Q-forms and the theory of central simple G-algebras

Jan Jongen
RWTH-Aachen
26.03.2010

Motivation

Example 1:

Consider $G=Q_{8}$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=2$.

Motivation

Example 1:

Consider $G=Q_{8}$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=2$.

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \Delta(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Motivation

Example 1:

Consider $G=Q_{8}$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=2$.

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \Delta(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

- $\mathbb{Q}[i]\left[x_{1}, x_{2}\right]^{G}=\left\langle x_{1}^{2} x_{2}^{2}, x_{1}^{4}+x_{2}^{4}, x_{1} x_{2}^{5}-x_{2} x_{1}^{5}\right\rangle_{\mathbb{Q}[i]-a l g}$

Motivation

Example 1:

Consider $G=Q_{8}$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=2$.

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \Delta(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

- $\mathbb{Q}[i]\left[x_{1}, x_{2}\right]^{G}=\left\langle x_{1}^{2} x_{2}^{2}, x_{1}^{4}+x_{2}^{4}, x_{1} x_{2}^{5}-x_{2} x_{1}^{5}\right\rangle_{\mathbb{Q}[i]-a l g}$

Observations:

Motivation

Example 1:

Consider $G=Q_{8}$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=2$.

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \Delta(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

- $\mathbb{Q}[i]\left[x_{1}, x_{2}\right]^{G}=\left\langle x_{1}^{2} x_{2}^{2}, x_{1}^{4}+x_{2}^{4}, x_{1} x_{2}^{5}-x_{2} x_{1}^{5}\right\rangle_{\mathbb{Q}[i]-a l g}$

Observations:

- Ring of polynomial invariants has a generating set of rational polynomials although the representation is not rational

Motivation

Example 1:

Consider $G=Q_{8}$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=2$.

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \Delta(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

- $\mathbb{Q}[i]\left[x_{1}, x_{2}\right]^{G}=\left\langle x_{1}^{2} x_{2}^{2}, x_{1}^{4}+x_{2}^{4}, x_{1} x_{2}^{5}-x_{2} x_{1}^{5}\right\rangle_{\mathbb{Q}[i]-a l g}$

Observations:

- Ring of polynomial invariants has a generating set of rational polynomials although the representation is not rational
- For all $g \in G$ applying the GALOIS automorphism $I \mapsto-I$ to $\Delta(g)$ is afforded by conjugation with $\Delta(b) \rightsquigarrow \operatorname{Gal}(\mathbb{Q}[i] / \mathbb{Q})$ acts on $\Delta(G)$

Motivation

Example 2:

Consider $G=\mathrm{PSL}_{2}(7)$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=3$

Motivation

Example 2:

Consider $G=\mathrm{PSL}_{2}(7)$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=3$

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{ccc}
\zeta_{7} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0 \\
0 & 0 & \zeta_{7}^{4}
\end{array}\right), \Delta(b)=\frac{1}{\sqrt{-7}}\left(\begin{array}{ccc}
\zeta_{7}^{5}-\zeta_{7}^{2} & \alpha & \zeta_{7}^{3}-\zeta_{7}^{4} \\
\alpha & \zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} \\
\zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} & \alpha
\end{array}\right)
$$

with $\alpha:=-1-\zeta_{7}^{5}-\zeta_{7}^{4}-\zeta_{7}^{3}-\zeta_{7}^{2}-2 \zeta_{7}$

Motivation

Example 2:

Consider $G=\mathrm{PSL}_{2}(7)$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=3$

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{ccc}
\zeta_{7} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0 \\
0 & 0 & \zeta_{7}^{4}
\end{array}\right), \Delta(b)=\frac{1}{\sqrt{-7}}\left(\begin{array}{ccc}
\zeta_{7}^{5}-\zeta_{7}^{2} & \alpha & \zeta_{7}^{3}-\zeta_{7}^{4} \\
\alpha & \zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} \\
\zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} & \alpha
\end{array}\right)
$$

with $\alpha:=-1-\zeta_{7}^{5}-\zeta_{7}^{4}-\zeta_{7}^{3}-\zeta_{7}^{2}-2 \zeta_{7}$

Observations:

Motivation

Example 2:

Consider $G=\mathrm{PSL}_{2}(7)$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=3$

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{ccc}
\zeta_{7} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0 \\
0 & 0 & \zeta_{7}^{4}
\end{array}\right), \Delta(b)=\frac{1}{\sqrt{-7}}\left(\begin{array}{ccc}
\zeta_{7}^{5}-\zeta_{7}^{2} & \alpha & \zeta_{7}^{3}-\zeta_{7}^{4} \\
\alpha & \zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} \\
\zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} & \alpha
\end{array}\right)
$$

$$
\text { with } \alpha:=-1-\zeta_{7}^{5}-\zeta_{7}^{4}-\zeta_{7}^{3}-\zeta_{7}^{2}-2 \zeta_{7}
$$

Observations:

- $\mathbb{Q}\left[\zeta_{7}\right][x]^{G}$ is generated by: $x_{1} x_{2}{ }^{3}+x_{2} x_{3}{ }^{3}+x_{3} x_{1}{ }^{3}, 270 x_{3}{ }^{2} x_{1}{ }^{2} x_{2}^{2}-$ $54 x_{3}{ }^{5} x_{1}-54 x_{2}{ }^{5} x_{3}-54 x_{1}{ }^{5} x_{2}, f_{3}, f_{4}$ where $f_{3}, f_{4} \in \mathbb{Q}[x] \rightsquigarrow$ Generating set of rational invariants!

Motivation

Example 2:

Consider $G=\mathrm{PSL}_{2}(7)$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=3$

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{ccc}
\zeta_{7} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0 \\
0 & 0 & \zeta_{7}^{4}
\end{array}\right), \Delta(b)=\frac{1}{\sqrt{-7}}\left(\begin{array}{ccc}
\zeta_{7}^{5}-\zeta_{7}^{2} & \alpha & \zeta_{7}^{3}-\zeta_{7}^{4} \\
\alpha & \zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} \\
\zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} & \alpha
\end{array}\right)
$$

with $\alpha:=-1-\zeta_{7}^{5}-\zeta_{7}^{4}-\zeta_{7}^{3}-\zeta_{7}^{2}-2 \zeta_{7}$

Observations:

- $\mathbb{Q}\left[\zeta_{7}\right][x]^{G}$ is generated by: $x_{1} x_{2}^{3}+x_{2} x_{3}{ }^{3}+x_{3} x_{1}{ }^{3}, 270 x_{3}{ }^{2} x_{1}{ }^{2} x_{2}^{2}-$ $54 x_{3}{ }^{5} x_{1}-54 x_{2}{ }^{5} x_{3}-54 x_{1}{ }^{5} x_{2}, f_{3}, f_{4}$ where $f_{3}, f_{4} \in \mathbb{Q}[x] \rightsquigarrow$ Generating set of rational invariants!
- $\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{7}\right] / \mathbb{Q}\right)$ acts on $\Delta(G)$

Motivation

Example 2:

Consider $G=\mathrm{PSL}_{2}(7)$ and choose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=3$

- A representation which affords χ is given by

$$
\Delta(a)=\left(\begin{array}{ccc}
\zeta_{7} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0 \\
0 & 0 & \zeta_{7}^{4}
\end{array}\right), \Delta(b)=\frac{1}{\sqrt{-7}}\left(\begin{array}{ccc}
\zeta_{7}^{5}-\zeta_{7}^{2} & \alpha & \zeta_{7}^{3}-\zeta_{7}^{4} \\
\alpha & \zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} \\
\zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{5}-\zeta_{7}^{2} & \alpha
\end{array}\right)
$$

$$
\text { with } \alpha:=-1-\zeta_{7}^{5}-\zeta_{7}^{4}-\zeta_{7}^{3}-\zeta_{7}^{2}-2 \zeta_{7}
$$

Observations:

- $\mathbb{Q}\left[\zeta_{7}\right][x]^{G}$ is generated by: $x_{1} x_{2}^{3}+x_{2} x_{3}{ }^{3}+x_{3} x_{1}^{3}, 270 x_{3}{ }^{2} x_{1}^{2} x_{2}^{2}-$ $54 x_{3}{ }^{5} x_{1}-54 x_{2}{ }^{5} x_{3}-54 x_{1}{ }^{5} x_{2}, f_{3}, f_{4}$ where $f_{3}, f_{4} \in \mathbb{Q}[x] \rightsquigarrow$ Generating set of rational invariants!
- $\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{7}\right] / \mathbb{Q}\right)$ acts on $\Delta(G)$

Use this observation to give a precise formulation of this phenomena

Q-forms

- Let G be a finite group and $\chi \in \operatorname{Irr}(G)$ faithful

Q-forms

- Let G be a finite group and $\chi \in \operatorname{Irr}(G)$ faithful
- K / \mathbb{Q} be GALOIS with $\Gamma:=\operatorname{Gal}(K / \mathbb{Q})$

Q-forms

- Let G be a finite group and $\chi \in \operatorname{Irr}(G)$ faithful
- K / \mathbb{Q} be Galois with $\Gamma:=\operatorname{Gal}(K / \mathbb{Q})$
- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ

\mathbb{Q}-forms

- Let G be a finite group and $\chi \in \operatorname{Irr}(G)$ faithful
- K / \mathbb{Q} be Galois with $\Gamma:=\operatorname{Gal}(K / \mathbb{Q})$
- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ

Definition of a K / \mathbb{Q}-form:

Define Δ to be a K / \mathbb{Q}-form if there exists $U \leq \operatorname{Aut}(G)$ and an isomorphism ${ }^{-}$: $U \rightarrow \Gamma$ such that

$$
\Delta(u(g))=\bar{u}(\Delta(g)) \text { for every } g \in G
$$

\mathbb{Q}-forms

- Let G be a finite group and $\chi \in \operatorname{Irr}(G)$ faithful
- K / \mathbb{Q} be GALOIS with $\Gamma:=\operatorname{Gal}(K / \mathbb{Q})$
- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ

Definition of a K / \mathbb{Q}-form:

Define Δ to be a K / \mathbb{Q}-form if there exists $U \leq \operatorname{Aut}(G)$ and an isomorphism ${ }^{-}$: $U \rightarrow \Gamma$ such that

$$
\Delta(u(g))=\bar{u}(\Delta(g)) \text { for every } g \in G
$$

- Trivial Example: A representation $\Delta: G \rightarrow \mathrm{GL}_{n}(\mathbb{Q})$ is a \mathbb{Q} / \mathbb{Q}-form with $U=\langle 1\rangle$.

Q-forms

Comparison of K / \mathbb{Q}-forms:
Let Δ and Θ be K / \mathbb{Q}-forms then: $\Delta \sim \Theta$ if and only if there exists $Y \in \mathrm{GL}_{n}(\mathbb{Q})$ such that $Y \Delta(g) Y^{-1}=\Theta(g)$ for all $g \in G$

Q-forms

Comparison of K / \mathbb{Q}-forms:
Let Δ and Θ be K / \mathbb{Q}-forms then: $\Delta \sim \Theta$ if and only if there exists $Y \in \mathrm{GL}_{n}(\mathbb{Q})$ such that $Y \Delta(g) Y^{-1}=\Theta(g)$ for all $g \in G$
Connection with invariant theory:

\mathbb{Q}-forms

Comparison of K / \mathbb{Q}-forms:
Let Δ and Θ be K / \mathbb{Q}-forms then: $\Delta \sim \Theta$ if and only if there exists $Y \in \mathrm{GL}_{n}(\mathbb{Q})$ such that $Y \Delta(g) Y^{-1}=\Theta(g)$ for all $g \in G$

Connection with invariant theory:
Theorem:
$\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is a K / \mathbb{Q}-form if and only if $K[x]^{G}$ is generated by polynomials with rational coefficients.

Q-forms

Main question:

Given $\chi \in \operatorname{Irr}(G)$ and $U \leq \operatorname{Aut}(G)$ is there a Galois extension K of \mathbb{Q} such that there exists a K / \mathbb{Q}-form Δ with this U ?

Q-forms

Main question:

Given $\chi \in \operatorname{Irr}(G)$ and $U \leq \operatorname{Aut}(G)$ is there a Galois extension K of \mathbb{Q} such that there exists a K / \mathbb{Q}-form Δ with this U ?
The following conditions are obviously necessary:

Q-forms

Main question:

Given $\chi \in \operatorname{Irr}(G)$ and $U \leq \operatorname{Aut}(G)$ is there a Galois extension K of \mathbb{Q} such that there exists a K / \mathbb{Q}-form Δ with this U ?

The following conditions are obviously necessary:

- There exists a GaloIs extension K / \mathbb{Q} with U as GaloIs group and it is possible to afford χ as a K-representation.

Q-forms

Main question:

Given $\chi \in \operatorname{Irr}(G)$ and $U \leq \operatorname{Aut}(G)$ is there a Galois extension K of \mathbb{Q} such that there exists a K / \mathbb{Q}-form Δ with this U ?
The following conditions are obviously necessary:

- There exists a GaloIs extension K / \mathbb{Q} with U as GaloIs group and it is possible to afford χ as a K-representation.
- U acts transitively on $\left\{\chi^{\sigma} \mid \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})\right\}$ and $\bar{u} \circ \chi=\chi \circ u$ for all $u \in U$.

Existence a first approach

Assume we are given

- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ

Existence a first approach

Assume we are given

- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ
- The necessary conditions on U and K of the previous slide are fulfilled. Especially $\bar{u} \circ \chi=\chi \circ u$.
Then it holds that:

Existence a first approach

Assume we are given

- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ
- The necessary conditions on U and K of the previous slide are fulfilled. Especially $\bar{u} \circ \chi=\chi \circ u$.
Then it holds that:
- There exists $X_{u} \in \mathrm{GL}_{n}(K)$ such that $X_{u} \Delta(u(g)) X_{u}^{-1}=\bar{u}(\Delta(g))$

Existence a first approach

Assume we are given

- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ
- The necessary conditions on U and K of the previous slide are fulfilled. Especially $\bar{u} \circ \chi=\chi \circ u$.
Then it holds that:
- There exists $X_{u} \in \mathrm{GL}_{n}(K)$ such that $X_{u} \Delta(u(g)) X_{u}^{-1}=\bar{u}(\Delta(g))$
- $\lambda_{s, t}=X_{s}^{-1} \bar{s}\left(X_{t}^{-1}\right) X_{s t} \in Z^{2}\left(\Gamma, K^{*}\right)$ for $s, t \in U$

Existence a first approach

Assume we are given

- $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ a representation affording χ
- The necessary conditions on U and K of the previous slide are fulfilled. Especially $\bar{u} \circ \chi=\chi \circ u$.
Then it holds that:
- There exists $X_{u} \in \mathrm{GL}_{n}(K)$ such that $X_{u} \Delta(u(g)) X_{u}^{-1}=\bar{u}(\Delta(g))$
- $\lambda_{s, t}=X_{s}^{-1} \bar{s}\left(X_{t}^{-1}\right) X_{s t} \in Z^{2}\left(\Gamma, K^{*}\right)$ for $s, t \in U$

We get
Theorem:
There exists a K / \mathbb{Q}-form if and only if $\lambda \sim 1 \in H^{2}\left(\Gamma, K^{*}\right)$.

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed
- Deciding the existence is almost the same as constructing the actual K / \mathbb{Q}-form

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed
- Deciding the existence is almost the same as constructing the actual K / \mathbb{Q}-form

Goal:

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed
- Deciding the existence is almost the same as constructing the actual K / \mathbb{Q}-form

Goal:

Decide existence of a K / \mathbb{Q}-form without constructing a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed
- Deciding the existence is almost the same as constructing the actual K / \mathbb{Q}-form

Goal:

Decide existence of a K / \mathbb{Q}-form without constructing a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$
Let $e=\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma \circ e_{\chi} \in \mathbb{Q} G$ where e_{χ} is the central primitive idempotent of $\mathbb{C}[G]$ corresponding to χ. Consider $A:=e \mathbb{Q} G e$ as a simple \mathbb{Q}-algebra then:

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed
- Deciding the existence is almost the same as constructing the actual K / \mathbb{Q}-form

Goal:

Decide existence of a K / \mathbb{Q}-form without constructing a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$
Let $e=\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma \circ e_{\chi} \in \mathbb{Q} G$ where e_{χ} is the central primitive idempotent of $\mathbb{C}[G]$ corresponding to χ. Consider $A:=e \mathbb{Q} G e$ as a simple \mathbb{Q}-algebra then:

- U acts on $\mathbb{Q} G$ as automorphisms by the \mathbb{Q}-linear extension of

$$
{ }^{u} g:=u(g)
$$

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed
- Deciding the existence is almost the same as constructing the actual K / \mathbb{Q}-form

Goal:

Decide existence of a K / \mathbb{Q}-form without constructing a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$
Let $e=\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma \circ e_{\chi} \in \mathbb{Q} G$ where e_{χ} is the central primitive idempotent of $\mathbb{C}[G]$ corresponding to χ. Consider $A:=e \mathbb{Q} G e$ as a simple \mathbb{Q}-algebra then:

- U acts on $\mathbb{Q} G$ as automorphisms by the \mathbb{Q}-linear extension of ${ }^{u} g:=u(g)$
- U fixes e and so U acts on A as automorphisms

Existence a first approach

Problems:

- To calculate $\lambda_{s, t}$ a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ is needed
- Deciding the existence is almost the same as constructing the actual K / \mathbb{Q}-form

Goal:

Decide existence of a K / \mathbb{Q}-form without constructing a representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$
Let $e=\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma \circ e_{\chi} \in \mathbb{Q} G$ where e_{χ} is the central primitive idempotent of $\mathbb{C}[G]$ corresponding to χ. Consider $A:=e \mathbb{Q} G e$ as a simple \mathbb{Q}-algebra then:

- U acts on $\mathbb{Q} G$ as automorphisms by the \mathbb{Q}-linear extension of ${ }^{u} g:=u(g)$
- U fixes e and so U acts on A as automorphisms
- For any representation $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$ affording χ the action on A induces an action of U on $\Delta(\mathbb{Q} G)$

G-algebras

So A is a simple \mathbb{Q}-algebra where U acts as automorphisms and A also is a central simple $\mathbb{Q}(\chi)$-algebra.

G-algebras

So A is a simple \mathbb{Q}-algebra where U acts as automorphisms and A also is a central simple $\mathbb{Q}(\chi)$-algebra. Idea:

- Considering A as an element of the BRAUER group gives information about rationality questions of χ

G-algebras

So A is a simple \mathbb{Q}-algebra where U acts as automorphisms and A also is a central simple $\mathbb{Q}(\chi)$-algebra.

Idea:

- Considering A as an element of the BRaUER group gives information about rationality questions of χ
- Hope: Find a generalization of the Brauer group which takes a group action into account and maybe answers the "rationality" question we are interested in.

G-algebras

The following definitions and theorems are due to TURULL

Definition:

- A G-algebra A is a finite dimensional associative k-algebra where G acts as automorphisms

G-algebras

The following definitions and theorems are due to TURULL

Definition:

- A G-algebra A is a finite dimensional associative k-algebra where G acts as automorphisms
- A is a simple G-algebra if it has only trivial 2 -sided G-invariant ideals

G-algebras

The following definitions and theorems are due to TURULL

Definition:

- A G-algebra A is a finite dimensional associative k-algebra where G acts as automorphisms
- A is a simple G-algebra if it has only trivial 2 -sided G-invariant ideals
- A is called central if $\operatorname{Fix}_{\mathrm{C}(A)}(G)=k$

G-algebras

The following definitions and theorems are due to TURULL

Definition:

- A G-algebra A is a finite dimensional associative k-algebra where G acts as automorphisms
- A is a simple G-algebra if it has only trivial 2 -sided G-invariant ideals
- A is called central if $\operatorname{Fix}_{(A)}(G)=k$
- Two G-algebras are calles isomorphic if there exist a G-equivariant k-algebra isomorphism φ

G-algebras

The following definitions and theorems are due to TURULL

Definition:

- A G-algebra A is a finite dimensional associative k-algebra where
G acts as automorphisms
- A is a simple G-algebra if it has only trivial 2 -sided G-invariant ideals
- A is called central if $\operatorname{Fix}_{(A)}(G)=k$
- Two G-algebras are calles isomorphic if there exist a G-equivariant k-algebra isomorphism φ
- A G-algebra A is called trivial if there exist a $k G$-module M and $A \cong{ }_{G} \operatorname{End}_{k}(M)$ where the G-structure on $\operatorname{End}_{k}(M)$ is given by conjugation

G-algebras

The following definitions and theorems are due to TURULL

Definition:

- A G-algebra A is a finite dimensional associative k-algebra where
G acts as automorphisms
- A is a simple G-algebra if it has only trivial 2 -sided G-invariant ideals
- A is called central if $\operatorname{Fix}_{(A)}(G)=k$
- Two G-algebras are calles isomorphic if there exist a G-equivariant k-algebra isomorphism φ
- A G-algebra A is called trivial if there exist a $k G$-module M and $A \cong{ }_{G} \operatorname{End}_{k}(M)$ where the G-structure on $\operatorname{End}_{k}(M)$ is given by conjugation
- We call two G-algebras A and B equivalent if there exists trivial G-algebras E_{1} and E_{2} such that: $A \otimes_{k} E_{1} \cong_{G} B \otimes_{k} E_{2}$. We simply write $A \sim_{G} B$

G-algebras

The following theorem defines our generalization of the BRAUER group

G-algebras

The following theorem defines our generalization of the BRAUER group Theorem: [Turull 09]
Let F be a G-field with $F^{G}=k$. We define $\operatorname{BrCliff}(G, F)$ as set of all equivalence classes of central simple G-algebras such that the centres are G-isomorphic to F. Then $\operatorname{BrCliff}(G, F)$ is an abelian group with the following group structure:

$$
\begin{gathered}
\operatorname{BrCliff}(G, F) \times \operatorname{BrCliff}(G, F) \rightarrow \operatorname{BrCliff}(G, F) \\
([A],[B]) \mapsto\left[A \otimes_{F} B\right]
\end{gathered}
$$

where G acts diagonally on the tensor product

G-algebras

Remark and notation:

- Forgetting about the G-action gives a homomorphism $\operatorname{BrCliff}(G, F) \rightarrow \operatorname{Br}(F)^{\operatorname{Gal}(F / k)}$

G-algebras

Remark and notation:

- Forgetting about the G-action gives a homomorphism $\operatorname{BrCliff}(G, F) \rightarrow \operatorname{Br}(F)^{\operatorname{Gal}(F / k)}$
- Denote the kernel of this homomorphism by $\operatorname{FMBrCliff}(G, F)$

G-algebras

Remark and notation:

- Forgetting about the G-action gives a homomorphism $\operatorname{BrCliff}(G, F) \rightarrow \operatorname{Br}(F)^{\operatorname{Gal}(F / k)}$
- Denote the kernel of this homomorphism by $\operatorname{FMBrCliff}(G, F)$
- For a central simple G-algebra A denote by $[A]$ it's element in $\operatorname{BrCliff}(G, F)$

G-algebras

Remark and notation:

- Forgetting about the G-action gives a homomorphism $\operatorname{BrCliff}(G, F) \rightarrow \operatorname{Br}(F)^{\operatorname{Gal}(F / k)}$
- Denote the kernel of this homomorphism by $\operatorname{FMBrCliff}(G, F)$
- For a central simple G-algebra A denote by $[A]$ it's element in $\operatorname{BrCliff}(G, F)$
Theorem: [Turull 09]
$\operatorname{FMBrCliff}(G, F) \cong H^{2}\left(G, F^{*}\right)$

G-algebras

Remark and notation:

- Forgetting about the G-action gives a homomorphism $\operatorname{BrCliff}(G, F) \rightarrow \operatorname{Br}(F)^{\operatorname{Gal}(F / k)}$
- Denote the kernel of this homomorphism by $\operatorname{FMBrCliff}(G, F)$
- For a central simple G-algebra A denote by $[A]$ it's element in $\operatorname{BrCliff}(G, F)$
Theorem: [Turull 09]
$\operatorname{FMBrCliff}(G, F) \cong H^{2}\left(G, F^{*}\right)$
Assumption: $m_{\chi}=1$

G-algebras

Remark and notation:

- Forgetting about the G-action gives a homomorphism $\operatorname{BrCliff}(G, F) \rightarrow \operatorname{Br}(F)^{\operatorname{Gal}(F / k)}$
- Denote the kernel of this homomorphism by $\operatorname{FMBrCliff}(G, F)$
- For a central simple G-algebra A denote by $[A]$ it's element in $\operatorname{BrCliff}(G, F)$
Theorem: [Turull 09]
$\operatorname{FMBrCliff}(G, F) \cong H^{2}\left(G, F^{*}\right)$
Assumption: $m_{\chi}=1$
Then $[A]:=[e \mathbb{Q} G e] \in \operatorname{FMBrCliff}(U, \mathbb{Q}(\chi))$ where the U action was defined earlier.

Main Theorem

Using the last theorem we get:

Main Theorem

Using the last theorem we get:
Theorem:
Let G be a finite group, $\chi \in \operatorname{Irr}(G)$ faithful with Schur index one over \mathbb{Q}. Given $U \leq \operatorname{Aut}(G)$ and a Galois field K such that the previous conditions are fulfilled, then there exists a K / \mathbb{Q}-form if and only if $[A]=$ $[e \mathbb{Q} G e]=[1] \in \operatorname{BrCliff}(U, \mathbb{Q}(\chi))$.

Main Theorem

Using the last theorem we get:
Theorem:
Let G be a finite group, $\chi \in \operatorname{Irr}(G)$ faithful with Schur index one over \mathbb{Q}. Given $U \leq \operatorname{Aut}(G)$ and a Galois field K such that the previous conditions are fulfilled, then there exists a K / \mathbb{Q}-form if and only if $[A]=$ $[e \mathbb{Q} G e]=[1] \in \operatorname{BrCliff}(U, \mathbb{Q}(\chi))$.
From this we directly get the following corollary.

Main Theorem

Using the last theorem we get:

Theorem:

Let G be a finite group, $\chi \in \operatorname{Irr}(G)$ faithful with Schur index one over \mathbb{Q}. Given $U \leq \operatorname{Aut}(G)$ and a Galois field K such that the previous conditions are fulfilled, then there exists a K / \mathbb{Q}-form if and only if $[A]=$ $[e \mathbb{Q} G e]=[1] \in \operatorname{BrCliff}(U, \mathbb{Q}(\chi))$.
From this we directly get the following corollary.

Corollary:

With the assumptions of the last theorem: There exists a K / \mathbb{Q}-form if and only if the irreducible $\mathbb{Q} G$ module M corresponding to the character $\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma \circ \chi$ extends to an irreducible $\mathbb{Q} G \rtimes U$-module.

Conclusions

Upshot:

Conclusions

Upshot:

- If $m_{\chi}=1$ then deciding existence of a K / \mathbb{Q}-form can in principle be done without constructing a representation

Conclusions

Upshot:

- If $m_{\chi}=1$ then deciding existence of a K / \mathbb{Q}-form can in principle be done without constructing a representation
- Formulation could be used to prove existence for the groups $\operatorname{PSL}(2, q)$

Conclusions

Upshot:

- If $m_{\chi}=1$ then deciding existence of a K / \mathbb{Q}-form can in principle be done without constructing a representation
- Formulation could be used to prove existence for the groups $\operatorname{PSL}(2, q)$

Open Problems

Conclusions

Upshot:

- If $m_{\chi}=1$ then deciding existence of a K / \mathbb{Q}-form can in principle be done without constructing a representation
- Formulation could be used to prove existence for the groups $\operatorname{PSL}(2, q)$

Open Problems

- Link the existence problem in general to properties of the U-algebra $e \mathbb{Q} G e \rightsquigarrow$ in principle avoiding calculating a representation

Conclusions

Upshot:

- If $m_{\chi}=1$ then deciding existence of a K / \mathbb{Q}-form can in principle be done without constructing a representation
- Formulation could be used to prove existence for the groups $\operatorname{PSL}(2, q)$

Open Problems

- Link the existence problem in general to properties of the U-algebra $e \mathbb{Q} G e \rightsquigarrow$ in principle avoiding calculating a representation
- Describe $\operatorname{BrCliff}(G, K)$ in terms of Galois cohomology

Conclusions

Upshot:

- If $m_{\chi}=1$ then deciding existence of a K / \mathbb{Q}-form can in principle be done without constructing a representation
- Formulation could be used to prove existence for the groups $\operatorname{PSL}(2, q)$

Open Problems

- Link the existence problem in general to properties of the U-algebra $e \mathbb{Q} G e \rightsquigarrow$ in principle avoiding calculating a representation
- Describe $\operatorname{BrCliff}(G, K)$ in terms of GaloIs cohomology
- Find and implement algorithms in MAGMA or GAP

