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Motivation.

» G finite group, V- a QG-module, A : G — GL,(Q)
corresponding matrix representation.

Is V simple ?
Use the endomorphism ring

v

v

E={zeQ™ | zA(g) = A(g)x forall g € G}

v

Schur's Lemma: V is simple <= FE skewfield.
Goal: Testif ' is a skew field.

v

» Know: F is a finite dimensional semisimple QQ-algebra.

Wedderburn
E = @'_, D**™ with division algebras D;.
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Computing the endomorphism algebra.

E={zeQ™ | zA(g) = A(g)zx for all g € G}

» Obtain E by solving system of linear equations

» or by finding random elements:

> G = <gl = 17927' ~-7ga>|

> QU - QT m(z) = L3 Agi) Lo A(g;) is linear

T a



Computing the endomorphism algebra.

E={zeQ™ | zA(g) = A(g)zx for all g € G}

Obtain E by solving system of linear equations

or by finding random elements:

G={(g1=1,92,9a)

Q" - QT w(x) = éZ?zl A(g:) " txzA(g;) is linear
1 is unique eigenvalue > 1

eigenspace I
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Computing the endomorphism algebra.

E={zeQ™ | zA(g) = A(g)zx for all g € G}

Obtain E by solving system of linear equations

or by finding random elements:

G={(g1=1,92,9a)

Q" - QT w(x) = ézgzl A(g:) " txzA(g;) is linear
1 is unique eigenvalue > 1

eigenspace I

iterating m approximates the projection
TG T ﬁ EgeGA(g)_le(g) onto £ < Q"
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Computing the endomorphism algebra.

E={zeQ™ | zA(g) = A(g)zx for all g € G}

Obtain E by solving system of linear equations

or by finding random elements:

G={(g1=1,92,9a)

QT — QT m(z) =130 A(g) Tz A(gs) is linear
1 is unique eigenvalue > 1

eigenspace I

iterating m approximates the projection

TG T ﬁ EgeGA(g)_le(g) onto £ < Qm*"

> E = (1°by),...,m(b2))
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Computing the endomorphism algebra.

E={zeQ™ | zA(g) = A(g)zx for all g € G}

Obtain E by solving system of linear equations

or by finding random elements:

G={(g1=1,92,9a)

QT — QT m(z) =130 A(g) Tz A(gs) is linear
1 is unique eigenvalue > 1

eigenspace I

iterating m approximates the projection

TG T ﬁ EgeGA(g)_le(g) onto £ < Q"

> E = (m°(b1),...,m°(b2))

» B = <7roo(x1)7 e 77roo(xb>>(@falgebra
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Strategy to determine structure of E.

Algorithm (overview)

» E = (b1,...,bq)q given in right regular representation:
> b € QP by = Y0, (bi) kb
» find central idempotents, achieve £ = D"*"™,
K = Z(E) = Z(D) a number field
> k= [K :Q], dimg(E) = d = s?k with s = mn
m? = dimg (D).
» Schur index m of E as lcm of local Schur indices

» Use reduced trace bilinear form:
Tr: Ex E— K, (a,b) — tr,q(ab).

» o real place of K, then Schur index m, of £ ®, R from
signature of o o Tr.

> o finite place of K, then Schur index m,, of completion E,
from discriminant of any maximal order.



Find idempotents in Z(FE).

Z=ZE)={z€E|zb=bzforall 1 <i<d}

» 7= @, K; étale
» regular representation: Z = (zy,. .., z) < Q¢
» Elementary fact: the z; have a simultaneous

diagonalization
Choose random z € Z, compute its minimal polynomial f

» If f = gh is notirreducible, then Z = ker(g(z)) @ ker(h(z))

v

is a Z-invariant decomposition of the natural module

Compute the action of the generators on both invariant
submodules and iterate this procedure

Z is a field, if all z; have irreducible minimal polynomial



Assume that £ = D™ is simple.

E — D’I’LX’VL

K = Z (D) = Z(F) number field of degree k = [K : Q]
m? = dimg (D) and so d = dimg(E) = n?*m?k

know d, k, and s = nm

Goal: compute Schur index m of E

Fact: Let P denote the set of all places of K. Then D is
uniquely determined by all its completions (D,,) ocp-

» The Schur index m of E is the least common multiple of
the Schur indices m, of all completions £, := F ®x K.
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Assume that £ = D™ is simple.
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E = D™

K = Z (D) = Z(F) number field of degree k = [K : Q]
m? = dimg (D) and so d = dimg(E) = n?*m?k

know d, k, and s = nm

Goal: compute Schur index m of E

Fact: Let P denote the set of all places of K. Then D is
uniquely determined by all its completions (D,,) ocp-

The Schur index m of E is the least common multiple of
the Schur indices m, of all completions £, := F ®x K.

Goal: Determine all local Schur indices m,, of E.
For p: K — C complex place F @ C = C5*5,
If o : K — R is areal place then

RS*s or
EKJ =F QK R = { Hs/?xs/?

where H = (‘1@‘1).



The real completion.

Tr: E x E — K, (a,b) — tryeq(ab) = L trycq(ab).

Lemma

» Signature (H, Tr) = (1, —3).

» Signature (R?*2, Tr) = (3, —1).

» Signature (R"*" Tr) = (n(n +1)/2,—n(n — 1)/2).

» Signature (H"/2%"/2 Tr) = (n(n —1)/2, —n(n + 1)/2).
Proof:

» The Gram matrix of Tr for the basis (1,14, 5, k) of H is
diag(2, -2, -2, —2).

» The Gram matrix of Tr for the basis ( 68 , 8(1) , 86 , (1)8 )
is diag (1,1, {3 )



Maximal order is a local property.

» K = Z(F) number field, R ring of integers, £ = D™*™,

» An R-order A in E is a subring of E which is a finitely
generated R-module and spans E over K.

» A is called maximal, if it is not contained in a proper
overorder.

» A*:={d € E | Ltryeg(da) € Rforalla € A}
» A order = A C A*.
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Maximal order is a local property.

» K = Z(F) number field, R ring of integers, £ = D™*™,

» An R-order A in E is a subring of E which is a finitely
generated R-module and spans E over K.

» A is called maximal, if it is not contained in a proper
overorder.

» A*:={d € E | Ltryeg(da) € Rforalla € A}
» A order = A C A*.

Theorem.

The algebra E has a maximal order.
The order A is maximal if and only if all its finite completions are
maximal orders.

Proof. A C E any R-order, then A C A* and A*/A is a finite
group. So A has only finitely many overorders and one of them
is maximal.



Local division algebras.
Let R be a complete discrete valuation ring with finite residue
field F = R/mR and quotient field K. Let D be a division
algebra with center K and index m, so m? = dimg (D).
Theorem.

The valuation of K extends uniquely to a valuation v of D and
the corresponding valuation ring

M:={de D |v(d) >0}

is the unique maximal R-order in D.
Let 7p € M be a prime element. Then [(M/xpM) : F] = m.
Put

1
M*:={de€ D | —tr(da) € Rforalla € M}
m
where tr denotes the regular trace tr : D — K. Then

M* = 75™M and |M*/M| = |M/apM|™~! = |F|™m=1),



R complete dvr, M < D valuation ring, dimg (D) = m?.

Matrix rings.

All maximal R-orders A in D™*™ are conjugate to M™*". With
respect to the reduced trace bilinear form, we obtain

A* = 75™A and hence |A*/A| = |F|" (=)



R complete dvr, M < D valuation ring, dimg (D) = m?.

Matrix rings.

All maximal R-orders A in D™*™ are conjugate to M™*". With
respect to the reduced trace bilinear form, we obtain

A* = 75™A and hence |A*/A| = |F|" (=)

» Know (nm)? = dimg (D"*") so s = nm, and |F|.
» Calculate A and A* and therewith ¢ = (nm)? — n?m.
» Thenm = (s —t)/s = s —t/s.



The discriminant of a maximal order.

» E = D™*" central simple algebra over number field
K = Z(E) of dimension s? = (nm)?

» m,, the p-local Schur index of D, so
E, = DZ“X"“ with ngmyg, = s

» A be a maximal R-order in £

> t, the number of composition factors = R/ of the finite
R-module A*/A.

Theorem.

> i, >0 m, #1
> m, = (s —t,)/s=s—1t,/s

» The global Schur index is

m =lcm {m,, | p € 8} U {m, | o real place of K}



Rational calculation.

Theorem (see Yamada, The Schur subgroup of the
Brauer group).

Let £ = D™*™ be the endomorphism ring of a rational
representation of a finite group. Then D has uniformly
distributed invariants. This means that Z(D) is Galois over Q
and m,, does not depend on the prime ideal p of Z(D) = K,
but only on the prime numberp € o NQ = pZ

my = my, forany o IR, pNQ = pZ.



Discriminant maximal order A over Z.

» E=D"" K =Z(D)=Z(E), s> = (mn)? = dimg (F).
» Assume that D has uniformly distributed invariants.

> my,:=mgforany p IR, oNQ = pZ.

> p IR = Np:= Ngjq(p) ap = {p | N Q= pZ}|.



Discriminant maximal order A over Z.

E=Dv", K =Z7(D)=Z(E), s* = (mn)? = dimg (E).
Assume that D has uniformly distributed invariants.

my :=my, forany p IR, pNQ = pZ.

p IR = Np:= Ng/q(p), ap := {p | pNQ = pZ}|.

Let A be a maximal order in E.

A? :={x € E | tryeq(z)) € Zforall A € A} = RFA*.

§ := disc(K/Q) = |R*/R).
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Discriminant maximal order A over Z.

» E=Dv" K =Z7(D) = Z(E), s> = (mn)? = dimg (E).
» Assume that D has uniformly distributed invariants.
> my, :=m,forany p < R, pNQ = pZ.
> pdR= Np:=Ngjq(p) ap:=[{p | o NQ = pZ}|.
» Let A be a maximal order in E.
> A7 :={x € E | treq(z)) € Zforall A € A} = R¥A*.
> 0 :=disc(K/Q) = |R*/R).
Main result

|A#/A| _ 552 HNI(’IPS(S_tp)
p

where t, = s/m,.



Computation of maximal order: direct approach.

> Let A = (A1,...,\z2;) C E be any order.
» Then there is a maximal order M in E such that

ACMc M*CA*.

» A*/Ais a finite R-module.



Computation of maximal order: direct approach.

v

Let A = (A1,...,A\2,) C E be any order.
» Then there is a maximal order M in E such that

ACMc M*CA*.

A* /A is a finite R-module.
Algorithm:
Loop over the minimal submodules A € S C A*.

If M(S) ¢ A* then S is not contained in an order.
Otherwise M (.S) is an overorder of A.

Replace A by M(S) and continue.

If no M(S) is an order, then A is already maximal.

vV vV vV VvV vV vV VY

Compute the multiplicative closure M(S) = (S, S%,S3,...



Zassenhaus’ computation of maximal order.

Let A be an order in E.

» The arithmetic radical AR(A) of A is the intersection of alll
maximal ideals of A that contain |A*/A].
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Let A be an order in E.

» The arithmetic radical AR(A) of A is the intersection of alll
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» Then AR(A) is an ideal, hence A C O;(AR(A)) :=
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» If A is hereditary, but not maximal, say A, is not maximal
(p prime ideal of R), then O;(I) is a proper overorder of A
for any maximal twosided ideal I of A that contains .



Zassenhaus’ computation of maximal order.

Let A be an order in E.

» The arithmetic radical AR(A) of A is the intersection of alll
maximal ideals of A that contain |A*/A].

» Then AR(A) is an ideal, hence A C O;(AR(A)) =
O(A) :={zx € E|xzAR(A) C AR(A)}.

» A =O(A) ifand only if A is hereditary.

» Any overorder of a hereditary order is hereditary.

» If A is hereditary, but not maximal, say A, is not maximal
(p prime ideal of R), then O;(I) is a proper overorder of A
for any maximal twosided ideal I of A that contains .

» all rational primes p | |A*/A| are handled separately
» Prime after prime we compute a p-maximal order.
» Involves only linear equations modulo p.



Idealiser of maximal ideal of hereditary order.

R R R TR R R
TR R R TR R R
A=| ™R 7R R [ 1=| R 7R R
TR TR R ™R ™R R
R R R
R R R
R

TR ... mR R



Example, E = Mats(Q[¢7 + ¢ 1)).

Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 719436, Discriminant 72436
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Example, E = Mats(Q[¢7 + ¢ 1)).

Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 719436, Discriminant 72436
Order is already hereditary

v
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Example, E = Mats(Q[¢7 + ¢ 1)).

>

vVvyVvVvyVvyVvyYyvyy

Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 719436, Discriminant 72436
Order is already hereditary

For prime 7: 2 maximal ideals

Idealiser of first ideal is proper overorder

and 7-maximal, so finished with prime 7



Example, E = Mats(Q[¢7 + ¢ 1)).

>

VvV VvV VvV VvYyVvVVvVvYVvYyyYy

Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 719436, Discriminant 72436
Order is already hereditary

For prime 7: 2 maximal ideals

Idealiser of first ideal is proper overorder
and 7-maximal, so finished with prime 7
For prime 43: 6 maximal ideals

Idealiser of first ideal is proper overorder



Example, E = Mats(Q[¢7 + ¢ 1)).

>

VYV VYV VvV VvV VvVVvVYVYY

Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 719436, Discriminant 72436
Order is already hereditary

For prime 7: 2 maximal ideals

Idealiser of first ideal is proper overorder
and 7-maximal, so finished with prime 7

For prime 43: 6 maximal ideals

Idealiser of first ideal is proper overorder
and has 5 maximal ideals

Idealiser of second ideal is proper overorder



Example, E = Mats(Q[¢7 + ¢ 1)).

>

VYV VYV VYV VvV VVVvVVvYYVvyyYy

Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 719436, Discriminant 72436
Order is already hereditary

For prime 7: 2 maximal ideals

Idealiser of first ideal is proper overorder
and 7-maximal, so finished with prime 7

For prime 43: 6 maximal ideals

Idealiser of first ideal is proper overorder
and has 5 maximal ideals

Idealiser of second ideal is proper overorder
and has 4 maximal ideals

Idealiser of third ideal is proper overorder



Example, £ = Mats(Q[¢r + ¢-71)).

>

vV VvV VYV VvV V VY VYV VvV VVVYY

Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 719435 Discriminant 72436
Order is already hereditary

For prime 7: 2 maximal ideals

Idealiser of first ideal is proper overorder
and 7-maximal, so finished with prime 7

For prime 43: 6 maximal ideals

Idealiser of first ideal is proper overorder
and has 5 maximal ideals

Idealiser of second ideal is proper overorder
and has 4 maximal ideals

Idealiser of third ideal is proper overorder
and 43-maximal, so finished with prime 43
Discriminant of maximal order is 1



Situation for 43R = @12 s3.

R R
'A_<43R R)’

6 maximal ideals:

([ @ R\, ( R R\._
I’<43R R>’J’<43R pz‘)ZLQ’?’

-1
Idealiser of I; isA1—< L >~( R R).

v

v

v

43R R p2p3 R
A1 has 5 maximal ideals: p;A; and

I = pi R = E R fori =2, 3.
! p2p3 R ! 203 ©i

Idealiser of I is conjugate to Ay = < rI )

v

v

v

p3 R
has maximal ideals A2, p2As and 1Y, J5.
The idealiser of I3 is maximal.

v

v



Cyclotomic orders.

> pprime, (a) = (Z/pZ)*,n € Z
> 2, € ZP~1)*(=1) companion matrix of the p-th cyclotomic

polynomial
0 1 0 0
o 0 1 ... 0
> A= (diag(zp, 20, ..., 28" )| 0 e e e <
0O ... 0 0 1
o ... 0 O

7,(p—1)*x(p—1)*

» E = QA central simple Q-algebra of dimension (p — 1)



Cyclotomic orders.

> pprime, (a) = (Z/pZ)*,n € Z
> 2, € ZP~1)*(=1) companion matrix of the p-th cyclotomic

polynomial
0 1 0 0
0 0 1 0
> A= <diag(zp,zg,...,zgp_2), o e s
0 0 0 1
0 0 0

7,(p—1)*x(p—1)*
» E = QA central simple Q-algebra of dimension (p — 1)

p="T.
n| 2 2 6 -6 7 10 -10
si | 2373 | 237000 | 233672 | 233600 | 1 | 235676 | 23506730




