Nilpotency indices of symmetric elements in group algebras

Zsolt Adam Balogh
University College of Nyiregyhaza
baloghzs@nyf.hu

Arithmetic of Group Rings and Related Structures Aachen, March 22-26, 2010.

PI and GI properties

Denote by $F\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ the polynomial ring over the field F with the non-commuting indeterminates $x_{1}, x_{2}, \cdots, x_{n}$.
Let A be an algebra over the field F and $S \subseteq A$ a subset.

Definition (Polynomial identities)

We say that S satisfies a polynomial identity (PI) if there exists a nonzero polynomial $f\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in F\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ such that $f\left(s_{1}, s_{2}, \cdots, s_{n}\right)=0$ for all $s_{i} \in S$.

Denote by $U(S)$ the set of units in the subset S of A.

PI and GI properties

Denote by $F\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ the polynomial ring over the field F with the non-commuting indeterminates $x_{1}, x_{2}, \cdots, x_{n}$. Let A be an algebra over the field F and $S \subseteq A$ a subset.

Definition (Polynomial identities)

We say that S satisfies a polynomial identity (PI) if there exists a nonzero polynomial $f\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in F\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ such that $f\left(s_{1}, s_{2}, \cdots, s_{n}\right)=0$ for all $s_{i} \in S$.

Denote by $U(S)$ the set of units in the subset S of A.

Definition (Group identities)

$U(S)$ is said to satisfy a group identity (GI) if there exists a nontrivial word $w\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in the free group generated by $x_{1}, x_{2}, \cdots, x_{n}$ such that $w\left(u_{1}, u_{2}, \cdots, u_{n}\right)=1$ for all $u_{1}, u_{2}, \cdots, u_{n} \in U(S)$.

symmetric elements and PI properties

Let $*$ be an involution on A. An element $x \in A$ is called symmetric (skew symmetric) with respect to $*$, if $x^{*}=x$ $\left(x^{*}=-x\right)$. Denote A^{+}and A^{-}the set of symmetric and skew symmetric elements of A, respectively.

Theorem (Amitsur, 1968)

Let A be an algebra with an involution *. A is PI if and only if A^{+} $\left(A^{-}\right)$is PI.

Of course, the polynomial identity which is satisfied by the algebra is not necessarily the same as the one which is satisfied by the symmetric elements.

symmetric and skew-symmetric elements

It is well-known that group algebra $F G$ is an algebra with involution.

Definition

The canonical involution of $F G$ is defined by
$x=\sum_{g \in G} \alpha_{g} g \rightarrow x^{*}=\sum_{g \in G} \alpha_{g} g^{-1}$.
Denote by $G_{*}=\left\{g \in G \mid g=g^{*}\right\}$ the symmetric elements of G. Then $F G^{+}$is generated as an F-module by the set

$$
\left\{g+g^{*} \mid g \in G, g \neq G_{*}\right\} \cup G_{*}
$$

and $F G^{-}$is generated as an F-module by the set

$$
\left\{g-g^{*} \mid g \in G\right\}
$$

Then $F G^{+}$is a Jordan algebra and $F G^{-}$is a Lie algebra.

Nilpotency, Lie nilpotency

Definition (Lie nilpotency)

The subset $S \subseteq F G$ is Lie nilpotent, if for some $n \geq 2$, $\left[x_{1}, x_{2}, \cdots, x_{n}\right]=0$ for all $x_{i} \in S$, where $\left[x_{1}, x_{2}\right]=x_{1} x_{2}-x_{2} x_{1}$, and $\left[x_{1}, x_{2}, \cdots, x_{n}\right]=\left[\left[x_{1}, x_{2}, \cdots, x_{n-1}\right], x_{n}\right]$.
The smallest such n is called the Lie nilpotency index of S and is denoted by $t(S)$.

The corresponding group identity is the nilpotency.
Definition (nipotency)
The subset $S \subseteq U(F G)$ is nilpotent, if for some $n \geq 2$,
and $\left(x_{1}, x_{2}\right.$,

Nilpotency, Lie nilpotency

Definition (Lie nilpotency)

The subset $S \subseteq F G$ is Lie nilpotent, if for some $n \geq 2$, $\left[x_{1}, x_{2}, \cdots, x_{n}\right]=0$ for all $x_{i} \in S$, where $\left[x_{1}, x_{2}\right]=x_{1} x_{2}-x_{2} x_{1}$, and $\left[x_{1}, x_{2}, \cdots, x_{n}\right]=\left[\left[x_{1}, x_{2}, \cdots, x_{n-1}\right], x_{n}\right]$.
The smallest such n is called the Lie nilpotency index of S and is denoted by $t(S)$.

The corresponding group identity is the nilpotency.

Definition (nilpotency)

The subset $S \subseteq U(F G)$ is nilpotent, if for some $n \geq 2$, $\left(x_{1}, x_{2}, \cdots, x_{n}\right)=1$ for all $x_{i} \in S$, where $\left(x_{1}, x_{2}\right)=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$, and $\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(\left(x_{1}, x_{2}, \cdots, x_{n-1}\right), x_{n}\right)$.

Commutativity of symmetric and skew-symmetric elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, $F G^{+}$is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let P be a commutative ring with unity, char $F \neq 2,4$ and let G be a group. Then RG- is commutative if and only if one of the following conditions holds:

Commutativity of symmetric and skew-symmetric elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, $F G^{+}$is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2,4$ and let G be a group. Then $R G^{-}$is commutative if and only if one of the following conditions holds:

Commutativity of symmetric and skew-symmetric elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, $F G^{+}$is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2,4$ and let G be a group. Then $R G^{-}$is commutative if and only if one of the following conditions holds:

- G is abelian;

Commutativity of symmetric and skew-symmetric elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, $F G^{+}$is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2,4$ and let G be a group. Then $R G^{-}$is commutative if and only if one of the following conditions holds:

- G is abelian;
- $A=\langle g \in G \| g \mid \neq 2\rangle$ is a normal abelian subgroup of G;

$$
\text { - G contains an elementary abelian 2-subgroup of index } 2 .
$$

Commutativity of symmetric and skew-symmetric elements

Theorem (Broche, 2003)

Let G be a nonabelian group and let F be a commutative ring of characteristic different from 2. Then, $F G^{+}$is a commutative ring if and only if G is a Hamiltonian 2-group.

Theorem (Broche, Polcino Milies, 2007)

Let R be a commutative ring with unity, char $R \neq 2,4$ and let G be a group. Then $R G^{-}$is commutative if and only if one of the following conditions holds:

- G is abelian;
- $A=\langle g \in G \| g \mid \neq 2\rangle$ is a normal abelian subgroup of G;
- G contains an elementary abelian 2-subgroup of index 2.

Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then $F G^{+}\left(F G^{-}\right)$is Lie nilpotent if and only if $F G$ is Lie nilpotent.

Theorem (Lee, 1999)
Suppose $Q_{8} \nsubseteq G$ and char $F=p \neq 2$. Then the following are equivalent:

Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then $F G^{+}\left(F G^{-}\right)$is Lie nilpotent if and only if $F G$ is Lie nilpotent.

Theorem (Lee, 1999)

Suppose $Q_{8} \nsubseteq G$ and char $F=p \neq 2$. Then the following are equivalent:
> - FG is Lie nilpotent;
> - FG^{+}is Lie nilpotent;
> - G is nilpotent and $p-a b \in$ lian.

Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then $F G^{+}\left(F G^{-}\right)$is Lie nilpotent if and only if $F G$ is Lie nilpotent.

Theorem (Lee, 1999)

Suppose $Q_{8} \nsubseteq G$ and char $F=p \neq 2$. Then the following are equivalent:

- FG is Lie nilpotent;
- FG^{+}is Lie nilpotent;
- G is nilpotent and p-abelian.

Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then $F G^{+}\left(F G^{-}\right)$is Lie nilpotent if and only if $F G$ is Lie nilpotent.

Theorem (Lee, 1999)

Suppose $Q_{8} \nsubseteq G$ and char $F=p \neq 2$. Then the following are equivalent:

- FG is Lie nilpotent;
- $F G^{+}$is Lie nilpotent;
- G is nilpotent and p-abelian.

Lie nilpotency

Theorem (Giambruno, Sehgal, 1993)

Let G be a group with no 2-elements and F a field with char $F \neq 2$. Then $F G^{+}\left(F G^{-}\right)$is Lie nilpotent if and only if $F G$ is Lie nilpotent.

Theorem (Lee, 1999)

Suppose $Q_{8} \nsubseteq G$ and char $F=p \neq 2$. Then the following are equivalent:

- FG is Lie nilpotent;
- FG^{+}is Lie nilpotent;
- G is nilpotent and p-abelian.

Lie nilpotency

Theorem (Lee, 1999)
Suppose $Q_{8} \subseteq G$ and char $F \neq 2$. Then $F G^{+}$is Lie nilpotent if and only if either

- char $F=p>2$ and $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P
is a finite p-group;
- char $F=0$ and $G \cong Q_{8} \times E$, where $E^{2}=1$.

Theorem (Giambruno, Sehgal 2006)
 Let F be a field char $F \neq 2$, and let G be a group. Then $F G^{-}$is Lie nilpotent if and only if either

Lie nilpotency

Theorem (Lee, 1999)
Suppose $Q_{8} \subseteq G$ and char $F \neq 2$. Then $F G^{+}$is Lie nilpotent if and only if either

- char $F=p>2$ and $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P is a finite p-group;
- char $F=0$ and $G \cong Q_{8} \times E$, where $E^{2}=1$. Theorem (Giambruno, Sehgal 2006)

Let F be a field char $F \neq 2$, and let G be a group. Then $F G^{-}$is Lie nilpotent if and only if either

Lie nilpotency

Theorem (Lee, 1999)
Suppose $Q_{8} \subseteq G$ and char $F \neq 2$. Then $F G^{+}$is Lie nilpotent if and only if either

- char $F=p>2$ and $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P is a finite p-group;
- char $F=0$ and $G \cong Q_{8} \times E$, where $E^{2}=1$.

Theorem (Giambruno, Sehgal 2006)
 Let F be a field char $F \neq 2$, and let G be a group. Then $F G$ is Lie nilpotent if and only if either

Lie nilpotency

Theorem (Lee, 1999)

Suppose $Q_{8} \subseteq G$ and char $F \neq 2$. Then $F G^{+}$is Lie nilpotent if and only if either

- char $F=p>2$ and $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P is a finite p-group;
- char $F=0$ and $G \cong Q_{8} \times E$, where $E^{2}=1$.

Theorem (Giambruno, Sehgal 2006)

Let F be a field char $F \neq 2$, and let G be a group. Then $F G^{-}$is Lie nilpotent if and only if either

Lie nilpotency

Theorem (Lee, 1999)

Suppose $Q_{8} \subseteq G$ and char $F \neq 2$. Then $F G^{+}$is Lie nilpotent if and only if either

- char $F=p>2$ and $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P is a finite p-group;
- char $F=0$ and $G \cong Q_{8} \times E$, where $E^{2}=1$.

Theorem (Giambruno, Sehgal 2006)

Let F be a field char $F \neq 2$, and let G be a group. Then $F G^{-}$is Lie nilpotent if and only if either

- G has a nilpotent p-abelian normal subgroup H with $(G \backslash H)^{2}=1$;
- G has an elementary abelian 2-subgroup of index 2;
- the p-elements of G form a finite normal subgroup P and G / P is an elementary abelian 2-group.

Lie nilpotency

Theorem (Lee, 1999)

Suppose $Q_{8} \subseteq G$ and char $F \neq 2$. Then $F G^{+}$is Lie nilpotent if and only if either

- char $F=p>2$ and $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P is a finite p-group;
- char $F=0$ and $G \cong Q_{8} \times E$, where $E^{2}=1$.

Theorem (Giambruno, Sehgal 2006)

Let F be a field char $F \neq 2$, and let G be a group. Then $F G^{-}$is Lie nilpotent if and only if either

- G has a nilpotent p-abelian normal subgroup H with $(G \backslash H)^{2}=1$;
- G has an elementary abelian 2-subgroup of index 2;
- the p-elements of G form a finite normal subgroup P and G / P is an elementary abelian 2-group.

Lie nilpotency

Theorem (Lee, 1999)

Suppose $Q_{8} \subseteq G$ and char $F \neq 2$. Then $F G^{+}$is Lie nilpotent if and only if either

- char $F=p>2$ and $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P is a finite p-group;
- char $F=0$ and $G \cong Q_{8} \times E$, where $E^{2}=1$.

Theorem (Giambruno, Sehgal 2006)

Let F be a field char $F \neq 2$, and let G be a group. Then $F G^{-}$is Lie nilpotent if and only if either

- G has a nilpotent p-abelian normal subgroup H with $(G \backslash H)^{2}=1$;
- G has an elementary abelian 2-subgroup of index 2;
- the p-elements of G form a finite normal subgroup P and G / P is an elementary abelian 2-group.

Lie nilpotency indices

Theorem (Bovdi, Spinelli, 2004, Shalev, $1993 p>3$)

Let $F G$ be Lie nilpotent. Then $t^{L}(F G) \leq\left|G^{\prime}\right|+1$ equality holds if and only if either G^{\prime} is cyclic, or $p=2, G^{\prime}$ is a noncentral elementary abelian group of order 4 and $\gamma_{3}(G) \neq 1$. Moreover if $t^{L}(F G)=\left|G^{\prime}\right|+1$ then $t(F G)=t^{L}(F G)$.

Theorem (Balogh, Juhász, 2010)
Let FG be a Lie nilpotent aroun algebra of odd characteristic. Then $t\left((F G)^{+}\right)=\left|G^{\prime}\right|+1$ if and only if G^{\prime} is cyclic.

Lie nilpotency indices

Theorem (Bovdi, Spinelli, 2004, Shalev, $1993 p>3$)

Let $F G$ be Lie nilpotent. Then $t^{L}(F G) \leq\left|G^{\prime}\right|+1$ equality holds if and only if either G^{\prime} is cyclic, or $p=2, G^{\prime}$ is a noncentral elementary abelian group of order 4 and $\gamma_{3}(G) \neq 1$. Moreover if $t^{L}(F G)=\left|G^{\prime}\right|+1$ then $t(F G)=t^{L}(F G)$.

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. Then $t\left((F G)^{+}\right)=\left|G^{\prime}\right|+1$ if and only if G^{\prime} is cyclic.

Lie nilpotency indices

Theorem (Balogh, Juhász, 2010)

Let FG be a group algebra of characteristic $p>2$ such that $(F G)^{+}$is Lie nilpotent but FG is not, and assume that the Sylow p-subgroup P of G is of order p^{n} with $n \geq 1$. Then

- if P is a powerful group, then $t\left((F G)^{+}\right)=t_{N}(P)$;
- if P is abelian, then for all $k \geq 2$ the subspace $\gamma^{k}\left((F G)^{+}\right)$is spanned by all elements of the form

noncentral 2-element of G.

Lie nilpotency indices

Theorem (Balogh, Juhász, 2010)

Let $F G$ be a group algebra of characteristic $p>2$ such that $(F G)^{+}$is Lie nilpotent but FG is not, and assume that the Sylow p-subgroup P of G is of order p^{n} with $n \geq 1$. Then
$-1+n(p-1) \leq t\left((F G)^{+}\right) \leq t_{N}(P)$;

Lie nilpotency indices

Theorem (Balogh, Juhász, 2010)

Let $F G$ be a group algebra of characteristic $p>2$ such that $(F G)^{+}$is Lie nilpotent but FG is not, and assume that the Sylow p-subgroup P of G is of order p^{n} with $n \geq 1$. Then
$-1+n(p-1) \leq t\left((F G)^{+}\right) \leq t_{N}(P)$;

- if P is a powerful group, then $t\left((F G)^{+}\right)=t_{N}(P)$;
spanned by all elements of the form
$\left.a^{2}\right) a$, where $h_{i} \in P$ and a is a
noncentral 2-element of G.

Lie nilpotency indices

Theorem (Balogh, Juhász, 2010)

Let FG be a group algebra of characteristic $p>2$ such that $(F G)^{+}$is Lie nilpotent but FG is not, and assume that the Sylow p-subgroup P of G is of order p^{n} with $n \geq 1$. Then

- $1+n(p-1) \leq t\left((F G)^{+}\right) \leq t_{N}(P)$;
- if P is a powerful group, then $t\left((F G)^{+}\right)=t_{N}(P)$;
- if P is abelian, then for all $k \geq 2$ the subspace $\gamma^{k}\left((F G)^{+}\right)$is spanned by all elements of the form $\left(h_{1}-h_{1}^{-1}\right) \cdots\left(h_{k}-h_{k}^{-1}\right)\left(1-a^{2}\right) a$, where $h_{i} \in P$ and a is a noncentral 2-element of G.

Commutativity under involutions of the first kind

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$
x=\sum \alpha_{g} g \mapsto x^{\varphi}=\sum \alpha_{g} \varphi(g)
$$

is an involution of $F G$.
φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2,3,4$. Suppose G
is a non-abelian group and φ is an involution on G. Then $R G_{\varphi}^{-}$
is commutative if and only if one of the following conditions holds:

Commutativity under involutions of the first kind

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$
x=\sum \alpha_{g} g \mapsto x^{\varphi}=\sum \alpha_{g} \varphi(g)
$$

is an involution of FG.
φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2,3,4$. Suppose G is a non-abelian group and φ is an involution on G. Then $R G_{\varphi}^{-}$ is commutative if and only if one of the following conditions holds:
$g \in G\left|g \notin G_{\varphi}\right\rangle$ is an abelian subgroup of index 2 in

- G_{φ} contains an abelian subgroup of index 2.

Commutativity under involutions of the first kind

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$
x=\sum \alpha_{g} g \mapsto x^{\varphi}=\sum \alpha_{g} \varphi(g)
$$

is an involution of FG.
φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2,3,4$. Suppose G is a non-abelian group and φ is an involution on G. Then $R G_{\varphi}^{-}$ is commutative if and only if one of the following conditions holds:

- $K=\left\langle g \in G \mid g \notin G_{\varphi}\right\rangle$ is an abelian subgroup of index 2 in G;
- G_{φ} contains an abelian subgroup of index 2.

Commutativity under involutions of the first kind

Definition

Let φ be an involution of G. Then the F-linear extension of φ

$$
x=\sum \alpha_{g} g \mapsto x^{\varphi}=\sum \alpha_{g} \varphi(g)
$$

is an involution of FG.
φ is an involution of the first kind.

Theorem (Jespers, Ruiz Marin, 2005)

Let R be a commutative ring with char $R \neq 2,3,4$. Suppose G is a non-abelian group and φ is an involution on G. Then $R G_{\varphi}^{-}$ is commutative if and only if one of the following conditions holds:

- $K=\left\langle g \in G \mid g \notin G_{\varphi}\right\rangle$ is an abelian subgroup of index 2 in G;
- G_{φ} contains an abelian subgroup of index 2.

LC group

Definition (LC group)

Let G be a group and $Z(G)$ its center. G is said to be $L C$ group (lack of commutativity) if any pair of elements $g, h \in G$, it is the case that $g h=h g$ if and only if $g \in Z(G)$ or $h \in Z(G)$ or $g h \in Z(G)$.

Theorem
Let G be a group and $Z(G)$ its center. G is $L C$ group if and only if it is a finite 2-group such that $G / Z(G) \cong C_{2} \times C_{2}$ and the derived subgroup $G^{\prime}=\left\langle s \mid s^{2}=1\right\rangle$

LC group

Definition (LC group)

Let G be a group and $Z(G)$ its center. G is said to be $L C$ group (lack of commutativity) if any pair of elements $g, h \in G$, it is the case that $g h=h g$ if and only if $g \in Z(G)$ or $h \in Z(G)$ or $g h \in Z(G)$.

Theorem

Let G be a group and $Z(G)$ its center. G is $L C$ group if and only if it is a finite 2-group such that $G / Z(G) \cong C_{2} \times C_{2}$ and the derived subgroup $G^{\prime}=\left\langle s \mid s^{2}=1\right\rangle$.

LC-involution

For an LC-group G we have an involution $\odot: G \rightarrow G$ defined by

$$
g^{\odot}= \begin{cases}g, & \text { if } g \in Z(G) ; \\ g s, & \text { otherwise. }\end{cases}
$$

Then \odot is an anti-automorphism of order two. Thus the linear extension of this anti-automorphism into $F G$

$$
x=\sum \alpha_{g} g \mapsto x^{\odot}=\sum \alpha_{g} g^{\odot}
$$

is an involution.

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2006)

Let φ be an involution on a non-abelian group G and let R be a commutative ring with char $R \neq 2$. The following are equivalent:

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2006)

Let φ be an involution on a non-abelian group G and let R be a commutative ring with char $R \neq 2$. The following are equivalent:

- $R G_{\varphi}^{+}$is commutative;

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2006)

Let φ be an involution on a non-abelian group G and let R be a commutative ring with char $R \neq 2$. The following are equivalent:

- $R G_{\varphi}^{+}$is commutative;
- The group G has the LC property, a unique nontrivial commutator s and the involution $\varphi=\odot$.

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2006)

Let φ be an involution on a non-abelian group G and let R be a commutative ring with char $R \neq 2$. The following are equivalent:

- $R G_{\varphi}^{+}$is commutative;
- The group G has the LC property, a unique nontrivial commutator s and the involution $\varphi=\odot$.
- $G / Z(G) \cong C_{2} \times C_{2}, \varphi(g)=g$ if $g \in Z(G)$ and otherwise $\varphi(g)=h^{-1} g h$ for all $h \in G$ with $(g, h) \neq 1$.

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char $R=2$. Assume that for all $g \in G, g^{2} \in G_{\varphi}$. Then $R G_{\varphi}^{+}$is commutative if and only if one of the following conditions holds:

- G contains an abelian subgroup A of index 2 and
$b \in G \backslash G_{\varphi}$ with $b^{2} \in G_{\varphi}$ such that $\varphi(a)=b^{-1} a b$ for all
$a \in A$.
- G contains a central subgroup Z such that G / Z is an elementary abelian 2-group and the involution $\varphi: G \rightarrow G$ is given by $\varphi(g)=c_{g} g$, where $c_{g} \in Z$ and the following properties are satisfied:

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char $R=2$. Assume that for all $g \in G, g^{2} \in G_{\varphi}$. Then $R G_{\varphi}^{+}$is commutative if and only if one of the following conditions holds:

- G contains an abelian subgroup A of index 2 and $b \in G \backslash G_{\varphi}$ with $b^{2} \in G_{\varphi}$ such that $\varphi(a)=b^{-1} a b$ for all $a \in A$.
- G contains a central subgroup Z such that G / Z is an elementary abelian 2-group and the involution $\varphi: G \rightarrow G$ is given by $\varphi(g)=c_{g} g$, where $c_{g} \in Z$ and the following properties are satistied:

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char $R=2$. Assume that for all $g \in G, g^{2} \in G_{\varphi}$. Then $R G_{\varphi}^{+}$is commutative if and only if one of the following conditions holds:

- G contains an abelian subgroup A of index 2 and $b \in G \backslash G_{\varphi}$ with $b^{2} \in G_{\varphi}$ such that $\varphi(a)=b^{-1} a b$ for all $a \in A$.
- G contains a central subgroup Z such that G / Z is an elementary abelian 2-group and the involution $\varphi: G \rightarrow G$ is given by $\varphi(g)=c_{g} g$, where $c_{g} \in Z$ and the following properties are satisfied:

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char $R=2$. Assume that for all $g \in G, g^{2} \in G_{\varphi}$. Then $R G_{\varphi}^{+}$is commutative if and only if one of the following conditions holds:

- G contains an abelian subgroup A of index 2 and $b \in G \backslash G_{\varphi}$ with $b^{2} \in G_{\varphi}$ such that $\varphi(a)=b^{-1} a b$ for all $a \in A$.
- G contains a central subgroup Z such that G / Z is an elementary abelian 2-group and the involution $\varphi: G \rightarrow G$ is given by $\varphi(g)=c_{g} g$, where $c_{g} \in Z$ and the following properties are satisfied:

$$
\text { - } c_{g}^{2}=1
$$

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char $R=2$. Assume that for all $g \in G, g^{2} \in G_{\varphi}$. Then $R G_{\varphi}^{+}$is commutative if and only if one of the following conditions holds:

- G contains an abelian subgroup A of index 2 and $b \in G \backslash G_{\varphi}$ with $b^{2} \in G_{\varphi}$ such that $\varphi(a)=b^{-1} a b$ for all $a \in A$.
- G contains a central subgroup Z such that G / Z is an elementary abelian 2-group and the involution $\varphi: G \rightarrow G$ is given by $\varphi(g)=c_{g} g$, where $c_{g} \in Z$ and the following properties are satisfied:
- $c_{g}^{2}=1$;
- $c_{g}=1$ if and only if $g \in Z$;

Commutativity of $R G_{\varphi}^{+}$

Theorem (Jespers, Ruiz Marin, 2004)

Let R be a commutative ring with char $R=2$. Assume that for all $g \in G, g^{2} \in G_{\varphi}$. Then $R G_{\varphi}^{+}$is commutative if and only if one of the following conditions holds:

- G contains an abelian subgroup A of index 2 and $b \in G \backslash G_{\varphi}$ with $b^{2} \in G_{\varphi}$ such that $\varphi(a)=b^{-1} a b$ for all $a \in A$.
- G contains a central subgroup Z such that G / Z is an elementary abelian 2-group and the involution $\varphi: G \rightarrow G$ is given by $\varphi(g)=c_{g} g$, where $c_{g} \in Z$ and the following properties are satisfied:
- $c_{g}^{2}=1$;
- $c_{g}=1$ if and only if $g \in Z$;
- $c_{g h}=c_{g} c_{h}(g, h)$ and if $(g, h) \neq 1$, we have that $c_{g h}=c_{g}, c_{h}$ or (g, h).

Lie nilpotency of $R G_{\varphi}^{+}$

Theorem (Giambruno, Polcino Milies, Sehgal, 2009)
Let G be a group with no 2-elements and F a field of characteristic $p \neq 2$. Then, $(F G)^{+}$is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem (Lee, Sehgal, Spinelli, 2009)

Let F be a field of characteristic $p>2$, and let G be a group with involution *. Suppose that FG is not Lie nilpotent. Then $F G^{+}$is Lie nilpotent if and only if G is nilpotent, and G has a finite normal *-invariant p-subgroup N such that G / N is an SLC-group.

Lie nilpotency of $R G_{\varphi}^{+}$

Theorem (Giambruno, Polcino Milies, Sehgal, 2009)

Let G be a group with no 2-elements and F a field of characteristic $p \neq 2$. Then, $(F G)^{+}$is Lie nilpotent if and only if $F G$ is Lie nilpotent.

Theorem (Lee, Sehgal, Spinelli, 2009)

Let F be a field of characteristic $p>2$, and let G be a group with involution *. Suppose that $F G$ is not Lie nilpotent. Then $F G^{+}$is Lie nilpotent if and only if G is nilpotent, and G has a finite normal *-invariant p-subgroup N such that G / N is an SLC-group.

Involutions of the second kind

Definition (oriented involution)

Define the map $\circledast: F G \rightarrow F G$ by the following way. Let $\sigma: G \rightarrow\{1,-1\}$ a group homomorphism. Set

$$
x=\sum \alpha_{g} g \mapsto x^{\circledast}=\sum \alpha_{g} \sigma(g) g^{-1}
$$

Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then $R G^{+}$is a commutative ring if and only if one of the following conditions holds:

Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then $R G^{+}$is a commutative ring if and only if one of the following conditions holds:

- N is an abelian group and $G \backslash N \subset G_{\varphi}$;

sg otherwise.
> char $R=4$, G has the LC property, and there exists a
unique nontrivial commutator s such that the involution

Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then $R G^{+}$is a commutative ring if and only if one of the following conditions holds:

- N is an abelian group and $G \backslash N \subset G_{\varphi}$;
- G and N have the LC property, and there exists a unique nontrivial commutator s such that the involution φ is given by

$$
\varphi(g)= \begin{cases}g & \text { if } \quad g \in N \cap Z(G) \text { or } g \in(G \backslash N) \backslash Z(G) \\ s g \quad \text { otherwise }\end{cases}
$$

- char $R=4, G$ has the LC property, and there exists a unique nontrivial commutator s such that the involution

Commutativity under oriented involutions

Theorem (Broche, Polcino Milies, 2004)

Let R be a commutative ring with unity and let G be a non-abelian group with involution φ and non-trivial orientation homomorphism σ with kernel N. Then $R G^{+}$is a commutative ring if and only if one of the following conditions holds:

- N is an abelian group and $G \backslash N \subset G_{\varphi}$;
- G and N have the LC property, and there exists a unique nontrivial commutator s such that the involution φ is given by

$$
\varphi(g)= \begin{cases}g & \text { if } \quad g \in N \cap Z(G) \text { or } g \in(G \backslash N) \backslash Z(G) \\ s g & \text { otherwise }\end{cases}
$$

- char $R=4$, G has the LC property, and there exists a unique nontrivial commutator s such that the involution $\varphi=\odot$.

Commutative symmetric units

Let * be the canonical involution.

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U\left(F G^{+}\right)$forms a multiplicative group if and only if $p=2, G$ is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

Commutative symmetric units

Let * be the canonical involution.

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U\left(F G^{+}\right)$forms a multiplicative group if and only if $p=2, G$ is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

- H has an abelian subgroup A of index 2 and an element $b \in G \backslash A,|b|=4$ and $b^{-1} a b=a^{-1}$ for all $a \in A$;

Commutative symmetric units

Let * be the canonical involution.

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U\left(F G^{+}\right)$forms a multiplicative group if and only if $p=2, G$ is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

- H has an abelian subgroup A of index 2 and an element $b \in G \backslash A,|b|=4$ and $b^{-1} a b=a^{-1}$ for all $a \in A$;
- $H=Q_{8} \times C_{4} ; H=Q_{8} \times Q_{8}$;

Commutative symmetric units

Let * be the canonical involution.

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U\left(F G^{+}\right)$forms a multiplicative group if and only if $p=2, G$ is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

- H has an abelian subgroup A of index 2 and an element $b \in G \backslash A,|b|=4$ and $b^{-1} a b=a^{-1}$ for all $a \in A$;
- $H=Q_{8} \times C_{4} ; H=Q_{8} \times Q_{8}$;
- $H=\left\langle x, y \mid x^{4}=y^{4}=1, x^{2}=(y, x)\right\rangle Y Q_{8}$;

Commutative symmetric units

Let * be the canonical involution.

Theorem (Bovdi, Kovacs, Sehgal, 2003)

Let G be a locally finite non-abelian p-group and let R be a commutative ring of characteristic p. Then $U\left(F G^{+}\right)$forms a multiplicative group if and only if $p=2, G$ is a direct product of an elementary abelian 2-group and a group H satisfying one of the following conditions:

- H has an abelian subgroup A of index 2 and an element $b \in G \backslash A,|b|=4$ and $b^{-1} a b=a^{-1}$ for all $a \in A$;
- $H=Q_{8} \times C_{4} ; H=Q_{8} \times Q_{8}$;
- $H=\left\langle x, y \mid x^{4}=y^{4}=1, x^{2}=(y, x)\right\rangle Y Q_{8}$;
- $H=H_{32}^{32}, H=H_{245}^{64}$.

Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

```
* G is abelian;
- p\not=2 and G is a hamiltonian 2-group;
- p=2 and G is the direct product of E and a group H for
which at least one of the following holds:
```


Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

- G is abelian;

```
- p\not=2 and G is a hamiltonian 2-group;
- p=2 and G is the direct product of E and a group H for
    which at least one of the following holds:
```


Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

- G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- $p=2$ and G is the direct product of E and a group H for which at least one of the following holds:

Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

- G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- $p=2$ and G is the direct product of E and a group H for which at least one of the following holds:
- H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element

Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

- G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- $p=2$ and G is the direct product of E and a group H for which at least one of the following holds:
- H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;

Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

- G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- $p=2$ and G is the direct product of E and a group H for which at least one of the following holds:
- H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
- $H=Q_{8} \times C_{4} ; H=Q_{8} \times Q_{8} ;$

Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

- G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- $p=2$ and G is the direct product of E and a group H for which at least one of the following holds:
- H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
- $H=Q_{8} \times C_{4} ; H=Q_{8} \times Q_{8}$;
- $H=\left\langle x, y \mid x^{4}=y^{4}=1, x^{2}=(y, x)\right\rangle Y Q_{8}$;

Commutative symmetric units

Theorem (V. Bovdi, 2001)

Let G be a torsion group and K be a commutative G-favourable integral domain of characteristic $p \geq 0$. Then $U\left(K G^{+}\right)$is a commutative group if and only if G satisfies at least one of the following conditions:

- G is abelian;
- $p \neq 2$ and G is a hamiltonian 2-group;
- $p=2$ and G is the direct product of E and a group H for which at least one of the following holds:
- H has an abelian subgroup A of index 2 and an element b of order 4 such that conjugation by b inverts each element of A;
- $H=Q_{8} \times C_{4} ; H=Q_{8} \times Q_{8}$;
- $H=\left\langle x, y \mid x^{4}=y^{4}=1, x^{2}=(y, x)\right\rangle Y Q_{8}$;
- H is isomorphic to one of the groups H_{32}^{32} and H_{245}^{64}.

Nilpotent symmetric units

Theorem (Giambruno, Sehgal, Valenti, 1998)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Then $U\left(F G^{+}\right)$is nilpotent if and only if $F G^{+}$is Lie nilpotent.

Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_{8} \nsubseteq G$. Then the following are equivalent:

- $U\left(F G^{+}\right)$is nilpotent;
- $U(F G)$ is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Iet F he a field of characteristic $p \neq 2$ and G a torsion group containing Q_{8}. Then $U\left(F G^{+}\right)$is nilpotent if and only if

Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_{8} \nsubseteq G$. Then the following are equivalent:

- $U\left(F G^{+}\right)$is nilpotent;
- $U(F G)$ is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group containing Q_{8}. Then $U\left(F G^{+}\right)$is nilpotent if and only if

Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_{8} \nsubseteq G$. Then the following are equivalent:

- $U\left(F G^{+}\right)$is nilpotent;
- $U(F G)$ is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Iet F he a field of characteristic $p \neq 2$ and G a torsion group containing Q_{8}. Then $U\left(F G^{+}\right)$is nilpotent if and only if

Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_{8} \nsubseteq G$. Then the following are equivalent:

- $U\left(F G^{+}\right)$is nilpotent;
- $U(F G)$ is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Let F he a field of characteristic $p \neq 2$ and G a torsion group containing Q_{8}. Then $\cup\left(F G^{+}\right)$is nilpotent if and only if

Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_{8} \nsubseteq G$. Then the following are equivalent:

- $U\left(F G^{+}\right)$is nilpotent;
- $U(F G)$ is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group containing Q_{8}. Then $\cup\left(F G^{+}\right)$is nilpotent if and only if

Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_{8} \nsubseteq G$. Then the following are equivalent:

- $U\left(F G^{+}\right)$is nilpotent;
- $U(F G)$ is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group containing Q_{8}. Then $\cup\left(F G^{+}\right)$is nilpotent if and only if

- $p>2$ and $G \cong Q_{8} \times E \times P$ where E is an elementary abelian 2-group and P is a finite p-group;

Nilpotent symmetric units

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group. Suppose $Q_{8} \nsubseteq G$. Then the following are equivalent:

- $U\left(F G^{+}\right)$is nilpotent;
- $U(F G)$ is nilpotent;
- G is nilpotent and p-abelian.

Theorem (Lee, 2003)

Let F be a field of characteristic $p \neq 2$ and G a torsion group containing Q_{8}. Then $\cup\left(F G^{+}\right)$is nilpotent if and only if

- $p>2$ and $G \cong Q_{8} \times E \times P$ where E is an elementary abelian 2-group and P is a finite p-group;
- $p=0$ and $G \cong Q_{8} \times E$, where E is an elementary abelian 2-group.

Nilpotency class of symmetric units

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. If G is a torsion group, then $\mathrm{cl}\left(U\left(F G^{+}\right)\right)=\left|G^{\prime}\right|$ if and only if G^{\prime} is cyclic.

> Theorem (Balogh, Juhász, 2010)
> Let FG be a group algebra of characteristic $p>2$ such that
> $F G^{+}$is Lie nilpotent but FG is not, and assume that the Sylow p-subgroup P of G is of order p^{n} with $n \geq 1$. If $t\left(F G^{+}\right)=t_{N}(P)$, then $\mathrm{cl}\left(U\left(F G^{+}\right)\right)=t\left(F G^{+}\right)-1$.

Nilpotency class of symmetric units

Theorem (Balogh, Juhász, 2010)

Let FG be a Lie nilpotent group algebra of odd characteristic. If G is a torsion group, then $\mathrm{cl}\left(U\left(F G^{+}\right)\right)=\left|G^{\prime}\right|$ if and only if G^{\prime} is cyclic.

Theorem (Balogh, Juhász, 2010)

Let FG be a group algebra of characteristic $p>2$ such that $F G^{+}$is Lie nilpotent but $F G$ is not, and assume that the Sylow p-subgroup P of G is of order p^{n} with $n \geq 1$. If $t\left(F G^{+}\right)=t_{N}(P)$, then $\mathrm{cl}\left(U\left(F G^{+}\right)\right)=t\left(F G^{+}\right)-1$.

