Eva Zerz SS 2006

Algebraic Geometry — Tutorial 1
To be handed in till: not applicable, To be discussed on: Tuesday, April 11

1. Let K be a field, m,n positive integers, fi,..., fm € K[x1,...,2,] and

f:K"—= K™, aw f(a) = (fi(a),-.., fm(a)).

Is f Zariski continuous?
Describe all Zariski open subsets of K (what happens if K is finite?).

Let K be infinite. Show that K™\ V(f) is infinite for each 0 # f € K[xy,..., ],
in particular, V(f) # K™. Conclude: Any two non-empty Zariski open sets must
intersect. (Thus, the Zariski topology is not Hausdorff.) On the other hand, the
Zariski topology has the following weaker separation property: For a # b € K",
there exists an open set U with a € U, but b ¢ U.

2. Plot V(f) C R?:

(a) f=ax*—50x? + 22%y® + 49 — 149% + ¢*

(b) f = (a*+v?)° -z
(c
(d (14 ) —y*(1 — z).

) f
) f
) f=2%+ 23— y?
) f
(e) Try to find a parametrization of these curves, i.e., a (continuous/differen-
tiable/smooth) map from an interval in R to R2 whose image equals V(f)!

3. The following algebraic curves are given in terms of parametric representations,
where t € R is the parameter (except for (b), where ¢ € (—3,%) and t € (3, %)),
and a,b > 0 are fixed real numbers. Compute an implicit representation’:

(a) z(t) = (cos(t) + a) cos(t), y(t) = (cos(t) + a) sin(t)
(b) z(t) = a+ bcos(t), y(t) = atan(t) + bsin(t)

(c) z(t) =t* — a,y(t) = t(a —t?)

(@) o(t) = %, w(t) = “i

(o) a(t) = #47, y(t) = #5.

by trial and error, or by looking up the terms conchoid, Pascal snail, strophoid, cissoid; later,
we’ll do this systematically.
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Algebraic Geometry — Tutorial 2
To be handed in till: Thursday, April 13 (noon)
To be discussed on: Tuesday, April 18

Let K be a field, n a positive integer,
JV):={f € K[zy,...,z,] | fla) =0Va eV}

for V C K™, and
V(F):={a€ K" | f(a) =0VYf € F}

for FF C Klz1,...,x,].

4. Prove the following:

a) J(0) = (1) and, if |K| = oo, J(K™) = (0)
Rad(J(V)) =J(V)
J(ViuVy) =J (V) NJ(Va).

F C JV(F).
(e) VoJoV=Vand JoVoJ =J.

5. Let V,W be algebraic sets, and let I, J be ideals in K|z, ...,z,]. Show that

) VCW e JV)2IW)and VW & J(V) 2 J(W)
(b) V) UV(J)=V(I-J)=VINJ)
(¢) VI)NV(J) = V(I +J)=V(IUJ).

6. Let I,J be ideals in Klzy,...,z,| and
(I:J):={h€Klzy,...,x,] | hg € I Vg € J}.
Prove the following;:

(a) 1€ (I:J)cITVUI)\V({)).
(b) If V, W are algebraic sets, then (7(V) : J(W)) = J(V \ W).
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Algebraic Geometry — Tutorial 3
To be handed in till: Monday, April 24 (noon), To be discussed on: Tuesday, April 25

7. Let V = VJ(V) denote the Zariski closure of V' C K". Let I,.J be ideals in
Kz1,...,2y)
(a) Conclude from Exercise 6a:
V(1) 2V :J) 2 V() \V(J) 2 V() \ V().

In particular, let J = (x; — a,..., 2, — a,) for some a € V := V(I). Then
there are two possibilities: either V' \ {a} =V or V'\ {a} = V' \ {a}. Give
a geometric interpretation of both cases.

(b) If K is algebraically closed and I is radical, then we have
V(I:J)=V()\ V().

Prove this in two different ways: first, by directly verifying the inclusion
that is missing in view of 7a, and second, by plugging V' = V(I), W = V(J)
into the equation from Exercise 6b and by showing

(I :Rad(J)) C(I:J)C (Rad(I): J) = (Rad(]) : Rad(J)). (1)

(c) Conclude: If K is algebraically closed (but I not necessarily radical), we
have

V(I = J%) = V() \ V()

where

(I:J°)={h€K[zy,...,z,] | FEN:hge IVge J'} = : ]
leN

is the so-called saturation of I with respect to J.

(d) Compute the saturation, all ideals appearing in (1), and their radicals for
I=(zy*,y°2%), J=(y") C K[z,y,2].
Hints: In 7c, it suffices to show that Rad(/ : J*) = (Rad([) : J). Since K[z, ..., ,]
is Noetherian, J is finitely generated, and
IC{I:J)c({I:J*)C... (2)

becomes stationary, i.e., there exists k with (I : J®) = (I : J*). The first equality in
(2) already yields stationarity. If I N (g) = (h1g,...,hng), then I : (g} = (hq,..., hy).
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8. Let I # 0 be an ideal in K[z1,...,z,]. Prove that the following are equivalent:

(a) For each 1 < i < n, there exists
07591 eIﬂK[l’l,...,$i_1,xi+1,...,.’Bn].

(b) I is not contained in any proper principal ideal of K[x1,..., z,].
(¢) Any finite set of non-zero generators of I consists of coprime polynomials.

(d) There exists a finite generating set of I that consists of non-zero coprime
polynomials.

An algebraic set defined by a single, non-constant polynomial is called a hyper-
surface. If K is algebraically closed, then the four conditions from above are also
equivalent to

(e) V(I) does not contain an algebraic hypersurface.

Useful background material (“divisibility theory reloaded”): Klzy,...,z,] is a
unique factorization domain, i.e., any f € Klzi,...,z,] \ K can be written
as a product of prime polynomials. Thus, we have a well-defined concept of
greatest common divisor (gcd). Two non-zero polynomials f, g are called coprime
if ged(f,g) = 1, which is equivalent to (f) N {g) = (fg).

A stronger coprimeness notion is obtained by requiring that (f, g) = K|z, ..., z,].
This is sometimes called zero coprimeness (guess why!). For n = 1 (principal
ideal domain), coprimeness and zero coprimeness are equivalent.

The ring R := K(z1,...,%; 1,Tit1,---,%s)[2;] is a localization of the polynomial
ring, and therefore, coprime polynomials are still coprime when considered as
elements of the principal ideal domain R.

9. Lagrange interpolation over the field with two elements: Let K = 7Z/27Z. Show
that for any function f : K™ — K, there exists a polynomial p € K[x1,..., z,]
with p(a) = f(a) for all a € K™.

Hint: It suffices to consider p = 3, rj 13» p,@". This yields a system of 2" linear
equations for 2" unknowns ...
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10. (a)

Let < be an admissible order on N*. Show that every descending chain
g1 > g2 > p3 > ... in N must become stationary (i.e., < is Artinian).
Conclude that every non-empty subset of N* contains a least element (i.e.,
< is a well-order).

Let f, € K[z1,...,2,), # € N*, be such that deg(f,) = p, where the degree
is defined with respect to an admissible order. Show that {f, | p € N*} is
a K-basis of Kz1,...,z,].

Let f € Qz,z7'], that is, f =Y, ¢;&* for some coefficients ¢; € Q which
are almost all zero. Define the degree of f with respect to the natural order
of Z. Consider f,, := z™ +z ™ for m € Z. Show that deg(f,) = m, but
{fm | m € Z} is not a Q-basis of Q[z,z7'].

Let N be a subset of N* with
veN, ueN* = wv4+pueN.

Prove that M := min., N, the set of component-wise minimal elements
of N, is finite and N = M + N".

Let 0 ¢ F be a finite, non-empty subset of K|[zy,...,z,] and let an admis-
sible order on N" be given. Show that the following are equivalent:

i. F is a Grobner basis of (F).
ii. For all y € min., deg((F')), there exists f € F with deg(f) = u.
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12. Let F, F',G ... denote finite, non-empty subsets of K|[zy,...,z,]\ {0}.

(a) Let I be a non-zero ideal in K[x1,...,z,]. Show that if F C I is such that
deg(F) + N* = deg([l), then I = (F), and thus, F' is a Grébner basis of 1.
(b) Show that for every F' there exists F’ such that F’ is inter-reduced and
(F) = (F").
Do this in two different ways: Firstly, design a constructive inter-reduction
procedure (whose termination will be due to a Noetherian argument, as
usual). Secondly, use that I := (F) has a Grobner basis, and prove the
following statement: If G is a GB of I = (G), and g € G is such that
deg(g) € deg(G \ {g}) + N*, then G \ {g} is still a GB of I.
(c) Show that F' is an inter-reduced Grobner basis of (F') if and only if
i. Yu € M := min.,, deg((F)) 3'f € F: deg(f) = u, and
ii. deg(F) C M.
(In other words: deg : F — M, f +— deg(f) is well-defined and bijective.)

(d) Let F be a Grobner basis of (F'). Suppose that all elements of F' are monic,
that is, le(f) = 1 for all f € F. Recall that by definition

F inter-reduced < Vf € F :deg(f) ¢ deg(F \ {f}) + N".

Show that

Freduced < VfeF:fe a5 Kz,
pgdeg(F\{f})+]n

that is, not only the degree of f, but every x with ¢, # 0in f = > ¢ z”
satisfies k ¢ deg(F \ {f}) + N

13. Compute the reduced Grobner basis of I = (z3 + zy, 22y — y®) C Q[z, y] with re-
spect to the lexicographic order. Verify your result using the MAPLE! commands
> with(Groebner);
> F:={x"3+x*y,x"2%y-y~3};
> gbasis(F,plex(x,y));

(or similarly, depending on the version you use).
Compute V = V() and dimg Q[z,y]/I. How would you define the “multiplicity”
of an element of V7

Feel free to use another computer algebra system, e.g., GAP.
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14. Let K be algebraically closed.

(a)

Let I be an ideal in K[z1,...,7,]. Let 1 < j<mnandlet 7 : K® — K" J+1
(a1,...,a,) — (aj,...,a,) denote the projection onto the last n — j + 1
components. Show that (by a slight abuse of notation, the letter V is used
both with respect to K™ and K™ 7*1)

7(V(I)) CVINK[zj,...,z,])
and that (considering J (V') as a subset of K[zj,...,z,] for V C K" 7*)
J(x(V(I))) € TV().

Conclude that
V() =V{INKlzj,...,z,)]),
where V is the Zariski closure of V in K™+,
Let fi,...,fn € K[t1,...,tm]- Consider I = (z1 — f1,..., 2 — fu) C
Klt1,...,tm,Z1,--.,2,|. Conclude from the previous part that

V(INK[zy,...z,]) =im(f),

where V denotes the Zariski closure of V in K”, and f : K™ — K" is the
map defined by f(t) = (fi1(t),. .., fa(t)).

Let fi = t? —a, fo = t(a — t?) € K[t,a]. Compute im(f) and explain the
connection with Exercise 3c.

Although the theory from above is not directly applicable to the other alge-
braic curves from Exercise 3, there exist similar methods: for instance, let
I={(z—(cta),y—(c+a)s,c®+s*—1) CRlcs,a,z,y]. Compute (e.g.,
with MAPLE) a Grobner basis of I N R[a, z,y| and convince yourself that
the result is what you’d expect. Apply analogous methods to the remaining
algebraic curves from Exercise 3.

15. Let I = (f1,...,fx) and J = {(g1,...,9;) be ideals in K[z] = Klzy,...,z,].
Define

L:= <tf17atfka(1 _t)gla’(l _t)gl> - K[Qf,t]

Show that I N J = L N K[z]. Describe a procedure to compute a generating set
for I N J from the given generating sets of I and J.
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16. Let R # {0} be a commutative ring (with unity). Prove the following:

(a) If I,..., I are pairwise zero-coprime ideals in R, i.e., if I; + I; = R for all
i # j (such I; are also called comazimal), then we have

Li-...-Iy=0LHN...NI.
(b) If m # n are maximal ideals in R, then we have m¢ + n? = R for all d € N.

17. Let K be algebraically closed and let I be a zero-dimensional ideal in K[z] =
Klzy,...,2z,). Then V(I) is a finite set, and, according to the proof of Theo-
rem 1.15, we have |V(I)| = dimg K[z]/Rad(I). We know from Lemma 1.14
that also dimg K[z]/I < oo, but in general, we only have dimg K[z]/Rad(I) <
dimg K[z]/I. Analogously to the case n = 1, dimg K[z]/I will be interpreted
as the number of zeros of I counted with multiplicities. The question is how this
overall multiplicity should be distributed to the individual zeros. For this, we
shall prove the following result: We have

Klz]/T= €D (K[a]/I)m,,
acV(I)

where m, is the maximal ideal belonging to a € K", and (K[z]/I)m, = K[z]m, /In,
is the localization of K[z]/I at m,. Then one defines the multiplicity of a by

p(a) := dimg (K[z]/T)m,.

For the proof, let V(I) = {ay,...,ax} and let my, ..., my be the corresponding
maximal ideals. Consider

¢ : Klz] = K[z /Iny X ... X K[ty /I, 7= ([5],---, [5])-

Clearly, I C ker(p). In view of the homomorphism theorem, it therefore suffices
to prove (i) the converse inclusion and (ii) the surjectivity of ¢. For this, the
following auxiliary results (and the exercise from above) should be helpful:

(a) There exists d € N such that ()}, m¢ C TI.

(b) By Lagrange interpolation, there exist ¢; € K[z] withe;(a;) = 1and g;(a;) =
0 for i # j. Define e; := 1 —(1—¢%)¢, where d is as in (a). Then we have the
following identities modulo I: Y77 ,e; =1, e;e; = 0 for i # j, and €? = ¢;.
Moreover, e; — 1 € Iy, and e; € Iy, for i # j.

(c) For g ¢ m;, there exists h € K[z] such that hg = e; modulo I. (Hint: Set

g=1— ;2 and consider 1 +§+...+ g t)
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18.

19.

20.

Let f : V — W be a morphism of algebraic sets and let ¢ := K[f] be the induced
K-algebra homomorphism. Show that

T Ww(F) = W (e(F))
for F C K[W].

Let fi,...,fn € K[z1,...,2,]. Then f: K" — K" a > (fi(a),..., fa(a)) is a
morphism of algebraic sets.

(a) Show that f is an isomorphism of algebraic sets if and only if there exist
91,90 € K[y1, ..., y,] with

(1 = f1,- U0 — fa) = (T2 — g1, -, Tn — Gn)-
(b) How can this condition be tested using Grobner bases?
Consider the radical ideal
I=(zz—vy* z—yz) CClz,y,z|

Compute the irreducible components of V' = V(I). Is V' connected?

Hint: You may use the following result from commutative algebra: If I is radical
and p,q ¢ I are such that pg € I, then we have I = I N I3, where I := (I : p)
and I := I + (p).
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21. Let R be a ring and let () # P be a closed subset of Spec(R), that is, P = V(I) =
{p € Spec(R) | I C p} for an ideal I in R. Show that P is irreducible if and only
if 7(P)=\,epp is prime.

22. (a) Let (M, A) be an algebraic variety and let U C M be an open set. Let I be
an arbitrary set, and let U; C M, ¢ € I, be basic open sets with

U:Um

el

Show that Jk €N, i1,...,4 € It U = U5, Ui,

(b) Let (M, A) be an irreducible algebraic variety, M # (), and h € K(M) =
Quot(A). Show that

D(h) = {D(}) |0#g € A ghe A}

and conclude from part (a): Ik €N, f1,...,fr € A, g1,...,9r € A\ {0}

: —h _ — I — |k 1
with b = & = ... = 2 such that D(h) = U;_, D(gj).
(c) Let (M, A) be an irreducible algebraic variety, M # 0, and 0 # g € A. Show
that

A, = {h e K(M) | M, C D(h)}.

23. Let (M, A) be an algebraic variety, let U C M be an open set, z € U, and let
h:U — K be a map. Prove that the following are equivalent:
(a) If, g€ A: z € D(é) C U and h(y) = % for all y € D(é);
(b) 3f,g € A: IV, open neighborhood of z in U N D(%), with h(y) = % for
ally e V.

Moreover, if (a) is satisfied for all z € U, then we have: 3k € N, f1,..., fx,
g1, 96 € A: U =_, D(Z) and h(y) = g—gg for all y € D(L).

1
9
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24.

25.

(a)

(b)

Let (M, A) be an irreducible algebraic variety, M # (), and h € K(M). Let
A be a unique factorization domain (UFD). Show that D(h) is a basic open
set.

Consider A = C[z,y, 2]/(z* — yz). We have seen in the lecture that there
exists h € Quot(A) for which D(h) is not a basic open set. Thus A cannot be
a UFD. Prove this in the following alternative way: Consider the morphism
f:C -5V =V@2—y2z) CC (s,t) — (st,s%t%). Show that f is
dominant. Thus ¢ := C[f] is a monomorphism. Use ¢ to determine the
units of A and to show that A contains elements that are irreducible, but
not prime.

Let (M, A) be an algebraic variety. Consider pairs (h,U), where U C M is
open and dense, and h € O(U). Show that

(h1,U1) ~ (he,Up) <& IW C UyNU,, W open and dense in M: hy|lw = ha|w
is an equivalence relation. The set of equivalence classes [(h,U)] is denoted
by R(M).
Show that

(h1,U1) ~ (h,U2) & hilvinve = halvanee-

The interesting direction of this equivalence is called identity theorem.

Hint: U :=U; NUs, h:=hy — hy € O(U). N(h) :={z € U | h(z) =0} is
closed in U (for each z € U \ NV(h) there exists an open neighborhood of z
in U\ W (h)) and it contains a set that is dense in M. Consider the closures

with respect to U and note that VU =UNV forVCU.

26. Let (M, A) be an irreducible algebraic variety, M # (. Consider the map 1 :

K(M) — R(M) that assigns to each representative 5 (f € A,0 # g € A) the
equivalence class [(g, D(-))], where g is understood as a map D(-) — K. Show

1 1
g g

that 1 is well-defined and bijective.
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27. Let V C K™ and W C K™ be non-empty irreducible algebraic sets. We identify
K(V)=R(V)and K(W)= R(W). Let hy,...,h, € K(V) be such that

h:D(h) =W, v+ h(v):=(h(v),...,~hn(v))

is well-defined, i.e., im(h) C W. Here, D(h) := (-, D(h;) is open and dense
in V. We call h a rational map from V to W. The definition

K(h): K(W)— K(V), g+ goh
does not necessarily make sense, since we may have im(h) N D(g) = 0.

(a) Give a simple example illustrating this phenomenon.

(b) Show that K (h) from above is well-defined if A is dominant (im(h) = W).
Conversely, every K-algebra homomorphism ¢ : K(W) — K(V) yields a
dominant rational map h from V' to W with K(h) = ¢.

(c) Prove that the following are equivalent:

i. There exists h : D(h) — W as above and, analogously, k& : D(k) — V
such that h o k and k o h are defined on open and dense subsets of W
and V, and equal to the respective identity maps.

ii. K(W)= K(V).

Then one says that V and W are birationally equivalent. If W = K™, then
V is called a rational variety, and, if m = 1, a rational curve.

(d) Show that V =V(z? +y? — 1) C C? is a rational curve.
Hint: Stereographic projection.
Remark: V(z" + y™ — 1) C C? is not a rational curve for n > 3.

28. Let L be an extension field of K, and let E be a finite subset of L. Show that F
is a transcendence basis of L over K if and only if L is algebraic over K (F), but
not over any K(F \ {e}), e € E.
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29. Prove Theorem 4.6 and Corollary 4.7 of the lecture.

30. Let V. =V(@? + 22+ 22— 1) C C* and V; = V N V(z12273). How do these
objects look like in real space? Determine a finite morphism f : V — C? with
f(1) = € x{0}.

Remark: The ideal
(] + 23+ 75 — 1, 717023)

can be written as an intersection of three prime ideals (which ones?), and thus it
is radical.



