Nilpotency indices of symmetric elements in group algebras

Zsolt Adam Balogh

University College of Nyiregyhaza baloghzs@nyf.hu

Arithmetic of Group Rings and Related Structures Aachen, March 22 - 26, 2010.

PI and GI properties

Denote by $F[x_1, x_2, \dots, x_n]$ the polynomial ring over the field F with the non-commuting indeterminates x_1, x_2, \dots, x_n . Let A be an algebra over the field F and $S \subseteq A$ a subset.

Definition (Polynomial identities)

We say that *S* satisfies a polynomial identity (PI) if there exists a nonzero polynomial $f(x_1, x_2, \dots, x_m) \in F[x_1, x_2, \dots, x_n]$ such that $f(s_1, s_2, \dots, s_n) = 0$ for all $s_i \in S$.

Denote by U(S) the set of units in the subset S of A.

Definition (Group identities)

U(S) is said to satisfy a group identity (GI) if there exists a nontrivial word $w(x_1, x_2, \dots, x_n)$ in the free group generated by x_1, x_2, \dots, x_n such that $w(u_1, u_2, \dots, u_n) = 1$ for all $u_1, u_2, \dots, u_n \in U(S)$.

PI and GI properties

Denote by $F[x_1, x_2, \dots, x_n]$ the polynomial ring over the field F with the non-commuting indeterminates x_1, x_2, \dots, x_n . Let A be an algebra over the field F and $S \subseteq A$ a subset.

Definition (Polynomial identities)

We say that *S* satisfies a polynomial identity (PI) if there exists a nonzero polynomial $f(x_1, x_2, \dots, x_m) \in F[x_1, x_2, \dots, x_n]$ such that $f(s_1, s_2, \dots, s_n) = 0$ for all $s_i \in S$.

Denote by U(S) the set of units in the subset S of A.

Definition (Group identities)

U(S) is said to satisfy a group identity (GI) if there exists a nontrivial word $w(x_1, x_2, \dots, x_n)$ in the free group generated by x_1, x_2, \dots, x_n such that $w(u_1, u_2, \dots, u_n) = 1$ for all $u_1, u_2, \dots, u_n \in U(S)$.

Let * be an involution on A. An element $x \in A$ is called symmetric (skew symmetric) with respect to *, if $x^* = x$ ($x^* = -x$). Denote A^+ and A^- the set of symmetric and skew symmetric elements of A, respectively.

Theorem (Amitsur, 1968)

Let A be an algebra with an involution *. A is PI if and only if A^+ (A^-) is PI.

Of course, the polynomial identity which is satisfied by the algebra is not necessarily the same as the one which is satisfied by the symmetric elements.

It is well-known that group algebra *FG* is an algebra with involution.

Definition

The canonical involution of FG is defined by $x = \sum_{g \in G} \alpha_g g \to x^* = \sum_{g \in G} \alpha_g g^{-1}$.

Denote by $G_* = \{g \in G \mid g = g^*\}$ the symmetric elements of *G*. Then *FG*⁺ is generated as an *F*-module by the set

$$\{oldsymbol{g}+oldsymbol{g}^* \hspace{0.1 in}| \hspace{0.1 in} oldsymbol{g}\in oldsymbol{G}, oldsymbol{g}
eq oldsymbol{G}_*\}\cup oldsymbol{G}_*$$

and FG^- is generated as an F-module by the set

$$\{g-g^* \mid g \in G\}.$$

Then FG^+ is a Jordan algebra and FG^- is a Lie algebra.

Definition (Lie nilpotency)

The subset $S \subseteq FG$ is Lie nilpotent, if for some $n \ge 2$, $[x_1, x_2, \dots, x_n] = 0$ for all $x_i \in S$, where $[x_1, x_2] = x_1x_2 - x_2x_1$, and $[x_1, x_2, \dots, x_n] = [[x_1, x_2, \dots, x_{n-1}], x_n]$. The smallest such n is called the Lie nilpotency index of S and is denoted by t(S).

The corresponding group identity is the nilpotency.

Definition (nilpotency)

The subset $S \subseteq U(FG)$ is nilpotent, if for some $n \ge 2$, $(x_1, x_2, \dots, x_n) = 1$ for all $x_i \in S$, where $(x_1, x_2) = x_1^{-1} x_2^{-1} x_1 x_2$, and $(x_1, x_2, \dots, x_n) = ((x_1, x_2, \dots, x_{n-1}), x_n)$.

Definition (Lie nilpotency)

The subset $S \subseteq FG$ is Lie nilpotent, if for some $n \ge 2$, $[x_1, x_2, \dots, x_n] = 0$ for all $x_i \in S$, where $[x_1, x_2] = x_1x_2 - x_2x_1$, and $[x_1, x_2, \dots, x_n] = [[x_1, x_2, \dots, x_{n-1}], x_n]$. The smallest such n is called the Lie nilpotency index of S and is denoted by t(S).

The corresponding group identity is the nilpotency.

Definition (nilpotency)

The subset $S \subseteq U(FG)$ is nilpotent, if for some $n \ge 2$, $(x_1, x_2, \dots, x_n) = 1$ for all $x_i \in S$, where $(x_1, x_2) = x_1^{-1} x_2^{-1} x_1 x_2$, and $(x_1, x_2, \dots, x_n) = ((x_1, x_2, \dots, x_{n-1}), x_n)$.

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, FG^+ is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2, 4$ and let G be a group. Then RG^- is commutative if and only if one of the following conditions holds:

G is abelian;

- $A = \langle g \in G ||g| \neq 2 \rangle$ is a normal abelian subgroup of G;
- G contains an elementary abelian 2-subgroup of index 2.

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, FG^+ is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2, 4$ and let G be a group. Then RG^- is commutative if and only if one of the following conditions holds:

G is abelian;

- $A = \langle g \in G ||g| \neq 2 \rangle$ is a normal abelian subgroup of G;
- ▶ G contains an elementary abelian 2-subgroup of index 2.

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, FG^+ is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2, 4$ and let G be a group. Then RG^- is commutative if and only if one of the following conditions holds:

G is abelian;

• $A = \langle g \in G ||g| \neq 2 \rangle$ is a normal abelian subgroup of G;

▶ G contains an elementary abelian 2-subgroup of index 2.

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, FG^+ is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2, 4$ and let G be a group. Then RG^- is commutative if and only if one of the following conditions holds:

G is abelian;

• $A = \langle g \in G ||g| \neq 2 \rangle$ is a normal abelian subgroup of G;

▶ G contains an elementary abelian 2-subgroup of index 2.

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, FG^+ is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2, 4$ and let G be a group. Then RG^- is commutative if and only if one of the following conditions holds:

- G is abelian;
- $A = \langle g \in G ||g| \neq 2 \rangle$ is a normal abelian subgroup of G;
- ▶ G contains an elementary abelian 2-subgroup of index 2.

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then FG^+ (FG^-) is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, 1999)

- ▶ FG is Lie nilpotent;
- ▶ FG⁺ is Lie nilpotent;
- G is nilpotent and p-abelian.

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then FG^+ (FG^-) is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, 1999)

- ► FG is Lie nilpotent;
- ▶ FG⁺ is Lie nilpotent;
- G is nilpotent and p-abelian.

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then FG^+ (FG^-) is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, 1999)

- FG is Lie nilpotent;
- ▶ FG⁺ is Lie nilpotent;
- G is nilpotent and p-abelian.

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then FG^+ (FG^-) is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, 1999)

- FG is Lie nilpotent;
- ► FG⁺ is Lie nilpotent;
- G is nilpotent and p-abelian.

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then FG^+ (FG^-) is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, 1999)

- ► FG is Lie nilpotent;
- ► FG⁺ is Lie nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 1999)

Suppose $Q_8 \subseteq G$ and char $F \neq 2$. Then FG^+ is Lie nilpotent if and only if either

- ▶ char F = p > 2 and G ≅ Q₈ × E × P, where E² = 1 and P is a finite p-group;
- char F = 0 and $G \cong Q_8 \times E$, where $E^2 = 1$.

Theorem (Giambruno, Sehgal 2006)

- G has a nilpotent p-abelian normal subgroup H with (G \ H)² = 1;
- G has an elementary abelian 2-subgroup of index 2;
- the p-elements of G form a finite normal subgroup P and G/P is an elementary abelian 2-group.

Theorem (Lee, 1999)

Suppose $Q_8 \subseteq G$ and char $F \neq 2$. Then FG^+ is Lie nilpotent if and only if either

- ► char F = p > 2 and G ≅ Q₈ × E × P, where E² = 1 and P is a finite p-group;
- char F = 0 and $G \cong Q_8 \times E$, where $E^2 = 1$.

Theorem (Giambruno, Sehgal 2006)

- G has a nilpotent p-abelian normal subgroup H with (G \ H)² = 1;
- G has an elementary abelian 2-subgroup of index 2;
- the p-elements of G form a finite normal subgroup P and G/P is an elementary abelian 2-group.

Theorem (Lee, 1999)

Suppose $Q_8 \subseteq G$ and char $F \neq 2$. Then FG^+ is Lie nilpotent if and only if either

- ► char F = p > 2 and G ≅ Q₈ × E × P, where E² = 1 and P is a finite p-group;
- char F = 0 and $G \cong Q_8 \times E$, where $E^2 = 1$.

Theorem (Giambruno, Sehgal 2006)

- G has a nilpotent p-abelian normal subgroup H with (G \ H)² = 1;
- G has an elementary abelian 2-subgroup of index 2;
- the p-elements of G form a finite normal subgroup P and G/P is an elementary abelian 2-group.

Theorem (Lee, 1999)

Suppose $Q_8 \subseteq G$ and char $F \neq 2$. Then FG^+ is Lie nilpotent if and only if either

- ► char F = p > 2 and G ≅ Q₈ × E × P, where E² = 1 and P is a finite p-group;
- char F = 0 and $G \cong Q_8 \times E$, where $E^2 = 1$.

Theorem (Giambruno, Sehgal 2006)

- G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = 1;$
- ▶ *G* has an elementary abelian 2-subgroup of index 2;
- ► the p-elements of G form a finite normal subgroup P and G/P is an elementary abelian 2-group.

Theorem (Lee, 1999)

Suppose $Q_8 \subseteq G$ and char $F \neq 2$. Then FG^+ is Lie nilpotent if and only if either

- ► char F = p > 2 and G ≅ Q₈ × E × P, where E² = 1 and P is a finite p-group;
- char F = 0 and $G \cong Q_8 \times E$, where $E^2 = 1$.

Theorem (Giambruno, Sehgal 2006)

- G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = 1$;
- ▶ *G* has an elementary abelian 2-subgroup of index 2;
- ► the p-elements of G form a finite normal subgroup P and G/P is an elementary abelian 2-group.

Theorem (Lee, 1999)

Suppose $Q_8 \subseteq G$ and char $F \neq 2$. Then FG^+ is Lie nilpotent if and only if either

- ► char F = p > 2 and G ≅ Q₈ × E × P, where E² = 1 and P is a finite p-group;
- char F = 0 and $G \cong Q_8 \times E$, where $E^2 = 1$.

Theorem (Giambruno, Sehgal 2006)

- G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = 1$;
- ► G has an elementary abelian 2-subgroup of index 2;
- ► the p-elements of G form a finite normal subgroup P and G/P is an elementary abelian 2-group.

Theorem (Lee, 1999)

Suppose $Q_8 \subseteq G$ and char $F \neq 2$. Then FG^+ is Lie nilpotent if and only if either

- ► char F = p > 2 and G ≅ Q₈ × E × P, where E² = 1 and P is a finite p-group;
- char F = 0 and $G \cong Q_8 \times E$, where $E^2 = 1$.

Theorem (Giambruno, Sehgal 2006)

- G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = 1$;
- ► G has an elementary abelian 2-subgroup of index 2;
- the p-elements of G form a finite normal subgroup P and G/P is an elementary abelian 2-group.

Theorem (Bovdi, Spinelli, 2004, Shalev, 1993 p > 3)

Let FG be Lie nilpotent. Then $t^{L}(FG) \leq |G'| + 1$ equality holds if and only if either G' is cyclic, or p = 2, G' is a noncentral elementary abelian group of order 4 and $\gamma_{3}(G) \neq 1$. Moreover if $t^{L}(FG) = |G'| + 1$ then $t(FG) = t^{L}(FG)$.

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. Then $t((FG)^+) = |G'| + 1$ if and only if G' is cyclic.

Theorem (Bovdi, Spinelli, 2004, Shalev, 1993 p > 3)

Let FG be Lie nilpotent. Then $t^{L}(FG) \leq |G'| + 1$ equality holds if and only if either G' is cyclic, or p = 2, G' is a noncentral elementary abelian group of order 4 and $\gamma_{3}(G) \neq 1$. Moreover if $t^{L}(FG) = |G'| + 1$ then $t(FG) = t^{L}(FG)$.

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. Then $t((FG)^+) = |G'| + 1$ if and only if G' is cyclic.

Let FG be a group algebra of characteristic p > 2 such that $(FG)^+$ is Lie nilpotent but FG is not, and assume that the Sylow *p*-subgroup P of G is of order p^n with $n \ge 1$. Then

- $1 + n(p-1) \le t((FG)^+) \le t_N(P);$
- ▶ if P is a powerful group, then $t((FG)^+) = t_N(P)$;
- if P is abelian, then for all k ≥ 2 the subspace γ^k((FG)⁺) is spanned by all elements of the form (h₁ − h₁⁻¹) · · · (h_k − h_k⁻¹)(1 − a²)a, where h_i ∈ P and a is a noncentral 2-element of G.

Let FG be a group algebra of characteristic p > 2 such that $(FG)^+$ is Lie nilpotent but FG is not, and assume that the Sylow *p*-subgroup P of G is of order p^n with $n \ge 1$. Then

- $1 + n(p-1) \le t((FG)^+) \le t_N(P);$
- ▶ if P is a powerful group, then $t((FG)^+) = t_N(P)$;
- If P is abelian, then for all k ≥ 2 the subspace γ^k((FG)⁺) is spanned by all elements of the form (h₁ − h₁⁻¹) ··· (h_k − h_k⁻¹)(1 − a²)a, where h_i ∈ P and a is a noncentral 2-element of G.

Let FG be a group algebra of characteristic p > 2 such that $(FG)^+$ is Lie nilpotent but FG is not, and assume that the Sylow *p*-subgroup P of G is of order p^n with $n \ge 1$. Then

- ▶ $1 + n(p 1) \le t((FG)^+) \le t_N(P);$
- if P is a powerful group, then $t((FG)^+) = t_N(P)$;

if P is abelian, then for all k ≥ 2 the subspace γ^k((FG)⁺) is spanned by all elements of the form
 (h₁ − h₁⁻¹) · · · (h_k − h_k⁻¹)(1 − a²)a, where h_i ∈ P and a is a noncentral 2-element of G.

Let FG be a group algebra of characteristic p > 2 such that $(FG)^+$ is Lie nilpotent but FG is not, and assume that the Sylow *p*-subgroup P of G is of order p^n with $n \ge 1$. Then

- ▶ $1 + n(p 1) \le t((FG)^+) \le t_N(P);$
- if P is a powerful group, then $t((FG)^+) = t_N(P)$;
- if P is abelian, then for all k ≥ 2 the subspace γ^k((FG)⁺) is spanned by all elements of the form
 (h₁ − h₁⁻¹) ··· (h_k − h_k⁻¹)(1 − a²)a, where h_i ∈ P and a is a noncentral 2-element of G.

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$\mathbf{x} = \sum lpha_{\mathbf{g}} \mathbf{g} \mapsto \mathbf{x}^{\varphi} = \sum lpha_{\mathbf{g}} \varphi(\mathbf{g})$$

is an involution of FG.

 φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2, 3, 4$. Suppose G is a non-abelian group and φ is an involution on G. Then RG_{φ}^{-} is commutative if and only if one of the following conditions holds:

K = (g ∈ G|g ∉ G_φ) is an abelian subgroup of index 2 in G;

• G_{φ} contains an abelian subgroup of index 2.

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$\mathbf{x} = \sum lpha_{\mathbf{g}} \mathbf{g} \mapsto \mathbf{x}^{\varphi} = \sum lpha_{\mathbf{g}} \varphi(\mathbf{g})$$

is an involution of FG.

 φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2,3,4$. Suppose G is a non-abelian group and φ is an involution on G. Then RG_{φ}^{-} is commutative if and only if one of the following conditions holds:

- K = ⟨ g ∈ G | g ∉ G_φ ⟩ is an abelian subgroup of index 2 in G;
- G_{φ} contains an abelian subgroup of index 2.

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$\mathbf{x} = \sum lpha_{\mathbf{g}} \mathbf{g} \mapsto \mathbf{x}^{\varphi} = \sum lpha_{\mathbf{g}} \varphi(\mathbf{g})$$

is an involution of FG.

 φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2,3,4$. Suppose G is a non-abelian group and φ is an involution on G. Then RG_{φ}^{-} is commutative if and only if one of the following conditions holds:

K = ⟨ g ∈ G | g ∉ G_φ ⟩ is an abelian subgroup of index 2 in G;

• G_{φ} contains an abelian subgroup of index 2.

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$\mathbf{x} = \sum lpha_{\mathbf{g}} \mathbf{g} \mapsto \mathbf{x}^{\varphi} = \sum lpha_{\mathbf{g}} \varphi(\mathbf{g})$$

is an involution of FG.

 φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2,3,4$. Suppose G is a non-abelian group and φ is an involution on G. Then RG_{φ}^{-} is commutative if and only if one of the following conditions holds:

- K = ⟨ g ∈ G | g ∉ G_φ ⟩ is an abelian subgroup of index 2 in G;
- G_{φ} contains an abelian subgroup of index 2.

Definition (LC group)

Let G be a group and Z(G) its center. G is said to be LC group (lack of commutativity) if any pair of elements $g, h \in G$, it is the case that gh = hg if and only if $g \in Z(G)$ or $h \in Z(G)$.

Theorem

Let G be a group and Z(G) its center. G is LC group if and only if it is a finite 2-group such that $G/Z(G) \cong C_2 \times C_2$ and the derived subgroup $G' = \langle s | s^2 = 1 \rangle$.

Definition (LC group)

Let G be a group and Z(G) its center. G is said to be LC group (lack of commutativity) if any pair of elements $g, h \in G$, it is the case that gh = hg if and only if $g \in Z(G)$ or $h \in Z(G)$.

Theorem

Let G be a group and Z(G) its center. G is LC group if and only if it is a finite 2-group such that $G/Z(G) \cong C_2 \times C_2$ and the derived subgroup $G' = \langle s | s^2 = 1 \rangle$. For an LC-group G we have an involution $\odot: G \to G$ defined by

$$g^{\odot} = egin{cases} g, & ext{ if } g \in Z(G), \ gs, & ext{ otherwise.} \end{cases}$$

Then \odot is an anti-automorphism of order two. Thus the linear extension of this anti-automorphism into FG

$$\mathbf{x} = \sum \alpha_{\mathbf{g}} \mathbf{g} \mapsto \mathbf{x}^{\odot} = \sum \alpha_{\mathbf{g}} \mathbf{g}^{\odot}$$

is an involution.

- RG_{φ}^+ is commutative;
- ► The group G has the LC property, a unique nontrivial commutator s and the involution $\varphi = \odot$.
- ▶ $G/Z(G) \cong C_2 \times C_2$, $\varphi(g) = g$ if $g \in Z(G)$ and otherwise $\varphi(g) = h^{-1}gh$ for all $h \in G$ with $(g, h) \neq 1$.

- RG_{φ}^+ is commutative;
- ► The group G has the LC property, a unique nontrivial commutator s and the involution $\varphi = \odot$.
- $G/Z(G) \cong C_2 \times C_2$, $\varphi(g) = g$ if $g \in Z(G)$ and otherwise $\varphi(g) = h^{-1}gh$ for all $h \in G$ with $(g, h) \neq 1$.

- RG_{ω}^+ is commutative;
- The group G has the LC property, a unique nontrivial commutator s and the involution φ = ⊙.
- ▶ $G/Z(G) \cong C_2 \times C_2$, $\varphi(g) = g$ if $g \in Z(G)$ and otherwise $\varphi(g) = h^{-1}gh$ for all $h \in G$ with $(g, h) \neq 1$.

- RG_{ω}^+ is commutative;
- The group G has the LC property, a unique nontrivial commutator s and the involution φ = ⊙.
- ▶ $G/Z(G) \cong C_2 \times C_2$, $\varphi(g) = g$ if $g \in Z(G)$ and otherwise $\varphi(g) = h^{-1}gh$ for all $h \in G$ with $(g, h) \neq 1$.

- G contains an abelian subgroup A of index 2 and b ∈ G \ G_φ with b² ∈ G_φ such that φ(a) = b⁻¹ab for all a ∈ A.
- G contains a central subgroup Z such that G/Z is an elementary abelian 2-group and the involution φ : G → G is given by φ(g) = c_gg, where c_g ∈ Z and the following properties are satisfied:
 - $c_g^2 = 1;$
 - $c_g = 1$ if and only if $g \in Z$;
 - c_{gh} = c_gc_h(g, h) and if (g, h) ≠ 1, we have that c_{gh} = c_g, c_h or (g, h).

- G contains an abelian subgroup A of index 2 and b ∈ G \ G_φ with b² ∈ G_φ such that φ(a) = b⁻¹ab for all a ∈ A.
- G contains a central subgroup Z such that G/Z is an elementary abelian 2-group and the involution φ : G → G is given by φ(g) = c_gg, where c_g ∈ Z and the following properties are satisfied:
 - $c_g^2 = 1;$
 - $c_g = 1$ if and only if $g \in Z$;
 - c_{gh} = c_gc_h(g, h) and if (g, h) ≠ 1, we have that c_{gh} = c_g, c_h or (g, h).

- G contains an abelian subgroup A of index 2 and b ∈ G \ G_φ with b² ∈ G_φ such that φ(a) = b⁻¹ab for all a ∈ A.
- G contains a central subgroup Z such that G/Z is an elementary abelian 2-group and the involution φ : G → G is given by φ(g) = c_gg, where c_g ∈ Z and the following properties are satisfied:
 - $c_g^2 = 1;$
 - $c_g = 1$ if and only if $g \in Z$;
 - c_{gh} = c_gc_h(g, h) and if (g, h) ≠ 1, we have that c_{gh} = c_g, c_h or (g, h).

- G contains an abelian subgroup A of index 2 and b ∈ G \ G_φ with b² ∈ G_φ such that φ(a) = b⁻¹ab for all a ∈ A.
- G contains a central subgroup Z such that G/Z is an elementary abelian 2-group and the involution φ : G → G is given by φ(g) = c_gg, where c_g ∈ Z and the following properties are satisfied:

•
$$c_g^2 = 1;$$

- $c_g = 1$ if and only if $g \in Z$;
- c_{gh} = c_gc_h(g, h) and if (g, h) ≠ 1, we have that c_{gh} = c_g, c_h or (g, h).

Let R be a commutative ring with char R = 2. Assume that for all $g \in G$, $g^2 \in G_{\varphi}$. Then RG_{φ}^+ is commutative if and only if one of the following conditions holds:

- G contains an abelian subgroup A of index 2 and b ∈ G \ G_φ with b² ∈ G_φ such that φ(a) = b⁻¹ab for all a ∈ A.
- G contains a central subgroup Z such that G/Z is an elementary abelian 2-group and the involution φ : G → G is given by φ(g) = c_gg, where c_g ∈ Z and the following properties are satisfied:

•
$$c_g^2 = 1;$$

•
$$\tilde{c_g} = 1$$
 if and only if $g \in Z$;

c_{gh} = c_gc_h(g, h) and if (g, h) ≠ 1, we have that c_{gh} = c_g, c_h or (g, h).

- G contains an abelian subgroup A of index 2 and b ∈ G \ G_φ with b² ∈ G_φ such that φ(a) = b⁻¹ab for all a ∈ A.
- G contains a central subgroup Z such that G/Z is an elementary abelian 2-group and the involution φ : G → G is given by φ(g) = c_gg, where c_g ∈ Z and the following properties are satisfied:
 - $c_g^2 = 1;$
 - $\tilde{c_g} = 1$ if and only if $g \in Z$;
 - $c_{gh} = c_g c_h(g, h)$ and if $(g, h) \neq 1$, we have that $c_{gh} = c_g, c_h$ or (g, h).

Theorem (Giambruno, Polcino Milies, Sehgal, 2009)

Let G be a group with no 2-elements and F a field of characteristic $p \neq 2$. Then, $(FG)^+$ is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, Sehgal, Spinelli, 2009)

Let F be a field of characteristic p > 2, and let G be a group with involution *. Suppose that FG is not Lie nilpotent. Then FG⁺ is Lie nilpotent if and only if G is nilpotent, and G has a finite normal *-invariant p-subgroup N such that G/N is an SLC-group.

Theorem (Giambruno, Polcino Milies, Sehgal, 2009)

Let G be a group with no 2-elements and F a field of characteristic $p \neq 2$. Then, $(FG)^+$ is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, Sehgal, Spinelli, 2009)

Let F be a field of characteristic p > 2, and let G be a group with involution *. Suppose that FG is not Lie nilpotent. Then FG⁺ is Lie nilpotent if and only if G is nilpotent, and G has a finite normal *-invariant p-subgroup N such that G/N is an SLC-group.

Definition (oriented involution)

Define the map \circledast : FG \rightarrow FG by the following way. Let σ : G \rightarrow {1, -1} a group homomorphism. Set

$$\mathbf{x} = \sum \alpha_g \mathbf{g} \mapsto \mathbf{x}^{\circledast} = \sum \alpha_g \sigma(\mathbf{g}) \mathbf{g}^{-1}.$$

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then RG⁺ is a commutative ring if and only if one of the following conditions holds:

- N is an abelian group and $G \setminus N \subset G_{\varphi}$;
- G and N have the LC property, and there exists a unique nontrivial commutator s such that the involution φ is given by

$$arphi(g) = egin{cases} g & ext{if} \quad g \in \mathsf{N} \cap Z(G) \text{ or } g \in (G \setminus \mathsf{N}) \setminus Z(G). \\ sg & ext{otherwise.} \end{cases}$$

char R = 4, G has the LC property, and there exists a unique nontrivial commutator s such that the involution φ = ⊙.

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then RG⁺ is a commutative ring if and only if one of the following conditions holds:

• N is an abelian group and $G \setminus N \subset G_{\varphi}$;

G and N have the LC property, and there exists a unique nontrivial commutator s such that the involution φ is given by

 $\varphi(g) = egin{cases} g & \textit{if} \quad g \in N \cap Z(G) \textit{ or } g \in (G \setminus N) \setminus Z(G). \\ sg & \textit{otherwise.} \end{cases}$

► char R = 4, G has the LC property, and there exists a unique nontrivial commutator s such that the involution φ = ⊙.

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then RG⁺ is a commutative ring if and only if one of the following conditions holds:

- N is an abelian group and $G \setminus N \subset G_{\varphi}$;
- G and N have the LC property, and there exists a unique nontrivial commutator s such that the involution φ is given by

$$arphi(g) = egin{cases} g & \textit{if} \quad g \in \mathsf{N} \cap \mathsf{Z}(G) \textit{ or } g \in (G \setminus \mathsf{N}) \setminus \mathsf{Z}(G). \ sg & \textit{otherwise}. \end{cases}$$

char R = 4, G has the LC property, and there exists a unique nontrivial commutator s such that the involution φ = ⊙.

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then RG⁺ is a commutative ring if and only if one of the following conditions holds:

- N is an abelian group and $G \setminus N \subset G_{\varphi}$;
- G and N have the LC property, and there exists a unique nontrivial commutator s such that the involution φ is given by

$$arphi(g) = egin{cases} g & \textit{if} \quad g \in \mathsf{N} \cap \mathsf{Z}(G) \textit{ or } g \in (G \setminus \mathsf{N}) \setminus \mathsf{Z}(G). \ sg & \textit{otherwise}. \end{cases}$$

 char R = 4, G has the LC property, and there exists a unique nontrivial commutator s such that the involution φ = ⊙.

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U(FG^+)$ forms a multiplicative group if and only if p = 2, G is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

▶ *H* has an abelian subgroup *A* of index 2 and an element $b \in G \setminus A$, |b| = 4 and $b^{-1}ab = a^{-1}$ for all $a \in A$;

$$\blacktriangleright H = Q_8 \times C_4; H = Q_8 \times Q_8;$$

•
$$H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$$

 $\blacktriangleright H = H_{32}^{32}, H = H_{245}^{64}.$

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U(FG^+)$ forms a multiplicative group if and only if p = 2, G is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

H has an abelian subgroup A of index 2 and an element b ∈ G \ A, |b| = 4 and b⁻¹ab = a⁻¹ for all a ∈ A;

$$\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$$

•
$$H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$$

 $\blacktriangleright H = H_{32}^{32}, H = H_{245}^{64}.$

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U(FG^+)$ forms a multiplicative group if and only if p = 2, G is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

► H has an abelian subgroup A of index 2 and an element b ∈ G \ A, |b| = 4 and b⁻¹ab = a⁻¹ for all a ∈ A;

$$\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$$

►
$$H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$$

► $H = H_{32}^{32}, H = H_{245}^{64}.$

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U(FG^+)$ forms a multiplicative group if and only if p = 2, G is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

► H has an abelian subgroup A of index 2 and an element b ∈ G \ A, |b| = 4 and b⁻¹ab = a⁻¹ for all a ∈ A;

•
$$H = Q_8 \times C_4$$
; $H = Q_8 \times Q_8$;

•
$$H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$$

 $\blacktriangleright H = H_{32}^{32}, H = H_{245}^{64}.$

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U(FG^+)$ forms a multiplicative group if and only if p = 2, G is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

H has an abelian subgroup A of index 2 and an element b ∈ G \ A, |b| = 4 and b⁻¹ab = a⁻¹ for all a ∈ A;

$$\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$$

•
$$H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$$

•
$$H = H_{32}^{32}, H = H_{245}^{64}$$
.

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \ge 0$. Then $U(KG^+)$ is a commutative group if and only if G satisfies at least one of the following conditions:

► G is abelian;

- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_{\underline{8}};$
 - H is isomorphic to one of the groups H₃₂³² and H₂₄₅⁶⁴.

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \ge 0$. Then $U(KG^+)$ is a commutative group if and only if G satisfies at least one of the following conditions:

▶ G is abelian;

- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_{\underline{8}};$
 - H is isomorphic to one of the groups H₃₂³² and H₂₄₅⁶⁴.

- ▶ G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_{\underline{8}};$
 - H is isomorphic to one of the groups H₃₂³² and H₂₄₅⁶⁴.

- ▶ G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$
 - *H* is isomorphic to one of the groups H_{32}^{32} and H_{245}^{64} .

- ▶ G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $\bullet \ H = Q_8 \times C_4; H = Q_8 \times Q_8;$
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$
 - H is isomorphic to one of the groups H_{32}^{32} and H_{245}^{64} .

- ▶ G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $H = Q_8 \times C_4$; $H = Q_8 \times Q_8$;
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_{8}$
 - H is isomorphic to one of the groups H_{32}^{32} and H_{245}^{64} .

- ▶ G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $H = Q_8 \times C_4$; $H = Q_8 \times Q_8$;
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$
 - *H* is isomorphic to one of the groups H_{32}^{32} and H_{245}^{64} .

- ▶ G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- p = 2 and G is the direct product of E and a group H for which at least one of the following holds:
 - H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
 - $H = Q_8 \times C_4$; $H = Q_8 \times Q_8$;
 - $H = \langle x, y | x^4 = y^4 = 1, x^2 = (y, x) \rangle YQ_8;$
 - *H* is isomorphic to one of the groups H_{32}^{32} and H_{245}^{64} .

Theorem (Giambruno, Sehgal, Valenti, 1998)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Then $U(FG^+)$ is nilpotent if and only if FG^+ is Lie nilpotent.

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_8 \not\subseteq G$. Then the following are equivalent:

- ► U(FG⁺) is nilpotent;
- U(FG) is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

- p > 2 and G ≅ Q₈ × E × P where E is an elementary abelian 2-group and P is a finite p-group;
- p = 0 and G ≅ Q₈ × E, where E is an elementary abelian 2-group.

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_8 \not\subseteq G$. Then the following are equivalent:

- ► U(FG⁺) is nilpotent;
- ► U(FG) is nilpotent;
- ▶ G is nilpotent and p-abelian.

Theorem (Lee, 2003)

- ▶ p > 2 and G ≅ Q₈ × E × P where E is an elementary abelian 2-group and P is a finite p-group;
- p = 0 and G ≅ Q₈ × E, where E is an elementary abelian 2-group.

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_8 \not\subseteq G$. Then the following are equivalent:

- ► U(FG⁺) is nilpotent;
- U(FG) is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

- p > 2 and G ≅ Q₈ × E × P where E is an elementary abelian 2-group and P is a finite p-group;
- p = 0 and G ≅ Q₈ × E, where E is an elementary abelian 2-group.

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_8 \not\subseteq G$. Then the following are equivalent:

- ► U(FG⁺) is nilpotent;
- U(FG) is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

- p > 2 and G ≅ Q₈ × E × P where E is an elementary abelian 2-group and P is a finite p-group;
- p = 0 and G ≅ Q₈ × E, where E is an elementary abelian 2-group.

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_8 \not\subseteq G$. Then the following are equivalent:

- ► U(FG⁺) is nilpotent;
- U(FG) is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

- ▷ p > 2 and G ≅ Q₈ × E × P where E is an elementary abelian 2-group and P is a finite p-group;
- ▶ p = 0 and $G \cong Q_8 \times E$, where E is an elementary abelian 2-group.

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_8 \not\subseteq G$. Then the following are equivalent:

- ► U(FG⁺) is nilpotent;
- U(FG) is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

- ▶ p > 2 and G ≅ Q₈ × E × P where E is an elementary abelian 2-group and P is a finite p-group;
- ▶ p = 0 and $G \cong Q_8 \times E$, where E is an elementary abelian 2-group.

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_8 \not\subseteq G$. Then the following are equivalent:

- ► U(FG⁺) is nilpotent;
- U(FG) is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

- ▶ p > 2 and G ≅ Q₈ × E × P where E is an elementary abelian 2-group and P is a finite p-group;
- ▶ p = 0 and $G \cong Q_8 \times E$, where E is an elementary abelian 2-group.

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. If G is a torsion group, then $cl(U(FG^+)) = |G'|$ if and only if G' is cyclic.

Theorem (Balogh, Juhász, 2010)

Let FG be a group algebra of characteristic p > 2 such that FG^+ is Lie nilpotent but FG is not, and assume that the Sylow p-subgroup P of G is of order p^n with $n \ge 1$. If $t(FG^+) = t_N(P)$, then $cl(U(FG^+)) = t(FG^+) - 1$.

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. If G is a torsion group, then $cl(U(FG^+)) = |G'|$ if and only if G' is cyclic.

Theorem (Balogh, Juhász, 2010)

Let FG be a group algebra of characteristic p > 2 such that FG^+ is Lie nilpotent but FG is not, and assume that the Sylow p-subgroup P of G is of order p^n with $n \ge 1$. If $t(FG^+) = t_N(P)$, then $cl(U(FG^+)) = t(FG^+) - 1$.