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Basic Facts

The basic elements to build a code are the following:

A finite set, A called the alphabet. We shall denote by
q = |A| the number of elements in A.

Finite sequences of elements of the alphabet, that are called
words. The number of elements in a word is called its length.
We shall only consider codes in which all the words have the
same length n.

A q-ary block code of length n is any subset of the set of
all words of length n, i.e., the code C is a subset:

C ⊂ An = A× A× · · · × A︸ ︷︷ ︸
n times

.
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A classical scheme due to Shannon

Information −→ codification
signal
−→ channel

signal
−→ decodification −→ receiver

↑
noise

The basic idea in error-correcting coding theory, is to add
information to the message, called redundancy, in such a way that
it will turn possible to detect errors and correct them.
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Definition

Given two elements x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in
An, the number of coordinates in which the two elements differ is
called the Hamming distance from x to y ; i.e.:

d(x , y) = | {i | xi 6= yi , 1 ≤ i ≤ n} |

Definition

Given a code C ⊂ An the minimum distance of C is the number:

d = min{d(x , y) | x , y ∈ C, x 6= y }.
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Theorem

Let C be a code with minimum distance d and set

κ =

[
d − 1

2

]
where [x ] denotes the integral part of the real number x ; i.e., the
greatest integer smaller than or equal to x .

Then C is capable of detecting d − 1 errors and correcting κ
errores.

Definition

The number κ is called the capacity of the code C.
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Linear Codes

We shall take, as an alphabet A, a finite field F.

In this case, Fn is an n-dimensional vector space over F.

We shall take, as codes, subespaces of Fn of dimensión m < n.

Definition

A code C as above is called a linear code over F.

If d the minimum distance of C, we shall call it a (n,m,d)-code.
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Definition

A linear code C ⊂ Fn is called a cyclic code if for every vector
(a0, a1, . . . , an−2, an−1) in the code, we have that also the vector
(an−1, a0, a1, . . . , an−2) is in the code.

Notice that the definition implies that if (a0, a1, . . . , an−2, an−1) is in the

code, then all the vectors obtained from this one by a cyclic permutation

of its coordinates are also in the code.
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Let

Rn =
F[X ]

〈X n − 1〉
;

We shall denote by [f ] the class of the polynomial f ∈ F[X ] in Rn.

The mapping:

ϕ : Fn → F[X ]

〈X n − 1〉

(a0, a1, . . . , an−2, an−1) ∈ F[X ] 7→

[a0 + a1X + . . .+ an−2X
n−2 + an−1X

n−1].

ϕ is an isomorphism of F-vector spaces. Hence A code C ⊂ Fn is
cyclic if and only if ϕ(C) is an ideal of Rn.
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It is easy to show that

FCn
∼= Rn =

F[X ]

〈X n − 1〉
;

Hence, to study cyclic codes is equivalent to study
ideals of a group algebra of the form FCn.
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Definition

A group code is an ideal of a finite group algebra.
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The ideals generated by the primitive idempotents; i.e. the ideals
of the form Ii = FGei are the minimal ideals of FG .

Also, every ideal of FG is of the form I = FGe, where e ∈ FG is
an idempotent element.

Hence:

If we assume that char(F) |6 |G |, then to study
group codes is equivalent to study ideals in group
algebras, generated by idempotent elements
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Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) |6 |G |. The element

Ĥ =
1

|H|
∑
h∈H

h

is an idempotent of the group algebra FG , called the idempotent
determined by H.

Ĥ is central if and only if H is normal in G .
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If H is a normal subgroup of a group G , we have that

FG · Ĥ ∼= F[G/H].

so

dimF

(
(FG ) · Ĥ

)
= |G |
|H| = [G : H].

Set τ = {t1, t2, . . . , tk} a transversal of K in G (where k = [G : H]
and we choose t1 = 1), then

{ti Ĥ | 1 ≤ i ≤ k}

is a a basis of (FG ) · Ĥ.
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FG · Ĥ ∼= F[G/H].

so

dimF

(
(FG ) · Ĥ
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Let G be a finite group and let F be a field such that char(F) |6 |G |.
Let H and H∗ be normal subgroups of G such that H ⊂ H∗.
We can define another type of idempotents by:

e = Ĥ − Ĥ∗.

As we shall see, they will be very useful.
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Code Parameters

Let G be a finite group and let F be a field such that
char(F) |6 |G |. Let H and H∗ be normal subgroups of G such that
H ⊂ H∗ and set . Then,

dimF (FG )e = |G/H| − |G/H∗| =
|G |
|H|

(
1− |H|
|H∗|

)
and

w((FG )e) = 2|H|

where w((FG )e) denotes the minimal distance of (FG )e.
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Let G be a finite group and let F be a field such that
char(F) |6 |G |. Let H and H∗ be normal subgroups of G such that

H ⊂ H∗ and set e = Ĥ − Ĥ∗. Let A be a transversal of H∗ in G
and τ a transversal of H in H∗ containing 1. Then

B = {a(1− t)Ĥ | a ∈ A, t ∈ τ \ {1}}

is a basis of (FG )e over F.
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Let Hi ⊂ H∗i , be normal subgroups of a group G , 1 ≤ i ≤ k, such
that H∗i ∩ N∗i = {1}, where Ni denotes the subgroup generated by

all H∗j with j 6= i . Set e = (Ĥ1 − Ĥ∗1 )(Ĥ2 − Ĥ∗2 ) · · · (Ĥk − Ĥ∗k ).
Then,
dimF (FG )e =

|G |
|H1H2 · · ·Hk |

(
1− |H1|
|H∗1 |

)(
1− |H2|
|H∗2 |

)
· · ·
(

1− |Hk |
|H∗k |

)
and

w ((FG )e) = 2k |H1H2 · · ·Hk |.
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Let Hi ⊂ H∗i , be normal subgroups of a group G ,
1 ≤ i ≤ k , such that H∗i ∩ N∗i = {1}, where Ni denotes the
subgroup generated by all H∗j with j 6= i . Set

e = (Ĥ1 − Ĥ∗1 )(Ĥ2 − Ĥ∗2 ) · · · (Ĥk − Ĥ∗k ). Let A be a transversal of
H∗ in G and τi a transversal of Hi in H∗i containing 1, 1 ≤ i ≤ k .
Then

B = {a(1−t1)(1−t2) · · · (1−tk)Ĥ | a ∈ A, ti ∈ τi , ti 6= 1, 1 ≤ i ≤ k}

is a basis of (FG )e over F.
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Is it possible to determine the primitive central idempotents from
the subgroup idempotents?
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Remark

Let F be a field with q elements and A a cyclic group of order pn,
with (q, n) = 1. Let

A = A0 ⊃ A1 ⊃ · · · ⊃ An = {1}

be the descending chain of all subgroups of A.

Set:

e0 = Â =
1

pn

(∑
a∈A

a

)

ei = Âi − Âi−1, 1 ≤ i ≤ n.

Then {e0, e1, . . . , en} is a set of orthogonal idempotents such that

e0 + e1 + · · ·+ en = 1.



Basic Facts
Linear and Cyclic codes

Group Codes
Primitive idempotents

Cyclic 2-groups
RA loops

Remark

Let F be a field with q elements and A a cyclic group of order pn,
with (q, n) = 1. Let

A = A0 ⊃ A1 ⊃ · · · ⊃ An = {1}

be the descending chain of all subgroups of A.
Set:

e0 = Â =
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For each automorphism σ ∈ Gal(F(ζ),F), we have σ(ζ) = ζr for
some positive integer r .
We define an action of σ on G by:

σ : g 7→ g r

Definition

Two conjugacy classes of G are said to be F-conjugate if they
correspond under this action. This notion of F-conjugacy is an
equivalence relation on the conjugacy classes of G and the
corresponding equivalence classes are called F-classes.
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The number of simple components of the group algebra FG is the
number of F-classes of G .
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Definition

Given an element g ∈ G , and a positive integer q then, the
q− cyclotomic class of g is the set

Sg = {gqj |0 ≤ j ≤ tg − 1}

where tg is the least positive integer such that qtg ≡ 1(mod o(g))
and o(g) stands for the order of g .

Remark If G is an abelian group, then elements and conjugacy
classes coincide. Hence, in this case if |F| = q, then the F-classes
defined above are the same as the q-cyclotomic classes
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Theorem (Arora-Pruthi (1997), Ferraz-P.M. (2007))

Let F be a field with q elements and A a cyclic group of order pn

such that o(q) = ϕ(pn) in U(Zpn) (where ϕ denots Euler’s Totient
function). Let

A = A0 ⊃ A1 ⊃ · · · ⊃ An = {1}

be the descending chain of all subgroups of A. Then, the set of
primitive idempotents of FA is given by:

e0 =
1

pn

(∑
a∈A

a

)

ei = Âi − Âi−1, 1 ≤ i ≤ n.
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Theorem (Arora and Pruthi (2002), Ferraz-PM (2007))

Let F be a field with q elements and A a cyclic group of order 2pn,
p an odd prime, such that o(q) = ϕ(pn) in U(Z2pn).
Write G = C × A where A denotes the p-Sylow subgroup of G and
C = {1, t} is the 2-Sylow subgroup.
If ei , 0 ≤ i ≤ n denotes the set of primitive idempotents of FA,
then the primitive idempotents of FG are

(1 + t)

2
· ei and

(1− t)

2
· ei 0 ≤ i ≤ n.
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Let A be an abelian p-group. For each subgroup H of A such that
A/H 6= {1} is cyclic, we shall construct an idempotent of FA.
Since A/H is a cyclic subgroup of order a power of p, there exists
a unique subgroup H∗ of A, containing H, such that |H∗/H| = p.

We set
eH = Ĥ − Ĥ∗.

and also

eG =
1

|G |
∑
g∈G

g .
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Theorem (Ferraz-PM (2007))

Let p be an odd prime and let A be an Abelian p-group of
exponent pr . Then, the set of idemponts above is the set of
primitive idempotents of FA if and only if one of the following
holds:

(i) pr = 2, and q is odd.

(ii) pr = 4 and q ≡ 3 (mod 4).

(iii) o(q) = ϕ(pn) in U(Zpn).
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Theorem (Ferraz-PM (2007))

Let F be a finite field with |F| = q, and let A be a finite abelian
group, of exponent e. Then the primitive central idempotents can
be constructed as above if and only if one of the following holds:

(i) e = 2 and q is odd.

(ii) e = 4 and q ≡ 3 (mod 4).

(iii) e = pn and o(q) = ϕ(pn) in U(Zpn).

(iv) e = 2pn and o(q) = ϕ(pn) in U(Z2pn).
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Proposition (Ferraz-Goodaire-PM )

Let A = 〈t〉 be a cyclic group of order 2m and F a field such that
char(F) |6 |A| then:

(i) If m = 1, for any such field F , there are precisely two F -classes
in A.

(ii) If m > 1, the number of Q-classes of A is m + 1 and at least
2m − 1 for any finite field F. This minimal number is achieved if F
has order q ≡ 3 (mód 8).

Lemma

If q ≡ 3 (mod 8), then −2 has a square root módulo q.
In what follows, this square root will be denoted by α (in both
cases).
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Theorem (J. do Prado)

In the case when q ≡ 3(mod 8) and A =< a >, the primitive
idempotents of FG are:

ε0 = Â,

ε1 =
1− a + a2 − · · · − a2m−1

2m
,

ε2 =
1− a2 + a4 − · · · − a2m−2

2m−1
,

ε3 = (1− a4)
(1 + a23

+ · · ·+ a2m−23
)(2 + αa + αa3)

2m
,

ε′3 = (1− a4)
(1 + a23

+ · · ·+ a2m−23
)(2− αa− αa3)

2m
,
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ε4 = (1− a8)
(1 + a24

+ · · ·+ a2m−24
)(2 + αa2 + αa3,2)

2m−1
,

ε′4 = (1− a8)
(1 + a24

+ · · ·+ a2m−24
)(2− αa2 − αa3,2)

2m−1
,

· · ·

εm−1 = (1− a2m−2
)

(1 + a2m−1
)(2 + αa2m−4

+ αa3,2m−4
)

24
,

ε′m−1 = (1− a2m−2
)

(1 + a2m−1
)(2− αa2m−4 − αa3,2m−4

)

24
,

εm = (1− a2m−1
)

(2 + αa2m−3
+ αa3,2m−3

)

23
,

ε′m = (1− a2m−1
)

(2− αa2m−3 − αa3,2m−3
)

23
.
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Theorem

The minimal ideals of FA are:

Ii = (FA)εi , i = 0, 1, 2,

Jj = (FA)εj , and Lj = (FA)ε′j , for 3 ≤ j ≤ m

and

(i) dim(Ii ) = 1 and w(Ii ) = 2m, for i = 1, 0; dim(I2) = 2 and
w(I2) = 2m−1.

(ii)
dim(Jj) = dim(Lj) = 2j−2

w(Jj) = w(Lj) = w(εj) = 3 · 2m−j+1, for 3 ≤ j ≤ m.
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Proposition

The set:

Bj =
{
εj , aεj , a

2εj , . . . , a
2j−3−1εj

}
⋃{

a2j−2
εj , a

2j−2+1εj , a
2j−2+2εj , . . . , a

2j−2+2j−3−1εj

}
is a basis of Jj .

Similarly exchanging above εj by ε′j , we obtain a basis of Lj .
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Let G be a nonabelian group with an involution g 7→ g∗ (an
antiautomorphism of order two) which is such that gg∗ ∈ Z(G ),
the centre of G , for all g ∈ G . Let g0 ∈ Z(G ) be an element fixed
by ∗ and let u be an element not in G .

Let L = G ∪ Gu with multiplication defined by

g(hu) = (hg)u

(gu)h = (gh∗)u

(gu)(hu) = g0h
∗g

for g , h ∈ G .
Then L is a Moufang loop, denoted M(G , ∗, g0).
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If G/CZ (G ) ∼= C2 × C2, then the commutator subgroup
G ′ = {1, s} is central of order two, the map ∗ : G → G defined by

g∗ =

{
g if g ∈ CZ (G )

sg if g /∈ CZ (G ),
(1)

is an involution (an SLC group).

The loop L = M(G , ∗, g0) is an RA (ring alternative) loop; that is,
over any (commutative associative) coefficient ring R (with 1), the
loop ring RL is alternative, but not associative. Moreover, all RA
loops can be constructed in this way.
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There are exactly seven classes of finite RA loops which are
indecomposable in the sense that they are not the direct products
of nontrivial subloops.

In six of these classes, the groups G defining the RA loops
M(G , ∗, g0) come from one of the five classes D1,D2,D3,D4,D5

described below.

In the seventh class of indecomposable loops, the groups are the
direct products of a group in dd5 with a cyclic group.
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In each class of groups, the groups are generated by their centre,
which is the direct product of at most three cyclic groups, and two
other elements x and y .

D1 : 〈x , y , t1 | x2 = y2 = t2m

1 = 1,m ≥ 1〉
D2 : 〈x , y , t1 | x2 = y2 = t1, t

2m

1 = 1,m ≥ 1〉
D3 : 〈x , y , t1, t2 | x2 = t2m1

1 = t2m2

2 = 1, y2 = t2,m1,m2 ≥ 1〉
D4 : 〈x , y , t1, t2 | x2 = t1, y

2 = t2, t
2m1

1 = t2m2

2 = 1,m1,m2 ≥ 1〉
D5 : 〈x , y , t1, t2, t3 |

x2 = t2, y
2 = t3, t

2m1

1 = t2m2

2 = t2m3

3 = 1,m1,m2,m2 ≥ 1〉.
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Theorem

Let L = M(G , ∗, g0) be an RA loop and F a field of characteristic
different from 2. Then FG = ⊕n

i=1Ai is the direct sum of simple
algebras Ai , each Ai is invariant under the involution ∗.

Moreover, FL = ⊕n
i=1(Ai + Aiu) for some u ∈ L \ G with each

Ai + Aiu the direct sum of two fields or a simple Cayley algebra.
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Theorem (Ferraz, Goodaire and PM)

Suppose that L = M(G , ∗, 1) is the class L1 of loops corresponding
to a group of type D1. Then QG is the direct sum of 8m fields and
the split Cayley algebra.

If L = M(G , ∗, 1) is the corresponding indecomposable RA loop,
then FL is the direct sum of 2(8m − 12) = 16m − 24 fields and 5
split Cayley algebras.

If L = M(G , ∗, g0) is an RA loop of type L2, then QL is the direct
sum of 4m + 4 fields and one Cayley algebra.
The loop algebra FL of the corresponding RA loop L is the direct
sum of 8m − 4 fields and four Cayley algebras.
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Theorem (Goodaire,Ferraz and PM)

Let K be any field (of characteristic not 2) and let L be a loop
from the class L6 with m1 = 1,m2 = 2 and m3 = 1 and let M be a
loop of the same order, in the class L5.

Then KL ∼= KM but L 6∼= M.
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