ON THE LIE ALGEBRA OF SKEW-SYMMETRIC ELEMENTS OF AN ENVELOPING ALGEBRA

Salvatore Siciliano

Dipartimento di Matematica "E. De Giorgi" Università del Salento salvatore.siciliano@unisalento.it

Aachen, March 22-26, 2010

$$A^+ := \{ x \in A | x^* = x \}$$

the set of *symmetric elements* of A under *, and by

$$A^{-} := \{ x \in A | x^{*} = -x \}$$

the set of *skew-symmetric elements* of A under *.

Theorem (Amitsur, 1968)

$$A^+ := \{x \in A | x^* = x\}$$

the set of *symmetric elements* of A under *, and by

$$A^{-} := \{ x \in A | x^{*} = -x \}$$

the set of *skew-symmetric elements* of A under *.

Theorem (Amitsur, 1968)

$$A^+ := \{ x \in A | x^* = x \}$$

the set of symmetric elements of A under *, and by

$$A^{-} := \{ x \in A | x^{*} = -x \}$$

the set of *skew-symmetric elements* of A under *.

Theorem (Amitsur, 1968)

$$A^+ := \{x \in A | x^* = x\}$$

the set of symmetric elements of A under *, and by

$$A^{-} := \{x \in A | x^{*} = -x\}$$

the set of *skew-symmetric elements* of *A* under *.

Theorem (Amitsur, 1968)

$$A^+ := \{x \in A | x^* = x\}$$

the set of symmetric elements of A under *, and by

$$A^{-} := \{x \in A | x^{*} = -x\}$$

the set of *skew-symmetric elements* of A under *.

Theorem (Amitsur, 1968)

$$A^+ := \{x \in A | x^* = x\}$$

the set of *symmetric elements* of A under *, and by

$$A^{-} := \{x \in A | x^{*} = -x\}$$

the set of *skew-symmetric elements* of A under *.

Theorem (Amitsur, 1968)

$$A^+ := \{x \in A | x^* = x\}$$

the set of *symmetric elements* of A under *, and by

$$A^{-} := \{x \in A | x^{*} = -x\}$$

the set of *skew-symmetric elements* of A under *.

Theorem (Amitsur, 1968)

Note that A^- has a structure of a Lie algebra induced by the Lie product of A (defined by [x, y] := xy - yx for every $x, y \in A$).

Let F be a field and G a group. We consider the group algebra $\mathbb{F}G$ endowed with the *canonical involution* (given by linear extension of the inversion map $g \mapsto g^{-1}$ of G).

Note that A^- has a structure of a Lie algebra induced by the Lie product of A (defined by [x, y] := xy - yx for every $x, y \in A$).

Let F be a field and G a group. We consider the group algebra $\mathbb{F}G$ endowed with the *canonical involution* (given by linear extension of the inversion map $g \mapsto g^{-1}$ of G).

Note that A^- has a structure of a Lie algebra induced by the Lie product of A (defined by [x, y] := xy - yx for every $x, y \in A$).

Let F be a field and G a group.

We consider the group algebra $\mathbb{F}G$ endowed with the *canonical involution* (given by linear extension of the inversion map $g \mapsto g^{-1}$ of G).

Note that A^- has a structure of a Lie algebra induced by the Lie product of A (defined by [x, y] := xy - yx for every $x, y \in A$).

Let F be a field and G a group. We consider the group algebra $\mathbb{F}G$ endowed with the *canonical involution* (given by linear extension of the inversion map $g \mapsto g^{-1}$ of G).

Theorem (Giambruno-Sehgal, 1993, 2006)

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- G has an elementary abelian 2-subgroup of index 2;
- the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Theorem (Giambruno-Sehgal, 1993, 2006)

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- 2) G has an elementary abelian 2-subgroup of index 2;
- 3) the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Theorem (Giambruno-Sehgal, 1993, 2006)

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- 2) G has an elementary abelian 2-subgroup of index 2;
- 3) the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Theorem (Giambruno-Sehgal, 1993, 2006)

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- 2) G has an elementary abelian 2-subgroup of index 2;
- 3) the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Theorem (Giambruno-Sehgal, 1993, 2006)

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- 2) G has an elementary abelian 2-subgroup of index 2;
- the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Theorem (Giambruno-Sehgal, 1993, 2006)

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- 2) G has an elementary abelian 2-subgroup of index 2;
- the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Theorem (Giambruno-Sehgal, 1993, 2006)

Let \mathbb{F} be a field of characteristic $p \neq 2$, and let G be a group. Then $\mathbb{F}G^-$ is nilpotent if and only if one the following conditions holds:

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- 2) G has an elementary abelian 2-subgroup of index 2;

 the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Theorem (Giambruno-Sehgal, 1993, 2006)

- 1) G has a nilpotent p-abelian normal subgroup H with $(G \setminus H)^2 = \{1\}$;
- 2) G has an elementary abelian 2-subgroup of index 2;
- the set P of p-elements of G forms a finite normal subgroup of G and G/P is an elementary abelian 2-group.

Let \mathbb{F} be a field of characteristic $p \neq 2$, and let G be a group with no 2-elements. Then the following conditions are equivalent:

- 1) $\mathbb{F}G^-$ is n-Engel for some n;
- 2) $\mathbb{F}G$ is Lie m-Engel for some m;
- 3) either
 - (i) p = 0 and G is abelian or
 - p > 2, G is nilpotent and there exists a normal subgroup A of G such that G/A and A' are both finite p-groups.

Let \mathbb{F} be a field of characteristic $p \neq 2$, and let G be a group with no 2-elements. Then the following conditions are equivalent:

FG⁻ is n-Engel for some n;
 FG is Lie m-Engel for some m;
 either

 p = 0 and G is abelian or
 p > 2, G is nilpotent and there exists a normal subgroup A of G such that G/A and A' are both finite p-groups.

Let \mathbb{F} be a field of characteristic $p \neq 2$, and let G be a group with no 2-elements. Then the following conditions are equivalent:

- 1) $\mathbb{F}G^-$ is n-Engel for some n;
 - 3) either
 - (i) p = 0 and G is abelian or
 - p > 2, G is nilpotent and there exists a normal subgroup A of G such that G/A and A' are both finite p-groups.

Let \mathbb{F} be a field of characteristic $p \neq 2$, and let G be a group with no 2-elements. Then the following conditions are equivalent:

- 1) $\mathbb{F}G^-$ is n-Engel for some n;
- 2) $\mathbb{F}G$ is Lie m-Engel for some m;

```
3) either
```

(i) *p* = 0 and *G* is abelian or

ii) p > 2, G is nilpotent and there exists a normal subgroup A of G such that G/A and A' are both finite p-groups.

Let \mathbb{F} be a field of characteristic $p \neq 2$, and let G be a group with no 2-elements. Then the following conditions are equivalent:

- 1) $\mathbb{F}G^-$ is n-Engel for some n;
- 2) $\mathbb{F}G$ is Lie m-Engel for some m;
- 3) either
 - (i) p = 0 and G is abelian or
 - (ii) p > 2, G is nilpotent and there exists a normal subgroup A of G such that G/A and A' are both finite p-groups.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- G/P = A × (x), where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG⁻ is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

1) G/P is abelian;

- G/P = A ⋊ ⟨x⟩, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG^- is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

1) G/P is abelian;

- G/P = A ⋊ ⟨x⟩, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) *G*/*P* contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG⁻ is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- 2) $G/P = A \rtimes \langle x \rangle$, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG^- is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- G/P = A ⋊ ⟨x⟩, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG^- is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- G/P = A ⋊ ⟨x⟩, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG⁻ is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- G/P = A ⋊ ⟨x⟩, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG^- is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- 2) $G/P = A \rtimes \langle x \rangle$, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG⁻ is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- G/P = A ⋊ ⟨x⟩, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

Let \mathbb{F} be a field of characteristic $p \neq 2$, and G a group. If the set P of p-elements of G contains an infinite subgroup of bounded exponent, and G contains no nontrivial elements of order dividing $p^2 - 1$, then the following conditions are equivalent:

- 1) FG^- is solvable;
- 2) FG is Lie solvable;

3) G' is a finite p-group.

Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \neq 2$. If the set P of the p-elements of G is finite, then FG^- is solvable if and only if P is a normal subgroup of G and one of the following conditions occurs:

- 1) G/P is abelian;
- G/P = A ⋊ ⟨x⟩, where A is abelian, o(x) = 2, and x acts dihedrally upon A;
- 3) G/P contains an elementary abelian 2-subgroup of index 2.

Theorem (Lee-Sehgal-Spinelli, 2009)

- 1) FG^- is solvable;
- 2) FG is Lie solvable;
- 3) G' is a finite p-group.

For a restricted Lie algebra L over a field \mathbb{F} of characteristic p > 0, we denote by u(L) the restricted enveloping algebra of L.

Theorem (Riley-Shalev, 1993)

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 0.

- u(L) is Lie nilpotent if and only if L is nilpotent and L' is finite-dimensional and p-nilpotent;
- u(L) is Lie n-Engel for some n if and only if L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional;
- If p > 2, then u(L) is Lie solvable if and only if L' is finite-dimensional and p-nilpotent.
Theorem (Riley-Shalev, 1993)

- u(L) is Lie nilpotent if and only if L is nilpotent and L' is finite-dimensional and p-nilpotent;
- u(L) is Lie n-Engel for some n if and only if L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional;
- If p > 2, then u(L) is Lie solvable if and only if L' is finite-dimensional and p-nilpotent.

Theorem (Riley-Shalev, 1993)

- u(L) is Lie nilpotent if and only if L is nilpotent and L' is finite-dimensional and p-nilpotent;
- u(L) is Lie n-Engel for some n if and only if L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional;
- If p > 2, then u(L) is Lie solvable if and only if L' is finite-dimensional and p-nilpotent.

Theorem (Riley-Shalev, 1993)

- 1) u(L) is Lie nilpotent if and only if L is nilpotent and L' is finite-dimensional and p-nilpotent;
- u(L) is Lie n-Engel for some n if and only if L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional;
- If p > 2, then u(L) is Lie solvable if and only if L' is finite-dimensional and p-nilpotent.

Theorem (Riley-Shalev, 1993)

- u(L) is Lie nilpotent if and only if L is nilpotent and L' is finite-dimensional and p-nilpotent;
- u(L) is Lie n-Engel for some n if and only if L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional;
- If p > 2, then u(L) is Lie solvable if and only if L' is finite-dimensional and p-nilpotent.

Theorem (Riley-Shalev, 1993)

- u(L) is Lie nilpotent if and only if L is nilpotent and L' is finite-dimensional and p-nilpotent;
- u(L) is Lie n-Engel for some n if and only if L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional;
- If p > 2, then u(L) is Lie solvable if and only if L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;

3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is solvable;
- 2) u(L) is Lie solvable;
- 3) L' is finite-dimensional and p-nilpotent.

Example

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- u(L) is Lie m-Engel for some m;
- L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Fheorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- 3) L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Fheorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- 3) L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Fheorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- 3) L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Theorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Theorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Theorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Theorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Theorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Theorem (S., 2010)

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;

3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be a restricted Lie algebra over a field \mathbb{F} of characteristic p > 2. Then the following conditions are equivalent:

- 1) $u(L)^-$ is n-Engel for some n;
- 2) u(L) is Lie m-Engel for some m;
- L is nilpotent, L' is p-nilpotent, and L contains a restricted ideal I such that L/I and I' are finite-dimensional.

Theorem (S., 2010)

- 1) $u(L)^-$ is nilpotent;
- 2) u(L) is Lie nilpotent;
- 3) L is nilpotent and L' is finite-dimensional and p-nilpotent.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.
Example

Let L be the restricted Lie algebra over a field \mathbb{F} of characteristic 2 with a basis $\{x, y, z\}$ such that [x, y] = z, $z \in Z(L)$, $x^{[2]} = y^{[2]} = 0$ and $z^{[2]} = z$. Then $u(L)^-$ is nilpotent, but u(L) cannot satisfy any Engel condition.

In <u>odd</u> characteristic, $u(L)^-$ is solvable, nilpotent or *n*-Engel for some *n* if and only if so is u(L) as a Lie algebra.

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

If p = 0, as U(L) satisfies a polynomial identity (by Amitsur's Theorem), then L is necessarily abelian (by Latyšev's Theorem).

Suppose then p > 2. Put

$$\hat{L} := \sum_{k \ge 0} L^{p^k} \subseteq U(L)$$

Corollary (S., 2010)

Let L be a Lie algebra over a field \mathbb{F} of characteristic $p \neq 2$. Then $U(L)^-$ is solvable or n-Engel for some n if and only if L is abelian.

Corollary (S., 2010)

Let L be a Lie algebra over a field \mathbb{F} of characteristic $p \neq 2$. Then $U(L)^-$ is solvable or n-Engel for some n if and only if L is abelian.

Corollary (S., 2010)

Let L be a Lie algebra over a field \mathbb{F} of characteristic $p \neq 2$. Then $U(L)^-$ is solvable or n-Engel for some n if and only if L is abelian.