Defect two blocks of symmetric groups over the *p*-adic integers

Florian Eisele

RWTH Aachen

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Notation

- Σ_n : The symmetric group on *n* points
- ▶ $p \in \mathbb{Z}$ a prime
- ▶ \mathbb{Z}_p : The *p*-adic integers \mathbb{Q}_p : *p*-adic completion of \mathbb{Q}

Notation

- Σ_n : The symmetric group on *n* points
- ▶ $p \in \mathbb{Z}$ a prime
- ▶ \mathbb{Z}_p : The *p*-adic integers \mathbb{Q}_p : *p*-adic completion of \mathbb{Q}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We are interested in defect two blocks of $\mathbb{Z}_p \Sigma_n$.

Examples of defect two blocks:

The principal blocks of $\mathbb{Z}_p \Sigma_n$ for $2 \cdot p \leq n \leq 3 \cdot p - 1$.

The problem

Basic orders/algebras

For a \mathbb{Z}_{p} -order Λ define its basic order Λ_0 as

$$\Lambda_0 := \mathsf{End}_{\Lambda} \left(\bigoplus_{\text{$$S$ simple Λ-module}} \mathcal{P}(S) \right)$$

where $\mathcal{P}(S)$ denotes the projective cover of S.

The problem

Basic orders/algebras

For a \mathbb{Z}_{p} -order Λ define its basic order Λ_0 as

$$\Lambda_0 := \mathsf{End}_{\Lambda} \left(\bigoplus_{\text{$$S$ simple Λ-module}} \mathcal{P}(S) \right)$$

where $\mathcal{P}(S)$ denotes the projective cover of S.

Blocks of defect one of $\mathbb{Z}_p \Sigma_n$

For each p there is (up to Morita-equivalence) only one block of defect one, and its basic order looks like this:

The problem

Basic orders/algebras

For a \mathbb{Z}_{p} -order Λ define its basic order Λ_0 as

$$\Lambda_0 := \mathsf{End}_{\Lambda} \left(\bigoplus_{\text{S simple Λ-module}} \mathcal{P}(S) \right)$$

where $\mathcal{P}(S)$ denotes the projective cover of S.

Blocks of defect one of $\mathbb{Z}_p \Sigma_n$

For each p there is (up to Morita-equivalence) only one block of defect one, and its basic order looks like this:

$$\left(\begin{array}{c} \mathbb{Z}_{p} \end{array}\right)^{p} \left(\begin{array}{c} \mathbb{Z}_{p} & (p) \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} \end{array}\right)^{p} \left(\begin{array}{c} \mathbb{Z}_{p} & (p) \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} \end{array}\right)_{p} \cdots \cdots \left(\begin{array}{c} \mathbb{Z}_{p} & (p) \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} \end{array}\right)_{p} \left(\begin{array}{c} \mathbb{Z}_{p} & (p) \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} \end{array}\right)$$

as a \mathbb{Z}_p -order in the \mathbb{Q}_p -algebra $\mathbb{Q}_p \oplus \mathbb{Q}_p^{2 \times 2} \oplus \ldots \oplus \mathbb{Q}_p^{2 \times 2} \oplus \mathbb{Q}_p$.

The question: What do the basic algebras for defect two blocks of $\mathbb{Z}_p \Sigma_n$ look like?

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Let Λ a \mathbb{Z}_p -order in a semisimple \mathbb{Q}_p -algebra $A := \mathbb{Q}_p \cdot \Lambda$, and Λ_0 its basic order.

▶ $A_0 := \mathbb{Q}_p \cdot \Lambda_0$ is semisimple as well and there is a canonical isomorphism

$$Z(A) \xrightarrow{\sim} Z(A_0)$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z(\Lambda_0)$. We will henceforth identify the centers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let Λ a \mathbb{Z}_{p} -order in a semisimple \mathbb{Q}_{p} -algebra $A := \mathbb{Q}_{p} \cdot \Lambda$, and Λ_{0} its basic order.

• $A_0 := \mathbb{Q}_p \cdot \Lambda_0$ is semisimple as well and there is a canonical isomorphism

$$Z(A) \xrightarrow{\sim} Z(A_0)$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z(\Lambda_0)$. We will henceforth identify the centers.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

► If $\Lambda = \Lambda^{\sharp, u} := \{ a \in A \mid \operatorname{Tr}(u \cdot a \cdot \Lambda) \subseteq \mathbb{Z}_p \}$ for some $u \in Z(A)$, then $\Lambda_0 = \Lambda_0^{\sharp, u}$ (for the same u).

Let Λ a \mathbb{Z}_{p} -order in a semisimple \mathbb{Q}_{p} -algebra $A := \mathbb{Q}_{p} \cdot \Lambda$, and Λ_{0} its basic order.

• $A_0 := \mathbb{Q}_p \cdot \Lambda_0$ is semisimple as well and there is a canonical isomorphism

$$Z(A) \xrightarrow{\sim} Z(A_0)$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z(\Lambda_0)$. We will henceforth identify the centers.

- ► If $\Lambda = \Lambda^{\sharp, u} := \{ a \in A \mid \operatorname{Tr}(u \cdot a \cdot \Lambda) \subseteq \mathbb{Z}_p \}$ for some $u \in Z(A)$, then $\Lambda_0 = \Lambda_0^{\sharp, u}$ (for the same u).
- If $\varepsilon \in Z(A)$ is an idempotent, then $\varepsilon \Lambda_0$ is a basic order of $\varepsilon \Lambda$.

Let Λ a \mathbb{Z}_p -order in a semisimple \mathbb{Q}_p -algebra $A := \mathbb{Q}_p \cdot \Lambda$, and Λ_0 its basic order.

• $A_0 := \mathbb{Q}_p \cdot \Lambda_0$ is semisimple as well and there is a canonical isomorphism

$$Z(A) \xrightarrow{\sim} Z(A_0)$$

which restricts to an isomorphism $Z(\Lambda) \xrightarrow{\sim} Z(\Lambda_0)$. We will henceforth identify the centers.

- ► If $\Lambda = \Lambda^{\sharp, u} := \{ a \in A \mid \operatorname{Tr}(u \cdot a \cdot \Lambda) \subseteq \mathbb{Z}_p \}$ for some $u \in Z(A)$, then $\Lambda_0 = \Lambda_0^{\sharp, u}$ (for the same u).
- If $\varepsilon \in Z(A)$ is an idempotent, then $\varepsilon \Lambda_0$ is a basic order of $\varepsilon \Lambda$.

The latter justifies that we determine all $\varepsilon \Lambda_0$ (for all c.p.i.'s ε) first, and in a second step Λ_0 as a suborder of $\bigoplus_{\varepsilon} \varepsilon \Lambda_0$.

Some representation theory of Σ_n

• $P(n) := \{\lambda = (\lambda_1, \dots, \lambda_k) \mid \lambda_1 + \dots + \lambda_k = n\}$ partitions of n.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- $\lambda \in P(n)$ is called *p*-regular, if no *p* parts of λ are equal.
- ▶ $P(n)_{p-\text{reg}} := \{\lambda \in P(n) \mid \lambda \text{ p-regular}\}$

Some representation theory of Σ_n

- $P(n) := \{\lambda = (\lambda_1, \dots, \lambda_k) \mid \lambda_1 + \dots + \lambda_k = n\}$ partitions of n.
- $\lambda \in P(n)$ is called *p*-regular, if no *p* parts of λ are equal.
- ▶ $P(n)_{p-\text{reg}} := \{\lambda \in P(n) \mid \lambda \text{ p-regular}\}$

Representations of Σ_n

For each $\lambda \in P(n)$ there is a $\mathbb{Z}\Sigma_n$ -lattice $S_{\mathbb{Z}}^{\lambda}$ called Specht module. For any ring R we define $S_R^{\lambda} := S_{\mathbb{Z}}^{\lambda} \otimes_{\mathbb{Z}} R \in \mathbf{mod}_{R\Sigma_n}$.

 $P(n) \leftrightarrow \{ \text{Abs. irr. } \mathbb{Q}\Sigma_n \text{-modules } \} : \lambda \mapsto S_{\mathbb{Q}}^{\lambda}$

 $P(n)_{p\text{-}\mathrm{reg}} \leftrightarrow \{ \text{ Abs. irr. } \mathbb{F}_p \Sigma_n \text{-} \text{modules } \}: \ \lambda \mapsto S^{\lambda}_{\mathbb{F}_p} / \operatorname{\mathsf{Rad}}(S^{\lambda}_{\mathbb{F}_p}) =: D^{\lambda}$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Some representation theory of Σ_n

- $P(n) := \{\lambda = (\lambda_1, \dots, \lambda_k) \mid \lambda_1 + \dots + \lambda_k = n\}$ partitions of n.
- $\lambda \in P(n)$ is called *p*-regular, if no *p* parts of λ are equal.
- ▶ $P(n)_{p-\text{reg}} := \{\lambda \in P(n) \mid \lambda \text{ p-regular}\}$

Representations of Σ_n

For each $\lambda \in P(n)$ there is a $\mathbb{Z}\Sigma_n$ -lattice $S_{\mathbb{Z}}^{\lambda}$ called Specht module. For any ring R we define $S_R^{\lambda} := S_{\mathbb{Z}}^{\lambda} \otimes_{\mathbb{Z}} R \in \mathbf{mod}_{R\Sigma_n}$.

$$\begin{split} & P(n) \leftrightarrow \{ \text{ Abs. irr. } \mathbb{Q}\Sigma_n \text{-modules } \} : \ \lambda \mapsto S^{\lambda}_{\mathbb{Q}} \\ & P(n)_{p\text{-reg}} \leftrightarrow \{ \text{ Abs. irr. } \mathbb{F}_p \Sigma_n \text{-modules } \} : \ \lambda \mapsto S^{\lambda}_{\mathbb{F}_p} / \operatorname{Rad}(S^{\lambda}_{\mathbb{F}_p}) =: D^{\lambda} \end{split}$$

Blocks of Σ_n

The *p*-blocks are parametrized by a so-called *p*-core (a partition) and a *p*-weight (a number). Defect two corresponds to weight 2 and p > 2.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The Jantzen-Schaper filtration

There is a filtration

$$S_{\mathbb{F}_{p}}^{\lambda} = S_{0}^{\lambda} \geqslant S_{1}^{\lambda} \geqslant S_{2}^{\lambda} \geqslant S_{3}^{\lambda} = \{0\}$$

called the Jantzen-Schaper filtration.

- ▶ The subsets J_i of $P(n)_{p-\text{reg}}$ labeling the simple constituents of $S_i^{\lambda}/S_{i+1}^{\lambda}$ can be computed.
- ▶ The 0th layer is the top of $S_{\mathbb{F}_p}^{\lambda}$ (and simple) if λ is *p*-regular, otherwise it is zero.
- ▶ The 2nd layer is the socle of $S^{\lambda}_{\mathbb{F}_p}$ (and simple) if λ^{\top} is *p*-regular, otherwise it is zero.

$\varepsilon^{\lambda}\Lambda_0$ as a graduated order

From now on: Λ a defect two block of $\mathbb{Z}_p \Sigma_n$, $A := \mathbb{Q}_p \otimes \Lambda$, $\varepsilon^{\lambda} \in Z(A)$ the c.p.i. corresponding to $S^{\lambda}_{\mathbb{Q}_p}$.

- Decomposition numbers: d_{λ,μ} := [Q_p ⊗ P(D^μ) : S^λ_{Q_p}] ≤ 1 (according to Scopes). The decomposition numbers can be calculated.
- ► $c_{\mu} := \{\lambda \in P(n) \mid d_{\lambda,\mu} = 1\}$. The Cartan numbes: $|c_{\mu} \cap c_{\nu}| \leq 2$ for $\mu \neq \nu$ (also according to Scopes).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• $r_{\lambda} := \{ \mu \in P(n)_{p \text{-reg}} \mid d_{\lambda,\mu} = 1 \}$

$\varepsilon^{\lambda}\Lambda_0$ as a graduated order

From now on: Λ a defect two block of $\mathbb{Z}_p \Sigma_n$, $A := \mathbb{Q}_p \otimes \Lambda$, $\varepsilon^{\lambda} \in Z(A)$ the c.p.i. corresponding to $S^{\lambda}_{\mathbb{Q}_p}$.

- Decomposition numbers: $d_{\lambda,\mu} := \left[\mathbb{Q}_{p} \otimes \mathcal{P}(D^{\mu}) : S_{\mathbb{Q}_{p}}^{\lambda}\right] \leqslant 1$ (according to Scopes). The decomposition numbers can be calculated.
- ► $c_{\mu} := \{\lambda \in P(n) \mid d_{\lambda,\mu} = 1\}$. The Cartan numbes: $|c_{\mu} \cap c_{\nu}| \leq 2$ for $\mu \neq \nu$ (also according to Scopes).

• $r_{\lambda} := \{ \mu \in P(n)_{p \text{-reg}} \mid d_{\lambda,\mu} = 1 \}$

We therefore identify $\varepsilon^{\lambda} \Lambda_0 \subset \mathbb{Q}_p^{r_{\lambda} \times r_{\lambda}}$. $\varepsilon^{\lambda} \Lambda_0$ contains all diagonal idempotents.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\varepsilon^{\lambda} \Lambda_{0} = (p^{m_{\mu\nu}} \mathbb{Z}_{p})_{\mu\nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad \text{for some matrix } m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}} \text{ (exponent matrix)}$$

For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{3} \Sigma_{7} \cong \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p^{2}) & (p) & (p) & \mathbb{Z}_{p} \end{pmatrix} \quad m = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$

(ロ)、(型)、(E)、(E)、 E) のQで

$$\varepsilon^{\lambda}\Lambda_{0} = \left(p^{m_{\mu\nu}}\mathbb{Z}_{p}\right)_{\mu\nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad \text{for some matrix } m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}} \text{ (exponent matrix)}$$

For example: $\varepsilon^{(4,2,1)}\mathbb{Z}_{3}\Sigma_{7} \cong \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p^{2}) & (p) & (p) & \mathbb{Z}_{p} \end{pmatrix} \quad m = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$

• Let λ be *p*-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_0, J_1, J_2).

 $\varepsilon^{\lambda} \Lambda_{0} = (p^{m_{\mu\nu}} \mathbb{Z}_{p})_{\mu\nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad \text{for some matrix } m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}} \text{ (exponent matrix)}$ For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{3} \Sigma_{7} \cong \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p^{2}) & (p) & (p) & \mathbb{Z}_{p} \end{pmatrix} \quad m = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$

- Let λ be *p*-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_0, J_1, J_2).
- Now let λ be *p*-singular. Two cases are to be considered:
 - λ^T p-regular: The functor − ⊗_O sgn induces an equivalence between mod_{ελΛ} and mod_{ελT_Λ}.

ション ふゆ く 山 マ ふ し マ うくの

 $\varepsilon^{\lambda} \Lambda_{0} = (p^{m_{\mu\nu}} \mathbb{Z}_{p})_{\mu\nu} \subset \mathbb{Q}_{p}^{r_{\lambda} \times r_{\lambda}} \quad \text{for some matrix } m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}} \text{ (exponent matrix)}$ For example: $\varepsilon^{(4,2,1)} \mathbb{Z}_{3} \Sigma_{7} \cong \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & \mathbb{Z}_{p} & (p) & \mathbb{Z}_{p} \\ (p^{2}) & (p) & (p) & \mathbb{Z}_{p} \end{pmatrix} \quad m = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$

- Let λ be *p*-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_0, J_1, J_2).
- Now let λ be *p*-singular. Two cases are to be considered:
 - ▶ λ^{\top} *p*-regular: The functor $\otimes_{\mathcal{O}}$ sgn induces an equivalence between $\operatorname{mod}_{\varepsilon\lambda\Lambda}$ and $\operatorname{mod}_{\varepsilon\lambda^{\top}\Lambda}$.

We have $S^{\lambda}_{\mathcal{O}} \otimes \operatorname{sgn} \cong {S^{\lambda}_{\mathcal{O}}}^{\top}$ and $D^{\mu} \otimes \operatorname{sgn} \cong {D^{\mu}}^{M}$ and thus

$$m_{\mu\nu}^{\lambda} = m_{\mu}^{\lambda \top} M_{\nu} M$$

ション ふゆ く 山 マ チャット しょうくしゃ

 $(\implies$ reduction to λ *p*-regular).

 $\varepsilon^{\lambda} \Lambda_0 = (p^{m_{\mu\nu}} \mathbb{Z}_p)_{\mu\nu} \subset \mathbb{Q}_p^{r_{\lambda} \times r_{\lambda}}$ for some matrix $m \in \mathbb{Z}^{r_{\lambda} \times r_{\lambda}}$ (exponent matrix) For example: $\varepsilon^{(4,2,1)}\mathbb{Z}_{3}\Sigma_{7} \cong \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p) & \mathbb{Z}_{p} & (p) & \mathbb{Z}_{p} \\ (p) & (p) & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ (p^{2}) & (p) & (p) & \mathbb{Z} \end{pmatrix} \qquad m = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$

- \blacktriangleright Let λ be p-regular. In this case the exponent matrix is determined by the layers of the Jantzen-Schaper filtration (i. e. J_0, J_1, J_2).
- Now let λ be *p*-singular. Two cases are to be considered:
 - ▶ λ^{\top} *p*-regular: The functor $\otimes_{\mathcal{O}}$ sgn induces an equivalence between mod_{$\varepsilon^{\lambda_{\Lambda}}$} and $\operatorname{mod}_{\lambda^{\top} \Lambda}$

We have $S_{\mathcal{O}}^{\lambda} \otimes \operatorname{sgn} \cong S_{\mathcal{O}}^{\lambda^{\top}}$ and $D^{\mu} \otimes \operatorname{sgn} \cong D^{\mu^{M}}$ and thus

$$m_{\mu\nu}^{\lambda} = m_{\mu}^{\lambda \top} m_{\nu}^{\mu} M$$

ション ふゆ く 山 マ チャット しょうくしゃ

 $(\Longrightarrow \text{ reduction to } \lambda \text{ } p\text{-regular}).$ $\lambda^{\top} \text{ } p\text{-singular: In this case } r_{\lambda} \text{ has just one element. Hence } \varepsilon^{\lambda} \Lambda_{\mathbf{0}} \cong \mathbb{Z}_{p}^{\mathbf{1} \times \mathbf{1}}.$

So all $\epsilon^{\lambda} \Lambda_0$ can be determined.

The embedding $\Lambda_0 \hookrightarrow \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_0$

- ▶ Identify $\operatorname{End}_{\Lambda}(\bigoplus_{\mu} \mathcal{P}(D^{\mu})) = \Lambda_0 \subset \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_0 \subset \bigoplus_{\lambda} \mathbb{Q}_p^{r_{\lambda} \times r_{\lambda}}.$
- ► Define $e_{\mu\nu}^{\eta} \in \bigoplus_{\lambda} \mathbb{Q}_{\rho}^{r_{\lambda} \times r_{\lambda}}$ to be the element that has a 1 in the η -component at position (μ, ν) (and 0's everywhere else).

We have

$$\pi_{\mathcal{P}(D^{\mu})} = \sum_{\lambda \in \boldsymbol{c}_{\mu}} \, \boldsymbol{e}_{\mu\mu}^{\lambda}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The embedding $\Lambda_0 \hookrightarrow \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_0$

- ► Identify $\operatorname{End}_{\Lambda}(\bigoplus_{\mu} \mathcal{P}(D^{\mu})) = \Lambda_0 \subset \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_0 \subset \bigoplus_{\lambda} \mathbb{Q}_p^{r_{\lambda} \times r_{\lambda}}$.
- ▶ Define $e_{\mu\nu}^{\eta} \in \bigoplus_{\lambda} \mathbb{Q}_{\rho}^{r_{\lambda} \times r_{\lambda}}$ to be the element that has a 1 in the η -component at position (μ, ν) (and 0's everywhere else).

We have

$$\pi_{\mathcal{P}(\mathcal{D}^{\mu})} = \sum_{\lambda \in c_{\mu}} e_{\mu\mu}^{\lambda}$$

Hence

$$\Lambda_{\mu\nu} := \pi_{\mathcal{P}(\mathcal{D}^{\mu})} \Lambda_{0} \pi_{\mathcal{P}(\mathcal{D}^{\nu})} \subseteq \bigoplus_{\lambda \in c_{\mu} \cap c_{\nu}} \langle \boldsymbol{p}^{\boldsymbol{m}_{\mu\nu}^{\lambda}} \boldsymbol{e}_{\mu\nu}^{\lambda} \rangle_{\mathbb{Z}_{\boldsymbol{p}}}$$

 $\varepsilon^{\lambda}\Lambda_{\mu\nu} = \langle p^{m_{\mu\nu}^{\lambda}} e_{\mu\nu}^{\lambda} \rangle_{\mathbb{Z}_{p}} \ \forall \lambda \in c_{\mu} \cap c_{\nu} \quad \text{and} \quad |c_{\mu} \cap c_{\nu}| \leqslant 2 \text{ whenever } \mu \neq \nu$

The embedding $\Lambda_0 \hookrightarrow \bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_0$

- ► Identify End_Λ($\bigoplus_{\mu} \mathcal{P}(D^{\mu})$) = Λ₀ ⊂ $\bigoplus_{\lambda} \varepsilon^{\lambda} \Lambda_0 \subset \bigoplus_{\lambda} \mathbb{Q}_p^{r_{\lambda} \times r_{\lambda}}$.
- Define $e_{\mu\nu}^{\eta} \in \bigoplus_{\lambda} \mathbb{Q}_{\rho}^{\rho, \times r_{\lambda}}$ to be the element that has a 1 in the η -component at position (μ, ν) (and 0's everywhere else).

We have

$$\pi_{\mathcal{P}(\mathcal{D}^{\mu})} = \sum_{\lambda \in c_{\mu}} e_{\mu\mu}^{\lambda}$$

Hence

$$\Lambda_{\mu\nu} := \pi_{\mathcal{P}(D^{\mu})} \Lambda_0 \pi_{\mathcal{P}(D^{\nu})} \subseteq \bigoplus_{\lambda \in \boldsymbol{c}_{\mu} \cap \boldsymbol{c}_{\nu}} \langle \boldsymbol{\rho}^{\boldsymbol{m}_{\mu\nu}^{\lambda}} \boldsymbol{e}_{\mu\nu}^{\lambda} \rangle_{\mathbb{Z}_{\boldsymbol{p}}}$$

 $\varepsilon^{\lambda}\Lambda_{\mu\nu} = \langle p^{m_{\mu\nu}^{\lambda}} e^{\lambda}_{\mu\nu} \rangle_{\mathbb{Z}_{p}} \ \forall \lambda \in c_{\mu} \cap c_{\nu} \quad \text{and} \quad |c_{\mu} \cap c_{\nu}| \leqslant 2 \text{ whenever } \mu \neq \nu$

Remark

The elements in $\Lambda_{\mu\mu}$ will not be needed to generate the order Λ_0 $(Ext_{\mathbb{F}_p\Sigma_n}^1(D^{\mu}, D^{\mu}) = \{0\}$ all D^{μ} in a defect two block of Σ_n) That is, we only have to determine $\Lambda_{\mu\nu}$ with $\mu \neq \nu$.

Using selfduality

 Λ_0 being selfdual implies the following:

▶ In the case $m^{\lambda}_{\mu
u} + m^{\lambda}_{
u\mu} = 2$ for all $\lambda \in c_{\mu} \cap c_{
u}$:

$$\Lambda_{\mu
u} = igoplus_{\eta\in m{c}_{\mu}\capm{c}_{
u}} \langle p^{m{m}_{\mu
u}^{\eta}}m{e}_{\mu
u}^{\eta}
angle_{\mathbb{Z}_{m{p}}}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Using selfduality

 Λ_0 being selfdual implies the following:

▶ In the case $m^{\lambda}_{\mu
u} + m^{\lambda}_{
u\mu} =$ 2 for all $\lambda \in c_{\mu} \cap c_{
u}$:

$$\Lambda_{\mu
u} = igoplus_{\eta\inm{c}_{\mu}\capm{c}_{
u}} \langle p^{m{m}_{\mu
u}^{\eta}} e^{\eta}_{\mu
u}
angle_{\mathbb{Z}_{p}}$$

ightarrow In the case $m^\lambda_{\mu
u}+m^\lambda_{
u\mu}=1$ für alle $\lambda\in c_\mu\cap c_
u$:

$$\Lambda_{\mu\nu} = \left\langle \left(\begin{array}{cc} \alpha^{\eta}_{\mu\nu} \cdot p^{m^{\eta}_{\mu\nu}} & p^{m^{\lambda}_{\mu\nu}} \\ 0 & p^{m^{\lambda}_{\mu\nu}+1} \end{array} \right) \cdot \left(\begin{array}{c} e^{\eta}_{\mu\nu} \\ e^{\lambda}_{\mu\nu} \end{array} \right) \right\rangle_{\mathbb{Z}_{p}} \quad \text{wo } c_{\mu} \cap c_{\nu} = \{\eta, \lambda\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for certain parmeters $lpha_{\mu
u}^\eta\in\mathbb{Z}_p^{ imes}$.

Using selfduality

 Λ_0 being selfdual implies the following:

▶ In the case $m^{\lambda}_{\mu
u} + m^{\lambda}_{
u\mu} = 2$ for all $\lambda \in c_{\mu} \cap c_{
u}$:

$$\Lambda_{\mu
u} = igoplus_{\eta\inm{c}_{\mu}\capm{c}_{
u}} \langle p^{m{m}_{\mu
u}^{\eta}} e^{\eta}_{\mu
u}
angle_{\mathbb{Z}_{p}}$$

▶ In the case $m^{\lambda}_{\mu
u} + m^{\lambda}_{
u\mu} = 1$ für alle $\lambda \in c_{\mu} \cap c_{
u}$:

$$\Lambda_{\mu\nu} = \left\langle \left(\begin{array}{cc} \alpha^{\eta}_{\mu\nu} \cdot p^{m^{\eta}_{\mu\nu}} & p^{m^{\eta}_{\mu\nu}} \\ 0 & p^{m^{\eta}_{\mu\nu}+1} \end{array} \right) \cdot \left(\begin{array}{c} e^{\eta}_{\mu\nu} \\ e^{\lambda}_{\mu\nu} \end{array} \right) \right\rangle_{\mathbb{Z}_{p}} \quad \text{wo } c_{\mu} \cap c_{\nu} = \{\eta, \lambda\}$$

for certain parmeters $\alpha^\eta_{\mu
u} \in \mathbb{Z}_p^{\times}$.

Remark

The selfduality of Λ_0 also implies

$$\alpha^{\eta}_{\nu\mu} = -(\alpha^{\eta}_{\mu\nu})^{-1} \cdot \frac{\dim S^{\lambda}}{\dim S^{\eta}}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Now these parameters have to be eliminated by conjugation!.

The Ext-quiver (Part I)

Definition

For a \mathbb{Z}_{p} -order Γ its Ext-quiver is (in our case) defined as the following undirected graph:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- vertices \leftrightarrow simple Γ -modules

The Ext-quiver (Part I)

Definition

For a \mathbb{Z}_{p} -order Γ its Ext-quiver is (in our case) defined as the following undirected graph:

- vertices \leftrightarrow simple Γ -modules

We look at the Ext-quiver of $\varepsilon^{\lambda}\Lambda_0$ (λ and λ^{\top} p-regular):

The Ext-quiver of $\varepsilon^{\lambda}\Lambda_0$ is a maximally bipartite graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Ext-quiver (Part II)

- The Ext-quiver of any $\varepsilon^{\lambda}\Lambda_0$ is a maximally bipartite graph.
- **Known**: The Ext-quiver of Λ_0 is a bipartite graph.
- ► The epimorphisms $\Lambda_0 \twoheadrightarrow \varepsilon^\lambda \Lambda_0$ yield that the Ext-quivers of $\varepsilon^\lambda \Lambda_0$ are subquivers of the Ext-quiver of Λ_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Ext-quiver (Part II)

- The Ext-quiver of any $\varepsilon^{\lambda}\Lambda_0$ is a maximally bipartite graph.
- Known: The Ext-quiver of Λ_0 is a bipartite graph.
- ► The epimorphisms $\Lambda_0 \twoheadrightarrow \varepsilon^\lambda \Lambda_0$ yield that the Ext-quivers of $\varepsilon^\lambda \Lambda_0$ are subquivers of the Ext-quiver of Λ_0 .

Corollary

For μ, ν with $[S^{\lambda} : D^{\mu}] \neq 0$ and $[S^{\lambda} : D^{\nu}] \neq 0$ the following holds:

$$\mathsf{Ext}^{\mathbf{1}}_{\mathbb{F}_{\boldsymbol{\rho}}\otimes\Lambda_{\mathbf{0}}}(D^{\mu},D^{\nu})\cong\mathsf{Ext}^{\mathbf{1}}_{\mathbb{F}_{\boldsymbol{\rho}}\otimes\varepsilon^{\lambda}\Lambda_{\mathbf{0}}}(D^{\mu},D^{\nu})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Ext-quiver (Part II)

- The Ext-quiver of any $\varepsilon^{\lambda}\Lambda_0$ is a maximally bipartite graph.
- Known: The Ext-quiver of Λ_0 is a bipartite graph.
- ► The epimorphisms $\Lambda_0 \twoheadrightarrow \varepsilon^\lambda \Lambda_0$ yield that the Ext-quivers of $\varepsilon^\lambda \Lambda_0$ are subquivers of the Ext-quiver of Λ_0 .

Corollary

For μ, ν with $[S^{\lambda} : D^{\mu}] \neq 0$ and $[S^{\lambda} : D^{\nu}] \neq 0$ the following holds:

$$\mathsf{Ext}^1_{\mathbb{F}_{\pmb{p}}\otimes\Lambda_{\pmb{0}}}(D^\mu,D^\nu)\cong\mathsf{Ext}^1_{\mathbb{F}_{\pmb{p}}\otimes\varepsilon^\lambda\Lambda_{\pmb{0}}}(D^\mu,D^\nu)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Remark

Only those $\Lambda_{\mu\nu}$ with $\operatorname{Ext}^{1}_{\mathbb{F}_{p}\otimes\Lambda_{0}}(D^{\mu},D^{\nu})\neq 0$ are needed to generate Λ_{0} as a \mathbb{Z}_{p} -algebra (i. e. only the corresponding $\alpha_{\mu\nu}^{\lambda}$ need to be determined).

Elimination of parameters

Theorem Let $\mu > \nu \in \mathcal{P}(n)_{p\text{-reg}}$ be partitions in a defect two block. Then $\operatorname{Ext}^{1}_{\mathbb{F}_{p} \otimes \Lambda_{0}}(D^{\mu}, D^{\nu}) \neq 0 \land |c_{\mu} \cap c_{\nu}| = 2 \Longrightarrow \nu \in c_{\mu} \cap c_{\nu}$

Furthermore: u is the lexicographically greater element in $c_{\mu} \cap c_{\nu}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Elimination of parameters

Theorem

Let $\mu >
u \in \mathcal{P}(n)_{p\text{-}\mathrm{reg}}$ be partitions in a defect two block. Then

 $\mathsf{Ext}^{1}_{\mathbb{F}_{\boldsymbol{\rho}}\otimes \Lambda_{\boldsymbol{0}}}(D^{\mu},D^{\nu})\neq 0 \land |c_{\mu}\cap c_{\nu}|=2 \Longrightarrow \nu \in c_{\mu}\cap c_{\nu}$

Furthermore: ν is the lexicographically greater element in $c_{\mu} \cap c_{\nu}$.

Corollary

W.l.o.g. we only have parameters $\alpha^{\nu}_{\mu\nu}$ with $\mu > \nu$. By successive conjugation these can all be eliminated (i. e., set to be = 1).

Together with what we have already seen before, this Corollary completely determines the basic orders of defect two blocks of $\mathbb{Z}_p \Sigma_n$.