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Notation

I Σn: The symmetric group on n points

I p ∈ Z a prime

I Zp : The p-adic integers Qp : p-adic completion of Q

We are interested in defect two blocks of ZpΣn.
Examples of defect two blocks:
The principal blocks of ZpΣn for 2 · p 6 n 6 3 · p − 1.
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The problem

Basic orders/algebras
For a Zp-order Λ de�ne its basic order Λ0 as

Λ0 := EndΛ

 ⊕
S simple Λ-module

P(S)


where P(S) denotes the projective cover of S.

Blocks of defect one of ZpΣn

For each p there is (up to Morita-equivalence) only one block of defect one, and its
basic order looks like this:

Zp
( ) Zp (p)

Zp Zp


 Zp (p)

Zp Zp


 · · · · · ·

Zp (p)

Zp Zp


 Zp

( )p
p

p

p

p

as a Zp-order in the Qp-algebra Qp ⊕ Q2×2
p ⊕ . . .⊕ Q2×2

p ⊕ Qp .

The question: What do the basic algebras for defect two blocks of ZpΣn look like?
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Properties of basic orders

Let Λ a Zp-order in a semisimple Qp-algebra A := Qp · Λ, and Λ0 its basic order.

I A0 := Qp · Λ0 is semisimple as well and there is a canonical isomorphism

Z(A)
∼→ Z(A0)

which restricts to an isomorphism Z(Λ)
∼→ Z(Λ0). We will henceforth identify the

centers.

I If Λ = Λ],u := {a ∈ A | Tr(u · a · Λ) ⊆ Zp} for some u ∈ Z(A), then Λ0 = Λ],u
0

(for the same u).

I If ε ∈ Z(A) is an idempotent, then εΛ0 is a basic order of εΛ.

The latter justi�es that we determine all εΛ0 (for all c.p.i.'s ε) �rst, and in a second
step Λ0 as a suborder of

⊕
ε εΛ0.
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Some representation theory of Σn

I P(n) := {λ = (λ1, . . . , λk) | λ1 + . . .+ λk = n}: partitions of n.
I λ ∈ P(n) is called p-regular, if no p parts of λ are equal.

I P(n)p-reg := {λ ∈ P(n) | λ p-regular}

Representations of Σn

For each λ ∈ P(n) there is a ZΣn-lattice SλZ called Specht module. For any ring R we

de�ne Sλ
R

:= SλZ ⊗Z R ∈ modRΣn .

P(n)↔ { Abs. irr. QΣn-modules } : λ 7→ SλQ

P(n)p-reg ↔ { Abs. irr. FpΣn-modules } : λ 7→ SλFp/Rad(SλFp ) =: Dλ

Blocks of Σn

The p-blocks are parametrized by a so-called p-core (a partition) and a p-weight (a
number). Defect two corresponds to weight 2 and p > 2.
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The Jantzen-Schaper �ltration

I There is a �ltration

SλFp = Sλ0 > Sλ1 > Sλ2 > Sλ3 = {0}

called the Jantzen-Schaper �ltration.

I The subsets Ji of P(n)p-reg labeling the simple constituents of Sλ
i
/Sλ

i+1
can be

computed.

I The 0th layer is the top of SλFp (and simple) if λ is p-regular, otherwise it is zero.

I The 2nd layer is the socle of SλFp (and simple) if λ> is p-regular, otherwise it is
zero.



ελΛ0 as a graduated order

From now on: Λ a defect two block of ZpΣn, A := Qp ⊗ Λ, ελ ∈ Z(A) the c.p.i.
corresponding to SλQp .

I Decomposition numbers: dλ,µ :=
[
Qp ⊗ P(Dµ) : SλQp

]
6 1 (according to

Scopes). The decomposition numbers can be calculated.

I cµ := {λ ∈ P(n) | dλ,µ = 1}. The Cartan numbes: |cµ ∩ cν | 6 2 for µ 6= ν (also
according to Scopes).

I rλ := {µ ∈ P(n)p-reg | dλ,µ = 1}.

ελ EndA

(⊕
µ Qp ⊗ P(Dµ)

)
EndA

(⊕
µ∈rλ SλQp

)

ελ EndΛ

(⊕
µ P(Dµ)

)
Qrλ×rλ
p

ελπP(Dµ) eµµ := (δµνδµη)νη

∼

∼

We therefore identify ελΛ0 ⊂ Qrλ×rλ
p . ελΛ0 contains all diagonal idempotents.
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Exponent matrices

ελΛ0 = (pmµνZp)µν ⊂ Qrλ×rλ
p for some matrix m ∈ Zrλ×rλ (exponent matrix)

For example: ε(4,2,1)Z3Σ7
∼=


Zp Zp Zp Zp
(p) Zp (p) Zp
(p) (p) Zp Zp
(p2) (p) (p) Zp

 m =


0 0 0 0
1 0 1 0
1 1 0 0
2 1 1 0



I Let λ be p-regular. In this case the exponent matrix is determined by the layers of
the Jantzen-Schaper �ltration (i. e. J0, J1, J2).

I Now let λ be p-singular. Two cases are to be considered:
I λ> p-regular: The functor−⊗O sgn induces an equivalence between mod

ελΛ
and

mod
ελ
>

Λ
.

We have SλO ⊗ sgn ∼= Sλ
>
O and Dµ ⊗ sgn ∼= Dµ

M
and thus

m
λ
µν = m

λ>
µMνM

(=⇒ reduction to λ p-regular).
I λ> p-singular: In this case rλ has just one element. Hence ελΛ0 ∼= Z1×1p .

So all ελΛ0 can be determined.
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The embedding Λ0 ↪→
⊕

λ ε
λΛ0

I Identify EndΛ(
⊕
µ P(Dµ)) = Λ0 ⊂

⊕
λ ε

λΛ0 ⊂
⊕
λ Qrλ×rλ

p .

I De�ne eηµν ∈
⊕
λ Qrλ×rλ

p to be the element that has a 1 in the η-component at
position (µ, ν) (and 0's everywhere else).

We have
πP(Dµ) =

∑
λ∈cµ

eλµµ

Hence

Λµν := πP(Dµ)Λ0πP(Dν ) ⊆
⊕

λ∈cµ∩cν

〈pm
λ
µν eλµν〉Zp

ελΛµν = 〈pm
λ
µν eλµν〉Zp ∀λ ∈ cµ ∩ cν and |cµ ∩ cν | 6 2 whenever µ 6= ν

Remark
The elements in Λµµ will not be needed to generate the order Λ0

(Ext1FpΣn
(Dµ,Dµ) = {0} all Dµ in a defect two block of Σn)

That is, we only have to determine Λµν with µ 6= ν.
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Using selfduality

Λ0 being selfdual implies the following:

I In the case mλµν + mλνµ = 2 for all λ ∈ cµ ∩ cν :

Λµν =
⊕

η∈cµ∩cν

〈pm
η
µν eηµν〉Zp

I In the case mλµν + mλνµ = 1 für alle λ ∈ cµ ∩ cν :

Λµν =

〈(
αηµν · pm

η
µν pm

λ
µν

0 pm
λ
µν+1

)
·
(

eηµν
eλµν

)〉
Zp

wo cµ ∩ cν = {η, λ}

for certain parmeters αηµν ∈ Z×p .

Remark
The selfduality of Λ0 also implies

αηνµ = −(αηµν)−1 ·
dim Sλ

dim Sη

Now these parameters have to be eliminated by conjugation!.
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The Ext-quiver (Part I)

De�nition
For a Zp-order Γ its Ext-quiver is (in our case) de�ned as the following undirected
graph:

I vertices ↔ simple Γ-modules

I # edges S − T = dimFp Ext
1

Fp⊗Γ(S,T ) (= dimFp Ext
1

Fp⊗Γ(T , S))

We look at the Ext-quiver of ελΛ0 ( λ and λ> p-regular):
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The Ext-quiver (Part II)

I The Ext-quiver of any ελΛ0 is a maximally bipartite graph.

I Known: The Ext-quiver of Λ0 is a bipartite graph.

I The epimorphisms Λ0 � ελΛ0 yield that the Ext-quivers of ελΛ0 are subquivers
of the Ext-quiver of Λ0.

Corollary
For µ, ν with [Sλ : Dµ] 6= 0 and [Sλ : Dν ] 6= 0 the following holds:

Ext1Fp⊗Λ0
(Dµ,Dν) ∼= Ext1Fp⊗ελΛ0

(Dµ,Dν)

Remark
Only those Λµν with Ext1Fp⊗Λ0

(Dµ,Dν) 6= 0 are needed to generate Λ0 as a

Zp-algebra (i. e. only the corresponding αλµν need to be determined).
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Elimination of parameters

Theorem
Let µ > ν ∈ P(n)p-reg be partitions in a defect two block. Then

Ext1Fp⊗Λ0
(Dµ,Dν) 6= 0 ∧ |cµ ∩ cν | = 2 =⇒ ν ∈ cµ ∩ cν

Furthermore: ν is the lexicographically greater element in cµ ∩ cν .

Corollary
W.l.o.g. we only have parameters ανµν with µ > ν. By successive conjugation these
can all be eliminated (i. e., set to be = 1).

Together with what we have already seen before, this Corollary completely determines
the basic orders of defect two blocks of ZpΣn.
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