Invarianten von Spiegelungsgruppen (Teil I)

Malte Milatz Seminar im November 2012

Bezeichnungen.

- ullet V endl.dim. Vektorraum über einem Körper K der Charakteristik 0
- G endliche Gruppe, die linear auf V operiert

$$S = K[x_1, \dots, x_n] \qquad L = K(x_1, \dots, x_n)$$

$$\mid \qquad \qquad \mid \qquad \qquad \mid$$

$$S^G \qquad \qquad L^G$$

$$\mid \qquad \qquad \mid \qquad \qquad \mid$$

$$K \qquad \qquad K$$

- $S = K[x_1, ..., x_n]$ symmetrische Algebra (Polynomring), erzeugt von einer Basis $(x_1, ..., x_n)$ des Dualraums V^* . G operiert auf S durch Fortsetzen der dualen Operation $\sigma \cdot f = f \circ \sigma^{-1}$. Die Operation respektiert die Struktur der graduierten K-Algebra S.
- ullet S^G Invariantenring

≈ "Funktionen, die konstant auf den Bahnen sind"

- L Quotientenkörper von SDie Operation von G auf S setzt sich natürlich auf L fort.
- L^G Fixkörper: ist gleich dem Quotientenkörper von S^G
- $I = \{fg \mid f \in S, g \in S^G, g(0) = 0\}$ Ideal von S ("Hilbert-Ideal") $I = Sg_1 + \cdots + Sg_r$ mit homogenen $g_i \in S^G$ (Hilbertscher Basissatz)

Man spricht von einer **Pseudospiegelungsgruppe**, wenn G von Pseudospiegelungen erzeugt ist; das sind solche Elementen, welche irgendeine Hyperebene fixieren. (Später sind $K = \mathbb{R}$, V euklidisch und G von Spiegelungen erzeugt.) Ist G eine Pseudospiegelungsgruppe, so gelten:

Satz von Chevalley. Die g_i sind algebraisch unabhängig, $r = \dim(V)$, und $S^G = K[g_1, ..., g_r]$ (also endlich erzeugt und isomorph zu S).

Proposition ("Ko-Invarianten"). S/I hat Dimension |G|. Weiterhin ist S frei über S^G vom Rang |G|.