Defect two blocks of symmetric groups over the p-adic integers

Florian Eisele

RWTH Aachen

Notation

- Σ_{n} : The symmetric group on n points
- $p \in \mathbb{Z}$ a prime
- \mathbb{Z}_{p} : The p-adic integers \mathbb{Q}_{p} : p-adic completion of \mathbb{Q}

Notation

- Σ_{n} : The symmetric group on n points
- $p \in \mathbb{Z}$ a prime
- \mathbb{Z}_{p} : The p-adic integers $\mathbb{Q}_{p}: p$-adic completion of \mathbb{Q}

We are interested in defect two blocks of $\mathbb{Z}_{p} \Sigma_{n}$.
Examples of defect two blocks:
The principal blocks of $\mathbb{Z}_{p} \Sigma_{n}$ for $2 \cdot p \leqslant n \leqslant 3 \cdot p-1$.

The problem

Basic orders/algebras

For a \mathbb{Z}_{p}-order Λ define its basic order Λ_{0} as

$$
\Lambda_{0}:=\operatorname{End}_{\Lambda}\left(\bigoplus_{S \text { simple } \Lambda \text {-module }} \mathcal{P}(S)\right)
$$

where $\mathcal{P}(S)$ denotes the projective cover of S.

The problem

Basic orders/algebras

For a \mathbb{Z}_{p}-order Λ define its basic order Λ_{0} as

$$
\Lambda_{0}:=\operatorname{End}_{\Lambda}\left(\bigoplus_{S \text { simple } \Lambda \text {-module }} \mathcal{P}(S)\right)
$$

where $\mathcal{P}(S)$ denotes the projective cover of S.
Blocks of defect one of $\mathbb{Z}_{p} \Sigma_{n}$
For each p there is (up to Morita-equivalence) only one block of defect one, and its basic order looks like this:

as a \mathbb{Z}_{p}-order in the \mathbb{Q}_{p}-algebra $\mathbb{Q}_{p} \oplus \mathbb{Q}_{p}^{2 \times 2} \oplus \ldots \oplus \mathbb{Q}_{p}^{2 \times 2} \oplus \mathbb{Q}_{p}$.

The problem

Basic orders/algebras
For a \mathbb{Z}_{p}-order Λ define its basic order Λ_{0} as

$$
\Lambda_{0}:=\operatorname{End}_{\wedge}\left(\bigoplus_{S \text { simple } \Lambda \text {-module }} \mathcal{P}(S)\right)
$$

where $\mathcal{P}(S)$ denotes the projective cover of S.
Blocks of defect one of $\mathbb{Z}_{p} \Sigma_{n}$
For each p there is (up to Morita-equivalence) only one block of defect one, and its basic order looks like this:

as a \mathbb{Z}_{p}-order in the \mathbb{Q}_{p}-algebra $\mathbb{Q}_{p} \oplus \mathbb{Q}_{p}^{2 \times 2} \oplus \ldots \oplus \mathbb{Q}_{p}^{2 \times 2} \oplus \mathbb{Q}_{p}$.
The question: What do the basic algebras for defect two blocks of $\mathbb{Z}_{p} \Sigma_{n}$ look like?

Properties of basic orders

Let Λ a \mathbb{Z}_{p}-order in a semisimple \mathbb{Q}_{p}-algebra $A:=\mathbb{Q}_{p} \cdot \Lambda$, and Λ_{0} its basic order.

- $A_{0}:=\mathbb{Q}_{p} \cdot \Lambda_{0}$ is semisimple as well and there is a canonical isomorphism

$$
Z(A) \xrightarrow{\sim} Z\left(A_{0}\right)
$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z\left(\Lambda_{0}\right)$. We will henceforth identify the centers.

Properties of basic orders

Let Λ a \mathbb{Z}_{p}-order in a semisimple \mathbb{Q}_{p}-algebra $A:=\mathbb{Q}_{p} \cdot \Lambda$, and Λ_{0} its basic order.

- $A_{0}:=\mathbb{Q}_{p} \cdot \Lambda_{0}$ is semisimple as well and there is a canonical isomorphism

$$
Z(A) \xrightarrow{\sim} Z\left(A_{0}\right)
$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z\left(\Lambda_{0}\right)$. We will henceforth identify the centers.

- If $\Lambda=\Lambda^{\sharp, u}:=\left\{a \in A \mid \operatorname{Tr}(u \cdot a \cdot \Lambda) \subseteq \mathbb{Z}_{p}\right\}$ for some $u \in Z(A)$, then $\Lambda_{0}=\Lambda_{0}^{\sharp, u}$ (for the same u).

Properties of basic orders

Let Λ a \mathbb{Z}_{p}-order in a semisimple \mathbb{Q}_{p}-algebra $A:=\mathbb{Q}_{p} \cdot \Lambda$, and Λ_{0} its basic order.

- $A_{0}:=\mathbb{Q}_{p} \cdot \Lambda_{0}$ is semisimple as well and there is a canonical isomorphism

$$
Z(A) \xrightarrow{\sim} Z\left(A_{0}\right)
$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z\left(\Lambda_{0}\right)$. We will henceforth identify the centers.

- If $\Lambda=\Lambda^{\sharp, u}:=\left\{a \in A \mid \operatorname{Tr}(u \cdot a \cdot \Lambda) \subseteq \mathbb{Z}_{p}\right\}$ for some $u \in Z(A)$, then $\Lambda_{0}=\Lambda_{0}^{\sharp, u}$ (for the same u).
- If $\varepsilon \in Z(A)$ is an idempotent, then $\varepsilon \Lambda_{0}$ is a basic order of $\varepsilon \Lambda$.

Properties of basic orders

Let Λ a \mathbb{Z}_{p}-order in a semisimple \mathbb{Q}_{p}-algebra $A:=\mathbb{Q}_{p} \cdot \Lambda$, and Λ_{0} its basic order.

- $A_{0}:=\mathbb{Q}_{p} \cdot \Lambda_{0}$ is semisimple as well and there is a canonical isomorphism

$$
Z(A) \xrightarrow{\sim} Z\left(A_{0}\right)
$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z\left(\Lambda_{0}\right)$. We will henceforth identify the centers.

- If $\Lambda=\Lambda^{\sharp, u}:=\left\{a \in A \mid \operatorname{Tr}(u \cdot a \cdot \Lambda) \subseteq \mathbb{Z}_{p}\right\}$ for some $u \in Z(A)$, then $\Lambda_{0}=\Lambda_{0}^{\sharp, u}$ (for the same u).
- If $\varepsilon \in Z(A)$ is an idempotent, then $\varepsilon \Lambda_{0}$ is a basic order of $\varepsilon \Lambda$.

The latter justifies that we determine all $\varepsilon \Lambda_{0}$ (for all c.p.i.'s ε) first, and in a second step Λ_{0} as a suborder of $\bigoplus_{\varepsilon} \varepsilon \Lambda_{0}$.

Some representation theory of Σ_{n}

- $P(n):=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \mid \lambda_{1}+\ldots+\lambda_{k}=n\right\}$: partitions of n.
- $\lambda \in P(n)$ is called p-regular, if no p parts of λ are equal.
- $P(n)_{p \text {-reg }}:=\{\lambda \in P(n) \mid \lambda p$-regular $\}$

Some representation theory of Σ_{n}

- $P(n):=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \mid \lambda_{1}+\ldots+\lambda_{k}=n\right\}$: partitions of n.
- $\lambda \in P(n)$ is called p-regular, if no p parts of λ are equal.
- $P(n)_{p \text {-reg }}:=\{\lambda \in P(n) \mid \lambda p$-regular $\}$

Representations of Σ_{n}
For each $\lambda \in P(n)$ there is a $\mathbb{Z} \Sigma_{n}$-lattice $S_{\mathbb{Z}}^{\lambda}$ called Specht module. For any ring R we define $S_{R}^{\lambda}:=S_{\mathbb{Z}}^{\lambda} \otimes_{\mathbb{Z}} R \in \bmod _{R \Sigma_{n}}$.

$$
\begin{gathered}
P(n) \leftrightarrow\left\{\text { Abs. irr. } \mathbb{Q} \Sigma_{n} \text {-modules }\right\}: \lambda \mapsto S_{\mathbb{Q}}^{\lambda} \\
P(n)_{p-\text { reg }} \leftrightarrow\left\{\text { Abs. irr. } \mathbb{F}_{p} \Sigma_{n} \text {-modules }\right\}: \lambda \mapsto S_{\mathbb{F}_{\boldsymbol{p}}}^{\lambda} / \operatorname{Rad}\left(S_{\mathbb{F}_{\boldsymbol{p}}}^{\lambda}\right)=: D^{\lambda}
\end{gathered}
$$

Some representation theory of Σ_{n}

- $P(n):=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \mid \lambda_{1}+\ldots+\lambda_{k}=n\right\}$: partitions of n.
- $\lambda \in P(n)$ is called p-regular, if no p parts of λ are equal.
- $P(n)_{p \text {-reg }}:=\{\lambda \in P(n) \mid \lambda p$-regular $\}$

Representations of Σ_{n}
For each $\lambda \in P(n)$ there is a $\mathbb{Z} \Sigma_{n}$-lattice $S_{\mathbb{Z}}^{\lambda}$ called Specht module. For any ring R we define $S_{R}^{\lambda}:=S_{\mathbb{Z}}^{\lambda} \otimes_{\mathbb{Z}} R \in \bmod _{R \Sigma_{n}}$.

$$
\begin{gathered}
P(n) \leftrightarrow\left\{\text { Abs. irr. } \mathbb{Q} \Sigma_{n} \text {-modules }\right\}: \lambda \mapsto S_{\mathbb{Q}}^{\lambda} \\
P(n)_{p \text {-reg }} \leftrightarrow\left\{\text { Abs. irr. } \mathbb{F}_{p} \Sigma_{n} \text {-modules }\right\}: \lambda \mapsto S_{\mathbb{F}_{\boldsymbol{p}}}^{\lambda} / \operatorname{Rad}\left(S_{\mathbb{F}_{\boldsymbol{p}}}^{\lambda}\right)=: D^{\lambda}
\end{gathered}
$$

Blocks of Σ_{n}
The p-blocks are parametrized by a so-called p-core (a partition) and a p-weight (a number). Defect two corresponds to weight 2 and $p>2$.

The Jantzen-Schaper filtration

- There is a filtration

$$
S_{\mathbb{F}_{\boldsymbol{p}}}^{\lambda}=S_{0}^{\lambda} \geqslant S_{1}^{\lambda} \geqslant S_{2}^{\lambda} \geqslant S_{3}^{\lambda}=\{0\}
$$

called the Jantzen-Schaper filtration.

- The subsets J_{i} of $P(n)_{p \text {-reg }}$ labeling the simple constituents of $S_{i}^{\lambda} / S_{i+1}^{\lambda}$ can be computed.
- The 0th layer is the top of $S_{\mathbb{F}_{\boldsymbol{p}}}^{\lambda}$ (and simple) if λ is p-regular, otherwise it is zero.
- The 2nd layer is the socle of $S_{\mathbb{F}_{\boldsymbol{p}}}^{\lambda}$ (and simple) if λ^{\top} is p-regular, otherwise it is zero.

From now on: Λ a defect two block of $\mathbb{Z}_{p} \Sigma_{n}, A:=\mathbb{Q}_{p} \otimes \Lambda, \varepsilon^{\lambda} \in Z(A)$ the c.p.i. corresponding to $S_{\mathbb{Q}_{\boldsymbol{p}}}^{\lambda}$.

- Decomposition numbers: $d_{\lambda, \mu}:=\left[\mathbb{Q}_{\boldsymbol{p}} \otimes \mathcal{P}\left(D^{\mu}\right): S_{\mathbb{Q}_{\boldsymbol{p}}}^{\lambda}\right] \leqslant 1$ (according to Scopes). The decomposition numbers can be calculated.
- $c_{\mu}:=\left\{\lambda \in P(n) \mid d_{\lambda, \mu}=1\right\}$. The Cartan numbes: $\left|c_{\mu} \cap c_{\nu}\right| \leqslant 2$ for $\mu \neq \nu$ (also according to Scopes).
- $r_{\lambda}:=\left\{\mu \in P(n)_{p-r e g} \mid d_{\lambda, \mu}=1\right\}$.

From now on: Λ a defect two block of $\mathbb{Z}_{p} \Sigma_{n}, A:=\mathbb{Q}_{p} \otimes \Lambda, \varepsilon^{\lambda} \in Z(A)$ the c.p.i. corresponding to $S_{\mathbb{Q}_{\boldsymbol{p}}}^{\lambda}$.

- Decomposition numbers: $d_{\lambda, \mu}:=\left[\mathbb{Q}_{\boldsymbol{p}} \otimes \mathcal{P}\left(D^{\mu}\right): S_{\mathbb{Q}_{\boldsymbol{p}}}^{\lambda}\right] \leqslant 1$ (according to Scopes). The decomposition numbers can be calculated.
- $c_{\mu}:=\left\{\lambda \in P(n) \mid d_{\lambda, \mu}=1\right\}$. The Cartan numbes: $\left|c_{\mu} \cap c_{\nu}\right| \leqslant 2$ for $\mu \neq \nu$ (also according to Scopes).
- $r_{\lambda}:=\left\{\mu \in P(n)_{p-r e g} \mid d_{\lambda, \mu}=1\right\}$.

$$
\begin{aligned}
& \varepsilon^{\lambda} \operatorname{End}_{A}\left(\bigoplus_{\mu} \mathbb{Q}_{\boldsymbol{p}} \otimes \mathcal{P}\left(D^{\mu}\right)\right) \xrightarrow{\sim} \operatorname{End}_{A}\left(\bigoplus_{\mu \in r_{\lambda}} S_{\mathbb{Q}_{\boldsymbol{p}}}^{\lambda}\right) \\
& \varepsilon^{\lambda} \operatorname{End}_{\Lambda}\left(\oplus_{\mu} \mathcal{P}\left(D^{\mu}\right)\right) \xrightarrow{\mathbb{Q}_{P}^{r_{\lambda}} \times r_{\lambda}}
\end{aligned}
$$

$$
\varepsilon^{\lambda} \pi_{\mathcal{P}\left(D^{\mu}\right)} \longmapsto e_{\mu \mu}:=\left(\delta_{\mu \nu} \delta_{\mu \eta}\right)_{\nu \eta}
$$

We therefore identify $\varepsilon^{\lambda} \Lambda_{0} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} . \varepsilon^{\lambda} \Lambda_{0}$ contains all diagonal idempotents.

Exponent matrices

$\varepsilon^{\lambda} \Lambda_{0}=\left(p^{m_{\mu \nu}} \mathbb{Z}_{\boldsymbol{p}}\right)_{\mu \nu} \subset \mathbb{Q}_{\boldsymbol{p}}^{r_{\lambda} \times r_{\lambda}} \quad$ for some matrix $m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}}$ (exponent matrix)
For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{3} \Sigma_{7} \cong\left(\begin{array}{cccc}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & \mathbb{Z}_{p} & (p) & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ \left(p^{2}\right) & (p) & (p) & \mathbb{Z}_{p}\end{array}\right) \quad m=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}\right)$

Exponent matrices

$\varepsilon^{\lambda} \Lambda_{0}=\left(p^{m_{\mu \nu}} \mathbb{Z}_{\boldsymbol{p}}\right)_{\mu \nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad$ for some matrix $m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}}$ (exponent matrix)
For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{\mathbf{3}} \Sigma_{\mathbf{7}} \cong\left(\begin{array}{cccc}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & \mathbb{Z}_{p} & (p) & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ \left(p^{2}\right) & (p) & (p) & \mathbb{Z}_{p}\end{array}\right) \quad m=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}\right)$

- Let λ be p-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_{0}, J_{1}, J_{2}).

Exponent matrices

$\varepsilon^{\lambda} \Lambda_{0}=\left(p^{m_{\mu \nu}} \mathbb{Z}_{\boldsymbol{p}}\right)_{\mu \nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad$ for some matrix $m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}}$ (exponent matrix)
For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{3} \Sigma_{7} \cong\left(\begin{array}{cccc}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & \mathbb{Z}_{p} & (p) & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ \left(p^{2}\right) & (p) & (p) & \mathbb{Z}_{p}\end{array}\right) \quad m=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}\right)$

- Let λ be p-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_{0}, J_{1}, J_{2}).
- Now let λ be p-singular. Two cases are to be considered:
- $\lambda^{\top} p$-regular: The functor $-\otimes_{\mathcal{O}}$ sgn induces an equivalence between $\bmod _{\varepsilon^{\lambda} \lambda_{\Lambda}}$ and $\bmod { }_{\varepsilon^{\lambda}}{ }^{\top}{ }_{\wedge}$.

Exponent matrices

$\varepsilon^{\lambda} \Lambda_{0}=\left(p^{m_{\mu \nu}} \mathbb{Z}_{\boldsymbol{p}}\right)_{\mu \nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad$ for some matrix $m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}}$ (exponent matrix)
For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{3} \Sigma_{7} \cong\left(\begin{array}{cccc}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & \mathbb{Z}_{p} & (p) & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ \left(p^{2}\right) & (p) & (p) & \mathbb{Z}_{p}\end{array}\right) \quad m=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}\right)$

- Let λ be p-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_{0}, J_{1}, J_{2}).
- Now let λ be p-singular. Two cases are to be considered:
- $\lambda^{\top} p$-regular: The functor $-\otimes_{\mathcal{O}}$ sgn induces an equivalence between $\bmod _{\varepsilon^{\prime} \lambda_{\Lambda}}$ and $\bmod _{\varepsilon^{\lambda^{\top}}} \Lambda^{\text {. }}$
We have $S_{\mathcal{O}}^{\lambda} \otimes \operatorname{sgn} \cong S_{\mathcal{O}}^{\lambda^{\top}}$ and $D^{\mu} \otimes \operatorname{sgn} \cong D^{\mu}{ }^{\boldsymbol{M}}$ and thus

$$
m_{\mu \nu}^{\lambda}=m_{\mu}^{M_{\nu} M}
$$

(\Longrightarrow reduction to λ p-regular).

Exponent matrices

$\varepsilon^{\lambda} \Lambda_{0}=\left(p^{m_{\mu \nu}} \mathbb{Z}_{\boldsymbol{p}}\right)_{\mu \nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad$ for some matrix $m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}}$ (exponent matrix)
For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{3} \Sigma_{7} \cong\left(\begin{array}{cccc}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & \mathbb{Z}_{p} & (p) & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ \left(p^{2}\right) & (p) & (p) & \mathbb{Z}_{p}\end{array}\right) \quad m=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}\right)$

- Let λ be p-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_{0}, J_{1}, J_{2}).
- Now let λ be p-singular. Two cases are to be considered:
- $\lambda^{\top} p$-regular: The functor $-\otimes_{\mathcal{O}}$ sgn induces an equivalence between $\bmod _{\varepsilon \lambda_{\Lambda}}$ and $\bmod _{\varepsilon^{\lambda^{\top}}} \Lambda^{\text {. }}$
We have $S_{\mathcal{O}}^{\lambda} \otimes \operatorname{sgn} \cong S_{\mathcal{O}}^{\lambda^{\top}}$ and $D^{\mu} \otimes \operatorname{sgn} \cong D^{\mu}{ }^{\boldsymbol{M}}$ and thus

$$
m_{\mu \nu}^{\lambda}=m_{\mu}^{M_{\nu} M}
$$

$\begin{aligned} & (\Longrightarrow \text { reduction to } \lambda \text { p-regular }) . \\ - & \lambda^{\top} p \text {-singular: In this case } r_{\lambda} \text { has just one element. Hence } \varepsilon^{\lambda} \Lambda_{\mathbf{0}} \cong \mathbb{Z}_{p}^{\mathbf{1} \times \mathbf{1}} .\end{aligned}$
So all $\epsilon^{\lambda} \Lambda_{0}$ can be determined.

The embedding $\Lambda_{0} \hookrightarrow \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_{0}$

- Identify $\operatorname{End}_{\Lambda}\left(\bigoplus_{\mu} \mathcal{P}\left(D^{\mu}\right)\right)=\Lambda_{0} \subset \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_{0} \subset \bigoplus_{\lambda} \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}}$.
- Define $e_{\mu \nu}^{\eta} \in \bigoplus_{\lambda} \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}}$ to be the element that has a 1 in the η-component at position (μ, ν) (and 0 's everywhere else).
We have

$$
\pi_{\mathcal{P}\left(D^{\mu}\right)}=\sum_{\lambda \in c_{\mu}} e_{\mu \mu}^{\lambda}
$$

The embedding $\Lambda_{0} \hookrightarrow \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_{0}$

- Identify $\operatorname{End}_{\Lambda}\left(\bigoplus_{\mu} \mathcal{P}\left(D^{\mu}\right)\right)=\Lambda_{0} \subset \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_{0} \subset \bigoplus_{\lambda} \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}}$.
- Define $e_{\mu \nu}^{\eta} \in \bigoplus_{\lambda} \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}}$ to be the element that has a 1 in the η-component at position (μ, ν) (and 0 's everywhere else).
We have

$$
\pi_{\mathcal{P}\left(D^{\mu}\right)}=\sum_{\lambda \in c_{\mu}} e_{\mu \mu}^{\lambda}
$$

Hence

$$
\begin{gathered}
\Lambda_{\mu \nu}:=\pi_{\mathcal{P}\left(D^{\mu}\right)} \Lambda_{0} \pi_{\mathcal{P}\left(D^{\nu}\right)} \subseteq \bigoplus_{\lambda \in c_{\mu} \cap c_{\nu}}\left\langle p^{m_{\mu \nu}^{\lambda}} e_{\mu \nu}^{\lambda}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}} \\
\varepsilon^{\lambda} \Lambda_{\mu \nu}=\left\langle p^{m_{\mu \nu}^{\lambda}} e_{\mu \nu}^{\lambda}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}} \forall \lambda \in c_{\mu} \cap c_{\nu} \quad \text { and } \quad\left|c_{\mu} \cap c_{\nu}\right| \leqslant 2 \text { whenever } \mu \neq \nu
\end{gathered}
$$

The embedding $\Lambda_{0} \hookrightarrow \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_{0}$

- Identify $\operatorname{End}_{\Lambda}\left(\bigoplus_{\mu} \mathcal{P}\left(D^{\mu}\right)\right)=\Lambda_{0} \subset \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_{0} \subset \bigoplus_{\lambda} \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}}$.
- Define $e_{\mu \nu}^{\eta} \in \bigoplus_{\lambda} \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}}$ to be the element that has a 1 in the η-component at position (μ, ν) (and 0 's everywhere else).
We have

$$
\pi_{\mathcal{P}\left(D^{\mu}\right)}=\sum_{\lambda \in c_{\mu}} e_{\mu \mu}^{\lambda}
$$

Hence

$$
\begin{gathered}
\Lambda_{\mu \nu}:=\pi_{\mathcal{P}\left(D^{\mu}\right)} \Lambda_{0} \pi_{\mathcal{P}\left(D^{\nu}\right)} \subseteq \bigoplus_{\lambda \in c_{\mu} \cap c_{\nu}}\left\langle p^{m_{\mu \nu}^{\lambda}} e_{\mu \nu}^{\lambda}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}} \\
\varepsilon^{\lambda} \Lambda_{\mu \nu}=\left\langle p^{m_{\mu \nu}^{\lambda}} e_{\mu \nu}^{\lambda}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}} \forall \lambda \in c_{\mu} \cap c_{\nu} \quad \text { and } \quad\left|c_{\mu} \cap c_{\nu}\right| \leqslant 2 \text { whenever } \mu \neq \nu
\end{gathered}
$$

Remark

The elements in $\Lambda_{\mu \mu}$ will not be needed to generate the order Λ_{0} $\left(E_{\mathbb{F}_{\boldsymbol{p}} \Sigma_{\boldsymbol{n}}}^{1}\left(D^{\mu}, D^{\mu}\right)=\{0\}\right.$ all D^{μ} in a defect two block of $\left.\Sigma_{\boldsymbol{n}}\right)$
That is, we only have to determine $\Lambda_{\mu \nu}$ with $\mu \neq \nu$.

Using selfduality
Λ_{0} being selfdual implies the following:

- In the case $m_{\mu \nu}^{\lambda}+m_{\nu \mu}^{\lambda}=2$ for all $\lambda \in c_{\mu} \cap c_{\nu}$:

$$
\Lambda_{\mu \nu}=\bigoplus_{\eta \in c_{\mu} \cap c_{\nu}}\left\langle p^{\boldsymbol{m}_{\mu \nu}^{\eta}} e_{\mu \nu}^{\eta}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}}
$$

Using selfduality

Λ_{0} being selfdual implies the following:

- In the case $m_{\mu \nu}^{\lambda}+m_{\nu \mu}^{\lambda}=2$ for all $\lambda \in c_{\mu} \cap c_{\nu}$:

$$
\Lambda_{\mu \nu}=\bigoplus_{\eta \in c_{\mu} \cap c_{\nu}}\left\langle p^{\boldsymbol{m}_{\mu \nu}^{\eta}} e_{\mu \nu}^{\eta}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}}
$$

- In the case $m_{\mu \nu}^{\lambda}+m_{\nu \mu}^{\lambda}=1$ für alle $\lambda \in c_{\mu} \cap c_{\nu}$:

$$
\Lambda_{\mu \nu}=\left\langle\left(\begin{array}{cc}
\alpha_{\mu \nu}^{\eta} \cdot p^{\boldsymbol{m}_{\mu \nu}^{\eta}} & p^{\boldsymbol{m}_{\mu \nu}^{\lambda}} \\
0 & p^{\boldsymbol{\boldsymbol { m } _ { \mu \nu } ^ { \lambda }}+\boldsymbol{1}}
\end{array}\right) \cdot\binom{e_{\mu \nu}^{\eta}}{e_{\mu \nu}^{\lambda}}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}} \quad \text { wo } c_{\mu} \cap c_{\nu}=\{\eta, \lambda\}
$$

for certain parmeters $\alpha_{\mu \nu}^{\eta} \in \mathbb{Z}_{p}^{\times}$.

Using selfduality

Λ_{0} being selfdual implies the following:

- In the case $m_{\mu \nu}^{\lambda}+m_{\nu \mu}^{\lambda}=2$ for all $\lambda \in c_{\mu} \cap c_{\nu}$:

$$
\Lambda_{\mu \nu}=\bigoplus_{\eta \in c_{\mu} \cap c_{\nu}}\left\langle p^{\boldsymbol{m}_{\mu \nu}^{\eta}} e_{\mu \nu}^{\eta}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}}
$$

- In the case $m_{\mu \nu}^{\lambda}+m_{\nu \mu}^{\lambda}=1$ für alle $\lambda \in c_{\mu} \cap c_{\nu}$:

$$
\Lambda_{\mu \nu}=\left\langle\left(\begin{array}{cc}
\alpha_{\mu \nu}^{\eta} \cdot p^{\boldsymbol{m}_{\mu \nu}^{\eta}} & p^{\boldsymbol{m}_{\mu \nu}^{\lambda}} \\
0 & p^{\boldsymbol{m}_{\mu \nu}^{\lambda}+\mathbf{1}}
\end{array}\right) \cdot\binom{e_{\mu \nu}^{\eta}}{e_{\mu \nu}^{\lambda}}\right\rangle_{\mathbb{Z}_{\boldsymbol{p}}} \quad \text { wо } c_{\mu} \cap c_{\nu}=\{\eta, \lambda\}
$$

for certain parmeters $\alpha_{\mu \nu}^{\eta} \in \mathbb{Z}_{\boldsymbol{p}}^{\times}$.
Remark
The selfduality of Λ_{0} also implies

$$
\alpha_{\nu \mu}^{\eta}=-\left(\alpha_{\mu \nu}^{\eta}\right)^{-1} \cdot \frac{\operatorname{dim} S^{\lambda}}{\operatorname{dim} S^{\eta}}
$$

Now these parameters have to be eliminated by conjugation!.

The Ext-quiver (Part I)

Definition

For a \mathbb{Z}_{p}-order Γ its Ext-quiver is (in our case) defined as the following undirected graph:

- vertices \leftrightarrow simple 「-modules
- \# edges $S-T=\operatorname{dim}_{\mathbb{F}_{\boldsymbol{p}}} \operatorname{Ext}_{\mathbb{F}_{\boldsymbol{p}} \otimes \Gamma}^{1}(S, T)\left(=\operatorname{dim}_{\mathbb{F}_{\boldsymbol{p}}} \operatorname{Ext}_{\mathbb{F}_{\boldsymbol{p}} \otimes \Gamma}^{1}(T, S)\right)$

The Ext-quiver (Part I)

Definition

For a \mathbb{Z}_{p}-order Γ its Ext-quiver is (in our case) defined as the following undirected graph:

- vertices \leftrightarrow simple 「-modules
- \# edges $S-T=\operatorname{dim}_{\mathbb{F}_{\boldsymbol{p}}} \operatorname{Ext}_{\mathbb{F}_{\boldsymbol{p}} \otimes \Gamma}^{1}(S, T)\left(=\operatorname{dim}_{\mathbb{F}_{\boldsymbol{p}}} \operatorname{Ext}_{\mathbb{F}_{\boldsymbol{p}} \otimes \Gamma}^{1}(T, S)\right)$

We look at the Ext-quiver of $\varepsilon^{\lambda} \Lambda_{0}\left(\lambda\right.$ and $\lambda^{\top} p$-regular):

The Ext-quiver of $\varepsilon^{\lambda} \Lambda_{0}$ is a maximally bipartite graph.

The Ext-quiver (Part II)

- The Ext-quiver of any $\varepsilon^{\lambda} \Lambda_{0}$ is a maximally bipartite graph.
- Known: The Ext-quiver of Λ_{0} is a bipartite graph.
- The epimorphisms $\Lambda_{0} \rightarrow \varepsilon^{\lambda} \Lambda_{0}$ yield that the Ext-quivers of $\varepsilon^{\lambda} \Lambda_{0}$ are subquivers of the Ext-quiver of Λ_{0}.

The Ext-quiver (Part II)

- The Ext-quiver of any $\varepsilon^{\lambda} \Lambda_{0}$ is a maximally bipartite graph.
- Known: The Ext-quiver of Λ_{0} is a bipartite graph.
- The epimorphisms $\Lambda_{0} \rightarrow \varepsilon^{\lambda} \Lambda_{0}$ yield that the Ext-quivers of $\varepsilon^{\lambda} \Lambda_{0}$ are subquivers of the Ext-quiver of Λ_{0}.

Corollary
For μ, ν with $\left[S^{\lambda}: D^{\mu}\right] \neq 0$ and $\left[S^{\lambda}: D^{\nu}\right] \neq 0$ the following holds:

$$
\operatorname{Ext}_{\mathbb{F}_{p} \otimes \Lambda_{0}}^{1}\left(D^{\mu}, D^{\nu}\right) \cong \operatorname{Ext}_{\mathbb{F}_{p} \otimes \varepsilon^{\lambda} \Lambda_{0}}^{1}\left(D^{\mu}, D^{\nu}\right)
$$

The Ext-quiver (Part II)

- The Ext-quiver of any $\varepsilon^{\lambda} \Lambda_{0}$ is a maximally bipartite graph.
- Known: The Ext-quiver of Λ_{0} is a bipartite graph.
- The epimorphisms $\Lambda_{0} \rightarrow \varepsilon^{\lambda} \Lambda_{0}$ yield that the Ext-quivers of $\varepsilon^{\lambda} \Lambda_{0}$ are subquivers of the Ext-quiver of Λ_{0}.

Corollary
For μ, ν with $\left[S^{\lambda}: D^{\mu}\right] \neq 0$ and $\left[S^{\lambda}: D^{\nu}\right] \neq 0$ the following holds:

$$
\operatorname{Ext}_{\mathbb{F}_{\boldsymbol{p}} \otimes \Lambda_{0}}^{1}\left(D^{\mu}, D^{\nu}\right) \cong \operatorname{Ext}_{\mathbb{F}_{\boldsymbol{p}} \otimes \varepsilon^{\lambda} \Lambda_{\mathbf{o}}}^{1}\left(D^{\mu}, D^{\nu}\right)
$$

Remark

Only those $\Lambda_{\mu \nu}$ with $\operatorname{Ext}_{\mathbb{F}_{\boldsymbol{p}} \otimes \Lambda_{0}}^{1}\left(D^{\mu}, D^{\nu}\right) \neq 0$ are needed to generate Λ_{0} as a \mathbb{Z}_{p}-algebra (i. e. only the corresponding $\alpha_{\mu \nu}^{\lambda}$ need to be determined).

Elimination of parameters

Theorem
Let $\mu>\nu \in \mathcal{P}(n)_{p \text {-reg }}$ be partitions in a defect two block. Then

$$
\operatorname{Ext}_{\mathbb{T}_{p} \otimes \wedge_{0}}^{1}\left(D^{\mu}, D^{\nu}\right) \neq 0 \wedge\left|c_{\mu} \cap c_{\nu}\right|=2 \Longrightarrow \nu \in c_{\mu} \cap c_{\nu}
$$

Furthermore: ν is the lexicographically greater element in $c_{\mu} \cap c_{\nu}$.

Elimination of parameters

Theorem
Let $\mu>\nu \in \mathcal{P}(n)_{p \text {-reg }}$ be partitions in a defect two block. Then

$$
\operatorname{Ext}_{\mathbb{T}_{p} \otimes \wedge_{0}}^{1}\left(D^{\mu}, D^{\nu}\right) \neq 0 \wedge\left|c_{\mu} \cap c_{\nu}\right|=2 \Longrightarrow \nu \in c_{\mu} \cap c_{\nu}
$$

Furthermore: ν is the lexicographically greater element in $c_{\mu} \cap c_{\nu}$.
Corollary
W.I.o.g. we only have parameters $\alpha_{\mu \nu}^{\nu}$ with $\mu>\nu$. By successive conjugation these can all be eliminated (i. e., set to be $=1$).
Together with what we have already seen before, this Corollary completely determines the basic orders of defect two blocks of $\mathbb{Z}_{p} \Sigma_{n}$.

