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Pl and Gl properties

Denote by F[x1, X2, - - - , Xp] the polynomial ring over the field F
with the non-commuting indeterminates x1, Xo, - - - , Xp.
Let A be an algebra over the field F and S C A a subset.

Definition (Polynomial identities)

We say that S satisfies a polynomial identity (Pl) if there exists
a nonzero polynomial f(x1, X2, -+ ,Xm) € F[X1, X2, -+ , Xp] Such
thatf(s1,S2,--- ,8n) =0 forall sj € S.

Denote by U(S) the set of units in the subset S of A.
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with the non-commuting indeterminates x1, Xo, - - - , Xp.
Let A be an algebra over the field F and S C A a subset.

Definition (Polynomial identities)

We say that S satisfies a polynomial identity (Pl) if there exists
a nonzero polynomial f(x1, X2, -+ ,Xm) € F[X1, X2, -+ , Xp] Such
thatf(s1,S2,--- ,8n) =0 forall sj € S.

Denote by U(S) the set of units in the subset S of A.

Definition (Group identities)

U(S) is said to satisfy a group identity (Gl) if there exists a
nontrivial word w(xy, Xo, - - - , Xn) in the free group generated by
Xq, X2, -, Xp SUCh that w(uq, U, --- ,up) =1 for all

Ui, Us, -+, Up € U(S).



symmetric elements and Pl properties

Let x be an involution on A. An element x € Ais called
symmetric (skew symmetric) with respect to x, if x* = x

(x* = —x). Denote AT and A~ the set of symmetric and skew
symmetric elements of A, respectively.

Theorem (Amitsur, 1968)

Let A be an algebra with an involution x. A is Pl if and only if A*
(A7) is PI

Of course, the polynomial identity which is satisfied by the
algebra is not necessarily the same as the one which is
satisfied by the symmetric elements.



symmetric and skew-symmetric elements

It is well-known that group algebra FG is an algebra with
involution.

Definition
The canonical involution of FG is defined by
X=D> gegggd — X" = EgeGagg_1'

Denote by G, = {g € G | g = g*} the symmetric elements of
G. Then FGT is generated as an F-module by the set

{9+9" | g€ G g#G.}UG.
and FG™ is generated as an F-module by the set
{9-g" | geG}.

Then FG' is a Jordan algebra and FG™ is a Lie algebra.



Nilpotency, Lie nilpotency

Definition (Lie nilpotency)

The subset S C FG is Lie nilpotent, if for some n > 2,

[X1,X2,- -+ ,xn] = 0 forall x; € S, where [x1, Xo] = X1Xo — XoXq,
and [xi, Xz, , Xp] = [[X1, X2, -+, Xn—1], Xn].

The smallest such n is called the Lie nilpotency index of S and
is denoted by t(S).

The corresponding group identity is the nilpotency.



Nilpotency, Lie nilpotency

Definition (Lie nilpotency)

The subset S C FG is Lie nilpotent, if for some n > 2,

[X1,X2,- -+ ,xn] = 0 forall x; € S, where [x1, Xo] = X1Xo — XoXq,
and [xy, X, -+, Xn] = [[X1, X2, -+ + , Xn—1], Xn]-

The smallest such n is called the Lie nilpotency index of S and
is denoted by t(S).

The corresponding group identity is the nilpotency.

Definition (nilpotency)

The subset S C U(FG) is nilpotent, if for some n > 2,
(X1,%2, - ,Xn) = 1 forall x; € S, where (x1, X2) = X; ' X5 ' X1 Xa,
and (x1, X2, =+, Xn) = ((X1, X2, , Xn—1), Xn)-



Commutativity of symmetric and skew-symmetric
elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of
characteristic different from 2. Then, FG" is a commutative ring
if and only if G is a Hamiltonian 2-group.
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Commutativity of symmetric and skew-symmetric
elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of
characteristic different from 2. Then, FG" is a commutative ring
if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char R # 2,4 and let G
be a group. Then RG~ is commutative if and only if one of the
following conditions holds:

» G is abelian;
» A= (g e G|lg| # 2) is a normal abelian subgroup of G;
» G contains an elementary abelian 2-subgroup of index 2.




Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with
char F +# 2. Then FG* (FG™) is Lie nilpotent if and only if FG
is Lie nilpotent.
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Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with

char F +# 2. Then FG* (FG™) is Lie nilpotent if and only if FG
is Lie nilpotent.

Theorem (Lee, 1999)
Suppose Qg £ G and char F = p # 2. Then the following are
equivalent:

» FG is Lie nilpotent;

» FG™ is Lie nilpotent;

» G is nilpotent and p-abelian.
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and only if either
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Theorem (Lee, 1999)

Suppose Qs C G and char F # 2. Then FG™ is Lie nilpotent if
and only if either
» char F=p>2and G= Qs x E x P, where E?> =1 and P
is a finite p-group;
» char F=0and G = Qg x E, where E? = 1.
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» char F=p>2and G= Qs x E x P, where E?> =1 and P
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» char F=0and G= Qg x E, where E> = 1.

Theorem (Giambruno, Sehgal 2006)
Let F be a field char F # 2, and let G be a group. Then FG~ is
Lie nilpotent if and only if either
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Lie nilpotency

Theorem (Lee, 1999)

Suppose Qs C G and char F # 2. Then FG™ is Lie nilpotent if
and only if either
» char F=p>2and G= Qs x E x P, where E?> =1 and P
is a finite p-group;
» char F=0and G= Qg x E, where E> = 1.

Theorem (Giambruno, Sehgal 2006)
Let F be a field char F # 2, and let G be a group. Then FG~ is
Lie nilpotent if and only if either
» G has a nilpotent p-abelian normal subgroup H with
(G\H? =1,
» G has an elementary abelian 2-subgroup of index 2;

» the p-elements of G form a finite normal subgroup P and
G/P is an elementary abelian 2-group.




Lie nilpotency indices

Theorem (Bovdi, Spinelli, 2004, Shalev, 1993 p > 3)

Let FG be Lie nilpotent. Then t-(FG) < |G| + 1 equality holds if
and only if either G’ is cyclic, or p = 2, G' is a noncentral
elementary abelian group of order 4 and v3(G) # 1. Moreover if
tH(FG) = |G| + 1 then t(FG) = t-(FG).



Lie nilpotency indices

Theorem (Bovdi, Spinelli, 2004, Shalev, 1993 p > 3)

Let FG be Lie nilpotent. Then t-(FG) < |G| + 1 equality holds if
and only if either G’ is cyclic, or p = 2, G' is a noncentral
elementary abelian group of order 4 and v3(G) # 1. Moreover if
tH(FG) = |G| + 1 then t(FG) = t-(FG).

Theorem (Balogh, Juhasz, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic.
Then t((FG)*) = |G'| + 1 ifand only if G' is cyclic.
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Lie nilpotency indices

Theorem (Balogh, Juhasz, 2010)

Let FG be a group algebra of characteristic p > 2 such that
(FG)™ is Lie nilpotent but FG is not, and assume that the Sylow
p-subgroup P of G is of order p" withn > 1. Then

» 1+ n(p—1) < H(FG)) < tn(P);



Lie nilpotency indices

Theorem (Balogh, Juhasz, 2010)

Let FG be a group algebra of characteristic p > 2 such that
(FG)™ is Lie nilpotent but FG is not, and assume that the Sylow
p-subgroup P of G is of order p" withn > 1. Then

» 14+ n(p—1) < t((FG)") < ty(P);
» if P is a powerful group, then t((FG)™) = tn(P);



Lie nilpotency indices

Theorem (Balogh, Juhasz, 2010)

Let FG be a group algebra of characteristic p > 2 such that
(FG)™ is Lie nilpotent but FG is not, and assume that the Sylow
p-subgroup P of G is of order p" withn > 1. Then
» 14+ n(p—1) <t(FG)") < tn(P);
» if P is a powerful group, then t((FG)™) = tn(P);
» if P is abelian, then for all k > 2 the subspace v*((FG)") is
spanned by all elements of the form
(hy — Yy (b — h Y1 — &?)a, where hj € P and ais a
noncentral 2-element of G.




Commutativity under involutions of the first kind

Let ¢ be an involution of G. Then the F-linear extension of ¢

X = Zagg — X¥ = Zaggo(g)

is an involution of FG.

@ is an involution of the first kind.
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is commutative if and only if one of the following conditions
holds:
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Commutativity under involutions of the first kind

Let ¢ be an involution of G. Then the F-linear extension of ¢

X = Zagg — X? = ZO@P(Q)

is an involution of FG.

@ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char R # 2,3, 4. Suppose G
is a non-abelian group and ¢ is an involution on G. Then RG,
is commutative if and only if one of the following conditions
holds:

» K= (g€ Glg¥¢ G, ) is an abelian subgroup of index 2 in
G;
» G, contains an abelian subgroup of index 2.



LC group

Definition (LC group)

Let G be a group and Z(G) its center. G is said to be LC group
(lack of commutativity) if any pair of elements g, h € G, it is the
case that gh = hg ifand only if g € Z(G) or h € Z(G) or

ghe Z(G).



LC group

Definition (LC group)

Let G be a group and Z(G) its center. G is said to be LC group
(lack of commutativity) if any pair of elements g, h € G, it is the
case that gh = hg ifand only if g € Z(G) or h € Z(G) or

ghe Z(G).

Theorem

Let G be a group and Z(G) its center. G is LC group if and only
if it is a finite 2-group such that G/Z(G) = C, x Cy, and the
derived subgroup G' = (s | s? =1).




LC-involution

For an LC-group G we have an involution ® : G — G defined by

g =19 1TgeZ(G)
gs, otherwise.

Then © is an anti-automorphism of order two. Thus the linear
extension of this anti-automorphism into FG

X=> aggr x =Y agg®

is an involution.



Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2006)

Let o be an involution on a non-abelian group G and let R be a
commutative ring with char R # 2. The following are
equivalent:
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Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2006)

Let o be an involution on a non-abelian group G and let R be a
commutative ring with char R # 2. The following are
equivalent:

> F:’G;; is commutative;

» The group G has the LC property, a unique nontrivial
commutator s and the involution ¢ = ©.



Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2006)

Let o be an involution on a non-abelian group G and let R be a
commutative ring with char R # 2. The following are
equivalent:
» RG] is commutative;
» The group G has the LC property, a unique nontrivial
commutator s and the involution ¢ = ©.
» G/Z(G) = G x Gy, (g) = g ifg € Z(G) and otherwise
o(g) = h~'ghforallh € G with (g, h) # 1.



Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char R = 2. Assume that for
allg € G, g? € G,. Then RG] is commutative if and only if one
of the following conditions holds:



Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2004)
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allg € G, g? € G,. Then RG] is commutative if and only if one
of the following conditions holds:

» G contains an abelian subgroup A of index 2 and
be G\ G, with b®> € G, such that p(a) = b~'ab for all
acA.
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Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char R = 2. Assume that for
allg € G, g? € G,. Then RG] is commutative if and only if one
of the following conditions holds:

» G contains an abelian subgroup A of index 2 and
be G\ G, with b®> € G, such that p(a) = b~'ab for all
acA

» G contains a central subgroup Z such that G/Z is an
elementary abelian 2-group and the involution p : G — G
is given by o(g) = cgg, where ¢4 € Z and the following
properties are satisfied:

2 _q-
» cg=1;



Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char R = 2. Assume that for
allg € G, g? € G,. Then RG] is commutative if and only if one
of the following conditions holds:

» G contains an abelian subgroup A of index 2 and
be G\ G, with b®> € G, such that p(a) = b~'ab for all
acA
» G contains a central subgroup Z such that G/Z is an
elementary abelian 2-group and the involution p : G — G
is given by o(g) = cgg, where ¢4 € Z and the following
properties are satisfied:
> cG=1;
» cg=11ifandonlyifgec Z;



Commutativity of RG]

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char R = 2. Assume that for
allg € G, g? € G,. Then RG] is commutative if and only if one
of the following conditions holds:

» G contains an abelian subgroup A of index 2 and
be G\ G, with b®> € G, such that p(a) = b~'ab for all
acA.

» G contains a central subgroup Z such that G/Z is an
elementary abelian 2-group and the involution p : G — G
is given by o(g) = cgg, where ¢4 € Z and the following
properties are satisfied:

> cG=1;

» cg=11ifandonlyifgec Z;

> Cgn = CgCn(g, h) and if (g, h) # 1, we have that cyy = Cg, Ch
or(g,h).



Lie nilpotency of RG}

Theorem (Giambruno, Polcino Milies, Sehgal, 2009)

Let G be a group with no 2-elements and F a field of

characteristic p # 2. Then, (FG)™ is Lie nilpotent if and only if
FG is Lie nilpotent.



Lie nilpotency of RG}

Theorem (Giambruno, Polcino Milies, Sehgal, 2009)

Let G be a group with no 2-elements and F a field of
characteristic p # 2. Then, (FG)™ is Lie nilpotent if and only if
FG is Lie nilpotent.

Theorem (Lee, Sehgal, Spinelli, 2009)

Let F be a field of characteristic p > 2, and let G be a group
with involution *, Suppose that FG is not Lie nilpotent. Then
FGT is Lie nilpotent if and only if G is nilpotent, and G has a
finite normal *-invariant p-subgroup N such that G/N is an
SLC-group.




Involutions of the second kind

Definition (oriented involution)

Define the map ® : FG — FG by the following way. Let
o:G— {1,-1} a group homomorphism. Set

X = Zagg — x® = Zaga(g)g_1.



Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a
non-abelian group with involution ¢ and non-trivial orientation
homomorphism o with kernel N. Then RG" is a commutative
ring if and only if one of the following conditions holds:
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Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a
non-abelian group with involution ¢ and non-trivial orientation
homomorphism o with kernel N. Then RG" is a commutative
ring if and only if one of the following conditions holds:

» N is an abelian group and G\ N C G,;



Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a
non-abelian group with involution ¢ and non-trivial orientation
homomorphism o with kernel N. Then RG" is a commutative
ring if and only if one of the following conditions holds:
» N is an abelian group and G\ N C G,;
» G and N have the LC property, and there exists a unique
nontrivial commutator s such that the involution ¢ is given
by

g if geNNnZ(G)orge (G\N)\Z(G).
@(Q)Z{

sg otherwise.



Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a
non-abelian group with involution ¢ and non-trivial orientation
homomorphism o with kernel N. Then RG" is a commutative
ring if and only if one of the following conditions holds:
» N is an abelian group and G\ N C G,;
» G and N have the LC property, and there exists a unique
nontrivial commutator s such that the involution ¢ is given
by

(g) = g if geNNnZ(G)orge (G\N)\Z(G).
9= sg otherwise.

» char R =4, G has the LC property, and there exists a
unique nontrivial commutator s such that the involution
p=0.



Commutative symmetric units

Let * be the canonical involution.
Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a
commutative ring of characteristic p. Then U(FG") forms a
multiplicative group if and only if p = 2, G is a direct product of
an elementary abelian 2-group and a group H satisfying one of
the following conditions:
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Commutative symmetric units

Let * be the canonical involution.
Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a
commutative ring of characteristic p. Then U(FG") forms a
multiplicative group if and only if p = 2, G is a direct product of
an elementary abelian 2-group and a group H satisfying one of
the following conditions:

» H has an abelian subgroup A of index 2 and an element
be G\A |bj=4andb'ab=a'forallac A;

» H= Qg x C4; H= Qg x Qg;

> H=(x,y|x*=y*=1,x>=(y,x) ) YQg;

> H=HE2, H=Hg.




Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable
integral domain of characteristic p > 0. Then U(KG™") is a
commutative group if and only if G satisfies at least one of the
following conditions:
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Let G be a torsion group and K be a commutative G-favourable
integral domain of characteristic p > 0. Then U(KG™") is a
commutative group if and only if G satisfies at least one of the
following conditions:

» G is abelian;




Commutative symmetric units
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Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable
integral domain of characteristic p > 0. Then U(KG™") is a
commutative group if and only if G satisfies at least one of the
following conditions:
» G is abelian;
» p # 2 and G is a hamiltonian 2-group;
» p =2 and G is the direct product of E and a group H for
which at least one of the following holds:
» H has an abelian subgroup A of index 2 and an element b
of order 4 such that conjugation by b inverts each element
of A;
» H= Qg x C4; H= Qg x Qg;
> H=(xyx* =y* =1, =(y,x) ) YQs;
» H is isomorphic to one of the groups Hss and Hys.




Nilpotent symmetric units

Theorem (Giambruno, Sehgal, Valenti, 1998)

Let F be a field of characteristic p # 2 and G a torsion group.
Then U(FG™) is nilpotent if and only if FG* is Lie nilpotent.
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Theorem (Lee, 2003)
Let F be a field of characteristic p # 2 and G a torsion group.
Suppose Qg ¢ G. Then the following are equivalent:

» U(FGM) is nilpotent;

» U(FQG) is nilpotent;

» G is nilpotent and p-abelian.

Theorem (Lee, 2003)
Let F be a field of characteristic p # 2 and G a torsion group
containing Qg. Then U(FG™) is nilpotent if and only if
» p>2and G= Qg x E x P where E is an elementary
abelian 2-group and P is a finite p-group;
» p=0and G= Qg x E, where E is an elementary abelian
2-group.




Nilpotency class of symmetric units

Theorem (Balogh, Juhasz, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. If
G is a torsion group, then cl(U(FG*)) = |G| ifand only if G' is
cyclic.
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Let FG be a Lie nilpotent group algebra of odd characteristic. If
G is a torsion group, then cl(U(FG")) = |G| if and only if G is
cyclic.

Theorem (Balogh, Juhasz, 2010)

Let FG be a group algebra of characteristic p > 2 such that
FG™ is Lie nilpotent but FG is not, and assume that the Sylow
p-subgroup P of G is of order p" withn > 1. If t(FGT) = ty(P),
thencl(U(FG")) = t(FG™) — 1.




