Irr(H) and f̃i(M) , 0, then the multiplicity of f̃i(M) in i-Ind(M) is exactly

max j{ j ≥ 0 | f̃i(M) j , 0}.

e) Define a directed graph B∞(H) with vertex set Irr(H) and directed edges M
i
→ N

for M ∈ Irr(Hn) and N ∈ Irr(Hn+1) if and only if f̃i(M) = N. Then B∞(H) is
isomorphic to B∞(s) and the pre-image of the vertex ∅ `r 0 is the class of the
trivial module of the trivial algebra H0.

With this in mind the proof of the following is completely analogous to the case e < ∞,
as Lemmas 1.9, 1.10, and 1.11 all also hold for e = ∞.

Proposition 2.13. Suppose e = ∞. Let n ≥ 1 and 0 , M ∈ Hn -mod. Then Indn(M) has at
least r + 1 irreducible constituents. In particular, Indn(M) is reducible.

2.3.2. The case q = 1. Now assume q = 1 and n ≥ 1.
Note that the q-connectedness of the Qi then implies that they are all equal to 1. Beware
that in general Hn is not isomorphic to the so-called degenerate cyclotomic Hecke algebra.

For q = 1, the subalgebra of Hn that is generated by T1, . . . ,Tn−1 is isomorphic to the
group algebra K[Sn] and we identify the two. The Specht and irreducible modules of Hn

for q = 1 have been studied by Mathas. Their structure is not overly complicated:

Proposition 2.14 ( [Mat98, Theorem 3.7, Lemma 3.3]). Let λ =
(
λ(1), . . . , λ(r)

)
`r n be an

r-multipartition such that Dλ , 0. Then the following holds:
a) It is λ( j) = ∅ unless j = r.
b) The Jucys-Murphy elements L1, . . . , Ln act trivially on S λ and hence also on Dλ.

Hence, the action on Specht and irreducible modules is completely determined by the
restriction to the group algebra K[Sn]. In particular, the irreducible Hn-modules are exactly
the irreducible K[Sn]-modules seen as Hn-modules by letting T0 = L1 act as 1.
For a partition α ` n denote by S α the Specht module of K[Sn] and as usual by Dα its
quotient by the radical of the corresponding bilinear form. It is well-known that Dα , 0 if
and only if α is p-restricted, where p is the characteristic of K.

Denote by ResSn the restriction functor ResHn
K[Sn]. Then the next result follows from a

close study of the explicit construction of Specht modules for Hn and K[Sn].

Lemma 2.15. Let λ = (∅, . . . , ∅, λ(r)) `r n. Then the following holds:
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a) The restriction ResSn (S λ) is isomorphic to S λ(r)
∈ K[Sn] -mod.

b) The restriction ResSn (Dλ) is isomorphic to Dλ(r)
∈ K[Sn] -mod.

Proof. We refer the reader to [Mat04, Ch 3] and [Mat99, Ch 3] for details on the construc-
tion of Specht modules and follow these references. In particular, we do not vigorously
define everything in this proof but rather assume familiarity with the construction and the
necessary vocabulary.
Let us recall, though, that a tableau of shape µ `r n is a one-to-one labeling of the nodes of
µ with the numbers {1, . . . , n} and that a standard tableau is a special tableau. Accordingly,
one can define (standard) tableaux of shape β ` n.
Set α := λ(r). To shorten notation throughout this proof let H := Hn and h := K[Sn].
Then H has a K-basis M := {muv | µ `r n, u, v standard tableaux of shape µ} and h has
a K-basis M′ := {m′

ab
| β ` n, a, b standard tableaux of shape β}. The key observation is

that via identifying β ` n with (∅, . . . , ∅, β) `r n the elements m′
ab

and mab are equal for all
standard tableaux a and b of shape β, hence M′ embeds into M.
Now let Hλ be the K-span of all muv where the shape of u strictly dominates λ and let hα
be the K-span of all m′

ab
where the shape of a strictly dominates α. Note that in the first

case we consider the dominance order of r-multipartitions, whereas in the latter the domi-
nance order of ordinary partitions is used. Then Hλ E H and hα E h are two-sided ideals.
Furthermore, it follows from the definitions that Hλ ∩h = hα.
Now S λ is a submodule of H /Hλ with K-basis {mu+Hλ | u a standard tableau of shape λ},
where we set mu := mtλu for tλ the tableau obtained by labeling λ left to right, top to bottom.
Similarly, via the above identification of tableau of shape α with those of shape λ we know
that S α is the submodule of h /hα with K-basis {mu+hα | u a standard tableau of shape λ}.
Since the representatives of the basis elements all lie in h and because Hλ ∩h = hα, we see
that the K-vector space isomorphism Ψ : S λ → S α ; mu + Hλ 7→ mu + hα is an h-module
isomorphism. This proves a).
The irreducible modules Dλ and Dα are defined as quotients of S λ and S α by the radical
of bilinear forms 〈 , 〉λ and 〈 , 〉α on S λ and S α, respectively. These forms are defined via
a number of of equations in H /Hλ and h /hα, respectively, and from Hλ ∩h = hα we can
deduce that Ψ respects the forms, i.e. 〈x, y〉λ = 〈Ψ(x),Ψ(y)〉α for all x, y in S λ. Thus, Ψ

induces an h-isomorphism Dλ → Dα, proving b). �

Remark 2.16. The above proof does not require q to be 1. As everything in [Mat99] is
actually carried out for arbitrary Iwahori-Hecke algebras of type A, our proof still holds
for arbitrary q, in which case the subalgebra of Hn generated by T1, . . . ,Tn−1 is an Iwahori-
Hecke algebra of type A with parameter q.
Finally, note that the Specht modules defined in [Mat99] are what other authors might call
dual Specht modules instead.

As the symmetric groupSn acts on the Jucys-Murphy elements by permuting the indices
and the latter act trivially on simple Hn-modules, one can prove the following:

Proposition 2.17. Let Dλ be an irreducible Hn-module for a multipartition λ =

(∅, . . . , ∅, λ(r)) `r n and B a K-basis of Dλ. Furthermore, denote by Y the set of distin-
guished right coset representatives of Sn in Sn+1, i.e. the set of right coset representatives
with minimal length.
Then {

b ⊗Hn L j
n+1y | b ∈ B, y ∈ Y, 0 ≤ j < r

}
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is a K-basis of Indn(Dλ).
For 0 ≤ ` < r let M` be the K-vector space spanned by{

b ⊗Hn (Ln+1 − 1) j y | b ∈ B, y ∈ Y, ` ≤ j < r
}

and set Mr := 0. Then the following holds:

a) For every `, M` is an Hn+1-module.
b) It is 0 = Mr � Mr−1 · · · � M1 � M0 = Indn(Dλ).
c) Set N` := M`/M`+1 for 0 ≤ ` ≤ r − 1. Then T0 = L1 acts trivially on N` and

ResSn+1 (N`) is isomorphic to Îndn

(
Dλ(r)

)
, where we set Îndn := IndK[Sn+1]

K[Sn] .

Corollary 2.18. Let Dλ be an irreducible Hn-module for a multipartition λ =

(∅, . . . , ∅, λ(r)) `r n. Suppose t ∈ N is the number of irreducible constituents of the K[Sn+1]-
module Îndn(Dλ(r)

). Then the number of irreducible constituents of Indn(Dλ) is exactly the
product rt.

Proposition 2.19. Suppose q = 1. Let 0 , M be an Hn-module. Then Indn(M) has at least
2r irreducible constituents.

Proof. As induction is exact it suffices to prove the statement for M = Dλ , 0 for a
multipartition λ = (∅, . . . , ∅, λ(r)) `r n.
The induced module Îndn(Dλ(r)

) has at least 2 irreducible constituents by [Sch17, Theorem
1.1]. The claim now follows from Corollary 2.18. �

We finish this subsection by describing the socle of the induced modules, as this can be
obtained with barely any additional work and complements the branching rules for q , 1,
cf. [Ari06, Vaz02].

Proposition 2.20. Assume the setting and notation of Proposition 2.17. Then the socle of
Indn(Dλ) is contained in Mr−1. More precisely, the socle of Indn(Dλ) is isomorphic to the
socle of Îndn(Dλ(r)

) where T0 acts trivially.

Proof. Clearly, the Li act trivially on the socle of an Hn+1-module.
It is easily checked that the common eigenspace of the Li with respect to the eigenvalue 1 on
Indn(Dλ) is exactly Mr−1. By Proposition 2.17 the restriction ResSn+1 (Mr−1) is isomorphic
to Îndn(Dλ(r)

), yielding the claim.
�

Remark 2.21. The socle of Îndn(Dλ(r)
) has been studied extensively by Kleshchev in his

groundbreaking series of papers in the early 90’s, cf. [Kle05] for a survey. In particular,
he defines refined induction and restriction functors and shows that these can be defined
in terms of adding and removing certain nodes. As this, too, yields a crystal, analogous
to the ones defined for 2 ≤ e ≤ ∞, we could also have used Kleshchev’s results instead of
[Sch17, Theorem 1.1] to show that Îndn(Dλ(r)

) has at least 2 constituents.

2.3.3. Main Theorem. We drop our conditions to obtain a result on arbitrary Ariki-Koike
algebras with invertible parameters:

Theorem 2.22. Let t be the number of ∼q-equivalence classes on (Q1, . . . ,Qr). Then for
any Hn-module M , 0 the number of constituents of Indn(M) is at least r + t. In particular,
Indn(M) is reducible.
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Proof. Reorder the Qi such that Q := (Q1, . . . ,Qr) = Q1
∐
· · ·

∐
Qt is a concatenation

of q-connected sequences that are pairwise not q-connected. Let 1 ≤ j ≤ t. By Proposi-
tions 2.19, 2.13, and 2.11 and the definition of Indn,t we see that Indn,t(Fn(M)) has at least∑t

j=1(|Q j | + 1) irreducible constituents, where Fn is the natural equivalence from Theo-
rem 2.2. By Corollary 2.8 we conclude that Indn(M) has at least

∑t
j=1(|Q j | + 1) = r + t

constituents. �

Remark 2.23. We call any subalgebra H′n of Hn generated by a subset of the generators
T0, . . . ,Tn−1 a parabolic subalgebra of Hn. Adapting the proof of [Sch17, Thm 1.1] by
using the Mackey formula from [KMW18] one can show that IndHn

H′n
(M) is reducible for

any non-zero H′n-module M, unless H′n = Hn. However, if H′n = Hn−1, then the statement
in Theorem 2.22 is much stronger in general.

2.4. Degenerate cyclotomic Hecke algebras. As already mentioned the Ariki-Koike al-
gebras at q = 1 are generally not isomorphic to the so-called degenerate cyclotomic Hecke
algebras. However, a result analogous to Theorem 2.22 still holds:
For a non-negative integer n denote by hn the degenerate affine Hecke algebra over K as
defined by Drinfel’d, cf. [Dri86], i.e. as a vector space it is hn � K[x1, . . . , xn]⊗K[Sn], the
tensor product of the polynomial ring over K in n variables x1, . . . , xn and the group algebra
over K of the symmetric group Sn. Multiplication is defined such that K[x1, . . . , xn] ⊗ 1
and 1 ⊗ K[Sn] are both subalgebras and additionally we have

six j = x jsi if j , i, i + 1, sixi+1 = xisi + 1, xi+1si = sixi + 1,

for all sensible values for i and j, where si = (i, i + 1) is the i’th standard Coxeter generator
of Sn. Now let r ≥ 1 and s = (s1, . . . , sr) in Z̃r

≥0 . Then the degenerate cyclotomic Hecke
algebra hs

n is defined as the quotient

hs
n := hn / 〈(x1 − s1) · · · (x1 − sr)〉 .

The algebra hs
n embeds into hs

n+1 and the corresponding induction functor is exact.
Following Kleshchev (cf. [Kle05]) we can again define refined functors i-Ind for 0 ≤

i ≤ e := char(K) and then repeat what we did for e = ∞. An analogue of Proposition 2.12
holds for hn. In particular, we once again obtain a crystal graph isomorphism to Be(s), cf.
[Kle05, 10.3.5] and as in Proposition 2.13 we obtain the following:

Theorem 2.24. Let 0 , M ∈ hs
n. Then the induced module Indhs

n+1
hs

n
(M) has at least r + 1

constituents. In particular, it is reducible.

Remark 2.25. If K has characteristic 0, then by [BK09, Cor 2] the degenerate algebra hs
n

is isomorphic to the Ariki-Koike algebra Hn,r(X; Xs1 , . . . , Xsr ) over K(X), where X is an in-
determinate. Hence, in characteristic zero Theorem 2.24 already follows from Proposition
2.13.
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