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Chapter 1

The EDIM-Package

(Elementary Divisors and Integer Matrices, by Frank Lübeck)
This chapter describes the functions defined in the GAP4 package EDIM. The main functions

implement variants of an algorithm for computing for a given prime p the p-parts of the elementary
divisors of an integer matrix. These algorithms use a p-adic method and are described by the author
in [Lüb02] (see ElementaryDivisorsPPartRk (1.2.1)).

These functions were already applied to integer matrices of dimension greater than 11000 (which
had many non-trivial elementary divisors which were products of small primes).

Furthermore there are functions for finding the biggest elementary divisor of an invertible integer
matrix and the inverse of a rational invertible matrix (see ExponentSquareIntMatFullRank (1.3.3)
and InverseRatMat (1.3.1)). These algorithms use p-adic approximations, explained in 1.7.

Finally we distribute implementations of some other algorithms for finding elementary divisors
or normal forms of integer matrices: A p-modular algorithm by Havas and Sterling from [HS79]
(see ElementaryDivisorsPPartHavasSterling (1.2.2)) and LLL-based algorithms for extended
greatest common divisors of integers (see GcdexIntLLL (1.5.1)) and for Hermite normal forms of
integer matrices with (very nice) transforming matrices (see HermiteIntMatLLL (1.5.2)).

By default the EDIM is automatically loaded by GAP when it is installed. If the automatic loading
is disabled in your installation you must load the package with RequirePackage("edim"); before
its functions become available.

Please, send me an e-mail (Frank.Luebeck@Math.RWTH-Aachen.De) if you have any questions,
remarks, suggestions, etc. concerning this mini-package. Also, I would like to hear about applications
of this package.

Frank Lübeck

1.1 Installation of the EDIM package

To install this package first unpack it inside some GAP root directory into the subdirectory pkg/edim
(see (Reference: Installing a GAP Package)). Then the EDIM package can already be loaded and
used. But we strongly recommend to compile a kernel function as well during installation, otherwise
the function ElementaryDivisorsPPartRkExpSmall (1.2.1) will not be available.

To install the kernel function go to the directory pkg/edim to which the package was extracted
and call

/bin/sh ./configure [path] [CONFIGNAME=...]
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where path is a path to the main GAP root directory (if not given, the default ../.. is assumed).
If you have installed several GAP kernels you can compile the corresponding EDIM kernel function
by specifying the CONFIGNAME that was used to configure that kernel.

Afterwards call make to compile a binary file.
If you have installed several GAP kernels repeat these two steps for each of them, using the various

values of CONFIGNAME. You can run a test of the installation by typing make test.

1.1.1 InfoEDIM

. InfoEDIM (info class)

This is an Info class for the EDIM-package. By SetInfoLevel(InfoEDIM, 1); you can switch
on the printing of some information during the computations of certain EDIM-functions.

1.2 p-Parts of Elementary Divisors

Here we explain the main functions of the package.

1.2.1 ElementaryDivisorsPPartRk

. ElementaryDivisorsPPartRk(A, p[, rk]) (function)

. ElementaryDivisorsPPartRkI(A, p, rk) (function)

. ElementaryDivisorsPPartRkII(A, p, rk) (function)

. ElementaryDivisorsPPartRkExp(A, p, rk, exp) (function)

. ElementaryDivisorsPPartRkExpSmall(A, p, rk, exp, il) (function)

These functions return a list [m1,m2, . . . ,mr] where mi is the number of nonzero elementary divi-
sors of A divisible by p i (see ElementaryDivisorsMat (Reference: ElementaryDivisorsMat) for
a definition of the elementary divisors).

The algorithms for these functions are described in [Lüb02].
A must be a matrix with integer entries, p a prime, and rk the rank of A (as rational matrix). In

the first version of the command rk is computed, if it is not given.
The first version of the command delegates its job to the fourth version by trying growing values

for exp , see below.
The second and third versions implement the main algorithm described in [Lüb02] and a variation.

Here ElementaryDivisorsPPartRkII has a bit more overhead, but can be advantageous because
the intermediate entries during the computation can be much smaller.

In the fourth form exp must be an upper bound for the highest power of p appearing in an ele-
mentary divisor of A . This information allows reduction of matrix entries modulo pexp during the
computation.

If exp is too small or the given rk is not correct the function returns ‘fail’.
As long as pexp is smaller than 228 and pexp+2 is smaller than 231 we use internally a kernel

function which can also be used directly in the fifth form of the command. There il can be 0 or 1
where in the second case some information is printed during the computation.

This last form of the function was already succesfully applied to dense matrices of rank up to
11000.
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Note that you have to compile a file (see 1.1) while installing this package, if you want to have
this kernel function available.

Example
gap> ReadPackage("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ with elementary divisors ’eldiv’.
true
gap> ElementaryDivisorsPPartRkI(mat, 2, 242); time; # mat has full rank
[ 94, 78, 69, 57, 23, 23, 9, 2, 2, 0 ]
490
gap> ElementaryDivisorsPPartRkExpSmall(mat, 2, 242, 10, 0); time;
[ 94, 78, 69, 57, 23, 23, 9, 2, 2, 0 ]
10

1.2.2 ElementaryDivisorsPPartHavasSterling

. ElementaryDivisorsPPartHavasSterling(A, p, d) (function)

For an integer matrix A and a prime p this function returns a list [m1,m2, . . . ,mr] where mi is the
number of nonzero elementary divisors of A divisible by p i.

An upper bound d for the highest power of p appearing in an elementary divisor of A must be
given. Smaller d improve the performance of the algorithm considerably.

This is an implementation of the modular algorithm described in [HS79].
We added a slight improvement: we divide the considered submatrices by the p -part of the greatest

common divisor of all entries (and lower the d appropriately). This reduces the size of the entries and
often shortens the pivot search.

Example
gap> ReadPackage("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ with elementary divisors ’eldiv’.
true
gap> ElementaryDivisorsPPartHavasSterling(mat, 2, 10); time;
[ 94, 78, 69, 57, 23, 23, 9, 2, 2 ]
1260

1.3 Inverse of Rational Matrices

1.3.1 InverseRatMat

. InverseRatMat(A[, p]) (function)

This function returns the inverse of an invertible matrix over the rational numbers.
It first computes the inverse modulo some prime p , computes from this a p -adic approximation

to the inverse and finally constructs the rational entries from their p -adic approximations. See section
1.7 for more details.

This seems to be better than GAP’s standard Gauß algorithm (A^-1) already for small matrices.
(Try, e.g., RandomMat(20,20,[-10000..10000]) or RandomMat(100,100).)

The optional argument p should be a prime such that A modulo p is invertible (default is p = 251).
If A is not invertible modulo p then p is automatically replaced by the next prime.
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1.3.2 RationalSolutionIntMat

. RationalSolutionIntMat(A, v[, p[, invA]]) (function)

This function returns the solution x of the system of linear equations xA = v .
Here, A must be a matrix with integer entries which is invertible over the rationals and v must be

a vector with integer entries of the appropriate length.
The optional arguments are a prime p such that A (mod p) is invertible (if not given, p = 251 is

assumed) and the inverse invA of A (mod p).
The solution is computed via p-adic approximation as explained in 1.7.

1.3.3 ExponentSquareIntMatFullRank

. ExponentSquareIntMatFullRank(A[, p[, nr]]) (function)

This function returns the biggest elementary divisor of a square integer matrix A of full rank.
For such a matrix A the least common multiple of the denominators of all entries of the inverse

matrix A−1 is exactly the biggest elementary divisor of A .
This function is implemented by a slight modification of InverseRatMat (1.3.1). The third ar-

gument nr tells the function to return the least common multiple of the first nr rows of the rational
inverse matrix only. Very often the function will already return the biggest elementary divisor with
nr = 2 or 3 (and the command without this argument would spend most time in checking, that this is
correct).

The optional argument p should be a prime such that A modulo p is invertible (default is p = 251).
If A is not invertible modulo p then p is automatically replaced by the next prime.

Example
gap> ReadPackage("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ with elementary divisors ’eldiv’.
true
gap> inv := InverseRatMat(mat);; time;
840
gap> ExponentSquareIntMatFullRank(mat, 101, 3); # same as without the ‘3’
115200

1.4 All Elementary Divisors Using p-adic Method

In the following two functions we put things together. In particular we handle the prime parts of the
elementary divisors efficiently for primes appearing with low powers in the highest elementary divisor
respectively determinant divisor.

1.4.1 ElementaryDivisorsSquareIntMatFullRank

. ElementaryDivisorsSquareIntMatFullRank(A) (function)

This function returns a list of nonzero elementary divisors of an integer matrix A .
Here we start with computing the biggest elementary divisor via

ExponentSquareIntMatFullRank (1.3.3). If it runs into a problem because A is singular
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modulo a choosen prime (it starts by default with 251) then the prime is automatically replaced by
the next one.

The rest is done using ElementaryDivisorsPPartRkExp (1.2.1) and RankMod (1.6.5).
The function fails if the biggest elementary divisor cannot be completely factored and the non-

factored part is not a divisor of the biggest elementary divisor only.
Note that this function may for many matrices not be the best choice for computing all elementary

divisors. You may first try the standard GAP library routines for Smith normal form instead of this
function. Nevertheless remember ElementaryDivisorsSquareIntMatFullRank for hard and big
examples. It is particularly good when the largest elementary divisor is a very small factor of the
determinant.

Example
gap> Collected(ElementaryDivisorsSquareIntMatFullRank(mat));
[ [ 1, 49 ], [ 3, 99 ], [ 6, 7 ], [ 30, 9 ], [ 60, 9 ], [ 120, 2 ],

[ 360, 10 ], [ 720, 22 ], [ 3600, 12 ], [ 14400, 14 ],
[ 28800, 7 ], [ 115200, 2 ] ]

gap> time;
860
gap> last2 = Collected(DiagonalOfMat(NormalFormIntMat(mat, 1).normal));
true
gap> time;
5170

1.4.2 ElementaryDivisorsIntMatDeterminant

. ElementaryDivisorsIntMatDeterminant(A, det[, rk]) (function)

This function returns a list of nonzero elementary divisors of an integer matrix A .
Here det must be an integer which is a multiple of the biggest determinant divisor of A . If the

matrix does not have full rank then its rank rk must be given, too.
The argument det can be given in the form of Collected(FactorsInt(det)).
This function handles prime divisors of det with multiplicity smaller than 4 specially, for the other

prime divisors p it delegates to ElementaryDivisorsPPartRkExp (1.2.1) where the exp argument
is the multiplicity of the p in det . (Note that this is not very good when p has actually a much smaller
multiplicity in the largest elementary divisor.)

Example
gap> ReadPackage("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ with elementary divisors ’eldiv’.
true
gap> # not so good:
gap> ElementaryDivisorsIntMatDeterminant(mat,Product(eldiv)) =
> Concatenation([1..49]*0+1, eldiv); time;
true
5490

1.5 Gcd and Normal Forms Using LLL

The EDIM-mini package also contains implementations of an extended Gcd-algorithm for integers
and a Hermite and Smith normal form algorithm for integer matrices using LLL-techiques. They are
well described in the paper [HMM98] by Havas, Majewski and Matthews.
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They are particularly useful if one wants to have the normal forms together with transforming
matrices. These transforming matrices have spectacularly nice (i.e., “small”) entries in cases of input
matrices which are non-square or not of full rank (otherwise the transformation to the Hermite normal
form is unique).

In detail:

1.5.1 GcdexIntLLL

. GcdexIntLLL(n1, n2, ...) (function)

This function returns for integers n1 ,n2 , . . . a list [g, [c1,c2, . . .]], where g = c1n1 + c2n2 + . . . is
the greatest common divisor of the ni . Here all the ci are usually very small.

Example
gap> GcdexIntLLL( 517, 244, -304, -872, -286, 854, 866, 224, -765, -38);
[ 1, [ 0, 0, 0, 0, 1, 0, 1, 1, 1, 1 ] ]

1.5.2 HermiteIntMatLLL

. HermiteIntMatLLL(A) (function)

This returns the Hermite normal form of an integer matrix A and uses the LLL-algorithm to avoid
entry explosion.

1.5.3 HermiteIntMatLLLTrans

. HermiteIntMatLLLTrans(A) (function)

This function returns a pair of matrices [H,L] where H = LA is the Hermite normal form of an
integer matrix A . The transforming matrix L can have surprisingly small entries.

Example
gap> ReadPackage("edim", "tst/mat2");
Reading 34x34 integer matrix ’mat2’ with elementary divisors ’eldiv2’.
true
gap> tr := HermiteIntMatLLLTrans(mat2);; Maximum(List(Flat(tr[2]), AbsInt));
606
gap> tr[2]*mat2 = tr[1];
true

1.5.4 SmithIntMatLLL

. SmithIntMatLLL(A) (function)

This function returns the Smith normal form of an integer matrix A using the LLL-algorithm to
avoid entry explosion.
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1.5.5 SmithIntMatLLLTrans

. SmithIntMatLLLTrans(A) (function)

This function returns [S,L,R] where S = LAR is the Smith normal form of an integer matrix A .
We apply the algorithm for Hermite normal form several times to get the Smith normal form, that

is not in the paper [HMM98]. The transforming matrices need not be as nice as for the Hermite normal
form.

Example
gap> ReadPackage("edim", "tst/mat2");
Reading 34x34 integer matrix ’mat2’ with elementary divisors ’eldiv2’.
true
gap> tr := SmithIntMatLLLTrans(mat2);;
gap> tr[2] * mat2 * tr[3] = tr[1];
true

1.6 Utility Functions from the EDIM-package

1.6.1 RatNumberFromModular

. RatNumberFromModular(n, k, l, x) (function)

This function returns r/s = x (mod n), if it exists. More precisely:
n , k , l must be positive integers with 2kl ≤ n and x an integer with −n/2 < x ≤ n/2. If it

exists this function returns a rational number r/s with 0 < s < l , gcd(s,n) = 1, −k < r < k and r/s
congruent to x (mod n) (i.e., n | r− sx ). Such an r/s is unique. The function returns fail if such
a number does not exist.

1.6.2 InverseIntMatMod

. InverseIntMatMod(A, p) (function)

This function returns an inverse matrix modulo a prime p or fail. More precisely:
A must be an integer matrix and p a prime such that A is invertible modulo p . This function returns

an integer matrix inv with entries in the range ]−p/2 . . .p/2] such that invA reduced modulo p is
the identity matrix.

It returns fail if the inverse modulo p does not exist. This function is particularly fast for primes
smaller 256.

1.6.3 HadamardBoundIntMat

. HadamardBoundIntMat(A) (function)

The Hadamard bound for a square integer matrix A is the product of Euclidean norms of the
nonzero rows (or columns) of A . It is an upper bound for the absolute value of the determinant of A .
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1.6.4 CheapFactorsInt

. CheapFactorsInt(n[, nr]) (function)

This function returns a list of factors of an integer n , including “small” prime factors - here the
optional argument nr is the number of iterations for ‘FactorsRho’ (default is 2000).

This is only a slight modification of the library function FactorsInt (Reference: FactorsInt)
which avoids an error message when the number is not completely factored.

1.6.5 RankMod

. RankMod(A, p) (function)

This function returns the rank of an integer matrix A modulo p . Here p must not necessarily be a
prime. If it is not and this function returns an integer, then this is the rank of A for all prime divisors
of p .

If during the computation a factorisation of p is found (because some pivot entry has nontrivial
greatest common divisor with p ) then the function is recursively applied to the found factors f_i of
p . The result is then given in the form [[f_1, rk_1], [f_2, rk_2], ...].

The idea to make this function useful for non primes was to use it with large factors of the biggest
elementary divisor of A whose prime factorization cannot be found easily.

Example
gap> ReadPackage("edim", "tst/mat");
Reading 242x242 integer matrix ’mat’ with elementary divisors ’eldiv’.
true
gap> RankMod(mat, 5);
155
gap> RankMod(mat, (2*79*4001));
[ [ 2, 148 ], [ 79, 242 ], [ 4001, 242 ] ]

1.7 InverseRatMat - the Algorithm

The idea is to recover a rational matrix from an l-adic approximation for some prime l. This descrip-
tion came out of discussions with Jürgen Müller. I thank John Cannon for pointing out that the basic
idea already appeared in the paper [Dix82] of Dixon.

Let A be an invertible matrix over the rational numbers. By multiplying with a constant we may
assume that its entries are in fact integers.

(1) We first describe how to find an l-adic approximation of A−1. Find a prime l such that A is
invertible modulo l and let B be the integer matrix with entries in the range ]−l/2, l/2] such that BA
is congruent to the identity matrix modulo l. (This can be computed fast by usual Gauß elimination.)

Now let v ∈ Zr be a row vector. Define two sequences vi and xi of row vectors in Zr by: x0 :=
0 ∈ Zr, v0 :=−v and for i > 0 set xi to the vector congruent to −vi−1B modulo l having entries in the
range ]−l/2, l/2]. Then all entries of xiA+ vi−1 are divisible by l and we set vi := (1/l) · (xiA+ vi−1).

Induction shows that for yi := ∑
i
k=1 lk−1xk we have yiA = v+ livi for all i≥ 0. Hence the sequence

yi, i≥ 0, gives an l-adic approximation to the vector y ∈Qr with yA = v.
(2) The second point is to show how we can get the vector y from a sufficiently good approximation

yi. Note that the sequence of yi becomes constant for i ≥ i0 if all entries of y are integers of absolute



EDIM 12

value smaller than li0/2 because of our choice of representatives of residue classes modulo l in the
interval ]−l/2, l/2].

More generally consider a/b ∈Q with b > 0 and a,b coprime. Then there is for each n ∈N which
is coprime to b a unique c ∈ Z with −n/2 < c ≤ n/2 and a≡ cb (mod n). This c can be computed
via the extended Euclidean algorithm applied to b and n.

Now let n,α,β ∈ N with 2αβ ≤ n. Then the map {a/b ∈ Q | −α ≤ a ≤ α,1 ≤ b < β} →
]−n/2,n/2], a/b 7→ c (defined as above) is injective (since for a/b, a′/b′ in the above set we have
ab′−a′b≡ 0 (mod n) if and only if ab′−a′b = 0).

In practice we can use for any c ∈ ]−n/2,n/2] a certain extended Euclidean algorithm applied to
n and c to decide if c is in the image of the above map and to find the corresponding a/b if it exists.

(3) To put things together we apply (2) to the entries of the vectors yi constructed in (1), choosing
n = li, α =

√
n/2 and β =

√
n. If we have found this way a candidate for y we can easily check if it

is correct by computing yA. If µ is the maximal absolute value of all numerators and denominators of
the entries of y it is clear from (2) that we will find y from yi if li > 2µ2.

(4) If we take as v in (1) to(3) all standard unit vectors we clearly get the rows of A−1. But we
can do it better. Namely we can take as v the standard unit vectors multiplied by the least common
multiple ε of the denominators of the already computed entries of A−1. In many examples this ε

actually equals εr after the computation of the first or first few rows. Therefore we will often find
quickly the next row of A−1 already in (1), because we find a vi = 0 such that the sequence of yi

becomes constant (= y).

1.7.1 Rank of Integer Matrix

The following strategy has shown to be useful in proving that some very big integer matrix is not
invertible.

• Check the rank modulo some small primes, say with RankMod (1.6.5).

• If the rank seems less than the number of rows choose a prime p, a collection of lines which is
linearly independent modulo p, and another line linearly dependend on these. Guess that this
last line is also linearly dependend on the chosen collection over the rational numbers (maybe
check modulo several small primes).

• Find columns of the collection of lines which give an invertible matrix modulo some prime.

• Then use RationalSolutionIntMat (1.3.2) with the invertible submatrix and corresponding
entries of the linearly dependend row to prove this.

Guessing the rank of a matrix from the rank modulo several primes, chosing a maximal set of lines
which are linearly independent modulo some primes, and using RationalSolutionIntMat (1.3.2)
with the remaining lines, one may also find the exact rank of a huge integer matrix.
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