Nilpotency of group ring units symmetric with respect to an involution

Ernesto Spinelli

Università del Salento Dipartimento di Matematica "E. De Giorgi" Joint work with Gregory T. Lee and Sudarshan K. Sehgal

Aachen, March 22-26, 2010 Arithmetic of group rings and related structures

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Involutions in group rings

- Classical and K-linear involutions
- Symmetric and skew-symmetric elements
- Symmetric and unitary units

2 Main questions

 Main question for symmetric and skew-symmetric elements

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Main question for symmetric units
- 3 Group identities for symmetric units
 - The classical involution: an overview
 - K-linear involutions: the main results

Classical and K-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Canonical and *K*-linear involutions

Let *G* be a group endowed with an involution \star . Let us consider the *K*-linear extension of \star to *KG* by setting

$$\left(\sum_{g\in G}a_gg\right)^\star:=\sum_{g\in G}a_gg^\star.$$

This extension, which we denote again by \star , is an involution of *KG* wich fixes the ground field *K* elementwise.

given by the map $*: g \mapsto g^{-1}$.

Definition

Classical and K-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Canonical and K-linear involutions

Let *G* be a group endowed with an involution \star . Let us consider the *K*-linear extension of \star to *KG* by setting

$$\Big(\sum_{g\in G}a_gg\Big)^\star:=\sum_{g\in G}a_gg^\star.$$

This extension, which we denote again by \star , is an involution of *KG* wich fixes the ground field *K* elementwise.

As well-known, any group G has a natural involution which is given by the map $*: g \mapsto g^{-1}$.

Definition

Classical and K-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Canonical and K-linear involutions

Let *G* be a group endowed with an involution \star . Let us consider the *K*-linear extension of \star to *KG* by setting

$$\Big(\sum_{g\in G}a_gg\Big)^\star:=\sum_{g\in G}a_gg^\star.$$

This extension, which we denote again by \star , is an involution of *KG* wich fixes the ground field *K* elementwise.

As well-known, any group *G* has a natural involution which is given by the map $*: g \mapsto g^{-1}$.

Definition

Classical and K-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Canonical and *K*-linear involutions

Let *G* be a group endowed with an involution \star . Let us consider the *K*-linear extension of \star to *KG* by setting

$$\Big(\sum_{g\in G}a_gg\Big)^\star:=\sum_{g\in G}a_gg^\star.$$

This extension, which we denote again by \star , is an involution of *KG* wich fixes the ground field *K* elementwise.

As well-known, any group *G* has a natural involution which is given by the map $*: g \mapsto g^{-1}$.

Definition

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and skew-symmetric elements

Let *KG* be a group algebra endowed with a *K*-linear involution *.

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of *KG*⁺ are called the *symmetric elements* of *KG* (with respect to *) and those of *KG*⁻ are called the *skew-symmetric elements* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and skew-symmetric elements

Let KG be a group algebra endowed with a K-linear involution \star . Let us set

$$KG^+ := \{ x \mid x \in KG \quad x^* = x \},$$

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of *KG*⁺ are called the *symmetric elements* of *KG* (with respect to \star) and those of *KG*⁻ are called the *skew-symmetric elements* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and skew-symmetric elements

Let KG be a group algebra endowed with a K-linear involution \star . Let us set

$$\mathsf{K}\mathsf{G}^+ := \{ \mathsf{x} | \ \mathsf{x} \in \mathsf{K}\mathsf{G} \ \mathsf{x}^\star = \mathsf{x} \},$$

$$KG^- := \{ x \mid x \in KG \quad x^* = -x \}.$$

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of KG^+ are called the *symmetric elements* of *KG* (with respect to *) and those of *KG*⁻ are called the *skew-symmetric elements* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and skew-symmetric elements

Let KG be a group algebra endowed with a K-linear involution \star . Let us set

$$\mathsf{K}\mathsf{G}^+ := \{ \mathsf{x} | \mathsf{x} \in \mathsf{K}\mathsf{G} \mid \mathsf{x}^\star = \mathsf{x} \},\$$

$$KG^- := \{ x \mid x \in KG \quad x^* = -x \}.$$

 KG^- is a Lie subalgebra of KG, whereas KG^+ is a Jordan subalgebra of KG.

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of KG^+ are called the *symmetric elements* of *KG* (with respect to *) and those of *KG*⁻ are called the *skew-symmetric elements* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and skew-symmetric elements

Let KG be a group algebra endowed with a K-linear involution \star . Let us set

$$\mathsf{K}\mathsf{G}^+ := \{ x | x \in \mathsf{K}\mathsf{G} \mid x^\star = x \},$$

$$KG^- := \{ x \mid x \in KG \quad x^* = -x \}.$$

 KG^- is a Lie subalgebra of KG, whereas KG^+ is a Jordan subalgebra of KG.

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of *KG*⁺ are called the *symmetric elements* of *KG* (with respect to \star) and those of *KG*⁻ are called the *skew-symmetric elements* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and unitary units

Let us set

$\mathcal{U}^+(\mathit{KG}) := \mathcal{U}(\mathit{KG}) \cap \mathit{KG}^+,$

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of $\mathcal{U}^+(KG)$ are called the *symmetric units* of *KG* (with respect to *) and those of *Un*(*KG*) are called the *unitary units* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and unitary units

Let us set

$$\mathcal{U}^+(\mathit{KG}) := \mathcal{U}(\mathit{KG}) \cap \mathit{KG}^+,$$

$$Un(KG) := \{x | x \in KG \ xx^* = x^*x = 1\}.$$

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of $\mathcal{U}^+(KG)$ are called the *symmetric units* of *KG* (with respect to *) and those of Un(KG) are called the *unitary units* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and unitary units

Let us set

$$\mathcal{U}^+(\mathit{KG}) := \mathcal{U}(\mathit{KG}) \cap \mathit{KG}^+,$$

$$Un(KG) := \{x \mid x \in KG \ xx^* = x^*x = 1\}.$$

Un(KG) is a subgroup of $\mathcal{U}(KG)$, whereas $\mathcal{U}^+(KG)$ is simply a subset of $\mathcal{U}(KG)$.

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of $\mathcal{U}^+(KG)$ are called the *symmetric units* of *KG* (with respect to *) and those of Un(KG) are called the *unitary units* of *KG*.

Classical and *K*-linear involutions Symmetric and skew-symmetric elements Symmetric and unitary units

Symmetric and unitary units

Let us set

$$\mathcal{U}^+(\mathit{KG}) := \mathcal{U}(\mathit{KG}) \cap \mathit{KG}^+,$$

$$Un(KG) := \{x | x \in KG \ xx^* = x^*x = 1\}.$$

Un(KG) is a subgroup of $\mathcal{U}(KG)$, whereas $\mathcal{U}^+(KG)$ is simply a subset of $\mathcal{U}(KG)$.

Definition

Let *KG* be the group algebra of a group *G* over a field *K* endowed with a *K*-linear involution. The elements of $\mathcal{U}^+(KG)$ are called the *symmetric units* of *KG* (with respect to \star) and those of Un(KG) are called the *unitary units* of *KG*.

Main question for symmetric and skew-symmetric elements Main question for symmetric units

(ロ) (同) (三) (三) (三) (三) (○) (○)

Main question for symmetric and skew-symmetric elements

Main question for symmetric and skew-symmetric elements Main question for symmetric units

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main question for symmetric and skew-symmetric elements

First Question

To determine the extent to which the properties of the symmetric (or skew-symmetric) elements determine the properties of the whole group ring.

Main question for symmetric and skew-symmetric elements Main question for symmetric units

Main question for symmetric and skew-symmetric elements

First Question

To determine the extent to which the properties of the symmetric (or skew-symmetric) elements determine the properties of the whole group ring.

If A is an arbitrary algebra with involution, let us define in the same manner A^+ and A^- .

Theorem [Amitsur,1968]

Let A be an algebra with involution. If A^+ or A^- satisfies a polynomial identity, then A satisfies a polynomial identity.

Main question for symmetric and skew-symmetric elements Main question for symmetric units

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lie properties for KG^+ and KG^-

Main question for symmetric and skew-symmetric elements Main question for symmetric units

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lie properties for KG^+ and KG^-

Lie properties for KG^+ and KG^-

Assume that *KG* is endowed with a *K*-linear involution. If KG^+ and/or KG^- satisfies a Lie identity, what can you say about *KG*?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lie nilpotency for KG^+ and KG^-

Theorem [Giambruno-Sehgal, 1993]

Let *KG* be the group algebra of a group *G* without 2-elements over a field *K* of characteristic $p \neq 2$ endowed with the classical involution. Then *KG*⁺ or *KG*⁻ is Lie nilpotent if, and only if, *KG* is Lie nilpotent.

Lie nilpotency for KG^+ and KG^-

Theorem [Giambruno-Sehgal, 1993]

Let *KG* be the group algebra of a group *G* without 2-elements over a field *K* of characteristic $p \neq 2$ endowed with the classical involution. Then *KG*⁺ or *KG*⁻ is Lie nilpotent if, and only if, *KG* is Lie nilpotent.

- The previous result does not hold without the assumption on the order of the elements of *G*.
- Lee (1999) completed the classification with regard to KG^+ by showing that the result is heavily effected by the presence of Q_8 in *G*.
- Giambruno-Sehgal (2007) completed the classification with regard to *KG*⁻.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let *KG* be the group algebra of a group *G* without 2-elements over a field *K* of characteristic $p \neq 2$ endowed with a *K*-linear involution. Then *KG*⁺ is Lie nilpotent if, and only if, *KG* is Lie nilpotent.

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let *KG* be the group algebra of a group *G* without 2-elements over a field *K* of characteristic $p \neq 2$ endowed with a *K*-linear involution. Then *KG*⁺ is Lie nilpotent if, and only if, *KG* is Lie nilpotent.

- Lee-Sehgal-Spinelli (2009) completed the classification for arbitrary *G*.
- Giambruno-Polcino Milies-Sehgal (2010) studied the question for KG⁻, when G is a torsion group without 2-elements.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lie *n*-Engel condition for KG^+ and KG^-

Theorem [Lee, 2000]

Let *KG* be the group algebra of a group *G* with no 2-elements over a field *K* of characteristic $p \neq 2$ endowed with the classical involution. Then *KG*⁺ or *KG*⁻ is Lie *n*-Engel, for some *n*, if, and only if, *KG* is Lie *m*-Engel, for some *m*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lie *n*-Engel condition for KG^+ and KG^-

Theorem [Lee, 2000]

Let *KG* be the group algebra of a group *G* with no 2-elements over a field *K* of characteristic $p \neq 2$ endowed with the classical involution. Then *KG*⁺ or *KG*⁻ is Lie *n*-Engel, for some *n*, if, and only if, *KG* is Lie *m*-Engel, for some *m*.

• Lee (2000) completed the classification with regard to *KG*⁺ for arbitrary *G*.

Lie *n*-Engel condition for KG^+ and KG^-

Theorem [Lee, 2000]

Let *KG* be the group algebra of a group *G* with no 2-elements over a field *K* of characteristic $p \neq 2$ endowed with the classical involution. Then *KG*⁺ or *KG*⁻ is Lie *n*-Engel, for some *n*, if, and only if, *KG* is Lie *m*-Engel, for some *m*.

• Lee (2000) completed the classification with regard to *KG*⁺ for arbitrary *G*.

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let *KG* be the group algebra of a group *G* with no 2-elements over a field *K* of characteristic $p \neq 2$ endowed with a *K*-linear involution. Then *KG*⁺ is Lie *n*-Engel, for some *n*, if, and only if, *KG* is Lie *m*-Engel, for some *m*.

Lie *n*-Engel condition for KG^+ and KG^-

Theorem [Lee, 2000]

Let *KG* be the group algebra of a group *G* with no 2-elements over a field *K* of characteristic $p \neq 2$ endowed with the classical involution. Then *KG*⁺ or *KG*⁻ is Lie *n*-Engel, for some *n*, if, and only if, *KG* is Lie *m*-Engel, for some *m*.

• Lee (2000) completed the classification with regard to *KG*⁺ for arbitrary *G*.

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let *KG* be the group algebra of a group *G* with no 2-elements over a field *K* of characteristic $p \neq 2$ endowed with a *K*-linear involution. Then *KG*⁺ is Lie *n*-Engel, for some *n*, if, and only if, *KG* is Lie *m*-Engel, for some *m*.

Lee-Sehgal-Spinelli (2009) completed the classification for

Main question for symmetric and skew-symmetric elements Main question for symmetric units

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lie solvability for KG^+ and KG^-

Remark

Let *KG* be the group algebra of a group *G* over a field *K* of characteristic $p \neq 2$. If *KG*⁻ is Lie solvable, then *KG*⁺ is Lie solvable and

 $dl_L(KG^+) \leq dl_L(KG^-) + 1.$

Main question for symmetric and skew-symmetric elements Main question for symmetric units

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lie solvability for KG^+ and KG^-

Remark

Let *KG* be the group algebra of a group *G* over a field *K* of characteristic $p \neq 2$. If *KG*⁻ is Lie solvable, then *KG*⁺ is Lie solvable and

 $dl_L(KG^+) \leq dl_L(KG^-) + 1.$

Lee, Sehgal and Spinelli studied the question for the classical involution.

Main question for symmetric and skew-symmetric elements Main question for symmetric units

Lie solvability for KG^+ and KG^-

Remark

Let *KG* be the group algebra of a group *G* over a field *K* of characteristic $p \neq 2$. If *KG*⁻ is Lie solvable, then *KG*⁺ is Lie solvable and

 $dl_L(KG^+) \leq dl_L(KG^-) + 1.$

Lee, Sehgal and Spinelli studied the question for the classical involution.

Theorem [Lee-Sehgal-S., 2009]

Let *KG* be the group algebra of a group *G* without 2-elements over a field *K* of characteristic $p \neq 2$ endowed with the classical involution. If *P* is finite, then *KG*⁺ is Lie solvable if, and only if, *KG* is Lie solvable.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem [Lee-Sehgal-S., 2009]

Let *K* be a field of characteristic p > 2, and let *G* be a group such that *P* contains an infinite subgroup of bounded exponent, and *G* contains no nontrivial elements of order dividing $p^2 - 1$. Then the following statements are equivalent:

- KG⁻ is Lie solvable;
- *KG*⁺ is Lie solvable;
- KG is Lie solvable.

Theorem [Lee-Sehgal-S., 2009]

Let *K* be a field of characteristic p > 2, and let *G* be a group such that *P* contains an infinite subgroup of bounded exponent, and *G* contains no nontrivial elements of order dividing $p^2 - 1$. Then the following statements are equivalent:

- KG⁻ is Lie solvable;
- *KG*⁺ is Lie solvable;
- KG is Lie solvable.

Theorem [Lee-Sehgal-S., 2009]

Let *K* be a field of characteristic p > 2 and *G* a group containing elements of infinite order, but no 2-elements. If *KG*⁺ is Lie solvable, then *KG* is Lie solvable.

Main question for symmetric and skew-symmetric elements Main question for symmetric units

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main question for symmetric units

Main question for symmetric and skew-symmetric elements Main question for symmetric units

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main question for symmetric units

Second Question

To determine the extent to which the properties of the symmetric units determine the properties of the whole unit group of the group ring.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main question for symmetric units

Second Question

To determine the extent to which the properties of the symmetric units determine the properties of the whole unit group of the group ring.

It is well-known that there is a strong connection between Lie properties satisfied by KG and the corresponding group identities satisfied by $\mathcal{U}(KG)$.

Main question for symmetric and skew-symmetric elements Main question for symmetric units

Main question for symmetric units

Second Question

To determine the extent to which the properties of the symmetric units determine the properties of the whole unit group of the group ring.

It is well-known that there is a strong connection between Lie properties satisfied by *KG* and the corresponding group identities satisfied by $\mathcal{U}(KG)$. In this spirit is the following

Third Question

Do the Lie properties satisfied by the symmetric elements reflect the group identities satisfied by the symmetric units of the group ring?

The classical involution: an overview *K*-linear involutions: the main results

When $\mathcal{U}^+(KG)$ is GI

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

When $\mathcal{U}^+(KG)$ is GI

Giambruno, Jespers, Sehgal, Valenti, Liu and Passman solved the Hartley's conjecture and classified when U(KG) is GI.

When $\mathcal{U}^+(KG)$ is GI

Giambruno, Jespers, Sehgal, Valenti, Liu and Passman solved the Hartley's conjecture and classified when U(KG) is GI.

Theorem [Giambruno-Sehgal-Valenti, 1998]

Let *KG* be the group algebra of a torsion group *G* over an infinite field *K* of characteristic $p \neq 2$.

- (a) If p = 0, $U^+(KG)$ is GI if, and only if, G is either abelian or Hamiltonian 2-group.
- (b) If p > 2, U⁺(KG) is GI if, and only if, KG is PI and either *Q*₈ ⊈ G and G' is of bounded exponent p^k for some k ≥ 0 or *Q*₈ ⊆ G and
 - *P* is a normal subgroup of *G* and *G*/*P* is a Hamiltonian 2-group;
 - *G* is of bounded exponent $4p^s$ for some $s \ge 0$.

When $\mathcal{U}^+(KG)$ is GI

Giambruno, Jespers, Sehgal, Valenti, Liu and Passman solved the Hartley's conjecture and classified when U(KG) is GI.

Theorem [Giambruno-Sehgal-Valenti, 1998]

Let *KG* be the group algebra of a torsion group *G* over an infinite field *K* of characteristic $p \neq 2$.

- (a) If p = 0, $U^+(KG)$ is GI if, and only if, G is either abelian or Hamiltonian 2-group.
- (b) If p > 2, U⁺(KG) is GI if, and only if, KG is PI and either *Q*₈ ⊈ G and G' is of bounded exponent p^k for some k ≥ 0 or *Q*₈ ⊆ G and
 - *P* is a normal subgroup of *G* and *G*/*P* is a Hamiltonian 2-group;
 - *G* is of bounded exponent $4p^s$ for some $s \ge 0$.
 - Sehgal-Valenti (2006) studied the non-torsion case.

The classical involution: an overview *K*-linear involutions: the main results

(ロ) (同) (三) (三) (三) (三) (○) (○)

Special group identities

After the result by Giambruno, Sehgal and Valenti, it was of interest to consider when $\mathcal{U}^+(KG)$ satisfies special group identities.

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

Special group identities

After the result by Giambruno, Sehgal and Valenti, it was of interest to consider when $\mathcal{U}^+(KG)$ satisfies special group identities.

Theorem [Lee, 2003]

Let *KG* be the group algebra of a torsion group *G* over a field *K* of characteristic $p \neq 2$ endowed with the classical involution.

 $\mathcal{U}^+(KG)$ is nilpotent $\iff KG^+$ is Lie nilpotent.

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

Special group identities

After the result by Giambruno, Sehgal and Valenti, it was of interest to consider when $\mathcal{U}^+(KG)$ satisfies special group identities.

Theorem [Lee, 2003]

Let *KG* be the group algebra of a torsion group *G* over a field *K* of characteristic $p \neq 2$ endowed with the classical involution.

 $\mathcal{U}^+(KG)$ is nilpotent $\iff KG^+$ is Lie nilpotent.

• Lee-Polcino Milies-Sehgal (2007) studied the non-torsion case.

The classical involution: an overview *K*-linear involutions: the main results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Other group identities

Theorem [Lee-Spinelli, 2010]

Let *KG* be the group algebra of a torsion group *G* over an infinite field *K* of characteristic $p \neq 2$ endowed with the classical involution.

 $\langle \mathcal{U}^+(KG) \rangle$ is Engel $\iff KG^+$ is Lie Engel.

The classical involution: an overview *K*-linear involutions: the main results

Other group identities

Theorem [Lee-Spinelli, 2010]

Let *KG* be the group algebra of a torsion group *G* over an infinite field *K* of characteristic $p \neq 2$ endowed with the classical involution.

 $\langle \mathcal{U}^+(KG) \rangle$ is Engel $\iff KG^+$ is Lie Engel.

Theorem [Lee-Spinelli, 2009]

Let *KG* be the group algebra of a torsion group *G* over an infinite field *K* of characteristic $p \neq 2$ endowed with the classical involution. If *P* is infinite and *G* does not contain elements whose order divides $p^2 - 1$,

 $\mathcal{U}^+(KG)$ is solvable $\iff KG^+$ is Lie solvable.

The classical involution: an overview *K*-linear involutions: the main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

When $\mathcal{U}^+(KG)$ is GI

The classical involution: an overview *K*-linear involutions: the main results

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

When $\mathcal{U}^+(KG)$ is GI

After a paper by Dooms and Ruiz Marin (2007), the key result is the following

When $\mathcal{U}^+(KG)$ is GI

After a paper by Dooms and Ruiz Marin (2007), the key result is the following

Theorem [Giambruno-Polcino Milies-Sehgal, 2009]

Let *KG* be the group algebra of a torsion group *G* over an infinite field *K* of characteristic $p \neq 2$ endowed with a *K*-linear involution. Then $\mathcal{U}^+(KG)$ is GI if, and only if,

- (a) *KG* is semiprime and *G* is either abelian or an *SLC*-group, or
- (b) *KG* is not semiprime, *P* is a normal subgroup of *G*, *G* has a *p*-abelian normal subgroup of finite index and either
 - G' is a p-group of bounded exponent or
 - G/P is an *SLC*-group and *G* contains a normal *-invariant *p*-subgroup *B* of bounded exponent such that P/B is central in G/P and the induced involution acts as the identity on P/B.

The classical involution: an overview *K*-linear involutions: the main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

SLC-groups

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

SLC-groups

A group *G* is called an *LC-group* (that is, it has the *"lack of commutativity"* property) if it is not abelian, but, whenever $g, h \in G$ and gh = hg, then at least one of $\{g, h, gh\}$ is central.

The classical involution: an overview *K*-linear involutions: the main results

(ロ) (同) (三) (三) (三) (三) (○) (○)

SLC-groups

A group *G* is called an *LC-group* (that is, it has the *"lack of commutativity"* property) if it is not abelian, but, whenever $g, h \in G$ and gh = hg, then at least one of $\{g, h, gh\}$ is central. These groups were introduced by *E. Goodaire*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

SLC-groups

A group *G* is called an *LC-group* (that is, it has the *"lack of commutativity"* property) if it is not abelian, but, whenever $g, h \in G$ and gh = hg, then at least one of $\{g, h, gh\}$ is central. These groups were introduced by *E. Goodaire*. A group *G* is an *LC*-group with a unique nonidentity commutator (which must, obviously, have order 2) if, and only if, $G/\zeta(G) \simeq C_2 \times C_2$.

SLC-groups

A group *G* is called an *LC-group* (that is, it has the *"lack of commutativity"* property) if it is not abelian, but, whenever $g, h \in G$ and gh = hg, then at least one of $\{g, h, gh\}$ is central. These groups were introduced by *E. Goodaire*. A group *G* is an *LC*-group with a unique nonidentity commutator (which must, obviously, have order 2) if, and only if, $G/\zeta(G) \simeq C_2 \times C_2$.

Definition

A group *G* endowed with an involution \star is said to be a *special LC-group*, or *SLC-group*, if it is an *LC*-group, it has a unique nonidentity commutator *z* and, for all $g \in G$, we have $g^* = g$ if $g \in \zeta(G)$ and, otherwise, $g^* = zg$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem [Jespers-Ruiz Marin, 2006]

Let *R* be a commutative ring of characteristic different from 2, and *G* a nonabelian group endowed with an involution \star . Then RG^+ is commutative if, and only if, *G* is an SLC-group.

The classical involution: an overview *K*-linear involutions: the main results

When $\mathcal{U}^+(KG)$ is nilpotent

The classical involution: an overview *K*-linear involutions: the main results

When $\mathcal{U}^+(KG)$ is nilpotent

Assume that $\mathcal{U}^+(KG)$ is nilpotent.

 Assume that KG is not semiprime, otherwise we are done by [GPMS] and [JRM].

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

When $\mathcal{U}^+(KG)$ is nilpotent

- Assume that KG is not semiprime, otherwise we are done by [GPMS] and [JRM].
- By [GPMS] we know that $P \trianglelefteq G$.

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

When $\mathcal{U}^+(KG)$ is nilpotent

- Assume that KG is not semiprime, otherwise we are done by [GPMS] and [JRM].
- By [GPMS] we know that $P \trianglelefteq G$.
- Let $N \leq G$ and \star -invariant. If $\mathcal{U}^+(KG)$ satisfies w, then $\mathcal{U}^+(K(G/N))$ satisfies w.

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

When $\mathcal{U}^+(KG)$ is nilpotent

- Assume that KG is not semiprime, otherwise we are done by [GPMS] and [JRM].
- By [GPMS] we know that $P \trianglelefteq G$.
- Let $N \leq G$ and \star -invariant. If $\mathcal{U}^+(KG)$ satisfies w, then $\mathcal{U}^+(K(G/N))$ satisfies w.
- $\mathcal{U}^+(\mathcal{K}(G/P))$ is nilpotent and $\mathcal{K}(G/P)$ is semiprime.

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

When $\mathcal{U}^+(KG)$ is nilpotent

- Assume that KG is not semiprime, otherwise we are done by [GPMS] and [JRM].
- By [GPMS] we know that $P \trianglelefteq G$.
- Let $N \leq G$ and \star -invariant. If $\mathcal{U}^+(KG)$ satisfies w, then $\mathcal{U}^+(K(G/N))$ satisfies w.
- $\mathcal{U}^+(\mathcal{K}(G/P))$ is nilpotent and $\mathcal{K}(G/P)$ is semiprime.
- By [GPMS] G/P is abelian or G/P is an *SLC*-group.

The classical involution: an overview *K*-linear involutions: the main results

ヘロト 人間 とくほ とくほとう

G finite

G finite

The classical involution: an overview *K*-linear involutions: the main results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

By [GPMS] *G* is locally finite. Hence it is relevant to study the case in which *G* is finite.

Lemma

Let *G* be a finite group. If $\mathcal{U}^+(KG)$ is nilpotent, then *G* is nilpotent and G/P is either abelian or an *SLC*-group.

The classical involution: an overview *K*-linear involutions: the main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

G/P abelian

G/P abelian

The classical involution: an overview *K*-linear involutions: the main results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem [Lee-Sehgal-S., 2010]

Let G/P be abelian. If $\mathcal{U}^+(KG)$ is nilpotent, then G is nilpotent and *p*-abelian (hence, $\mathcal{U}(KG)$ is nilpotent).

The classical involution: an overview *K*-linear involutions: the main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

G/P is an SLC-group

The classical involution: an overview *K*-linear involutions: the main results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

G/P is an SLC-group

Theorem [Lee-Sehgal-S., 2010]

Let G/P be an *SLC*-group. Then $\mathcal{U}^+(KG)$ is nilpotent if, and only if, *G* is nilpotent and *G* has a finite normal *-invariant *p*-subgroup *N* such that G/N is an *SLC*-group.

The classical involution: an overview *K*-linear involutions: the main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Main Theorem

Main Theorem

The classical involution: an overview *K*-linear involutions: the main results

(日) (日) (日) (日) (日) (日) (日)

Theorem [Lee-Sehgal-S., 2010]

Let *K* be an infinite field of characteristic p > 2 and *G* a torsion group having an involution *, and let *KG* have the induced involution. Suppose that $\mathcal{U}(KG)$ is not nilpotent. Then $\mathcal{U}^+(KG)$ is nilpotent if, and only if, *G* is nilpotent and *G* has a finite normal *-invariant *p*-subgroup *N* such that G/N is an *SLC*-group.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

According to the result by Passi-Passman-Sehgal (1973) and Khripta (1972) *KG* is Lie nilpotent if, and only if, U(KG) is nilpotent.

(日) (日) (日) (日) (日) (日) (日)

According to the result by Passi-Passman-Sehgal (1973) and Khripta (1972) *KG* is Lie nilpotent if, and only if, U(KG) is nilpotent.

By using the results of [LSS1], one has

Theorem [Lee-Sehgal-S., 2010]

Let *K* be an infinite field of characteristic $p \neq 2$ and *G* a torsion group having an involution *, and let *KG* have the induced involution. Then $\mathcal{U}^+(KG)$ is nilpotent if, and only if, KG^+ is Lie nilpotent.