The Ring of Monomial Representations

Burkhard Külshammer

Mathematical Institute
Friedrich Schiller University Jena, Germany

Arithmetic of Group Rings and Related Objects

Aachen, March 22-26, 2010
(1) L. Barker, Fibred permutation sets and the idempotents and units of monomial Burnside rings, J. Algebra 281 (2004), 535-566
(2) R. Boltje, A canonical Brauer induction formula, Astérisque 181-182 (1990), 31-59

- A. Dress, The ring of monomial representations I. Structure theory, J. Algebra 18 (1971), 137-157
- B. Fotsing and B. Külshammer, Modular species and prime ideals for the ring of monomial representations of a finite group, Comm. Algebra 33 (2005), 3667-3677
- M. Müller, Zum Isomorphieproblem von Darstellungsringen, Ph. D. thesis, Jena 2008
- V. P. Snaith, Explicit Brauer induction. With applications to algebra and number theory, Cambridge University Press, Cambridge 1994

The monomial category

G finite group
$\operatorname{Irr}(G)$ set of irreducible (complex) characters of G
$\widehat{G}:=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$character group of G
$\mathbb{C} G$ mod category of finitely generated $\mathbb{C} G$-modules
$\mathbb{C} G$ mon monomial category

Objects:

pairs (V, \mathcal{L}) where $V \in \mathbb{C} G$ mod and \mathcal{L} is a set of 1 -dimensional subspaces (lines) of V such that $V=\bigoplus_{L \in \mathcal{L}} L$ and $g L \in \mathcal{L}$ for all $g \in G, L \in \mathcal{L}$.

Morphisms:

a morphism $f:(V, \mathcal{L}) \longrightarrow(W, \mathcal{M})$ is a homomorphism of $\mathbb{C} G$-modules $f: V \longrightarrow W$ such that, for $L \in \mathcal{L}$, there exists $M \in \mathcal{M}$ with $f(L) \subseteq M$.

The monomial category

Remarks:

(i) One should think of objects in $\mathbb{C} G$ mon as $\mathbb{C} G$-modules with additional structure.
(ii) Sometimes it is better to work with more general types of morphisms; however, this will not be important here.
(iii) The monomial category is not abelian (not even additive).

Example:

Every $\phi \in \widehat{G}$ gives rise to an object $\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)$ in ${ }_{\mathbb{C} G}$ mon where $\mathbb{C}_{\phi}:=\mathbb{C}$ and $g z:=\phi(g) z$ for all $g \in G, z \in \mathbb{C}$.

Operations in the monomial category

Direct sum:

$$
(V, \mathcal{L}) \oplus(W, \mathcal{M}):=(V \oplus W, \mathcal{L} \cup \mathcal{M})
$$

An object in the monomial category is called indecomposable if it is non-zero and not isomorphic to an object of the form $(V, \mathcal{L}) \oplus(W, \mathcal{M})$ where $V \neq 0 \neq W$.

Tensor product:

$$
(V, \mathcal{L}) \otimes(W, \mathcal{M}):=\left(V \otimes_{\mathbb{C}} W,\left\{L \otimes_{\mathbb{C}} M: L \in \mathcal{L}, M \in \mathcal{M}\right\}\right)
$$

${ }_{G}$ set category of finite G-sets

There is functor

$$
{ }_{G} \text { set } \longrightarrow \mathbb{C} G \text { mon }
$$

sending each finite G-set Ω to the pair $(\mathbb{C} \Omega,\{\mathbb{C} \omega: \omega \in \Omega\}$). There is also a forgetful functor

$$
\mathbb{C} G \text { mon } \longrightarrow \mathbb{C} G \text { mod }
$$

forgetting about the additional structure.

Restriction and induction

H subgroup of G
Then there is a restriction functor

$$
\operatorname{Res}_{H}^{G}: \mathbb{C} G \text { mon } \longrightarrow \mathbb{C H}_{H} \text { mon }
$$

defined in the obvious way. On the other hand, there is an induction functor

$$
\operatorname{Ind}_{H}^{G}: \mathbb{C H}^{\text {mon }} \longrightarrow \mathbb{C} G \text { mon }
$$

sending an object $(M, \mathcal{M}) \in \mathbb{C} H$ mon to $\left(\mathbb{C} G \otimes_{\mathbb{C} H} W,\{g \otimes M: g \in G, M \in \mathcal{M}\}\right)$.

In particular, every $\phi \in \widehat{H}$ gives rise to an object
$\operatorname{Ind}_{H}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right) \in \mathbb{C}_{G}$ mon. These objects will be very important later.

Restriction and induction

Example:

Let $G=Q_{8}$ be a quaternion group of order 8 . Then G has 3 maximal subgroups H_{1}, H_{2}, H_{3}, all cyclic of order 4. For $i=1,2,3$, let $\phi_{i} \in \widehat{H}_{i}$ be a monomorphism. Then
$\left(\mathbb{C}_{\phi_{i}},\left\{\mathbb{C}_{\phi_{i}}\right\}\right) \in \mathbb{C}_{H_{i}}$ mon, and $\operatorname{Ind}_{H_{i}}^{G}\left(\mathbb{C}_{\phi_{i}},\left\{\mathbb{C}_{\phi_{i}}\right\}\right) \in \mathbb{C} G$ mon. These three objects in $\mathbb{C G}^{G}$ mon are pairwise non-isomorphic, although the underlying modules $\operatorname{Ind}_{H_{i}}^{G}\left(\mathbb{C}_{\phi_{i}}\right)$ are all isomorphic; in fact, they are isomorphic to the unique irreducible $\mathbb{C} G$-module of dimension 2 .

Classification of indecomposables

Theorem

(i) For $H \leq G$ and $\phi \in \widehat{H}$,

$$
\operatorname{Ind}_{H}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)
$$

is an indecomposable object in $\mathbb{C} G$ mon.
(ii) Every indecomposable object in $\mathbb{C} G$ mon arises in this way, up to isomorphism.
(iii) For $H, K \leq G$ and $\phi \in \widehat{H}, \psi \in \widehat{K}$, we have

$$
\operatorname{Ind}_{H}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right) \cong \operatorname{Ind}_{K}^{G}\left(\mathbb{C}_{\psi},\left\{\mathbb{C}_{\psi}\right\}\right)
$$

iff the pairs (H, ϕ) and (K, ψ) are conjugate in G.

The poset $\mathcal{M}(G)$

In the theorem above, the conjugation action on the set

$$
\mathcal{M}(G):=\{(H, \phi): H \leq G, \phi \in \widehat{H}\}
$$

of monomial pairs is defined by

$$
{ }^{g}(H, \phi):=\left({ }^{g} H,{ }^{g} \phi\right)
$$

where ${ }^{g} H:=g H g^{-1}$ and $\left({ }^{g} \phi\right)\left({ }^{g} h\right):=\phi(h)$ for all $h \in H$. We denote the stabilizer of (H, ϕ) under the conjugation action by $N_{G}(H, \phi)$, a subgroup of $N_{G}(H)$.
$\mathcal{M}(G)$ becomes a poset (partially ordered set) where

$$
(K, \psi) \leq(H, \phi): \Longleftrightarrow K \leq H \quad \text { and } \quad \phi \mid K=\psi .
$$

Note that the conjugation action is compatible with the partial order, so that $\mathcal{M}(G)$ becomes a G-poset. We denote by $\mathcal{M}(G) / G$ the set of G-orbits $[H, \phi]_{G}$.

Quaternion and dihedral group

$G=Q_{8}:$
G : gives 4 elements in $\mathcal{M}(G) / G$
3 maximal subgroups: each gives 3 elements in $\mathcal{M}(G) / G$
1 subgroup of order 2: gives 2 elements in $\mathcal{M}(G) / G$
1 subgroup of order 1: gives 1 element in $\mathcal{M}(G) / G$
Thus ${ }_{\text {CG }}$ mon has 16 indecomposable objects, up to isomorphism.
$G=D_{8}:$
G : gives 4 elements in $\mathcal{M}(G) / G$
3 maximal subgroups: each gives 3 elements in $\mathcal{M}(G) / G$
3 conjugacy classes of subgroups of order 2: each gives 2 elements in $\mathcal{M}(G) / G$
1 subgroup of order 1: gives 1 element in $\mathcal{M}(G) / G$
Thus $\mathbb{C G}$ mon has 20 indecomposable objects, up to isomorphism.

The monomial ring

The monomial ring $D(G)$ is the Grothendieck ring of the category $\mathbb{C} G$ mon. Addition comes from direct sums, and multiplication comes from tensor products. Then $D(G)$ is a free \mathbb{Z}-module; a basis is given by the elements

$$
\operatorname{Ind}_{H}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)
$$

where (H, ϕ) ranges over a set of representatives for $\mathcal{M}(G) / G$.
The identity element of $D(G)$ is $(\mathbb{C},\{\mathbb{C}\})$ where \mathbb{C} denotes the trivial $\mathbb{C} G$-module. Moreover, we have

$$
\begin{gathered}
\operatorname{Ind}_{H}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right) \cdot \operatorname{Ind}_{K}^{G}\left(\mathbb{C}_{\psi},\left\{\mathbb{C}_{\psi}\right\}\right) \\
=\sum_{H g K \in H \backslash G / K} \operatorname{Ind}_{H \cap g K g^{-1}}^{G}\left(\mathbb{C}_{\phi \cdot g},\left\{\mathbb{C}_{\phi \cdot g}\right\}\right)
\end{gathered}
$$

Connection with other representation rings

The functors

$$
{ }_{G} \text { set } \longrightarrow \mathbb{C} G \text { mon } \longrightarrow \mathbb{C} G \text { mod }
$$

induce ring homomorphisms between the relevant Grothendieck rings:

$$
B(G) \longrightarrow D(G) \longrightarrow R(G)
$$

Here $B(G)$ denotes the Burnside ring of G, and $R(G)$ denotes the character ring of G.

By Brauer's Induction Theorem, the ring homomorphism $b_{G}: D(G) \longrightarrow R(G)$ is surjective.

Restriction and induction

Let $H \leq G$. Then the restriction functor

$$
\operatorname{Res}_{H}^{G}: \mathbb{C} G \text { mon } \longrightarrow \mathbb{C} H^{\text {mon }}
$$

induces a ring homomorphism

$$
\operatorname{res}_{H}^{G}: D(G) \longrightarrow D(H) .
$$

On the other hand, the induction functor

$$
\operatorname{Ind}_{H}^{G}: \mathbb{C} H \text { mon } \longrightarrow \mathbb{C} G \text { mon }
$$

induces a homomorphism of groups

$$
\operatorname{ind}_{H}^{G}: D(H) \longrightarrow D(G)
$$

whose image is an ideal in $D(G)$. Usually, this is not a ring homomorphism.

Canonical Brauer induction

Theorem. (BoltJe 1989)

There are unique group homomorphisms $a_{G}: R(G) \longrightarrow D(G)$ such that

- $a_{G}(\chi)=\left(\mathbb{C}_{\chi},\left\{\mathbb{C}_{\chi}\right\}\right)$ for $\chi \in \widehat{G}$,
- $a_{G}(\chi)$ does not involve any $\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)$, for $\chi, \phi \in \operatorname{Irr}(G)$ with $\chi(1) \neq 1=\phi(1)$, and
- $\operatorname{res}_{H}^{G} \circ a_{G}=a_{H} \circ \operatorname{res}_{H}^{G}: R(G) \longrightarrow D(H)$ for all subgroups $H \leq G$.
Moreover, we have $b_{G} \circ a_{G}=\operatorname{id}_{R(G)}$ where $b_{G}: D(G) \longrightarrow R(G)$ is canonical.

This means that $a_{G}(\chi)$ gives a canonical way to write χ as a sum of monomial characters.

Explicit formula

The map $a_{G}: R(G) \longrightarrow D(G)$ satisfies, for $\chi \in \operatorname{Irr}(G)$:
$a_{G}(\chi)=\frac{1}{|G|} \sum_{(K, \psi) \leq(H, \phi) \text { in } \mathcal{M}(G)}|K| \mu_{(K, \psi),(H, \phi)}(\phi, \chi \mid H) \operatorname{Ind}_{K}^{G}\left(\mathbb{C}_{\psi},\left\{\mathbb{C}_{\psi}\right\}\right)$.
Here μ denotes the Möbius function of the poset $\mathcal{M}(G)$.
For a finite poset (P, \leq), the Möbius function is defined by $\mu_{x x}=1$ and $\sum_{x \leq z \leq y} \mu_{x z}=0$ for different $x, y \in P$.

It is not obvious that the coefficients in the formula are integers; but this can be proved.

An example

Example:

Let $G=Q_{8}$ and $\chi \in \operatorname{Irr}(G)$ such that $\chi(1)=2$. Then

$$
\begin{aligned}
a_{G}(\chi)= & \operatorname{Ind}_{H_{1}}^{G}\left(\mathbb{C}_{\phi_{1}},\left\{\mathbb{C}_{\phi_{1}}\right\}\right)+\operatorname{Ind}_{H_{2}}^{G}\left(\mathbb{C}_{\phi_{2}},\left\{\mathbb{C}_{\phi_{2}}\right\}\right) \\
& +\operatorname{Ind}_{H_{3}}^{G}\left(\mathbb{C}_{\phi_{3}},\left\{\mathbb{C}_{\phi_{3}}\right\}\right)-\operatorname{Ind}_{Z(G)}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)
\end{aligned}
$$

where H_{1}, H_{2}, H_{3} are the maximal subgroups of G and $\phi_{1}, \phi_{2}, \phi_{3}$, ϕ are all injective.

Species

Recall that $D(G)$ is a free \mathbb{Z}-module of rank $|\mathcal{M}(G) / G|$ and a ring, i. e. a \mathbb{Z}-order. Thus $\mathbb{C} D(G):=\mathbb{C} \otimes_{\mathbb{Z}} D(G)$ is a commutative \mathbb{C}-algebra of dimension $|\mathcal{M}(G) / G|$.

A \mathbb{C}-algebra homomorphism $s: \mathbb{C} D(G) \longrightarrow \mathbb{C}$ is called a species of $\mathbb{C} D(G)$.

Let us determine all species of $\mathbb{C} D(G)$.

Species

Example:

For $H \leq G$ and $h \in H$, we get a species

$$
s_{\left(H, h H^{\prime}\right)}: D(G) \longrightarrow D(H) \longrightarrow R\left(H / H^{\prime}\right) \longrightarrow \mathbb{C}
$$

where the map $D(G) \longrightarrow D(H)$ is given by restriction, the map $\pi_{H}: D(H) \longrightarrow R\left(H / H^{\prime}\right)$ is linear with $\pi_{H}\left(\operatorname{Ind}_{K}^{H}\left(\mathbb{C}_{\psi},\left\{\mathbb{C}_{\psi}\right\}\right)\right)=\psi$ whenever $K=H$, and $\pi_{H}\left(\operatorname{Ind}_{K}^{H}\left(\mathbb{C}_{\psi},\left\{\mathbb{C}_{\psi}\right\}\right)\right)=0$ if $K<H$. Finally, $t_{g}: R(G) \longrightarrow \mathbb{C}$ is defined by $\operatorname{tg}_{g}(\chi):=\chi(g)$ for $\chi \in \operatorname{Irr}(G)$.

Classification of species

Theorem.

(i) Every species of $\mathbb{C} D(G)$ arises in the way described above.
(ii) For $H, K \leq G$ and $h \in H, k \in K$, we have $s_{\left(H, h H^{\prime}\right)}=s_{\left(K, k K^{\prime}\right)}$ iff $\left(H, h H^{\prime}\right)$ and $\left(K, k K^{\prime}\right)$ are G-conjugate.

Here the conjugation action of G on the set

$$
\mathcal{D}(G):=\left\{\left(H, h H^{\prime}\right): H \leq G, h \in H\right\}
$$

is defined by ${ }^{g}\left(H, h H^{\prime}\right):=\left({ }^{g} H,{ }^{g} h^{g} H^{\prime}\right)$ for $g \in G$ and $\left(H, h H^{\prime}\right) \in \mathcal{D}(G)$. We denote the set of orbits $\left[H, h H^{\prime}\right]_{G}$ by $\mathcal{D}(G) / G$.

Semisimplicity

It is important to observe that

$$
|\mathcal{M}(G) / G|=|\mathcal{D}(G) / G| .
$$

Thus the species give rise to an isomorphism of \mathbb{C}-algebras

$$
\mathbb{C} D(G) \cong \prod_{\left[H, h H^{\prime}\right]_{G} \in \mathcal{D}(G) / G} \mathbb{C} .
$$

Hence $\mathbb{C} D(G)$ is a semisimple \mathbb{C}-algebra; in particular, 0 is the only nilpotent element in $\mathbb{C} D(G)$. Moreover, the species are essentially the projections on the various factors in the isomorphism above.

Idempotents

Since

$$
\mathbb{C} D(G) \cong \prod_{\left[H, h H^{\prime}\right]_{G} \in \mathcal{D}(G) / G}
$$

the primitive idempotents $e_{\left(H, h H^{\prime}\right)}$ of $\mathbb{C D}(G)$ are in bijection with the species of $\mathbb{C} D(G)$. This bijection can be characterized by

$$
S_{\left(K, k K^{\prime}\right)}\left(e_{\left(H, h H^{\prime}\right)}\right)=0
$$

whenever $\left[K, k K^{\prime}\right]_{G} \neq\left[H, h H^{\prime}\right]_{G}$. The idempotents $e_{\left(H, h H^{\prime}\right)}$ are given by the formula

$$
e_{\left(H, h H^{\prime}\right)}=\frac{\left|H^{\prime}\right|}{\left|N_{G}\left(H, h H^{\prime}\right)\right| \cdot|H|} \sum_{K \leq H}|K| \mu_{K H} \sum_{\phi \in \widehat{H}} \phi\left(h^{-1}\right) \operatorname{Ind}_{K}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)
$$

An example

Example.

Let $G=S_{3}$ and $H=A_{3}$. Then

$$
e_{(H, 1)}=\frac{1}{6} \operatorname{Ind}_{H}^{G}(\mathbb{C},\{\mathbb{C}\})+\frac{1}{3} \operatorname{Ind}_{H}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)-\frac{1}{6} \operatorname{Ind}_{1}^{G}(\mathbb{C},\{\mathbb{C}\})
$$

where $1 \neq \phi \in \operatorname{Irr}(H)$.

Corollary (BARKER 2004).

The idempotents of $D(G)$ are all contained in its subring $B(G)$. Thus the primitive idempotents of $D(G)$ are in bijection with the conjugacy classes of perfect subgroups of G.

For a commutative ring R, the spectrum $\operatorname{Spec}(R)$ of R is the set of all prime ideals of R.
Let ζ be a primitive $|G|$ th root of unity in \mathbb{C}, and let

$$
\mathbb{Z}[\zeta] D(G):=\mathbb{Z}[\zeta] \otimes_{\mathbb{Z}} D(G)
$$

For $\left(H, h H^{\prime}\right) \in \mathcal{D}(G)$ and $P \in \operatorname{Spec}(\mathbb{Z}[\zeta])$, we set

$$
\mathcal{P}\left(H, h H^{\prime}, P\right):=\left\{x \in \mathbb{Z}[\zeta] D(G): s_{\left(H, h H^{\prime}\right)}(x) \in P\right\}
$$

Theorem.

$\operatorname{Spec}(\mathbb{Z}[\zeta] D(G)=$
$\left\{\mathcal{P}\left(H, h H^{\prime}, P\right):\left(H, h H^{\prime}\right) \in \mathcal{D}(G), P \in \operatorname{Spec}(\mathbb{Z}[\zeta])\right\}$.
When is $\mathcal{P}\left(H, h H^{\prime}, P\right)=\mathcal{P}\left(K, k K^{\prime}, Q\right)$, for
$\left(H, h H^{\prime}\right),\left(K, k K^{\prime}\right) \in \mathcal{D}(G)$ and $P, Q \in \operatorname{Spec}(\mathbb{Z}[\zeta]) ?$

The prime spectrum

For a commutative ring R, we set

$$
\operatorname{Spec}_{0}(R):=\{P \in \operatorname{Spec}(R): \operatorname{char}(R / P)=0\}
$$

and

$$
\operatorname{Spec}_{p}(R):=\{P \in \operatorname{Spec}(R): \operatorname{char}(R / P)=p\}
$$

$(p \in \mathbb{P})$ where \mathbb{P} denotes the set of all prime numbers.

Theorem.

Then

$$
\operatorname{Spec}_{0}(\mathbb{Z}[\zeta] D(G))=\left\{\mathcal{P}\left(H, h H^{\prime}, 0\right):\left(H, h H^{\prime}\right) \in \mathcal{D}(G)\right\} .
$$

Moreover, for $\left(H, h H^{\prime}\right),\left(K, k K^{\prime}\right) \in \mathcal{D}(G)$, we have $\mathcal{P}\left(H, h H^{\prime}, 0\right)=\mathcal{P}\left(K, k K^{\prime}, 0\right)$ iff $\left(H, h H^{\prime}\right)$ and $\left(K, k K^{\prime}\right)$ are conjugate in G.

The prime spectrum

Now let $p \in \mathbb{P}$, and let
$\mathcal{D}_{p}(G):=\left\{\left(H, h H^{\prime}\right) \in \mathcal{D}(G):|\langle h\rangle| \not \equiv 0 \not \equiv\left|N_{G}\left(H, h H^{\prime}\right): H\right| \quad(\bmod p)\right\}$.

Theorem.

Then

$$
\begin{gathered}
\operatorname{Spec}_{p}(\mathbb{Z}[\zeta] D(G))= \\
\left\{\mathcal{P}\left(H, h H^{\prime}, P\right):\left(H, h H^{\prime}\right) \in \mathcal{D}_{p}(G), P \in \operatorname{Spec}_{p}(\mathbb{Z}[\zeta])\right\} .
\end{gathered}
$$

Moreover, for $\left(H, h H^{\prime}\right),\left(K, k K^{\prime}\right) \in \mathcal{D}_{p}(G)$ and
$P, Q \in \operatorname{Spec}_{p}(\mathbb{Z}[\zeta])$, we have $\mathcal{P}\left(H, h H^{\prime}, P\right)=\mathcal{P}\left(K, k K^{\prime}, Q\right)$ iff
($H, h H^{\prime}$) and ($K, k K^{\prime}$) are conjugate in G, and $P=Q$.

Remark.

One can use the results above, together with a little Galois theory, in order to determine $\operatorname{Spec}(D(G))$, but we do not give the details here.

Theorem.

For $\left(H, h H^{\prime}\right) \in \mathcal{D}(G)$, we have

$$
\left|N_{G}\left(H, h H^{\prime}\right): H^{\prime}\right|=\min \left\{n \in \mathbb{N}: n \cdot e_{\left(H, h H^{\prime}\right)} \in \mathbb{Z}[\zeta] D(G)\right\} .
$$

This shows that all the indices $\mid N_{G}\left(H, h H^{\prime}\right)$: $H^{\prime} \mid$ are determined by the ring $D(G)$; in particular, the order $|G|$ is determined by $D(G)$.

For a commutative ring R, we denote by $U_{t}(R)$ the group of torsion units of R. We also denote by $\mathcal{N}(G)$ the set of normal subgroups of G. Moreover, for $N \in \mathcal{N}(G)$, we denote by $D(G)_{N}$ the subgroup of $D(G)$ generated by the elements $\operatorname{Ind}_{H}^{G}\left(\mathbb{C}_{\phi},\left\{\mathbb{C}_{\phi}\right\}\right)$ where $[H, \phi]_{G}$ ranges over the elements in $\mathcal{M}(G) / G$ such that

- $N \leq H$;
- $N \leq M \leq H \quad$ and $\quad M \in \mathcal{N}(G) \Longrightarrow N=M$.

Then

$$
D(G)=\bigoplus_{N \in \mathcal{N}(G)} D(G)_{N}
$$

and

$$
D(G)_{M} D(G)_{N} \subseteq D(G)_{M \cap N}
$$

for $M, N \in \mathcal{N}(G)$.

Torsion units

Proposition.

$U_{t}(D(G))$ is finite, and $\exp \left(U_{t}(D(G))\right)$ divides $2|G|$.

Theorem.

Let $n \in \mathbb{N}$ such that $\exp \left(U_{t}(D(G))\right) \mid n$. Moreover, for $N \in \mathcal{N}(G)$, let

$$
N^{*}:=\left\{a \in D(G)_{N}:(1+a)^{n}=1\right\} .
$$

Then every $u \in U_{t}(D(G))$ can be written uniquely in the form

$$
u= \pm\left(\mathbb{C}_{\psi},\left\{\mathbb{C}_{\psi}\right\}\right) \prod_{G \neq N \in \mathcal{N}(G)}\left(1+u_{N}\right)
$$

where $\psi \in \widehat{G}$ and $u_{N} \in N^{*}$ for $N \in \mathcal{N}(G)$. Thus

$$
\left|U_{t}(D(G))\right|=2|\widehat{G}| \prod_{G \neq N \in \mathcal{N}(G)}\left|N^{*}\right| .
$$

Examples

Example:

If $G=S_{3}$ then

$$
U_{t}(D(G)) \cong\langle-1\rangle \times \widehat{G} \times\{1\}^{*} \times A_{3}^{*}
$$

where $\{1\}^{*}$ is elementary abelian of order 4 and A_{3}^{*} has order 2 .

Example:

If G is abelian then

$$
U_{t}(D(G)) \cong G \times C_{2}^{m+1}
$$

where m denotes the number of subgroups of G of index 2 .

Corollary.

Let G be abelian, and let H be a finite group such that $D(G) \cong D(H)$. Then $G \cong H$.

Theorem.

Let G and H be finite groups. Suppose that all Sylow subgroups of G and H are cyclic (for all primes). Then $D(G) \cong D(H)$ iff $G \cong H$.

Problem:

Find non-isomorphic finite groups G and H such that

$$
D(G) \cong D(H)
$$

