
Families of correcting codes with ideal group
algebra structure
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Theorem

C a q-ary Cauchy code of length q − 1.
1 C is a left group code if and only one of the following

conditions hold:

(a) C is permutation equivalent to Ck(α, fm), with Lα = F∗ and
fm(z) = zm.

(b) 2 - q and C permutation equivalent to C(α, fm,m′), with

Lα = F∗ and fm,m′(ξ2t+r ) = ξ2tm+rm′
,

(F∗ = 〈ξ〉, t ∈ Z, r ∈ {0, 1}, 4m+k−1 ≡ 2m′ ≡ 0 mod (q−1)).

2 G group of order q − 1.
C is a left G -code if and only if either G is cyclic and
condition (a) holds or G is dihedral and condition (b) holds.
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Theorem

C ⊆ FI non-trivial affine-invariant code. Let a = a(C ) and
b = b(C ). G group.

1 C is a left G -code if and only if G ' Iα for some map
α : I → Ga,b satisfying

α(x + y) = α(α(y)(x))α(y) (x , y ∈ I). (1)

2 C is a G -code if and only if G ' Iα for some map
α : I → GL(KFpa ) satisfying (1) and such that the map

β : K×K→ K given by β(x , y) = α(x)−1(y)− y is
Fpa-bilinear.
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