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1 Introduction to multidimensional linear exact

modeling

Let a finite number of multivariate, vector-valued, polynomial-exponential func-
tions be given, say w1, . . . , wN , where

wl : R
n → C

q, t �→ pl(t) exp(λlt)

for some pl ∈ C[t]q := C[t1, . . . , tn]q, and λl ∈ C
1×n.

The goal is to construct a model for these data. The model class considered
here consists of all linear, shift-invariant, differential systems B ⊆ C∞(Rn, Cq).
Thus, we are actually looking for a linear constant-coefficient system of partial
differential equations that are satisfied by the data functions, but following the
behavioral spirit, we identify a model with the solution set rather than with the
equations.

One says that such a model is unfalsified by the data if it contains all wl. More-
over, we want our equations to be as restrictive as possible, that is, they should
not admit more solutions than necessary. An unfalsified model that is con-
tained in any other unfalsified model is called the most powerful unfalsified model
(MPUM).
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The unique existence of the MPUM in the considered model class was shown in
[1, 4] for n = 1, and for arbitrary n in [6, 7]: the MPUM is precisely the span
(over the complex numbers) of the given functions and all their derivatives (it
is clear that this space must be contained in any unfalsified model in the model
class, but one has to show that conversely, it belongs to the model class). It is also
known that the MPUM is finite-dimensional (as a complex vector space), because
the span (over C) of a polynomial-exponential function and all its derivatives is
finite-dimensional [5].

In [6, 7], a direct construction method for the MPUM was proposed. Here, we
address the question of recursive update, and we discuss some new aspects of the
minimality issues raised in [6].

2 Basic idea of recursive update

We introduce the notation 〈w1, . . . , wN〉 for the MPUM of w1, . . . , wN . In other
words, 〈w1, . . . , wN〉 is the span, over C, of all wl and their derivatives.

Suppose that 〈w1, . . . , wN〉 has already been constructed. This means that we
have found R such that

R(∂)w = 0 ⇔ w ∈ 〈w1, . . . , wN〉. (1)

Here, R ∈ C[s1, . . . , sn]g×q is a polynomial matrix in n variables si, and R(∂) :=
R(∂1, . . . , ∂n) results from replacing each indeterminate si by the partial dif-
ferential operator ∂i. In this way, R(∂) is a linear constant-coefficient partial
differential operator. In the situation of (1), we call R a (kernel) representation
of 〈w1, . . . , wN〉.
Given an additional trajectory wN+1, we would like to adapt the representation
accordingly. Thus we will address the following question: How should one modify
the matrix R such that the result represents the MPUM of w1, . . . , wN , wN+1? In
other words, the task is to construct, from R and wN+1, a polynomial matrix Rnew

such that
Rnew(∂)w = 0 ⇔ w ∈ 〈w1, . . . , wN+1〉. (2)

For this, we define the error signal e := R(∂)wN+1, which is again polynomial-
exponential. Let Γ ∈ C[s1, . . . , sn]h×g be a representation of the MPUM of e,
that is,

Γ(∂)v = 0 ⇔ v ∈ 〈e〉. (3)

We will show below that Rnew := ΓR represents the MPUM of w1, . . . , wN+1.
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Theorem: Let wl, 1 ≤ l ≤ N +1, be polynomial-exponential functions. Suppose
that (1) and (3) hold, where e = R(∂)wN+1. Set Rnew = ΓR. Then we have (2).

Proof: It is easy to verify that Rnew(∂)wl = 0 for 1 ≤ l ≤ N + 1, because we
have R(∂)wl = 0 for 1 ≤ l ≤ N by assumption, and Rnew(∂)wN+1 = Γ(∂)e = 0
by construction. For the converse, let Rnew(∂)ξ = 0. We need to show that
ξ ∈ 〈w1, . . . , wN+1〉. We have Γ(∂)R(∂)ξ = 0 and thus, by the construction of Γ,

R(∂)ξ ∈ 〈e〉,

that is,
R(∂)ξ =

∑
μ∈Nn aμ∂

μe, where ∂μ := ∂μ1

1 · · · ∂μn
n ,

for some aμ ∈ C which are almost all zero. Then

R(∂)ξ =
∑

μ aμ∂
μR(∂)wN+1 = R(∂)

∑
μ aμ∂

μwN+1

and thus
R(∂)(ξ − ∑

μ aμ∂
μwN+1) = 0

which implies, by the assumption that R represents the MPUM of w1, . . . , wN ,

ξ − ∑
μ aμ∂

μwN+1 ∈ 〈w1, . . . , wN〉.

Thus ξ ∈ 〈w1, . . . , wN , wN+1〉 as desired. �

3 Refinement of the recursion

The adaptation scheme from above requires the computation of the MPUM of a
single trajectory, namely, the error signal e. This is facilitated by breaking the
problem of augmenting 〈w1, . . . , wN〉 with wN+1 into several simpler subproblems,
following the procedure proposed in [1] for the one-dimensional case.

Let wN+1 = p expλ be given, where p ∈ C[t]q, λ ∈ C
1×n, and expλ(t) = exp(λt).

We first observe that

〈w1, . . . , wN , wN+1〉 = 〈w1, . . . , wN , {(∂ − λ)μwN+1 | μ ∈ N
n}〉, (4)

where we use the multi-index notation (∂ − λ)μ := (∂1 − λ1)
μ1 · · · (∂n − λn)μn .

In (4), the inclusion “⊆” is obvious (take μ = 0), and the inclusion “⊇” follows
from the fact that

(∂ − λ)μwN+1 =
∑

ν≤μ

(
μ
ν

)
(−λ)ν∂μ−νwN+1,
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where ν ≤ μ means νi ≤ μi for all i, and
(

μ
ν

)
:=

(
μ1

ν1

) · · · (μn

νn

)
, λν := λν1

1 · · ·λνn
n .

This is a complex linear combination of wN+1 and its derivatives, and thus, it
belongs to 〈w1, . . . , wN+1〉. The identity

(∂ − λ)μp expλ = (∂μp) · expλ

implies that we can also write

〈w1, . . . , wN+1〉 = 〈w1, . . . , wN , {(∂μp) · expλ | μ ∈ N
n}〉. (5)

Since only finitely many ∂μp are non-zero (for instance, it suffices to consider all
multi-indices μ with |μ| := μ1 + . . .+μn ≤ deg(p), where deg(·) denotes the total
degree), the generating set on the right hand side of (5) is actually still finite,
and this holds also for (4). By successively computing

〈w1, . . . , wN , {(∂μp) · expλ | |μ| = d}〉
for d = deg(p), deg(p) − 1, . . . , 0, the problem can be reduced, without loss of
generality, to the situation where wN+1 = p expλ and for all 1 ≤ i ≤ n, we have
(∂ip) · expλ ∈ 〈w1, . . . , wN〉 (after modification of N in each step).

The advantage lies in the fact that in this case, the error signal e = R(∂)wN+1 is
purely exponential, that is,

e = ε expλ for some ε ∈ C
g.

This is because

0 = R(∂)((∂ip) · expλ) = R(∂)(∂i − λi)p expλ = (∂i − λi)R(∂)wN+1 = (∂i − λi)e

for all i, and thus e = ε expλ for some ε ∈ C
g.

The MPUM of a purely exponential function e = ε expλ is particularly easy to
find: If ε = 0, we set Γ := I. If ε �= 0, let r := min{j | εj �= 0}. We may assume
that εr = 1, without loss of generality. Thus

ε =

⎡
⎣ 0

1
ε′

⎤
⎦ ∈ C

g, where ε′ ∈ C
g−r.

Set

Γ :=

⎡
⎢⎢⎢⎢⎢⎣

Ir−1 0 0
0 s1 − λ1 0
...

...
...

0 sn − λn 0
0 −ε′ Ig−r

⎤
⎥⎥⎥⎥⎥⎦
∈ C[s1, . . . , sn](g−1+n)×g. (6)

Then it is quite easy to see that Γ(∂)v = 0 if and only if v = ae for some a ∈ C.
In other words, Γ represents the MPUM of e.
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4 Worked example

In [3], the MPUM of the following four trajectories was computed:

w1 =

[
1
1

]
, w2 =

[
1
0

]
et1 , w3 =

[
0
1

]
et2 , w4 =

[
1

−1

]
et1+t2 .

Since these functions are all purely exponential, the MPUM is simply given by
all linear combinations of the four signals themselves, that is,

w ∈ 〈w1, . . . , w4〉 ⇔ w =
∑4

l=1 alwl for some al ∈ C.

Using the construction from [6, 7], the MPUM is also characterized by

w ∈ 〈w1, . . . , w4〉 ⇔ ∃x ∈ C∞(R2, C4) :

⎧⎨
⎩

∂1x = A1x
∂2x = A2x

w = Cx
(7)

which can be rewritten as

w ∈ 〈w1, . . . , w4〉 ⇔ ∃x0 ∈ C
4 : w(t) = C exp(A1t1 + A2t2)x0,

where

C =

[
1 1 0 1
1 0 1 −1

]
, A1 = diag(0, 1, 0, 1), A2 = diag(0, 0, 1, 1).

A representation can be computed by applying the fundamental principle [5] to
(7). Using the computer algebra system Singular [2], we obtain

R =

⎡
⎢⎢⎣

−s2
2 + s2 0
0 s2

2 − s2

−s1 + 1 s2 − 1
s2 s1

⎤
⎥⎥⎦

which is equivalent to the representation given in [3]. Now let us adapt this
representation to the situation where

w5 =

[
t1 + t2

t1

]

is an additional data trajectory. Proceeding as in Section 2, one computes the
error signal, and constructs a representation of its MPUM as in [6, 7]. We obtain

e = R(∂)w5 =

⎡
⎢⎢⎣

1
0

−1 + t2
2

⎤
⎥⎥⎦ and Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−2 0 0 1
s2 0 0 0
−1 0 s2 0
s1 0 0 0
0 0 s1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Thus we set Rnew = ΓR. The iterative approach of Section 3 amounts to adding
not only w5, but also

w6 = ∂1w5 =

[
1
1

]
and w7 = ∂2w5 =

[
1
0

]
.

However, w6 = w1 and thus can be disregarded. For w7, we have

ê = R(∂)w7 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ and Γ̂ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 s1 0
0 0 s2 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

where we have used (6), and we obtain

R̂ = Γ̂R =

⎡
⎢⎢⎢⎢⎣

−s2
2 + s2 0
0 s2

2 − s2

s1(−s1 + 1) s1(s2 − 1)
s2(−s1 + 1) s2(s2 − 1)

s2 s1

⎤
⎥⎥⎥⎥⎦

as an intermediary result. Next, we compute, again using (6),

ẽ = R̂(∂)w5 =

⎡
⎢⎢⎢⎢⎣

1
0
0
1
2

⎤
⎥⎥⎥⎥⎦ and Γ̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

s1 0 0 0 0
s2 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−1 0 0 1 0
−2 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

which finally yields Rnew = Γ̃R̂. The result coincides with the one computed
earlier (up to a permutation of the rows). After some streamlining through
Gröbner basis computation, we obtain the final result

Rnew =

⎡
⎢⎢⎢⎢⎣

s2
2(s2 − 1) 0

0 s2
2 − s2

s2(2s2 − 1) s1

s2(s1 − s2) 0
s2
1 − s1 − s2

2 + s2 0

⎤
⎥⎥⎥⎥⎦

as a representation of the MPUM of w1, . . . , w5. From this form, one can see
(using Gröbner basis theory) that the dimension of the MPUM as a complex
vector space equals 6. This is in accordance with straightforward reasoning:
We have 〈w1, . . . , w4〉 = spanC{w1, . . . , w4} and thus dimC〈w1, . . . , w4〉 = 4, and
similarly, 〈w5〉 = spanC{w5, w6, w7} and thus dimC〈w5〉 = 3, but the intersection
〈w1, . . . , w4〉∩〈w5〉 = 〈w1〉 = 〈w6〉 has C-dimension 1. Put differently, the MPUM
of w2, w3, w4 has dimension 3, the MPUM of w1, w5 has dimension 3, and these
two MPUMs intersect trivially.
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5 Minimality issues

The direct way of computing the MPUM of a single trajectory given in [6, 7]
involves the computation of the left kernel of a matrix of the form

H =

⎡
⎢⎢⎢⎣

s1I − A1
...

snI − An

C

⎤
⎥⎥⎥⎦ ∈ C[s1, . . . , sn](nδ+q)×δ,

where Ai ∈ C
δ×δ are pairwise commuting matrices, and C ∈ C

q×δ. The com-
putational cost of this so-called syzygy computation [2] depends crucially on the
number δ. One calls δ the size of the representation (A1, . . . , An, C) of

B = {w :Rn→C
q|∃x ∈ C∞(Rn, Cq) : ∂ix=Aix for 1≤ i≤n and w=Cx}

= {w :Rn→C
q|∃x0 ∈ C

δ∀t ∈ R
n : w(t)=C exp(A1t1 + . . . + Antn)x0}. (8)

It was shown in [6] that such a representation is minimal (i.e., there exists no
representation of strictly smaller size) if and only if⋂

μ∈Nn

ker(CAμ) = {0}, where Aμ := Aμ1

1 · · ·Aμn
n ,

which is the natural generalization of observability to the considered model class.
However, there is also another characterization of minimality (generalizing the
Hautus test) that is actually preferable from the computational point of view in
the setting of this paper.

For this, we need the following fact on joint eigenvectors of pairwise commuting
matrices, which is without doubt part of the linear algebra folklore, but giving a
short proof seems to be easier than finding a reference.

Lemma: Let A1, . . . , An ∈ C
δ×δ be pairwise commuting matrices. Define

spec(A1, . . . , An) := {λ ∈ C
1×n | ∃0 �= z ∈ C

δ : Aiz = λiz for all 1 ≤ i ≤ n}.
Then spec(A1, . . . , An) is a finite, non-empty set.

Proof: The finiteness is clear, because

spec(A1, . . . , An) ⊆ spec(A1) × . . . × spec(An).

Therefore it suffices to show that spec(A1, . . . , An) is not empty.

For n = 1, there is nothing to prove. For n = 2, let λ1 ∈ spec(A1) and let

V := {z ∈ C
δ | A1z = λ1z}.
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This is a non-zero subspace of C
δ, and it is A2-invariant, because

A1z = λ1z ⇒ A1A2z = A2A1z = λ1A2z.

Thus V contains an eigenvector of A2, say 0 �= y ∈ V with A2y = λ2y. Since
y ∈ V , we also have A1y = λ1y. Thus (λ1, λ2) ∈ spec(A1, A2).

Suppose that the statement has been shown for n − 1. Let (λ1, . . . , λn−1) ∈
spec(A1, . . . , An−1) and let

V := {z ∈ C
δ | A1z = λ1z, . . . , An−1z = λn−1z}

which is a non-zero An-invariant subspace of C
δ, which consequently contains an

eigenvector of An. The rest of the argument is analogous to the case where n = 2.

�

Now we can give the alternative characterization of minimality mentioned above.

Theorem: Let A1, . . . , An ∈ C
δ×δ be pairwise commuting matrices and let C ∈

C
q×δ. The following are equivalent:

1.
⋂

μ∈Nn ker(CAμ) = {0}.
2. For all λ ∈ spec(A1, . . . , An), we have ker(H(λ)) = {0}, where

H(λ) :=

⎡
⎢⎢⎢⎣

λ1I − A1
...

λnI − An

C

⎤
⎥⎥⎥⎦ ∈ C

(nδ+q)×δ.

Proof: If there exists λ ∈ spec(A1, . . . , An) and 0 �= z ∈ C
δ such that Cz = 0

and (λiI − Ai)z = 0 for all i, then

CAμz = Cλμz = λμCz = 0,

where λμ = λμ1

1 · · ·λμn
n .

Conversely, let

V :=
⋂

μ∈Nn

ker(CAμ) �= {0}.

Let V be a matrix whose columns are a basis of V , and let 1 ≤ i ≤ n. Since V
is Ai-invariant, we have AiV = V Bi for some Bi. The fact that AiAj = AjAi for
all i, j implies that Bi are also pairwise commuting matrices. Thus there exists
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λ ∈ spec(B1, . . . , Bn), that is, Biz = λiz for some 0 �= z ∈ C
dim(V). However, this

implies that AiV z = λiV z for all i. Since 0 �= V z ∈ V , we have⎡
⎢⎢⎢⎣

λ1I − A1
...

λnI − An

C

⎤
⎥⎥⎥⎦V z = 0.

Moreover, λ ∈ spec(A1, . . . , An) which completes the proof. �

The Hautus condition from above leads to a procedure for reducing a given rep-
resentation to minimality, which can be used as a pre-processing step for the
syzygy calculation. The combination of tools from computational linear algebra
with computer algebraic techniques (Gröbner bases etc.) can yield a considerable
speed-up of the symbolic calculation. Moreover, if the matrices Ai result from the
construction method of [6, 7], then spec(A1, . . . , An) is actually known, because
it consists precisely of the frequency vectors λ that are present among the data
trajectories.

Corollary: Let A1, . . . , An ∈ C
δ×δ be pairwise commuting matrices and let

C ∈ C
q×δ. Suppose that there exists λ ∈ spec(A1, . . . , An) with

r := rank(H(λ)) < δ.

Then there exist pairwise commuting matrices A
(1)
1 , . . . , A

(1)
n ∈ C

r×r and C(1) ∈
C

q×r such that (A1, . . . , An, C) and (A
(1)
1 , . . . , A

(1)
n , C(1)) represent the same sys-

tem according to (8).

Proof: Select r linearly independent columns in H(λ). Without loss of generality,
suppose that these are the first r columns of H(λ). Then

H(λ) = [H1(λ), H1(λ)X],

where H1(λ) has full column rank and X ∈ C
r×(δ−r). Let C = [C(1), C(1)X] and

Ai =

[
Ai11 Ai12

Ai21 Ai22

]

be partitioned accordingly. Set A
(1)
i := Ai11 + XAi21 and let

T :=

[
I −X
0 I

]
.

By assumption, we have

(λiI − Ai11)X = −Ai12

−Ai21X = λiI − Ai22.
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Using this, a straightforward computation yields

T−1AiT =

[
A

(1)
i 0

Ai21 λiI

]
and CT = [C(1), 0],

which implies the result. �

Note that there is no guarantee that A
(1)
1 , . . . , A

(1)
n , C(1) is already minimal, that

is, it may happen that

rank

⎡
⎢⎢⎢⎣

λ1I − A
(1)
1

...

λnI − A
(1)
n

C(1)

⎤
⎥⎥⎥⎦ < r.

Then the same reduction procedure can be applied to A
(1)
1 , . . . , A

(1)
n , C(1). Since

the size of the matrices becomes strictly smaller in each step, we obtain a minimal
model after finitely many iterations.
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