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Abstract— Methods from homological algebra [16] play a Il. THE PHILOSOPHY OF THE PACKAGE
more and more important role in the study of multidimen-
sional linear systems [15], [14], [6]. The use of modules allows  The basic objects diomalg are finitely presented left
an algebraic treatment of linear systems which is independent modules over rings in which the ideal membership problem
of their presentations by systems of equations. The type of g g|gorithmically solvable and syzygies are effectively
rea oy ordnapybatl ifeenial ealalors W0 comptatic. i call such ingamputabichomalg
commutative) ring of (differential, shift, ...) operators over plements the homological constructions for modules over
which the modules are defined. In this framework, homo- such rings, whereas the ring arithmetic has to be provided
logical algebra gives very general information about the py a ring-specific package. The following ring-specific
structural properties of linear systems. packages have successfully been used Wwithnalg : IN-
Homological algebra is a natural extension of the theory VOLUTIVE and ANET [3], OREMODULES [4]. PIR is one

of modules over rings. The category of modules and their ho- .
momorphisms is replaced by the category of chain complexes More tiny package, or rather a pseudo-package, that makes

and their chain maps. A module is represented by any of its MAPLE’s builtin facilities for dealing with integers and
resolutions. The module is then recovered as the only non- some other principal ideal rings availableomalg . The
trivial homology of the resolution. The notions of derived packagePIR uses the 8ITH normal form to provide a

functors and thelr homologies, connecting homomorphism standard form for the presentation of a module.
and the resulting long exact homology sequences play a

central role in homological algebra. The central objects imomalg are functors. Functors
The MAPLE-package homalg [1], [2] provides a way to Map on the one hand objects of a source category to objects
deal with these powerful notions. The package is abstract of a target category, and on the other hand morphisms
in the sense that it is independent of any specific ring petween two objects in the source category to morphisms
arithmetic. If one specifies a ring in which one can solve the ptveen their images in the target category in a compatible

ideal membership problem and compute syzygies, the above .
homological algebra constructions over that ring become way. The two most important functors are tHem-functor

accessible usinghomalg . and the tensor product functerand their derived functors,
In this paper we introduce the package homalg and the definition of which will be reproduced below.
present several applications ohomalg to the study of multi- A major effort in the implementation was to find the

dimensional linear systems using availablMAPLE-packages g jitaple scheme for realizing the functor part on objects
which provide the ring arithmetics, e.g. OREMODULES [4], in order to have a unified way in extracting the part
[5] and JANET [3], [13]. y g P

Keywords— Homological algebra, multidimensional linear  ©f the functor on morphisms. Composition and deriva-
systems,SMITH normal form, Jacosson normal form, ex-  tion of functors inhomalg rely exclusively on this and
tension modules, computer algebra. define again functors. l.e. extracting the morphism part

of composed or derived functors is done in the same
unified way as for all functors. Hence, using the two
basic operations of composing and deriving functors, the

In linear control theory it became more and more evident ..o without effort add new functors to those already
y existing inhomalg .

h roperti f th m are en its intrinsiC . X I
that properties of the system are encoded by its intrinsic Given a (covariant) functof’ the i-th left derivation of

nature as a module over a certain ring of operators, rather -
than its specific realization as system of equations. T His a}\jlusualjvtjjenot(;\?[”bﬂilf.o Aofsrr:qoor:jﬁ)ézcihseenq;?vnecse
— — — —

theory that deals with these intrinsic properties is thrse to a long exact sequence connectibg”(M’)
: . Il]{f —
general theory of modules over rings and the homologic 9 " 4 ,
algebra of the category of such modules. As the nam " ! .
. : : i1 F(M") for all ¢ > 0. These so-called connecting
of this package suggests, our intention has been to makeé . . )
) . . . _homomorphisms are implementedhomalg .
as much as possible of the basic homological machlneryS wral t ¢ i bet funct |
available in a computer algebra system without the need Iome ”a(;”‘?‘ hranslorm%l]ons eveen functors areha S0
to specify the ring of operators from the beginning. imp emepte inhomalg . the most prominent are the
embedding of a kernel in the source of a map and the
natural epimorphism from the target of a map onto its
M. Barakat and D. Robertz, RWTH — Aachen, Templergraben 64cokernel
52056 Aachen, Germanynohamed.barakat@rwth-aachen.de ' ) )
daniel@momo.math.rwth-aachen.de. In homalg one finds procedures to compute homologies
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of complexes (especially to test exactness of complexe®), TheHom-functor

to check commutativity of diagrams, to check surjectivity Eqr two left D-modulesM and, denote byHom (M, L)

or injectivity of maps, etc. the abelian group of alD-module homomorphisms from
One major restriction irhomalg is that one cannot ) to N. For a D-module homomorphismd/ 2 N let

change the base ring. All functors are hence functors whetgom (o, L) : Hom(N, L) — Hom(M, L) : ¢ — 1) o cv.

the source and target category are defined over the samgus, Hom(—, L) is a contravariant functor from the

ring. category of D-modules to the category of abelian groups.

For this functor to comply with the above mentioned
[1l. FINITELY PRESENTED MODULES restriction certain properties of the ring are required.
Either D is commutative, orL. = D, in which case the

homalg can only deal with finitely presented modules.ring p should come with a fixed involution, i.e. self-inverse

A finitely presented modulé/ over a ringD is a quotient anti-automorphisn® : D — D. 9 allows one to transform

of a free module of finite rani>*** by a finitely gener- 4 right module structure to a left module structure again. If

ated submoduled'*"' A = im(.4), where A € D' *%: this is provided, thefilom(—, L) is a contravariant functor

from the category of lefiD-modules to itself.
M = Dleo/Dlth = coker(.A). gory

C. The tensor product functap

As usual a presentation is given by generators and For a left resp. rightD-module M resp. L denote by
relations. A presentation of a module homalg is a /@[ the tensor product ovel of M and L, which is an
list containing as first entry the list of generators and agpelian group. For @-module homomorphismi/ % N
second entry the list of relations. The third entry is deta@L: M@L - N®L: ¢+— o®1d;. Thus—® L
string delimiter to optically indicate the end of the presenis a covariant functor from the category H-modules to
tation. This string, unless changed by the user, defaults {Re category of abelian groups.
"Presentation” . The remaining entries provide extra Again, for this functor to comply with the above men-
information about the presented module, e.g. itSB#RT  tioned restriction we always assunieto be commutative
series. This extra information can only be provided by thenote that— ® D is equivalent to the identity functor). If
ring-specific package. this is provided, then- ® L is a covariant functor from

In the list of generators the concrete generators at@e category ofD-modules to itself.
numbered by abstract generators being¢tetandard basis

vectors of the underlying free module'*lo. The list of D- Derivations

relations simply contains the rows of the matuk An We define the left (resp. right) derived functor of a
example is given in Fig. lIl. covariant (resp. contravariant) functét using projective
resolutions: For aD-module M compute a projective
IV. FUNCTORS resolution”

Here we define the basic functors implemented i — Lt P>l == P —FR—=M=0

homalg . We restrict ourselves to describe only those func- =P

tors with the source category also being the category of lefif 7. Define fori > 0 the left (resp. right) derived functor
D-modules. Nevertheless functors like the kernel functor, F (resp. R;F) of the covariant (resp. contravariant)
ker, the cokernel functoroker, the pullback functor and functor F' by taking the homology (resp. cohomology) of
the defect of homomorphisms functor are implementedhe complex (resp. cocomplexj(P) at thei-th position
The objects of their source categories are not mere[q0].

modules but themselves morphisms between modules. InThe most prominent left derived functor of a covariant
homalg the object and morphism part of a functor arefunctor is Tor;(—, L) (i > 0). Since— ® L is right exact,
two different procedures. If the object part has the namghe two functors— @ L and Tory(—, L) are equivalent.

F then the morphism part iEMap. The most prominent right derived functor of a con-
Let D be a computable ring, as defined above. travariant functor i€Ext’(—, L) (i > 0). SinceHom(—, L)
is left exact, the two functorBom(—, L) andExt"(—, L)

A. The functorl are equivalent. Th&xt-functor has up to our knowledge

) ] simply more applications in systems theory than The-
Over an GrRe-domain D the set of all torsion elements fnctor.

of a left D-module M forms a submodulel'M called  sjnce we cannot compute injective resolutions, we are

the torsion submodule of\/. Taking the torsion sub- pot aple to implement right (resp. left) derived functors of

o . .. . .
M — N induces by restriction again a homomorphism From the point of view of derived categories, a module

TM Tozalrm, TN. More precisely, T is a covariant M should be replaced by any of its resolutions, which
functor from the category of lefD-modules to itself. is a complex, sayP. All the resolutions of the module
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Fig. 1. A module of homomorphisms between two modules dvet Q[z, y, z] with INVOLUTIVE

are homotopy equivalent. The compléXis exact in all where. is the embedding andis the natural epimorphism.
degrees except for degréand the modulé/ is recovered The last sequence induces via the contravariant functor
as the only non-trivial homology aP at degred. In gen- Hom(—, N) the sequence

eral two complexes are identified in the derived category if

there exists a chain of quasi-isomorphisms, i.e. chain maps0 — Hom(M/TM, N)
inducing isomorphism on homology, connecting the one

complex with the other. Homotopy equivalences are special 7 i= Hom(L,N) Hom(TM, N) — 0.

cases of quasi-isomorphisms. So we obtain the derived ) ) )

category by inverting quasi-isomorphisms. The connectin§his sequence is again exact, sind¢/T'M over the
homomorphisms lead to the so-called exact triangles in tHdincipal ideal domainD is free andExt'(M/TM, N)
derived category of the category of finitely presentee vanishes. We start with the diagram in Fig. V, where
modules, which is simply the way to look at long exactVe only indicate the arrows we need. The middle square

Hom® M) om(M, N)

sequences in the realm of triangulated categories. in the bottom row is specified in Fig. V. We assume
that a,b,c,d € D satisfy ab = ¢ for the square to be
V. AN EXAMPLE OVER THE GAUSSIAN commutative. A" = Hom(M/TM,N) ® TM resp. B’
INTEGERS is defined as the kernel ofi; resp. 53, and 7 is the

map induced by) between the kernels. The two middle
columns 4’ =% o2 A and B 2L B 2 oy
r?"egarded as chain complexes andy, ¢) as a chain map
induce a kernel sequenct’ =% K 2 K’ and a
cokernel sequenc€’ % C 2 C”. Since, as seen

M S M*, above, «ay is surjective and3; is injective by definition,

there exists a connecting homomorphigraonnecting the

where M** := Hom(Hom (M, D), D) ande is the evalu- kernel and the cokernel sequence to a long exact sequence:
ation map. We also consider the short exact sequence

Here we takeD = Z[y/—1], which is a EJCLIDEAN
domain, which is not a field, and hence has global dime
sion 1. In the following exampleM and N will be finitely
generated)-modules. ForM we consider

KIK—1>KH—2>K”i>C/w—1>CW—2>CH
0—TM 5% MZ M/TM — 0,



0 c’ B <—— 4 K’ 0
T
0 C B<—"—A K 0
Tk
0 " B <2— A" K" 0
0

Fig. 2. Diagram for the example in Section V

B<""4 Hom(TM, N) & M* <" Hom(M,N)& M
lﬁz \L“? = lbld@o ln@v
¢ c
B <— A" Hom(TM, N) & 0 19 Hom(TM,N)® M/TM

Fig. 3. Middle square in the bottom row of the diagram in Fig. V



> restart;
The packageé’IR enables one to work over seveMI\PLE-builtin principal ideal rings:

> with(homalg): with(PIR):

> RPP:='PIR/homalg’;
RPP := PIR/homalg
Since we won't change the base ring during the computatiofiixvie once and for all:

> ‘homalg/default:=RPP;
homalg/default := PIR/homalg

Specify D = Z[/—1], the ring of GAUSSIAN integers:

> var:=[l];
var := [

> Pvar(var);
[“Z[I]" ]

Define the four variables with = a b:

> a:=1+l; b:=5; c:=a *b; d:=2 *(1+]);
a:=1+1
b:=5
c:=5+51
d:=2+21

Define theD-module M:

x(1+) *1,6 *(1+]) *3,6 x(1+]) *4,6 *(1+]) *5]],var);

M:=Cokernel([[1,2,4,6],[6

M =[], 0,0 =]o,1,0,-1], [0, 1, 0] =0, 0, 1, 0], [0, O, 1] = [0, O, 0, 1]],

[[6+61, 0, 0]], “Presentation’ [6 + 6 I, 0, 0], 2]
The torsion submodul& M :
> TM:=TorsionSubmodule(M,var);
T™ :=[[1 =10, 1,0, —1]], [6 + 6 I], “Presentation’[6 + 6], 0]

The embedding map

> iota:=TorsionSubmoduleEmb(M,var);

L::[l 0 O}

The torsion free part'M := M /T M:

> FM:=Cokernel(iota,M,var);
FM :=1{[[1, 0] =0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation; [0, 0], 2]



The natural epimorphism/ — M /T M:

> nu:=CokernelEpi(iota,M,var);

The double duah/**:
> HHM:=HomHom_R(M,var);
HHM :=[[[1, 0] = {
The evaluation map/ — M**:

> epsilon:=NatTrldToHomHom_R(M,var);

The D-module N:
> N:=Cokernel([[1,2,4,0],[2 *(1-) *=1,2 =(2-1) =*3,2 *(1-1) =*4,0],[0,0,0,2]],var);

N := [Hlv 07 O} = [03 Oa 07 1]a [07 17 O} = [03 _17 07 1]3 [Oa Oa 1] = [07 07 17 O]]v
[[2, 0, 0], [0, 2+ 21, 0]], “Presentation”, [2, 2+ 21, 0], 1]
The module of homomorphisn$om (M, N):

> HMN:=Hom(M,N,var);

000 000
HMN::H[LO,O,O,O,O,O,O]: 00 01{,[010,00000=|-10 01,
1 0 0 1 00
[ 1 0 0] [ —1 0 0]
[0,0,1,0,0,0,0,0=| -2 0 0 [,[0,0,0,1,0,0,0,0] = 30 0],
. 1.0 0 | | -3 1 0 |
[ —1 0 0] [0 1 0]
[0,0,0,0,1,0,0,0] = 3 1 01,[0,0,0,0,0,1,0,0] = 0 3 0|,
| -4 1 0 | | -5 1 0 |
[0 0 0 0 0 0
[0,0,0,0,0,0,1,0)=|0 0 1 [,[0,0,0,0,0,0,0,1]=]0 0 0 ]
|0 00 0 0 1

[[2,0,0,0,0,0,0,0], [0, 2,0, 0,0, 0,0, 0], [0, 0, 2,0, 0,0, 0, 0],
0,0,0,2+21,0,0,0,0],[0,0,0,0,2+21,0,0,0],[0,0,0,0,0,2+21,0, 0],

“Presentation’ (2, 2, 2, 2+21,2+21,2+21, 0, 0], 21

The module of homomorphisniom (7'M, N):

>  HTMN:=Hom(TM,N,var);

HTMN :=[[[1,0]=[1 0 0],[0,1]=[ -1 1 0]],[2 0] [0,2+21]], “Presentation’[2, 2+ 2], 0]
The identity map ofHiom(7T'M, N):

> |d:=ldentityMap(HTMN,var);

Id :

I
L——
O =
— O
—_



The induced map) := Hom(:, N):
> eta:=HomMap(TM,iota,M,N,var);

\
cCOoOrR R ERROO
corocoooo O

The zero module:

> Z:=ZeroModule(var);
Z = [[1 = 0], [1], “Presentation [1], 0]

The zero map from\//T'M to the zero module:

> zeta:=ZeroMap(FM,Z var);

The zero map from\/** to the zero module:

> chi:=ZeroMap(HHM,Z,var);

A is the direct sum oHom (M, N) and M:
> A:=DirectSum(HMN,M,var);

A:=[[1,0,0,0,0,0,0,0,0,0,0 =[0,0,1,0,0,0,0, 0, 0, 0, 0],
[0,1,0,0,0,0,0,0,0,0,0]=[0, -1, 1,0, 0,0, 0,0, 0, 0, 0],
0,0,1,0,0,0,0,0,0,0,0 = [1,—2100000000]
0,0,0,1,0,0,0,0,0,0,0] =[-1,3,-3,0,0,1, 0,0, 0, 0, 0],
0,0,0,0,1,0,0,0,0,0, 0] = [0, 000 -1,1,0,0,0,0, 0],
0,0,0,0,0,1,0,0,0,0,0 =[0,0,0,1, =2, 1, 0, 0, 0, 0, 0],
0,0,0,0,0,0,1,0,0,0,0 =0,0,0, -1, 3, =3,0,0, 1, 0, 0],
0,0,0,0,0,0,0,1,0,0,0] =10,0,0,0,0,0,0, 1, 0, 0, 0],
0,0,0,0,0,0,0,0,1,0,0 =

0,0,0,0,0,0,0,0,0,1,0] = [

0,0,0,0,0,0,0,0,0,0, 1 =[0,0,0,0,0,0,0, 0, 0,0, 1
2,0,0,0,0,0,0,0,0,0,0],[0,2,0,0,0,0,0, 0,0, 0, 0],
0,0,20,0,0,0,0,0,0,0],[0,0,0,2+21,0,0,0,0,0, 0, 0],
0,0,0,0,2+21,0,0,0,0,0, 0], [0,0,0,0,0,2421, 0,0, 0, 0, 0],
0,0,0,0,0,0,64+61,0,0,0, 0]], “Presentation;
2,2,2,2421,2421,2421,64+61,0,0,0, 0], 4]

A" is the direct sum oHom(T'M, N) and M /TM:

0,0,0,0,0,0,1,0,0,0, 0],
0,0,0,0,0,0,0,0,0, 1, 0]
]

[
[
[
[
[
[
[
[ 7
[ L1
[
[
[
[
[

> _A:=DirectSum(HTMN,FM,var);

’A = [[[]" 0’ O? 0] = [17 07 07 0}7 [0’ ]" 07 0] = [7]‘7 ]" 0’ 0]7 [07 07 17 0] = [0’ 0’ ]" 0]7

[0,0,0,1 =10,0,0,1]], [[2, 0,0, 0], [0, 2+ 21, 0, 0]], “Presentation’ [2, 2 + 21, 0, 0],

as is the direct sum of the mapsandv:

2]



> alpha2:=DirectSumMap(HMN,M,eta,nu,HTMN,FM,var);

o

a2

Il
OO O OO H K = =
OO OO R FHERFERFEFOOO
O R OO OO OO
—H OO OO OO O

A’ is the kernel ofas:
> A _:=Kernel(A,alpha2, Ayvar);

A_:=1[[1,0,0,0,0,0,0] =[-1,2, —2—21,2+2I, —4—41,2+21,0,0,0, 0, 0],
[0,1,0,0,0,0,0]=[-3,5 —2—2I,2+2, —4—41,2+21,0, 0,0, 0, 0],
[0,0,1,0,0,0,0/ =[5 —10,8+41, -9 —41,21+81, —16 — 41, 0, 0, 3, 0, 0],
0,0,0,1,0,0,0] =[1, =3, 4, —4, 12, —12, 0, 0, 3, 0, 0,
0,0,0,0,1,0,0]=[-3,9, —11, 12, —33, 32, 0, 0, —8, 0, 0],

[0,0,0,0,0,1,0] = [0, 000000100()]
[0,0,0,0,0,0,1]=[0,0,0,0,0,0, 1, 0,0,0, 0]],[[2, 0, 0, 0, 0, 0, 0],
[0,2,0,0,0,0,0][0,0,2+21,0,0,0,0], [0,0,0,2+21, 0,0, 0],
0,0,0,0,6+61,0,0]], “Presentation’[2, 2, 2+ 21, 2+21I,6+61,0, 0], 2]

«; is the embedding map:

> alphal:=KernelEmb(A,alpha2,_A,var);

[ —1-2T 0 -1 0 0 2+21 000 0 O
27 1 -3 0 0 2+271 00 00O
2441 -1 4 -1 0 —-6-4I 3 0 0 0 O
al = 1 0 0 -1 -1 -1 300 00
-2 0 0 3 1 4 -8 0 0 0 O
0 0 0 0 0 0 01 00O
i 0 0 0 0 O 0 0010 0]
The A-sequence is exact:
> |IsShortExactSeq(A_,alphal,A,alpha2, Avar,"VERBOSE" );
true
B is the direct sum oHom (7'M, N) and M**:
> B:=DirectSum(HTMN,HHM,var);

B = [Hlv 0, 0, 0] = [17 0, 0, 0]7 [Ov 1, 0, 0] = [_17 1, 0, 0]7 [0, 0,1, O] = [07 0, 1, 0]7
[0,0,0,1 =0, 0,0, 1]], [[2, 0, 0, 0], [0, 24 21, 0, 0]], “Presentation;’ [2, 2+ 21, 0, 0], 2]

B" is the direct sum oHom (7'M, N) and the zero module:
> _B:=DirectSum(HTMN,Z,var);
_B:=[[1, 0] =[-1,0,1], [0, 1] = [0, —1, 1]], [[2, 0], [0, 2+ 2 ]], “Presentation; [2, 2 + 2 I], 0]
(32 is the direct sum of the mapId and the zero mag:

> beta2:=DirectSumMap(HTMN,HHM,MulMat(b,Id,var),chi,H TMN,Z,var);



1 -1
62 := 0 0
0 0
B’ is the kernel of3,:
> B_:=Kernel(B,beta2,_B,var);
B_:=[[1, 0] =0, 0, 1, 0], [0, 1] = [0, O, O, 1]], [[0, 0]], “Presentation,’ [0, 0], 2]

(1 is the embedding map:

> betal:=KernelEmb(B,beta2, B,var);

0010
BL_[O 0 0 1}

The B-sequence is in this example (depending on the choice of uh&arb) exact:

> |sShortExactSeq(B_,betal,B,beta2, B,var,"VERBOSE");

true
1 is the direct sum of the mapsn andde:
> psi:=DirectSumMap(HMN,M,MulMat(a,eta,var),MulMat(d, epsilon,var),HTMN,
>  HHM,var);
1+1 0 0 0
1+1 0 0 0
14171 0 0 0
—1-7 141 0 0
1+1  1+1 0 0
Y= 1+71  1+1 0 0
0 -1-17 0 0
0 0 0 0
0 0 0 0
0 0 2+2171 0
| 0 0 0 2421 |
Some infos about):
> IsHom(A,psi,B,var);
true
> |IsSurjective(psi,B,var);
false
> IsInjective(A,psi,B,var);
false

A necessary condition to be able to complete the square:
> CheckKerSq(A,alpha2, A,psi,B,beta2, B,var);

(%1, %1, %1, %1, %1, %1, %l1]
%1:=10,0,0,0,0,0,0,0, 0, 0, 0]
Completing the square by, which is the direct sum of the map/d and the zero mag:

> phi:=DirectSumMap(HTMN,FM,MulMat(c,ld,var),zeta,HTM N,Z,var);
-1-1 0
| 1+r 11
9= 0 0
0 0

Some infos aboud:



> IsHom(_A,phi,_B,var);
> IsSurjective(phi,_B,var);

> IsInjective(_A,phi,_B,var);

Check the commutativity of the square:

true

false

false

> |IsCommutativeSq(alpha2,phi,psi,beta2, B,var);

The induced kernel map:

true

> tau:=KernelMap(A,alpha2, A,psi,B,beta2, B,var);

Some infos about:

> IsHom(A_,tau,B_,var);
> |sSurjective(tau,B_,var);

> IsInjective(A_ tau,B_,var);

Check the commutativity of the square:

[0

el el en Bl an B an e i an)

[evilen i en I en M e M @)

true

false

false

> |sCommutativeSq(alphal,psi,tau,betal,B,var);

Compute the kernel sequence:

> K:=Kernel(A,psi,B,var);

true

K :={[[1,0,0,0,0,0,0,0,0]=1[0,0,2, —2,4,-2,0,0,0, 0, 0],

[0, 1,0, 0,0,0,0, 0, 0]
0,0,1,0,0,0,0,0,0] =
0,0,0,1,0,0,0,0,0] =
0,0,0,0,1,0,0,0,0] =
0,0,0,0,0,1,0,0,0] =
0,0,0,0,0,0,1,0,0] =

| =

| =

0,0,0,0,0,0,0,0, 1

=[-1-1, 2+21,1—1, —2,4,-2,0,0,0,0, 0],

1,2,2,-2,4,-2,0,0,0,0, 0],
3, 5,2 2, 4,-2,0,0,0,0,0]
0,0,2 —1,3, -2,0,0,0,0, 0],
1,3,-1,1,0,0,0,0,0,0, 0],

3

I,-12-21, —7+1,8,-20,12,0,0, -1, 0, 0],
0,0,0,0,0,1,0,0, 0],
0,0,0,0,0,0,1,0,0,0,0],][

[-
[-
[
(-
6+
[0, 0,
[

]

1+171,0,0,0,0,0,0,0,0],][0,1+1,0,0,0,0,0,0, 0], [0, 0, 2,0, 0, 0, 0, 0, 0],
0,0,0,20,0,0,0,0],[0,0,0,0,2+21,0,0,0,0], [0,0,0,0,0,2+21, 0, 0, 0],
0,0,0,0,0,0,6+61,0,0]], “Presentation
1+1,141,2,2,2+21,2421,6+61,0, 0], 2|

[
[
[
[
[
[0,0,0,0,0,0,0,1,0
[
[
[
[
[

> K _:=Kernel(A_,tau,B_,var);



K_:=1[[[1,0,0,0,0,0,0 =[-3,5 —2—21,2+21, —4—41,2+21,0,0, 0,0, 0],
[0,1,0,0,0,0,0=[-2,3,0,0,0,0,0,0, 0, 0, 0],

[0,0,1,0,0,0,0=[6, =11, 6 +21, =6 —21, 16 +41, —14—21, 0, 0, 3, 0, 0],
0,0,0,1,0,0,0 = [-4,7, —4—41,5+41,-9—-81,4+41,0,0,0,0, 0],
[0,0,0,0,1,0,0]=1[0,5 —11+41, 11 —41, =36 +81,40—41,0,0, —11, 0, 0],
0,0,0,0,0,1,0=[0,0,0,0,0,0,0, 1,0, 0, 0],

0,0,0,0,0,0,1 =10,0,0,0,0,0, 1,0, 0,0, 0], [[2, 0, 0, 0, 0, 0, 0],
0,2,0,0,0,0,0],[0,0,2+21,0,0,0, 0], [0,0,0,2+21, 0, 0, 0],
[0,0,0,0,64+61,0,0]], “Presentation[2,2,2+21,2+21,6+61,0, 0], 2]

Y

kappal:=KernelMap(A_,tau,B_,alphal,A,psi,B,var);

-1 0 010 0 O0O0O

0 0 110 0 000

0 I 010 0 -300

kl=| -1 0 -1 1 1 0 0 0 O
1 -1 0 00 -1 -1 00

0 O 000 O 010

. 0 0 000 0 00 1]

> _K:=Kernel(_A,phi,_B,var,"var_to_assign_embedding_i nfo"="_KK");

K :=1[[1,0,0,0] =[-2,2,0,0],0,1,0,0 =[-3—1,2,0,0], 0,0, 1, 0] = [0, 0, 1, 0],
[0,0,0,1]=10,0,0,1]], [L+1,0,0,0], [0, 1+ 1, 0, 0], “Presentation” [L + I, 1 + I, 0, 0], 2]

> copy(_KK);
0 2 00
-1-1 2 0 0
0 0 1 0
0 0 0 1
> kappa2:=KernelMap(A,psi,B,alpha2,_A,phi, B,var);
[ —1 0 0 0]
0 1 0 0
-1 0 00
-1 0 00
k2:=| —1 0 0 O
0 0 0 O
1 -1 0 0
0 0 00
. 0 0 0 0|
The kernel sequence has a non-zero cokernd{’at
> |IsShortExactSeq(K_,kappal,K,kappa2, K,var,"VERBOSE" );

“homs” = true, “cmps” = true, “defs” = [true, true,
[[[17 O] = [Oa 07 1) O]a [07 1] = [Oa Oa 07 1]]) HO? OH7 “Presentaﬁon;' [07 O]» 2”
Define the cokernel sequence:
> C:=Cokernel(psi,B,var);
C:= [[[17 0, 0, O] = [_17 1,0, 0]7 [Ov L, 0, 0] = [—2, 1, 0, O], [07 0, 1, 0] = [3a -2, 0, 1]3
0,0,0,1]=[0,0, =1, 1]}, [[1 + 1, 0, 0,0], [0, 1+ 1, 0, 0], [0, 0, 2+ 21, 0], [0, 0, 0, 2+ 21]],
“Presentation’[1+ 1,1+ 1,2+21,2+21]], 0]
> C_:=Cokernel(tau,B_,var,"var_to_assign_embedding_in fo"="CC_");
C_:=[[[1, 0 =]0,0,1,0]][0,1] =0, 0, 0, 1]], [[0, 0]], “Presentation,’ [0, 0], 2]



Vv

copy(CC_);

o 1]

omegal:=CokernelMap(tau,B_,betal,psi,B,var);

L[t
YTl 1100

\%

> _C:=Cokernel(phi, B,var);
_C:=[[[1,0] =0, =1, 1], [0, 1] = [1, =1, 0]], [[L + 1, 0], [0, 1 + I]], “Presentation”, [1 + I, 1 + 1], 0]
> omega2:=CokernelMap(psi,B,beta2,phi, B,var);

0 -1
ae| 10
0 0
The cokernel sequence has a non-zero kernél’at
> |IsShortExactSeq(C_,omegal,C,omega2, C,var,"VERBOSE" );
“homs” = true, “cmps” = true, “defs” = [[[[1, 0] = [0, 0, 2+ 21, 0], [0, 1] = [0, O, O, 2+ 21]],

[[0, 0]], “Presentation;’ [0, 0], 2], true, true]
Compute the connecting homomorphism between the kernetrendokernel sequence:
> delta;=ConnectingHom(_K,alpha2,psi,tau,betal,C_,var ,

> "Hgn_embedding_info"=_KK,"Hsn_1_embedding_info"=CC_ .
> "Cgn_Bgn"=_A,"Zn_1"=B,"Zsn_1"=B );

0 0
5= 0 0
2421 0

0 2421

The resulting sequence is a long exact sequence:

> IsExactCoseq([K_,kappal,K,kappa2, K,delta,C_,omegal ,C,omega2, C],var,
> "VERBOSE");

true



VI. SYSTEM-THEORETIC INTERPRETATION OF 'Janetl’ indicates that the packagengET will be used
HOMOLOGICAL CONSTRUCTIONS with one independent variable onlyomalg will then use

For a finitely presented modulg/ with relation ma- the AcoBsoN normal form [7] for ordinary differential
trix A denote byMT the module with relation matrix operators with rational coefficients to generate the best
: o - : basis for a module. This demonstrates how the flexibility of
6(A) defined by (0(A));; = 0(4;), where§ is the homalg can be exploited by using different ring-specific

fixed involution coming with the ring. Of cours@/ ™
features.

and ExtO(MT,D) depend on the presentation af.
NeverthelessExt'(M ", D) for i > 0 only depends on

the isomorphism type of/. For instance > RPJ:=Janet/homalg’;

RPJ := Janet/homalg

> RPJ1:='Janetl/homalg’;

a fact that is often demonstrated in the following examples. RPJ1 := Janetl /homalg
Since one has the exact sequence

Ext'(M",D) = TM, (1)

A A - The system of the bipendulum is described by equating
0—Ext' (M ,D) > M— M" —Ext"(M ,D)—0, the following system of ordinary differential expressions

the module) is reflexive, iff Ext'(M T, D) = 0 for i = © 0:

1,2. Furthermore) is projective, iff Ext’(M, D) = 0 for > R=[diff(x1(t),t)-x1t(t),

all 0 < ¢ < n, wheren is the global dimension (possibly > diff(x2(t),t)-x2t(t), g/l1 *X1(t)+
infinite) of D. This is summarized in Table | (for more >  diff(x1t(t),t)+g/I1 *u(t), g/12  «
details see [15], [6]). > X2(t)+diff(x2t(t),t)+g/12 *u(t)];

An immediate application of the homological machinery,

. [(d _ d _
is that all the homological constructions depend only on the R= (G x1(8) — x1t(t), (5 x2(8)) — x2t(t),
g

isomorphism type of the module, i.e. on the intrinsic struc- x1(t) (L x16(8) + gu(?)

tural properties of the system (independent of the specific l1 dt i’

realization). By this, one can interpret these construstio gx2(t) (L x2t(8) + gu(t)]

as invariants, and one can distinguish between intrirlgical 12 dt * 12

diff t syst by findi differing h logical - . .

e;;ren Systems by Hinding a drifering homological prop Hereg is the gravitational constantl(t) andx2(t) are

the positions of the end points of the two pendula at time

VIl. APPLICATIONS t andu(t) is the position of the bar at time

These differential expressions are obtained from a sec-
ond order ordinary differential system by substitutinty

In this subsection we demonstrate methods for thior the derivative ofc7 with respect to time and similarly
study of structural properties of linear systems of ordinarfor the derivative ofz2 with respect tot. Hence, we
differential equations with rational coefficients, i.es®ms consider a first order linear system. The corresponding
defined over the Weyl algebra of differential operators wittdifferential operator, which is expected as input for the
respect to time with rational functions int as coefficients. homalg procedures, can be written as follows:
We consider the example of a mechanical system called

A. A bipendulum

bipendulum which consists of two pendula of lendth > A=Diff20p(R, ivar, dvar);
respectivelyl2, fixed at the two ends of a bar [14]. The (1L, 14 0 =1, 0N 0 0
bar can be moved horizontally. S ([, [e])] 0 =t o
We load the packagéomalg and the ring-specific 4= | [[;7 [ 0 (v, [l 0 I
package ANET providing procedures for the algebraic 0 [[%, il 0 [, 4] [[%, il

analysis of linear systems of partial differential equasio
Here each entry is to be interpreted as a lin-
> with(Janet): ear combination of the differential operator; rep-
> with(homalg): resented by [¢,...,t], i € Zso. For example,
—

First we define the list of independent variables defining e
the noncommutative rin@(t)[-£] and then the list of de- [[C1, [t,%,¢]],[C2, [¢t]], [C3, []] represents the differential
pendent variables which are the generators of2tg[%]-  operatorC? 4+ 024 4+ 03,

module corresponding to the linear system: We find a presentation of the module associated with
_ the linear system over the Weyl algebra with rational
> ivar:=[t];dvar:=[x1,x2,x1t,x2t,u]; coefficients, i.e. of the cokernel ¢fA):
var := [t]

dvar := [z1, 12, z1t, z2t, u] > M:=Cokernel(A, ivar, RPJ);



TABLE |
CHARACTERIZING SYSTEMMODULE PROPERTIES

homological
system module algebra
autonomous elements TM #0 Ext'(MT,D) #0
controllability, TM =0 Ext!(MT,D) =0
parametrizability ’
i T —
parametrizability fexd Ext'(M ", D) =0,
of the parametrization retiexive i=1.2
int. stabilizability, Ext!(MT,D) =0,
BEzouT-identity, projective
chain ofn parametrizations| 1<i<n
in general no criteria
flatness free but for a PID: torsion-free = freg

M = [[[[[1, I, 0, 0] = [[[1, [I[,, 0, 0, 0, 0], Zggsrl}l]seed:in the following computation — 12 # 0 is

[0, {{x, 01, of = [0, {11, {1, 0, 0, 0], > Pres2Diff(Cokernel(A, ivar, RPJ1),
[0, 0, [[1, []I] = [0, 0, 0,0, [[L, []1]], > ivar, dvar);
[0, (11, [t, 4], [, () .
; e , i = -20 o), 0]
5 “Presentation;’ T [1]]
“Presentation’3 + 35 + ¢ i " [1]] —

Now we study the case that the lengths 12 of the
This presentation uses the above notation for differentiglendula are equal:

operators. A more readable representationMdfcan be
obtained by using the proceduRres2Diff  from the > R2i=subs(l2=11, R);
package ANET:

_ _ R2 = [(4x1(t)) — x1t(¢), (£ x2(t)) — x2t(t),
> Pres2Diff(M, ivar, dvar);

gx1(t) d gu(t)
< x1t(t
o+ (1) + T
_T1(t) = x1(¢), -T2(t) = x2(¢), -T3(t) = u(¢)], gx2(t gu(t)
[-T1(?) (), -T2(t) (t), -T3(t) = u(?t)] ”)Jr(%xm(t)” =2
(%,T2(t)) 124+9-T2(t) ¢_T3(t) The system needs to be converted to the differential
12 T 12 operator form for the use dfomalg :
(L, T1() 1 + g TI(Et) g T3(t) > A2:=Diff20p(R2, ivar, dvar);
11 + 11 ’ ([L, [e1] 0 ([=1, 1] 0 0
90 ([L, [¢]] 0 (-1, 01 gO
52 Az:= | (7 U1 0 ([L, [¢]] 0 [l 0
“Presentation’3 + 3 ;1
on’3 +3 s+ 7, [l O 1 (801 I )

Using 'Janetl’ (and hence theadoBsoN normal form) Again we find a presentation of the module associated
it turns out that the cokernel is cyclic and even free (ofvith the linear system over the Weyl algebra with rational
rank 1). This only holds in the generic cadé # 12 coefficients, i.e. of the cokernel ¢fA2):



> M2:=Cokernel(A2, ivar, RPJ): ; )
-~ Pres2Diff(M2, ivar, dvar); > with(homalg):
Warning, the name Involution

has been redefined
[LT1(t) = x1(t), T2(t) = x2(t), _T3(t) = u(t)],

, Since we only use the ring-specific packageReO
[(thT2(t)) 1 +¢g-T2(t) N g-T3(t) MODULES, we set the default package ftiomalg to

11 T ‘OreModules’

(i -T1(t) 11 + g -T1(1) 9 -T3(¢) > ‘homalg/default:=
1 1 > ‘OreModules/homalg’;
5 homalg/ default :== OreModules / homalg
m]

)

“Presentation,’3 + 3 s +

- First, we define the Weyl algebradly =

From this presentation the structural properties of théi(Q(w,m,r,a,b)) = Q(w,m,r,a,b)[t][Dt], where
module are not evident at first sight. However, theds- Dt acts as differentiation w.r.t. tim¢. Note that we
soN normal form provides a different presentation withhave to declare the parametess(angular velocity),m

two generators, a torsion and a free one: (mass of the satellite); (radius component in the polar
. . coordinates)g andb (parameters specifying the thrust) of
i gr;\]slz)DT:/(;okg\r/r;?)l‘(Az, v, the system in the definition of the Ore algebra:
> Alg:=DefineOreAlgebra(diff=[Dt,t],
[T1(t) = —x1(t) + x2(t), -T2(t) = x1(2)], > polynom=[t],comm=[omega,m,r,a,b]):

(&5 T1(t)) i1 + g T1(t)
11

The linearized ordinary differential equations for the
satellite in a circular orbit are given by the following miatr
) R. These equations describe the motion of the satellite in
24954+ s : [1]] the equatorial plane, where the fifth and the sixth column
— of R incorporate the controlsg?, u2 which represent radial

, “Presentation,’

In fact, using 'Janet’ again, we find that the torsionthrUSt resp. tangential thrust caused by rocket engines

submodule ofcoker(.A2) is generated by the difference ({11}, p. 60 and p. 145).

of the positionsx1(t), x2(¢t) of the end points of the

two pendula, which is an autonomous element of the > R:=matrix([[Dt,-1,0,0,0,0],

system. This autonomous element satisfies the second > [:3 *omega’2,Dt,0,-2  »omegar,-a/m,

order ordinary differential equation given in the second %’Z[Ov:%ﬁgéléﬁyg]bto bi(m )
entry of the result: , ,U,DL0, ;

Pres2Diff(TorsionSubmodule(M2 be 100 0 0
> res2Diff(TorsionSubmodule(M2, a
> ivar, RPJ), ivar, dvar); —3w? Dt 0 —2wr T 0
R =

0 0 Dt -1 0 0

[LTL(t) = x1(t) — x2(1)], o 2 0 om0 -
r mr
d2
(g -T1(t)) i + g -T1(t) , "Presentation” 1 + s, [0] We find a presentation of the module associated with
I the linear system over the Weyl algebrdy, i.e. of the

cokernet of (.R):
B. A satellite in a circular equatorial orbit

In this subsection we applpomalg and CREMOD- > M:=Cokernel(R, Alg);
ULES to a linear system describing a satellite in a circular
equatorial orbit. For more details see [11], p. 60 and p. 145,
1Cokernel uses several methods to construct a presentation with

and [12]’ p.6,p. 11 and p-17, and ﬂ:i@rary of Examples a small number of generators, i.e. if one generator can be &sguen

[4]- terms of the others, then it is eliminated from the presemafitiis is for
We load the packagdéiomalg and the ring-specific example the case, if one of the relations contains a unit. figepackage

T _ is responsible for recognizing the units. In the latest ieer®f homalg
packa_ge (DEM.ODUL'.ES providing procedures for the al and CREMoODULES the outputM of Cokernel is a presentation with
gebraic analysis of linear systems over Ore algebras. o generators without relations, hence the cokernel s dfarank2, and

hence torsion-free. In order to demonstrate the computafiextension

> with(OreModules): modules, we work with the presentation matfixinstead of M.



> P:=ParametrizeModule(R, Alg);
M = H[l’ 07 07 O] = [17 0? 0? 0? 0’ 0]7 b 0
[0,1,0,0] = 10,0, 1,0,0, 0], bo D 0
[0,0,1,0]=]0,0,0,0, 1, 0], 0 ba
[0,0,0,1] =0, 0,0, 0,0, 1]], Pi= 0 ba Dt
2
2w Dtm, D2 mr, 0, —], —Sbmw;—i—Dt bm —thgwrm
2 t t
[-3mw? +m Dt*, —2wr Dtm, —a, 0]], abtma “ mr
“Presentation“—2(8 1) 2 ] - Composet®, £ A)
T —14s  (—1+9)? 0 0
- . . 0 0
We compute the formal adjoint of the differential oper- 0 0
ator R: 0 0
> R_adj:=Involution(R, Alg); > DefectOfHoms(R, P, Alg);
T —-Dt —3w? 0 2O T [[1=1]0,0,0,0,0, 0], [1], “Presentation; 0]
w
-1 Dt 0 o Since the system is controllable, we now check whether
the system is flat [9], [6]. Every left-inverse of the
R.adi — 0 0 —Dt 0 parametrization” gives a flat output of the system:
-aay = 0 —2wr -1 =Dt
0 _a 0 0 > S:=Leftinverse(P, Alg);
m 1
b — 0 0 0 0 0
0 0 0 —— — | ba
L mr S =
. . 0O 0 — 0 0 O
Some structural properties of the linear system under ba
consideration are determined by computing the extension Therefore, (¢,,6)7 = S (21, 2, 23, 24, u1, uz)”
modules with values indlg of the cokernel of(.R_adj). s a flat output of the system which satisfies

We compute the first extension module: (21,20, T3, 24, u1, us) = P (€1,&)7 .

We notice that this flat output exists only difb # 0.

” Hence, in the generic case the system is flat. Equivalently,

Ext_R(1, R_adj, Alg);

0 the cokernel of(.R) is free and, in particular, projective.
0 Let us remember that the full row-rank matdkadmits

1 = 0 , [1], “Presentation’ 0 a r_ight_-inverse if and only if th_e cokern_el ofR) is
0 projective. By the theorem of Quillen-Suslin [16], [8] for
0 modules over commutative polynomial rings, projective-
0

ness is the same as freeness. Sker(.R) is projective
From this presentation we see that the first extensiofhich we could aiso have discovered by succeeding to

module is zero. By (1) we conclude that the torsiorfOMpute a right-inverse af:

submodule of the gokgrnel of R) is zero. Hence, the Rightinverse(R, Alg);

system of the satellite is controllable.

>

i 0 0 0 0 7
> TorsionSubmodule(R, Alg); -1 0 0 0
[[1=1[0,0,0,0,0,0]], [1], “Presentation’0] 0 0 0 0
0 0 -1 0
The next three statements demonstrate that this torsion _Dtm m 2wrm 0
submodule was computed bpmalg using the procedure a a a
ParametrizeModule which returns a differential op- 2mw Dtmr mr
erator P such that the composition d® and P is zero. L~ ) Ty

P defines a parametrization of the linear system given Following [12], we modify the description of the control

by R if and only if the kernel of(.P°) equals the image of the satellite in the system. If the rocket engines are
of (.R), which means that the complex defined by thesgommanded from the earth, then, due to transmission time,
morphisms is exact. If we consider functions in an injectivgy constant time-delay occurs in the system. Hence, we

cogenerator (e.g. smooth functions for the present case @ilarge the above Ore algebra by a shift operator
a time-invariant linear system, [6], [17]), then we halkle

y =0 if and only ify = P ¢ for some vector of functiong. i 3?3[5? t(]e fé%%?rgrﬁ;?:igrjt(a 5]
In general,P defines an embedding of the biggest possible > polynom=[t,s],comm=[omega,m,ra,
factor module of the cokernel d¢fR) into a free module. > b], shift_action=[delta,t]):



The system matrix is given as follows: > Rightinverse(R2, Alg2);
> R2:=matrix([[Dt,-1,0,0,0,0], FAIL
i [f* Qg{f‘a?,%aof")[fjod%t 1 BooTega* & In the special case where= 1 andb = 0, i.e. the case
> [0,2 +~omegalr,0,Dt0, where there is only a radial thrust, we have the following
> -bxdelta/(m *1)]]); system matrix:
bt -1 0 0 0 5 0 > R20:=subs(a=1, b=0, copy(R2));
—3w? Dt 0 —2wr ——2 0 Dt -1 0 0 0 0
= )
e 0 0 Dt -1 0 0 —3w? Dt 0 —2wr —— 0
2w bd R20 =
0 0 Dt 0 —— 0 Dt -1 0 0
r mr 2w
We define a formal adjointR2_adj of R2 using an 0 e 0 Dt U

involution of Alg2: A presentation of the first extension module with values

in Alg2 of the cokernel of the formal adjoint ¢fR20) is

> R2_adj:=Involution(R2, Alg2); !
F Dt 3.2 0 0 given by:
1 D 0 2w > Ext_R(1, Involution(R20, Alg2),
- —Di o > Alg2);
0 0 -Dt 0 2w
R2_adj := 0 —2wr -1 =Dt 0
ad 0 .
— 1= Dt|, “Presentation] - —————
ooy 0 0 r ’ [ ]a on, (—1+S)3
bé 0
0 0 0 —
L mr J 0

We check controllability and parametrizability of the Hence, we find a torsion element of the coker-

system: nel of (.R20) which corresponds to an autonomous
_ element of the satellite system. Using the procedure
>  Ext_R(1, R2_adj, Alg2); TorsionSubmodule  of homalg this presentation can
0 be obtained directly:
0 .
0 > TorsionSubmodule(R20, Alg2);
1= o1l [1], “Presentation;’ 0
[1=[2w,0,0,r 0,0]], [Dt], “Presentation;
0 I
(—1+5)7

We find that the first extension module with values in
Alg2 of the cokernel of.R2_adj) is generically the zero
module. Equivalently, the system is generically control-1
lable, i.e. parametrizable. 2]

We continue to study the structural properties of the sys-
tem by examining the algebraic properties of the cokernel®!
of (.R2). The next step is to compute the second extension
module with values imlg2 of the cokernel of .R2_adj):

[4]
(5]

>  Ext_R(2, R2_adj, Alg2);
1

mo=| | 0= 7]

[[0, 8], [4, 0], [2w Dt, Dt*r], [Dt* — 3w?, =2 Dtwr]],
2(s+1), U
. 81
The second extension module is not zero. Hence, the
cokernel of(.R2) is not projective. Sincé&2 has full row- ]

rank, this is equivalent to the fact th&2 does not admit
a right-inverse:

(6]

“Presentation;’
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