GAP 4 Package
FULtil

Various utilities for use with GAP

0.1.5

August 2017

Frank Liibeck

Frank Liibeck Email: Frank.Luebeck@Math.RWTH-Aachen.De
Homepage: http://www.math.rwth-aachen.de/ Frank.Luebeck

Address: Lehrstuhl D fiir Mathematik RWTH Aachen Templer-
graben 64 52062 Aachen Germany

mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck

Contents

1 Decimal Approximations of Cylotomic Numbers
1.1 Complex Numbers e
1.2 Decimal Approximations of Real Numbers

2 Interface for Declarations and Method Installations
2.1 Declaration and Installation Functions

References

Index

Chapter 1

Decimal Approximations of Cylotomic
Numbers

The FULil package provides some functionality for computing with fixed point approximations of real
numbers. The main motivation is the question of deciding if a real cyclotomic number in GAP is
positive, see the function HasPositiveRealPartCyc (1.2.6).

The idea for this functionalty comes from the deposited contribution decimal.g provided by
Jean Michel for GAP 3. As an enhancement the FULil package implements an interval arithmetic
with the approximate numbers, such that a comparison function as TruelyLessDecimal (1.2.5) can
be implemented.

The package also provides the function ComplexNumber (1.1.2) which creates objects which have
a real and imaginary part and add and multiply like complex numbers.

1.1 Complex Numbers

1.1.1 IsComplexNumber

> IsComplexNumber (c) (Filter)
Returns: true or false.

> RealPart(c) (attribute)

> ImaginaryPart(c) (attribute)

Returns: ring elements.

IsComplexNumber returns true for additive and multiplicative elements ¢ which have the at-
tributes RealPart and ImaginaryPart and are added and multiplied like complex numbers.

The real and imaginary parts themselves can be any ring elements like real cyclotomic numbers,
but also decimal approximations of numbers, polynomials or others.

1.1.2 ComplexNumber

> ComplexNumber(re, im) (operation)
> ComplexNumber (c) (method)
Returns: an object in IsComplexNumber (1.1.1).
In the first general form this operation returns an object a such that IsComplexNumber (a) is
true and re and im are its RealPart (1.1.1) and ImaginaryPart (1.1.1), respectively.

GAP 4 Package FULil 4

For cyclotomic numbers (see IsCyc (Reference: IsCyc)) ¢ the second mentioned method returns
the complex number with the real and imaginary parts as cyclotomic numbers.
For other ¢ the one argument form is equivalent to a call with arguments ¢ and O*ca.
Example
gap> a := 1/2 * ComplexNumber (Sqrt(2), -Sqrt(2));
1/2*E(8)-1/2*E(8) ~3-Ix(1/2+E(8)+1/2+E(8)"3)
gap> a~2;
-I
gap> x := Indeterminate(Rationals, "x");;
gap> b := ComplexNumber(1+x,3-x"2);
x+1-I*(x~2+3)
gap> b~2;
-XT4+T*x"2+2%x-8-I* (2%x~3-2%x"2+6%x+6)
gap> ¢ := ComplexNumber (E(7));
1/2%E(7)+1/2*E(7) ~6+Ix(1/2+E(28) ~3-1/2+E(28)~11)
gap> c°7;
1

1.2 Decimal Approximations of Real Numbers

1.2.1 IsDecimalApproximation

> IsDecimalApproximation(a) (Filter)
Returns: true or false.

> Mantissa(a) (attribute)

> Precision(a) (attribute)

> Epsilon(a) (attribute)

Returns: integers.

IsDecimalApproximation returns true for additive and multiplicative elements a which have
attributes Mantissa, Precision and Epsilon. Such an element is interpreted as a real number
which has distance at most Epsilon(a) / 10"Precision(a) from the number Mantissa(a) /
10~Precision(a). Arithmetic with such numbers is done via an interval arithmetic.

If a lot of arithmetic is done with such decimal approximations the value of Epsilon can become
big, since with each operation worst case estimates for the error are done.

In arithmetic expressions we allow rational numbers as operands, they are implicitly substituted
by approximations of the same precision as the other operand.

1.2.2 DecimalApproximation

> DecimalApproximation(c[, prec]) (operation)

Returns: an object in IsDecimalApproximation (1.2.1) or in IsComplexNumber (1.1.1) with
real and imaginary part in IsDecimalApproximation (1.2.1).

With this operation real approximations can be created. If the second argument prec
is given it will be the precision of the result. If it is omitted, then the current value of
DefaultDecimalPrecision (which is set to 10 while loading the package) will be used instead.

There are methods for the following types of c:

real cyclotomic
returns a decimal approximation, see the comment below for what this means if ¢ is not rational.

GAP 4 Package FULil 5

non-real cyclotomic
the result is in IsComplexNumber (1.1.1) and the real and imaginary parts are decimal approx-
imations.

complex number
the result is a complex number with DecimalApproximation applied to the real and imaginary
parts.

decimal approximation
returns a decimal approximation, maybe with another precision.

Note that in GAP each cyclotomic number has well defined interpretation within the complex num-
bers, E(n) is considered as ¢2™/". So, the results of DecimalApproximation are also well defined
for cyclotomic numbers.

Example

gap> DefaultDecimalPrecision;

10

gap> a := DecimalApproximation(1/3);
0.333333333

gap> Mantissa(a); Precision(a); Epsilon(a);
3333333333

10

1

gap> 3/4xa;

0.25

gap> # see also ’SqrtDecimalApproximation’
gap> DecimalApproximation(Sqrt(3), 50);
1.7320508075688772935274463415058723669428052538102
gap> b := DecimalApproximation(E(20));
0.951056516+I%0.309016995

gap> b~5;

-0.000000002+I%1.000000001

gap> DecimalApproximation(last, 3);

I

1.2.3 SqrtDecimalApproximation

> SqrtDecimalApproximation(r, prec) (function)

Returns: decimal approximation.

For a positive rational number or a positive real approximation r this function computes the square
root to precision prec via Newton approximation. This can be much faster than via a representation
of the square root as cyclotomic number.

Example

gap> # use

gap> SqrtDecimalApproximation(2, 50);
1.4142135623730950488016887242096980785696718753769
gap> # instead of

gap> DecimalApproximation(Sqrt(2), 50);
1.4142135623730950488016887242096980785696718753769

GAP 4 Package FULil 6

1.2.4 PiDecimalApproximation

> PiDecimalApproximation(prec) (function)
Returns: decimal approximation of 7.
This function computes the decimal approximation of 7 to precision prec. It uses a recursion

formula with exponential convergence, see [Koe87].
Example

gap> PiDecimalApproximation(707);
3.14159265358979323846264338327950288419716939937510582097\
4944592307816406286208998628034825342117067982148086513282\
3066470938446095505822317253594081284811174502841027019385\
2110555964462294895493038196442881097566593344612847564823\
3786783165271201909145648566923460348610454326648213393607\
2602491412737245870066063155881748815209209628292540917153\
6436789259036001133053054882046652138414695194151160943305\
7270365759591953092186117381932611793105118548074462379962\
7495673518857527248912279381830119491298336733624406566430\
8602139494639522473719070217986094370277053921717629317675\
2384674818467669405132000568127145263560827785771342757789\
6091736371787214684409012249534301465495853710507922796892\
589235420199

1.2.5 TruelyLessDecimal

> TruelyLessDecimal(a, b) (function)

Returns: true, false or fail.

The arguments a and b must be decimal approximations of real numbers. Recall that this means
that they are real numbers which are only specified by an interval of rational numbers. This function
returns fail if the interval overlap. It returns true if all numbers in the interval specifying a are
strictly smaller than all numbers in the interval specifying b. Otherwise false is returned.

Example
gap> a := SqrtDecimalApproximation(2,30);
1.41421356237309504880168872421

gap> b := SqrtDecimalApproximation(3,20);
1.7320508075688772935

gap> TruelyLessDecimal(a,b);

true

gap> TruelyLessDecimal(a~2,b"2-1);

fail

1.2.6 HasPositiveRealPartCyc

> HasPositiveRealPartCyc(c) (function)

Returns: true or false.

The argument ¢ must be a cyclotomic number. This function returns true if the real part of this
number is greater than zero.

The algorithm is to compute decimal approximations of the number with growing precision until
the question can be decided.

(Recall that in GAP cyclotomic numbers are considered with a well defined embedding into the
complex numbers, see DecimalApproximation (1.2.2).)

GAP 4 Package FULil

Example
gap> HasPositiveRealPartCyc(0);

false
gap> HasPositiveRealPartCyc(E(7));
true
gap> HasPositiveRealPartCyc(E(3));
false

Chapter 2

Interface for Declarations and Method
Installations

The utilities in this Chapter provide an access to GAPs object type - operations - method system which
is a bit different from the conventions used in the GAP library. We summarize the main differences.

Families.
It is compulsory in GAP to put each object into a family. For example this must be specified
with the creation of a fype of an object, see FamilyObj (Reference: FamilyObj), NewFamily
(Reference: NewFamily), NewType (Reference: NewType). But for many objects its familiy
seems essentially irrelevant in practice. Here, we define a DefaultFamily (2.1.1) and interface
functions like MakeType (2.1.2) which implicitly include this default family if GAP needs one.

Declaration of operations.
In the GAP library operations are declared with prescribing numbers of arguments and giving
constraints on the type of objects for which methods are allowed to install (several declarations
of the same operation are possible), see DeclareOperation (Reference: DeclareOperation).
Calls of InstallMethod (Reference: InstallMethod) for not declared types of object lead to
an error.

This is a debugging feature for the method installation. It is irrelevant for the actual method
selection and can in fact be circumvented by using InstallOtherMethod (Reference: Instal-
10therMethod). Using the functions MakeOperation (2.1.3) and NewMethod (2.1.5) one can
ignore this debugging feature.

Documentation of methods.
With the installation of a method, see InstallMethod (Reference: InstallMethod), one can
specify a comment string describing for which types of objects a method is applicable. The
actual applicability is specified by a filter for each argument - note that some non-simple filters
may not be printed in a nice form (try for example NamesFilter (IsMatrix)). This together
leads for example to difficult to understand information with ApplicableMethod (Reference:
ApplicableMethod).

Our function NewMethod (2.1.5) takes strings describing the types of the allowed arguments of
a method. These strings are also used for (precise) comments.

Several installations of a method.
Sometimes a method can be used for several types of arguments or one should install a method

GAP 4 Package FULil 9

several times to get the rankings with respect to several other methods right. This can be done
with one call of NewMethod (2.1.5) via or-conjunctions in the strings describing the argument

types.

Compound declarations.
We provide functions that allow to declare several operations, variables, attributes, ..., in one
call.

2.1 Declaration and Installation Functions

2.1.1 DefaultFamily

> DefaultFamily (family)

This is a family used for all new types of objects created with MakeType (2.1.2). For many
applications you don’t need to know about this at all.

2.1.2 MakeType

> MakeType(filt[, datal) (function)
Returns: an object type.
This creates an object type for which the filters given by filt are set (including their implied
filters). Optionally, a type can also carry an additional arbitrary data object.
This essentially calls NewType (Reference: NewType) using DefaultFamily (2.1.1) as family.

2.1.3 MakeOperation

> MakeOperation(nami[, nam2, ...J]) (function)
> MakeAttribute(naml[, nam2, ...J]) (function)
> MakeGlobalVariable(nami[, nam2, ...]) (function)
> MakeGlobalFunction(nami[, nam2, ...]) (function)

All arguments must be strings. For each argument nam1, nam?2, ..., these functions declare one

operation, attribute, global variable or global function, respectively, with the given name. In case of
operations and attributes, these are declared without constraints on the number or type of arguments
of corresponding methods.

Note that the variables with names nam1, ..., are make read-only by the declaration. This is very
useful to avoid accidental overwriting by a user, or for detecting compatibility problems with the GAP
library or packages.

2.1.4 MakeProperty
> MakeProperty(nam, impl[, rk]) (function)

The argument nam must be a string, impl must be a filter, and rk a non-negative integer. This
function does several things:

* declares a property with name nam and rank offset rk.

GAP 4 Package FULil 10

* installs impl as implied filter of the property.

* installs a setter method that takes only one argument and sets the new property in the argument
to true.

Compare with DeclareProperty (Reference: DeclareProperty).

2.1.5 NewMethod

> NewMethod(oper, filt, fun[, rk]) (function)

This function is an interface to the more elaborate function InstallOtherMethod (Reference:
InstallOtherMethod) in the GAP library.

The argument oper must be an operation, £i1t must be a string or list of strings, fun a function,
and the optional argument rk a non-negative integer. Giving a string as filt is equivalent to giving
a list with this string as single entry.

The strings given in filt are split at substrings "or" which are surrounded by whitespace. The
remaining substrings each must evaluate (with EvalString (Reference: EvalString)) to a filter. The
function fun is then installed as method for the operation oper for all combinations of filters resulting
from the splitting and evaluation of the strings in filt.

The argument rk is used as offset for the rank of the method(s). Its default value, if not given, is 0.
One should try to avoid using this optional argument whenever possible. Instead multiple installations
of the same method may be more sensible.

References

[Koe87] Max Koecher. Klassische elementare Analysis. Birkhduser Verlag, Basel, 1987. 6

11

Index

ComplexNumber, 3
IsCyc, 3

DecimalApproximation, 4
DefaultFamily, 9

Epsilon, 4
HasPositiveRealPartCyc, 6

ImaginaryPart, 3
IsComplexNumber, 3
IsDecimalApproximation, 4

MakeAttribute, 9
MakeGlobalFunction, 9
MakeGlobalVariable, 9
MakeOperation, 9
MakeProperty, 9
MakeType, 9
Mantissa, 4

NewMethod, 10

PiDecimalApproximation, 6
Precision, 4

RealPart, 3
SqrtDecimalApproximation, 5

TruelyLessDecimal, 6

12

	Decimal Approximations of Cylotomic Numbers
	Complex Numbers
	Decimal Approximations of Real Numbers

	Interface for Declarations and Method Installations
	Declaration and Installation Functions

	References
	Index

