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181-182 (1990), 31-59

3 A. Dress, The ring of monomial representations I. Structure
theory, J. Algebra 18 (1971), 137-157

4 B. Fotsing and B. Külshammer, Modular species and
prime ideals for the ring of monomial representations of a
finite group, Comm. Algebra 33 (2005), 3667-3677

5 M. Müller, Zum Isomorphieproblem von
Darstellungsringen, Ph. D. thesis, Jena 2008

6 V. P. Snaith, Explicit Brauer induction. With applications
to algebra and number theory, Cambridge University Press,
Cambridge 1994

Burkhard Külshammer The Ring of Monomial Representations



The monomial category

G finite group

Irr(G ) set of irreducible (complex) characters of G

Ĝ := Hom(G ,C×) character group of G

CGmod category of finitely generated CG -modules

CGmon monomial category

Objects:
pairs (V ,L) where V ∈ CGmod and L is a set of 1-dimensional
subspaces (lines) of V such that V =

⊕
L∈L L and gL ∈ L for all

g ∈ G , L ∈ L.

Morphisms:
a morphism f : (V ,L) −→ (W ,M) is a homomorphism of
CG -modules f : V −→W such that, for L ∈ L, there exists
M ∈M with f (L) ⊆ M.
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The monomial category

Remarks:
(i) One should think of objects in CGmon as CG -modules with
additional structure.
(ii) Sometimes it is better to work with more general types of
morphisms; however, this will not be important here.
(iii) The monomial category is not abelian (not even additive).

Example:
Every φ ∈ Ĝ gives rise to an object (Cφ, {Cφ}) in CGmon where
Cφ := C and gz := φ(g)z for all g ∈ G , z ∈ C.
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Operations in the monomial category

Direct sum:

(V ,L)⊕ (W ,M) := (V ⊕W ,L ∪M)

An object in the monomial category is called indecomposable if it
is non-zero and not isomorphic to an object of the form
(V ,L)⊕ (W ,M) where V 6= 0 6= W .

Tensor product:

(V ,L)⊗ (W ,M) := (V ⊗C W , {L⊗C M : L ∈ L, M ∈M})
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Some functors

G set category of finite G -sets

There is functor

G set −→ CGmon

sending each finite G -set Ω to the pair (CΩ, {Cω : ω ∈ Ω}).
There is also a forgetful functor

CGmon −→ CGmod

forgetting about the additional structure.
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Restriction and induction

H subgroup of G

Then there is a restriction functor

ResGH : CGmon −→ CHmon

defined in the obvious way. On the other hand, there is an
induction functor

IndG
H : CHmon −→ CGmon

sending an object (M,M) ∈ CHmon to
(CG ⊗CH W , {g ⊗M : g ∈ G , M ∈M}).

In particular, every φ ∈ Ĥ gives rise to an object
IndG

H(Cφ, {Cφ}) ∈ CGmon. These objects will be very important
later.
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Restriction and induction

Example:

Let G = Q8 be a quaternion group of order 8. Then G has 3
maximal subgroups H1, H2, H3, all cyclic of order 4. For
i = 1, 2, 3, let φi ∈ Ĥi be a monomorphism. Then
(Cφi

, {Cφi
}) ∈ CHi

mon, and IndG
Hi

(Cφi
, {Cφi

}) ∈ CGmon. These
three objects in CGmon are pairwise non-isomorphic, although the
underlying modules IndG

Hi
(Cφi

) are all isomorphic; in fact, they are
isomorphic to the unique irreducible CG -module of dimension 2.
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Classification of indecomposables

Theorem

(i) For H ≤ G and φ ∈ Ĥ,

IndG
H(Cφ, {Cφ})

is an indecomposable object in CGmon.
(ii) Every indecomposable object in CGmon arises in this way, up
to isomorphism.
(iii) For H,K ≤ G and φ ∈ Ĥ, ψ ∈ K̂ , we have

IndG
H(Cφ, {Cφ}) ∼= IndG

K (Cψ, {Cψ})

iff the pairs (H, φ) and (K , ψ) are conjugate in G .
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The poset M(G )

In the theorem above, the conjugation action on the set

M(G ) := {(H, φ) : H ≤ G , φ ∈ Ĥ}

of monomial pairs is defined by

g (H, φ) := (g H, gφ)

where g H := gHg−1 and (gφ)(g h) := φ(h) for all h ∈ H. We
denote the stabilizer of (H, φ) under the conjugation action by
NG (H, φ), a subgroup of NG (H).

M(G ) becomes a poset (partially ordered set) where

(K , ψ) ≤ (H, φ) :⇐⇒ K ≤ H and φ|K = ψ.

Note that the conjugation action is compatible with the partial
order, so that M(G ) becomes a G -poset. We denote by M(G )/G
the set of G -orbits [H, φ]G .
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Quaternion and dihedral group

G = Q8:

G : gives 4 elements in M(G )/G
3 maximal subgroups: each gives 3 elements in M(G )/G
1 subgroup of order 2: gives 2 elements in M(G )/G
1 subgroup of order 1: gives 1 element in M(G )/G

Thus CGmon has 16 indecomposable objects, up to isomorphism.

G = D8:

G : gives 4 elements in M(G )/G
3 maximal subgroups: each gives 3 elements in M(G )/G
3 conjugacy classes of subgroups of order 2: each gives 2 elements
in M(G )/G
1 subgroup of order 1: gives 1 element in M(G )/G

Thus CGmon has 20 indecomposable objects, up to isomorphism.
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The monomial ring

The monomial ring D(G ) is the Grothendieck ring of the category

CGmon. Addition comes from direct sums, and multiplication
comes from tensor products. Then D(G ) is a free Z-module; a
basis is given by the elements

IndG
H(Cφ, {Cφ})

where (H, φ) ranges over a set of representatives for M(G )/G .

The identity element of D(G ) is (C, {C}) where C denotes the
trivial CG -module. Moreover, we have

IndG
H(Cφ, {Cφ}) · IndG

K (Cψ, {Cψ})
=

∑
HgK∈H\G/K IndG

H∩gKg−1(Cφ·gψ, {Cφ·gψ})
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Connection with other representation rings

The functors

G set −→ CGmon −→ CGmod

induce ring homomorphisms between the relevant Grothendieck
rings:

B(G ) −→ D(G ) −→ R(G ).

Here B(G ) denotes the Burnside ring of G , and R(G ) denotes the
character ring of G .

By Brauer’s Induction Theorem, the ring homomorphism
bG : D(G ) −→ R(G ) is surjective.
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Restriction and induction

Let H ≤ G . Then the restriction functor

ResGH : CGmon −→ CHmon

induces a ring homomorphism

resGH : D(G ) −→ D(H).

On the other hand, the induction functor

IndG
H : CHmon −→ CGmon

induces a homomorphism of groups

indG
H : D(H) −→ D(G )

whose image is an ideal in D(G ). Usually, this is not a ring
homomorphism.
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Canonical Brauer induction

Theorem. (Boltje 1989)

There are unique group homomorphisms aG : R(G ) −→ D(G )
such that

aG (χ) = (Cχ, {Cχ}) for χ ∈ Ĝ ,

aG (χ) does not involve any (Cφ, {Cφ}), for χ, φ ∈ Irr(G )
with χ(1) 6= 1 = φ(1), and

resGH ◦ aG = aH ◦ resGH : R(G ) −→ D(H) for all subgroups
H ≤ G .

Moreover, we have bG ◦ aG = idR(G) where bG : D(G ) −→ R(G )
is canonical.

This means that aG (χ) gives a canonical way to write χ as a sum
of monomial characters.
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Explicit formula

The map aG : R(G ) −→ D(G ) satisfies, for χ ∈ Irr(G ):

aG (χ) =
1

|G |
∑

(K ,ψ)≤(H,φ) inM(G)

|K |µ(K ,ψ),(H,φ)(φ, χ|H)IndG
K (Cψ, {Cψ}).

Here µ denotes the Möbius function of the poset M(G ).

For a finite poset (P,≤), the Möbius function is defined by
µxx = 1 and

∑
x≤z≤y µxz = 0 for different x , y ∈ P.

It is not obvious that the coefficients in the formula are integers;
but this can be proved.

Burkhard Külshammer The Ring of Monomial Representations



An example

Example:

Let G = Q8 and χ ∈ Irr(G ) such that χ(1) = 2. Then

aG (χ) = IndG
H1

(Cφ1 , {Cφ1}) + IndG
H2

(Cφ2 , {Cφ2})
+IndG

H3
(Cφ3 , {Cφ3})− IndG

Z(G)(Cφ, {Cφ})

where H1, H2, H3 are the maximal subgroups of G and φ1, φ2, φ3,
φ are all injective.
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Species

Recall that D(G ) is a free Z-module of rank |M(G )/G | and a
ring, i. e. a Z-order. Thus CD(G ) := C⊗Z D(G ) is a
commutative C-algebra of dimension |M(G )/G |.

A C-algebra homomorphism s : CD(G ) −→ C is called a species of
CD(G ).

Let us determine all species of CD(G ).
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Species

Example:

For H ≤ G and h ∈ H, we get a species

s(H,hH′) : D(G ) −→ D(H) −→ R(H/H ′) −→ C

where the map D(G ) −→ D(H) is given by restriction, the map
πH : D(H) −→ R(H/H ′) is linear with πH(IndH

K (Cψ, {Cψ})) = ψ
whenever K = H, and πH(IndH

K (Cψ, {Cψ})) = 0 if K < H. Finally,
tg : R(G ) −→ C is defined by tg (χ) := χ(g) for χ ∈ Irr(G ).
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Classification of species

Theorem.

(i) Every species of CD(G ) arises in the way described above.
(ii) For H,K ≤ G and h ∈ H, k ∈ K , we have s(H,hH′) = s(K ,kK ′)

iff (H, hH ′) and (K , kK ′) are G -conjugate.

Here the conjugation action of G on the set

D(G ) := {(H, hH ′) : H ≤ G , h ∈ H}

is defined by g (H, hH ′) := (g H, g hg H ′) for g ∈ G and
(H, hH ′) ∈ D(G ). We denote the set of orbits [H, hH ′]G by
D(G )/G .
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Semisimplicity

It is important to observe that

|M(G )/G | = |D(G )/G |.

Thus the species give rise to an isomorphism of C-algebras

CD(G ) ∼=
∏

[H,hH′]G∈D(G)/G

C.

Hence CD(G ) is a semisimple C-algebra; in particular, 0 is the only
nilpotent element in CD(G ). Moreover, the species are essentially
the projections on the various factors in the isomorphism above.
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Idempotents

Since
CD(G ) ∼=

∏
[H,hH′]G∈D(G)/G

C

the primitive idempotents e(H,hH′) of CD(G ) are in bijection with
the species of CD(G ). This bijection can be characterized by

s(K ,kK ′)(e(H,hH′)) = 0

whenever [K , kK ′]G 6= [H, hH ′]G . The idempotents e(H,hH′) are
given by the formula

e(H,hH′) =
|H ′|

|NG (H, hH ′)| · |H|
∑
K≤H

|K |µKH

∑
φ∈bH

φ(h−1)IndG
K (Cφ, {Cφ}).
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An example

Example.

Let G = S3 and H = A3. Then

e(H,1) =
1

6
IndG

H(C, {C}) +
1

3
IndG

H(Cφ, {Cφ})−
1

6
IndG

1 (C, {C})

where 1 6= φ ∈ Irr(H).

Corollary (Barker 2004).

The idempotents of D(G ) are all contained in its subring B(G ).
Thus the primitive idempotents of D(G ) are in bijection with the
conjugacy classes of perfect subgroups of G .
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The prime spectrum

For a commutative ring R, the spectrum Spec(R) of R is the set
of all prime ideals of R.
Let ζ be a primitive |G |th root of unity in C, and let

Z[ζ]D(G ) := Z[ζ]⊗Z D(G ).

For (H, hH ′) ∈ D(G ) and P ∈ Spec(Z[ζ]), we set

P(H, hH ′,P) := {x ∈ Z[ζ]D(G ) : s(H,hH′)(x) ∈ P}.

Theorem.

Spec(Z[ζ]D(G ) =
{P(H, hH ′,P) : (H, hH ′) ∈ D(G ), P ∈ Spec(Z[ζ])}.

When is P(H, hH ′,P) = P(K , kK ′,Q), for
(H, hH ′), (K , kK ′) ∈ D(G ) and P,Q ∈ Spec(Z[ζ])?
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The prime spectrum

For a commutative ring R, we set

Spec0(R) := {P ∈ Spec(R) : char(R/P) = 0}

and
Specp(R) := {P ∈ Spec(R) : char(R/P) = p}

(p ∈ P) where P denotes the set of all prime numbers.

Theorem.

Then

Spec0(Z[ζ]D(G )) = {P(H, hH ′, 0) : (H, hH ′) ∈ D(G )}.

Moreover, for (H, hH ′), (K , kK ′) ∈ D(G ), we have
P(H, hH ′, 0) = P(K , kK ′, 0) iff (H, hH ′) and (K , kK ′) are
conjugate in G .
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The prime spectrum

Now let p ∈ P, and let

Dp(G ) := {(H, hH ′) ∈ D(G ) : |〈h〉| 6≡ 0 6≡ |NG (H, hH ′) : H| (mod p)}.

Theorem.

Then
Specp(Z[ζ]D(G )) =

{P(H, hH ′,P) : (H, hH ′) ∈ Dp(G ), P ∈ Specp(Z[ζ])}.

Moreover, for (H, hH ′), (K , kK ′) ∈ Dp(G ) and
P,Q ∈ Specp(Z[ζ]), we have P(H, hH ′,P) = P(K , kK ′,Q) iff
(H, hH ′) and (K , kK ′) are conjugate in G , and P = Q.
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The prime spectrum

Remark.

One can use the results above, together with a little Galois theory,
in order to determine Spec(D(G )), but we do not give the details
here.

Theorem.

For (H, hH ′) ∈ D(G ), we have

|NG (H, hH ′) : H ′| = min{n ∈ N : n · e(H,hH′) ∈ Z[ζ]D(G )}.

This shows that all the indices |NG (H, hH ′) : H ′| are determined by
the ring D(G ); in particular, the order |G | is determined by D(G ).
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Torsion units

For a commutative ring R, we denote by Ut(R) the group of
torsion units of R. We also denote by N (G ) the set of normal
subgroups of G . Moreover, for N ∈ N (G ), we denote by D(G )N

the subgroup of D(G ) generated by the elements IndG
H(Cφ, {Cφ})

where [H, φ]G ranges over the elements in M(G )/G such that

N ≤ H;

N ≤ M ≤ H and M ∈ N (G ) =⇒ N = M.

Then
D(G ) =

⊕
N∈N (G)

D(G )N

and
D(G )MD(G )N ⊆ D(G )M∩N ,

for M,N ∈ N (G ).
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Torsion units

Proposition.

Ut(D(G )) is finite, and exp(Ut(D(G ))) divides 2|G |.

Theorem.

Let n ∈ N such that exp(Ut(D(G ))) | n. Moreover, for N ∈ N (G ),
let

N∗ := {a ∈ D(G )N : (1 + a)n = 1}.

Then every u ∈ Ut(D(G )) can be written uniquely in the form

u = ±(Cψ, {Cψ})
∏

G 6=N∈N (G)

(1 + uN)

where ψ ∈ Ĝ and uN ∈ N∗ for N ∈ N (G ). Thus

|Ut(D(G ))| = 2|Ĝ |
∏

G 6=N∈N (G)

|N∗|.
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Examples

Example:
If G = S3 then

Ut(D(G )) ∼= 〈−1〉 × Ĝ × {1}∗ × A∗3

where {1}∗ is elementary abelian of order 4 and A∗3 has order 2.

Example:
If G is abelian then

Ut(D(G )) ∼= G × Cm+1
2

where m denotes the number of subgroups of G of index 2.

Corollary.

Let G be abelian, and let H be a finite group such that
D(G ) ∼= D(H). Then G ∼= H.
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The isomorphism problem

Theorem.

Let G and H be finite groups. Suppose that all Sylow subgroups of
G and H are cyclic (for all primes). Then D(G ) ∼= D(H) iff G ∼= H.

Problem:
Find non-isomorphic finite groups G and H such that

D(G ) ∼= D(H).
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