
GAPDoc

(Version 1.6.7)

February 2024

Frank Lübeck
Max Neunhöffer

Frank Lübeck Email: Frank.Luebeck@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Frank.Luebeck

mailto://Frank.Luebeck@Math.RWTH-Aachen.De
https://www.math.rwth-aachen.de/~Frank.Luebeck

GAPDoc 2

Copyright
© 2000-2024 by Frank Lübeck and Max Neunhöffer

GAPDoc is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

https://www.fsf.org/licenses/gpl.html
https://www.fsf.org/licenses/gpl.html

Contents

1 Introduction and Example 5
1.1 XML . 5
1.2 A complete example . 6
1.3 Some questions . 9

2 How To Type a GAPDoc Document 10
2.1 General XML Syntax . 10
2.2 Entering GAPDoc Documents . 13

3 The Document Type Definition 15
3.1 What is a DTD? . 15
3.2 Overall Document Structure . 15
3.3 Sectioning Elements . 20
3.4 ManSection–a special kind of subsection . 22
3.5 Cross Referencing and Citations . 26
3.6 Structural Elements like Lists . 28
3.7 Types of Text . 30
3.8 Elements for Mathematical Formulae . 32
3.9 Everything else . 35

4 Distributing a Document into Several Files 37
4.1 The Conventions . 37
4.2 A Tool for Collecting a Document . 38

5 The Converters and an XML Parser 40
5.1 Producing Documentation from Source Files . 40
5.2 Parsing XML Documents . 42
5.3 The Converters . 46
5.4 Testing Manual Examples . 54

6 String and Text Utilities 57
6.1 Text Utilities . 57
6.2 Unicode Strings . 62
6.3 Print Utilities . 65

3

GAPDoc 4

7 Utilities for Bibliographies 68
7.1 Parsing BibTEX Files . 68
7.2 The BibXMLext Format . 71
7.3 Utilities for BibXMLext data . 73
7.4 Getting BibTEX entries from MathSciNet . 80

A The File 3k+1.xml 82

B The File gapdoc.dtd 84

C The File bibxmlext.dtd 93

References 103

Index 104

Chapter 1

Introduction and Example

The main purpose of the GAPDoc package is to define a file format for documentation of
GAP-programs and -packages (see [GAP06]). The problem is that such documentation should be
readable in several output formats. For example it should be possible to read the documentation inside
the terminal in which GAP is running (a text mode) and there should be a printable version in high
typesetting quality (produced by some version of TEX). It is also popular to view GAP’s online help
with a Web-browser via an HTML-version of the documentation. Nowadays one can use LATEX and
standard viewer programs to produce and view on the screen dvi- or pdf-files with full support of
internal and external hyperlinks. Certainly there will be other interesting document formats and tools
in this direction in the future.

Our aim is to find a format for writing the documentation which allows a relatively easy translation
into the output formats just mentioned and which hopefully makes it easy to translate to future output
formats as well.

To make documentation written in the GAPDoc format directly usable, we also provide a set of
programs, called converters, which produce text-, hyperlinked LATEX- and HTML-output versions of
a GAPDoc document. These programs are developed by the first named author. They run completely
inside GAP, i.e., no external programs are needed. You only need latex and pdflatex to process
the LATEX output. These programs are described in Chapter 5.

1.1 XML

The definition of the GAPDoc format uses XML, the “eXtendible Markup Language”. This is a
standard (defined by the W3C consortium, see https://www.w3c.org) which lays down a syntax for
adding markup to a document or to some data. It allows to define document structures via introducing
markup elements and certain relations between them. This is done in a document type definition. The
file gapdoc.dtd contains such a document type definition and is the central part of the GAPDoc
package.

The easiest way for getting a good idea about this is probably to look at an example. The Ap-
pendix A contains a short but complete GAPDoc document for a fictitious share package. In the next
section we will go through this document, explain basic facts about XML and the GAPDoc document
type, and give pointers to more details in later parts of this documentation.

In the last Section 1.3 of this introductory chapter we try to answer some general questions about
the decisions which lead to the GAPDoc package.

5

https://www.w3c.org

GAPDoc 6

1.2 A complete example

In this section we recall the lines from the example document in Appendix A and give some explana-
tions.

from 3k+1.xml
<?xml version="1.0" encoding="UTF-8"?>

This line just tells a human reader and computer programs that the file is a document with XML
markup and that the text is encoded in the UTF-8 character set (other common encodings are ASCII
or ISO-8895-X encodings).

from 3k+1.xml
<!-- A complete "fake package" documentation
-->

Everything in a XML file between “<!--” and “-->” is a comment and not part of the document
content.

from 3k+1.xml
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

This line says that the document contains markup which is defined in the system file gapdoc.dtd
and that the markup obeys certain rules defined in that file (the ending dtd means “document type
definition”). It further says that the actual content of the document consists of an element with name
“Book”. And we can really see that the remaining part of the file is enclosed as follows:

from 3k+1.xml
<Book Name="3k+1">

[...] (content omitted)
</Book>

This demonstrates the basics of the markup in XML. This part of the document is an “element”. It
consists of the “start tag” <Book Name="3k+1">, the “element content” and the “end tag” </Book>
(end tags always start with </). This element also has an “attribute” Name whose “value” is 3k+1.

If you know HTML, this will look familiar to you. But there are some important differences: The
element name Book and attribute name Name are case sensitive. The value of an attribute must always
be enclosed in quotes. In XML every element has a start and end tag (which can be combined for
elements defined as “empty”, see for example <TableOfContents/> below).

If you know LATEX, you are familiar with quite different types of markup, for example: The equiv-
alent of the Book element in LATEX is \begin{document} ... \end{document}. The sectioning
in LATEX is not done by explicit start and end markup, but implicitly via heading commands like
\section. Other markup is done by using braces {} and putting some commands inside. And for
mathematical formulae one can use the $ for the start and the end of the markup. In XML all markup
looks similar to that of the Book element.

The content of the book starts with a title page.
from 3k+1.xml

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authör

<Email>3kplusone@dev.null</Email>
</Author>

GAPDoc 7

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.

</Copyright>
</TitlePage>

The content of the TitlePage element consists again of elements. In Chapter 3 we describe which
elements are allowed within a TitlePage and that their ordering is prescribed in this case. In the
(stupid) name of the author you see that a German umlaut is used directly (in ISO-latin1 encoding).

Contrary to LATEX- or HTML-files this markup does not say anything about the actual layout of
the title page in any output version of the document. It just adds information about the meaning of
pieces of text.

Within the Copyright element there are two more things to learn about XML markup. The <P/>
is a complete element. It is a combined start and end tag. This shortcut is allowed for elements which
are defined to be always “empty”, i.e., to have no content. You may have already guessed that <P/> is
used as a paragraph separator. Note that empty lines do not separate paragraphs (contrary to LATEX).

The other construct we see here is ©right;. This is an example of an “entity” in XML and
is a macro for some substitution text. Here we use an entity as a shortcut for a complicated expression
which makes it possible that the term copyright is printed as some text like (C) in text terminal
output and as a copyright character in other output formats. In GAPDoc we predefine some entities.
Certain “special characters” must be typed via entities, for example “<”, “>” and “&” to avoid a
misinterpretation as XML markup. It is possible to define additional entities for your document inside
the <!DOCTYPE ...> declaration, see 2.2.3.

Note that elements in XML must always be properly nested, as in this example. A construct like
<a>... is not allowed.

from 3k+1.xml
<TableOfContents/>

This is another example of an “empty element”. It just means that a table of contents for the whole
document should be included into any output version of the document.

After this the main text of the document follows inside certain sectioning elements:
from 3k+1.xml

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>

<Section Label="sec:theory"> <Heading>Theory</Heading>
[...] (content omitted)

</Section>
<Section> <Heading>Program</Heading>

[...] (content omitted)
</Section>

</Chapter>
</Body>

These elements are used similarly to “\chapter” and “\section” in LATEX. But note that the explicit
end tags are necessary here.

The sectioning commands allow to assign an optional attribute “Label”. This can be used for
referring to a section inside the document.

The text of the first section starts as follows. The whitespace in the text is unimportant and the
indenting is not necessary.

GAPDoc 8

from 3k+1.xml

Let <M>k \in &NN;</M> be a natural number. We consider the
sequence <M>n(i, k), i \in &NN;,</M> with <M>n(1, k) = k</M> and
else

Here we come to the interesting question how to type mathematical formulae in a GAPDoc document.
We did not find any alternative for writing formulae in TEX syntax. (There is MATHML, but even
simple formulae contain a lot of markup, become quite unreadable and they are cumbersome to type.
Furthermore there seem to be no tools available which translate such formulae in a nice way into
TEX and text.) So, formulae are essentially typed as in LATEX. (Actually, it is also possible to type
unicode characters of some mathematical symbols directly, or via an entity like the &NN; above.)
There are three types of elements containing formulae: “M”, “Math” and “Display”. The first two are
for in-text formulae and the third is for displayed formulae. Here “M” and “Math” are equivalent,
when translating a GAPDoc document into LATEX. But they are handled differently for terminal text
(and HTML) output. For the content of an “M”-element there are defined rules for a translation into
well readable terminal text. More complicated formulae are in “Math” or “Display” elements and they
are just printed as they are typed in text output. So, to make a section well readable inside a terminal
window you should try to put as many formulae as possible into “M”-elements. In our example
text we used the notation n(i, k) instead of n_i(k) because it is easier to read in text mode. See
Sections 2.2.2 and 3.9 for more details.

A few lines further on we find two non-internal references.
from 3k+1.xml

problem, see <Cite Key="Wi98"/> or
<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>

The first within the “Cite”-element is the citation of a book. In GAPDoc we use the widely used
BibTEX database format for reference lists. This does not use XML but has a well documented struc-
ture which is easy to parse. And many people have collections of references readily available in this
format. The reference list in an output version of the document is produced with the empty element

from 3k+1.xml
<Bibliography Databases="3k+1" />

close to the end of our example file. The attribute “Databases” give the name(s) of the database (.bib)
files which contain the references.

Putting a Web-address into an “URL”-element allows one to create a hyperlink in output formats
which allow this.

The second section of our example contains a special kind of subsection defined in GAPDoc.
from 3k+1.xml

<ManSection>
<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, if <A>max is
given.

<Example>
gap> ThreeKPlusOneSequence(101);

GAPDoc 9

"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>

</Description>
</ManSection>

A “ManSection” contains the description of some function, operation, method, filter and so on. The
“Func”-element describes the name of a function (there are also similar elements “Oper”, “Meth”,
“Filt” and so on) and names for its arguments, optional arguments enclosed in square brackets. See
Section 3.4 for more details.

In the “Description” we write the argument names as “A”-elements. A good description of a
function should usually contain an example of its use. For this there are some verbatim-like elements
in GAPDoc, like “Example” above (here, clearly, whitespace matters which causes a slightly strange
indenting).

The text contains an internal reference to the first section via the explicitly defined label
sec:theory.

The first section also contains a “Ref”-element which refers to the func-
tion described here. Note that there is no explicit label for such a reference.
The pair <Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/> and <Ref
Func="ThreeKPlusOneSequence"/> does the cross referencing (and hyperlinking if possible)
implicitly via the name of the function.

Here is one further element from our example document which we want to explain.
from 3k+1.xml

<TheIndex/>

This is again an empty element which just says that an output version of the document should contain
an index. Many entries for the index are generated automatically because the “Func” and similar
elements implicitly produce such entries. It is also possible to include explicit additional entries in the
index.

1.3 Some questions

Are those XML files too ugly to read and edit?
Just have a look and decide yourself. The markup needs more characters than most TEX or LATEX
markup. But the structure of the document is easier to see. If you configure your favorite editor
well, you do not need more key strokes for typing the markup than in LATEX.

Why do we not use LATEX alone?
LATEX is good for writing books. But LATEX files are generally difficult to parse and to process
to other output formats like text for browsing in a terminal window or HTML (or new formats
which may become popular in the future). GAPDoc markup is one step more abstract than
LATEX insofar as it describes meaning instead of appearance of text. The inner workings of
LATEX are too complicated to learn without pain, which makes it difficult to overcome problems
that occur occasionally.

Why XML and not a newly defined markup language?
XML is a well defined standard that is more and more widely used. Lots of people have thought
about it. Years of experience with SGML went into the design. It is easy to explain, easy to
parse and lots of tools are available, there will be more in the future.

Chapter 2

How To Type a GAPDoc Document

In this chapter we give a more formal description of what you need to start to type documentation
in GAPDoc XML format. Many details were already explained by example in Section 1.2 of the
introduction.

We do not answer the question “How to write a GAPDoc document?” in this chapter. You can
(hopefully) find an answer to this question by studying the example in the introduction, see 1.2, and
learning about more details in the reference Chapter 3.

The definite source for all details of the official XML standard with useful annotations is:
https://www.xml.com/axml/axml.html
Although this document must be quite technical, it is surprisingly well readable.

2.1 General XML Syntax

We will now discuss the pieces of text which can occur in a general XML document. We start with
those pieces which do not contribute to the actual content of the document.

2.1.1 Head of XML Document

Each XML document should have a head which states that it is an XML document in some encoding
and which XML-defined language is used. In case of a GAPDoc document this should always look
as in the following example.

Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

See 2.1.13 for a remark on the “encoding” statement.
(There may be local entity definitions inside the DOCTYPE statement, see Subsection 2.2.3 below.)

2.1.2 Comments

A “comment” in XML starts with the character sequence “<!--” and ends with the sequence “-->”.
Between these sequences there must not be two adjacent dashes “--”.

10

https://www.xml.com/axml/axml.html

GAPDoc 11

2.1.3 Processing Instructions

A “processing instruction” in XML starts with the character sequence “<?” followed by a name (“xml”
is only allowed at the very beginning of the document to declare it being an XML document, see 2.1.1).
After that any characters may follow, except that the ending sequence “?>” must not occur within the
processing instruction.

And now we turn to those parts of the document which contribute to its actual content.

2.1.4 Names in XML and Whitespace

A “name” in XML (used for element and attribute identifiers, see below) must start with a letter (in the
encoding of the document) or with a colon “:” or underscore “_” character. The following characters
may also be digits, dots “.” or dashes “-”.

This is a simplified description of the rules in the standard, which are concerned with lots of
unicode ranges to specify what a “letter” is.

Sequences only consisting of the following characters are considered as whitespace: blanks, tabs,
carriage return characters and new line characters.

2.1.5 Elements

The actual content of an XML document consists of “elements”. An element has some “content” with
a leading “start tag” (2.1.6) and a trailing “end tag” (2.1.7). The content can contain further elements
but they must be properly nested. One can define elements whose content is always empty, those
elements can also be entered with a single combined tag (2.1.8).

2.1.6 Start Tags

A “start-tag” consists of a less-than-character “<” directly followed (without whitespace) by an ele-
ment name (see 2.1.4), optional attributes, optional whitespace, and a greater-than-character “>”.

An “attribute” consists of some whitespace and then its name followed by an equal sign “=” which
is optionally enclosed by whitespace, and the attribute value, which is enclosed either in single or
double quotes. The attribute value may not contain the type of quote used as a delimiter or the character
“<”, the character “&” may only appear to start an entity, see 2.1.9. We describe in 2.1.11 how to enter
special characters in attribute values.

Note especially that no whitespace is allowed between the starting “<” character and the element
name. The quotes around an attribute value cannot be omitted. The names of elements and attributes
are case sensitive.

2.1.7 End Tags

An “end tag” consists of the two characters “</” directly followed by the element name, optional
whitespace and a greater-than-character “>”.

2.1.8 Combined Tags for Empty Elements

Elements which always have empty content can be written with a single tag. This looks like a start
tag (see 2.1.6) except that the trailing greater-than-character “>” is substituted by the two character

GAPDoc 12

sequence “/>”.

2.1.9 Entities

An “entity” in XML is a macro for some substitution text. There are two types of entities.
A “character entity” can be used to specify characters in the encoding of the document (can be use-

ful for entering non-ASCII characters which you cannot manage to type in directly). They are entered
with a sequence “&#”, directly followed by either some decimal digits or an “x” and some hexadecimal
digits, directly followed by a semicolon “;”. Using such a character entity is just equivalent to typing
the corresponding character directly.

Then there are references to “named entities”. They are entered with an ampersand character
“&” directly followed by a name which is directly followed by a semicolon “;”. Such entities must
be declared somewhere by giving a substitution text. This text is included in the document and the
document is parsed again afterwards. The exact rules are a bit subtle but you probably want to use this
only in simple cases. Predefined entities for GAPDoc are described in 2.1.10 and 2.2.3.

2.1.10 Special Characters in XML

We have seen that the less-than-character “<” and the ampersand character “&” start a tag or entity
reference in XML. To get these characters into the document text one has to use entity references,
namely “<” to get “<” and “&” to get “&”. Furthermore “>” must be used to get “>” when
the string “]]>” appears in element content (and not as delimiter of a CDATA section explained below).

Another possibility is to use a CDATA statement explained in 2.1.12.

2.1.11 Rules for Attribute Values

Attribute values can contain entities which are substituted recursively. But except for the entities <
or a character entity it is not allowed that a < character is introduced by the substitution (there is no
XML parsing for evaluating the attribute value, just entity substitutions).

2.1.12 CDATA

Pieces of text which contain many characters which can be misinterpreted as markup can be enclosed
by the character sequences “<![CDATA[” and “]]>”. Everything between these sequences is consid-
ered as content of the document and is not further interpreted as XML text. All the rules explained
so far in this section do not apply to such a part of the document. The only document content which
cannot be entered directly inside a CDATA statement is the sequence “]]>”. This can be entered as
“]]>” outside the CDATA statement.

Example
A nesting of tags like <a> is not allowed.

2.1.13 Encoding of an XML Document

We suggest to use the UTF-8 encoding for writing GAPDoc XML documents. But the tools described
in Chapter 5 also work with ASCII or the various ISO-8859-X encodings (ISO-8859-1 is also called
latin1 and covers most special characters for western European languages).

GAPDoc 13

2.1.14 Well Formed and Valid XML Documents

We want to mention two further important words which are often used in the context of XML docu-
ments. A piece of text becomes a “well formed” XML document if all the formal rules described in
this section are fulfilled.

But this says nothing about the content of the document. To give this content a meaning one needs
a declaration of the element and corresponding attribute names as well as of named entities which are
allowed. Furthermore there may be restrictions how such elements can be nested. This definition of
an XML based markup language is done in a “document type definition”. An XML document which
contains only elements and entities declared in such a document type definition and obeys the rules
given there is called “valid (with respect to this document type definition)”.

The main file of the GAPDoc package is gapdoc.dtd. This contains such a definition of a markup
language. We are not going to explain the formal syntax rules for document type definitions in this
section. But in Chapter 3 we will explain enough about it to understand the file gapdoc.dtd and so
the markup language defined there.

2.2 Entering GAPDoc Documents

Here are some additional rules for writing GAPDoc XML documents.

2.2.1 Other special characters

As GAPDoc documents are used to produce LATEX and HTML documents, the question arises how
to deal with characters with a special meaning for other applications (for example “&”, “#”, “$”, “%”,
“~”, “\”, “{”, “}”, “_”, “^”, “ ” (this is a non-breakable space, “~” in LATEX) have a special meaning
for LATEX and “&”, “<”, “>” have a special meaning for HTML (and XML). In GAPDoc you can
usually just type these characters directly, it is the task of the converter programs which translate to
some output format to take care of such special characters. The exceptions to this simple rule are:

• & and < must be entered as & and < as explained in 2.1.10.

• The content of the GAPDoc elements <M>, <Math> and <Display> is LATEX code, see 3.8.

• The content of an <Alt> element with Only attribute contains code for the specified output type,
see 3.9.1.

Remark: In former versions of GAPDoc one had to use particular entities for all the special char-
acters mentioned above (&tamp;, &hash;, $, &percent;, ˜, &bslash;, &obrace;,
&cbrace;, &uscore;, &circum;, &tlt;, &tgt;). These are no longer needed, but they are still
defined for backwards compatibility with older GAPDoc documents.

2.2.2 Mathematical Formulae

Mathematical formulae in GAPDoc are typed as in LATEX. They must be the content of one of three
types of GAPDoc elements concerned with mathematical formulae: “Math”, “Display”, and “M”
(see Sections 3.8.1 and 3.8.2 for more details). The first two correspond to LATEX’s math mode and
display math mode. The last one is a special form of the “Math” element type, that imposes certain
restrictions on the content. On the other hand the content of an “M” element is processed in a well

GAPDoc 14

defined way for text terminal or HTML output. The “Display” element also has an attribute such that
its content is processed as in “M” elements.

Note that the content of these element is LATEX code, but the special characters “<” and “&” for
XML must be entered via the entities described in 2.1.10 or by using a CDATA statement, see 2.1.12.

2.2.3 More Entities

In GAPDoc there are some more predefined entities:

&GAP; GAP
&GAPDoc; GAPDoc
&TeX; TEX
&LaTeX; LATEX
&BibTeX; BibTEX
&MeatAxe; MeatAxe
&XGAP; XGAP
©right; ©
 “ ”
– –

Table: Predefined Entities in the GAPDoc system

Here is a non-breakable space character.
Additional entities are defined for some mathematical symbols, see 3.8 for more details.
One can define further local entities right inside the head (see 2.1.1) of a GAPDoc XML document

as in the following example.
Example

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Book SYSTEM "gapdoc.dtd"
[<!ENTITY MyEntity "some longish <E>text</E> possibly with markup">
]>

These additional definitions go into the <!DOCTYPE tag in square brackets. Such new entities are used
like this: &MyEntity;

Chapter 3

The Document Type Definition

In this chapter we first explain what a “document type definition” is and then describe gapdoc.dtd in
detail. That file together with the current chapter define how a GAPDoc document has to look like. It
can be found in the main directory of the GAPDoc package and it is reproduced in Appendix B.

We do not give many examples in this chapter which is more intended as a formal reference for
all GAPDoc elements. Instead, we provide a separate help book, see GAPDoc Example: Various
types of text. This uses all the constructs introduced in this chapter and you can easily compare the
source code and how it looks like in the different output formats. Furthermore recall that many basic
things about XML markup were already explained by example in the introductory chapter 1.

3.1 What is a DTD?

A document type definition (DTD) is a formal declaration of how an XML document has to be struc-
tured. It is itself structured such that programs that handle documents can read it and treat the docu-
ments accordingly. There are for example parsers and validity checkers that use the DTD to validate
an XML document, see 2.1.14.

The main thing a DTD does is to specify which elements may occur in documents of a certain
document type, how they can be nested, and what attributes they can or must have. So, for each
element there is a rule.

Note that a DTD can not ensure that a document which is “valid” also makes sense to the convert-
ers! It only says something about the formal structure of the document.

For the remaining part of this chapter we have divided the elements of GAPDoc documents into
several subsets, each of which will be discussed in one of the next sections.

See the following three subsections to learn by example, how a DTD works. We do not want to be
too formal here, but just enable the reader to understand the declarations in gapdoc.dtd. For precise
descriptions of the syntax of DTD’s see again the official standard in:

https://www.xml.com/axml/axml.html

3.2 Overall Document Structure

A GAPDoc document contains on its top level exactly one element with name Book. This element is
declared in the DTD as follows:

15

https://www.xml.com/axml/axml.html

GAPDoc 16

3.2.1 <Book>
From gapdoc.dtd

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>

<!ATTLIST Book Name CDATA #REQUIRED>

After the keyword ELEMENT and the name Book there is a list in parentheses. This is a comma separated
list of names of elements which can occur (in the given order) in the content of a Book element.
Each name in such a list can be followed by one of the characters “?”, “*” or “+”, meaning that the
corresponding element can occur zero or one time, an arbitrary number of times, or at least once,
respectively. Without such an extra character the corresponding element must occur exactly once.
Instead of one name in this list there can also be a list of elements names separated by “|” characters,
this denotes any element with one of the names (i.e., “|” means “or”).

So, the Book element must contain first a TitlePage element, then an optional TableOfContents
element, then a Body element, then zero or more elements of type Appendix, then an optional
Bibliography element, and finally an optional element of type TheIndex.

Note that only these elements are allowed in the content of the Book element. No other elements
or text is allowed in between. An exception of this is that there may be whitespace between the end tag
of one and the start tag of the next element - this should be ignored when the document is processed
to some output format. An element like this is called an element with “element content”.

The second declaration starts with the keyword ATTLIST and the element name Book. After that
there is a triple of whitespace separated parameters (in general an arbitrary number of such triples,
one for each allowed attribute name). The first (Name) is the name of an attribute for a Book element.
The second (CDATA) is always the same for all of our declarations, it means that the value of the
attribute consists of “character data”. The third parameter #REQUIRED means that this attribute must
be specified with any Book element. Later we will also see optional attributes which are declared as
#IMPLIED.

3.2.2 <TitlePage>
From gapdoc.dtd

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

Within this element information for the title page is collected. Note that more than one author can be
specified. The elements must appear in this order because there is no sensible way to specify in a DTD
something like “the following elements may occur in any order but each exactly once”.

Before going on with the other elements inside the Book element we explain the elements for the
title page.

3.2.3 <Title>
From gapdoc.dtd

<!ELEMENT Title (%Text;)*>

GAPDoc 17

Here is the last construct you need to understand for reading gapdoc.dtd. The expression “%Text;”
is a so-called “parameter entity”. It is something like a macro within the DTD. It is defined as follows:

From gapdoc.dtd
<!ENTITY % Text "%InnerText; | List | Enum | Table">

This means, that every occurrence of “%Text;” in the DTD is replaced by the expression
From gapdoc.dtd

%InnerText; | List | Enum | Table

which is then expanded further because of the following definition:
From gapdoc.dtd

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br |
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |
Ref | Index" >

These are the only two parameter entities we are using. They expand to lists of element names which
are explained in the sequel and the keyword #PCDATA (concatenated with the “or” character “|”).

So, the element (Title) is of so-called “mixed content”: It can contain parsed character data
which does not contain further markup (#PCDATA) or any of the other above mentioned elements.
Mixed content must always have the asterisk qualifier (like in Title) such that any sequence of ele-
ments (of the above list) and character data can be contained in a Title element.

The %Text; parameter entity is used in all places in the DTD, where “normal text” should be
allowed, including lists, enumerations, and tables, but no sectioning elements.

The %InnerText; parameter entity is used in all places in the DTD, where “inner text” should be
allowed. This means, that no structures like lists, enumerations, and tables are allowed. This is used
for example in headings.

3.2.4 <Subtitle>
From gapdoc.dtd

<!ELEMENT Subtitle (%Text;)*>

Contains the subtitle of the document.

3.2.5 <Version>
From gapdoc.dtd

<!ELEMENT Version (#PCDATA|Alt)*>

Note that the version can only contain character data and no further markup elements (except for Alt,
which is necessary to resolve the entities described in 2.2.3). The converters will not put the word
“Version” in front of the text in this element.

GAPDoc 18

3.2.6 <TitleComment>
From gapdoc.dtd

<!ELEMENT TitleComment (%Text;)*>

Sometimes a title and subtitle are not sufficient to give a rough idea about the content of a package.
In this case use this optional element to specify an additional text for the front page of the book. This
text should be short, use the Abstract element (see 3.2.10) for longer explanations.

3.2.7 <Author>
From gapdoc.dtd

<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->

As noted in the comment there may be more than one element of this type. This element should
contain the name of an author and probably an Email-address and/or WWW-Homepage element for
this author, see 3.5.6 and 3.5.7. You can also specify an individual postal address here, instead of using
the Address element described below, see 3.2.9.

3.2.8 <Date>
From gapdoc.dtd

<!ELEMENT Date (#PCDATA)>

Only character data is allowed in this element which gives a date for the document. No automatic
formatting is done.

3.2.9 <Address>
From gapdoc.dtd

<!ELEMENT Address (#PCDATA|Alt|Br)*>

This optional element can be used to specify a postal address of the author or the authors. If there are
several authors with different addresses then put the Address elements inside the Author elements.

Use the Br element (see 3.9.3) to mark the line breaks in the usual formatting of the address on a
letter.

Note that often it is not necessary to use this element because a postal address is easy to find via a
link to a personal web page.

3.2.10 <Abstract>
From gapdoc.dtd

<!ELEMENT Abstract (%Text;)*>

This element contains an abstract of the whole book.

3.2.11 <Copyright>
From gapdoc.dtd

<!ELEMENT Copyright (%Text;)*>

This element is used for the copyright notice. Note the ©right; entity as described in section
2.2.3.

GAPDoc 19

3.2.12 <Acknowledgements>
From gapdoc.dtd

<!ELEMENT Acknowledgements (%Text;)*>

This element contains the acknowledgements.

3.2.13 <Colophon>
From gapdoc.dtd

<!ELEMENT Colophon (%Text;)*>

The “colophon” page is used to say something about the history of a document.

3.2.14 <TableOfContents>
From gapdoc.dtd

<!ELEMENT TableOfContents EMPTY>

This element may occur in the Book element after the TitlePage element. If it is present, a table of
contents is generated and inserted into the document. Note that because this element is declared to be
EMPTY one can use the abbreviation

Example
<TableOfContents/>

to denote this empty element.

3.2.15 <Bibliography>
From gapdoc.dtd

<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED

Style CDATA #IMPLIED>

This element may occur in the Book element after the last Appendix element. If it is present, a
bibliography section is generated and inserted into the document. The attribute Databases must be
specified, the names of several data files can be specified, separated by commas.

Two kinds of files can be specified in Databases: The first are BibTEX files as defined in [Lam85,
Appendix B]. Such files must have a name with extension .bib, and in Databases the name
must be given without this extension. Note that such .bib-files should be in latin1-encoding (or
ASCII-encoding). The second are files in BibXMLext format as defined in Section 7.2. These files
must have an extension .xml and in Databases the full name must be specified.

We suggest to use the BibXMLext format because it allows to produce potentially nicer bibliogra-
phy entries in text and HTML documents.

A bibliography style may be specified with the Style attribute. The optional Style attribute
(for LATEX output of the document) must also be specified without the .bst extension (the default
is alpha). See also section 3.5.3 for a description of the Cite element which is used to include
bibliography references into the text.

GAPDoc 20

3.2.16 <TheIndex>
From gapdoc.dtd

<!ELEMENT TheIndex EMPTY>

This element may occur in the Book element after the Bibliography element. If it is present, an
index is generated and inserted into the document. There are elements in GAPDoc which implicitly
generate index entries (e.g., Func (3.4.2)) and there is an element Index (3.5.4) for explicitly adding
index entries.

3.3 Sectioning Elements

A GAPDoc book is divided into chapters, sections, and subsections. The idea is of course, that a
chapter consists of sections, which in turn consist of subsections. However for the sake of flexibility,
the rules are not too restrictive. Firstly, text is allowed everywhere in the body of the document (and
not only within sections). Secondly, the chapter level may be omitted. The exact rules are described
below.

Appendices are a flavor of chapters, occurring after all regular chapters. There is a special type
of subsection called “ManSection”. This is a subsection devoted to the description of a function,
operation or variable. It is analogous to a manpage in the UNIX environment. Usually each function,
operation, method, and so on should have its own ManSection.

Cross referencing is done on the level of Subsections, respectively ManSections. The topics in
GAP’s online help are also pointing to subsections. So, they should not be too long.

We start our description of the sectioning elements “top-down”:

3.3.1 <Body>

The Body element marks the main part of the document. It must occur after the TableOfContents
element. There is a big difference between inside and outside of this element: Whereas regular text
is allowed nearly everywhere in the Body element and its subelements, this is not true for the outside.
This has also implications on the handling of whitespace. Outside superfluous whitespace is usually
ignored when it occurs between elements. Inside of the Body element whitespace matters because
character data is allowed nearly everywhere. Here is the definition in the DTD:

From gapdoc.dtd
<!ELEMENT Body (%Text;| Chapter | Section)*>

The fact that Chapter and Section elements are allowed here leads to the possibility to omit the
chapter level entirely in the document. For a description of %Text; see 3.2.3.

(Remark: The purpose of this element is to make sure that a valid GAPDoc document has a
correct overall structure, which is only possible when the top element Book has element content.)

3.3.2 <Chapter>
From gapdoc.dtd

<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes -->

GAPDoc 21

A Chapter element can have a Label attribute, such that this chapter can be referenced later on with
a Ref element (see section 3.5.1). Note that you have to specify a label to reference the chapter as
there is no automatic labelling!

Chapter elements can contain text (for a description of %Text; see 3.2.3), Section elements,
and Heading elements.

The following additional rule cannot be stated in the DTD because we want a Chapter element to
have mixed content. There must be exactly one Heading element in the Chapter element, containing
the heading of the chapter. Here is its definition:

3.3.3 <Heading>
From gapdoc.dtd

<!ELEMENT Heading (%InnerText;)*>

This element is used for headings in Chapter, Section, Subsection, and Appendix elements. It
may only contain %InnerText; (for a description see 3.2.3).

Each of the mentioned sectioning elements must contain exactly one direct Heading element (i.e.,
one which is not contained in another sectioning element).

3.3.4 <Appendix>
From gapdoc.dtd

<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes -->

The Appendix element behaves exactly like a Chapter element (see 3.3.2) except for the position
within the document and the numbering. While chapters are counted with numbers (1., 2., 3., ...) the
appendices are counted with capital letters (A., B., ...).

Again there is an optional Label attribute used for references.

3.3.5 <Section>
From gapdoc.dtd

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection)*>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

A Section element can have a Label attribute, such that this section can be referenced later on with a
Ref element (see section 3.5.1). Note that you have to specify a label to reference the section as there
is no automatic labelling!

Section elements can contain text (for a description of %Text; see 3.2.3), Heading elements,
and subsections.

There must be exactly one direct Heading element in a Section element, containing the heading
of the section.

Note that a subsection is either a Subsection element or a ManSection element.

3.3.6 <Subsection>
From gapdoc.dtd

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes -->

GAPDoc 22

The Subsection element can have a Label attribute, such that this subsection can be referenced later
on with a Ref element (see section 3.5.1). Note that you have to specify a label to reference the
subsection as there is no automatic labelling!

Subsection elements can contain text (for a description of %Text; see 3.2.3), and Heading
elements.

There must be exactly one Heading element in a Subsection element, containing the heading of
the subsection.

Another type of subsection is a ManSection, explained now:

3.4 ManSection–a special kind of subsection

ManSections are intended to describe a function, operation, method, variable, or some other technical
instance. It is analogous to a manpage in the UNIX environment.

3.4.1 <ManSection>
From gapdoc.dtd

<!ELEMENT ManSection (Heading?,
((Func, Returns?) | (Oper, Returns?) |
(Meth, Returns?) | (Filt, Returns?) |
(Prop, Returns?) | (Attr, Returns?) |
(Constr, Returns?) |
Var | Fam | InfoClass)+, Description)>

<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

The ManSection element can have a Label attribute, such that this subsection can be referenced later
on with a Ref element (see section 3.5.1). But this is probably rarely necessary because the elements
Func and so on (explained below) generate automatically labels for cross referencing.

The content of a ManSection element is one or more elements describing certain items in GAP,
each of them optionally followed by a Returns element, followed by a Description element, which
contains %Text; (see 3.2.3) describing it. (Remember to include examples in the description as often
as possible, see 3.7.10). The classes of items GAPDoc knows of are: functions (Func), operations
(Oper), constructors (Constr), methods (Meth), filters (Filt), properties (Prop), attributes (Attr),
variables (Var), families (Fam), and info classes (InfoClass). One ManSection should only describe
several of such items when these are very closely related.

Each element for an item corresponding to a GAP function can be followed by a Returns element.
In output versions of the document the string “Returns: ” will be put in front of the content text. The
text in the Returns element should usually be a short hint about the type of object returned by the
function. This is intended to give a good mnemonic for the use of a function (together with a good
choice of names for the formal arguments).

ManSections are also sectioning elements which count as subsections. Usually there should be
no Heading-element in a ManSection, in that case a heading is generated automatically from the first
Func-like element. Sometimes this default behaviour does not look appropriate, for example when
there are several Func-like elements. For such cases an optional Heading is allowed.

GAPDoc 23

3.4.2 <Func>
From gapdoc.dtd

<!ELEMENT Func EMPTY>
<!ATTLIST Func Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to specify the usage of a function. The Name
attribute is required and its value is the name of the function. The value of the Arg attribute (also
required) contains the full list of arguments including optional parts, which are denoted by square
brackets. The argument names can be separated by whitespace, commas or the square brackets for
the optional arguments, like "grp[, elm]" or "xx[y[z]]". If GAP options are used, this can be
followed by a colon : and one or more assignments, like "n[, r]: tries := 100".

The name of the function is also used as label for cross referencing. When the name of the function
appears in the text of the document it should always be written with the Ref element, see 3.5.1. This
allows to use a unique typesetting style for function names and automatic cross referencing.

If the optional Label attribute is given, it is appended (with a colon : in between) to the name of
the function for cross referencing purposes. The text of the label can also appear in the document text.
So, it should be a kind of short explanation.

Example
<Func Arg="x[, y]" Name="LibFunc" Label="for my objects"/>

The optional Comm attribute should be a short description of the function, usually at most one line long
(this is currently nowhere used).

This element automatically produces an index entry with the name of the function and, if present,
the text of the Label attribute as subentry (see also 3.2.16 and 3.5.4).

3.4.3 <Oper>
From gapdoc.dtd

<!ELEMENT Oper EMPTY>
<!ATTLIST Oper Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to specify the usage of an operation. The attributes
are used exactly in the same way as in the Func element (see 3.4.2).

Note that multiple descriptions of the same operation may occur in a document because there
may be several declarations in GAP. Furthermore there may be several ManSections for methods
of this operation (see 3.4.5) which also use the same name. For reference purposes these must be
distinguished by different Label attributes.

3.4.4 <Constr>
From gapdoc.dtd

<!ELEMENT Constr EMPTY>
<!ATTLIST Constr Name CDATA #REQUIRED

Label CDATA #IMPLIED

GAPDoc 24

Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to specify the usage of a constructor. The attributes
are used exactly in the same way as in the Func element (see 3.4.2).

Note that multiple descriptions of the same constructor may occur in a document because there
may be several declarations in GAP. Furthermore there may be several ManSections for methods
of this constructor (see 3.4.5) which also use the same name. For reference purposes these must be
distinguished by different Label attributes.

3.4.5 <Meth>
From gapdoc.dtd

<!ELEMENT Meth EMPTY>
<!ATTLIST Meth Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to specify the usage of a method. The attributes
are used exactly in the same way as in the Func element (see 3.4.2).

Frequently, an operation is implemented by several different methods. Therefore it seems to be
interesting to document them independently. This is possible by using the same method name in differ-
ent ManSections. It is however required that these subsections and those describing the corresponding
operation are distinguished by different Label attributes.

3.4.6 <Filt>
From gapdoc.dtd

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

This element is used within a ManSection element to specify the usage of a filter. The first four
attributes are used in the same way as in the Func element (see 3.4.2), except that the Arg attribute is
optional.

The Type attribute can be any string, but it is thought to be something like “Category” or
“Representation”.

3.4.7 <Prop>
From gapdoc.dtd

<!ELEMENT Prop EMPTY>
<!ATTLIST Prop Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

GAPDoc 25

This element is used within a ManSection element to specify the usage of a property. The attributes
are used exactly in the same way as in the Func element (see 3.4.2).

3.4.8 <Attr>
From gapdoc.dtd

<!ELEMENT Attr EMPTY>
<!ATTLIST Attr Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to specify the usage of an attribute (in GAP). The
attributes are used exactly in the same way as in the Func element (see 3.4.2).

3.4.9 <Var>
From gapdoc.dtd

<!ELEMENT Var EMPTY>
<!ATTLIST Var Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to document a global variable. The attributes are
used exactly in the same way as in the Func element (see 3.4.2) except that there is no Arg attribute.

3.4.10 <Fam>
From gapdoc.dtd

<!ELEMENT Fam EMPTY>
<!ATTLIST Fam Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to document a family. The attributes are used
exactly in the same way as in the Func element (see 3.4.2) except that there is no Arg attribute.

3.4.11 <InfoClass>
From gapdoc.dtd

<!ELEMENT InfoClass EMPTY>
<!ATTLIST InfoClass Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

This element is used within a ManSection element to document an info class. The attributes are used
exactly in the same way as in the Func element (see 3.4.2) except that there is no Arg attribute.

GAPDoc 26

3.5 Cross Referencing and Citations

Cross referencing in the GAPDoc system is somewhat different to the usual LATEX cross referencing
in so far, that a reference knows “which type of object” it is referencing. For example a “reference to
a function” is distinguished from a “reference to a chapter”. The idea of this is, that the markup must
contain this information such that the converters can produce better output. The HTML converter can
for example typeset a function reference just as the name of the function with a link to the description
of the function, or a chapter reference as a number with a link in the other case.

Referencing is done with the Ref element:

3.5.1 <Ref>
From gapdoc.dtd

<!ELEMENT Ref EMPTY>
<!ATTLIST Ref Func CDATA #IMPLIED

Oper CDATA #IMPLIED
Constr CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED
Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text | Number) #IMPLIED> <!-- normally automatic -->

The Ref element is defined to be EMPTY. If one of the attributes Func, Oper, Constr, Meth, Prop,
Attr, Var, Fam, InfoClass, Chap, Sect, Subsect, Appendix is given then there must be exactly one
of these, making the reference one to the corresponding object. The Label attribute can be specified
in addition to make the reference unique, for example if more than one method with a given name is
present. (Note that there is no way to specify in the DTD that exactly one of the first listed attributes
must be given, this is an additional rule.)

A reference to a Label element defined below (see 3.5.2) is done by giving the Label attribute
and optionally the Text attribute. If the Text attribute is present its value is typeset in place of the
Ref element, if linking is possible (for example in HTML). If this is not possible, the section number
is typeset. This type of reference is also used for references to tables (see 3.6.5).

An external reference into another book can be specified by using the BookName attribute. In this
case the Label attribute or, if this is not given, the function or section like attribute, is used to resolve
the reference. The generated reference points to the first hit when asking “?book name: label” inside
GAP.

The optional attribute Style can take only the values Text and Number. It can be used with
references to sectioning units and it gives a hint to the converter programs, whether an explicit section

GAPDoc 27

number is generated or text. Normally all references to sections generate numbers and references to
a GAP object generate the name of the corresponding object with some additional link or sectioning
information, which is the behavior of Style="Text". In case Style="Number" in all cases an explicit
section number is generated. So

Example
<Ref Subsect="Func" Style="Text"/> described in section
<Ref Subsect="Func" Style="Number"/>

produces: ‘<Func>’ described in section 3.4.2.

3.5.2 <Label>
From gapdoc.dtd

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

This element is used to define a label for referencing a certain position in the document, if this is
possible. If an exact reference is not possible (like in a printed version of the document) a reference to
the corresponding subsection is generated. The value of the Name attribute must be unique under all
Label elements.

3.5.3 <Cite>
From gapdoc.dtd

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED

Where CDATA #IMPLIED>

This element is for bibliography citations. It is EMPTY by definition. The attribute Key is the key for
a lookup in a BibTEX database that has to be specified in the Bibliography element (see 3.2.15).
The value of the Where attribute specifies the position in the document as in the corresponding LATEX
syntax \cite[Where value]{Key value}.

3.5.4 <Index>
From gapdoc.dtd

<!ELEMENT Index (%InnerText;|Subkey)*>
<!ATTLIST Index Key CDATA #IMPLIED

Subkey CDATA #IMPLIED>
<!ELEMENT Subkey (%InnerText;)*>

This element generates an index entry. The content of the element is typeset in the index. It can
optionally contain a Subkey element. If one or both of the attributes Key and Subkey are given, then
the attribute values are used for sorting the index entries. Otherwise the content itself is used for
sorting. The attributes should be used when the content contains markup. Note that all Func and
similar elements automatically generate index entries. If the TheIndex element (3.2.16) is not present
in the document all Index elements are ignored.

GAPDoc 28

3.5.5 <URL>
From gapdoc.dtd

<!ELEMENT URL (#PCDATA|Alt|Link|LinkText)*> <!-- Link, LinkText
variant for case where text needs further markup -->

<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->

<!ELEMENT Link (%InnerText;)*> <!-- the URL -->
<!ELEMENT LinkText (%InnerText;)*> <!-- text for links, can contain markup -->

This element is for references into the internet. It specifies an URL and optionally a text which can
be used for a link (like in HTML or PDF versions of the document). This can be specified in two
ways: Either the URL is given as element content and the text is given in the optional Text attribute
(in this case the text cannot contain further markup), or the element contains the two elements Link
and LinkText which in turn contain the URL and the text, respectively. The default value for the text
is the URL itself.

3.5.6 <Email>
From gapdoc.dtd

<!ELEMENT Email (#PCDATA|Alt|Link|LinkText)*>

This element type is the special case of an URL specifying an email address. The content of the
element should be the email address without any prefix like “mailto:”. This address is typeset by all
converters, also without any prefix. In the case of an output document format like HTML the converter
can produce a link with a “mailto:” prefix.

3.5.7 <Homepage>
From gapdoc.dtd

<!ELEMENT Homepage (#PCDATA|Alt|Link|LinkText)*>

This element type is the special case of an URL specifying a WWW-homepage.

3.6 Structural Elements like Lists

The GAPDoc system offers some limited access to structural elements like lists, enumerations, and
tables. Although it is possible to use all LATEX constructs one always has to think about other output
formats. The elements in this section are guaranteed to produce something reasonable in all output
formats.

3.6.1 <List>
From gapdoc.dtd

<!ELEMENT List (((Mark,Item)|Item)+)>
<!ATTLIST List Only CDATA #IMPLIED

Not CDATA #IMPLIED>

This element produces a list. Each item in the list corresponds to an Item element. Every Item
element is optionally preceded by a Mark element. The content of this is used as a marker for the item.

GAPDoc 29

Note that this marker can be a whole word or even a sentence. It will be typeset in some emphasized
fashion and most converters will provide some indentation for the rest of the item.

The Only and Not attributes can be used to specify, that the list is included into the output by only
one type of converter (Only) or all but one type of converter (Not). Of course at most one of the two
attributes may occur in one element. The following values are allowed as of now: “LaTeX”, “HTML”,
and “Text”. See also the Alt element in 3.9.1 for more about text alternatives for certain converters.

3.6.2 <Mark>
From gapdoc.dtd

<!ELEMENT Mark (%InnerText;)*>

This element is used in the List element to mark items. See 3.6.1 for an explanation.

3.6.3 <Item>
From gapdoc.dtd

<!ELEMENT Item (%Text;)*>

This element is used in the List, Enum, and Table elements to specify the items. See sections 3.6.1,
3.6.4, and 3.6.5 for further information.

3.6.4 <Enum>
From gapdoc.dtd

<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED

Not CDATA #IMPLIED>

This element is used like the List element (see 3.6.1) except that the items must not have marks
attached to them. Instead, the items are numbered automatically. The same comments about the Only
and Not attributes as above apply.

3.6.5 <Table>
From gapdoc.dtd

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED

Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED>
<!-- We allow | and l,c,r, nothing else -->

<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%InnerText;)*>

A table in GAPDoc consists of an optional Caption element followed by a sequence of Row and
HorLine elements. A HorLine element produces a horizontal line in the table. A Row element consists
of a sequence of Item elements as they also occur in List and Enum elements. The Only and Not
attributes have the same functionality as described in the List element in 3.6.1.

GAPDoc 30

The Align attribute is written like a LATEX tabular alignment specifier but only the letters “l”, “r”,
“c”, and “|” are allowed meaning left alignment, right alignment, centered alignment, and a vertical
line as delimiter between columns respectively.

If the Label attribute is there, one can reference the table with the Ref element (see 3.5.1) using
its Label attribute.

Usually only simple tables should be used. If you want a complicated table in the LATEX output you
should provide alternatives for text and HTML output. Note that in HTML-4.0 there is no possibility
to interpret the “|” column separators and HorLine elements as intended. There are lines between all
columns and rows or no lines at all.

3.7 Types of Text

This section covers the markup of text. Various types of “text” exist. The following elements are used
in the GAPDoc system to mark them. They mostly come in pairs, one long name which is easier to
remember and a shortcut to make the markup “lighter”.

Most of the following elements are thought to contain only character data and no further markup
elements. It is however necessary to allow Alt elements to resolve the entities described in section
2.2.3.

3.7.1 <Emph> and <E>
From gapdoc.dtd

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E (%InnerText;)*> <!-- the same as shortcut -->

This element is used to emphasize some piece of text. It may contain %InnerText; (see 3.2.3).

3.7.2 <Quoted> and <Q>
From gapdoc.dtd

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

This element is used to put some piece of text into “ ”-quotes. It may contain %InnerText; (see
3.2.3).

3.7.3 <Keyword> and <K>
From gapdoc.dtd

<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword -->
<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

This element is used to mark something as a keyword. Usually this will be a GAP keyword such
as “if” or “for”. No further markup elements are allowed within this element except for the Alt
element, which is necessary.

GAPDoc 31

3.7.4 <Arg> and <A>
From gapdoc.dtd

<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->

This element is used inside Descriptions in ManSections to mark something as an argument (of
a function, operation, or such). It is guaranteed that the converters typeset those exactly as in the
definition of functions. No further markup elements are allowed within this element.

3.7.5 <Code> and <C>
From gapdoc.dtd

<!ELEMENT Code (#PCDATA|Arg|Alt)*> <!-- GAP code -->
<!ELEMENT C (#PCDATA|Arg|Alt)*> <!-- GAP code (shortcut) -->

This element is used to mark something as a piece of code like for example a GAP expression. It is
guaranteed that the converters typeset this exactly as in the Listing element (compare section 3.7.9).
The only further markup elements allowed within this element are <Arg> elements (see 3.7.4).

3.7.6 <File> and <F>
From gapdoc.dtd

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->

This element is used to mark something as a filename or a pathname in the file system. No further
markup elements are allowed within this element.

3.7.7 <Button> and
From gapdoc.dtd

<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key, ...) -->
<!ELEMENT B (#PCDATA|Alt)*> <!-- "Button" (shortcut) -->

This element is used to mark something as a button. It can also be used for other items in a graphical
user interface like menus, menu entries, or keys. No further markup elements are allowed within this
element.

3.7.8 <Package>
From gapdoc.dtd

<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

This element is used to mark something as a name of a package. This is for example used to define the
entities GAP, XGAP or GAPDoc (see section 2.2.3). No further markup elements are allowed within
this element.

GAPDoc 32

3.7.9 <Listing>
From gapdoc.dtd

<!ELEMENT Listing (#PCDATA)> <!-- This is just for GAP code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of

listed code, may appear in
output -->

This element is used to embed listings of programs into the document. Only character data and no
other elements are allowed in the content. You should not use the character entities described in
section 2.2.3 but instead type the characters directly. Only the general XML rules from section 2.1
apply. Note especially the usage of <![CDATA[sections described there. It is guaranteed that all
converters use a fixed width font for typesetting Listing elements. Compare also the usage of the
Code and C elements in 3.7.5.

The Type attribute contains a comment about the type of listed code. It may appear in the output.

3.7.10 <Log> and <Example>
From gapdoc.dtd

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism -->

<!ELEMENT Log (#PCDATA)> <!-- This not -->

These two elements behave exactly like the Listing element (see 3.7.9). They are thought for pro-
tocols of GAP sessions. The only difference between the two is that Example sections are intended
to be subject to an automatic manual checking mechanism used to ensure the correctness of the GAP
manual whereas Log is not touched by this (see section 5.4 for checking tools).

To get a good layout of the examples for display in a standard terminal we suggest to use
SizeScreen([72]); (see SizeScreen (Reference: SizeScreen)) in your GAP session before pro-
ducing the content of Example elements.

3.7.11 <Verb>

There is one further type of verbatim-like element.
From gapdoc.dtd

<!ELEMENT Verb (#PCDATA)>

The content of such an element is guaranteed to be put into an output version exactly as it is using
some fixed width font. Before the content a new line is started. If the line after the end of the start tag
consists of whitespace only then this part of the content is skipped.

This element is intended to be used together with the Alt element to specify pre-formatted ASCII
alternatives for complicated Display formulae or Tables.

3.8 Elements for Mathematical Formulae

3.8.1 <Math> and <Display>
From gapdoc.dtd

<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula -->

GAPDoc 33

<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>
<!-- Mode="M" causes <M>-style formatting -->
<!ATTLIST Display Mode CDATA #IMPLIED>

These elements are used for mathematical formulae. As described in section 2.2.2 they correspond to
LATEX’s math and display math mode respectively.

The formulae are typed in as in LATEX, except that the standard XML entities, see 2.1.9 (in par-
ticular the characters < and &), must be escaped - either by using the corresponding entities or by
enclosing the formula between “<![CDATA[” and “]]>”. (The main reference for LATEX is [Lam85].)

It is also possible to use some unicode characters for mathematical symbols directly, provided that
it can be translated by Encode (6.2.2) into "LaTeX" encoding and that SimplifiedUnicodeString
(6.2.2) with arguments "latin1" and "single" returns something sensible. Currently, we support
entities &CC;, &ZZ;, &NN;, &PP;, &QQ;, &HH;, &RR; for the corresponding black board bold letters C,
Z, N, P, Q, H and R, respectively.

The only element type that is allowed within the formula elements is the Arg or A element (see
3.7.4), which is used to typeset identifiers that are arguments to GAP functions or operations.

If a Display element has an attribute Mode with value "M", then the formula is formatted as in M
elements (see 3.8.2). Otherwise in text and HTML output the formula is shown as LATEX source code.

For simple formulae (and you should try to make all your formulae simple!) attempt to use the
M element or the Mode="M" attribute in Display for which there is a well defined translation into
text, which can be used for text and HTML output versions of the document. So, if possible try to
avoid the Math elements and Display elements without attribute or provide useful text substitutes for
complicated formulae via Alt elements (see 3.9.1 and 3.7.11).

3.8.2 <M>
From gapdoc.dtd

<!-- Math with well defined translation to text output -->
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>

The “M” element type is intended for formulae in the running text for which there is a sensible text
version. For the LATEX version of a GAPDoc document the M and Math elements are equivalent. The
remarks in 3.8.1 about special characters and the Arg element apply here as well. A document which
has all formulae enclosed in M elements can be well readable in text terminal output and printed output
versions.

Compared to former versions of GAPDoc many more formulae can be put into M elements. Most
modern terminal emulations support unicode characters and many mathematical symbols can now be
represented by such characters. But even if a terminal can only display ASCII characters, the user will
see some not too bad representation of a formula.

As examples, here are some LATEX macros which have a sensible ASCII translation and are guar-
anteed to be translated accordingly by text (and HTML) converters (for a full list of handled Macros
see RecNames(TEXTMTRANSLATIONS)):

GAPDoc 34

\ast *
\bf
\bmod mod
\cdot *
\colon :
\equiv =
\geq >=
\germ
\hookrightarrow ->
\iff <=>
\langle <
\ldots ...
\left
\leq <=
\leftarrow <-
\Leftarrow <=
\limits
\longrightarrow -->
\Longrightarrow ==>
\mapsto ->
\mathbb
\mathop
\mid |
\pmod mod
\prime ’
\rangle >
\right
\rightarrow ->
\Rightarrow =>
\rm, \sf, \textrm, \text
\setminus \
\thinspace
\times x
\to ->
\vert |
\!
\,
\;
\{ {
\} }

Table: LATEX macros with special text translation

In all other macros only the backslash is removed (except for some macros describing more exotic
symbols). Whitespace is normalized (to one blank) but not removed. Note that whitespace is not
added, so you may want to add a few more spaces than you usually do in your LATEX documents.

Braces {} are removed in general, however pairs of double braces are converted to one pair of

GAPDoc 35

braces. This can be used to write <M>x^{12}</M> for x^12 and <M>x_{{i+1}}</M> for x_{i+1}.

3.9 Everything else

3.9.1 <Alt>

This element is used to specify alternatives for different output formats within normal text. See also
sections 3.6.1, 3.6.4, and 3.6.5 for alternatives in lists and tables.

From gapdoc.dtd
<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and

"Not" attributes for normal text -->
<!ATTLIST Alt Only CDATA #IMPLIED

Not CDATA #IMPLIED>

Of course exactly one of the two attributes must occur in one element. The attribute values must be one
word or a list of words, separated by spaces or commas. The words which are currently recognized
by the converter programs contained in GAPDoc are: “LaTeX”, “HTML”, and “Text”. If the Only
attribute is specified then only the corresponding converter will include the content of the element
into the output document. If the Not attribute is specified the corresponding converter will ignore the
content of the element. You can use other words to specify special alternatives for other converters of
GAPDoc documents.

In the case of “HTML” there is a second word which is recognized and this can either be “MathJax”
or “noMathJax”. For example a pair of Alt elements with <Alt Only="HTML noMathJax">...
and <Alt Not="HTML noMathJax">... could provide special content for the case of HTML output
without use of MathJax and every other output.

We fix a rule for handling the content of an Alt element with Only attribute. In their content code
for the corresponding output format is included directly. So, in case of HTML the content is HTML
code, in case of LATEX the content is LATEX code. The converters don’t apply any handling of special
characters to this content. In the case of LATEX the formatting of the code is not changed.

Within the element only %InnerText; (see 3.2.3) is allowed. This is to ensure that the same set
of chapters, sections, and subsections show up in all output formats.

3.9.2 <Par> and <P>
From gapdoc.dtd

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- the same as shortcut -->

This EMPTY element marks the boundary of paragraphs. Note that an empty line in the input does not
mark a new paragraph as opposed to the LATEX convention.

(Remark: it would be much easier to parse a document and to understand its sectioning and para-
graph structure when there was an element whose content is the text of a paragraph. But in practice
many paragraph boundaries are implicitly clear which would make it somewhat painful to enclose
each paragraph in extra tags. The introduction of the P or Par elements as above delegates this pain to
the writer of a conversion program for GAPDoc documents.)

GAPDoc 36

3.9.3

From gapdoc.dtd

<!ELEMENT Br EMPTY> <!-- a forced line break -->

This element can be used to force a line break in the output versions of a GAPDoc element, it does
not start a new paragraph. Please, do not use this instead of a Par element, this would often lead to
ugly output versions of your document.

3.9.4 <Ignore>
From gapdoc.dtd

<!ELEMENT Ignore (%Text;| Chapter | Section | Subsection | ManSection |
Heading)*>

<!ATTLIST Ignore Remark CDATA #IMPLIED>

This element can appear anywhere. Its content is ignored by the standard converters. It can be used,
for example, to include data which are not part of the actual GAPDoc document, like source code, or
to make not finished parts of the document invisible.

Of course, one can use special converter programs which extract the contents of Ignore elements.
Information on the type of the content can be stored in the optional attribute Remark.

Chapter 4

Distributing a Document into Several
Files

In GAPDoc there are facilities to distribute a single document over several files. This is for example
interesting, if one wants to store the documentation of some code in the same file as the code itself.
Or, if one just wants to store chapters of a document in separate files. There is a set of conventions
how this is done and some tools to collect the text for further processing.

The technique can also be used to distribute and collect other types of documents into respectively
from several files (e.g., source code, examples).

4.1 The Conventions

In this description we use the string GAPDoc for marking pieces of a document to collect.
Pieces of documentation that shall be incorporated into another document are marked as follows:

Example
<#GAPDoc Label="MyPiece">
<E>This</E> is the piece.
The hash characters are removed.
<#/GAPDoc>

This piece is then included into another file by a statement like: <#Include Label="MyPiece">
Here are the exact rules, how pieces are gathered:

• All lines up to a line containing the character sequence “<#GAPDoc Label="” (exactly one
space character) are ignored. The characters on the same line before this sequence are stored as
“prefix”. The characters after the sequence up to the next double quotes character (which should
not contain whitespace) are stored as “label”. All other characters in the line are ignored.

• The following lines up to a line containing the character sequence “<#/GAPDoc>” are stored
under the label. These lines are processed as follows: The longest possible substring from the
beginning of the line that equals the corresponding substring of the prefix is removed.

Having stored a list of labels and pieces of text gathered as above this can be used as follows.

• In GAPDoc documentation files all statements of the form “<#Include Label="Key">” are
replaced by the sequence of lines stored under the label Key.

37

GAPDoc 38

• Additionally, every occurrence of a statement of the form “<#Include SYSTEM "Filename">”
is replaced by the whole file stored under the name Filename in the file system.

• These substitutions are done recursively (although one should probably avoid to use this exten-
sively).

Here is another example:
Example

<#GAPDoc Label="AnotherPiece"> some characters
This text is not indented.
This text is indented by one blank.
#Not indented.
#<#/GAPDoc>

replaces <#Include Label="AnotherPiece"> by
Example

This text is not indented.
This text is indented by one blank.

Not indented.

Since these rules are very simple it is quite easy to write a program in almost any programming
language which does this gathering of text pieces and the substitutions. In GAPDoc there is the GAP
function ComposedDocument (4.2.1) which does this.

Note that the XML-tag-like markup we have used here is not a legal XML markup, since the hash
character is not allowed in element names. The mechanism described here is a preprocessing step
which composes a document.

4.2 A Tool for Collecting a Document

4.2.1 ComposedDocument

▷ ComposedDocument(tagname, path, main, source[, info]) (function)

▷ ComposedXMLString(path, main, source[, info]) (function)

Returns: a document as string, or a list with this string and information about the source positions
The argument tagname is the string used for the pseudo elements which mark the pieces of a doc-

ument to collect. (In 4.1 we used GAPDoc as tagname . The second function ComposedXMLString(
...) is an abbreviation for ComposedDocument("GAPDoc", ...).

The argument path must be a path to some directory (as string or directory object), main the
name of a file and source a list of file names. These file names are relative to path , except they
start with "/" to specify an absolute path or they start with "gap://" to specify a file relative to the
GAP roots (see FilenameGAP (4.2.3)). The document is constructed via the mechanism described in
Section 4.1.

First the files given in source are scanned for chunks of the document marked by <#tagname
Label="..."> and </#tagname> pairs. Then the file main is read and all <#Include ... >-tags
are substituted recursively by other files or chunks of documentation found in the first step, respec-
tively.

If the optional argument info is given and set to true this function returns a list [str, origin],
where str is a string containing the composed document and origin is a sorted list of entries of the

GAPDoc 39

form [pos, filename, line]. Here pos runs through all character positions of starting lines or
text pieces from different files in str. The filename and line describe the origin of this part of the
collected document.

Without the fourth argument only the string str is returned.
By default ComposedDocument runs into an error if an <#Include ...>-tag cannot be

substituted (because a file or chunk is missing). This behaviour can be changed by setting
DOCCOMPOSEERROR := false;. Then the missing parts are substituted by a short note about what
is missing. Of course, this feature is only useful if the resulting document is a valid XML document
(e.g., when the missing pieces are complete paragraphs or sections).

Example
gap> doc := ComposedDocument("GAPDoc", "/my/dir", "manual.xml",
> ["../lib/func.gd", "../lib/func.gi"], true);;

4.2.2 OriginalPositionDocument

▷ OriginalPositionDocument(srcinfo, pos) (function)

Returns: A pair [filename, linenumber].
Here srcinfo must be a data structure as returned as second entry by ComposedDocument (4.2.1)

called with info=true. It returns for a given position pos in the composed document the file name
and line number from which that text was collected.

4.2.3 FilenameGAP

▷ FilenameGAP(fname) (function)

Returns: file name as string or fail
This functions returns the full path of a file with name fname relative to a GAP root path, or fail

if such a file does not exist. The argument fname can optionally start with the prefix "gap://" which
will be removed.

Example
gap> FilenameGAP("hsdkfhs.g");
fail
gap> FilenameGAP("lib/system.g");
"/usr/local/gap4/lib/system.g"
gap> FilenameGAP("gap://lib/system.g");
"/usr/local/gap4/lib/system.g"

Chapter 5

The Converters and an XML Parser

The GAPDoc package contains a set of programs which allow us to convert a GAPDoc book into
several output versions and to make them available to GAP’s online help.

Currently the following output formats are provided: text for browsing inside a terminal running
GAP, LATEX with hyperref-package for cross references via hyperlinks and HTML for reading with
a Web-browser.

5.1 Producing Documentation from Source Files

Here we explain how to use the functions which are described in more detail in the following sec-
tions. We assume that we have the main file MyBook.xml of a book "MyBook" in the directory
/my/book/path. This contains <#Include ...>-statements as explained in Chapter 4. These refer
to some other files as well as pieces of text which are found in the comments of some GAP source files
../lib/a.gd and ../lib/b.gi (relative to the path above). A BibTEX database MyBook.bib for the
citations is also in the directory given above. We want to produce a text-, pdf- and HTML-version
of the document. (A LATEX version of the manual is produced, so it is also easy to compile dvi-, and
postscript-versions.)

All the commands shown in this Section are collected in the single function MakeGAPDocDoc
(5.1.1).

First we construct the complete XML-document as a string with ComposedDocument (4.2.1). This
interprets recursively the <#Include ...>-statements.

Example
gap> path := Directory("/my/book/path");;
gap> main := "MyBook.xml";;
gap> files := ["../lib/a.gd", "../lib/b.gi"];;
gap> bookname := "MyBook";;
gap> doc := ComposedDocument("GAPDoc", path, main, files, true);;

Now doc is a list with two entries, the first is a string containing the XML-document, the second gives
information from which files and locations which part of the document was collected. This is useful
in the next step, if there are any errors in the document.

Next we parse the document and store its structure in a tree-like data structure. The commands
for this are ParseTreeXMLString (5.2.1) and CheckAndCleanGapDocTree (5.2.8).

40

GAPDoc 41

Example
gap> r := ParseTreeXMLString(doc[1], doc[2]);;
gap> CheckAndCleanGapDocTree(r);
true

We start to produce a text version of the manual, which can be read in a terminal (window). The
command is GAPDoc2Text (5.3.2). This produces a record with the actual text and some additional
information. The text can be written chapter-wise into files with GAPDoc2TextPrintTextFiles
(5.3.3). The names of these files are chap0.txt, chap1.txt and so on. The text contains some
markup using ANSI escape sequences. This markup is substituted by the GAP help system (user
configurable) to show the text with colors and other attributes. For the bibliography we have to tell
GAPDoc2Text (5.3.2) the location of the BibTEX database by specifying a path as second argument.

Example
gap> t := GAPDoc2Text(r, path);;
gap> GAPDoc2TextPrintTextFiles(t, path);

This command constructs all parts of the document including table of contents, bibliography and
index. The functions FormatParagraph (6.1.4) for formatting text paragraphs and ParseBibFiles
(7.1.1) for reading BibTEX files with GAP may be of independent interest.

With the text version we have also produced the information which is used for searching with
GAP’s online help. Also, labels are produced which can be used by links in the HTML- and
pdf-versions of the manual.

Next we produce a LATEX version of the document. GAPDoc2LaTeX (5.3.1) returns a string con-
taining the LATEX source. The utility function FileString (6.3.5) writes the content of a string to a
file, we choose MyBook.tex.

Example
gap> l := GAPDoc2LaTeX(r);;
gap> FileString(Filename(path, Concatenation(bookname, ".tex")), l);

Assuming that you have a sufficiently good installation of TEX available (see GAPDoc2LaTeX (5.3.1)
for details) this can be processed with a series of commands like in the following example.

Example
cd /my/book/path
pdflatex MyBook
bibtex MyBook
pdflatex MyBook
makeindex MyBook
pdflatex MyBook
mv MyBook.pdf manual.pdf

After this we have a pdf-version of the document in the file manual.pdf. It contains hyperlink
information which can be used with appropriate browsers for convenient reading of the document on
screen (e.g., xpdf is nice because it allows remote calls to display named locations of the document).
Of course, we could also use other commands like latex or dvips to process the LATEX source file.
Furthermore we have produced a file MyBook.pnr which is GAP-readable and contains the page
number information for each (sub-)section of the document.

We can add this page number information to the indexing information collected by the text con-
verter and then print a manual.six file which is read by GAP when the manual is loaded. This is
done with AddPageNumbersToSix (5.3.4) and PrintSixFile (5.3.5).

GAPDoc 42

Example
gap> AddPageNumbersToSix(r, Filename(path, "MyBook.pnr"));
gap> PrintSixFile(Filename(path, "manual.six"), r, bookname);

Finally we produce an HTML-version of the document and write it (chapter-wise) into files
chap0.html, chap1.html and so on. They can be read with any Web-browser. The commands
are GAPDoc2HTML (5.3.7) and GAPDoc2HTMLPrintHTMLFiles (5.3.8). We also add a link from
manual.html to chap0.html. You probably want to copy stylesheet files into the same directory,
see 5.3.9 for more details. The argument path of GAPDoc2HTML (5.3.7) specifies the directory con-
taining the BibTEX database files.

Example
gap> h := GAPDoc2HTML(r, path);;
gap> GAPDoc2HTMLPrintHTMLFiles(h, path);

5.1.1 MakeGAPDocDoc

▷ MakeGAPDocDoc(path, main, files, bookname[, gaproot][, ...]) (function)

This function collects all the commands for producing a text-, pdf- and HTML-version of a
GAPDoc document as described in Section 5.1. It checks the .log file from the call of pdflatex
and reports if there are errors, warnings or overfull boxes.

Note: If this function works for you depends on your operating system and installed software. It
will probably work on most UNIX systems with a standard LATEX installation. If the function doesn’t
work for you look at the source code and adjust it to your system.

Here path must be the directory (as string or directory object) containing the main file main of
the document (given with or without the .xml extension. The argument files is a list of (probably
source code) files relative to path which contain pieces of documentation which must be included in
the document, see Chapter 4. And bookname is the name of the book used by GAP’s online help.
The optional argument gaproot must be a string which gives the relative path from path to the main
GAP root directory. If this is given, the HTML files are produced with relative paths to external books.

If the string "nopdf" is given as optional argument then MakeGAPDocDoc will not produce a
pdf-version of the help book (the source .tex-file is generated). Consequently, the index for the
help system will not contain page numbers for the pdf-version. This variant of MakeGAPDocDoc
should work independently of the operating system because no external programs are called. It is
recommended that distributed manuals contain the pdf-version.

MakeGAPDocDoc can be called with additional arguments "MathJax", "Tth" and/or "MathML". If
these are given additional variants of the HTML conversion are called, see GAPDoc2HTML (5.3.7) for
details.

It is possible to use GAPDoc with other languages than English, see SetGapDocLanguage
(5.3.13) for more details.

5.2 Parsing XML Documents

Arbitrary well-formed XML documents can be parsed and browsed by the following functions. A
proper validation can be done with an external program, see XMLValidate (5.2.11) below.

GAPDoc 43

5.2.1 ParseTreeXMLString

▷ ParseTreeXMLString(str[, srcinfo][, entitydict]) (function)

▷ ParseTreeXMLFile(fname[, entitydict]) (function)

Returns: a record which is root of a tree structure
The first function parses an XML-document stored in string str and returns the document in form

of a tree.
The optional argument srcinfo must have the same format as in OriginalPositionDocument

(4.2.2). If it is given then error messages refer to the original source of the text with the problem.
With the optional argument entitydict named entities can be given to the parser, for example en-

tities which are defined in the .dtd-file (which is not read by this parser). The standard XML-entities
do not need to be provided, and for GAPDoc documents the entity definitions from gapdoc.dtd are
automatically provided. Entities in the document’s <!DOCTYPE declaration are parsed and also need
not to be provided here. The argument entitydict must be a record where each component name is
an entity name (without the surrounding & and ;) to which is assigned its substitution string.

The second function is just a shortcut for ParseTreeXMLString(StringFile(fname), ...
), see StringFile (6.3.5).

After these functions return the list of named entities which were known during the parsing can be
found in the record ENTITYDICT.

A node in the result tree corresponds to an XML element, or to some parsed character data. In the
first case it looks as follows:

Example Node
rec(name := "Book",

attributes := rec(Name := "EDIM"),
content := [... list of nodes for content ...],
start := 312,
stop := 15610,
next := 15611)

This means that str{[312..15610]} looks like <Book Name="EDIM"> ... content ...
</Book>.

The leaves of the tree encode parsed character data as in the following example:
Example Node

rec(name := "PCDATA",
content := "text without markup ")

This function checks whether the XML document is well formed, see 2.1.14 for an explanation. If an
error in the XML structure is found, a break loop is entered and the text around the position where the
problem starts is shown. With Show(); one can browse the original input in the Pager (Reference:
Pager), starting with the line where the error occurred. All entities are resolved when they are either
entities defined in the GAPDoc package (in particular the standard XML entities) or if their definition
is included in the <!DOCTYPE ..> tag of the document.

Note that ParseTreeXMLString does not parse and interpret the corresponding document type
definition (the .dtd-file given in the <!DOCTYPE ..> tag). Hence it also does not check the validity
of the document (i.e., it is no validating XML parser).

If you are using this function to parse a GAPDoc document you can use
CheckAndCleanGapDocTree (5.2.8) for some validation and additional checking of the docu-
ment structure.

GAPDoc 44

5.2.2 StringXMLElement

▷ StringXMLElement(tree) (function)

Returns: a list [string, positions]
The argument tree must have a format of a node in the parse tree of an XML document as

returned by ParseTreeXMLString (5.2.1) (including the root node representing the full document).
This function computes a pair [string, positions] where string contains XML code which is
equivalent to the code which was parsed to get tree . And positions is a list of lists of four numbers
[eltb, elte, contb, conte]. There is one such list for each XML element occuring in string,
where eltb and elte are the begin and end position of this element in string and where contb and
conte are begin and end position of the content of this element, or both are 0 if there is no content.

Note that parsing XML code is an irreversible task, we can only expect to get equivalent XML
code from this function. But parsing the resulting string again and applying StringXMLElement
again gives the same result. See the function EntitySubstitution (5.2.3) for back-substitutions of
entities in the result.

5.2.3 EntitySubstitution

▷ EntitySubstitution(xmlstring, entities) (function)

Returns: a string
The argument xmlstring must be a string containing XML code or a pair [string,

positions] as returned by StringXMLElement (5.2.2). The argument entities specifies entity
names (without the surrounding & and ;) and their substitution strings, either a list of pairs of strings
or as a record with the names as components and the substitutions as values.

This function tries to substitute non-intersecting parts of string by the given entities. If the
positions information is given then only parts of the document which allow a valid substitution by
an entity are considered. Otherwise a simple text substitution without further check is done.

Note that in general the entity resolution in XML documents is a complicated and non-reversible
task. But nevertheless this utility may be useful in not too complicated situations.

5.2.4 DisplayXMLStructure

▷ DisplayXMLStructure(tree) (function)

This utility displays the tree structure of an XML document as it is returned by
ParseTreeXMLString (5.2.1) (without the PCDATA leaves).

Since this is usually quite long the result is shown using the Pager (Reference: Pager).

5.2.5 ApplyToNodesParseTree

▷ ApplyToNodesParseTree(tree, fun) (function)

▷ AddRootParseTree(tree) (function)

▷ RemoveRootParseTree(tree) (function)

The function ApplyToNodesParseTree applies a function fun to all nodes of the parse tree tree
of an XML document returned by ParseTreeXMLString (5.2.1).

GAPDoc 45

The function AddRootParseTree is an application of this. It adds to all nodes a component
.root to which the top node tree tree is assigned. These components can be removed afterwards
with RemoveRootParseTree.

Here are two more utilities which use ApplyToNodesParseTree (5.2.5).

5.2.6 GetTextXMLTree

▷ GetTextXMLTree(tree) (function)

Returns: a string
The argument tree must be a node of a parse tree of some XML document, see

ParseTreeXMLFile (5.2.1). This function collects the content of this and all included elements re-
cursively into a string.

5.2.7 XMLElements

▷ XMLElements(tree, eltnames) (function)

Returns: a list of nodes
The argument tree must be a node of a parse tree of some XML document, see

ParseTreeXMLFile (5.2.1). This function returns a list of all subnodes of tree (possibly includ-
ing tree) of elements with name given in the list of strings eltnames . Use "PCDATA" as name for
leave nodes which contain the actual text of the document. As an abbreviation eltnames can also be
a string which is then put in a one element list.

And here are utilities for processing GAPDoc XML documents.

5.2.8 CheckAndCleanGapDocTree

▷ CheckAndCleanGapDocTree(tree) (function)

Returns: nothing
The argument tree of this function is a parse tree from ParseTreeXMLString (5.2.1) of some

GAPDoc document. This function does an (incomplete) validity check of the document according
to the document type declaration in gapdoc.dtd. It also does some additional checks which cannot
be described in the DTD (like checking whether chapters and sections have a heading). For elements
with element content the whitespace between these elements is removed.

In case of an error the break loop is entered and the position of the error in the original XML
document is printed. With Show(); one can browse the original input in the Pager (Reference:
Pager).

5.2.9 AddParagraphNumbersGapDocTree

▷ AddParagraphNumbersGapDocTree(tree) (function)

Returns: nothing
The argument tree must be an XML tree returned by ParseTreeXMLString (5.2.1) applied to a

GAPDoc document. This function adds to each node of the tree a component .count which is of form
[Chapter[, Section[, Subsection, Paragraph]]]. Here the first three numbers should be
the same as produced by the LATEX version of the document. Text before the first chapter is counted as
chapter 0 and similarly for sections and subsections. Some elements are always considered to start a
new paragraph.

GAPDoc 46

5.2.10 InfoXMLParser

▷ InfoXMLParser (info class)

The default level of this info class is 1. Functions like ParseTreeXMLString (5.2.1) are then
printing some information, in particular in case of errors. You can suppress it by setting the level of
InfoXMLParser to 0. With level 2 there may be some more information for debugging purposes.

5.2.11 XMLValidate

▷ XMLValidate(doc, dtdpath) (function)

Returns: fail or a record
The argument doc must be a string which is an XML document, and dtdpath is a path containing

the corresponding DTD file.
The function returns fail if the program xmllint cannot be called.
Otherwise the document is validated via the external program xmllint via the function

IO_PipeThroughWithError (IO: IO_PipeThroughWithError), and its resulting record is re-
turned.

5.2.12 ValidateGAPDoc

▷ ValidateGAPDoc(doc) (function)

Returns: fail, true or a record
The argument doc must be a string which is a GAPDoc XML document or a pair of a string and

list as returned by ComposedDocument (4.2.1) with argument info set to true.
The function returns fail in case of a problem.
Otherwise the document is validated using XMLValidate (5.2.11). If the validation was successful

this function returns true. In the case of validation errors some information is printed and the result
of XMLValidate (5.2.11) is returned.

Example
gap> fn := Filename(DirectoriesPackageLibrary("gapdoc", ""),
> "3k+1/3k+1.xml");;
gap> doc := ComposedDocument("GAPDoc", "", fn, [], true);;
gap> doc[1][220] := ’t’;;
gap> check := ValidateGAPDoc(doc);;
ValidateGAPDoc found problems:
Line 11: parser error : Opening and ending tag mismatch

source position: /opt/gap/pkg/GAPDoc-1.6.4/3k+1/3k+1.xml, line 11

5.3 The Converters

Here are more details about the conversion programs for GAPDoc XML documents.

5.3.1 GAPDoc2LaTeX

▷ GAPDoc2LaTeX(tree) (function)

Returns: LATEX document as string

GAPDoc 47

▷ SetGapDocLaTeXOptions([...]) (function)

Returns: Nothing
The argument tree for this function is a tree describing a GAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked with CheckAndCleanGapDocTree (5.2.8)).
The output is a string containing a version of the document which can be written to a file and processed
with LATEX or pdfLATEX (and probably BibTEX and makeindex).

The output uses the report document class and needs the following LATEX packages: amssymb,
inputenc, makeidx, color, fancyvrb, psnfss, pslatex, enumitem and hyperref. These are for
example provided by the texlive distribution of TEX (which in turn is used for most TEX packages of
current Linux distributions); see https://www.tug.org/texlive/.

In particular, the resulting pdf-output (and dvi-output) contains (internal and external) hyperlinks
which can be very useful for onscreen browsing of the document.

The LATEX processing also produces a file with extension .pnr which is GAP readable and contains
the page numbers for all (sub)sections of the document. This can be used by GAP’s online help; see
AddPageNumbersToSix (5.3.4). Non-ASCII characters in the GAPDoc document are translated to
LATEX input in ASCII-encoding with the help of Encode (6.2.2) and the option "LaTeX". See the
documentation of Encode (6.2.2) for how to proceed if you have a character which is not handled
(yet).

This function works by running recursively through the document tree and calling a han-
dler function for each GAPDoc XML element. Many of these handler functions (usually in
GAPDoc2LaTeXProcs.<ElementName>) are not difficult to understand (the greatest complications
are some commands for index entries, labels or the output of page number information). So it should
be easy to adjust layout details to your own taste by slight modifications of the program.

Former versions of GAPDoc supported some XML processing instructions to add some extra
lines to the preamble of the LATEX document. Its use is now deprecated, use the much more flexible
SetGapDocLaTeXOptions instead: The default layout of the resulting documents can be changed
with SetGapDocLaTeXOptions. This changes parts of the header of the LATEX file produced by GAP-
Doc. You can see the header with some placeholders by Page(GAPDoc2LaTeXProcs.Head);. The
placeholders are filled with components from the record GAPDoc2LaTeXProcs.DefaultOptions.
The arguments of SetGapDocLaTeXOptions can be records with the same structure (or parts of it)
with different values. As abbreviations there are also three strings supported as arguments. These are
"nocolor" for switching all colors to black; then "nopslatex" to use standard LATEX fonts instead
of postscript fonts; and finally "utf8" to choose UTF-8 as input encoding for the LATEX document.

5.3.2 GAPDoc2Text

▷ GAPDoc2Text(tree[, bibpath][, width]) (function)

Returns: record containing text files as strings and other information
The argument tree for this function is a tree describing a GAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked with CheckAndCleanGapDocTree (5.2.8)).
This function produces a text version of the document which can be used with GAP’s online help
(with the "screen" viewer, see SetHelpViewer (Reference: SetHelpViewer)). It includes title
page, bibliography and index. The bibliography is made from BibXMLext or BibTEX databases, see
7. Their location must be given with the argument bibpath (as string or directory object).

The output is a record with one component for each chapter (with names "0", "1", ..., "Bib" and
"Ind"). Each such component is again a record with the following components:

https://www.tug.org/texlive/

GAPDoc 48

text
the text of the whole chapter as a string

ssnr
list of subsection numbers in this chapter (like [3, 2, 1] for chapter 3, section 2, subsection 1)

linenr
corresponding list of line numbers where the subsections start

len number of lines of this chapter

The result can be written into files with the command GAPDoc2TextPrintTextFiles (5.3.3).
As a side effect this function also produces the manual.six information which is used for search-

ing in GAP’s online help. This is stored in tree.six and can be printed into a manual.six file with
PrintSixFile (5.3.5) (preferably after producing a LATEX version of the document as well and adding
the page number information to tree.six, see GAPDoc2LaTeX (5.3.1) and AddPageNumbersToSix
(5.3.4)).

The text produced by this function contains some markup via ANSI escape sequences. The se-
quences used here are usually ignored by terminals. But the GAP help system will substitute them by
interpreted color and attribute sequences (see TextAttr (6.1.2)) before displaying them. There is a de-
fault markup used for this but it can also be configured by the user, see SetGAPDocTextTheme (5.3.6).
Furthermore, the text produced is in UTF-8 encoding. The encoding is also translated on the fly, if
GAPInfo.TermEncoding is set to some encoding supported by Encode (6.2.2), e.g., "ISO-8859-1"
or "latin1".

With the optional argument width a different length of the output text lines can be chosen. The
default is 76 and all lines in the resulting text start with two spaces. This looks good on a terminal
with a standard width of 80 characters and you probably don’t want to use this argument.

5.3.3 GAPDoc2TextPrintTextFiles

▷ GAPDoc2TextPrintTextFiles(t[, path]) (function)

Returns: nothing
The first argument must be a result returned by GAPDoc2Text (5.3.2). The second argument is

a path for the files to write, it can be given as string or directory object. The text of each chapter is
written into a separate file with name chap0.txt, chap1.txt, ..., chapBib.txt, and chapInd.txt.

If you want to make your document accessible via the GAP online help you must put at least these
files for the text version into a directory, together with the file manual.six, see PrintSixFile (5.3.5).
Then specify the path to the manual.six file in the packages PackageInfo.g file, see (Reference:
The PackageInfo.g File).

Optionally you can add the dvi- and pdf-versions of the document which are produced with
GAPDoc2LaTeX (5.3.1) to this directory. The files must have the names manual.dvi and manual.pdf,
respectively. Also you can add the files of the HTML version produced with GAPDoc2HTML (5.3.7) to
this directory, see GAPDoc2HTMLPrintHTMLFiles (5.3.8). The handler functions in GAP for this help
format detect automatically which of the optional formats of a book are actually available.

5.3.4 AddPageNumbersToSix

▷ AddPageNumbersToSix(tree, pnrfile) (function)

Returns: nothing

GAPDoc 49

Here tree must be the XML tree of a GAPDoc document, returned by ParseTreeXMLString
(5.2.1). Running latex on the result of GAPDoc2LaTeX(tree) produces a file pnrfile (with ex-
tension .pnr). The command GAPDoc2Text(tree) creates a component tree.six which contains
all information about the document for the GAP online help, except the page numbers in the .dvi,
.ps, .pdf versions of the document. This command adds the missing page number information to
tree.six.

5.3.5 PrintSixFile

▷ PrintSixFile(tree, bookname, fname) (function)

Returns: nothing
This function prints the .six file fname for a GAPDoc document stored in tree with

name bookname . Such a file contains all information about the book which is needed by the
GAP online help. This information must first be created by calls of GAPDoc2Text (5.3.2) and
AddPageNumbersToSix (5.3.4).

5.3.6 SetGAPDocTextTheme

▷ SetGAPDocTextTheme([optrec1[, optrec2], ...]) (function)

Returns: nothing
This utility function is for readers of the screen version of GAP manuals which are generated by

the GAPDoc package. It allows to configure the color and attribute layout of the displayed text. There
is a default which can be reset by calling this function without argument.

As an abbreviation the arguments optrec1 and so on can be strings for the known name of a
theme. Information about valid names is shown with SetGAPDocTextTheme("");.

Otherwise, optrec1 and so on must be a record. Its entries overwrite the corresponding entries
in the default and in previous arguments. To construct valid markup you can use TextAttr (6.1.2).
Entries must be either pairs of strings, which are put before and after the corresponding text, or as
an abbreviation it can be a single string. In the latter case, the second string is implied; if the string
contains an escape sequence the second string is TextAttr.reset, otherwise the given string is used.
The following components are recognized:

flush
"both" for left-right justified paragraphs, and "left" for ragged right ones

Heading
chapter and (sub-)section headings

Func
function, operation, ... names

Arg argument names in descriptions

Example
example code

Package
package names

GAPDoc 50

Returns
Returns-line in descriptions

URL URLs

Mark
Marks in description lists

K GAP keywords

C code or text to type

F file names

B buttons

M simplified math elements

Math
normal math elements

Display
displayed math elements

Emph
emphasized text

Q quoted text

Ref reference text

Prompt
GAP prompt in examples

BrkPrompt
GAP break prompt in examples

GAPInput
GAP input in examples

reset
reset to default, don’t change this

BibAuthor
author names in bibliography

BibTitle
titles in bibliography

BibJournal
journal names in bibliography

BibVolume
volume number in bibliography

GAPDoc 51

BibLabel
labels for bibliography entries

BibReset
reset for bibliography, don’t change

ListBullet
bullet for simple lists (2 visible characters long)

EnumMarks
one visible character before and after the number in enumerated lists

DefLineMarker
marker before function and variable definitions (2 visible characters long)

FillString
for filling in definitions and example separator lines

Example
gap> # use no colors for GAP examples and
gap> # change display of headings to bold green
gap> SetGAPDocTextTheme("noColorPrompt",
> rec(Heading:=Concatenation(TextAttr.bold, TextAttr.2)));

5.3.7 GAPDoc2HTML

▷ GAPDoc2HTML(tree[, bibpath[, gaproot]][, mtrans]) (function)

Returns: record containing HTML files as strings and other information
The argument tree for this function is a tree describing a GAPDoc XML document as returned

by ParseTreeXMLString (5.2.1) (probably also checked with CheckAndCleanGapDocTree (5.2.8)).
Without an mtrans argument this function produces an HTML version of the document which can
be read with any Web-browser and also be used with GAP’s online help (see SetHelpViewer
(Reference: SetHelpViewer)). It includes title page, bibliography, and index. The bibliography
is made from BibTEX databases. Their location must be given with the argument bibpath (as string
or directory object, if not given the current directory is used). If the third argument gaproot is given
and is a string then this string is interpreted as relative path to GAP’s main root directory. Refer-
ence-URLs to external HTML-books which begin with the GAP root path are then rewritten to start
with the given relative path. This makes the HTML-documentation portable provided a package is
installed in some standard location below the GAP root.

The output is a record with one component for each chapter (with names "0", "1", ..., "Bib", and
"Ind"). Each such component is again a record with the following components:

text
the text of an HTML file containing the whole chapter (as a string)

ssnr
list of subsection numbers in this chapter (like [3, 2, 1] for chapter 3, section 2, subsection 1)

Standard output format without mtrans argument
The HTML code produced with this converter conforms to the W3C specification “XHTML 1.0

strict”, see https://www.w3.org/TR/xhtml1. First, this means that the HTML files are valid XML

https://www.w3.org/TR/xhtml1

GAPDoc 52

files. Secondly, the extension “strict” says in particular that the code doesn’t contain any explicit font
or color information.

Mathematical formulae are handled as in the text converter GAPDoc2Text (5.3.2). We don’t want
to assume that the browser can use symbol fonts. Some GAP users like to browse the online help
with lynx, see SetHelpViewer (Reference: SetHelpViewer), which runs inside the same terminal
windows as GAP.

To view the generated files in graphical browsers, stylesheet files with layout configuration should
be copied into the directory with the generated HTML files, see 5.3.9.

Output format with mtrans argument
Currently, there are three variants of this converter available which handle mathematical formulae

differently. They are accessed via the optional last mtrans argument.
If mtrans is set to "MathJax" the formulae are essentially translated as for LATEX documents

(there is no processing of <M> elements as decribed in 3.8.2). Inline formulae are delimited by \(
and \) and displayed formulae by \[and \]. With MathJax webpages can contain nicely formatted
scalable and searchable formulae. The resulting files link by default to https://www.jsdelivr.com/ to
get the MathJax script and fonts. This means that they can only be used on computers with inter-
net access. An alternative URL can be set by overwriting GAPDoc2HTMLProcs.MathJaxURL before
building the HTML version of a manual. This way a local installation of MathJax could be used. See
https://www.mathjax.org/ for more details.

The following possibilities for mtrans are still supported, but since the MathJax approach seems
much better, their use is deprecated.

If the argument mtrans is set to "Tth" it is assumed that you have installed the LATEX to HTML
translation program tth. This is used to translate the contents of the M, Math and Display elements
into HTML code. Note that the resulting code is not compliant with any standard. Formally it is
“XHTML 1.0 Transitional”, it contains explicit font specifications and the characters of mathematical
symbols are included via their position in a “Symbol” font. Some graphical browsers can be configured
to display this in a useful manner, check the Tth homepage for more details.

This function works by running recursively through the document tree and calling a han-
dler function for each GAPDoc XML element. Many of these handler functions (usually in
GAPDoc2TextProcs.<ElementName>) are not difficult to understand (the greatest complications are
some commands for index entries, labels or the output of page number information). So it should be
easy to adjust certain details to your own taste by slight modifications of the program.

The result of this converter can be written to files with the command
GAPDoc2HTMLPrintHTMLFiles (5.3.8).

There are two user preferences for reading the HTML manuals produced by GAPDoc. A
user can choose among several style files which determine the appearance of the manual pages
with SetUserPreference("GAPDoc", "HTMLStyle", [...]); where the list in the third ar-
gument are arguments for SetGAPDocHTMLStyle (5.3.11). The second preference is set by
SetUserPreference("GAPDoc", "UseMathJax", ...); where the third argument is true or
false (default). If this is set to true, the GAP help system displays the MathJax version of the
HTML manuals.

5.3.8 GAPDoc2HTMLPrintHTMLFiles

▷ GAPDoc2HTMLPrintHTMLFiles(t[, path]) (function)

Returns: nothing

https://www.jsdelivr.com/
https://www.mathjax.org/
http://hutchinson.belmont.ma.us/tth/

GAPDoc 53

The first argument must be a result returned by GAPDoc2HTML (5.3.7). The second argument is a
path for the files to write, it can be given as string or directory object. The text of each chapter is written
into a separate file with name chap0.html, chap1.html, ..., chapBib.html, and chapInd.html.

The MathJax versions are written to files chap0_mj.html, ..., chapInd_mj.html.
The experimental version which is produced with tth uses different names for the files, namely

chap0_sym.html, and so on for files which need symbol fonts.
You should also add stylesheet files to the directory with the HTML files, see 5.3.9.

5.3.9 Stylesheet files

For graphical browsers the layout of the generated HTML manuals can be highly configured by cas-
cading stylesheet (CSS) and javascript files. Such files are provided in the styles directory of the
GAPDoc package.

We recommend that these files are copied into each manual directory (such that each of them is
selfcontained). There is a utility function CopyHTMLStyleFiles (5.3.10) which does this. Of course,
these files may be changed or new styles may be added. New styles may also be sent to the GAPDoc
authors for possible inclusion in future versions.

The generated HTML files refer to the file manual.css which conforms to the W3C specifica-
tion CSS 2.0, see https://www.w3.org/TR/REC-CSS2, and the javascript file manual.js (only in
browsers which support CSS or javascript, respectively; but the HTML files are also readable without
any of them). To add a style mystyle one or both of mystyle.css and mystyle.js must be pro-
vided; these can overwrite default settings and add new javascript functions. For more details see the
comments in manual.js.

5.3.10 CopyHTMLStyleFiles

▷ CopyHTMLStyleFiles(dir) (function)

Returns: nothing
This utility function copies the *.css and *.js files from the styles directory of the GAPDoc

package into the directory dir .

5.3.11 SetGAPDocHTMLStyle

▷ SetGAPDocHTMLStyle([style1[, style2], ...]) (function)

Returns: nothing
This utility function is for readers of the HTML version of GAP manuals which are generated by

the GAPDoc package. It allows to configure the display style of the manuals. This will only have an
effect if you are using a browser that supports javascript. There is a default which can be reset by
calling this function without argument.

The arguments style1 and so on must be strings. You can find out about the valid strings by
following the [STYLE] link on top of any manual page. (Going back to the original page, its address
has a setting for GAPDocStyle which is the list of strings, separated by commas, you want to use
here.)

Example
gap> # show/hide subsections in tables on contents only after click,
gap> # and don’t use colors in GAP examples
gap> SetGAPDocHTMLStyle("toggless", "nocolorprompt");

https://www.w3.org/TR/REC-CSS2

GAPDoc 54

5.3.12 InfoGAPDoc

▷ InfoGAPDoc (info class)

The default level of this info class is 1. The converter functions for GAPDoc documents are then
printing some information. You can suppress this by setting the level of InfoGAPDoc to 0. With level
2 there may be some more information for debugging purposes.

5.3.13 SetGapDocLanguage

▷ SetGapDocLanguage([lang]) (function)

Returns: nothing
The GAPDoc converter programs sometimes produce text which is not explicit in the document,

e.g., headers like “Abstract”, “Appendix”, links to “Next Chapter”, variable types “function” and so
on.

With SetGapDocLanguage the language for these texts can be changed. The argument lang must
be a string. Calling without argument or with a language name for which no translations are available
is the same as using the default "english".

If your language lang is not yet available, look at the record GAPDocTexts.english and translate
all the strings to lang . Then assign this record to GAPDocTexts.(lang) and send it to the GAPDoc
authors for inclusion in future versions of GAPDoc. (Currently, there are translations for english,
german, russian and ukrainian.)

Further hints: To get strings produced by LATEX right you will probably use the babel package
with option lang , see SetGapDocLaTeXOptions (5.3.1). If lang cannot be encoded in latin1
encoding you can consider the use of "utf8" with SetGapDocLaTeXOptions (5.3.1).

5.4 Testing Manual Examples

We also provide some tools to check and adjust the examples given in <Example>-elements.
Former versions of GAPDoc provided functions ManualExamples and TestManualExamples.

These functions are still available, but no longer documented. Their use is deprecated.

5.4.1 ExtractExamples

▷ ExtractExamples(path, main, files, units[, withLog]) (function)

Returns: a list of lists
▷ ExtractExamplesXMLTree(tree, units[, withLog]) (function)

Returns: a list of lists
The argument tree must be a parse tree of a GAPDoc document, see ParseTreeXMLFile (5.2.1).

The function ExtractExamplesXMLTree returns a data structure representing the <Example> ele-
ments of the document. The return value can be used with RunExamples (5.4.2) to check and option-
ally update the examples of the document.

Depending on the argument units several examples are collected in one list. Recognized values
for units are "Chapter", "Section", "Subsection" or "Single". The latter means that each
example is in a separate list. For all other value of units just one list with all examples is returned.

GAPDoc 55

The arguments path , main and files of ExtractExamples are the same as for
ComposedDocument (4.2.1). This function first contructs and parses the GAPDoc document and
then applies ExtractExamplesXMLTree.

If the optional argument withLog is given and true then <Log> elements are handled like
<Example> elements. This allows to put examples which can only run under certain conditions, e.g.,
when certain external programs are available, into <Log> elements. (Put example code which should
also not be included by this variant into <Listing> elements.)

5.4.2 RunExamples

▷ RunExamples(exmpls[, optrec]) (function)

Returns: true or false
The argument exmpls must be the output of a call to ExtractExamples (5.4.1) or

ExtractExamplesXMLTree (5.4.1). The optional argument optrec must be a record, its compo-
nents can change the default behaviour of this function.

By default this function runs the GAP input of all examples and compares the actual output with
the output given in the examples. If differences occur these are displayed together with information
on the location of the source code of that example. Before running the examples in each unit (entry of
exmpls) the function START_TEST (Reference: START_TEST) is called and the screen width is set
to 72 characters.

This function returns true if no differences are found and false otherwise.
If the argument optrec is given, the following components are recognized:

showDiffs
The default value is true, if set to something else found differences in the examples are not
displayed.

width
The value must be a positive integer which is used as screen width when running the examples.
As mentioned above, the default is 72 which is a sensible value for the text version of the
GAPDoc document used in a 80 character wide terminal.

ignoreComments
The default is false.
If set to true comments in the input will be ignored (as in the default behaviour of the Test
(Reference: Test) function).

changeSources
If this is set to true then the source code of all manual examples which show differences is
adjusted to the current outputs. The default is false.
Use this feature with care. Note that sometimes differences can indicate a bug, and in such a
case it is more appropriate to fix the bug instead of changing the example output.

compareFunction
The function used to compare the output shown in the example and the current output. See Test
(Reference: Test) for more details.

checkWidth
If this option is a positive integer n the function prints warnings if an example contains any line

GAPDoc 56

with more than n characters (input and output lines are considered). By default this option is set
to false.

Chapter 6

String and Text Utilities

6.1 Text Utilities

This section describes some utility functions for handling texts within GAP. They are used by the
functions in the GAPDoc package but may be useful for other purposes as well. We start with some
variables containing useful strings and go on with functions for parsing and reformatting text.

6.1.1 WHITESPACE

▷ WHITESPACE (global variable)

▷ CAPITALLETTERS (global variable)

▷ SMALLLETTERS (global variable)

▷ LETTERS (global variable)

▷ DIGITS (global variable)

▷ HEXDIGITS (global variable)

▷ BOXCHARS (global variable)

These variables contain sets of characters which are useful for text processing. They are defined
as follows.

WHITESPACE
" \n\t\r"

CAPITALLETTERS
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

SMALLLETTERS
"abcdefghijklmnopqrstuvwxyz"

LETTERS
concatenation of CAPITALLETTERS and SMALLLETTERS

DIGITS
"0123456789"

HEXDIGITS
"0123456789ABCDEFabcdef"

57

GAPDoc 58

BOXCHARS
Encode(Unicode(9472 + [0, 2, 12, 44, 16, 28, 60, 36, 20, 52, 24, 1, 3,
15, 51, 19, 35, 75, 43, 23, 59, 27, 80, 81, 84, 102, 87, 96, 108, 99, 90,
105, 93]), "UTF-8"), these are in UTF-8 encoding, the i-th unicode character is
BOXCHARS{[3*i-2..3*i]}.

6.1.2 TextAttr

▷ TextAttr (global variable)

The record TextAttr contains strings which can be printed to change the terminal attribute for the
following characters. This only works with terminals which understand basic ANSI escape sequences.
Try the following example to see if this is the case for the terminal you are using. It shows the effect of
the foreground and background color attributes and of the .bold, .blink, .normal, .reverse and
.underscore which can partly be mixed.

Example
extra := ["CSI", "reset", "delline", "home"];;
for t in Difference(RecNames(TextAttr), extra) do

Print(TextAttr.(t), "TextAttr.", t, TextAttr.reset,"\n");
od;

The suggested defaults for colors 0..7 are black, red, green, brown, blue, magenta, cyan, white. But
this may be different for your terminal configuration.

The escape sequence .delline deletes the content of the current line and .home moves the cursor
to the beginning of the current line.

Example
for i in [1..5] do

Print(TextAttr.home, TextAttr.delline, String(i,-6), "\c");
Sleep(1);

od;

Whenever you use this in some printing routines you should make it optional. Use these attributes
only when UserPreference("UseColorsInTerminal"); returns true.

6.1.3 WrapTextAttribute

▷ WrapTextAttribute(str, attr) (function)

Returns: a string with markup
The argument str must be a text as GAP string, possibly with markup by escape sequences as

in TextAttr (6.1.2). This function returns a string which is wrapped by the escape sequences attr
and TextAttr.reset. It takes care of markup in the given string by appending attr also after each
given TextAttr.reset in str .

Example
gap> str := Concatenation("XXX",TextAttr.2, "BLUB", TextAttr.reset,"YYY");
"XXX\033[32mBLUB\033[0mYYY"
gap> str2 := WrapTextAttribute(str, TextAttr.1);
"\033[31mXXX\033[32mBLUB\033[0m\033[31m\027YYY\033[0m"
gap> str3 := WrapTextAttribute(str, TextAttr.underscore);
"\033[4mXXX\033[32mBLUB\033[0m\033[4m\027YYY\033[0m"
gap> # use Print(str); and so on to see how it looks like.

GAPDoc 59

6.1.4 FormatParagraph

▷ FormatParagraph(str[, len][, flush][, attr][, widthfun]) (function)

Returns: the formatted paragraph as string
This function formats a text given in the string str as a paragraph. The optional arguments have

the following meaning:

len the length of the lines of the formatted text, default is 78 (counted without a visible length of
the strings specified in the attr argument)

flush
can be "left", "right", "center" or "both", telling that lines should be flushed left, flushed
right, centered or left-right justified, respectively, default is "both"

attr
is a list of two strings; the first is prepended and the second appended to each line of the re-
sult (can for example be used for indenting, [" ", ""], or some markup, [TextAttr.bold,
TextAttr.reset], default is ["", ""])

widthfun
must be a function which returns the display width of text in str . The default is Length
assuming that each byte corresponds to a character of width one. If str is given in UTF-8
encoding one can use WidthUTF8String (6.2.3) here.

This function tries to handle markup with the escape sequences explained in TextAttr (6.1.2) cor-
rectly.

Example
gap> str := "One two three four five six seven eight nine ten eleven.";;
gap> Print(FormatParagraph(str, 25, "left", ["/* ", " */"]));
/* One two three four five */
/* six seven eight nine ten */
/* eleven. */

6.1.5 SubstitutionSublist

▷ SubstitutionSublist(list, sublist, new[, flag]) (function)

Returns: the changed list
This function looks for (non-overlapping) occurrences of a sublist sublist in a list list (com-

pare PositionSublist (Reference: PositionSublist)) and returns a list where these are substituted
with the list new .

The optional argument flag can either be "all" (this is the default if not given) or "one". In the
second case only the first occurrence of sublist is substituted.

If sublist does not occur in list then list itself is returned (and not a ShallowCopy(list)).
Example

gap> SubstitutionSublist("xababx", "ab", "a");
"xaax"

GAPDoc 60

6.1.6 StripBeginEnd

▷ StripBeginEnd(list, strip) (function)

Returns: changed string
Here list and strip must be lists. This function returns the sublist of list which does not contain

the leading and trailing entries which are entries of strip . If the result is equal to list then list
itself is returned.

Example
gap> StripBeginEnd(" ,a, b,c, ", ", ");
"a, b,c"

6.1.7 StripEscapeSequences

▷ StripEscapeSequences(str) (function)

Returns: string without escape sequences
This function returns the string one gets from the string str by removing all escape sequences

which are explained in TextAttr (6.1.2). If str does not contain such a sequence then str itself is
returned.

6.1.8 RepeatedString

▷ RepeatedString(c, len) (function)

▷ RepeatedUTF8String(c, len) (function)

Here c must be either a character or a string and len is a non-negative number. Then
RepeatedString returns a string of length len consisting of copies of c .

In the variant RepeatedUTF8String the argument c is considered as string in UTF-8 encoding,
and it can also be specified as unicode string or character, see Unicode (6.2.1). The result is a string
in UTF-8 encoding which has visible width len as explained in WidthUTF8String (6.2.3).

Example
gap> RepeatedString(’=’,51);
"==="
gap> RepeatedString("*=",51);
"*=*"
gap> s := "bäh";;
gap> enc := GAPInfo.TermEncoding;;
gap> if enc <> "UTF-8" then s := Encode(Unicode(s, enc), "UTF-8"); fi;
gap> l := RepeatedUTF8String(s, 8);;
gap> u := Unicode(l, "UTF-8");;
gap> Print(Encode(u, enc), "\n");
bähbähbä

6.1.9 NumberDigits

▷ NumberDigits(str, base) (function)

Returns: integer
▷ DigitsNumber(n, base) (function)

Returns: string

GAPDoc 61

The argument str of NumberDigits must be a string consisting only of an optional leading ’-’
and characters in 0123456789abcdefABCDEF, describing an integer in base base with 2≤ base ≤ 16.
This function returns the corresponding integer.

The function DigitsNumber does the reverse.
Example

gap> NumberDigits("1A3F",16);
6719
gap> DigitsNumber(6719, 16);
"1A3F"

6.1.10 LabelInt

▷ LabelInt(n, type, pre, post) (function)

Returns: string
The argument n must be an integer in the range from 1 to 5000, while pre and post must be

strings.
The argument type can be one of "Decimal", "Roman", "roman", "Alpha", "alpha".
The function returns a string that starts with pre , followed by a decimal, respectively roman

number or alphanumerical number literal (capital, respectively small letters), followed by post .
Example

gap> List([1,2,3,4,5,691], i-> LabelInt(i,"Decimal","","."));
["1.", "2.", "3.", "4.", "5.", "691."]
gap> List([1,2,3,4,5,691], i-> LabelInt(i,"alpha","(",")"));
["(a)", "(b)", "(c)", "(d)", "(e)", "(zo)"]
gap> List([1,2,3,4,5,691], i-> LabelInt(i,"alpha","(",")"));
["(a)", "(b)", "(c)", "(d)", "(e)", "(zo)"]
gap> List([1,2,3,4,5,691], i-> LabelInt(i,"Alpha","",".)"));
["A.)", "B.)", "C.)", "D.)", "E.)", "ZO.)"]
gap> List([1,2,3,4,5,691], i-> LabelInt(i,"roman","","."));
["i.", "ii.", "iii.", "iv.", "v.", "dcxci."]
gap> List([1,2,3,4,5,691], i-> LabelInt(i,"Roman","",""));
["I", "II", "III", "IV", "V", "DCXCI"]

6.1.11 PositionMatchingDelimiter

▷ PositionMatchingDelimiter(str, delim, pos) (function)

Returns: position as integer or fail
Here str must be a string and delim a string with two different characters. This function searches

the smallest position r of the character delim[2] in str such that the number of occurrences of
delim[2] in str between positions pos+1 and r is by one greater than the corresponding number of
occurrences of delim[1].

If such an r exists, it is returned. Otherwise fail is returned.
Example

gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 0);
fail
gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 1);
2
gap> PositionMatchingDelimiter("{}x{ab{c}d}", "{}", 6);
11

GAPDoc 62

6.1.12 WordsString

▷ WordsString(str) (function)

Returns: list of strings containing the words
This returns the list of words of a text stored in the string str . All non-letters are considered as

word boundaries and are removed.
Example

gap> WordsString("one_two \n three!?");
["one", "two", "three"]

6.1.13 Base64String

▷ Base64String(str) (function)

▷ StringBase64(bstr) (function)

Returns: a string
The first function translates arbitrary binary data given as a GAP string into a base 64 encoded

string. This encoded string contains only printable ASCII characters and is used in various data
transfer protocols (MIME encoded emails, weak password encryption, ...). We use the specification
in RFCÂ 2045.

The second function has the reverse functionality. Here we also accept the characters -_ instead
of +/ as last two characters. Whitespace is ignored.

Example
gap> b := Base64String("This is a secret!");
"VGhpcyBpcyBhIHNlY3JldCEA="
gap> StringBase64(b);
"This is a secret!"

6.2 Unicode Strings

The GAPDoc package provides some tools to deal with unicode characters and strings. These can be
used for recoding text strings between various encodings.

6.2.1 Unicode Strings and Characters

▷ Unicode(list[, encoding]) (operation)

▷ UChar(num) (operation)

▷ IsUnicodeString (filter)

▷ IsUnicodeCharacter (filter)

▷ IntListUnicodeString(ustr) (function)

Unicode characters are described by their codepoint, an integer in the range from 0 to 221 −1. For
details about unicode, see https://www.unicode.org.

The function UChar wraps an integer num into a GAP object lying in the filter
IsUnicodeCharacter. Use Int to get the codepoint back. The argument num can also be a GAP
character which is then translated to an integer via IntChar (Reference: IntChar).

Unicode produces a GAP object in the filter IsUnicodeString. This is a wrapped list of integers
for the unicode characters in the string. The function IntListUnicodeString gives access to this

https://www.rfc-editor.org/rfc/rfc2045
https://www.unicode.org

GAPDoc 63

list of integers. Basic list functionality is available for IsUnicodeString elements. The entries are in
IsUnicodeCharacter. The argument list for Unicode is either a list of integers or a GAP string.
In the latter case an encoding can be specified as string, its default is "UTF-8".

Currently supported encodings can be found in UNICODE_RECODE.NormalizedEncodings
(ASCII, ISO-8859-X, UTF-8 and aliases). The encoding "XML" means an ASCII encoding in
which non-ASCII characters are specified by XML character entities. The encoding "URL" is for
URL-encoded (also called percent-encoded strings, as specified in RFC 3986 (see here). The listed
encodings "LaTeX" and aliases cannot be used with Unicode. See the operation Encode (6.2.2) for
mapping a unicode string to a GAP string.

Example
gap> ustr := Unicode("a and \366", "latin1");
Unicode("a and ö")
gap> ustr = Unicode("a and ö", "XML");
true
gap> IntListUnicodeString(ustr);
[97, 32, 97, 110, 100, 32, 246]
gap> ustr[7];
’ö’

6.2.2 Encode

▷ Encode(ustr[, encoding]) (operation)

Returns: a GAP string
▷ SimplifiedUnicodeString(ustr[, encoding][, "single"]) (function)

Returns: a unicode string
▷ LowercaseUnicodeString(ustr) (function)

Returns: a unicode string
▷ UppercaseUnicodeString(ustr) (function)

Returns: a unicode string
▷ LaTeXUnicodeTable (global variable)

▷ SimplifiedUnicodeTable (global variable)

▷ LowercaseUnicodeTable (global variable)

The operation Encode translates a unicode string ustr into a GAP string in some specified
encoding . The default encoding is "UTF-8".

Supported encodings can be found in UNICODE_RECODE.NormalizedEncodings. Except for
some cases mentioned below characters which are not available in the target encoding are substituted
by ’?’ characters.

If the encoding is "URL" (see Unicode (6.2.1)) then an optional argument encreserved can be
given, it must be a list of reserved characters which should be percent encoded; the default is to encode
only the % character.

The encoding "LaTeX" substitutes non-ASCII characters and LATEX special characters by LATEX
code as given in an ordered list LaTeXUnicodeTable of pairs [codepoint, string]. If you have a
unicode character for which no substitution is contained in that list, you will get a warning and the
translation is Unicode(nr). In this case find a substitution and add a corresponding [codepoint, string]
pair to LaTeXUnicodeTable using AddSet (Reference: AddSet). Also, please, tell the GAPDoc
authors about your addition, such that we can extend the list LaTeXUnicodeTable. (Most of the

https://www.ietf.org/rfc/rfc3986.txt

GAPDoc 64

initial entries were generated from lists in the TEX projects encTEX and ucs.) There are some variants
of this encoding:

"LaTeXleavemarkup" does the same translations for non-ASCII characters but leaves the LATEX
special characters (e.g., any LATEX commands) as they are.

"LaTeXUTF8" does not give a warning about unicode characters without explicit translation, in-
stead it translates the character to its UTF-8 encoding. Make sure to setup your LATEX document such
that all these characters are understood.

"LaTeXUTF8leavemarkup" is a combination of the last two variants.
Note that the "LaTeX" encoding can only be used with Encode but not for the opposite translation

with Unicode (6.2.1) (which would need far too complicated heuristics).
The function SimplifiedUnicodeString can be used to substitute many non-ASCII charac-

ters by related ASCII characters or strings (e.g., by a corresponding character without accents). The
argument ustr and the result are unicode strings, if encoding is "ASCII" then all non-ASCII char-
acters are translated, otherwise only the non-latin1 characters. If the string "single" in an argument
then only substitutions are considered which don’t make the result string longer. The translations are
stored in a sorted list SimplifiedUnicodeTable. Its entries are of the form [codepoint, trans1,
trans2, ...]. Here trans1 and so on is either an integer for the codepoint of a substitution char-
acter or it is a list of codepoint integers. If you are missing characters in this list and know a sensible
ASCII approximation, then add an entry (with AddSet (Reference: AddSet)) and tell the GAPDoc
authors about it. (The initial content of SimplifiedUnicodeTable was mainly generated from the
“transtab” tables by Markus Kuhn.)

The function LowercaseUnicodeString gets and returns a unicode string and translates
each uppercase character to its corresponding lowercase version. This function uses a list
LowercaseUnicodeTable of pairs of codepoint integers. This list was generated using the file
UnicodeData.txt from the unicode definition (field 14 in each row).

The function UppercaseUnicodeString does the similar translation to uppercase characters.
Example

gap> ustr := Unicode("a and ö", "XML");
Unicode("a and ö")
gap> SimplifiedUnicodeString(ustr, "ASCII");
Unicode("a and oe")
gap> SimplifiedUnicodeString(ustr, "ASCII", "single");
Unicode("a and o")
gap> ustr2 := UppercaseUnicodeString(ustr);;
gap> Print(Encode(ustr2, GAPInfo.TermEncoding), "\n");
A AND Ö

6.2.3 Lengths of UTF-8 strings

▷ WidthUTF8String(str) (function)

▷ NrCharsUTF8String(str) (function)

Returns: an integer
Let str be a GAP string with text in UTF-8 encoding. There are three “lengths” of such a string

which must be distinguished. The operation Length (Reference: Length) returns the number of
bytes and so the memory occupied by str . The function NrCharsUTF8String returns the number of
unicode characters in str , that is the length of Unicode(str).

In many applications the function WidthUTF8String is more interesting, it returns the number
of columns needed by the string if printed to a terminal. This takes into account that some unicode

GAPDoc 65

characters are combining characters and that there are wide characters which need two columns (e.g.,
for Chinese or Japanese). (To be precise: This implementation assumes that there are no control
characters in str and uses the character width returned by the wcwidth function in the GNU C-library
called with UTF-8 locale.)

Example
gap> # A, German umlaut u, B, zero width space, C, newline
gap> str := Encode(Unicode("AüB​C\n", "XML"));;
gap> Print(str);
AüBC
gap> # umlaut u needs two bytes and the zero width space three
gap> Length(str);
9
gap> NrCharsUTF8String(str);
6
gap> # zero width space and newline don’t contribute to width
gap> WidthUTF8String(str);
4

6.2.4 InitialSubstringUTF8String

▷ InitialSubstringUTF8String(str, maxwidth[, suf]) (function)

Returns: UTF-8 encoded string
The arguments str and suf each must be a GAP string with text in UTF-8 encoding or a unicode

string. The argument suf is optional and its default value is the empty string. If the visible width of
str is at most maxwidth then str is returned as UTF-8 encoded GAP string. Otherwise, suf is
appended to the maximal initial substring of str such that the total visible width of the result is at
most maxwidth . Example

gap> # A, German umlaut u, B, zero width space, C, newline
gap> str := Encode(Unicode("AüB​C\n", "XML"));;
gap> ini := InitialSubstringUTF8String(str, 3);;
gap> WidthUTF8String(ini);
3
gap> IntListUnicodeString(Unicode(ini));
[65, 252, 66, 8203]
gap> l := Unicode([23380, 22827, 23376]);; # three chars of width 2
gap> s := InitialSubstringUTF8String(l, 4, "*");;
gap> WidthUTF8String(s);
3

6.3 Print Utilities

The following printing utilities turned out to be useful for interactive work with texts in GAP. But
they are more general and so we document them here.

6.3.1 PrintTo1

▷ PrintTo1(filename, fun) (function)

▷ AppendTo1(filename, fun) (function)

GAPDoc 66

The argument fun must be a function without arguments. Everything which is printed by a call
fun() is printed into the file filename . As with PrintTo (Reference: PrintTo) and AppendTo
(Reference: AppendTo) this overwrites or appends to, respectively, a previous content of filename .

These functions can be particularly efficient when many small pieces of text shall be written to a
file, because no multiple reopening of the file is necessary.

Example
gap> f := function() local i;
> for i in [1..100000] do Print(i, "\n"); od; end;;
gap> PrintTo1("nonsense", f); # now check the local file ‘nonsense’

6.3.2 StringPrint

▷ StringPrint(obj1[, obj2[, ...]]) (function)

▷ StringView(obj) (function)

▷ StringDisplay(obj) (function)

These functions return a string containing the output of a Print, ViewObj or Display call, re-
spectively, with the same arguments.

This should be considered as a (temporary?) hack. It would be better to have String (Reference:
String) methods for all GAP objects and to have a generic Print (Reference: Print)-function which
just interprets these strings.

6.3.3 PrintFormattedString

▷ PrintFormattedString(str) (function)

This function prints a string str . The difference to Print(str); is that no additional line breaks
are introduced by GAP’s standard printing mechanism. This can be used to print lines which are longer
than the current screen width. In particular one can print text which contains escape sequences like
those explained in TextAttr (6.1.2), where lines may have more characters than visible characters.

6.3.4 Page

▷ Page(...) (function)

▷ PageDisplay(obj) (function)

These functions are similar to Print (Reference: Print) and Display (Reference: Display),
respectively. The difference is that the output is not sent directly to the screen, but is piped into the
current pager; see Pager (Reference: Pager).

Example
gap> Page([1..1421]+0);
gap> PageDisplay(CharacterTable("Symmetric", 14));

6.3.5 StringFile

▷ StringFile(filename) (function)

▷ FileString(filename, str[, append]) (function)

GAPDoc 67

The function StringFile returns the content of file filename as a string. This works efficiently
with arbitrary (binary or text) files. If something went wrong, this function returns fail.

Conversely the function FileString writes the content of a string str into the file filename . If
the optional third argument append is given and equals true then the content of str is appended to
the file. Otherwise previous content of the file is deleted. This function returns the number of bytes
written or fail if something went wrong.

Both functions are quite efficient, even with large files.

Chapter 7

Utilities for Bibliographies

A standard for collecting references (in particular to mathematical texts) is BibTEX
(https://tug.org/bibtex/). A disadvantage of BibTEX is that the format of the data is
specified with the use by LATEX in mind. The data format is less suited for conversion to other
document types like plain text or HTML.

In the first section we describe utilities for using data from BibTEX files in GAP.
In the second section we introduce a new XML based data format BibXMLext for bibliographies

which seems better suited for other tasks than using it with LATEX.
Another section will describe utilities to deal with BibXMLext data in GAP.

7.1 Parsing BibTEX Files

Here are functions for parsing, normalizing and printing reference lists in BibTEX format. The refer-
ence describing this format is [Lam85, Appendix B].

7.1.1 ParseBibFiles

▷ ParseBibFiles(bibfile1[, bibfile2[, ...]]) (function)

▷ ParseBibStrings(str1[, str2[, ...]]) (function)

Returns: list [list of bib-records, list of abbrevs, list of expansions]
The first function parses the files bibfile1 and so on (if a file does not exist the extension .bib

is appended) in BibTEX format and returns a list as follows: [entries, strings, texts]. Here
entries is a list of records, one record for each reference contained in bibfile . Then strings is a
list of abbreviations defined by @string-entries in bibfile and texts is a list which contains in the
corresponding position the full text for such an abbreviation.

The second function does the same, but the input is given as GAP strings str1 and so on.
The records in entries store key-value pairs of a BibTEX reference in the form rec(key1 =

value1, ...). The names of the keys are converted to lower case. The type of the reference (i.e.,
book, article, ...) and the citation key are stored as components .Type and .Label. The records also
have a .From field that says that the data are read from a BibTEX source.

As an example consider the following BibTEX file.
doc/test.bib

@string{ j = "Important Journal" }
@article{ AB2000, Author= "Fritz A. First and Sec, X. Y.",
TITLE="Short", journal = j, year = 2000 }

68

https://tug.org/bibtex/

GAPDoc 69

Example
gap> gddirs := DirectoriesPackageLibrary("gapdoc","doc");;
gap> f := Filename(gddirs, "test.bib");;
gap> bib := ParseBibFiles(f);
[[rec(From := rec(BibTeX := true), Label := "AB2000",

Type := "article", author := "Fritz A. First and Sec, X. Y."
, journal := "Important Journal", title := "Short",

year := "2000")], ["j"], ["Important Journal"]]

7.1.2 NormalizedNameAndKey

▷ NormalizedNameAndKey(namestr) (function)

Returns: list of strings and names as lists
▷ NormalizeNameAndKey(r) (function)

Returns: nothing
The argument namestr must be a string describing an author or a list of authors as described in the

BibTEX documentation in [Lam85, Appendix B 1.2]. The function NormalizedNameAndKey returns
a list of the form [normalized name string, short key, long key, names as lists]. The first entry is a
normalized form of the input where names are written as “lastname, first name initials”. The second
and third entry are the name parts of a short and long key for the bibliography entry, formed from the
(initials of) last names. The fourth entry is a list of lists, one for each name, where a name is described
by three strings for the last name, the first name initials and the first name(s) as given in the input.

The function NormalizeNameAndKey gets as argument r a record for a bibliography entry as re-
turned by ParseBibFiles (7.1.1). It substitutes .author and .editor fields of r by their normalized
form, the original versions are stored in fields .authororig and .editororig.

Furthermore a short and a long citation key is generated and stored in components .printedkey
(only if no .key is already bound) and .keylong.

We continue the example from ParseBibFiles (7.1.1).
Example

gap> gddirs := DirectoriesPackageLibrary("gapdoc","doc");;
gap> f := Filename(gddirs, "test.bib");;
gap> bib := ParseBibFiles(f);;
gap> NormalizedNameAndKey(bib[1][1].author);
["First, F. A. and Sec, X. Y.", "FS", "firstsec",

[["First", "F. A.", "Fritz A."], ["Sec", "X. Y.", "X. Y."]]]
gap> NormalizeNameAndKey(bib[1][1]);
gap> bib[1][1];
rec(From := rec(BibTeX := true), Label := "AB2000",

Type := "article", author := "First, F. A. and Sec, X. Y.",
authororig := "Fritz A. First and Sec, X. Y.",
journal := "Important Journal", keylong := "firstsec2000",
printedkey := "FS00", title := "Short", year := "2000")

7.1.3 WriteBibFile

▷ WriteBibFile(bibfile, bib) (function)

Returns: nothing
This is the converse of ParseBibFiles (7.1.1). Here bib either must have a format as list

of three lists as it is returned by ParseBibFiles (7.1.1). Or bib can be a record as returned by

GAPDoc 70

ParseBibXMLextFiles (7.3.4). A BibTEX file bibfile is written and the entries are formatted in a
uniform way. All given abbreviations are used while writing this file.

We continue the example from NormalizeNameAndKey (7.1.2). The command
Example

gap> WriteBibFile("nicer.bib", bib);

produces a file nicer.bib as follows:
nicer.bib

@string{j = "Important Journal" }

@article{ AB2000,
author = {First, F. A. and Sec, X. Y.},
title = {Short},
journal = j,
year = {2000},
authororig = {Fritz A. First and Sec, X. Y.},
keylong = {firstsec2000},
printedkey = {FS00}

}

7.1.4 LabelsFromBibTeX

▷ LabelsFromBibTeX(path, keys, bibfiles, style) (function)

Returns: a list of pairs of strings [key, label]
This function uses bibtex to determine the ordering of a list of references and a label for each

entry which is typeset in a document citing these references.
The argument path is a directory specified as string or directory object. The argument bibfiles

must be a list of files in BibTEX format, each specified by a path relative to the first argument, or an
absolute path (starting with ’/’) or relative to the GAP roots (starting with "gap://"). The list keys
must contain strings which occur as keys in the given BibTEX files. Finally the string style must be
the name of a bibliography style (like "alpha").

The list returned by this function contains pairs [key, label] where key is one of the entries of
keys and label is a string used for citations of the bibliography entry in a document. These pairs are
ordered as the reference list produced by BibTEX.

Example
gap> f := Filename(DirectoriesPackageLibrary("gapdoc","doc"), "test.bib");;
gap> LabelsFromBibTeX(".", ["AB2000"], [f], "alpha");
[["AB2000", "FS00"]]

7.1.5 InfoBibTools

▷ InfoBibTools (info class)

The default level of this info class is 1. Functions like ParseBibFiles (7.1.1), StringBibAs...
are then printing some information. You can suppress it by setting the level of InfoBibTools to 0.
With level 2 there may be some more information for debugging purposes.

GAPDoc 71

7.2 The BibXMLext Format

Bibliographical data in BibTEX files have the disadvantage that the actual data are given in LATEX
syntax. This makes it difficult to use the data for anything but for LATEX, say for representations of
the data as plain text or HTML. For example: mathematical formulae are in LATEX $ environments,
non-ASCII characters can be specified in many strange ways, and how to specify URLs for links if
the output format allows them?

Here we propose an XML data format for bibliographical data which addresses these problems,
it is called BibXMLext. In the next section we describe some tools for generating (an approximation
to) this data format from BibTEX data, and for using data given in BibXMLext format for various
purposes.

The first motivation for this development was the handling of bibliographical data in GAPDoc,
but the format and the tools are certainly useful for other purposes as well.

We started from a DTD bibxml.dtd which is publicly available, say from
https://bibtexml.sf.net/. This is essentially a reformulation of the definition of the BibTEX
format, including several of some widely used further fields. This has already the advantage that a
generic XML parser can check the validity of the data entries, for example for missing compulsary
fields in entries. We applied the following changes and extensions to define the DTD for BibXMLext,
stored in the file bibxmlext.dtd which can be found in the root directory of this GAPDoc package
(and in Appendix C):

names
Lists of names in the author and editor fields in BibTEX are difficult to parse. Here they must
be given by a sequence of <name>-elements which each contain an optional <first>- and a
<last>-element for the first and last names, respectively.

<M> and <Math>
These elements enclose mathematical formulae, the content is LATEX code (without the $). These
should be handled in the same way as the elements with the same names in GAPDoc, see 3.8.2
and 3.8.1. In particular, simple formulae which have a well defined plain text representation can
be given in <M>-elements.

Encoding
Note that in XML files we can use the full range of unicode characters, see
https://www.unicode.org/. All non-ASCII characters should be specified as unicode char-
acters. This makes dealing with special characters easy for plain text or HTML, only for use
with LATEX some sort of translation is necessary.

<URL>
These elements are allowed everywhere in the text and should be represented by links in con-
verted formats which allow this. It is used in the same way as the element with the same name
in GAPDoc, see 3.5.5.

<Alt Only="..."> and <Alt Not="...">
Sometimes information should be given in different ways, depending on the output format of
the data. This is possible with the <Alt>-elements with the same definition as in GAPDoc, see
3.9.1.

<C> This element should be used to protect text from case changes by converters (the extra {} char-
acters in BibTEX title fields).

https://bibtexml.sf.net/
https://www.unicode.org/

GAPDoc 72

<string key="..." value="..."/> and <value key="..."/>
The <string>-element defines key-value pairs which can be used in any field via the
<value>-element (not only for whole fields but also parts of the text).

<other type="...">
This is a generic element for fields which are otherwise not supported. An arbitrary number of
them is allowed for each entry, so any kind of additional data can be added to entries.

<Wrap Name="...">
This generic element is allowed inside all fields. This markup will be just ignored (but not the
element content) by our standard tools. But it can be a useful hook for introducing arbitrary
further markup (and our tools can easily be extended to handle it).

Extra entities
The DTD defines the standard XML entities (2.1.10 and the entities (non-breakable
space), – and ©right;. Use – in page ranges.

For further details of the DTD we refer to the file bibxmlext.dtd itself which is shown in appendix
C. That file also recalls some information from the BibTEX documentation on how the standard fields
of entries should be used. Which entry types and which fields are supported (and the ordering of
the fields which is fixed by a DTD) can be either read off the DTD, or within GAP one can use the
function TemplateBibXML (7.3.10) to get templates for the various entry types.

Here is an example of a BibXMLext document:
doc/testbib.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE file SYSTEM "bibxmlext.dtd">
<file>
<string key="j" value="Important Journal"/>
<entry id="AB2000"><article>

<author>
<name><first>Fritz A.</first><last>First</last></name>
<name><first>X. Y.</first><last>Secőnd</last></name>

</author>
<title>The <Wrap Name="Package"> <C>F</C>ritz</Wrap> package for the

formula <M>x^y - l_{{i+1}} \rightarrow \mathbb{R}</M></title>
<journal><value key="j"/></journal>
<year>2000</year>
<number>13</number>
<pages>13–25</pages>
<note>Online data at <URL Text="Bla Bla Publisher">

http://www.publish.com/~ImpJ/123#data</URL></note>
<other type="mycomment">very useful</other>

</article></entry>
</file>

There is a standard XML header and a DOCTYPE declaration referring to the bibxmlext.dtd DTD
mentioned above. Local entities could be defined in the DOCTYPE tag as shown in the example in
2.2.3. The actual content of the document is inside a <file>-element, it consists of <string>- and
<entry>-elements. Several of the BibXMLext markup features are shown. We will use this input
document for some examples below.

GAPDoc 73

7.3 Utilities for BibXMLext data

7.3.1 Translating BibTEX to BibXMLext

First we describe a tool which can translate bibliography entries from BibTEX data to BibXMLext
<entry>-elements. It also does some validation of the data. In some cases it is desirable to improve
the result by hand afterwards (editing formulae, adding <URL>-elements, translating non-ASCII char-
acters to unicode, ...).

See WriteBibXMLextFile (7.3.5) below for how to write the results to a BibXMLext file.

7.3.2 HeuristicTranslationsLaTeX2XML.Apply

▷ HeuristicTranslationsLaTeX2XML.Apply(str) (function)

Returns: a string
▷ HeuristicTranslationsLaTeX2XML.ApplyToFile(fnam[, outnam]) (function)

Returns: nothing
These utilities translate some LATEX code into text in UTF-8 encoding. The input is given as a

string str , or a file name fnam , respectively. The first function returns the translated string. The
second function with one argument overwrites the given file with the translated text. Optionally, the
translated file content can be written to another file, if its name is given as second argument outnam .

The record HeuristicTranslationsLaTeX2XML mainly contains translations of LATEX macros
for special characters which were found in hundreds of BibTEX entries from MathSciNet. Just look
at this record if you want to know how it works. It is easy to extend, and if you have improvements
which may be of general interest, please send them to the GAPDoc author.

Example
gap> s := "\\\"u\\’{e}\\‘e{\\ss}";;
gap> Print(s, "\n");
\"u\’{e}\‘e{\ss}
gap> Print(HeuristicTranslationsLaTeX2XML.Apply(s),"\n");
üéèß

7.3.3 StringBibAsXMLext

▷ StringBibAsXMLext(bibentry[, abbrvs, vals][, encoding]) (function)

Returns: a string with XML code, or fail
The argument bibentry is a record representing an entry from a BibTEX file, as returned in the

first list of the result of ParseBibFiles (7.1.1). The optional two arguments abbrvs and vals can
be lists of abbreviations and substitution strings, as returned as second and third list element in the
result of ParseBibFiles (7.1.1). The optional argument encoding specifies the character encoding
of the string components of bibentry . If this is not given it is checked if all strings are valid UTF-8
encoded strings, in that case it is assumed that the encoding is UTF-8, otherwise the latin1 encoding
is assumed.

The function StringBibAsXMLext creates XML code of an <entry>-element in BibXMLext
format. The result is in UTF-8 encoding and contains some heuristic translations, like splitting name
lists, finding places for <C>-elements, putting formulae in <M>-elements, substituting some characters.
The result should always be checked and maybe improved by hand. Some validity checks are applied
to the given data, for example if all non-optional fields are given. If this check fails the function
returns fail.

https://www.ams.org/mathscinet/

GAPDoc 74

If your BibTEX input contains LATEX markup for special characters, it can be con-
venient to translate this input with HeuristicTranslationsLaTeX2XML.Apply (7.3.2) or
HeuristicTranslationsLaTeX2XML.ApplyToFile (7.3.2) before parsing it as BibTEX.

As an example we consider again the short BibTEX file doc/test.bib shown in the example for
ParseBibFiles (7.1.1).

Example
gap> gddirs := DirectoriesPackageLibrary("gapdoc","doc");;
gap> f := Filename(gddirs, "test.bib");;
gap> bib := ParseBibFiles(f);;
gap> str := StringBibAsXMLext(bib[1][1], bib[2], bib[3]);;
gap> Print(str, "\n");
<entry id="AB2000"><article>

<author>
<name><first>Fritz A.</first><last>First</last></name>
<name><first>X. Y.</first><last>Sec</last></name>

</author>
<title>Short</title>
<journal><value key="j"/></journal>
<year>2000</year>

</article></entry>

The following functions allow parsing of data which are already in BibXMLext format.

7.3.4 ParseBibXMLextString

▷ ParseBibXMLextString(str[, res]) (function)

▷ ParseBibXMLextFiles(fname1[, fname2[, ...]]) (function)

Returns: a record with fields .entries, .strings and .entities
The first function gets a string str containing a BibXMLext document or a part of it. It re-

turns a record with the three mentioned fields. Here .entries is a list of partial XML parse
trees for the <entry>-elements in str . The field .strings is a list of key-value pairs from the
<string>-elements in str . And .strings is a list of name-value pairs of the named entities which
were used during the parsing.

The optional argument res can be the result of a former call of this function, in that case the newly
parsed entries are added to this data structure.

The second function ParseBibXMLextFiles uses the first on the content of all files given by
filenames fname1 and so on. It collects the results in a single record.

As an example we parse the file testbib.xml shown in 7.2.
Example

gap> gddirs := DirectoriesPackageLibrary("gapdoc","doc");;
gap> f := Filename(gddirs, "testbib.xml");;
gap> bib := ParseBibXMLextFiles(f);;
gap> Set(RecNames(bib));
["entities", "entries", "strings"]
gap> bib.entries;
[<BibXMLext entry: AB2000>]
gap> bib.strings;
[["j", "Important Journal"]]
gap> bib.entities[1];
["amp", "&#38;"]

GAPDoc 75

7.3.5 WriteBibXMLextFile

▷ WriteBibXMLextFile(fname, bib) (function)

Returns: nothing
This function writes a BibXMLext file with name fname .
There are three possibilities to specify the bibliography entries in the argument bib . It can be a

list of three lists as returned by ParseBibFiles (7.1.1). Or it can be just the first of such three lists
in which case the other two lists are assumed to be empty. To all entries of the (first) list the function
StringBibAsXMLext (7.3.3) is applied and the resulting strings are written to the result file.

The third possibility is that bib is a record in the format as returned by ParseBibXMLextString
(7.3.4) and ParseBibXMLextFiles (7.3.4). In this case the entries for the BibXMLext file are pro-
duced with StringXMLElement (5.2.2), and if bib.entities is bound then it is tried to resubstitute
parts of the string by the given entities with EntitySubstitution (5.2.3).

As an example we write back the result of the example shown for ParseBibXMLextFiles (7.3.4)
to an equivalent XML file.

Example
gap> gddirs := DirectoriesPackageLibrary("gapdoc","doc");;
gap> f := Filename(gddirs, "testbib.xml");;
gap> bib := ParseBibXMLextFiles(f);;
gap> WriteBibXMLextFile("test.xml", bib);

7.3.6 Bibliography Entries as Records

For working with BibXMLext entries we find it convenient to first translate the parse tree of an entry,
as returned by ParseBibXMLextFiles (7.3.4), to a record with the field names of the entry as com-
ponents whose value is the content of the field as string. These strings are generated with respect to a
result type. The records are generated by the following function which can be customized by the user.

7.3.7 RecBibXMLEntry

▷ RecBibXMLEntry(entry[, restype][, strings][, options]) (function)

Returns: a record with fields as strings
This function generates a content string for each field of a bibliography entry and assigns them to

record components. This content may depend on the requested result type and possibly some given
options.

The arguments are as follows: entry is the parse tree of an <entry> element as returned by
ParseBibXMLextString (7.3.4) or ParseBibXMLextFiles (7.3.4). The optional argument restype
describes the type of the result. This package supports currently the types "BibTeX", "Text" and
"HTML". The default is "BibTeX". The optional argument strings must be a list of key-value
pairs as returned in the component .strings in the result of ParseBibXMLextString (7.3.4). The
argument options must be a record.

If the entry contains an author field then the result will also contain a component .authorAsList
which is a list containing for each author a list with three entries of the form [last name, first
name initials, first name] (the third entry means the first name as given in the data). Similarly,
an editor field is accompanied by a component .editorAsList.

The following options are currently supported.
If options.fullname is bound and set to true then the full given first names for authors and edi-

tors will be used, the default is to use the initials of the first names. Also, if options.namefirstlast

GAPDoc 76

is bound and set to true then the names are written in the form “first-name(s) last-name”, the default
is the form “last-name, first-name(s)”.

If options.href is bound and set to false then the "BibTeX" type result will not use \href
commands. The default is to produce \href commands from <URL>-elements such that LATEX with
the hyperref package can produce links for them.

The content of an <Alt>-element with Only-attribute is included if restype is given in the at-
tribute and ignored otherwise, and vice versa in case of a Not-attribute. If options.useAlt is bound,
it must be a list of strings to which restype is added. Then an <Alt>-element with Only-attribute is
evaluated if the intersection of options.useAlt and the types given in the attribute is not empty. In
case of a Not-attribute the element is evaluated if this intersection is empty.

If restype is "BibTeX" then the string fields in the result will be recoded with Encode (6.2.2)
and target "LaTeX". If options.hasLaTeXmarkup is bound and set to true (for example, because
the data are originally read from BibTEX files), then the target "LaTeXleavemarkup" will be used.

We use again the file shown in the example for ParseBibXMLextFiles (7.3.4).
Example

gap> gddirs := DirectoriesPackageLibrary("gapdoc","doc");;
gap> f := Filename(gddirs, "testbib.xml");;
gap> bib := ParseBibXMLextFiles(f);;
gap> e := bib.entries[1];; strs := bib.strings;;
gap> Print(RecBibXMLEntry(e, "BibTeX", strs), "\n");
rec(

From := rec(
BibXML := true,
options := rec(

),
type := "BibTeX"),

Label := "AB2000",
Type := "article",
author := "First, F. A. and Sec{\\H o}nd, X. Y.",
authorAsList :=
[["First", "F. A.", "Fritz A."],

["Sec\305\221nd", "X. Y.", "X. Y."]],
journal := "Important Journal",
mycomment := "very useful",
note :=
"Online data at \\href {http://www.publish.com/~ImpJ/123#data} {Bla\

Bla Publisher}",
number := "13",
pages := "13{\\textendash}25",
printedkey := "FS00",
title :=
"The {F}ritz package for the \n formula $x^y - l_{{i+1}} \

\\rightarrow \\mathbb{R}$",
year := "2000")

gap> Print(RecBibXMLEntry(e, "HTML", strs).note, "\n");
Online data at Bla Bla\
Publisher

GAPDoc 77

7.3.8 AddHandlerBuildRecBibXMLEntry

▷ AddHandlerBuildRecBibXMLEntry(elementname, restype, handler) (function)

Returns: nothing
The argument elementname must be the name of an entry field supported by the BibXMLext for-

mat, the name of one of the special elements "C", "M", "Math", "URL" or of the form "Wrap:myname"
or any string "mytype" (which then corresponds to entry fields <other type="mytype">). The
string "Finish" has an exceptional meaning, see below.

restype is a string describing the result type for which the handler is installed, see
RecBibXMLEntry (7.3.7).

For both arguments, elementname and restype , it is also possible to give lists of the described
ones for installing several handler at once.

The argument handler must be a function with five arguments of the form handler(entry, r,
restype, strings, options). Here entry is a parse tree of a BibXMLext <entry>-element,
r is a node in this tree for an element elementname , and restype , strings and options are as
explained in RecBibXMLEntry (7.3.7). The function should return a string representing the content of
the node r . If elementname is of the form "Wrap:myname" the handler is used for elements of form
<Wrap Name="myname">...</Wrap>.

If elementname is "Finish" the handler should look like above except that now r is the record
generated by RecBibXMLEntry (7.3.7) just before it is returned. Here the handler should return noth-
ing. It can be used to manipulate the record r , for example for changing the encoding of the strings or
for adding some more components.

The installed handler is called by BuildRecBibXMLEntry(entry , r , restype , strings ,
options). The string for the whole content of an element can be generated by
ContentBuildRecBibXMLEntry(entry , r , restype , strings , options).

We continue the example from RecBibXMLEntry (7.3.7) and install a handler for the <Wrap
Name="Package">-element such that LATEX puts its content in a sans serif font.

Example
gap> AddHandlerBuildRecBibXMLEntry("Wrap:Package", "BibTeX",
> function(entry, r, restype, strings, options)
> return Concatenation("\\textsf{", ContentBuildRecBibXMLEntry(
> entry, r, restype, strings, options), "}");
> end);
gap>
gap> Print(RecBibXMLEntry(e, "BibTeX", strs).title, "\n");
The \textsf{ {F}ritz} package for the

formula $x^y - l_{{i+1}} \rightarrow \mathbb{R}$
gap> Print(RecBibXMLEntry(e, "Text", strs).title, "\n");
The Fritz package for the

formula x^y - l_{i+1} -> R
gap> AddHandlerBuildRecBibXMLEntry("Wrap:Package", "BibTeX", "Ignore");

7.3.9 StringBibXMLEntry

▷ StringBibXMLEntry(entry[, restype][, strings][, options]) (function)

Returns: a string
The arguments of this function have the same meaning as in RecBibXMLEntry (7.3.7) but the

return value is a string representing the bibliography entry in a format specified by restype (default
is "BibTeX").

GAPDoc 78

Currently, the following cases for restype are supported:

"BibTeX"
A string with BibTEX source code is generated.

"Text"
A text representation of the text is returned. If options.ansi is bound it must be a record.
The components must have names Bib_Label, Bib_author, and so on for all fieldnames. The
value of each component is a pair of strings which will enclose the content of the field in the
result or the first of these strings in which case the default for the second is TextAttr.reset
(see TextAttr (6.1.2)). If you give an empty record here, some default ANSI color markup will
be used.

"HTML"
An HTML representation of the bibliography entry is returned. The text from each field is
enclosed in markup (mostly -elements) with the class attribute set to the field name.
This allows a detailed layout of the code via a style sheet file. If options.MathJax is bound
and has the value true then formulae are encoded for display on pages with MathJax support.

"Markdown"
A representation of the bibliography entry in Markdown format is returned. If options.markup
is bound it must be a record which is used in the same way as options.ansi for the "Text"
version.

We use again the file shown in the example for ParseBibXMLextFiles (7.3.4).
Example

edited for readability
gap> gddirs := DirectoriesPackageLibrary("gapdoc","doc");;
gap> f := Filename(gddirs, "testbib.xml");;
gap> bib := ParseBibXMLextFiles(f);;
gap> e := bib.entries[1];; strs := bib.strings;;
gap> ebib := StringBibXMLEntry(e, "BibTeX", strs);;
gap> PrintFormattedString(ebib);
@article{ AB2000,

author = {First, F. A. and Sec{\H o}nd, X. Y.},
title = {The {F}ritz package for the formula $x^y -

l_{{i+1}} \rightarrow \mathbb{R}$},
journal = {Important Journal},
number = {13},
year = {2000},
pages = {13{\textendash}25},
note = {Online data at \href

{http://www.publish.com/~ImpJ/123#data} {Bla
Bla Publisher}},

mycomment = {very useful},
printedkey = {FS00}

}
gap> etxt := StringBibXMLEntry(e, "Text", strs);;
gap> etxt := SimplifiedUnicodeString(Unicode(etxt), "latin1", "single");;
gap> etxt := Encode(etxt, GAPInfo.TermEncoding);;
gap> PrintFormattedString(etxt);
[FS00] First, F. A. and Second, X. Y., The Fritz package for the

GAPDoc 79

formula x^y - l_{i+1} ? R, Important Journal, 13 (2000), 13-25,
(Online data at Bla Bla Publisher
(http://www.publish.com/~ImpJ/123#data)).

gap> ehtml := StringBibXMLEntry(e, "HTML", strs, rec(MathJax := true));;
gap> ehtml := Encode(Unicode(ehtml), GAPInfo.TermEncoding);;
gap> PrintFormattedString(ehtml);
<p class=’BibEntry’>
[FS00]
<b class=’BibAuthor’>First, F. A. and Second, X. Y.,
<i class=’BibTitle’>The Fritz package for the

formula \(x^y - l_{{i+1}} \rightarrow \mathbb{R}\)</i>,
Important Journal

(13)
(2000),
13-25

(Online data at
Bla Bla
Publisher).
</p>

The following command may be useful to generate completly new bibliography entries in BibXM-
Lext format. It also informs about the supported entry types and field names.

7.3.10 TemplateBibXML

▷ TemplateBibXML([type]) (function)

Returns: list of types or string
Without an argument this function returns a list of the supported entry types in BibXMLext docu-

ments.
With an argument type of one of the supported types the function returns a string which is a

template for a corresponding BibXMLext entry. Optional field elements have a * appended. If an
element has the word OR appended, then either this element or the next must/can be given, not both. If
AND/OR is appended then this and/or the next can/must be given. Elements which can appear several
times have a + appended. Places to fill are marked by an X.

Example
gap> TemplateBibXML();
["article", "book", "booklet", "conference", "inbook",

"incollection", "inproceedings", "manual", "mastersthesis", "misc",
"phdthesis", "proceedings", "techreport", "unpublished"]

gap> Print(TemplateBibXML("inbook"));
<entry id="X"><inbook>

<author>
<name><first>X</first><last>X</last></name>+

</author>OR
<editor>

<name><first>X</first><last>X</last></name>+
</editor>
<title>X</title>
<chapter>X</chapter>AND/OR

GAPDoc 80

<pages>X</pages>
<publisher>X</publisher>
<year>X</year>
<volume>X</volume>*OR
<number>X</number>*
<series>X</series>*
<type>X</type>*
<address>X</address>*
<edition>X</edition>*
<month>X</month>*
<note>X</note>*
<key>X</key>*
<annotate>X</annotate>*
<crossref>X</crossref>*
<abstract>X</abstract>*
<affiliation>X</affiliation>*
<contents>X</contents>*
<copyright>X</copyright>*
<isbn>X</isbn>*OR
<issn>X</issn>*
<keywords>X</keywords>*
<language>X</language>*
<lccn>X</lccn>*
<location>X</location>*
<mrnumber>X</mrnumber>*
<mrclass>X</mrclass>*
<mrreviewer>X</mrreviewer>*
<price>X</price>*
<size>X</size>*
<url>X</url>*
<category>X</category>*
<other type="X">X</other>*+

</inbook></entry>

7.4 Getting BibTEX entries from MathSciNet

We provide utilities to access the MathSciNet data base from within GAP. The first condition for
this to work is that one of the programs wget or curl is installed on your system. The second is, of
course, that you use these functions from a computer which has access to MathSciNet.

Please note, that the usual license for MathSciNet access does not allow for automated searches
in the database. Therefore, only use the SearchMR (7.4.1) function for single queries, as you would
do using your webbrowser.

7.4.1 SearchMR

▷ SearchMR(qurec) (function)

▷ SearchMRBib(bib) (function)

Returns: a list of strings, a string or fail
The first function SearchMR provides the same functionality as the Web interface MathSciNet.

The query strings must be given as a record, and the following components of this record are rec-

https://www.ams.org/mathscinet/
https://www.ams.org/mathscinet/

GAPDoc 81

ognized: Author, AuthorRelated, Title, ReviewText, Journal, InstitutionCode, Series,
MSCPrimSec, MSCPrimary, MRNumber, Anywhere, References and Year.

Furthermore, the component type can be specified. It can be one of "bibtex" (the default if not
given), "pdf", "html" and probably others. In the last cases the function returns a string with the
content of the web page returned by MathSciNet. In the first case the MathSciNet interface returns a
web page with BibTEX entries, for convenience this function returns a list of strings, each containing
the BibTEX text for a single result entry.

If a component uri is bound and set to true the function does not actually send a request to
MathSciNet but returns a string with the URI that can be called for the request.

The format of a .Year component can be either a four digit number, optionally preceded by one
of the characters ’<’, ’>’ or ’=’, or it can be two four digit numbers separated by a - to specify a
year range.

The function SearchMRBib gets a record of a parsed BibTEX entry as input as returned by
ParseBibFiles (7.1.1) or ParseBibStrings (7.1.1). It tries to generate some sensible input from
this information for SearchMR and calls that function.

Example
gap> ll := SearchMR(rec(Author:="Gauss", Title:="Disquisitiones"));;
gap> ll2 := List(ll, HeuristicTranslationsLaTeX2XML.Apply);;
gap> bib := ParseBibStrings(Concatenation(ll2));;
gap> bibxml := List(bib[1], StringBibAsXMLext);;
gap> bib2 := ParseBibXMLextString(Concatenation(bibxml));;
gap> for b in bib2.entries do
> PrintFormattedString(StringBibXMLEntry(b, "Text")); od;
[Gau95] Gauss, C. F., Disquisitiones arithmeticae, Academia
Colombiana de Ciencias Exactas, Físicas y Naturales, Bogotá,
Colección Enrique Pérez Arbeláez [Enrique Pérez Arbeláez
Collection], 10 (1995), xliv+495 pages, (Translated from the Latin
by Hugo Barrantes Campos, Michael Josephy and Ángel Ruiz Zúñiga,
With a preface by Ruiz Zúñiga).

[Gau86] Gauss, C. F., Disquisitiones arithmeticae, Springer-Verlag,
New York (1986), xx+472 pages, (Translated and with a preface by
Arthur A. Clarke, Revised by William C. Waterhouse, Cornelius
Greither and A. W. Grootendorst and with a preface by Waterhouse).

[Gau66] Gauss, C. F., Disquisitiones arithmeticae, Yale University
Press, New Haven, Conn.-London, Translated into English by Arthur A.
Clarke, S. J (1966), xx+472 pages.

Appendix A

The File 3k+1.xml

Here is the complete source of the example GAPDoc document 3k+1.xml discussed in Section 1.2.
3k+1.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- A complete "fake package" documentation
-->

<!DOCTYPE Book SYSTEM "gapdoc.dtd">

<Book Name="3k+1">

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authör

<Email>3kplusone@dev.null</Email>
</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.

</Copyright>
</TitlePage>

<TableOfContents/>

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>

<Section Label="sec:theory"> <Heading>Theory</Heading>
Let <M>k \in &NN;</M> be a natural number. We consider the
sequence <M>n(i, k), i \in &NN;,</M> with <M>n(1, k) = k</M> and
else <M>n(i+1, k) = n(i, k) / 2</M> if <M>n(i, k)</M> is even
and <M>n(i+1, k) = 3 n(i, k) + 1</M> if <M>n(i, k)</M> is odd.
<P/> It is not known whether for any natural number <M>k \in
&NN;</M> there is an <M>m \in &NN;</M> with <M>n(m, k) = 1</M>.
<P/>
<Package>ThreeKPlusOne</Package> provides the function <Ref
Func="ThreeKPlusOneSequence"/> to explore this for given
<M>n</M>. If you really want to know something about this

82

GAPDoc 83

problem, see <Cite Key="Wi98"/> or
<URL Text="this homepage">https://www.ku.de/mgf/mathematik/statistik/personen-des-lehrstuhls/prof-dr-guenther-wirsching</URL>
for more details (and forget this package).

</Section>

<Section> <Heading>Program</Heading>
In this section we describe the main function of this package.
<ManSection>

<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, if <A>max is
given.

<Example>
gap> ThreeKPlusOneSequence(101);
"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>

</Description>
</ManSection>

</Section>
</Chapter>

</Body>

<Bibliography Databases="3k+1" />
<TheIndex/>

</Book>

Appendix B

The File gapdoc.dtd

For easier reference we repeat here the complete content of the file gapdoc.dtd.
gapdoc.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!-- ==

gapdoc.dtd - XML Document type definition for GAP documentation
By Frank Lübeck and Max Neunhöffer
== -->

<!-- Note that this definition goes "bottom-up" because entities can only
be used after their definition in the file. -->

<!-- ==
Some entities:
== -->

<!-- The standard XML entities: -->

<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">
<!ENTITY apos "'">
<!ENTITY quot """>

<!-- The following were introduced in GAPDoc version < 1.0, it is no longer
necessary to take care of LaTeX special characters
(we keep the entities with simplified definitions for compatibility) -->

<!ENTITY tamp "&">
<!ENTITY tlt "<">
<!ENTITY tgt ">">
<!ENTITY hash "#">
<!ENTITY dollar "$">
<!ENTITY percent "%">
<!ENTITY tilde "~">
<!ENTITY bslash "\\">

84

GAPDoc 85

<!ENTITY obrace "{">
<!ENTITY cbrace "}">
<!ENTITY uscore "_">
<!ENTITY circum "^">

<!-- ==
Our predefined entities:
== -->

<!ENTITY nbsp " ">
<!ENTITY ndash "–">
<!ENTITY GAP "<Package>GAP</Package>">
<!ENTITY GAPDoc "<Package>GAPDoc</Package>">
<!ENTITY TeX

"<Alt Only=’LaTeX’>{\TeX}</Alt><Alt Not=’LaTeX’>TeX</Alt>">
<!ENTITY LaTeX

"<Alt Only=’LaTeX’>{\LaTeX}</Alt><Alt Not=’LaTeX’>LaTeX</Alt>">
<!ENTITY BibTeX

"<Alt Only=’LaTeX’>{Bib\TeX}</Alt><Alt Not=’LaTeX’>BibTeX</Alt>">
<!ENTITY MeatAxe "<Package>MeatAxe</Package>">
<!ENTITY XGAP "<Package>XGAP</Package>">
<!ENTITY copyright "©">

<!-- and unicode math symbols -->
<!ENTITY CC "ℂ" > <!-- double struck -->
<!ENTITY ZZ "ℤ" >
<!ENTITY NN "ℕ" >
<!ENTITY PP "ℙ" >
<!ENTITY QQ "ℚ" >
<!ENTITY HH "ℍ" >
<!ENTITY RR "ℝ" >

<!-- ==
The following describes the "innermost" documentation text which
can occur at various places in the document like for example
section headings. It does neither contain further sectioning
elements nor environments like Enums or Lists.
== -->

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br |
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |
Ref | Index |
Ignore" >

GAPDoc 86

<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and
"Not" attributes for normal text -->

<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED>

<!-- The following elements declare a certain block of InnerText to
have a certain property. They are non-terminal and can contain
any InnerText recursively. -->

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E (%InnerText;)*> <!-- the same as shortcut -->

<!-- The following is an empty element marking a paragraph boundary. -->

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- the same as shortcut -->

<!-- And here is an element for forcing a line break, not starting
a new paragraph. -->

<!ELEMENT Br EMPTY> <!-- a forced line break -->

<!-- The following elements mark a word or sentence to be of a certain
kind, such that it can be typeset differently. They are terminal
elements that should only contain character data. But we have to
allow Alt elements for handling special characters. For these
elements we introduce a long name - which is easy to remember -
and a short name - which you may prefer because of the shorter
markup. -->

<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword -->
<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->

<!ELEMENT Code (#PCDATA|Alt|A|Arg)*> <!-- GAP code -->
<!ELEMENT C (#PCDATA|Alt|A|Arg)*> <!-- GAP code (shortcut) -->

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->

<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key) -->
<!ELEMENT B (#PCDATA|Alt)*> <!-- "Button" (shortcut) -->

<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

GAPDoc 87

<!-- The following elements contain mathematical formulae. They are
terminal elements that contain character data in TeX notation. -->

<!-- Math with well defined translation to text output -->
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>
<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula -->
<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>
<!-- Mode="M" causes <M>-style formatting -->
<!ATTLIST Display Mode CDATA #IMPLIED>

<!-- The following elements contain GAP related text like code,
session logs or examples. They are all terminal elements and
consist of character data which is normally typeset verbatim. The
different types of the elements only control how they are
treated. -->

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism -->

<!ELEMENT Log (#PCDATA)> <!-- This not -->
<!ELEMENT Listing (#PCDATA)> <!-- This is just for code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of

listed code, may appear in
output -->

<!-- One further verbatim element, this is truely verbatim without
any processing and intended for ASCII substitutes of complicated
displayed formulae or tables. -->

<!ELEMENT Verb (#PCDATA)>

<!-- The following elements are for cross-referencing purposes like
URLs, citations, references, and the index. All these elements
are terminal and need special methods to make up the actual
output during document generation. -->

<!ELEMENT URL (#PCDATA|Alt|Link|LinkText)*> <!-- Link, LinkText
variant for case where text needs further markup -->

<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->

<!ELEMENT Link (%InnerText;)*> <!-- the URL -->
<!ELEMENT LinkText (%InnerText;)*> <!-- text for links, can contain markup -->
<!-- The following two are actually URLs, but the element name determines

the type. -->
<!ELEMENT Email (#PCDATA|Alt|Link|LinkText)*>
<!ELEMENT Homepage (#PCDATA|Alt|Link|LinkText)*>

<!-- Those who still want to give postal addresses can use the following
element. Use
 for specifying typical line breaks -->

GAPDoc 88

<!ELEMENT Address (#PCDATA|Alt|Br)*>

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED

Where CDATA #IMPLIED>

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

<!ELEMENT Ref EMPTY>
<!ATTLIST Ref Func CDATA #IMPLIED

Oper CDATA #IMPLIED
Constr CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED
Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text|Number) #IMPLIED> <!-- normally automatic -->

<!-- Note that only one attribute of Ref is used normally. BookName
and Style can be specified in addition to handle external
references and the typesetting style of the reference. -->

<!-- For explicit index entries (Func and so on should cause an
automatically generated index entry). Use the attributes Key,
Subkey for sorting (simplified, without markup). The Subkey value
also gets printed. Use the optional Subkey element if the printed
version needs some markup. -->

<!ELEMENT Index (%InnerText;|Subkey)*>
<!ATTLIST Index Key CDATA #IMPLIED

Subkey CDATA #IMPLIED>
<!ELEMENT Subkey (%InnerText;)*>

<!-- ==
The following describes the normal documentation text which can
occur at various places in the document. It does not contain
further sectioning elements. In addition to InnerText it can contain
environments like enumerations, lists, and such.
== -->

GAPDoc 89

<!ENTITY % Text "%InnerText; | List | Enum | Table">

<!ELEMENT Item (%Text;)*>
<!ELEMENT Mark (%InnerText;)*>

<!ELEMENT List (((Mark,Item)|Item)+)>
<!ATTLIST List Only CDATA #IMPLIED

Not CDATA #IMPLIED>
<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED

Not CDATA #IMPLIED>

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED

Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED> <!-- A TeX tabular string -->
<!-- We allow | and l,c,r, nothing else -->

<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%InnerText;)*>

<!-- ==
We start defining some things within the overall structure:
== -->

<!-- The TitlePage consists of several sub-elements: -->

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

<!ELEMENT Title (%Text;)*>
<!ELEMENT Subtitle (%Text;)*>
<!ELEMENT Version (%Text;)*>
<!ELEMENT TitleComment (%Text;)*>
<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->
<!ELEMENT Date (%Text;)*>
<!ELEMENT Abstract (%Text;)*>
<!ELEMENT Copyright (%Text;)*>
<!ELEMENT Acknowledgements (%Text;)*>
<!ELEMENT Colophon (%Text;)*>

<!-- The following things just specify some information about the
corresponding parts of the Book: -->

<!ELEMENT TableOfContents EMPTY>
<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED

Style CDATA #IMPLIED>

GAPDoc 90

<!ELEMENT TheIndex EMPTY>

<!-- ==
The Ignore element can be used everywhere to include further
information in a GAPDoc document which is not intended for the
standard converters (e.g., source code, not yet finished stuff,
and so on. This information can be extracted by special converter
routines, more precise information about the content of an Ignore
element can be given by the "Remark" attribute.
== -->

<!ELEMENT Ignore (%Text;| Chapter | Section | Subsection | ManSection |
Heading)*>

<!ATTLIST Ignore Remark CDATA #IMPLIED>

<!-- ==
Now we go on with the overall structure by defining the sectioning
structure, which includes the Synopsis element:
== -->

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT ManSection (Heading?,
((Func, Returns?) | (Oper, Returns?) |
(Meth, Returns?) | (Filt, Returns?) |
(Prop, Returns?) | (Attr, Returns?) |
(Constr, Returns?) |
Var | Fam | InfoClass)+, Description)>

<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

<!-- Note that the ManSection element is actually a subsection with
respect to labelling, referencing, and counting of sectioning
elements. -->

<!ELEMENT Func EMPTY>
<!ATTLIST Func Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!-- Note that Arg contains the full list of arguments, including
optional parts, which are denoted by square brackets [].
Arguments are separated by whitespace, commas count as
whitespace. -->

<!-- Note further that although Name and Label are CDATA (and not ID)

GAPDoc 91

Label must make up a unique identifier. -->

<!ELEMENT Oper EMPTY>
<!ATTLIST Oper Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Constr EMPTY>
<!ATTLIST Constr Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Meth EMPTY>
<!ATTLIST Meth Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

<!ELEMENT Prop EMPTY>
<!ATTLIST Prop Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Attr EMPTY>
<!ATTLIST Attr Name CDATA #REQUIRED

Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Var EMPTY>
<!ATTLIST Var Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Fam EMPTY>
<!ATTLIST Fam Name CDATA #REQUIRED

Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT InfoClass EMPTY>
<!ATTLIST InfoClass Name CDATA #REQUIRED

Label CDATA #IMPLIED

GAPDoc 92

Comm CDATA #IMPLIED>

<!ELEMENT Heading (%InnerText;)*>

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection)*>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes -->

<!-- Note that the entity %InnerText; is documentation that contains
neither sectioning elements nor environments like enumerations,
but only formulae, labels, references, citations, and other
terminal elements. -->

<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes -->

<!-- Note that an Appendix is exactly the same as a Chapter. They
differ only in the numbering. -->

<!-- ==
At last we define the overall structure of a gapdoc Book:
== -->

<!ELEMENT Body (%Text;| Chapter | Section)*>

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>

<!ATTLIST Book Name CDATA #REQUIRED>

<!-- Note that the entity %Text; is documentation that contains
no further sectioning elements but possibly environments like
enumerations, and formulae, labels, references, and citations.
-->

<!-- == -->

Appendix C

The File bibxmlext.dtd

For easier reference we repeat here the complete content of the file bibxmlext.dtd which is explained
in 7.2.

bibxmlext.dtd
<?xml version="1.0" encoding="UTF-8"?>
<!--

- (C) Frank Lübeck (https://www.math.rwth-aachen.de/~Frank.Luebeck)
-
- The BibXMLext data format.
-
- This DTD expresses XML markup similar to the BibTeX language
- specified for LaTeX, or actually its content model.
-
- It is a variation of a file bibxml.dtd developed by the project
- https://bibtexml.sf.net/
-
- For documentation on BibTeX, see
- https://tug.org/bibtex/
-
- A previous version of the code originally developed by
- Vidar Bronken Gundersen, https://bibtexml.sf.net/
- Reuse and repurposing is approved as long as this
- notification appears with the code.
-

-->

<!-- ... -->
<!-- Main structure -->

<!-- key-value pairs as in BibTeX @string entries are put in empty elements
(but here they can be used for parts of an entry field as well) -->

<!ELEMENT string EMPTY>
<!ATTLIST string

key CDATA #REQUIRED
value CDATA #REQUIRED >

<!-- entry may contain one of the bibliographic types. -->
<!ELEMENT entry (article | book | booklet |

manual | techreport |

93

GAPDoc 94

mastersthesis | phdthesis |
inbook | incollection |
proceedings | inproceedings |
conference |
unpublished | misc) >

<!ATTLIST entry
id CDATA #REQUIRED >

<!-- file is the documents top element. -->
<!ELEMENT file (string | entry)* >

<!-- ... -->
<!-- Parameter entities -->

<!-- these are additional elements often used, but not included in the
standard BibTeX distribution, these must be added to the
bibliography styles, otherwise these fields will be omitted by
the formatter, we allow an arbitrary number of ’other’ elements
to specify any further information -->

<!ENTITY % n.user " abstract?, affiliation?,
contents?, copyright?,
(isbn | issn)?,
keywords?, language?, lccn?,
location?, mrnumber?, mrclass?, mrreviewer?,
price?, size?, url?, category?, other* ">

<!ENTITY % n.common "key?, annotate?, crossref?,
%n.user;">

<!-- content model used more than once -->

<!ENTITY % n.InProceedings "author, title, booktitle,
year, editor?,
(volume | number)?,
series?, pages?, address?,
month?, organization?, publisher?,
note?, %n.common;">

<!ENTITY % n.PHDThesis "author, title, school,
year, type?, address?, month?,
note?, %n.common;">

<!-- ... -->
<!-- Entries in the BibTeX database -->

<!-- [article] An article from a journal or magazine.
- Required fields: author, title, journal, year.
- Optional fields: volume, number, pages, month, note. -->

<!ELEMENT article (author, title, journal,
year, volume?, number?, pages?,

GAPDoc 95

month?, note?, %n.common;)
>

<!-- [book] A book with an explicit publisher.
- Required fields: author or editor, title, publisher, year.
- Optional fields: volume or number, series, address,
- edition, month, note. -->

<!ELEMENT book ((author | editor), title,
publisher, year, (volume | number)?,
series?, address?, edition?, month?,
note?, %n.common;)

>

<!-- [booklet] A work that is printed and bound, but without a named
- publisher or sponsoring institution
- Required field: title.
- Optional fields: author, howpublished, address, month, year, note. -->

<!ELEMENT booklet (author?, title,
howpublished?, address?, month?,
year?, note?, %n.common;)

>

<!-- [conference] The same as INPROCEEDINGS,
- included for Scribe compatibility. -->

<!ELEMENT conference (%n.InProceedings;)
>

<!-- [inbook] A part of a book, which may be a chapter (or section or
- whatever) and/or a range of pages.
- Required fields: author or editor, title, chapter and/or pages,
- publisher, year.
- Optional fields: volume or number, series, type, address,
- edition, month, note. -->

<!ELEMENT inbook ((author | editor), title,
((chapter, pages?) | pages),
publisher, year, (volume |
number)?, series?, type?,
address?, edition?, month?,
note?, %n.common;)

>

<!--
- > I want to express that the elements a and/or b are legal that is one
- > of them or both must be present in the document instance (see the
- > element content for BibTeX entry ‘InBook’).
- > How do I specify this in my DTD?
-
- Dave Peterson:
- in content model: ((a , b?) | b) if order matters
- ((a , b?) | (b , a?)) otherwise

-->

GAPDoc 96

<!-- [incollection] A part of a book having its own title.
- Required fields: author, title, booktitle, publisher, year.
- Optional fields: editor, volume or number, series, type,
- chapter, pages, address, edition, month, note. -->

<!ELEMENT incollection (author, title,
booktitle, publisher, year,
editor?, (volume | number)?,
series?, type?, chapter?,
pages?, address?, edition?,
month?, note?,
%n.common;)

>

<!-- [inproceedings] An article in a conference proceedings.
- Required fields: author, title, booktitle, year.
- Optional fields: editor, volume or number, series, pages,
- address, month, organization, publisher, note. -->

<!ELEMENT inproceedings (%n.InProceedings;)
>

<!-- [manual] Technical documentation
- Required field: title.
- Optional fields: author, organization, address,
- edition, month, year, note. -->

<!ELEMENT manual (author?, title,
organization?, address?, edition?,
month?, year?, note?, %n.common;)

>

<!-- [mastersthesis] A Master’s thesis.
- Required fields: author, title, school, year.
- Optional fields: type, address, month, note. -->

<!ELEMENT mastersthesis (%n.PHDThesis;)
>

<!-- [misc] Use this type when nothing else fits.
- Required fields: none.
- Optional fields: author, title, howpublished, month, year, note. -->

<!ELEMENT misc (author?, title?,
howpublished?, month?, year?, note?,
%n.common;)

>

<!-- [phdthesis] A PhD thesis.
- Required fields: author, title, school, year.
- Optional fields: type, address, month, note. -->

<!ELEMENT phdthesis (%n.PHDThesis;)
>

<!-- [proceedings] The proceedings of a conference.
- Required fields: title, year.
- Optional fields: editor, volume or number, series,

GAPDoc 97

- address, month, organization, publisher, note. -->
<!ELEMENT proceedings (editor?, title, year,

(volume | number)?, series?,
address?, month?, organization?,
publisher?, note?, %n.common;)

>

<!-- [techreport] A report published by a school or other institution,
- usually numbered within a series.
- Required fields: author, title, institution, year.
- Optional fields: type, number, address, month, note. -->

<!ELEMENT techreport (author, title,
institution, year, type?, number?,
address?, month?, note?, %n.common;)

>

<!-- [unpublished] A document having an author and title, but not
- formally published.
- Required fields: author, title, note.
- Optional fields: month, year. -->

<!ELEMENT unpublished (author, title, note,
month?, year?, %n.common;)

>

<!-- ... -->
<!-- Fields from the standard bibliography styles -->

<!--
- Below is a description of all fields recognized by the standard
- bibliography styles. An entry can also contain other fields, which
- are ignored by those styles.
-
- [address] Usually the address of the publisher or other type of
- institution For major publishing houses, van~Leunen recommends
- omitting the information entirely. For small publishers, on the other
- hand, you can help the reader by giving the complete address.
-
- [annote] An annotation It is not used by the standard bibliography
- styles, but may be used by others that produce an annotated
- bibliography.
-
- [author] The name(s) of the author(s), here *not* in the format
- described in the LaTeX book. Contains elements <name> which in turn
- contains elements <first>, <last> for the first name (or first names,
- fully written or as initials, and including middle initials) and
- the last name.
-
- [booktitle] Title of a book, part of which is being cited. See the
- LaTeX book for how to type titles. For book entries, use the title
- field instead.
-
- [chapter] A chapter (or section or whatever) number.

GAPDoc 98

-
- [crossref] The database key of the entry being cross referenced.
-
- [edition] The edition of a book-for example, ‘‘Second’’. This
- should be an ordinal, and should have the first letter capitalized, as
- shown here; the standard styles convert to lower case when necessary.
-
- [editor] Name(s) of editor(s), typed as indicated in the LaTeX book.
- If there is also an author field, then the editor field gives the
- editor of the book or collection in which the reference appears.
-
- [howpublished] How something strange has been published. The first
- word should be capitalized.
-
- [institution] The sponsoring institution of a technical report.
-
- [journal] A journal name. Abbreviations are provided for many
- journals; see the Local Guide.
-
- [key] Used for alphabetizing, cross referencing, and creating a label
- when the ‘‘author’’ information (described in Section [ref:] is
- missing. This field should not be confused with the key that appears
- in the \cite command and at the beginning of the database entry.
-
- [month] The month in which the work was published or, for an
- unpublished work, in which it was written. You should use the
- standard three-letter abbreviation, as described in Appendix B.1.3 of
- the LaTeX book.
-
- [note] Any additional information that can help the reader. The first
- word should be capitalized.
-
- [number] The number of a journal, magazine, technical report, or of a
- work in a series. An issue of a journal or magazine is usually
- identified by its volume and number; the organization that issues a
- technical report usually gives it a number; and sometimes books are
- given numbers in a named series.
-
- [organization] The organization that sponsors a conference or that
- publishes a manual.
-
- [pages] One or more page numbers or range of numbers, such as 42-111
- or 7,41,73-97 or 43+ (the ‘+’ in this last example indicates pages
- following that don’t form a simple range). To make it easier to
- maintain Scribe-compatible databases, the standard styles convert a
- single dash (as in 7-33) to the double dash used in TeX to denote
- number ranges (as in 7-33). Here, we suggest to use the entity
- – for a dash in page ranges.
-
- [publisher] The publisher’s name.
-
- [school] The name of the school where a thesis was written.

GAPDoc 99

-
- [series] The name of a series or set of books. When citing an entire
- book, the the title field gives its title and an optional series field
- gives the name of a series or multi-volume set in which the book is
- published.
-
- [title] The work’s title. For mathematical formulae use the <M> or
- <Math> elements explained below (and LaTeX code in the content, without
- surrounding ’$’).
-
- [type] The type of a technical report-for example, ‘‘Research
- Note’’.
-
- [volume] The volume of a journal or multivolume book.
-
- [year] The year of publication or, for an unpublished work, the year
- it was written. Generally it should consist of four numerals, such as
- 1984, although the standard styles can handle any year whose last four
- nonpunctuation characters are numerals, such as ‘(about 1984)’.

-->

<!-- Here is the main extension compared to the original BibXML definition
from which is DTD is derived: We want to allow more markup in some
elements such that we can use the bibliography for high quality
output in other formats than LaTeX.

- <M> and <Math>, mathematical formulae: Specify LaTeX code for "simple"
formulae as content of <M> elements; "simple" means that they can be
translated to a fairly readable ASCII representation as explained in
the GAPDoc documentation on "<M>".
More complicated formulae are given as content of <Math> elements.
(Think about an <Alt> alternative for text or HTML representations.)

- <URL>: use these elements to specify URLs, they can be properly
converted to links if possible in an output format (in that case
the Text attribute is used for the visible text).

- <value key="..."/>: substituted by the value-attribute specified
in a <string key="..." value="..."/> element. Can be used anywhere,
not only for complete fields as in BibTeX.

- <C> protect case changes: should be used instead of {}’s which are
used in BibTeX title fields to protect the case of letters from
changes.

- <Alt Only="...">, <Alt Not="...">, alternatives for different
output formats: Use this to specify alternatives, the GAPDoc
utilities will do some special handling for "Text", "HTML",
and "BibTeX" as output type.

- <Wrap Name="...">, generic wrapper for other markup:
Use this for any other type of markup you are interested in. The

GAPDoc 100

GAPDoc utilities will ignore the markup, but provide a hook
to do install handler functions for them.

-->
<!ELEMENT M (#PCDATA | Alt)* > <!-- math with simple text

representation, in LaTeX -->
<!ELEMENT Math (#PCDATA | Alt)* > <!-- other math in LaTeX -->
<!ELEMENT URL (#PCDATA | Alt | Link | LinkText)* > <!-- an URL -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- text to be printed

(default is content) -->
<!ELEMENT value EMPTY > <!-- placeholder for value given .. -->
<!ATTLIST value key CDATA #REQUIRED > <!-- .. by key, defined in a string

element -->
<!ELEMENT C (#PCDATA | value | Alt |

M | Math | Wrap | URL)* > <!-- protect from case changes -->
<!ELEMENT Alt (#PCDATA | value | C | Alt |

M | Math | Wrap | URL)* > <!-- specify alternatives for
various types of output -->

<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED > <!-- specify output types in comma and
whitespace separated list (use exactly one of Only or Not) -->

<!ENTITY % withMURL "(#PCDATA | value | M | Math | Wrap | URL | C | Alt)*" >

<!ELEMENT Wrap %withMURL; > <!-- a generic wrapper -->
<!ATTLIST Wrap Name CDATA #REQUIRED > <!-- needs a ’Name’ attribute -->

<!ELEMENT address %withMURL; >
<!-- here we don’t want the complicated definition from the LaTeX book,

use markup for first/last name(s): a <name> element for each
author which contains <first> (optional), <last> elements: -->

<!ELEMENT author (name)* >
<!ELEMENT name (first?, last) >
<!ELEMENT first (#PCDATA) >
<!ELEMENT last (#PCDATA) >

<!ELEMENT booktitle %withMURL; >
<!ELEMENT chapter %withMURL; >
<!ELEMENT edition %withMURL; >
<!-- same as for author field -->
<!ELEMENT editor (name)* >
<!ELEMENT howpublished %withMURL; >
<!ELEMENT institution %withMURL; >
<!ELEMENT journal %withMURL; >
<!ELEMENT month %withMURL; >
<!ELEMENT note %withMURL; >
<!ELEMENT number %withMURL; >
<!ELEMENT organization %withMURL; >
<!ELEMENT pages %withMURL; >
<!ELEMENT publisher %withMURL; >
<!ELEMENT school %withMURL; >
<!ELEMENT series %withMURL; >
<!ELEMENT title %withMURL; >

GAPDoc 101

<!ELEMENT type %withMURL; >
<!ELEMENT volume %withMURL; >
<!ELEMENT year (#PCDATA) >

<!-- These were not listed in the documentation for entry content, but
- appeared in the list of fields in the BibTeX documentation -->

<!ELEMENT annotate %withMURL; >
<!ELEMENT crossref %withMURL; >
<!ELEMENT key (#PCDATA) >

<!-- ... -->
<!-- Other popular fields

-
- From: http://www.ecst.csuchico.edu/~jacobsd/bib/formats/bibtex.html
- BibTeX is extremely popular, and many people have used it to store
- information. Here is a list of some of the more common fields:
-
- [affiliation] The authors affiliation.
- [abstract] An abstract of the work.
- [contents] A Table of Contents
- [copyright] Copyright information.
- [ISBN] The International Standard Book Number.
- [ISSN] The International Standard Serial Number.
- Used to identify a journal.
- [keywords] Key words used for searching or possibly for annotation.
- [language] The language the document is in.
- [location] A location associated with the entry,
- such as the city in which a conference took place.
- [LCCN] The Library of Congress Call Number.
- I’ve also seen this as lib-congress.
- [mrnumber] The Mathematical Reviews number.
- [mrclass] The Mathematical Reviews class.
- [mrreviewer] The Mathematical Reviews reviewer.
- [price] The price of the document.
- [size] The physical dimensions of a work.
- [URL] The WWW Universal Resource Locator that points to the item being
- referenced. This often is used for technical reports to point to the
- ftp site where the postscript source of the report is located.
-
- When using BibTeX with LaTeX you need
- BibTeX style files to print these data.

-->

<!ELEMENT abstract %withMURL; >
<!ELEMENT affiliation %withMURL; >
<!ELEMENT contents %withMURL; >
<!ELEMENT copyright %withMURL; >
<!ELEMENT isbn (#PCDATA) >
<!ELEMENT issn (#PCDATA) >
<!ELEMENT keywords %withMURL; >

GAPDoc 102

<!ELEMENT language %withMURL; >
<!ELEMENT lccn (#PCDATA) >
<!ELEMENT location %withMURL; >
<!ELEMENT mrnumber %withMURL; >
<!ELEMENT mrclass %withMURL; >
<!ELEMENT mrreviewer %withMURL; >
<!ELEMENT price %withMURL; >
<!ELEMENT size %withMURL; >
<!ELEMENT url %withMURL; >

<!-- Added by Zeger W. Hendrikse
- [category] Category of this bibitem

-->
<!ELEMENT category %withMURL; >

<!-- A container element [other] for any further information, a description
- of the type of data must be given in the attribute ’type’

-->
<!ELEMENT other %withMURL; >
<!ATTLIST other

type CDATA #REQUIRED >

<!-- ... -->
<!-- Predefined/reserved character entities -->

<!ENTITY amp "&#38;">
<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY apos "'">
<!ENTITY quot """>

<!-- Some more generally useful entities -->
<!ENTITY nbsp " ">
<!ENTITY copyright "©">
<!ENTITY ndash "–">

<!-- ... -->
<!-- End of BibXMLext dtd -->

References

[GAP06] The GAP Group, Aachen, St Andrews. GAP -- Groups, Algorithms, and Programming,
Version 4.4.9, 2006. https://www.gap-system.org. 5

[Lam85] L. Lamport. LATEX: A Document Preparation System. Addison-Wesley, 1985. 19, 33, 68,
69

103

https://www.gap-system.org

Index

ManualExamples, 54
TestManualExamples, 54

A, 31
Abstract, 18
Acknowledgements, 19
AddHandlerBuildRecBibXMLEntry, 77
AddPageNumbersToSix, 48
AddParagraphNumbersGapDocTree, 45
AddRootParseTree, 44
<Align>, 29
Alt, 35
Appendix, 21
AppendTo1, 65
ApplyToNodesParseTree, 44
Arg, 31
Attr, 25
Author, 18

B, 31
Base64String, 62
Bibliography, 19
Body, 20
Book, 16
BOXCHARS, 57
Br, 36
Button, 31

C, 31
CAPITALLETTERS, 57
<Caption>, 29
Chapter, 20
CheckAndCleanGapDocTree, 45
Cite, 27
Code, 31
Colophon, 19
ComposedDocument, 38
ComposedXMLString, 38
Constr, 23
CopyHTMLStyleFiles, 53

Copyright, 18
CSS stylesheets, 53

Address, 18
Date, 18
Description, 22
DIGITS, 57
DigitsNumber, 60
Display, 32
DisplayXMLStructure, 44

E, 30
Email, 28
Emph, 30
Encode, 63
EntitySubstitution, 44
Enum, 29
Example, 32
ExtractExamples, 54
ExtractExamplesXMLTree, 54

F, 31
Fam, 25
File, 31
FilenameGAP, 39
FileString, 66
Filt, 24
FormatParagraph, 59
Func, 23

<#GAPDoc>, 37
GAPDoc2HTML, 51
GAPDoc2HTMLPrintHTMLFiles, 52
GAPDoc2LaTeX, 46
GAPDoc2Text, 47
GAPDoc2TextPrintTextFiles, 48
GetTextXMLTree, 45

Heading, 21

104

GAPDoc 105

HeuristicTranslationsLaTeX2XML.Apply,
73

HeuristicTranslationsLaTeX2XML.Apply-
ToFile, 73

HEXDIGITS, 57
Homepage, 28
<HorLine>, 29

Ignore, 36
<#Include>, 37
Index, 27
InfoBibTools, 70
InfoClass, 25
InfoGAPDoc, 54
InfoXMLParser, 46
InitialSubstringUTF8String, 65
IntListUnicodeString, 62
IsUnicodeCharacter, 62
IsUnicodeString, 62
Item, 29
<Item> in <Table>, 29

K, 30
Keyword, 30

Label, 27
LabelInt, 61
LabelsFromBibTeX, 70
LaTeXUnicodeTable, 63
LETTERS, 57
License, 2
List, 28
Listing, 32
Log, 32
LowercaseUnicodeString, 63
LowercaseUnicodeTable, 63

M, 33
MakeGAPDocDoc, 42
ManSection, 22
Mark, 29
Math, 32
MathJax, 51

in MakeGAPDocDoc, 42
Meth, 24

NormalizedNameAndKey, 69
NormalizeNameAndKey, 69

NrCharsUTF8String, 64
NumberDigits, 60

Oper, 23
OriginalPositionDocument, 39

P, 35
Package, 31
Page, 66
PageDisplay, 66
Par, 35
ParseBibFiles, 68
ParseBibStrings, 68
ParseBibXMLextFiles, 74
ParseBibXMLextString, 74
ParseTreeXMLFile, 43
ParseTreeXMLString, 43
PositionMatchingDelimiter, 61
PrintFormattedString, 66
PrintSixFile, 49
PrintTo1, 65
Prop, 24

Q, 30
Quoted, 30

RecBibXMLEntry, 75
Ref, 26
RemoveRootParseTree, 44
RepeatedString, 60
RepeatedUTF8String, 60
Returns, 22
RFC 3986, 63
<Row>, 29
RunExamples, 55

SearchMR, 80
SearchMRBib, 80
Section, 21
SetGAPDocHTMLStyle, 53
SetGapDocLanguage, 54
SetGapDocLaTeXOptions, 47
SetGAPDocTextTheme, 49
SimplifiedUnicodeString, 63
SimplifiedUnicodeTable, 63
SMALLLETTERS, 57
StringBase64, 62
StringBibAsXMLext, 73

GAPDoc 106

StringBibXMLEntry, 77
StringDisplay, 66
StringFile, 66
StringPrint, 66
StringView, 66
StringXMLElement, 44
StripBeginEnd, 60
StripEscapeSequences, 60
Subsection, 21
SubstitutionSublist, 59
Subtitle, 17

Table, 29
TableOfContents, 19
TemplateBibXML, 79
TextAttr, 58
TheIndex, 20
Title, 16
TitleComment, 18
TitlePage, 16

UChar, 62
Unicode, 62
UppercaseUnicodeString, 63
URL, 28
URL encoding, 63
UseColorsInTerminal, 58
Using GAPDoc with other languages, 54

ValidateGAPDoc, 46
Var, 25
Version, 17

WHITESPACE, 57
WidthUTF8String, 64
WordsString, 62
WrapTextAttribute, 58
WriteBibFile, 69
WriteBibXMLextFile, 75

XML, 5
XMLElements, 45
XMLValidate, 46

	Introduction and Example
	XML
	A complete example
	Some questions

	How To Type a GAPDoc Document
	General XML Syntax
	Entering GAPDoc Documents

	The Document Type Definition
	What is a DTD?
	Overall Document Structure
	Sectioning Elements
	ManSection–a special kind of subsection
	Cross Referencing and Citations
	Structural Elements like Lists
	Types of Text
	Elements for Mathematical Formulae
	Everything else

	Distributing a Document into Several Files
	The Conventions
	A Tool for Collecting a Document

	The Converters and an XML Parser
	Producing Documentation from Source Files
	Parsing XML Documents
	The Converters
	Testing Manual Examples

	String and Text Utilities
	Text Utilities
	Unicode Strings
	Print Utilities

	Utilities for Bibliographies
	Parsing BibTeX Files
	The BibXMLext Format
	Utilities for BibXMLext data
	Getting BibTeX entries from MathSciNet

	The File 3k+1.xml
	The File gapdoc.dtd
	The File bibxmlext.dtd
	References
	Index

