Hecke-Algebren von Coxeter Gruppen

Andrés Goens

25. Januar 2013

1 Die Generische Algebra einer Coxeter-Gruppe

Hauptsatz 1.1. Sei (W, S) ein Coxeter-System und sei A ein kommutativer Ring mit 1. Weiter seien $a_s, b_s \in A$ für alle $s \in S$ so, dass für s, t mit $s = wtw^{-1}$ für ein $w \in W$ stets gilt, dass $a_s = a_t$ und $b_s = b_t$. Sei nun \mathcal{E} der freie A-Modul auf der Gruppe W, wobei wir die Basiselemente von \mathcal{E} mit $T_w, w \in W$ bezeichnen. Dann gibt es eine eindeutige assoziative A-Algebrenstruktur auf \mathcal{E} mit T_1 als Einselement und den Eigenschaften:

$$T_s T_w = T_{sw}$$
, falls $l(sw) > l(w), s \in S, w \in W$ (1)

$$T_s T_w = a_s T_w + b_s T_{sw}, \text{ falls } l(sw) < l(w), s \in S, w \in W$$

$$\tag{2}$$

$$T_w T_t = T_{wt}$$
, falls $l(wt) > l(w), t \in S, w \in W$ (3)

$$T_w T_t = a_t T_w + b_t T_{wt}, \text{ falls } l(wt) < l(w), t \in S, w \in W$$

$$\tag{4}$$

Bemerkung 1.2. Es reicht, (1) und (2) zu zeigen, (3) und (4) folgen daraus

Bemerkung 1.3. Angenommen, so eine Algebrenstruktur existiert. Dann sind für alle $s, t \in S$: $\lambda_s : \mathcal{E} \to \mathcal{E}, T \mapsto T_s T$ und $\rho_t : \mathcal{E} \to \mathcal{E}, T \mapsto T T_t$ A-Modulendomorphismen von \mathcal{E} und es gilt, dass $\mathcal{A} := \langle \lambda_s \mid s \in S \rangle \leq \operatorname{End}(\mathcal{E})$ erfüllt, dass $\mathcal{A} \cong \mathcal{E}$ als A-Algebren. Insbesondere gilt:

$$\lambda_s(T_w) = T_{sw}, \text{ falls } l(sw) > l(w), s \in S, w \in W$$
(5)

$$\lambda_s(T_w) = a_s T_w + b_s T_{sw}, \text{ falls } l(sw) < l(w), s \in S, w \in W$$
(6)

Und für die Rechtsmultiplikation analog:

$$\rho_t(T_w) = T_{wt}, \text{ falls } l(wt) > l(w), t \in S, w \in W$$
(7)

$$\rho_t(T_w) = a_t T_w + b_t T_{wt}, \text{ falls } l(wt) < l(w), t \in S, w \in W$$
(8)

Lemma 1.4. Seien $w \in W$; $s, t \in S$. Ist l(swt) = l(w) und l(sw) = l(wt), so gilt swt = w, was zu wt = sw äquivalent ist.

Lemma 1.5. Setze $\lambda_s, \rho_s, s \in S$ wie in (5)-(8) A-linear fort. Dann ist für alle $s, t \in S$: $\lambda_s, \rho_t \in \text{End}(\mathcal{E})$ und es gilt $\lambda_s \rho_t = \rho_t \lambda_s$. Insbesondere würde die so definierte Multiplikation auf \mathcal{E} assoziativ sein.

Definition 1.6. Der freie A-Modul \mathcal{E} , mit der A-Algebrenstruktur von Satz 1.1 wird die generische Algebra von (W, S) zu den Parametern a_s, b_s genannt, und wird mit $\mathcal{E}_A(a_s, b_s)$ bezeichnet.

Beispiel 1.7. Sei K ein Körper und $a_s = 0, b_s = 1 \in K$ für alle $s \in S$. Dann ist $\mathcal{E}_K(a_s, b_s) = \mathcal{E}_K(0, 1) \cong KW$, die Gruppenalgebra von W über K.

2 Hecke-Algebren und Inversen

Beispiel und Definition 2.1. Sei $A = \mathbb{Z}[q,q^{-1}] \cong \mathbb{Z}[q,r]/(rq)$ der Ring der Laurent-Polynome in einer Variable über \mathbb{Z} , und (W,S) ein Coxeter-System. Setze dann $a_s = (q-1), b_s = q \in R$ für alle $s \in S$. Dann ist die generische Algebra mit diesen Parametern $a_s, b_s, \mathcal{H} := \mathcal{E}_A(q-1,q)$ eine Divisionsalgebra, die als die Hecke-Algebra von W bezeichnet wird. Für \mathcal{H} ergibt sich dann aus (1) und (2):

$$T_s T_w = T_{sw}$$
, falls $l(sw) > l(w), s \in S, w \in W$ (9)

$$T_s T_w = (q-1)T_w + qT_{sw}, \text{ falls } l(sw) < l(w), s \in S, w \in W$$
 (10)

Bemerkung 2.2. Es ist aus (9) und (10) sofort ersichtlich, dass \mathcal{H} tatsächlich eine Divisionsalgebra ist. Die Inverse der Erzeuger sind insbesondere gegeben durch

$$(T_s)^{-1} = q^{-1}T_s - (1 - q^{-1})T_1 \text{ für alle } s \in S$$
 (11)

Erinnerung 2.3. Für ein Coxeter-System (W, S) ist die Bruhat-Ordnung gegeben durch

$$w' < w : \Leftrightarrow \exists w_0, \dots, w_m : w' = w_0 \to \dots \to w_m = w \text{ für } w, w' \in W$$
 (12)

Wobei die Relation $w' \to w$ definiert ist wie folgt:

$$w' \to w : \Leftrightarrow w = w't \text{ für ein } t \in T = \bigcup_{w \in W} w^{-1}Sw, \text{ mit } l(w) > l(w')$$
 (13)

Wir definieren weiter $w \leq w'$ falls w < w' oder w = w'.

Erinnerung 2.4. Ist $w = s_1 \cdots s_r$ in reduzierter Form, dann ist $w' \leq w$ genau dann, wenn w' sich als teilwort von $s_1 \cdots s_r$ schreiben lässt.

Lemma 2.5. Sei $s \in S, w \in W$ mit sw < w, und $x \in W$ mit x < w. Dann gilt:

- Ist sx < x, dann ist auch sx < sw.
- Ist stattdessen sx > x, dann gilt $sx \le w$ und $x \le sw$.

Insbesondere gilt immer $sx \leq w$.

Satz 2.6. Sei (W, S) ein Coxeter-System und \mathcal{H} die Hecke-Algebra von W. Dann existieren Polynome $R_{x,w^{-1}} \in \mathbb{Z}[q], x \in W$ für alle $w \in W$, so dass:

$$(T_w)^{-1} = (-q)^{l(w^{-1})} \sum_{x \le w^{-1}} (-1)^{l(w^{-1})} R_{x,w^{-1}}(q) T_x$$
(14)

Es ist $R_{x,w}(q)$ ein Polynom vom Grad l(w) - l(x) für $x \leq w$ und $R_{w,w} = 1$.

3 R-Polynome

Algorithmus 3.1. Der Beweis vom Satz 2.6 liefert bereits einen Algorithmus um die R-Polynome zu berechnen. Man wählt reduzierte Wörter in S für $x, w \in W$ und berechnet $R_{x,w}$ iterativ wie folgt:

- Ist w = x, so ist $R_{x,w} = 1$, und für $x \nleq w$: $R_{x,w} = 0$.
- Ist x < w, sx < x (was sx < sw implizient), so setzt man $R_{x,w} = R_{sx,sw}$.
- Ist x < w, sx > x, so setzt man $R_{x,w} = (q-1)R_{x,sw} + qR_{sx,sw}$

Bemerkung 3.2. Wie man im Beweis vom Satz 2.6, beziehungsweise im Algorithmus 3.1, taucht die Bruhat-Ordnung durch die Multiplikation auf \mathcal{H} auf ganz natürlicher Weise auf. Beim Invertieren von T_w kommen nämlich nur für Elemente $x \leq w^{-1}$ die R-Polynome von x mit Koeffizient ungleich 0 vor.

Erinnerung 3.3. Ist W eine endliche Coxter-Gruppe (Spiegelungsgruppe), so gibt es ein eindeutiges Element w_0 maximaler Länge. Für alle $w \in W$ gilt sogar $l(w_0w) = l(w_0) - l(w)$

Proposition 3.4. Ist W eine endliche Coxeter-Gruppe und $w_0 \in W$ das Element maximaler Länge, so gilt $R_{x,w} = R_{w_0w,w_0x}$.

Beispiel 3.5. Sei $W = D_4 = \langle a, b \mid a^2, b^2, (ab)^4 \rangle = \{1, a, b, ab, ba, aba, bab, abab\}$. Dann ist zum Beispiel $T_{ab}^{-1} = q^{-2}(R_{1,ba}T_1 - R_{a,ba}T_a - R_{b,ba}T_b + R_{ba,ba}T_{ba}) = q^{-2}(q-1)^2T_1 - (q^{-1}-q^{-2})T_a - (q^{-1}-q^{-2})T_b + q^{-2}T_{ba}$

4 Natürliches Auftreten von Hecke-Algebren

Definition 4.1. Sei G eine Gruppe, $B, N \leq G$ Untegruppen, mit folgende Eigenschaften:

- a) $G = \langle B, N \rangle$
- b) $H := (B \cap N) \triangleleft N$ ist ein Normalteiler von N.
- c) zu W := N/H gibt es eine Indexmenge I und ein Erzeungendensystem $S := \{w_i \mid i \in I\}$, so dass (W, S) ein Coxetersystem bildet.
- d) Sind n_i Repräresentanten von w_i , d.h. $w_i = n_i H$ für alle $i \in I$, und $n \in N$ beliebig, dann gilt:
 - $n_i B n_i \neq B$
 - $n_iBn \subseteq (Bn_inB) \cup (BnB)$

Dann heißt (B, N) ein B-N-Paar der Gruppe G und W heißt die dazugehörige Weyl-Gruppe.

Bemerkung 4.2. Sei G eine Gruppe und $B \leq G$ mit endlich viele Doppelnebenklassen, d.h. $|BxB/B| < \infty$, und sei R ein kommutativer Ring mit 1. Dann operiert G auf der Menge der Linksnebenklassen $G/B := \{gB \mid g \in G\}$ durch Linksmultiplikation, und dies liefert eine RG-Modulstruktur auf dem freien R-Modul auf der Erzeugermenge G/B, diesen Ring bezeichnen wir mit R[G/B], wobei die Multiplikation die offensichtliche ist: $g \cdot (hB) := (gh)B$.

Satz 4.3 (Iwahori, Matsumoto). Seien G, B, R wie in Bemerkung 4.2, und sei $N \leq G$ so, dass (N, B) ein B-N-Paar für G mit zugehöriger Weylgruppe W ist. Dann gilt $\operatorname{End}_G(R[G/B]) \cong \mathcal{E}_R(q_s-1,q_s)$, wobei $q_s:=|B\tilde{s}B/B|$ für alle $s\in S$, wobei \tilde{s} ein Repräsentante in der Klasse bezeichnet. Ein Beweis findet sich in [2].

5 Die C_w -Basis und Kazhdan-Lusztig Polynome

Lemma 5.1. Die Abbildung $\iota: \mathcal{H} \to \mathcal{H}, T_w \mapsto (T_{w^{-1}})^{-1}$ ist ein A-Modulendomorphismus. Da offensichtlich $\iota^2 = \operatorname{Id}_{\mathcal{H}}$ ist ι sogar eine Involution. Wir setzen von nun an für $a \in \mathcal{H}, \bar{a} := \iota(a)$.

Bemerkung 5.2. Für $A = \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}] \supseteq \mathbb{Z}[q, q^{-1}]$ ergibt sich eine kanonische Einbettung

$$\tilde{\mathcal{H}} := \mathcal{E}_A(q, 1-q) \hookrightarrow \mathcal{H} = \mathcal{E}_{\mathbb{Z}[q, q^{-1}]}(q, 1-q)$$

Wir betrachten ab jetzt bezüglich dieser Einbettung $\mathcal{H} \subseteq \tilde{\mathcal{H}}$.

Satz 5.3. Sei (W, S) ein Coxeter-System. Für alle $w \in W$ existiert ein eindeutiges Element $C_w \in \tilde{H}$, mit folgenden Eigenschaften:

- $\bar{C}_w = C_w$
- Es existieren $P_{x,w} \in \mathbb{Z}[q]$ vom Grad $\leq \frac{1}{2}(l(w) l(x) 1)$ für x < w und $P_{w,w} = 1$, so dass:

$$C_w = (-q^{\frac{1}{2}})^{l(w)} \sum_{x \le w} (-q^{-1})^{l(x)} \bar{P}_{x,w} T_x$$

Literatur

- [1] James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, 1992
- [2] Meinolf Gleck, Götz Pfeiffer, Characters of finite Coxeter Groups and Iwahori-Hecke Algebras, Oxford University Press, 2000