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PI and GI properties

Denote by F [x1, x2, · · · , xn] the polynomial ring over the field F
with the non-commuting indeterminates x1, x2, · · · , xn.
Let A be an algebra over the field F and S ⊆ A a subset.

Definition (Polynomial identities)

We say that S satisfies a polynomial identity (PI) if there exists
a nonzero polynomial f (x1, x2, · · · , xm) ∈ F [x1, x2, · · · , xn] such
that f (s1, s2, · · · , sn) = 0 for all si ∈ S.

Denote by U(S) the set of units in the subset S of A.

Definition (Group identities)

U(S) is said to satisfy a group identity (GI) if there exists a
nontrivial word w(x1, x2, · · · , xn) in the free group generated by
x1, x2, · · · , xn such that w(u1, u2, · · · , un) = 1 for all
u1, u2, · · · , un ∈ U(S).
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symmetric elements and PI properties

Let ∗ be an involution on A. An element x ∈ A is called
symmetric (skew symmetric) with respect to ∗, if x∗ = x
(x∗ = −x). Denote A+ and A− the set of symmetric and skew
symmetric elements of A, respectively.

Theorem (Amitsur, 1968)

Let A be an algebra with an involution ∗. A is PI if and only if A+

(A−) is PI.

Of course, the polynomial identity which is satisfied by the
algebra is not necessarily the same as the one which is
satisfied by the symmetric elements.



symmetric and skew-symmetric elements

It is well-known that group algebra FG is an algebra with
involution.

Definition
The canonical involution of FG is defined by
x =

∑
g∈G αgg → x∗ =

∑
g∈G αgg−1.

Denote by G∗ = {g ∈ G | g = g∗} the symmetric elements of
G. Then FG+ is generated as an F -module by the set

{g + g∗ | g ∈ G, g 6= G∗} ∪G∗

and FG− is generated as an F -module by the set

{g − g∗ | g ∈ G}.

Then FG+ is a Jordan algebra and FG− is a Lie algebra.



Nilpotency, Lie nilpotency

Definition (Lie nilpotency)

The subset S ⊆ FG is Lie nilpotent, if for some n ≥ 2,
[x1, x2, · · · , xn] = 0 for all xi ∈ S, where [x1, x2] = x1x2 − x2x1,
and [x1, x2, · · · , xn] = [[x1, x2, · · · , xn−1], xn].
The smallest such n is called the Lie nilpotency index of S and
is denoted by t(S).

The corresponding group identity is the nilpotency.

Definition (nilpotency)

The subset S ⊆ U(FG) is nilpotent, if for some n ≥ 2,
(x1, x2, · · · , xn) = 1 for all xi ∈ S, where (x1, x2) = x−1

1 x−1
2 x1x2,

and (x1, x2, · · · , xn) = ((x1, x2, · · · , xn−1), xn).
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Commutativity of symmetric and skew-symmetric
elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of
characteristic different from 2. Then, FG+ is a commutative ring
if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char R 6= 2, 4 and let G
be a group. Then RG− is commutative if and only if one of the
following conditions holds:

I G is abelian;
I A = 〈 g ∈ G||g| 6= 2 〉 is a normal abelian subgroup of G;
I G contains an elementary abelian 2-subgroup of index 2.
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Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with
char F 6= 2. Then FG+ (FG−) is Lie nilpotent if and only if FG
is Lie nilpotent.

Theorem (Lee, 1999)

Suppose Q8 6⊆ G and char F = p 6= 2. Then the following are
equivalent:

I FG is Lie nilpotent;
I FG+ is Lie nilpotent;
I G is nilpotent and p-abelian.
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Lie nilpotency

Theorem (Lee, 1999)

Suppose Q8 ⊆ G and char F 6= 2. Then FG+ is Lie nilpotent if
and only if either

I char F = p > 2 and G ∼= Q8 × E × P, where E2 = 1 and P
is a finite p-group;

I char F = 0 and G ∼= Q8 × E, where E2 = 1.

Theorem (Giambruno, Sehgal 2006)

Let F be a field char F 6= 2, and let G be a group. Then FG− is
Lie nilpotent if and only if either

I G has a nilpotent p-abelian normal subgroup H with
(G \ H)2 = 1;

I G has an elementary abelian 2-subgroup of index 2;
I the p-elements of G form a finite normal subgroup P and

G/P is an elementary abelian 2-group.
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Lie nilpotency indices

Theorem (Bovdi, Spinelli, 2004, Shalev, 1993 p > 3)

Let FG be Lie nilpotent. Then tL(FG) ≤ |G′|+ 1 equality holds if
and only if either G′ is cyclic, or p = 2, G′ is a noncentral
elementary abelian group of order 4 and γ3(G) 6= 1. Moreover if
tL(FG) = |G′|+ 1 then t(FG) = tL(FG).

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic.
Then t((FG)+) = |G′|+ 1 if and only if G′ is cyclic.
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Lie nilpotency indices

Theorem (Balogh, Juhász, 2010)

Let FG be a group algebra of characteristic p > 2 such that
(FG)+ is Lie nilpotent but FG is not, and assume that the Sylow
p-subgroup P of G is of order pn with n ≥ 1. Then

I 1 + n(p − 1) ≤ t((FG)+) ≤ tN(P);
I if P is a powerful group, then t((FG)+) = tN(P);
I if P is abelian, then for all k ≥ 2 the subspace γk ((FG)+) is

spanned by all elements of the form
(h1 − h−1

1 ) · · · (hk − h−1
k )(1− a2)a, where hi ∈ P and a is a

noncentral 2-element of G.
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Commutativity under involutions of the first kind

Definition
Let ϕ be an involution of G. Then the F-linear extension of ϕ

x =
∑

αgg 7→ xϕ =
∑

αgϕ(g)

is an involution of FG.

ϕ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char R 6= 2, 3, 4. Suppose G
is a non-abelian group and ϕ is an involution on G. Then RG−

ϕ

is commutative if and only if one of the following conditions
holds:

I K = 〈 g ∈ G|g 6∈ Gϕ 〉 is an abelian subgroup of index 2 in
G;

I Gϕ contains an abelian subgroup of index 2.
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LC group

Definition (LC group)

Let G be a group and Z (G) its center. G is said to be LC group
(lack of commutativity) if any pair of elements g, h ∈ G, it is the
case that gh = hg if and only if g ∈ Z (G) or h ∈ Z (G) or
gh ∈ Z (G).

Theorem
Let G be a group and Z (G) its center. G is LC group if and only
if it is a finite 2-group such that G/Z (G) ∼= C2 × C2 and the
derived subgroup G′ = 〈 s | s2 = 1 〉.
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LC-involution

For an LC-group G we have an involution ¯ : G → G defined by

g¯ =

{
g, if g ∈ Z (G);

gs, otherwise.

Then ¯ is an anti-automorphism of order two. Thus the linear
extension of this anti-automorphism into FG

x =
∑

αgg 7→ x¯ =
∑

αgg¯

is an involution.



Commutativity of RG+
ϕ

Theorem (Jespers, Ruiz Marin, 2006)

Let ϕ be an involution on a non-abelian group G and let R be a
commutative ring with char R 6= 2. The following are
equivalent:

I RG+
ϕ is commutative;

I The group G has the LC property, a unique nontrivial
commutator s and the involution ϕ = ¯.

I G/Z (G) ∼= C2 × C2, ϕ(g) = g if g ∈ Z (G) and otherwise
ϕ(g) = h−1gh for all h ∈ G with (g, h) 6= 1.
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Commutativity of RG+
ϕ

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char R = 2. Assume that for
all g ∈ G, g2 ∈ Gϕ. Then RG+

ϕ is commutative if and only if one
of the following conditions holds:

I G contains an abelian subgroup A of index 2 and
b ∈ G \Gϕ with b2 ∈ Gϕ such that ϕ(a) = b−1ab for all
a ∈ A.

I G contains a central subgroup Z such that G/Z is an
elementary abelian 2-group and the involution ϕ : G → G
is given by ϕ(g) = cgg, where cg ∈ Z and the following
properties are satisfied:

I c2
g = 1;

I cg = 1 if and only if g ∈ Z;
I cgh = cgch(g, h) and if (g, h) 6= 1, we have that cgh = cg , ch

or (g, h).
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elementary abelian 2-group and the involution ϕ : G → G
is given by ϕ(g) = cgg, where cg ∈ Z and the following
properties are satisfied:

I c2
g = 1;

I cg = 1 if and only if g ∈ Z;
I cgh = cgch(g, h) and if (g, h) 6= 1, we have that cgh = cg , ch
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Lie nilpotency of RG+
ϕ

Theorem (Giambruno, Polcino Milies, Sehgal, 2009)

Let G be a group with no 2-elements and F a field of
characteristic p 6= 2. Then, (FG)+ is Lie nilpotent if and only if
FG is Lie nilpotent.

Theorem (Lee, Sehgal, Spinelli, 2009)

Let F be a field of characteristic p > 2, and let G be a group
with involution *. Suppose that FG is not Lie nilpotent. Then
FG+ is Lie nilpotent if and only if G is nilpotent, and G has a
finite normal *-invariant p-subgroup N such that G/N is an
SLC-group.
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Involutions of the second kind

Definition (oriented involution)

Define the map ~ : FG → FG by the following way. Let
σ : G → {1,−1} a group homomorphism. Set

x =
∑

αgg 7→ x~ =
∑

αgσ(g)g−1.



Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a
non-abelian group with involution ϕ and non-trivial orientation
homomorphism σ with kernel N. Then RG+ is a commutative
ring if and only if one of the following conditions holds:

I N is an abelian group and G \ N ⊂ Gϕ;
I G and N have the LC property, and there exists a unique

nontrivial commutator s such that the involution ϕ is given
by

ϕ(g) =

{
g if g ∈ N ∩ Z (G) or g ∈ (G \ N) \ Z (G).

sg otherwise.

I char R = 4, G has the LC property, and there exists a
unique nontrivial commutator s such that the involution
ϕ = ¯.
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Commutative symmetric units

Let * be the canonical involution.

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a
commutative ring of characteristic p. Then U(FG+) forms a
multiplicative group if and only if p = 2, G is a direct product of
an elementary abelian 2-group and a group H satisfying one of
the following conditions:

I H has an abelian subgroup A of index 2 and an element
b ∈ G \ A, |b| = 4 and b−1ab = a−1 for all a ∈ A;

I H = Q8 × C4; H = Q8 ×Q8;
I H = 〈 x , y |x4 = y4 = 1, x2 = (y , x) 〉YQ8;
I H = H32

32 , H = H64
245.
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Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable
integral domain of characteristic p ≥ 0. Then U(KG+) is a
commutative group if and only if G satisfies at least one of the
following conditions:

I G is abelian;
I p 6= 2 and G is a hamiltonian 2-group;
I p = 2 and G is the direct product of E and a group H for

which at least one of the following holds:
I H has an abelian subgroup A of index 2 and an element b

of order 4 such that conjugation by b inverts each element
of A;

I H = Q8 × C4; H = Q8 ×Q8;
I H = 〈 x , y |x4 = y4 = 1, x2 = (y , x) 〉YQ8;
I H is isomorphic to one of the groups H32

32 and H64
245.
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Nilpotent symmetric units

Theorem (Giambruno, Sehgal, Valenti, 1998)

Let F be a field of characteristic p 6= 2 and G a torsion group.
Then U(FG+) is nilpotent if and only if FG+ is Lie nilpotent.



Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic p 6= 2 and G a torsion group.
Suppose Q8 6⊆ G. Then the following are equivalent:

I U(FG+) is nilpotent;
I U(FG) is nilpotent;
I G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Let F be a field of characteristic p 6= 2 and G a torsion group
containing Q8. Then U(FG+) is nilpotent if and only if

I p > 2 and G ∼= Q8 × E × P where E is an elementary
abelian 2-group and P is a finite p-group;

I p = 0 and G ∼= Q8 × E, where E is an elementary abelian
2-group.
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Nilpotency class of symmetric units

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. If
G is a torsion group, then cl(U(FG+)) = |G′| if and only if G′ is
cyclic.

Theorem (Balogh, Juhász, 2010)

Let FG be a group algebra of characteristic p > 2 such that
FG+ is Lie nilpotent but FG is not, and assume that the Sylow
p-subgroup P of G is of order pn with n ≥ 1. If t(FG+) = tN(P),
then cl(U(FG+)) = t(FG+)− 1.
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