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Notation

> ¥ ,: The symmetric group on n points

> p €7 a prime

> Zp: The p-adic integers  Qp: p-adic completion of Q
We are interested in defect two blocks of ZpX,.

Examples of defect two blocks:
The principal blocks of Zp¥, for 2-p<n<3-p—1.
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Basic orders/algebras

For a Zp-order A define its basic order Ag as

Ao := Endp ( P ’P(S))

S simple A-module

where P(S) denotes the projective cover of S.
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Basic orders/algebras
For a Zp-order A define its basic order Ag as

Ao := Endp ( P ’P(S))

S simple A-module
where P(S) denotes the projective cover of S.

Blocks of defect one of Z,X,

For each p there is (up to Morita-equivalence) only one block of defect one, and its
basic order Iooks like this:

ZPﬁZP (p) ﬁZP (p) ) I ( Zp)lj/zp
p

as a Zp-order in the Qp-algebra Qp, ® Q3% @ Q3% @ Qp.
The question: What do the basic algebras for defect two blocks of Zp¥,, look like?



Properties of basic orders

Let A a Zp-order in a semisimple Qp-algebra A := Q) - A, and Ay its basic order.
> Ag := Qp - Ao is semisimple as well and there is a canonical isomorphism

Z(A) = Z(Ao)

which restricts to an isomorphism Z(A) = Z(Ag). We will henceforth identify the
centers.
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Properties of basic orders

Let A a Zp-order in a semisimple Qp-algebra A := Q) - A, and Ay its basic order.

> Ag := Qp - Ao is semisimple as well and there is a canonical isomorphism
Z(A) 3 Z(Ao)

which restricts to an isomorphism Z(A) = Z(Ag). We will henceforth identify the
centers.

» fA=A:={ac A| Tr(u-a-A) CZp} for some u € Z(A), then N\g = /\g‘”
(for the same u).

> If e € Z(A) is an idempotent, then e/Ag is a basic order of eA.

The latter justifies that we determine all eAg (for all c.p.i.’s €) first, and in a second
step Ag as a suborder of @_ e/o.



Some representation theory of ¥,

> P(n):={A=(A1,...,Ak) | A1 + ...+ A\x = n}: partitions of n.
> X\ € P(n) is called p-regular, if no p parts of \ are equal.
> P(n)p-reg :={X € P(n) | X p-regular}
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Some representation theory of ¥,

> P(n):={A=(A1,...,Ak) | A1 + ...+ A\x = n}: partitions of n.
> X\ € P(n) is called p-regular, if no p parts of \ are equal.
> P(n)p-reg :={X € P(n) | X p-regular}

Representations of ¥,
For each A € P(n) there is a ZX ,-lattice S called Specht module. For any ring R we
define S,é = SZ)‘ ®z R € modgy,,.

P(n) <> { Abs. irr. Q¥,-modules } : A+ S3

P(n)p-reg <> { Abs. irr. FpXp-modules } : X — SH?‘P/ Rad(S]ﬁ‘P) = D*

Blocks of ¥,

The p-blocks are parametrized by a so-called p-core (a partition) and a p-weight (a
number). Defect two corresponds to weight 2 and p > 2.



The Jantzen-Schaper filtration

> There is a filtration
S, =S5 250 =253 > 53 = {0}

called the Jantzen-Schaper filtration.

> The subsets J; of P(n)p-reg labeling the simple constituents of S,.)‘/SI.A+1 can be
computed.

» The Oth layer is the top of S];‘\P (and simple) if X is p-regular, otherwise it is zero.

» The 2nd layer is the socle of SJFAP (and simple) if AT is p-regular, otherwise it is
zero.



eM\g as a graduated order

From now on: A a defect two block of Z,¥,, A:=Q, ® A, * € Z(A) the c.p.i.
corresponding to S@P.

>

Decomposition numbers: d ,, := [QP ® P(DH) : Sap] < 1 (according to
Scopes). The decomposition numbers can be calculated.

cui={X € P(n) | dy,, =1}. The Cartan numbes: |c, Nc,| < 2 for u # v (also
according to Scopes).

ryi={p € P(n)preg | dr,, =1}



eM\g as a graduated order

From now on: A a defect two block of Z,¥,, A:=Q, ® A, * € Z(A) the c.p.i.
corresponding to Sép.

> Decomposition numbers: dy , := [QP ® P(DH) : Sap] < 1 (according to
Scopes). The decomposition numbers can be calculated.

> ¢y :={A€ P(n) | dx, =1}. The Cartan numbes: |[c, Ncy| < 2 for pu # v (also
according to Scopes).

> ry={p € P(N)preg | dr,p =1},

e Endg (@u Qp ® P(D#)) AN Endy (@Ne,/\ 56‘,)

) |

X Endp (EBM P(DH)) N QLAXIA

6Aﬂ'P(D#) P eup = (S 0un)vm

We therefore identify e*\g C Q2 " . eMg contains all diagonal idempotents.
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Exponent matrices

Mo = (p™v Zp)y, C Q™ for some matrix m € Z™ X" (exponent matrix)

Zp Zp Zp Zp 0 0 0 O

L (42,1) ~| ( Zp (P) Zp 10 1 0

For example: € Z3Y7 = ®) () Zp Zp m= 110 0
) () (p) Zp 2 1.1 0

> Let A\ be p-regular. In this case the exponent matrix is determined by the layers of
the Jantzen-Schaper filtration (i. e. Jo, J1, /).
> Now let A be p-singular. Two cases are to be considered:
> AT p-regular: The functor— ® » sgn induces an equivalence between modaxl\ and
mod AT o-
€ A
A AT M

We have S5 ® sgn 2 S5 and D¥ @ sgn = D* and thus

A AT
my, =mm,m

(= reduction to X p-regular).
> AT p-singular: In this case ry has just one element. Hence e*Aq 2 Z1* 1.

So all eé*Ag can be determined.



The embedding Ao — @D, e* o

> Identify Endr (€D, P(D*)) = No C D, Mo C P, QP Xrx

> Define ¢/, € P, Q,’,*X'* to be the element that has a 1 in the n-component at
position (u,v) (and 0's everywhere else).

We have
_ A
Tp(DH) = Z Cup
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The embedding Ao — @D, e* o

> Identify Endr (€D, P(D*)) = No C D, Mo C P, QP Xrx

> Define ¢/, € P, Q,’,*X'* to be the element that has a 1 in the n-component at
position (u,v) (and 0's everywhere else).

We have
A
TP(DH) = Z Cup
A€cy,
Hence N
e m A
A i=mpmMompory C €D (P en, )z,
)\ECMﬁCl,

A
My = (mee,i‘l,)Zp VX€ec,Ne, and |cuNey| <2 whenever p# v

Remark
The elements in Ay, will not be needed to generate the order Ag

(Ext[épz"(D“, D#) = {0} all D in a defect two block of ¥,)
That is, we only have to determine A, with p # v.
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Using selfduality

Ao being selfdual implies the following:

> In the case mf;l, + mi‘u =2forall Aec,Ncy:

i
Mw= D (P ez,

nec,Ney

> In the case mf;l, + ml),‘u =1firalle A€ cyNcy:

nopmi, pm el
A#U _ Apy P p/\ . ";’\V WO Cp Ney = {7]’ A}
0 my, 1 Cuv
14 Zp

for certain parmeters OzZ,, € Z;f.

Remark
The selfduality of Ag also implies
dim $*
n — _(4" 1.
on = () sy

Now these parameters have to be eliminated by conjugation!.



The Ext-quiver (Part I)

Definition
For a Zp-order T its Ext-quiver is (in our case) defined as the following undirected
graph:

> vertices <> simple '-modules

> # edges S — T = dimg, Ext}FP®r(s, T) (= dimg, Exth@r(T.S))



The Ext-quiver (Part I)

Definition
For a Zp-order T its Ext-quiver is (in our case) defined as the following undirected
graph:

> vertices <> simple '-modules

> # edges S — T = dimp, Ext]%ﬂp®r(5, T) (= dimg, Ext]}Pw—(PS))

We look at the Ext-quiver of e*\o ( X\ and AT p-regular):

The Ext-quiver of e*Ag is
a maximally bipartite
graph.
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of the Ext-quiver of Ag.
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The Ext-quiver (Part I1)

» The Ext-quiver of any e*A is a maximally bipartite graph.
> Known: The Ext-quiver of Ag is a bipartite graph.

> The epimorphisms Ag — e*Aq yield that the Ext-quivers of e*Aq are subquivers
of the Ext-quiver of Ag.

Corollary
For p, v with [S* : D#] # 0 and [S» : D¥] # 0 the following holds:
1 ~ Eytl v
Exth, gno (D, D") 2 Extt (D, D)
Remark
Only those A, with Extle®Ao(D“, D) # 0 are needed to generate Ag as a

Zp-algebra (i. e. only the corresponding a;\w need to be determined).



Elimination of parameters

Theorem
Let o > v € P(n)p-reg be partitions in a defect two block. Then

Exti,_eno (D¥ DY) #0A|cuNev|=2=veEcuNc

Furthermore: v is the lexicographically greater element in ¢, N ¢y .



Elimination of parameters

Theorem
Let o > v € P(n)p-reg be partitions in a defect two block. Then

Exti,_eno (D¥ DY) #0A|cuNev|=2=veEcuNc

Furthermore: v is the lexicographically greater element in ¢, N ¢y .

Corollary

W.l.o.g. we only have parameters o}, with 11 > v. By successive conjugation these
can all be eliminated (i. e., set to be = 1).

Together with what we have already seen before, this Corollary completely determines

the basic orders of defect two blocks of Zp¥,.
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