
GAP

Groups, Algorithms and Programming

version 3 release 4 patchlevel 4

Martin Schönert
together with

Hans Ulrich Besche
Thomas Breuer

Frank Celler
Bettina Eick

Volkmar Felsch
Alexander Hulpke

Jürgen Mnich
Werner Nickel
Götz Pfeiffer

Udo Polis
Heiko Theißen

Lehrstuhl D für Mathematik, RWTH Aachen
Alice Niemeyer

Department of Mathematics, University of Western Australia

20. Dec. 1995

Copyright c© 1992 by Lehrstuhl D für Mathematik

RWTH, Templergraben 64, D 5100 Aachen, Germany

GAP can be copied and distributed freely for any non-commercial purpose.

If you copy GAP for somebody else, you may ask this person for refund of your expenses.
This should cover cost of media, copying and shipping. You are not allowed to ask for more
than this. In any case you must give a copy of this copyright notice along with the program.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the
address gap@samson.math.rwth-aachen.de, containing your full name and address. This
allows us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP,
just as you would cite another paper that you used. Also we would appreciate it if you could
inform us about such a paper.

You are permitted to modify and redistribute GAP, but you are not allowed to restrict
further redistribution. That is to say proprietary modifications will not be allowed. We
want all versions of GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document.
This should specify what modifications you made in which files. We do not want to take
credit or be blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see
bug-fixes, improvements and new functions. So again we would appreciate it if you would
inform us about all modifications you make.

GAP is distributed by us without any warranty, to the extent permitted by applicable state
law. We distribute GAP as is without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose.

The entire risk as to the quality and performance of the program is with you. Should GAP
prove defective, you assume the cost of all necessary servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other party who may
modify and redistribute GAP as permitted above, be liable to you for damages, including
lost profits, lost monies or other special, incidental or consequential damages arising out of
the use or inability to use GAP.

2

Preface

Welcome to the first release of GAP from St Andrews. In the two years since the release
of GAP 3.4.3, most of the efforts of the GAP team in Aachen have been devoted to the
forth-coming major release, GAP4.1, which will feature a re-engineered kernel with many
extra facilities, a completely new scheme for structuring the library, many new and enhanced
algorithms and algorithms for new structures such as algebras and semigroups.

While this was going on, however, our users were not idle, and a number of bugs and
blemishes in the system were found, while a substantial number of new or improved share
packages have been submitted and accepted. Once it was decided that the computational
algebra group at St Andrews would take over GAP development, we agreed, as a learning
exercise, to release a new upgrade of GAP 3.4, incorporating the bug fixes and new packages.

Assembling the release has indeed been a learning experience, and has, of course, taken
much longer than we hoped. The release incorporates fixes to all known bugs in the library
and kernel. In addition, there are two large new data libraries:of transitivie permutation
groups up to degree 23; and of all groups of order up to 1000, except those of order 512 or
768 and some others have been extended. This release includes a number of share packages
that are new since 3.4.3:

autag
for computing the automorphism groups of soluble groups;

CHEVIE
for computing with finite Coxteter groups, Hecke algebras, Chevalley groups and
related structures, replacing weyl;

CrystGap
for computing with crystallographic groups;

glissando
for comnputing with near-rings and semigroups;

grim
for computing with rational and integer matrix groups;

kbmag
linking to Knuth-Bendix package for monoids and groups;

matrix
for analysing matrix groups over finite fields, replacing smash and classic;

pcqa
linking to a polycyclic quotient program;

3

4 PREFACE

specht
for computing the representation theory of the symmetric group and related struc-
tures; and

xmod
for computing with crossed modules.

A number of other share packages have also been updated. Full details of all of these can
be found in the updated manual, which is now also supplied in an HTML version.

Despite the tribulations of this release, we are looking forward to taking over a central role
in GAP development in the future, and to working with the users and contributors who are
so essential a part of making GAP what it is.

St Andrews, April 18.,1997, Steve Linton.

PREFACE 5

GAP stands for Groups, Algorithms and Programming. The name was chosen to
reflect the aim of the system, which is introduced in this manual.

Until well into the eighties the interest of pure mathematicians in computational group the-
ory was stirred by, but in most cases also confined to the information that was produced by
group theoretical software for their special research problems – and hampered by the uneasy
feeling that one was using black boxes of uncontrollable reliability. However the last years
have seen a rapid spread of interest in the understanding, design and even implementation
of group theoretical algorithms. These are gradually becoming accepted both as standard
tools for a working group theoretician, like certain methods of proof, and as worthwhile
objects of study, like connections between notions expressed in theorems.

GAP was started as an attempt to meet this interest. Therefore a primary design goal
has been to give its user full access to algorithms and the data structures used by them,
thus allowing critical study as well as modification of existing methods. We also intend to
relieve the user from unwanted technical chores and to assist him in the programming, thus
supporting invention and implementation of new algorithms as well as experimentation with
them.

We have tried to achieve these goals by a design which in addition makes GAP easily portable,
even to computers such as Atari ST and Amiga, and at the same time facilitates the main-
tenance of GAP with the limited resources of an academic environment.

While I had felt for some time rather strongly the wish for such a truly open system for
computational group theory, the concrete idea of GAP was born when, together with a larger
group of students, among whom were Johannes Meier, Werner Nickel, Alice Niemeyer, and
Martin Schönert who eventually wrote the first version of GAP, I had my first contact with
the Maple system at the EUROCAL meeting in Linz/Austria in 1985. Maple demonstrated
to us the feasibility of a strong and efficient computer algebra system built from a small
kernel, with an interpreted library of routines written in a problem-adapted language. The
discussion of the plan of a system for computational group theory organized in a similar
way started in the fall of 1985, programming only in the second half of 1986. A first
version of GAP was operational by the end of 1986. The system was first presented at the
Oberwolfach meeting on computational group theory in May 1988. Version 2.4 was the first
officially to be given away from Aachen starting in December 1988. The strong interest
in this version, in spite of its still rather small collection of group theoretical routines, as
well as constructive criticism by many colleagues, confirmed our belief in the general design
principles of the system. Nevertheless over three years had passed until in April 1992 version
3.1 was released, which was followed in February 1993 by version 3.2, in November 1993 by
version 3.3 and is now in June 1994 followed by version 3.4.

A main reason for the long time between versions 2.4 and 3.1 and the fact that there had
not been intermediate releases was that we had found it advisable to make a number of
changes to basic data structures until with version 3.1 we hoped to have reached a state
where we could maintain upward compatibility over further releases, which were planned
to follow much more frequently. Both goals have been achieved over the last two years. Of
course the time has also been used to extend the scope of the methods implemented in GAP.
A rough estimate puts the size of the program library of version 3.4 at about sixteen times
the size of that of version 2.4, while for version 3.1 the factor was about eight. Compared to
GAP 3.2, which was the last version with major additions, new features of GAP 3.4 include
the following:

6 PREFACE

- New data types (and extensions of methods) for algebras, modules and characters

- Further methods for working with finite presentations (IMD, a fast size function)

- Some “Almost linear” methods and (rational) conjugacy classes for permutation groups

- Methods based on “special AG systems” for finite soluble groups

- A package for the calculation of Galois groups and field extensions

- Extensions of the library of data (transitive permutation groups, crystallographic groups)

- An X-window based X-GAP for display of subgroup lattices

- Five further share libraries (ANU SQ, MEATAXE, SISYPHOS, VECTORENUMERA-
TOR, SMASH)

Work on the extension of GAP is going on in Aachen as well as in an increasing number
of other places. We hope to be able to have the next release of GAP after about 9 months
again, that is in the first half of 1995.

The system that you are getting now consists of four parts:

1. A comparatively small kernel, written in C, which provides the user with:

- automatic dynamic storage management, which the user needn’t bother about in
his programming;

- a set of time-critical basic functions, e.g. “arithmetic” operations for integers, finite
fields, permutations and words, as well as natural operations for lists and records;

- an interpreter for the GAP language, which belongs to the Pascal family, but, while
allowing additional types for group theoretical objects, does not require type
declarations;

- a set of programming tools for testing, debugging, and timing algorithms.

2. A much larger library of GAP functions that implement group theoretical and
other algorithms. Since this is written entirely in the GAP language, in contrast to
the situation in older group theoretical software, the GAP language is both the main
implementation language and the user language of the system. Therefore the user can
as easily as the original programmers investigate and vary algorithms of the library
and add new ones to it, first for own use and eventually for the benefit of all GAP users.
We hope that moreover the structuring of the library using the concept of domains
and the techniques used for their handling that have been introduced into GAP 3.1 by
Martin Schönert will be further helpful in this respect.

3. A library of group theoretical data which already contains various libraries of
groups (cf. chapter 37), large libraries of ordinary character tables, including all of
the Cambridge Atlas of Finite Groups and modular tables (cf. chapter 52), and a
library of tables of marks. We hope to extend this collection further with the help
of colleagues who have undertaken larger classifications of groups.

PREFACE 7

4. The documentation. This is available as a file that can either be used for on-line
help or be printed out to form this manual. Some advice for using this manual may
be helpful. The first chapter About GAP is really an introduction to the use of the
system, starting from scratch and, for the beginning, assuming neither much knowledge
about group theory nor much versatility in using a computer. Some of the later
sections of chapter 1 assume more, however. For instance section About Character
Tables definitely assumes familiarity with representation theory of finite groups, while
in particular sections About the Implementation of Domains to About Defining
New Group Elements address more advanced users who want to extend the system
to meet their special needs. The further chapters of the manual give then a full
description of the functions presently available in GAP.

Together with the system we distribute GAP share libraries, which are separate packages
which have been written by various groups of people and remain under their responsibility.
Some of these packages are written completely in the GAP language, others totally or in
parts in C (or even other languages). However the functions in these packages can be called
directly from GAP and results are returned to GAP. At present there are 10 such share
libraries (cf. chapter 56).

The policy for the further development of GAP is to keep the kernel as small as possible,
extending the set of basic functions only by very selected ones that have proved to be time-
critical and, wherever feasible, of general use. In the interest of the possibility of exchanging
functions written in the GAP language the kernel has to be maintained in a single place which
in the foreseeable future will be Aachen. On the other hand we hoped from the beginning
that the design of GAP would allow the library of GAP functions and the library of data to
grow not only by continued work in Aachen but, as does any other part of mathematics, by
contributions from many sides, and these hopes have been fulfilled very well.

There are some other points to make on further policy:

- When we began work on GAP the typical user that we had in mind was the one wanting to
implement his own algorithmic ideas. While we certainly hope that we still serve such
users well it has become clear from the experience of the last years that there are even
more users of two different species, on the one hand the established theorist, sometimes
with little experience in the use of computers, who wants an easily understandable tool,
on the other hand the student, often quite familiar with computers, who wants to get
assistance in learning the theory by being able to do nontrivial examples. We think
that in fact GAP can well be used by both, but we realize that for each a special
introduction would be desirable. We apologize that we have not had the time yet to
write such, however have learned (through the GAP forum) that in a couple of places
work on the development of Laboratory Manuals for the use of GAP alongside with
standard Algebra texts is undertaken.

- When we began work on GAP, we designed it as a system for doing group theory. It has
already turned out that in fact the design of the system is general enough, and some of
its functions are also useful, for doing work in other neighbouring areas. For instance
Leonard Soicher has used GAP to develop a system GRAPE for working with graphs,
which meanwhile is available as a share library. We certainly enjoy seeing this happen,
but we want to emphasize that in Aachen our primary interest is the development of a

8 PREFACE

group theory system and that we do not plan to try to extend it beyond our abilities
into a general computer algebra system.

- Rather we hope to provide tools for linking GAP to other systems that represent years of
work and experience in areas such as commutative algebra, or to very efficient special
purpose stand-alone programs. A link of this kind exists e.g. to the MOC system for
the work with modular characters.

- We invite you to further extend GAP. We are willing either to include such extensions
into GAP or to make them available through the same channels as GAP in the form of
the above mentioned share libraries. Of course, we will do this only if the extension
can be distributed free of charge like GAP. The copyright for such share libraries shall
remain with you.

- Finally to answer an often asked question: The GAP language is in principle designed to
be compilable. Work on a compiler is on the way, but this is not yet ready for inclusion
with this release.

GAP is given away under the conditions that have always been in use between mathemati-
cians, i.e. in particular completely in source and free of charge. We hope that the
possibility offered by modern technology of depositing GAP on a number of computers to
be fetched from them by ftp, will assist us in this policy. We want to emphasize, however,
two points. GAP is not public domain software; we want to maintain a copyright that in
particular forbids commercialization of GAP. Further we ask that use of GAP be quoted in
publications like the use of any other mathematical work, and we would be grateful if we
could keep track of where GAP is implemented. Therefore we ask you to notify us if you have
got GAP, e.g., by sending a short e-mail message to gap@samson.math.rwth-aachen.de.
The simple reason, on top of our curiosity, is that as anybody else in an academic environ-
ment we have from time to time to prove that we are doing meaningful work.

We have established a GAP forum, where interested users can discuss GAP related topics by
e-mail. In particular this forum is for questions about GAP, general comments, bug reports,
and maybe bug fixes. We will read this forum and answer questions and comments, and
distribute bug fixes. Of course others are also invited to answer questions, etc. We will also
announce future releases of GAP in this forum.

To subscribe send an e-mail message to miles@samson.math.rwth-aachen.de containing
the line subscribe gap-forum your-name, where your-name should be your full name,
not your e-mail address. You will receive an acknowledgement, and from then on all e-mail
messages sent to gap-forum@samson.math.rwth-aachen.de.

miles@samson.math.rwth-aachen.de also accepts the following requests. help for a short
help on how to use miles, unsubscribe gap-forum to unsubscribe, recipients gap-forum
to get a list of subscribers, and statistics gap-forum to see how many e-mail messages
each subscriber has sent so far.

The reliability of large systems of computer programs is a well known general problem and,
although over the past year the record of GAP in this respect has not been too bad, of course
GAP is not exempt from this problem. We therefore feel that it is mandatory that we, but
also other users, are warned of bugs that have been encountered in GAP or when doubts
have arisen. We ask all users of GAP to use the GAP forum for issuing such warnings.

PREFACE 9

We have also established an e-mail address gap-trouble to which technical problems of
a more local character such as installation problems can be sent. Together with some
experienced GAP users abroad we try to give advice on such problems.

GAP was started as a joint Diplom project of four students whose names have already been
mentioned. Since then many more finished Diplom projects have contributed to GAP as
well as other members of Lehrstuhl D and colleagues from other institutes. Their individual
contributions to the programs and to the manual are documented in the respective files.
To all of them as well as to all who have helped proofreading and improving this manual I
want to express my thanks for their engagement and enthusiasm as well as to many users
of GAP who have helped us by pointing out deficiencies and suggesting improvements. Very
special thanks however go to Martin Schönert. Not only does GAP owe many of its basic
design features to his profound knowledge of computer languages and the techniques for
their implementation, but in many long discussions he has in the name of future users
always been the strongest defender of clarity of the design against my impatience and the
temptation for “quick and dirty” solutions.

Since 1992 the development of GAP has been financially supported by the Deutsche Forschungs-
gemeinschaft in the context of the Forschungsschwerpunkt “Algorithmische Zahlentheorie
und Algebra”. This very important help is gratefully acknowledged.

As with the previous versions we send this version out hoping for further feedback of con-
structive criticism. Of course we ask to be notified about bugs, but moreover we shall
appreciate any suggestion for the improvement of the basic system as well as of the algo-
rithms in the library. Most of all, however, we hope that in spite of such criticism you will
enjoy working with GAP.

Aachen, June 1.,1994, Joachim Neubüser.

10 PREFACE

Contents

1 About GAP 77

2 The Programming Language 199

3 Environment 217

4 Domains 229

5 Rings 243

6 Fields 259

7 Groups 269

8 Operations of Groups 337

9 Vector Spaces 357

10 Integers 363

11 Number Theory 375

12 Rationals 381

13 Cyclotomics 385

14 Gaussians 395

15 Subfields of Cyclotomic Fields 401

16 Algebraic extensions of fields 411

17 Unknowns 419

11

12 CONTENTS

18 Finite Fields 423

19 Polynomials 431

20 Permutations 445

21 Permutation Groups 451

22 Words in Abstract Generators 473

23 Finitely Presented Groups 481

24 Words in Finite Polycyclic Groups 517

25 Finite Polycyclic Groups 525

26 Special Ag Groups 573

27 Lists 581

28 Sets 605

29 Boolean Lists 611

30 Strings and Characters 617

31 Ranges 623

32 Vectors 627

33 Row Spaces 631

34 Matrices 645

35 Matrix Rings 653

36 Matrix Groups 655

37 Group Libraries 659

38 Algebras 711

39 Finitely Presented Algebras 727

CONTENTS 13

40 Matrix Algebras 735

41 Modules 741

42 Mappings 751

43 Homomorphisms 769

44 Booleans 775

45 Records 779

46 Combinatorics 793

47 Tables of Marks 807

48 Character Tables 819

49 Generic Character Tables 863

50 Characters 867

51 Maps and Parametrized Maps 895

52 Character Table Libraries 915

53 Class Functions 931

54 Monomiality Questions 943

55 Getting and Installing GAP 953

56 Share Libraries 983

57 ANU Pq 1011

58 Automorphism Groups of Special Ag Groups 1021

59 Cohomology 1031

60 CrystGap–The Crystallographic Groups Package 1037

61 The Double Coset Enumerator 1051

14 CONTENTS

62 GLISSANDO 1075

63 Grape 1111

64 GRIM (Groups of Rational and Integer Matrices) 1137

65 GUAVA 1139

66 KBMAG 1219

67 The Matrix Package 1235

68 The MeatAxe 1283

69 The Polycyclic Quotient Algorithm Package 1299

70 Sisyphos 1307

71 The Specht Share Package 1315

72 Vector Enumeration 1351

73 XMOD 1359

74 CHEVIE Version 3 – a short introduction 1425

75 Root systems and finite Coxeter groups 1429

76 Elements in finite Coxeter groups 1439

77 Character tables for Coxeter groups 1449

78 Reflection subgroups 1459

79 Artin-Tits braid groups 1467

80 Complex reflection groups, cyclotomic algebras 1473

81 Iwahori-Hecke algebras 1477

82 Representations of Iwahori-Hecke algebras 1487

83 Kazhdan-Lusztig polynomials and bases 1495

CONTENTS 15

84 Coxeter cosets 1503

85 Hecke cosets 1513

86 Appendix – utility functions for the CHEVIE package 1515

16 CONTENTS

Contents

1 About GAP 77

1.1 About Conventions . 78

1.2 About Starting and Leaving GAP . 78

1.3 About First Steps . 79

1.4 About Help . 80

1.5 About Syntax Errors . 80

1.6 About Constants and Operators . 80

1.7 About Variables and Assignments . 82

1.8 About Functions . 84

1.9 About Lists . 85

1.10 About Identical Lists . 87

1.11 About Sets . 89

1.12 About Vectors and Matrices . 90

1.13 About Records . 92

1.14 About Ranges . 93

1.15 About Loops . 94

1.16 About Further List Operations . 96

1.17 About Writing Functions . 97

1.18 About Groups . 101

1.19 About Operations of Groups . 109

1.20 About Finitely Presented Groups and Presentations 117

1.21 About Fields . 122

1.22 About Matrix Groups . 126

1.23 About Domains and Categories . 127

1.24 About Mappings and Homomorphisms 135

1.25 About Character Tables . 140

17

18 CONTENTS

1.26 About Group Libraries . 155

1.27 About the Implementation of Domains 161

1.28 About Defining New Domains . 170

1.29 About Defining New Parametrized Domains 178

1.30 About Defining New Group Elements 182

2 The Programming Language 199

2.1 Lexical Structure . 200

2.2 Symbols . 200

2.3 Whitespaces . 201

2.4 Keywords . 202

2.5 Identifiers . 202

2.6 Expressions . 202

2.7 Variables . 203

2.8 Function Calls . 204

2.9 Comparisons . 205

2.10 Operations . 206

2.11 Statements . 206

2.12 Assignments . 207

2.13 Procedure Calls . 208

2.14 If . 208

2.15 While . 209

2.16 Repeat . 209

2.17 For . 210

2.18 Functions . 211

2.19 Return . 213

2.20 The Syntax in BNF . 213

3 Environment 217

3.1 Main Loop . 217

3.2 Break Loops . 219

3.3 Error . 219

3.4 Line Editing . 219

3.5 Help . 221

3.6 Reading Sections . 221

3.7 Format of Sections . 221

3.8 Browsing through the Sections . 222

CONTENTS 19

3.9 Redisplaying a Section . 223

3.10 Abbreviating Section Names . 223

3.11 Help Index . 223

3.12 Read . 224

3.13 ReadLib . 225

3.14 Print . 225

3.15 PrintTo . 225

3.16 AppendTo . 226

3.17 LogTo . 226

3.18 LogInputTo . 226

3.19 SizeScreen . 226

3.20 Runtime . 226

3.21 Profile . 227

3.22 Exec . 228

3.23 Edit . 228

4 Domains 229

4.1 Domain Records . 230

4.2 Dispatchers . 230

4.3 More about Dispatchers . 231

4.4 An Example of a Computation in a Domain 232

4.5 Domain . 233

4.6 Elements . 234

4.7 Comparisons of Domains . 234

4.8 Membership Test for Domains . 236

4.9 IsFinite . 236

4.10 Size . 237

4.11 IsSubset . 237

4.12 Intersection . 237

4.13 Union . 238

4.14 Difference . 239

4.15 Representative . 240

4.16 Random . 240

20 CONTENTS

5 Rings 243

5.1 IsRing . 243

5.2 Ring . 244

5.3 DefaultRing . 244

5.4 Comparisons of Ring Elements . 245

5.5 Operations for Ring Elements . 245

5.6 Quotient . 246

5.7 IsCommutativeRing . 246

5.8 IsIntegralRing . 246

5.9 IsUniqueFactorizationRing . 247

5.10 IsEuclideanRing . 247

5.11 IsUnit . 248

5.12 Units . 248

5.13 IsAssociated . 248

5.14 StandardAssociate . 249

5.15 Associates . 249

5.16 IsIrreducible . 250

5.17 IsPrime . 250

5.18 Factors . 250

5.19 EuclideanDegree . 251

5.20 EuclideanRemainder . 251

5.21 EuclideanQuotient . 252

5.22 QuotientRemainder . 252

5.23 Mod . 253

5.24 QuotientMod . 253

5.25 PowerMod . 254

5.26 Gcd . 254

5.27 GcdRepresentation . 255

5.28 Lcm . 255

5.29 Ring Records . 256

CONTENTS 21

6 Fields 259

6.1 IsField . 259

6.2 Field . 260

6.3 DefaultField . 260

6.4 Fields over Subfields . 261

6.5 Comparisons of Field Elements . 261

6.6 Operations for Field Elements . 262

6.7 GaloisGroup . 262

6.8 MinPol . 263

6.9 CharPol . 263

6.10 Norm . 264

6.11 Trace . 265

6.12 Conjugates . 265

6.13 Field Homomorphisms . 266

6.14 IsFieldHomomorphism . 266

6.15 KernelFieldHomomorphism . 267

6.16 Mapping Functions for Field Homomorphisms 267

6.17 Field Records . 268

7 Groups 269

7.1 Group Elements . 270

7.2 Comparisons of Group Elements . 270

7.3 Operations for Group Elements . 270

7.4 IsGroupElement . 271

7.5 Order . 272

7.6 More about Groups and Subgroups . 272

7.7 IsParent . 273

7.8 Parent . 273

7.9 Group . 274

7.10 AsGroup . 275

7.11 IsGroup . 275

7.12 Subgroup . 275

7.13 AsSubgroup . 276

7.14 Subgroups . 276

7.15 Agemo . 276

7.16 Centralizer . 277

22 CONTENTS

7.17 Centre . 277

7.18 Closure . 278

7.19 CommutatorSubgroup . 279

7.20 ConjugateSubgroup . 279

7.21 Core . 279

7.22 DerivedSubgroup . 280

7.23 FittingSubgroup . 280

7.24 FrattiniSubgroup . 281

7.25 NormalClosure . 281

7.26 NormalIntersection . 281

7.27 Normalizer . 281

7.28 PCore . 282

7.29 PrefrattiniSubgroup . 282

7.30 Radical . 283

7.31 SylowSubgroup . 283

7.32 TrivialSubgroup . 283

7.33 FactorGroup . 283

7.34 FactorGroupElement . 284

7.35 CommutatorFactorGroup . 285

7.36 Series of Subgroups . 285

7.37 DerivedSeries . 285

7.38 CompositionSeries . 286

7.39 ElementaryAbelianSeries . 286

7.40 JenningsSeries . 286

7.41 LowerCentralSeries . 287

7.42 PCentralSeries . 287

7.43 SubnormalSeries . 287

7.44 UpperCentralSeries . 288

7.45 Properties and Property Tests . 288

7.46 AbelianInvariants . 289

7.47 DimensionsLoewyFactors . 289

7.48 EulerianFunction . 290

7.49 Exponent . 290

7.50 Factorization . 290

7.51 Index . 291

7.52 IsAbelian . 291

CONTENTS 23

7.53 IsCentral . 291

7.54 IsConjugate . 292

7.55 IsCyclic . 292

7.56 IsElementaryAbelian . 292

7.57 IsNilpotent . 293

7.58 IsNormal . 293

7.59 IsPerfect . 294

7.60 IsSimple . 294

7.61 IsSolvable . 294

7.62 IsSubgroup . 295

7.63 IsSubnormal . 295

7.64 IsTrivial for Groups . 296

7.65 GroupId . 296

7.66 PermutationCharacter . 299

7.67 Conjugacy Classes . 299

7.68 ConjugacyClasses . 300

7.69 ConjugacyClass . 300

7.70 IsConjugacyClass . 301

7.71 Set Functions for Conjugacy Classes . 301

7.72 Conjugacy Class Records . 301

7.73 ConjugacyClassesSubgroups . 302

7.74 Lattice . 303

7.75 ConjugacyClassSubgroups . 309

7.76 IsConjugacyClassSubgroups . 309

7.77 Set Functions for Subgroup Conjugacy Classes 309

7.78 Subgroup Conjugacy Class Records . 310

7.79 ConjugacyClassesMaximalSubgroups . 311

7.80 MaximalSubgroups . 311

7.81 NormalSubgroups . 311

7.82 ConjugateSubgroups . 312

7.83 Cosets of Subgroups . 312

7.84 RightCosets . 312

7.85 RightCoset . 313

7.86 IsRightCoset . 313

7.87 Set Functions for Right Cosets . 314

7.88 Right Cosets Records . 315

24 CONTENTS

7.89 LeftCosets . 316

7.90 LeftCoset . 316

7.91 IsLeftCoset . 316

7.92 DoubleCosets . 317

7.93 DoubleCoset . 317

7.94 IsDoubleCoset . 318

7.95 Set Functions for Double Cosets . 318

7.96 Double Coset Records . 319

7.97 Group Constructions . 320

7.98 DirectProduct . 320

7.99 DirectProduct for Groups . 321

7.100 SemidirectProduct . 321

7.101 SemidirectProduct for Groups . 322

7.102 SubdirectProduct . 323

7.103 WreathProduct . 323

7.104 WreathProduct for Groups . 324

7.105 Group Homomorphisms . 324

7.106 IsGroupHomomorphism . 325

7.107 KernelGroupHomomorphism . 326

7.108 Mapping Functions for Group Homomorphisms 326

7.109 NaturalHomomorphism . 327

7.110 ConjugationGroupHomomorphism . 328

7.111 InnerAutomorphism . 329

7.112 GroupHomomorphismByImages . 329

7.113 Set Functions for Groups . 331

7.114 Elements for Groups . 332

7.115 Intersection for Groups . 333

7.116 Operations for Groups . 333

7.117 Group Records . 334

8 Operations of Groups 337

8.1 Other Operations . 338

8.2 Cycle . 339

8.3 CycleLength . 339

8.4 Cycles . 340

8.5 CycleLengths . 341

CONTENTS 25

8.6 Permutation . 341

8.7 IsFixpoint . 342

8.8 IsFixpointFree . 342

8.9 DegreeOperation . 343

8.10 IsTransitive . 343

8.11 Transitivity . 344

8.12 IsRegular . 345

8.13 IsSemiRegular . 346

8.14 Orbit . 346

8.15 OrbitLength . 347

8.16 Orbits . 348

8.17 OrbitLengths . 349

8.18 Operation . 349

8.19 OperationHomomorphism . 350

8.20 Blocks . 351

8.21 IsPrimitive . 352

8.22 Stabilizer . 353

8.23 RepresentativeOperation . 353

8.24 RepresentativesOperation . 354

8.25 IsEquivalentOperation . 355

9 Vector Spaces 357

9.1 VectorSpace . 357

9.2 IsVectorSpace . 358

9.3 Vector Space Records . 358

9.4 Set Functions for Vector Spaces . 359

9.5 IsSubspace . 359

9.6 Base . 359

9.7 AddBase . 360

9.8 Dimension . 361

9.9 LinearCombination . 361

9.10 Coefficients . 362

26 CONTENTS

10 Integers 363

10.1 Comparisons of Integers . 364

10.2 Operations for Integers . 364

10.3 QuoInt . 365

10.4 RemInt . 365

10.5 IsInt . 366

10.6 Int . 366

10.7 AbsInt . 366

10.8 SignInt . 366

10.9 ChineseRem . 367

10.10 LogInt . 367

10.11 RootInt . 367

10.12 SmallestRootInt . 368

10.13 Set Functions for Integers . 368

10.14 Ring Functions for Integers . 369

10.15 Primes . 370

10.16 IsPrimeInt . 370

10.17 IsPrimePowerInt . 371

10.18 NextPrimeInt . 371

10.19 PrevPrimeInt . 372

10.20 FactorsInt . 372

10.21 DivisorsInt . 372

10.22 Sigma . 373

10.23 Tau . 373

10.24 MoebiusMu . 374

11 Number Theory 375

11.1 PrimeResidues . 375

11.2 Phi . 376

11.3 Lambda . 376

11.4 OrderMod . 377

11.5 IsPrimitiveRootMod . 377

11.6 PrimitiveRootMod . 378

11.7 Jacobi . 378

11.8 Legendre . 378

11.9 RootMod . 379

11.10 RootsUnityMod . 379

CONTENTS 27

12 Rationals 381

12.1 IsRat . 381

12.2 Numerator . 382

12.3 Denominator . 382

12.4 Comparisons of Rationals . 383

12.5 Operations for Rationals . 383

12.6 Set Functions for Rationals . 384

12.7 Field Functions for Rationals . 384

13 Cyclotomics 385

13.1 More about Cyclotomics . 385

13.2 Cyclotomic Integers . 386

13.3 IntCyc . 387

13.4 RoundCyc . 387

13.5 IsCyc . 387

13.6 IsCycInt . 387

13.7 NofCyc . 388

13.8 CoeffsCyc . 388

13.9 Comparisons of Cyclotomics . 388

13.10 Operations for Cyclotomics . 389

13.11 GaloisCyc . 389

13.12 ATLAS irrationalities . 390

13.13 StarCyc . 391

13.14 Quadratic . 391

13.15 GaloisMat . 392

13.16 RationalizedMat . 393

14 Gaussians 395

14.1 Comparisons of Gaussians . 395

14.2 Operations for Gaussians . 396

14.3 IsGaussRat . 397

14.4 IsGaussInt . 397

14.5 Set Functions for Gaussians . 397

14.6 Field Functions for Gaussian Rationals 398

14.7 Ring Functions for Gaussian Integers . 398

14.8 TwoSquares . 399

28 CONTENTS

15 Subfields of Cyclotomic Fields 401

15.1 IsNumberField . 402

15.2 IsCyclotomicField . 402

15.3 Number Field Records . 402

15.4 Cyclotomic Field Records . 403

15.5 DefaultField and Field for Cyclotomics 404

15.6 DefaultRing and Ring for Cyclotomic Integers 405

15.7 GeneratorsPrimeResidues . 405

15.8 GaloisGroup for Number Fields . 406

15.9 ZumbroichBase . 406

15.10 Integral Bases for Number Fields . 407

15.11 NormalBaseNumberField . 408

15.12 Coefficients for Number Fields . 408

15.13 Domain Functions for Number Fields 409

16 Algebraic extensions of fields 411

16.1 AlgebraicExtension . 411

16.2 IsAlgebraicExtension . 412

16.3 RootOf . 412

16.4 Algebraic Extension Elements . 412

16.5 Set functions for Algebraic Extensions 412

16.6 IsNormalExtension . 413

16.7 MinpolFactors . 413

16.8 GaloisGroup for Extension Fields . 413

16.9 ExtensionAutomorphism . 414

16.10 Field functions for Algebraic Extensions 414

16.11 Algebraic Extension Records . 415

16.12 Extension Element Records . 415

16.13 IsAlgebraicElement . 415

16.14 Algebraic extensions of the Rationals 415

16.15 DefectApproximation . 416

16.16 GaloisType . 416

16.17 ProbabilityShapes . 416

16.18 DecomPoly . 416

CONTENTS 29

17 Unknowns 419
17.1 Unknown . 420
17.2 IsUnknown . 420
17.3 Comparisons of Unknowns . 421
17.4 Operations for Unknowns . 421

18 Finite Fields 423
18.1 Finite Field Elements . 423
18.2 Comparisons of Finite Field Elements 424
18.3 Operations for Finite Field Elements . 425
18.4 IsFFE . 426
18.5 CharFFE . 426
18.6 DegreeFFE . 427
18.7 OrderFFE . 427
18.8 IntFFE . 427
18.9 LogFFE . 428
18.10 GaloisField . 428
18.11 FrobeniusAutomorphism . 429
18.12 Set Functions for Finite Fields . 429
18.13 Field Functions for Finite Fields . 430

19 Polynomials 431
19.1 Multivariate Polynomials . 433
19.2 Indeterminate . 433
19.3 Polynomial . 434
19.4 IsPolynomial . 434
19.5 Comparisons of Polynomials . 434
19.6 Operations for Polynomials . 435
19.7 Degree . 437
19.8 LeadingCoefficient . 438
19.9 Value . 438
19.10 Derivative . 438
19.11 InterpolatedPolynomial . 439
19.12 ConwayPolynomial . 439
19.13 CyclotomicPolynomial . 439
19.14 PolynomialRing . 440
19.15 IsPolynomialRing . 440
19.16 LaurentPolynomialRing . 440
19.17 IsLaurentPolynomialRing . 441
19.18 Ring Functions for Polynomial Rings . 441
19.19 Ring Functions for Laurent Polynomial Rings 443

30 CONTENTS

20 Permutations 445

20.1 Comparisons of Permutations . 446
20.2 Operations for Permutations . 446
20.3 IsPerm . 447
20.4 LargestMovedPointPerm . 447
20.5 SmallestMovedPointPerm . 448
20.6 SignPerm . 448
20.7 SmallestGeneratorPerm . 448
20.8 ListPerm . 448
20.9 PermList . 449
20.10 RestrictedPerm . 449
20.11 MappingPermListList . 449

21 Permutation Groups 451

21.1 IsPermGroup . 451
21.2 PermGroupOps.MovedPoints . 452
21.3 PermGroupOps.SmallestMovedPoint . 452
21.4 PermGroupOps.LargestMovedPoint . 452
21.5 PermGroupOps.NrMovedPoints . 452
21.6 Stabilizer Chains . 453
21.7 StabChain . 454
21.8 MakeStabChain . 455
21.9 ExtendStabChain . 456
21.10 ReduceStabChain . 456
21.11 MakeStabChainStrongGenerators . 456
21.12 Base for Permutation Groups . 457
21.13 PermGroupOps.Indices . 457
21.14 PermGroupOps.StrongGenerators . 457
21.15 ListStabChain . 458
21.16 PermGroupOps.ElementProperty . 458
21.17 PermGroupOps.SubgroupProperty . 459
21.18 CentralCompositionSeriesPPermGroup 460
21.19 PermGroupOps.PgGroup . 460
21.20 Set Functions for Permutation Groups 460
21.21 Group Functions for Permutation Groups 461
21.22 Operations of Permutation Groups . 465
21.23 Homomorphisms for Permutation Groups 466
21.24 Random Methods for Permutation Groups 468
21.25 Permutation Group Records . 470

CONTENTS 31

22 Words in Abstract Generators 473

22.1 AbstractGenerator . 474

22.2 AbstractGenerators . 474

22.3 Comparisons of Words . 475

22.4 Operations for Words . 475

22.5 IsWord . 476

22.6 LengthWord . 477

22.7 ExponentSumWord . 477

22.8 Subword . 477

22.9 PositionWord . 478

22.10 SubstitutedWord . 478

22.11 EliminatedWord . 478

22.12 MappedWord . 479

23 Finitely Presented Groups 481

23.1 FreeGroup . 482

23.2 Set Functions for Finitely Presented Groups 482

23.3 Group Functions for Finitely Presented Groups 483

23.4 CosetTableFpGroup . 486

23.5 OperationCosetsFpGroup . 487

23.6 IsIdenticalPresentationFpGroup . 487

23.7 LowIndexSubgroupsFpGroup . 488

23.8 Presentation Records . 489

23.9 Changing Presentations . 493

23.10 Group Presentations . 493

23.11 Subgroup Presentations . 495

23.12 SimplifiedFpGroup . 499

23.13 Tietze Transformations . 500

23.14 DecodeTree . 513

24 Words in Finite Polycyclic Groups 517

24.1 More about Ag Words . 517

24.2 Ag Word Comparisons . 518

24.3 CentralWeight . 519

24.4 CompositionLength . 519

24.5 Depth . 519

24.6 IsAgWord . 520

32 CONTENTS

24.7 LeadingExponent . 520

24.8 RelativeOrder . 520

24.9 CanonicalAgWord . 521

24.10 DifferenceAgWord . 521

24.11 ReducedAgWord . 522

24.12 SiftedAgWord . 522

24.13 SumAgWord . 522

24.14 ExponentAgWord . 523

24.15 ExponentsAgWord . 523

25 Finite Polycyclic Groups 525

25.1 More about Ag Groups . 525

25.2 Construction of Ag Groups . 526

25.3 Ag Group Operations . 526

25.4 Ag Group Records . 527

25.5 Set Functions for Ag Groups . 527

25.6 Elements for Ag Groups . 528

25.7 Intersection for Ag Groups . 528

25.8 Size for Ag Groups . 528

25.9 Group Functions for Ag Groups . 529

25.10 AsGroup for Ag Groups . 532

25.11 Group for Ag Groups . 533

25.12 CommutatorSubgroup for Ag Groups 533

25.13 Normalizer for Ag Groups . 533

25.14 IsCyclic for Ag Groups . 533

25.15 IsNormal for Ag Groups . 534

25.16 IsSubgroup for Ag Groups . 534

25.17 Stabilizer for Ag Groups . 534

25.18 CyclicGroup for Ag Groups . 534

25.19 ElementaryAbelianGroup for Ag Groups 535

25.20 DirectProduct for Ag Groups . 535

25.21 WreathProduct for Ag Groups . 535

25.22 RightCoset for Ag Groups . 536

25.23 FpGroup for Ag Groups . 537

25.24 Ag Group Functions . 537

25.25 AgGroup . 537

CONTENTS 33

25.26 IsAgGroup . 537

25.27 AgGroupFpGroup . 538

25.28 IsConsistent . 538

25.29 IsElementaryAbelianAgSeries . 539

25.30 MatGroupAgGroup . 539

25.31 PermGroupAgGroup . 540

25.32 RefinedAgSeries . 540

25.33 ChangeCollector . 540

25.34 The Prime Quotient Algorithm . 541

25.35 PQuotient . 541

25.36 Save . 543

25.37 PQp . 544

25.38 InitPQp . 544

25.39 FirstClassPQp . 544

25.40 NextClassPQp . 544

25.41 Weight . 545

25.42 Factorization for PQp . 545

25.43 The Solvable Quotient Algorithm . 545

25.44 SolvableQuotient . 545

25.45 InitSQ . 547

25.46 ModulesSQ . 547

25.47 NextModuleSQ . 548

25.48 Generating Systems of Ag Groups . 548

25.49 AgSubgroup . 549

25.50 Cgs . 549

25.51 Igs . 550

25.52 IsNormalized . 550

25.53 Normalize . 550

25.54 Normalized . 550

25.55 MergedCgs . 550

25.56 MergedIgs . 551

25.57 Factor Groups of Ag Groups . 551

25.58 FactorGroup for AgGroups . 552

25.59 CollectorlessFactorGroup . 552

25.60 FactorArg . 552

25.61 Subgroups and Properties of Ag Groups 553

34 CONTENTS

25.62 CompositionSubgroup . 553

25.63 HallSubgroup . 554

25.64 PRump . 554

25.65 RefinedSubnormalSeries . 554

25.66 SylowComplements . 555

25.67 SylowSystem . 555

25.68 SystemNormalizer . 556

25.69 MinimalGeneratingSet . 557

25.70 IsElementAgSeries . 557

25.71 IsPNilpotent . 557

25.72 NumberConjugacyClasses . 557

25.73 Exponents . 558

25.74 FactorsAgGroup . 558

25.75 MaximalElement . 559

25.76 Orbitalgorithms of Ag Groups . 559

25.77 AffineOperation . 559

25.78 AgOrbitStabilizer . 560

25.79 LinearOperation . 560

25.80 Intersections of Ag Groups . 561

25.81 ExtendedIntersectionSumAgGroup . 561

25.82 IntersectionSumAgGroup . 562

25.83 SumAgGroup . 563

25.84 SumFactorizationFunctionAgGroup . 563

25.85 One Cohomology Group . 564

25.86 OneCoboundaries . 564

25.87 OneCocycles . 565

25.88 Complements . 567

25.89 Complement . 567

25.90 Complementclasses . 567

25.91 CoprimeComplement . 568

25.92 ComplementConjugatingAgWord . 568

25.93 HallConjugatingWordAgGroup . 569

25.94 Example, normal closure . 569

CONTENTS 35

26 Special Ag Groups 573

26.1 More about Special Ag Groups . 573

26.2 Construction of Special Ag Groups . 575

26.3 Restricted Special Ag Groups . 575

26.4 Special Ag Group Records . 576

26.5 MatGroupSagGroup . 577

26.6 DualMatGroupSagGroup . 578

26.7 Ag Group Functions for Special Ag Groups 578

27 Lists 581

27.1 IsList . 582

27.2 List . 582

27.3 ApplyFunc . 583

27.4 List Elements . 583

27.5 Length . 584

27.6 List Assignment . 585

27.7 Add . 586

27.8 Append . 587

27.9 Identical Lists . 587

27.10 IsIdentical . 589

27.11 Enlarging Lists . 589

27.12 Comparisons of Lists . 590

27.13 Operations for Lists . 591

27.14 In . 591

27.15 Position . 592

27.16 PositionSorted . 593

27.17 PositionSet . 593

27.18 PositionProperty . 594

27.19 Concatenation . 594

27.20 Flat . 595

27.21 Reversed . 595

27.22 Sublist . 595

27.23 Cartesian . 596

27.24 Number . 596

27.25 Collected . 597

27.26 Filtered . 597

36 CONTENTS

27.27 ForAll . 597
27.28 ForAny . 598
27.29 First . 598
27.30 Sort . 598
27.31 SortParallel . 599
27.32 Sortex . 599
27.33 SortingPerm . 600
27.34 PermListList . 600
27.35 Permuted . 600
27.36 Product . 601
27.37 Sum . 601
27.38 Maximum . 601
27.39 Minimum . 602
27.40 Iterated . 602
27.41 RandomList . 602

28 Sets 605
28.1 IsSet . 606
28.2 Set . 606
28.3 IsEqualSet . 606
28.4 AddSet . 607
28.5 RemoveSet . 607
28.6 UniteSet . 607
28.7 IntersectSet . 608
28.8 SubtractSet . 608
28.9 Set Functions for Sets . 608
28.10 More about Sets . 609

29 Boolean Lists 611
29.1 BlistList . 611
29.2 ListBlist . 612
29.3 IsBlist . 612
29.4 SizeBlist . 612
29.5 IsSubsetBlist . 613
29.6 UnionBlist . 613
29.7 IntersectionBlist . 613
29.8 DifferenceBlist . 614
29.9 UniteBlist . 614
29.10 IntersectBlist . 614
29.11 SubtractBlist . 614
29.12 More about Boolean Lists . 615

CONTENTS 37

30 Strings and Characters 617

30.1 String . 619

30.2 ConcatenationString . 619

30.3 SubString . 620

30.4 Comparisons of Strings . 620

30.5 IsString . 621

30.6 LengthString . 621

31 Ranges 623

31.1 IsRange . 624

31.2 More about Ranges . 624

32 Vectors 627

32.1 Operations for Vectors . 628

32.2 IsVector . 629

32.3 NormedVector . 629

32.4 More about Vectors . 629

33 Row Spaces 631

33.1 More about Row Spaces . 631

33.2 Row Space Bases . 632

33.3 Row Space Cosets . 632

33.4 Quotient Spaces . 633

33.5 Subspaces and Parent Spaces . 633

33.6 RowSpace . 634

33.7 Operations for Row Spaces . 634

33.8 Functions for Row Spaces . 635

33.9 IsRowSpace . 636

33.10 Subspace . 636

33.11 AsSubspace . 636

33.12 AsSpace . 637

33.13 NormedVectors . 637

33.14 Coefficients for Row Space Bases . 637

33.15 SiftedVector . 637

33.16 Basis . 638

33.17 CanonicalBasis . 638

33.18 SemiEchelonBasis . 639

38 CONTENTS

33.19 IsSemiEchelonBasis . 639

33.20 NumberVector . 640

33.21 ElementRowSpace . 640

33.22 Operations for Row Space Cosets . 640

33.23 Functions for Row Space Cosets . 641

33.24 IsSpaceCoset . 641

33.25 Operations for Quotient Spaces . 642

33.26 Functions for Quotient Spaces . 642

33.27 Row Space Records . 642

33.28 Row Space Basis Records . 643

33.29 Row Space Coset Records . 643

33.30 Quotient Space Records . 644

34 Matrices 645

34.1 Operations for Matrices . 645

34.2 IsMat . 647

34.3 IdentityMat . 648

34.4 NullMat . 648

34.5 TransposedMat . 648

34.6 KroneckerProduct . 649

34.7 DimensionsMat . 649

34.8 TraceMat . 649

34.9 DeterminantMat . 649

34.10 RankMat . 650

34.11 OrderMat . 650

34.12 TriangulizeMat . 650

34.13 BaseMat . 651

34.14 NullspaceMat . 651

34.15 SolutionMat . 651

34.16 DiagonalizeMat . 652

34.17 ElementaryDivisorsMat . 652

34.18 PrintArray . 652

35 Matrix Rings 653

35.1 Set Functions for Matrix Rings . 653

35.2 Ring Functions for Matrix Rings . 654

CONTENTS 39

36 Matrix Groups 655

36.1 Set Functions for Matrix Groups . 655

36.2 Group Functions for Matrix Groups . 656

36.3 Matrix Group Records . 657

37 Group Libraries 659

37.1 The Basic Groups Library . 660

37.2 Selection Functions . 663

37.3 Example Functions . 664

37.4 Extraction Functions . 665

37.5 The Primitive Groups Library . 666

37.6 The Transitive Groups Library . 668

37.7 The Solvable Groups Library . 670

37.8 The 2-Groups Library . 671

37.9 The 3-Groups Library . 673

37.10 The Irreducible Solvable Linear Groups Library 675

37.11 The Library of Finite Perfect Groups 677

37.12 Irreducible Maximal Finite Integral Matrix Groups 684

37.13 The Crystallographic Groups Library 693

37.14 The Small Groups Library . 709

38 Algebras 711

38.1 More about Algebras . 712

38.2 Algebras and Unital Algebras . 712

38.3 Parent Algebras and Subalgebras . 713

38.4 Algebra . 714

38.5 UnitalAlgebra . 714

38.6 IsAlgebra . 715

38.7 IsUnitalAlgebra . 715

38.8 Subalgebra . 715

38.9 UnitalSubalgebra . 716

38.10 IsSubalgebra . 716

38.11 AsAlgebra . 717

38.12 AsUnitalAlgebra . 717

38.13 AsSubalgebra . 717

38.14 AsUnitalSubalgebra . 718

38.15 Operations for Algebras . 718

40 CONTENTS

38.16 Zero and One for Algebras . 719
38.17 Set Theoretic Functions for Algebras . 719
38.18 Property Tests for Algebras . 720
38.19 Vector Space Functions for Algebras . 720
38.20 Algebra Functions for Algebras . 721
38.21 TrivialSubalgebra . 722
38.22 Operation for Algebras . 722
38.23 OperationHomomorphism for Algebras 723
38.24 Algebra Homomorphisms . 723
38.25 Mapping Functions for Algebra Homomorphisms 723
38.26 Algebra Elements . 724
38.27 IsAlgebraElement . 725
38.28 Algebra Records . 725
38.29 FFList . 726

39 Finitely Presented Algebras 727
39.1 More about Finitely Presented Algebras 727
39.2 FreeAlgebra . 728
39.3 FpAlgebra . 729
39.4 IsFpAlgebra . 729
39.5 Operators for Finitely Presented Algebras 730
39.6 Functions for Finitely Presented Algebras 730
39.7 PrintDefinitionFpAlgebra . 731
39.8 MappedExpression . 731
39.9 Elements of Finitely Presented Algebras 731
39.10 ElementAlgebra . 733
39.11 NumberAlgebraElement . 733

40 Matrix Algebras 735
40.1 More about Matrix Algebras . 735
40.2 Bases for Matrix Algebras . 736
40.3 IsMatAlgebra . 736
40.4 Zero and One for Matrix Algebras . 736
40.5 Functions for Matrix Algebras . 736
40.6 Algebra Functions for Matrix Algebras 737
40.7 RepresentativeOperation for Matrix Algebras 737
40.8 MatAlgebra . 737
40.9 NullAlgebra . 738
40.10 Fingerprint . 738
40.11 NaturalModule . 739

CONTENTS 41

41 Modules 741
41.1 More about Modules . 741
41.2 Row Modules . 742
41.3 Free Modules . 742
41.4 Module . 743
41.5 Submodule . 743
41.6 AsModule . 744
41.7 AsSubmodule . 744
41.8 AsSpace for Modules . 744
41.9 IsModule . 744
41.10 IsFreeModule . 745
41.11 Operations for Row Modules . 745
41.12 Functions for Row Modules . 746
41.13 StandardBasis for Row Modules . 746
41.14 IsEquivalent for Row Modules . 746
41.15 IsIrreducible for Row Modules . 747
41.16 FixedSubmodule . 747
41.17 Module Homomorphisms . 747
41.18 Row Module Records . 748
41.19 Module Homomorphism Records . 749

42 Mappings 751
42.1 IsGeneralMapping . 752
42.2 IsMapping . 752
42.3 IsInjective . 753
42.4 IsSurjective . 753
42.5 IsBijection . 754
42.6 Comparisons of Mappings . 755
42.7 Operations for Mappings . 756
42.8 Image . 758
42.9 Images . 760
42.10 ImagesRepresentative . 761
42.11 PreImage . 761
42.12 PreImages . 763
42.13 PreImagesRepresentative . 764
42.14 CompositionMapping . 764
42.15 PowerMapping . 765
42.16 InverseMapping . 766
42.17 IdentityMapping . 766
42.18 MappingByFunction . 767
42.19 Mapping Records . 767

42 CONTENTS

43 Homomorphisms 769

43.1 IsHomomorphism . 769

43.2 IsMonomorphism . 770

43.3 IsEpimorphism . 771

43.4 IsIsomorphism . 771

43.5 IsEndomorphism . 772

43.6 IsAutomorphism . 772

43.7 Kernel . 773

44 Booleans 775

44.1 Comparisons of Booleans . 775

44.2 Operations for Booleans . 776

44.3 IsBool . 777

45 Records 779

45.1 Accessing Record Elements . 780

45.2 Record Assignment . 780

45.3 Identical Records . 781

45.4 Comparisons of Records . 783

45.5 Operations for Records . 785

45.6 In for Records . 786

45.7 Printing of Records . 787

45.8 IsRec . 788

45.9 IsBound . 788

45.10 Unbind . 789

45.11 Copy . 789

45.12 ShallowCopy . 790

45.13 RecFields . 791

46 Combinatorics 793

46.1 Factorial . 793

46.2 Binomial . 794

46.3 Bell . 794

46.4 Stirling1 . 795

46.5 Stirling2 . 795

46.6 Combinations . 796

46.7 Arrangements . 796

CONTENTS 43

46.8 UnorderedTuples . 797

46.9 Tuples . 798

46.10 PermutationsList . 798

46.11 Derangements . 799

46.12 PartitionsSet . 799

46.13 Partitions . 800

46.14 OrderedPartitions . 801

46.15 RestrictedPartitions . 801

46.16 SignPartition . 802

46.17 AssociatedPartition . 802

46.18 PowerPartition . 802

46.19 PartitionTuples . 803

46.20 Fibonacci . 803

46.21 Lucas . 803

46.22 Bernoulli . 804

46.23 Permanent . 804

47 Tables of Marks 807

47.1 More about Tables of Marks . 807

47.2 Table of Marks Records . 808

47.3 The Library of Tables of Marks . 808

47.4 TableOfMarks . 809

47.5 Marks . 810

47.6 NrSubs . 810

47.7 WeightsTom . 810

47.8 MatTom . 811

47.9 TomMat . 811

47.10 DecomposedFixedPointVector . 811

47.11 TestTom . 812

47.12 DisplayTom . 812

47.13 NormalizerTom . 813

47.14 IntersectionsTom . 813

47.15 IsCyclicTom . 814

47.16 FusionCharTableTom . 814

47.17 PermCharsTom . 814

47.18 MoebiusTom . 814

44 CONTENTS

47.19 CyclicExtensionsTom . 815

47.20 IdempotentsTom . 815

47.21 ClassTypesTom . 815

47.22 ClassNamesTom . 815

47.23 TomCyclic . 816

47.24 TomDihedral . 816

47.25 TomFrobenius . 817

48 Character Tables 819

48.1 Some Notes on Character Theory in GAP 819

48.2 Character Table Records . 821

48.3 Brauer Table Records . 825

48.4 IsCharTable . 827

48.5 PrintCharTable . 827

48.6 TestCharTable . 827

48.7 Operations Records for Character Tables 828

48.8 Functions for Character Tables . 828

48.9 Operators for Character Tables . 829

48.10 Conventions for Character Tables . 829

48.11 Getting Character Tables . 830

48.12 CharTable . 831

48.13 Advanced Methods for Dixon Schneider Calculations 834

48.14 An Example of Advanced Dixon Schneider Calculations 836

48.15 CharTableFactorGroup . 837

48.16 CharTableNormalSubgroup . 838

48.17 CharTableDirectProduct . 839

48.18 CharTableWreathSymmetric . 840

48.19 CharTableRegular . 841

48.20 CharTableIsoclinic . 841

48.21 CharTableSplitClasses . 842

48.22 CharTableCollapsedClasses . 844

48.23 CharDegAgGroup . 844

48.24 CharTableSSGroup . 845

48.25 MatRepresentationsPGroup . 845

48.26 CharTablePGroup . 846

48.27 InitClassesCharTable . 847

CONTENTS 45

48.28 InverseClassesCharTable . 847

48.29 ClassNamesCharTable . 847

48.30 ClassMultCoeffCharTable . 848

48.31 MatClassMultCoeffsCharTable . 848

48.32 ClassStructureCharTable . 849

48.33 RealClassesCharTable . 849

48.34 ClassOrbitCharTable . 849

48.35 ClassRootsCharTable . 849

48.36 NrPolyhedralSubgroups . 850

48.37 DisplayCharTable . 850

48.38 SortCharactersCharTable . 852

48.39 SortClassesCharTable . 853

48.40 SortCharTable . 854

48.41 MatAutomorphisms . 855

48.42 TableAutomorphisms . 856

48.43 TransformingPermutations . 856

48.44 TransformingPermutationsCharTables 857

48.45 GetFusionMap . 857

48.46 StoreFusion . 858

48.47 FusionConjugacyClasses . 859

48.48 MAKElb11 . 859

48.49 ScanMOC . 859

48.50 MOCChars . 860

48.51 GAPChars . 860

48.52 MOCTable . 860

48.53 PrintToMOC . 861

48.54 PrintToCAS . 862

49 Generic Character Tables 863

49.1 More about Generic Character Tables 863

49.2 Examples of Generic Character Tables 864

49.3 CharTableSpecialized . 866

46 CONTENTS

50 Characters 867

50.1 ScalarProduct . 867

50.2 MatScalarProducts . 868

50.3 Decomposition . 868

50.4 Subroutines of Decomposition . 869

50.5 KernelChar . 870

50.6 PrimeBlocks . 870

50.7 Indicator . 871

50.8 Eigenvalues . 871

50.9 MolienSeries . 872

50.10 Reduced . 872

50.11 ReducedOrdinary . 873

50.12 Tensored . 873

50.13 Symmetrisations . 874

50.14 SymmetricParts . 874

50.15 AntiSymmetricParts . 875

50.16 MinusCharacter . 875

50.17 OrthogonalComponents . 875

50.18 SymplecticComponents . 876

50.19 IrreducibleDifferences . 876

50.20 Restricted . 877

50.21 Inflated . 877

50.22 Induced . 878

50.23 InducedCyclic . 878

50.24 CollapsedMat . 879

50.25 Power . 879

50.26 Permutation Character Candidates . 880

50.27 IsPermChar . 880

50.28 PermCharInfo . 880

50.29 Inequalities . 881

50.30 PermBounds . 882

50.31 PermChars . 882

50.32 Faithful Permutation Characters . 883

50.33 LLLReducedBasis . 884

50.34 LLLReducedGramMat . 885

50.35 LLL . 886

CONTENTS 47

50.36 OrthogonalEmbeddings . 886

50.37 ShortestVectors . 888

50.38 Extract . 888

50.39 Decreased . 889

50.40 DnLattice . 890

50.41 ContainedDecomposables . 891

50.42 ContainedCharacters . 892

50.43 ContainedSpecialVectors . 892

50.44 ContainedPossibleCharacters . 893

50.45 ContainedPossibleVirtualCharacters . 893

51 Maps and Parametrized Maps 895

51.1 More about Maps and Parametrized Maps 895

51.2 CompositionMaps . 896

51.3 InverseMap . 896

51.4 ProjectionMap . 897

51.5 Parametrized . 897

51.6 ContainedMaps . 897

51.7 UpdateMap . 898

51.8 CommutativeDiagram . 898

51.9 TransferDiagram . 899

51.10 Indeterminateness . 900

51.11 PrintAmbiguity . 900

51.12 Powermap . 901

51.13 SubgroupFusions . 901

51.14 InitPowermap . 902

51.15 Congruences . 903

51.16 ConsiderKernels . 904

51.17 ConsiderSmallerPowermaps . 904

51.18 InitFusion . 905

51.19 CheckPermChar . 905

51.20 CheckFixedPoints . 906

51.21 TestConsistencyMaps . 906

51.22 ConsiderTableAutomorphisms . 907

51.23 PowermapsAllowedBySymmetrisations 907

51.24 FusionsAllowedByRestrictions . 908

48 CONTENTS

51.25 OrbitFusions . 909

51.26 OrbitPowermaps . 910

51.27 RepresentativesFusions . 910

51.28 RepresentativesPowermaps . 911

51.29 Indirected . 911

51.30 Powmap . 912

51.31 ElementOrdersPowermap . 912

52 Character Table Libraries 915

52.1 Contents of the Table Libraries . 915

52.2 Selecting Library Tables . 917

52.3 ATLAS Tables . 918

52.4 Examples of the ATLAS format for GAP tables 921

52.5 CAS Tables . 925

52.6 Organization of the Table Libraries . 925

52.7 How to Extend a Table Library . 927

52.8 FirstNameCharTable . 928

52.9 FileNameCharTable . 928

53 Class Functions 931

53.1 Why Group Characters . 931

53.2 More about Class Functions . 933

53.3 Operators for Class Functions . 934

53.4 Functions for Class Functions . 935

53.5 ClassFunction . 936

53.6 VirtualCharacter . 937

53.7 Character . 937

53.8 IsClassFunction . 938

53.9 IsVirtualCharacter . 938

53.10 IsCharacter . 938

53.11 Irr . 939

53.12 InertiaSubgroup . 939

53.13 OrbitsCharacters . 939

53.14 Storing Subgroup Information . 940

53.15 NormalSubgroupClasses . 941

53.16 ClassesNormalSubgroup . 942

53.17 FactorGroupNormalSubgroupClasses . 942

53.18 Class Function Records . 942

CONTENTS 49

54 Monomiality Questions 943

54.1 More about Monomiality Questions . 943

54.2 Alpha . 944

54.3 Delta . 945

54.4 BergerCondition . 945

54.5 TestHomogeneous . 945

54.6 TestQuasiPrimitive . 946

54.7 IsPrimitive for Characters . 947

54.8 TestInducedFromNormalSubgroup . 947

54.9 TestSubnormallyMonomial . 948

54.10 TestMonomialQuick . 949

54.11 TestMonomial . 949

54.12 TestRelativelySM . 950

54.13 IsMinimalNonmonomial . 951

54.14 MinimalNonmonomialGroup . 951

55 Getting and Installing GAP 953

55.1 Getting GAP . 953

55.2 GAP for UNIX . 955

55.3 Installation of GAP for UNIX . 955

55.4 Features of GAP for UNIX . 960

55.5 GAP for MS-DOS . 962

55.6 Copyright of GAP for MS-DOS . 963

55.7 Installation of GAP for MS-DOS . 964

55.8 Features of GAP for MS-DOS . 968

55.9 GAP for MacOS . 971

55.10 Copyright of GAP for MacOS . 971

55.11 Installation of GAP for MacOS . 971

55.12 Features of GAP for MacOS . 971

55.13 GAP for TOS . 971

55.14 Copyright of GAP for TOS . 972

55.15 Installation of GAP for TOS . 972

55.16 Features of GAP for TOS . 976

55.17 Porting GAP . 979

50 CONTENTS

56 Share Libraries 983

56.1 RequirePackage . 984

56.2 ANU pq Package . 985

56.3 Installing the ANU pq Package . 986

56.4 ANU Sq Package . 992

56.5 Installing the ANU Sq Package . 994

56.6 GRAPE Package . 996

56.7 Installing the GRAPE Package . 997

56.8 MeatAxe Package . 1000

56.9 Installing the MeatAxe Package . 1001

56.10 NQ Package . 1002

56.11 Installing the NQ Package . 1003

56.12 SISYPHOS Package . 1005

56.13 Installing the SISYPHOS Package . 1005

56.14 Vector Enumeration Package . 1007

56.15 Installing the Vector Enumeration Package 1008

56.16 The XGap Package . 1010

57 ANU Pq 1011

57.1 Pq . 1011

57.2 PqHomomorphism . 1012

57.3 PqDescendants . 1012

57.4 PqList . 1015

57.5 SavePqList . 1016

57.6 StandardPresentation . 1016

57.7 IsomorphismPcpStandardPcp . 1018

57.8 AutomorphismsPGroup . 1018

57.9 IsIsomorphicPGroup . 1019

58 Automorphism Groups of Special Ag Groups 1021

58.1 AutGroupSagGroup . 1022

58.2 Automorphism Group Elements . 1023

58.3 Operations for Automorphism Group Elements 1023

58.4 AutGroupStructure . 1025

58.5 AutGroupFactors . 1027

58.6 AutGroupSeries . 1028

58.7 AutGroupConverted . 1028

CONTENTS 51

59 Cohomology 1031

59.1 CHR . 1032

59.2 SchurMultiplier . 1032

59.3 CoveringGroup . 1032

59.4 FirstCohomologyDimension . 1032

59.5 SecondCohomologyDimension . 1032

59.6 SplitExtension . 1033

59.7 NonsplitExtension . 1033

59.8 CalcPres . 1033

59.9 PermRep . 1034

59.10 Further Information . 1034

60 CrystGap–The Crystallographic Groups Package 1037

60.1 Crystallographic Groups . 1038

60.2 Space Groups . 1038

60.3 More about Crystallographic Groups . 1039

60.4 CrystGroup . 1040

60.5 IsCrystGroup . 1040

60.6 PointGroup . 1040

60.7 TranslationsCrystGroup . 1040

60.8 AddTranslationsCrystGroup . 1040

60.9 CheckTranslations . 1041

60.10 ConjugatedCrystGroup . 1041

60.11 FpGroup for point groups . 1041

60.12 FpGroup for CrystGroups . 1041

60.13 MaximalSubgroupsRepresentatives . 1042

60.14 IsSpaceGroup . 1042

60.15 IsSymmorphicSpaceGroup . 1042

60.16 SpaceGroupsPointGroup . 1042

60.17 Wyckoff Positions . 1042

60.18 WyckoffPositions . 1043

60.19 WyckoffPositionsByStabilizer . 1043

60.20 WyckoffPositionsQClass . 1043

60.21 WyckoffOrbit . 1044

60.22 WyckoffLattice . 1044

60.23 NormalizerGL . 1045

52 CONTENTS

60.24 CentralizerGL . 1045

60.25 PointGroupsBravaisClass . 1045

60.26 TranslationNormalizer . 1045

60.27 AffineNormalizer . 1045

60.28 AffineInequivalentSubgroups . 1046

60.29 Other functions for CrystGroups . 1046

60.30 Color Groups . 1047

60.31 ColorGroup . 1047

60.32 IsColorGroup . 1047

60.33 ColorSubgroup . 1048

60.34 ColorCosets . 1048

60.35 ColorOfElement . 1048

60.36 ColorPermGroup . 1048

60.37 ColorHomomorphism . 1048

60.38 Subgroup for color groups . 1048

60.39 PointGroup for color CrystGroups . 1048

60.40 Inequivalent colorings of space groups 1049

61 The Double Coset Enumerator 1051

61.1 Double Coset Enumeration . 1051

61.2 Authorship and Contact Information . 1052

61.3 Installing the DCE Package . 1052

61.4 Mathematical Introduction . 1054

61.5 Gain Group Representation . 1055

61.6 DCE Words . 1056

61.7 DCE Presentations . 1056

61.8 Examples of Double Coset Enumeration 1057

61.9 The DCE Universe . 1059

61.10 Informational Messages from DCE . 1060

61.11 DCE . 1060

61.12 DCESetup . 1061

61.13 DCEPerm . 1061

61.14 DCEPerms . 1061

61.15 DCEWrite . 1061

61.16 DCERead . 1061

61.17 Example of DCE Functions . 1061

CONTENTS 53

61.18 Strategies for Double Coset Enumeration 1063

61.19 Example of Double Coset Enumeration Strategies 1064

61.20 Functions for Analyzing Double Coset Tables 1068

61.21 DCEColAdj . 1068

61.22 DCEHOrbits . 1069

61.23 DCEColAdjSingle . 1069

61.24 Example of DCEColAdj . 1069

61.25 Double Coset Enumeration and Symmetric Presentations 1070

61.26 SetupSymmetricPresentation . 1070

61.27 Examples of DCE and Symmetric Presentations 1071

62 GLISSANDO 1075

62.1 Installing the Glissando Package . 1075

62.2 Transformations . 1075

62.3 Transformation . 1076

62.4 AsTransformation . 1076

62.5 IsTransformation . 1076

62.6 IsSetTransformation . 1077

62.7 IsGroupTransformation . 1077

62.8 IdentityTransformation . 1077

62.9 Kernel for transformations . 1078

62.10 Rank for transformations . 1078

62.11 Operations for transformations . 1078

62.12 DisplayTransformation . 1079

62.13 Transformation records . 1079

62.14 Transformation Semigroups . 1080

62.15 TransformationSemigroup . 1080

62.16 IsSemigroup . 1081

62.17 IsTransformationSemigroup . 1081

62.18 Elements for semigroups . 1082

62.19 Size for semigroups . 1082

62.20 DisplayCayleyTable for semigroups . 1082

62.21 IdempotentElements for semigroups . 1083

62.22 IsCommutative for semigroups . 1083

62.23 Identity for semigroups . 1083

62.24 SmallestIdeal . 1084

54 CONTENTS

62.25 IsSimple for semigroups . 1084

62.26 Green . 1085

62.27 Rank for semigroups . 1086

62.28 LibrarySemigroup . 1086

62.29 Transformation semigroup records . 1087

62.30 Near-rings . 1088

62.31 IsNrMultiplication . 1088

62.32 Nearring . 1089

62.33 IsNearring . 1091

62.34 IsTransformationNearring . 1091

62.35 LibraryNearring . 1091

62.36 DisplayCayleyTable for near-rings . 1092

62.37 Elements for near-rings . 1092

62.38 Size for near-rings . 1093

62.39 Endomorphisms for near-rings . 1093

62.40 Automorphisms for near-rings . 1093

62.41 FindGroup . 1094

62.42 NearringIdeals . 1094

62.43 InvariantSubnearrings . 1094

62.44 Subnearrings . 1095

62.45 Identity for near-rings . 1095

62.46 Distributors . 1096

62.47 DistributiveElements . 1096

62.48 IsDistributiveNearring . 1096

62.49 ZeroSymmetricElements . 1096

62.50 IsAbstractAffineNearring . 1097

62.51 IdempotentElements for near-rings . 1097

62.52 IsBooleanNearring . 1097

62.53 NilpotentElements . 1097

62.54 IsNilNearring . 1097

62.55 IsNilpotentNearring . 1098

62.56 IsNilpotentFreeNearring . 1098

62.57 IsCommutative for near-rings . 1098

62.58 IsDgNearring . 1098

62.59 IsIntegralNearring . 1098

62.60 IsPrimeNearring . 1099

CONTENTS 55

62.61 QuasiregularElements . 1099

62.62 IsQuasiregularNearring . 1099

62.63 RegularElements . 1099

62.64 IsRegularNearring . 1100

62.65 IsPlanarNearring . 1100

62.66 IsNearfield . 1100

62.67 LibraryNearringInfo . 1100

62.68 Nearring records . 1101

62.69 Supportive Functions for Groups . 1102

62.70 DisplayCayleyTable for groups . 1102

62.71 Endomorphisms for groups . 1103

62.72 Automorphisms for groups . 1103

62.73 InnerAutomorphisms . 1104

62.74 SmallestGeneratingSystem . 1104

62.75 IsIsomorphicGroup . 1104

62.76 Predefined groups . 1105

62.77 How to find near-rings with certain properties 1105

62.78 Defining near-rings with known multiplication table 1108

63 Grape 1111

63.1 Functions to construct and modify graphs 1112

63.2 Graph . 1112

63.3 EdgeOrbitsGraph . 1113

63.4 NullGraph . 1114

63.5 CompleteGraph . 1114

63.6 JohnsonGraph . 1115

63.7 AddEdgeOrbit . 1115

63.8 RemoveEdgeOrbit . 1116

63.9 AssignVertexNames . 1116

63.10 Functions to inspect graphs, vertices and edges 1117

63.11 IsGraph . 1117

63.12 OrderGraph . 1117

63.13 IsVertex . 1117

63.14 VertexName . 1118

63.15 Vertices . 1118

63.16 VertexDegree . 1118

56 CONTENTS

63.17 VertexDegrees . 1118

63.18 IsLoopy . 1118

63.19 IsSimpleGraph . 1119

63.20 Adjacency . 1119

63.21 IsEdge . 1119

63.22 DirectedEdges . 1119

63.23 UndirectedEdges . 1120

63.24 Distance . 1120

63.25 Diameter . 1120

63.26 Girth . 1121

63.27 IsConnectedGraph . 1121

63.28 IsBipartite . 1121

63.29 IsNullGraph . 1122

63.30 IsCompleteGraph . 1122

63.31 Functions to determine regularity properties of graphs 1122

63.32 IsRegularGraph . 1123

63.33 LocalParameters . 1123

63.34 GlobalParameters . 1123

63.35 IsDistanceRegular . 1123

63.36 CollapsedAdjacencyMat . 1124

63.37 OrbitalGraphIntersectionMatrices . 1124

63.38 Some special vertex subsets of a graph 1124

63.39 ConnectedComponent . 1124

63.40 ConnectedComponents . 1125

63.41 Bicomponents . 1125

63.42 DistanceSet . 1125

63.43 Layers . 1125

63.44 IndependentSet . 1126

63.45 Functions to construct new graphs from old 1126

63.46 InducedSubgraph . 1126

63.47 DistanceSetInduced . 1126

63.48 DistanceGraph . 1127

63.49 ComplementGraph . 1127

63.50 PointGraph . 1128

63.51 EdgeGraph . 1128

63.52 UnderlyingGraph . 1129

CONTENTS 57

63.53 QuotientGraph . 1129

63.54 BipartiteDouble . 1130

63.55 GeodesicsGraph . 1130

63.56 CollapsedIndependentOrbitsGraph . 1131

63.57 CollapsedCompleteOrbitsGraph . 1131

63.58 NewGroupGraph . 1132

63.59 Vertex-Colouring and Complete Subgraphs 1132

63.60 VertexColouring . 1133

63.61 CompleteSubgraphs . 1133

63.62 CompleteSubgraphsOfGivenSize . 1133

63.63 Functions depending on nauty . 1134

63.64 AutGroupGraph . 1134

63.65 IsIsomorphicGraph . 1134

63.66 An example . 1135

64 GRIM (Groups of Rational and Integer Matrices) 1137

64.1 Functions to test finiteness and integrality 1137

64.2 IsFinite for rational matrix groups . 1137

64.3 InvariantLattice for rational matrix groups 1138

64.4 IsFiniteDeterministic for integer matrix groups 1138

65 GUAVA 1139

65.1 Loading GUAVA . 1140

65.2 Codewords . 1140

65.3 Codeword . 1141

65.4 IsCodeword . 1142

65.5 Comparisons of Codewords . 1142

65.6 Operations for Codewords . 1143

65.7 VectorCodeword . 1143

65.8 PolyCodeword . 1144

65.9 TreatAsVector . 1144

65.10 TreatAsPoly . 1144

65.11 NullWord . 1145

65.12 DistanceCodeword . 1145

65.13 Support . 1145

65.14 WeightCodeword . 1146

65.15 Codes . 1146

58 CONTENTS

65.16 IsCode . 1148

65.17 IsLinearCode . 1148

65.18 IsCyclicCode . 1149

65.19 Comparisons of Codes . 1149

65.20 Operations for Codes . 1149

65.21 Basic Functions for Codes . 1151

65.22 Domain Functions for Codes . 1151

65.23 Printing and Saving Codes . 1152

65.24 GeneratorMat . 1153

65.25 CheckMat . 1154

65.26 GeneratorPol . 1154

65.27 CheckPol . 1154

65.28 RootsOfCode . 1155

65.29 WordLength . 1155

65.30 Redundancy . 1156

65.31 MinimumDistance . 1156

65.32 WeightDistribution . 1157

65.33 InnerDistribution . 1157

65.34 OuterDistribution . 1157

65.35 DistancesDistribution . 1158

65.36 IsPerfectCode . 1158

65.37 IsMDSCode . 1159

65.38 IsSelfDualCode . 1159

65.39 IsSelfOrthogonalCode . 1159

65.40 IsEquivalent . 1160

65.41 CodeIsomorphism . 1160

65.42 AutomorphismGroup . 1160

65.43 Decode . 1161

65.44 Syndrome . 1161

65.45 SyndromeTable . 1162

65.46 StandardArray . 1162

65.47 Display . 1163

65.48 CodewordNr . 1163

65.49 Generating Unrestricted Codes . 1164

65.50 ElementsCode . 1164

65.51 HadamardCode . 1164

CONTENTS 59

65.52 ConferenceCode . 1165

65.53 MOLSCode . 1166

65.54 RandomCode . 1166

65.55 NordstromRobinsonCode . 1167

65.56 GreedyCode . 1167

65.57 LexiCode . 1167

65.58 Generating Linear Codes . 1168

65.59 GeneratorMatCode . 1168

65.60 CheckMatCode . 1169

65.61 HammingCode . 1169

65.62 ReedMullerCode . 1169

65.63 ExtendedBinaryGolayCode . 1170

65.64 ExtendedTernaryGolayCode . 1170

65.65 AlternantCode . 1170

65.66 GoppaCode . 1170

65.67 GeneralizedSrivastavaCode . 1171

65.68 SrivastavaCode . 1171

65.69 CordaroWagnerCode . 1172

65.70 RandomLinearCode . 1172

65.71 BestKnownLinearCode . 1172

65.72 Generating Cyclic Codes . 1173

65.73 GeneratorPolCode . 1173

65.74 CheckPolCode . 1174

65.75 BinaryGolayCode . 1174

65.76 TernaryGolayCode . 1174

65.77 RootsCode . 1175

65.78 BCHCode . 1175

65.79 ReedSolomonCode . 1176

65.80 QRCode . 1176

65.81 FireCode . 1177

65.82 WholeSpaceCode . 1177

65.83 NullCode . 1177

65.84 RepetitionCode . 1178

65.85 CyclicCodes . 1178

65.86 Manipulating Codes . 1179

65.87 ExtendedCode . 1179

60 CONTENTS

65.88 PuncturedCode . 1180

65.89 EvenWeightSubcode . 1180

65.90 PermutedCode . 1181

65.91 ExpurgatedCode . 1181

65.92 AugmentedCode . 1181

65.93 RemovedElementsCode . 1182

65.94 AddedElementsCode . 1182

65.95 ShortenedCode . 1183

65.96 LengthenedCode . 1184

65.97 ResidueCode . 1184

65.98 ConstructionBCode . 1184

65.99 DualCode . 1185

65.100 ConversionFieldCode . 1185

65.101 CosetCode . 1186

65.102 ConstantWeightSubcode . 1186

65.103 StandardFormCode . 1187

65.104 DirectSumCode . 1187

65.105 UUVCode . 1188

65.106 DirectProductCode . 1188

65.107 IntersectionCode . 1188

65.108 UnionCode . 1189

65.109 Code Records . 1189

65.110 Bounds on codes . 1192

65.111 UpperBoundSingleton . 1192

65.112 UpperBoundHamming . 1192

65.113 UpperBoundJohnson . 1193

65.114 UpperBoundPlotkin . 1193

65.115 UpperBoundElias . 1194

65.116 UpperBoundGriesmer . 1194

65.117 UpperBound . 1194

65.118 LowerBoundMinimumDistance . 1194

65.119 UpperBoundMinimumDistance . 1195

65.120 BoundsMinimumDistance . 1195

65.121 Special matrices in GUAVA . 1196

65.122 KrawtchoukMat . 1196

65.123 GrayMat . 1197

CONTENTS 61

65.124 SylvesterMat . 1197

65.125 HadamardMat . 1197

65.126 MOLS . 1198

65.127 PutStandardForm . 1199

65.128 IsInStandardForm . 1199

65.129 PermutedCols . 1200

65.130 VerticalConversionFieldMat . 1200

65.131 HorizontalConversionFieldMat . 1200

65.132 IsLatinSquare . 1201

65.133 AreMOLS . 1201

65.134 Miscellaneous functions . 1201

65.135 SphereContent . 1201

65.136 Krawtchouk . 1202

65.137 PrimitiveUnityRoot . 1202

65.138 ReciprocalPolynomial . 1202

65.139 CyclotomicCosets . 1203

65.140 WeightHistogram . 1203

65.141 Extensions to GUAVA . 1204

65.142 Some functions for the covering radius 1204

65.143 CoveringRadius . 1205

65.144 BoundsCoveringRadius . 1206

65.145 SetCoveringRadius . 1206

65.146 IncreaseCoveringRadiusLowerBound . 1206

65.147 ExhaustiveSearchCoveringRadius . 1207

65.148 GeneralLowerBoundCoveringRadius . 1207

65.149 GeneralUpperBoundCoveringRadius . 1207

65.150 LowerBoundCoveringRadiusSphereCovering 1207

65.151 LowerBoundCoveringRadiusVanWee1 1208

65.152 LowerBoundCoveringRadiusVanWee2 1208

65.153 LowerBoundCoveringRadiusCountingExcess 1209

65.154 LowerBoundCoveringRadiusEmbedded1 1209

65.155 LowerBoundCoveringRadiusEmbedded2 1209

65.156 LowerBoundCoveringRadiusInduction 1210

65.157 UpperBoundCoveringRadiusRedundancy 1210

65.158 UpperBoundCoveringRadiusDelsarte . 1210

65.159 UpperBoundCoveringRadiusStrength . 1210

62 CONTENTS

65.160 UpperBoundCoveringRadiusGriesmerLike 1210

65.161 UpperBoundCoveringRadiusCyclicCode 1211

65.162 New code constructions . 1211

65.163 ExtendedDirectSumCode . 1211

65.164 AmalgatedDirectSumCode . 1212

65.165 BlockwiseDirectSumCode . 1212

65.166 PiecewiseConstantCode . 1213

65.167 Gabidulin codes . 1213

65.168 Some functions related to the norm of a code 1214

65.169 CoordinateNorm . 1214

65.170 CodeNorm . 1214

65.171 IsCoordinateAcceptable . 1215

65.172 GeneralizedCodeNorm . 1215

65.173 IsNormalCode . 1215

65.174 DecreaseMinimumDistanceLowerBound 1215

65.175 New miscellaneous functions . 1216

65.176 CodeWeightEnumerator . 1216

65.177 CodeDistanceEnumerator . 1216

65.178 CodeMacWilliamsTransform . 1217

65.179 IsSelfComplementaryCode . 1217

65.180 IsAffineCode . 1217

65.181 IsAlmostAffineCode . 1217

65.182 IsGriesmerCode . 1218

65.183 CodeDensity . 1218

66 KBMAG 1219

66.1 Creating a rewriting system . 1220

66.2 Elementary functions on rewriting systems 1221

66.3 Setting the ordering . 1222

66.4 Control parameters . 1222

66.5 The Knuth-Bendix program . 1224

66.6 The automatic groups program . 1224

66.7 Word reduction . 1225

66.8 Counting and enumerating irreducible words 1225

66.9 Rewriting System Examples . 1226

CONTENTS 63

67 The Matrix Package 1235

67.1 Aim of the matrix package . 1235

67.2 Contents of the matrix package . 1235

67.3 The Developers of the matrix package 1236

67.4 Basic conventions employed in matrix package 1236

67.5 Organisation of this manual . 1237

67.6 GModule . 1238

67.7 IsGModule . 1238

67.8 IsIrreducible for GModules . 1238

67.9 IsAbsolutelyIrreducible . 1238

67.10 IsSemiLinear . 1238

67.11 IsPrimitive for GModules . 1239

67.12 IsTensor . 1239

67.13 SmashGModule . 1241

67.14 HomGModule . 1241

67.15 IsomorphismGModule . 1241

67.16 CompositionFactors . 1242

67.17 Examples . 1242

67.18 ClassicalForms . 1247

67.19 RecogniseClassical . 1250

67.20 ConstructivelyRecogniseClassical . 1252

67.21 RecogniseMatrixGroup . 1253

67.22 RecogniseClassicalCLG . 1260

67.23 RecogniseClassicalNP . 1263

67.24 InducedAction . 1268

67.25 FieldGenCentMat . 1268

67.26 MinimalSubGModules . 1269

67.27 SpinBasis . 1269

67.28 SemiLinearDecomposition . 1269

67.29 TensorProductDecomposition . 1269

67.30 SymTensorProductDecomposition . 1270

67.31 ExtraSpecialDecomposition . 1270

67.32 MinBlocks . 1271

67.33 BlockSystemFlag . 1271

67.34 Components of a G-module record . 1271

67.35 ApproximateKernel . 1272

64 CONTENTS

67.36 RandomRelations . 1273

67.37 DisplayMatRecord . 1273

67.38 The record returned by RecogniseMatrixGroup 1273

67.39 DualGModule . 1274

67.40 InducedGModule . 1274

67.41 PermGModule . 1275

67.42 TensorProductGModule . 1275

67.43 ImprimitiveWreathProduct . 1275

67.44 WreathPower . 1275

67.45 PermGroupRepresentation . 1275

67.46 GeneralOrthogonalGroup . 1276

67.47 OrderMat – enhanced . 1277

67.48 PseudoRandom . 1278

67.49 InitPseudoRandom . 1278

67.50 IsPpdElement . 1278

67.51 SpinorNorm . 1279

67.52 Other utility functions . 1280

67.53 References . 1281

68 The MeatAxe 1283

68.1 More about the MeatAxe in GAP . 1284

68.2 GapObject . 1284

68.3 Using the MeatAxe in GAP. An Example 1285

68.4 MeatAxe Matrices . 1287

68.5 MeatAxeMat . 1287

68.6 Operations for MeatAxe Matrices . 1288

68.7 Functions for MeatAxe Matrices . 1289

68.8 BrauerCharacterValue . 1290

68.9 MeatAxe Permutations . 1290

68.10 MeatAxePerm . 1290

68.11 Operations for MeatAxe Permutations 1291

68.12 Functions for MeatAxe Permutations . 1291

68.13 MeatAxe Matrix Groups . 1291

68.14 Functions for MeatAxe Matrix Groups 1291

68.15 MeatAxe Matrix Algebras . 1292

68.16 Functions for MeatAxe Matrix Algebras 1292

CONTENTS 65

68.17 MeatAxe Modules . 1293

68.18 Set Theoretic Functions for MeatAxe Modules 1293

68.19 Vector Space Functions for MeatAxe Modules 1293

68.20 Module Functions for MeatAxe Modules 1293

68.21 MeatAxe.Unbind . 1295

68.22 MeatAxe Object Records . 1295

69 The Polycyclic Quotient Algorithm Package 1299

69.1 Installing the PCQA Package . 1299

69.2 Input format . 1302

69.3 CallPCQA . 1302

69.4 ExtendPCQA . 1303

69.5 AbelianComponent . 1304

69.6 HirschLength . 1304

69.7 ModuleAction . 1305

70 Sisyphos 1307

70.1 PrintSISYPHOSWord . 1307

70.2 PrintSisyphosInputPGroup . 1308

70.3 IsCompatiblePCentralSeries . 1309

70.4 Automorphisms . 1309

70.5 AgNormalizedAutomorphisms . 1310

70.6 AgNormalizedOuterAutomorphisms . 1310

70.7 IsIsomorphic . 1310

70.8 Isomorphisms . 1311

70.9 CorrespondingAutomorphism . 1312

70.10 AutomorphismGroupElements . 1312

70.11 NormalizedUnitsGroupRing . 1312

71 The Specht Share Package 1315

71.1 Specht . 1318

71.2 Hecke algebras over fields of positive characteristic 1320

71.3 The Fock space and Hecke algebras over fields of characteristic zero . . 1321

71.4 Schur . 1322

71.5 DecompositionMatrix . 1323

71.6 CrystalDecompositionMatrix . 1324

71.7 DecompositionNumber . 1325

66 CONTENTS

71.8 Partitions in Specht . 1326

71.9 Inducing and restricting modules . 1326

71.10 InducedModule . 1326

71.11 SInducedModule . 1328

71.12 RestrictedModule . 1328

71.13 SRestrictedModule . 1329

71.14 Operations on decomposition matrices 1329

71.15 InducedDecompositionMatrix . 1330

71.16 IsNewIndecomposable . 1330

71.17 InvertDecompositionMatrix . 1332

71.18 AdjustmentMatrix . 1332

71.19 SaveDecompositionMatrix . 1333

71.20 CalculateDecompositionMatrix . 1334

71.21 MatrixDecompositionMatrix . 1334

71.22 DecompositionMatrixMatrix . 1335

71.23 AddIndecomposable . 1335

71.24 RemoveIndecomposable . 1335

71.25 MissingIndecomposables . 1336

71.26 Calculating dimensions . 1336

71.27 SimpleDimension . 1336

71.28 SpechtDimension . 1336

71.29 Combinatorics on Young diagrams . 1337

71.30 Schaper . 1337

71.31 IsSimpleModule . 1337

71.32 Mullineux . 1338

71.33 GoodNodes . 1339

71.34 GoodNodeSequence . 1339

71.35 PartitionGoodNodeSequence . 1340

71.36 GoodNodeLatticePath . 1340

71.37 LittlewoodRichardsonRule . 1340

71.38 InverseLittlewoodRichardsonRule . 1341

71.39 EResidueDiagram . 1342

71.40 HookLengthDiagram . 1342

71.41 RemoveRimHook . 1343

71.42 AddRimHook . 1343

71.43 Operations on partitions . 1343

CONTENTS 67

71.44 ECore . 1344

71.45 IsECore . 1344

71.46 EQuotient . 1344

71.47 CombineEQuotientECore . 1344

71.48 EWeight . 1345

71.49 ERegularPartitions . 1345

71.50 IsERegular . 1345

71.51 ConjugatePartition . 1345

71.52 ETopLadder . 1345

71.53 Dominates . 1346

71.54 LengthLexicographic . 1346

71.55 Lexicographic . 1346

71.56 ReverseDominance . 1346

71.57 Miscellaneous functions on modules . 1347

71.58 Specialized . 1347

71.59 ERegulars . 1347

71.60 SplitECores . 1348

71.61 Coefficient for Sums of Modules . 1348

71.62 InnerProduct . 1349

71.63 SpechtPrettyPrint . 1349

71.64 Semi–standard and standard tableaux 1349

71.65 SemiStandardTableaux . 1350

71.66 StandardTableaux . 1350

71.67 ConjugateTableau . 1350

72 Vector Enumeration 1351

72.1 Operation for Finitely Presented Algebras 1351

72.2 More about Vector Enumeration . 1352

72.3 Examples of Vector Enumeration . 1354

72.4 Using Vector Enumeration with the MeatAxe 1357

73 XMOD 1359

73.1 About XMOD . 1359

73.2 About crossed modules . 1360

73.3 The XMod Function . 1362

73.4 IsXMod . 1363

73.5 XModPrint . 1363

68 CONTENTS

73.6 ConjugationXMod . 1363

73.7 XModName . 1364

73.8 CentralExtensionXMod . 1364

73.9 AutomorphismXMod . 1364

73.10 InnerAutomorphismXMod . 1365

73.11 TrivialActionXMod . 1365

73.12 IsRModule for groups . 1366

73.13 RModuleXMod . 1366

73.14 XModSelect . 1367

73.15 Operations for crossed modules . 1367

73.16 Print for crossed modules . 1368

73.17 Size for crossed modules . 1368

73.18 Elements for crossed modules . 1368

73.19 IsConjugation for crossed modules . 1368

73.20 IsAspherical . 1369

73.21 IsSimplyConnected . 1369

73.22 IsCentralExtension . 1369

73.23 IsAutomorphismXMod . 1369

73.24 IsTrivialAction . 1369

73.25 IsZeroBoundary . 1369

73.26 IsRModule for crossed modules . 1370

73.27 WhatTypeXMod . 1370

73.28 DirectProduct for crossed modules . 1370

73.29 XModMorphism . 1371

73.30 IsXModMorphism . 1371

73.31 XModMorphismPrint . 1372

73.32 XModMorphismName . 1372

73.33 Operations for morphisms of crossed modules 1372

73.34 IdentitySubXMod . 1373

73.35 SubXMod . 1373

73.36 IsSubXMod . 1373

73.37 InclusionMorphism for crossed modules 1373

73.38 IsNormalSubXMod . 1374

73.39 NormalSubXMods . 1374

73.40 Factor crossed module . 1375

73.41 Kernel of a crossed module morphism 1375

CONTENTS 69

73.42 Image for a crossed module morphism 1375

73.43 InnerAutomorphism of a crossed module 1376

73.44 Order of a crossed module morphism . 1376

73.45 CompositeMorphism for crossed modules 1377

73.46 SourceXModXPModMorphism . 1377

73.47 About cat1-groups . 1378

73.48 Cat1 . 1379

73.49 IsCat1 . 1380

73.50 Cat1Print . 1380

73.51 Cat1Name . 1380

73.52 ConjugationCat1 . 1381

73.53 Operations for cat1-groups . 1382

73.54 Size for cat1-groups . 1382

73.55 Elements for cat1-groups . 1382

73.56 XModCat1 . 1382

73.57 Cat1XMod . 1383

73.58 SemidirectCat1XMod . 1383

73.59 Cat1List . 1384

73.60 Cat1Select . 1384

73.61 Cat1Morphism . 1386

73.62 IsCat1Morphism . 1386

73.63 Cat1MorphismName . 1387

73.64 Cat1MorphismPrint . 1387

73.65 Operations for morphisms of cat1-groups 1387

73.66 Cat1MorphismSourceHomomorphism 1387

73.67 ReverseCat1 . 1388

73.68 ReverseIsomorphismCat1 . 1388

73.69 Cat1MorphismXModMorphism . 1388

73.70 XModMorphismCat1Morphism . 1389

73.71 CompositeMorphism for cat1-groups . 1389

73.72 IdentitySubCat1 . 1390

73.73 SubCat1 . 1390

73.74 InclusionMorphism for cat1-groups . 1390

73.75 NormalSubCat1s . 1391

73.76 AllCat1s . 1391

73.77 About derivations and sections . 1392

70 CONTENTS

73.78 XModDerivationByImages . 1395

73.79 IsDerivation . 1395

73.80 DerivationImage . 1395

73.81 DerivationImages . 1395

73.82 InnerDerivation . 1395

73.83 ListInnerDerivations . 1396

73.84 Operations for derivations . 1396

73.85 Cat1SectionByImages . 1396

73.86 IsSection . 1397

73.87 IsRegular for Crossed Modules . 1397

73.88 Operations for sections . 1397

73.89 RegularDerivations . 1397

73.90 AllDerivations . 1398

73.91 DerivationsSorted . 1398

73.92 DerivationTable . 1398

73.93 AreDerivations . 1399

73.94 RegularSections . 1399

73.95 AllSections . 1399

73.96 AreSections . 1400

73.97 SectionDerivation . 1400

73.98 DerivationSection . 1400

73.99 CompositeDerivation . 1401

73.100 CompositeSection . 1401

73.101 WhiteheadGroupTable . 1401

73.102 WhiteheadMonoidTable . 1401

73.103 InverseDerivations . 1402

73.104 ListInverseDerivations . 1402

73.105 SourceEndomorphismDerivation . 1402

73.106 TableSourceEndomorphismDerivations 1402

73.107 RangeEndomorphismDerivation . 1403

73.108 TableRangeEndomorphismDerivations 1403

73.109 XModEndomorphismDerivation . 1403

73.110 SourceEndomorphismSection . 1404

73.111 RangeEndomorphismSection . 1404

73.112 Cat1EndomorphismSection . 1404

73.113 About actors . 1405

CONTENTS 71

73.114 ActorSquareRecord . 1406

73.115 WhiteheadPermGroup . 1407

73.116 Whitehead crossed module . 1407

73.117 AutomorphismPermGroup for crossed modules 1408

73.118 XModMorphismAutoPerm . 1408

73.119 ImageAutomorphismDerivation . 1408

73.120 Norrie crossed module . 1409

73.121 Lue crossed module . 1409

73.122 Actor crossed module . 1410

73.123 InnerMorphism for crossed modules . 1410

73.124 Centre for crossed modules . 1411

73.125 InnerActor for crossed modules . 1411

73.126 Actor for cat1-groups . 1411

73.127 About induced constructions . 1413

73.128 InducedXMod . 1414

73.129 AllInducedXMods . 1416

73.130 InducedCat1 . 1416

73.131 About utilities . 1417

73.132 InclusionMorphism . 1418

73.133 ZeroMorphism . 1419

73.134 EndomorphismClasses . 1419

73.135 EndomorphismImages . 1420

73.136 IdempotentImages . 1420

73.137 InnerAutomorphismGroup . 1420

73.138 IsAutomorphismGroup . 1421

73.139 AutomorphismPair . 1421

73.140 IsAutomorphismPair . 1421

73.141 AutomorphismPermGroup . 1421

73.142 FpPair . 1422

73.143 IsFpPair . 1423

73.144 SemidirectPair . 1423

73.145 IsSemidirectPair . 1423

73.146 PrintList . 1423

73.147 DistinctRepresentatives . 1424

73.148 CommonRepresentatives . 1424

73.149 CommonTransversal . 1424

73.150 IsCommonTransversal . 1424

72 CONTENTS

74 CHEVIE Version 3 – a short introduction 1425

75 Root systems and finite Coxeter groups 1429

75.1 CartanMat . 1433

75.2 CartanType . 1433

75.3 CartanName . 1434

75.4 PrintDynkinDiagram . 1434

75.5 CoxeterGroup . 1435

75.6 Operations and functions for Coxeter groups 1437

76 Elements in finite Coxeter groups 1439

76.1 PermCoxeterWord . 1440

76.2 CoxeterWord . 1441

76.3 CoxeterLength . 1441

76.4 ReducedCoxeterWord . 1442

76.5 LeftDescentSet . 1442

76.6 RightDescentSet . 1442

76.7 Reflections . 1442

76.8 LongestCoxeterElement . 1443

76.9 LongestCoxeterWord . 1443

76.10 HighestShortRoot . 1443

76.11 CoxeterElementsLength . 1443

76.12 CoxeterWords . 1444

76.13 CoxeterConjugacyClasses . 1444

76.14 ChevieClassInfo . 1445

76.15 Bruhat . 1445

76.16 MatXPerm . 1446

76.17 MatYPerm . 1446

76.18 PermMatX . 1446

76.19 PermMatY . 1447

77 Character tables for Coxeter groups 1449

77.1 CharTable for Coxeter groups . 1452

77.2 ReflectionCharValue . 1453

77.3 ReflectionDegrees . 1454

77.4 FakeDegrees . 1454

77.5 FakeDegree . 1454

CONTENTS 73

77.6 LowestPowerFakeDegrees . 1455

77.7 HighestPowerFakeDegrees . 1455

77.8 LowestPowerGenericDegrees . 1455

77.9 HighestPowerGenericDegrees . 1455

77.10 ChevieCharInfo . 1456

77.11 PositionId and PositionSgn . 1456

78 Reflection subgroups 1459

78.1 ReflectionSubgroup . 1461

78.2 Functions for reflection subgroups . 1462

78.3 ReducedInCoxeterCoset . 1462

78.4 ReducedRightCosetRepresentatives . 1463

78.5 PermCosetsSubgroup . 1463

78.6 jInductionTable for Macdonald-Lusztig-Spaltenstein induction 1463

78.7 JInductionTable . 1464

79 Artin-Tits braid groups 1467

79.1 Construction of braid elements . 1468

79.2 Operations for braid elements . 1469

79.3 PermBraid . 1470

79.4 WordBraid . 1471

79.5 GoodCoxeterWord . 1471

80 Complex reflection groups, cyclotomic algebras 1473

80.1 ComplexReflectionGroup . 1473

80.2 Operations for complex reflection groups 1474

80.3 Hecke for complex reflection groups . 1474

80.4 Operations for cyclotomic Hecke algebras 1475

81 Iwahori-Hecke algebras 1477

81.1 Hecke . 1478

81.2 HeckeSubAlgebra . 1479

81.3 Operations and functions for Hecke algebras 1480

81.4 Construction of Hecke elements of the T basis 1480

81.5 Operations for Hecke elements of the T basis 1481

81.6 CreateHeckeBasis . 1483

74 CONTENTS

82 Representations of Iwahori-Hecke algebras 1487

82.1 HeckeReflectionRepresentation . 1488

82.2 CheckHeckeDefiningRelations . 1488

82.3 CharTable for Hecke algebras . 1489

82.4 HeckeCharValues . 1490

82.5 HeckeClassPolynomials . 1491

82.6 PoincarePolynomial . 1491

82.7 SchurElements . 1491

82.8 SchurElement . 1492

82.9 GenericDegrees . 1493

82.10 HeckeCentralMonomials . 1493

82.11 HeckeCharValuesGood . 1493

83 Kazhdan-Lusztig polynomials and bases 1495

83.1 KazhdanLusztigPolynomial . 1496

83.2 CriticalPair . 1497

83.3 KazhdanLusztigCoefficient . 1497

83.4 KazhdanLusztigMue . 1498

83.5 LeftCells . 1498

83.6 LeftCellRepresentation . 1498

83.7 Hecke elements of the C basis . 1499

83.8 Hecke elements of the primed C basis 1500

83.9 Hecke elements of the D basis . 1500

83.10 Hecke elements of the primed D basis 1501

84 Coxeter cosets 1503

84.1 CoxeterCoset . 1506

84.2 CoxeterSubCoset . 1507

84.3 Functions on Coxeter cosets . 1508

84.4 CartanType for Coxeter cosets . 1510

84.5 ChevieClassInfo for Coxeter cosets . 1511

84.6 CharTable for Coxeter cosets . 1511

84.7 Frobenius . 1512

84.8 PhiFactors . 1512

85 Hecke cosets 1513

85.1 Hecke for Coxeter cosets . 1513

85.2 Operations and functions for Hecke cosets 1514

CONTENTS 75

86 Appendix – utility functions for the CHEVIE package 1515

86.1 InductionTable . 1515

86.2 CharRepresentationWords . 1516

86.3 PositionClass . 1516

86.4 PointsAndRepresentativesOrbits . 1517

86.5 DirectSumMat . 1517

86.6 DecomposedMat . 1518

86.7 IsDiagonalMat . 1518

86.8 IsLowerTriangularMat . 1518

86.9 IsNormalizing . 1519

86.10 SublistUnbnd . 1519

86.11 Coefficient . 1519

86.12 IntListToString . 1519

86.13 DoublePartitionToString . 1520

76 CONTENTS

Chapter 1

About GAP

This chapter introduces you to the GAP system. It describes how to start GAP (you may
have to ask your system administrator to install it correctly) and how to leave it. Then
a step by step introduction should give you an impression of how the GAP system works.
Further sections will give an overview about the features of GAP. After reading this chapter
the reader should know what kind of problems can be handled with GAP and how they can
be handled.

There is some repetition in this chapter and much of the material is repeated in later
chapters in a more compact and precise way. Yes, there are even some little inaccuracies
in this chapter simplifying things for better understanding. It should be used as a tutorial
introduction while later chapters form the reference manual.

GAP is an interactive system. It continuously executes a read–evaluate–print cycle. Each
expression you type at the keyboard is read by GAP, evaluated, and then the result is
printed.

The interactive nature of GAP allows you to type an expression at the keyboard and see
its value immediately. You can define a function and apply it to arguments to see how
it works. You may even write whole programs containing lots of functions and test them
without leaving the program.

When your program is large it will be more convenient to write it on a file and then read that
file into GAP. Preparing your functions in a file has several advantages. You can compose
your functions more carefully in a file (with your favorite text editor), you can correct errors
without retyping the whole function and you can keep a copy for later use. Moreover you
can write lots of comments into the program text, which are ignored by GAP, but are very
useful for human readers of your program text.

GAP treats input from a file in the same way that it treats input from the keyboard.

The printed examples in this first chapter encourage you to try running GAP on your com-
puter. This will support your feeling for GAP as a tool, which is the leading aim of this
chapter. Do not believe any statement in this chapter so long as you cannot verify it for your
own version of GAP. You will learn to distinguish between small deviations of the behavior
of your personal GAP from the printed examples and serious nonsense.

77

78 CHAPTER 1. ABOUT GAP

Since the printing routines of GAP are in some sense machine dependent you will for in-
stance encounter a different layout of the printed objects in different environments. But the
contents should always be the same.

In case you encounter serious nonsense it is highly recommended that you send a bug report
to gap-forum@samson.math.rwth-aachen.de.

If you read this introduction on-line you should now enter ?> to read the next section.

1.1 About Conventions

Throughout this manual both the input given to GAP and the output that GAP returns are
printed in typewriter font just as if they were typed at the keyboard.

An italic font is used for keys that have no printed representation, such as e.g. the newline
key and the ctl key. This font is also used for the formal parameters of functions that are
described in later chapters.

A combination like ctl -P means pressing both keys, that is holding the control key ctl and
pressing the key P while ctl is still pressed.

New terms are introduced in bold face.

In most places whitespace characters (i.e. spaces, tabs and newlines) are insignificant
for the meaning of GAP input. Identifiers and keywords must however not contain any
whitespace. On the other hand, sometimes there must be whitespace around identifiers and
keywords to separate them from each other and from numbers. We will use whitespace to
format more complicated commands for better readability.

A comment in GAP starts with the symbol # and continues to the end of the line. Comments
are treated like whitespace by GAP.

Besides of such comments which are part of the input of a GAP session, we use additional
comments which are part of the manual description, but not of the respective GAP session.
In the printed version of this manual these comments will be printed in a normal font for
better readability, hence they start with the symbol #.

The examples of GAP sessions given in any particular chapter of this manual have been run
in one continuous session, starting with the two commands

SizeScreen([72,]);
LogTo("erg.log");

which are used to set the line length to 72 and to save a listing of the session on some file.
If you choose any chapter and rerun its examples in the given order, you should be able to
reproduce our results except of a few lines of output which we have edited a little bit with
respect to blanks or line breaks in order to improve the readability. However, as soon as
random processes are involved, you may get different results if you extract single examples
and run them separately.

1.2 About Starting and Leaving GAP

If the program is correctly installed then you start GAP by simply typing gap at the prompt
of your operating system followed by the return or the newline key.

1.3. ABOUT FIRST STEPS 79

$ gap

GAP answers your request with its beautiful banner (which you can surpress with the com-
mand line option -b) and then it shows its own prompt gap> asking you for further input.

gap>

The usual way to end a GAP session is to type quit; at the gap> prompt. Do not omit the
semicolon!

gap> quit;
$

On some systems you may as well type ctl -D to yield the same effect. In any situation GAP
is ended by typing ctl -C twice within a second.

1.3 About First Steps

A simple calculation with GAP is as easy as one can imagine. You type the problem just
after the prompt, terminate it with a semicolon and then pass the problem to the program
with the return key. For example, to multiply the difference between 9 and 7 by the sum of
5 and 6, that is to calculate (9− 7) ∗ (5 + 6), you type exactly this last sequence of symbols
followed by ; and return.

gap> (9 - 7) * (5 + 6);
22
gap>

Then GAP echoes the result 22 on the next line and shows with the prompt that it is ready
for the next problem.
If you did omit the semicolon at the end of the line but have already typed return, then
GAP has read everything you typed, but does not know that the command is complete. The
program is waiting for further input and indicates this with a partial prompt >. This little
problem is solved by simply typing the missing semicolon on the next line of input. Then
the result is printed and the normal prompt returns.

gap> (9 - 7) * (5 + 6)
> ;
22
gap>

Whenever you see this partial prompt and you cannot decide what GAP is still waiting for,
then you have to type semicolons until the normal prompt returns.
In every situation this is the exact meaning of the prompt gap> : the program is waiting
for a new problem. In the following examples we will omit this prompt on the line after the
result. Considering each example as a continuation of its predecessor this prompt occurs in
the next example.
In this section you have seen how simple arithmetic problems can be solved by GAP by
simply typing them in. You have seen that it doesn’t matter whether you complete your
input on one line. GAP reads your input line by line and starts evaluating if it has seen the
terminating semicolon and return.
It is, however, also possible (and might be advisable for large amounts of input data) to
write your input first into a file, and then read this into GAP; see 3.23 and 3.12 for this.
Also in GAP, there is the possibility to edit the input data, see 3.4.

80 CHAPTER 1. ABOUT GAP

1.4 About Help

The contents of the GAP manual is also available as on-line help, see 3.5–3.11. If you need
information about a section of the manual, just enter a question mark followed by the header
of the section. E.g., entering ?About Help will print the section you are reading now.

??topic will print all entries in GAP’s index that contain the substring topic.

1.5 About Syntax Errors

Even if you mistyped the command you do not have to type it all again as GAP permits a lot
of command line editing. Maybe you mistyped or forgot the last closing parenthesis. Then
your command is syntactically incorrect and GAP will notice it, incapable of computing the
desired result.

gap> (9 - 7) * (5 + 6;
Syntax error:) expected
(9 - 7) * (5 + 6;

^

Instead of the result an error message occurs indicating the place where an unexpected
symbol occurred with an arrow sign ^ under it. As a computer program cannot know what
your intentions really were, this is only a hint. But in this case GAP is right by claiming
that there should be a closing parenthesis before the semicolon. Now you can type ctl -P
to recover the last line of input. It will be written after the prompt with the cursor in the
first position. Type ctl -E to take the cursor to the end of the line, then ctl -B to move the
cursor one character back. The cursor is now on the position of the semicolon. Enter the
missing parenthesis by simply typing). Now the line is correct and may be passed to GAP
by hitting the newline key. Note that for this action it is not necessary to move the cursor
past the last character of the input line.

Each line of commands you type is sent to GAP for evaluation by pressing newline regardless
of the position of the cursor in that line. We will no longer mention the newline key from
now on.

Sometimes a syntax error will cause GAP to enter a break loop. This is indicated by the
special prompt brk>. You can leave the break loop by either typing return; or by hitting
ctl -D. Then GAP will return to its normal state and show its normal prompt again.

In this section you learned that mistyped input will not lead to big confusion. If GAP detects
a syntax error it will print an error message and return to its normal state. The command
line editing allows you in a comfortable way to manipulate earlier input lines.

For the definition of the GAP syntax see chapter 2. A complete list of command line editing
facilities is found in 3.4. The break loop is described in 3.2.

1.6 About Constants and Operators

In an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being composed
by the operators +, * and - to result in a new value.

There are three kinds of operators in GAP, arithmetical operators, comparison operators,
and logical operators. You have already seen that it is possible to form the sum, the

1.6. ABOUT CONSTANTS AND OPERATORS 81

difference, and the product of two integer values. There are some more operators applicable
to integers in GAP. Of course integers may be divided by each other, possibly resulting in
noninteger rational values.

gap> 12345/25;
2469/5

Note that the numerator and denominator are divided by their greatest common divisor
and that the result is uniquely represented as a division instruction.

We haven’t met negative numbers yet. So consider the following self–explanatory examples.

gap> -3; 17 - 23;
-3
-6

The exponentiation operator is written as ^. This operation in particular might lead to very
large numbers. This is no problem for GAP as it can handle numbers of (almost) arbitrary
size.

gap> 3^132;
955004950796825236893190701774414011919935138974343129836853841

The mod operator allows you to compute one value modulo another.

gap> 17 mod 3;
2

Note that there must be whitespace around the keyword mod in this example since 17mod3
or 17mod would be interpreted as identifiers.

GAP knows a precedence between operators that may be overridden by parentheses.

gap> (9 - 7) * 5 = 9 - 7 * 5;
false

Besides these arithmetical operators there are comparison operators in GAP. A comparison
results in a boolean value which is another kind of constant. Every two objects within
GAP are comparable via =, <>, <, <=, > and >=, that is the tests for equality, inequality,
less than, less than or equal, greater than and greater than or equal. There is an ordering
defined on the set of all GAP objects that respects orders on subsets that one might expect.
For example the integers are ordered in the usual way.

gap> 10^5 < 10^4;
false

The boolean values true and false can be manipulated via logical operators, i. e., the
unary operator not and the binary operators and and or. Of course boolean values can be
compared, too.

gap> not true; true and false; true or false;
false
false
true
gap> 10 > 0 and 10 < 100;
true

Another important type of constants in GAP are permutations. They are written in cycle
notation and they can be multiplied.

82 CHAPTER 1. ABOUT GAP

gap> (1,2,3);
(1,2,3)
gap> (1,2,3) * (1,2);
(2,3)

The inverse of the permutation (1,2,3) is denoted by (1,2,3)^-1. Moreover the caret
operator ^ is used to determine the image of a point under a permutation and to conjugate
one permutation by another.

gap> (1,2,3)^-1;
(1,3,2)
gap> 2^(1,2,3);
3
gap> (1,2,3)^(1,2);
(1,3,2)

The last type of constants we want to introduce here are the characters, which are simply
objects in GAP that represent arbitrary characters from the character set of the operating
system. Character literals can be entered in GAP by enclosing the character in singlequotes
’.

gap> ’a’;
’a’
gap> ’*’;
’*’

There are no operators defined for characters except that characters can be compared.

In this section you have seen that values may be preceded by unary operators and combined
by binary operators placed between the operands. There are rules for precedence which
may be overridden by parentheses. It is possible to compare any two objects. A comparison
results in a boolean value. Boolean values are combined via logical operators. Moreover
you have seen that GAP handles numbers of arbitrary size. Numbers and boolean values
are constants. There are other types of constants in GAP like permutations. You are now
in a position to use GAP as a simple desktop calculator.

Operators are explained in more detail in 2.9 and 2.10. Moreover there are sections about
operators and comparisons for special types of objects in almost every chapter of this manual.
You will find more information about boolean values in chapters 44 and 29. Permutations
are described in chapter 20 and characters are described in chapter 30.

1.7 About Variables and Assignments

Values may be assigned to variables. A variable enables you to refer to an object via a name.
The name of a variable is called an identifier. The assignment operator is :=. There must
be no white space between the : and the =. Do not confuse the assignment operator :=
with the single equality sign = which is in GAP only used for the test of equality.

gap> a:= (9 - 7) * (5 + 6);
22
gap> a;
22
gap> a * (a + 1);

1.7. ABOUT VARIABLES AND ASSIGNMENTS 83

506
gap> a:= 10;
10
gap> a * (a + 1);
110

After an assignment the assigned value is echoed on the next line. The printing of the value
of a statement may be in every case prevented by typing a double semicolon.

gap> w:= 2;;

After the assignment the variable evaluates to that value if evaluated. Thus it is possible to
refer to that value by the name of the variable in any situation.

This is in fact the whole secret of an assignment. An identifier is bound to a value and
from this moment points to that value. Nothing more. This binding is changed by the next
assignment to that identifier. An identifier does not denote a block of memory as in some
other programming languages. It simply points to a value, which has been given its place
in memory by the GAP storage manager. This place may change during a GAP session, but
that doesn’t bother the identifier.

The identifier points to the value, not to a place in the memory.

For the same reason it is not the identifier that has a type but the object. This means on
the other hand that the identifier a which now is bound to an integer value may in the same
session point to any other value regardless of its type.

Identifiers may be sequences of letters and digits containing at least one letter. For example
abc and a0bc1 are valid identifiers. But also 123a is a valid identifier as it cannot be
confused with any number. Just 1234 indicates the number 1234 and cannot be at the same
time the name of a variable.

Since GAP distinguishes upper and lower case, a1 and A1 are different identifiers. Keywords
such as quit must not be used as identifiers. You will see more keywords in the following
sections.

In the remaining part of this manual we will ignore the difference between variables, their
names (identifiers), and the values they point at. It may be useful to think from time to
time about what is really meant by terms such as the integer w.

There are some predefined variables coming with GAP. Many of them you will find in the
remaining chapters of this manual, since functions are also referred to via identifiers.

This seems to be the right place to state the following rule.

The name of every function in the GAP library starts with a capital letter.

Thus if you choose only names starting with a small letter for your own variables you will
not overwrite any predefined function.

But there are some further interesting variables one of which shall be introduced now.

Whenever GAP returns a value by printing it on the next line this value is assigned to the
variable last. So if you computed

gap> (9 - 7) * (5 + 6);
22

and forgot to assign the value to the variable a for further use, you can still do it by the
following assignment.

84 CHAPTER 1. ABOUT GAP

gap> a:= last;
22

Moreover there are variables last2 and last3, guess their values.

In this section you have seen how to assign values to variables. These values can later
be accessed through the name of the variable, its identifier. You have also encountered the
useful concept of the last variables storing the latest returned values. And you have learned
that a double semicolon prevents the result of a statement from being printed.

Variables and assignments are described in more detail in 2.7 and 2.12. A complete list of
keywords is contained in 2.4.

1.8 About Functions

A program written in the GAP language is called a function. Functions are special GAP
objects. Most of them behave like mathematical functions. They are applied to objects and
will return a new object depending on the input. The function Factorial, for example, can
be applied to an integer and will return the factorial of this integer.

gap> Factorial(17);
355687428096000

Applying a function to arguments means to write the arguments in parentheses following
the function. Several arguments are separated by commas, as for the function Gcd which
computes the greatest common divisor of two integers.

gap> Gcd(1234, 5678);
2

There are other functions that do not return a value but only produce a side effect. They
change for example one of their arguments. These functions are sometimes called procedures.
The function Print is only called for the side effect to print something on the screen.

gap> Print(1234, "\n");
1234

In order to be able to compose arbitrary text with Print, this function itself will not produce
a line break after printing. Thus we had another newline character "\n" printed to start a
new line.

Some functions will both change an argument and return a value such as the function Sortex
that sorts a list and returns the permutation of the list elements that it has performed.

You will not understand right now what it means to change an object. We will return to
this subject several times in the next sections.

A comfortable way to define a function is given by the maps–to operator -> consisting of a
minus sign and a greater sign with no whitespace between them. The function cubed which
maps a number to its cube is defined on the following line.

gap> cubed:= x -> x^3;
function (x) ... end

After the function has been defined, it can now be applied.

gap> cubed(5);
125

1.9. ABOUT LISTS 85

Not every GAP function can be defined in this way. You will see how to write your own
GAP functions in a later section.

In this section you have seen GAP objects of type function. You have learned how to apply
a function to arguments. This yields as result a new object or a side effect. A side effect
may change an argument of the function. Moreover you have seen an easy way to define a
function in GAP with the maps-to operator.

Function calls are described in 2.8 and in 2.13. The functions of the GAP library are
described in detail in the remaining chapters of this manual, the Reference Manual.

1.9 About Lists

A list is a collection of objects separated by commas and enclosed in brackets. Let us for
example construct the list primes of the first 10 prime numbers.

gap> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

The next two primes are 31 and 37. They may be appended to the existing list by the func-
tion Append which takes the existing list as its first and another list as a second argument.
The second argument is appended to the list primes and no value is returned. Note that
by appending another list the object primes is changed.

gap> Append(primes, [31, 37]);
gap> primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

You can as well add single new elements to existing lists by the function Add which takes
the existing list as its first argument and a new element as its second argument. The new
element is added to the list primes and again no value is returned but the list primes is
changed.

gap> Add(primes, 41);
gap> primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]

Single elements of a list are referred to by their position in the list. To get the value of the
seventh prime, that is the seventh entry in our list primes, you simply type

gap> primes[7];
17

and you will get the value of the seventh prime. This value can be handled like any other
value, for example multiplied by 2 or assigned to a variable. On the other hand this mech-
anism allows to assign a value to a position in a list. So the next prime 43 may be inserted
in the list directly after the last occupied position of primes. This last occupied position is
returned by the function Length.

gap> Length(primes);
13
gap> primes[14]:= 43;
43
gap> primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]

86 CHAPTER 1. ABOUT GAP

Note that this operation again has changed the object primes. Not only the next position
of a list is capable of taking a new value. If you know that 71 is the 20th prime, you can as
well enter it right now in the 20th position of primes. This will result in a list with holes
which is however still a list and has length 20 now.

gap> primes[20]:= 71;
71
gap> primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]
gap> Length(primes);
20

The list itself however must exist before a value can be assigned to a position of the list.
This list may be the empty list [].

gap> lll[1]:= 2;
Error, Variable: ’lll’ must have a value
gap> lll:= [];
[]
gap> lll[1]:= 2;
2

Of course existing entries of a list can be changed by this mechanism, too. We will not do
it here because primes then may no longer be a list of primes. Try for yourself to change
the 17 in the list into a 9.

To get the position of 17 in the list primes use the function Position which takes the list
as its first argument and the element as its second argument and returns the position of
the first occurrence of the element 17 in the list primes. Position will return false if the
element is not contained in the list.

gap> Position(primes, 17);
7
gap> Position(primes, 20);
false

In all of the above changes to the list primes, the list has been automatically resized. There
is no need for you to tell GAP how big you want a list to be. This is all done dynamically.

It is not necessary for the objects collected in a list to be of the same type.

gap> lll:= [true, "This is a String",,, 3];
[true, "This is a String",,, 3]

In the same way a list may be part of another list. A list may even be part of itself.

gap> lll[3]:= [4,5,6];; lll;
[true, "This is a String", [4, 5, 6],, 3]
gap> lll[4]:= lll;
[true, "This is a String", [4, 5, 6], ~, 3]

Now the tilde ~ in the fourth position of lll denotes the object that is currently printed.
Note that the result of the last operation is the actual value of the object lll on the right
hand side of the assignment. But in fact it is identical to the value of the whole list lll on
the left hand side of the assignment.

1.10. ABOUT IDENTICAL LISTS 87

A string is a very special type of list, which is printed in a different way. A string is simply
a dense list of characters. Strings are used mainly in filenames and error messages. A string
literal can either be entered simply as the list of characters or by writing the characters
between doublequotes ". GAP will always output strings in the latter format.

gap> s1 := [’H’,’a’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’,’.’];
"Hallo world."
gap> s2 := "Hallo world.";
"Hallo world."
gap> s1 := [’H’,’a’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’,’.’];
"Hallo world."
gap> s1 = s2;
true
gap> s2[7];
’w’

Sublists of lists can easily be extracted and assigned using the operator { }.

gap> sl := lll{ [1, 2, 3] };
[true, "This is a String", [4, 5, 6]]
gap> sl{ [2, 3] } := ["New String", false];
["New String", false]
gap> sl;
[true, "New String", false]

This way you get a new list that contains at position i that element whose position is the
ith entry of the argument of { }.

In this long section you have encountered the fundamental concept of a list. You have
seen how to construct lists, how to extend them and how to refer to single elements of a
list. Moreover you have seen that lists may contain elements of different types, even holes
(unbound entries). But this is still not all we have to tell you about lists.

You will find a discussion about identity and equality of lists in the next section. Moreover
you will see special kinds of lists like sets (in 1.11), vectors and matrices (in 1.12) and ranges
(in 1.14). Strings are described in chapter 30.

1.10 About Identical Lists

This second section about lists is dedicated to the subtle difference between equality and
identity of lists. It is really important to understand this difference in order to understand
how complex data structures are realized in GAP. This section applies to all GAP objects
that have subobjects, i. e., to lists and to records. After reading the section about records
(1.13) you should return to this section and translate it into the record context.

Two lists are equal if all their entries are equal. This means that the equality operator =
returns true for the comparison of two lists if and only if these two lists are of the same
length and for each position the values in the respective lists are equal.

gap> numbers:= primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]
gap> numbers = primes;
true

88 CHAPTER 1. ABOUT GAP

We assigned the list primes to the variable numbers and, of course they are equal as they
have both the same length and the same entries. Now we will change the third number to
4 and compare the result again with primes.

gap> numbers[3]:= 4;
4
gap> numbers = primes;
true

You see that numbers and primes are still equal, check this by printing the value of primes.
The list primes is no longer a list of primes! What has happened? The truth is that the lists
primes and numbers are not only equal but they are identical. primes and numbers are two
variables pointing to the same list. If you change the value of the subobject numbers[3] of
numbers this will also change primes. Variables do not point to a certain block of storage
memory but they do point to an object that occupies storage memory. So the assignment
numbers:= primes did not create a new list in a different place of memory but only created
the new name numbers for the same old list of primes.

The same object can have several names.

If you want to change a list with the contents of primes independently from primes you will
have to make a copy of primes by the function Copy which takes an object as its argument
and returns a copy of the argument. (We will first restore the old value of primes.)

gap> primes[3]:= 5;
5
gap> primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]
gap> numbers:= Copy(primes);
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]
gap> numbers = primes;
true
gap> numbers[3]:= 4;
4
gap> numbers = primes;
false

Now numbers is no longer equal to primes and primes still is a list of primes. Check this
by printing the values of numbers and primes.

The only objects that can be changed this way are records and lists, because only GAP
objects of these types have subobjects. To clarify this statement consider the following
example.

gap> i:= 1;; j:= i;; i:= i+1;;

By adding 1 to i the value of i has changed. What happens to j? After the second
statement j points to the same object as i, namely to the integer 1. The addition does
not change the object 1 but creates a new object according to the instruction i+1. It is
actually the assignment that changes the value of i. Therefore j still points to the object
1. Integers (like permutations and booleans) have no subobjects. Objects of these types
cannot be changed but can only be replaced by other objects. And a replacement does not
change the values of other variables. In the above example an assignment of a new value to
the variable numbers would also not change the value of primes.

1.11. ABOUT SETS 89

Finally try the following examples and explain the results.
gap> l:= [];
[]
gap> l:= [l];
[[]]
gap> l[1]:= l;
[~]

Now return to the preceding section 1.9 and find out whether the functions Add and Append
change their arguments.
In this section you have seen the difference between equal lists and identical lists. Lists are
objects that have subobjects and therefore can be changed. Changing an object will change
the values of all variables that point to that object. Be careful, since one object can have
several names. The function Copy creates a copy of a list which is then a new object.
You will find more about lists in chapter 27, and more about identical lists in 27.9.

1.11 About Sets

GAP knows several special kinds of lists. A set in GAP is a special kind of list. A set
contains no holes and its elements are sorted according to the GAP ordering of all its objects.
Moreover a set contains no object twice.
The function IsSet tests whether an object is a set. It returns a boolean value. For any list
there exists a corresponding set. This set is constructed by the function Set which takes the
list as its argument and returns a set obtained from this list by ignoring holes and duplicates
and by sorting the elements.
The elements of the sets used in the examples of this section are strings.

gap> fruits:= ["apple", "strawberry", "cherry", "plum"];
["apple", "strawberry", "cherry", "plum"]
gap> IsSet(fruits);
false
gap> fruits:= Set(fruits);
["apple", "cherry", "plum", "strawberry"]

Note that the original list fruits is not changed by the function Set. We have to make a
new assignment to the variable fruits in order to make it a set.
The in operator is used to test whether an object is an element of a set. It returns a boolean
value true or false.

gap> "apple" in fruits;
true
gap> "banana" in fruits;
false

The in operator may as well be applied to ordinary lists. It is however much faster to
perform a membership test for sets since sets are always sorted and a binary search can be
used instead of a linear search.
New elements may be added to a set by the function AddSet which takes the set fruits as
its first argument and an element as its second argument and adds the element to the set if
it wasn’t already there. Note that the object fruits is changed.

90 CHAPTER 1. ABOUT GAP

gap> AddSet(fruits, "banana");
gap> fruits; # The banana is inserted in the right place.
["apple", "banana", "cherry", "plum", "strawberry"]
gap> AddSet(fruits, "apple");
gap> fruits; # fruits has not changed.
["apple", "banana", "cherry", "plum", "strawberry"]

Sets can be intersected by the function Intersection and united by the function Union
which both take two sets as their arguments and return the intersection (union) of the two
sets as a new object.

gap> breakfast:= ["tea", "apple", "egg"];
["tea", "apple", "egg"]
gap> Intersection(breakfast, fruits);
["apple"]

It is however not necessary for the objects collected in a set to be of the same type. You
may as well have additional integers and boolean values for breakfast.

The arguments of the functions Intersection and Union may as well be ordinary lists,
while their result is always a set. Note that in the preceding example at least one argument
of Intersection was not a set.

The functions IntersectSet and UniteSet also form the intersection resp. union of two
sets. They will however not return the result but change their first argument to be the
result. Try them carefully.

In this section you have seen that sets are a special kind of list. There are functions to
expand sets, intersect or unite sets, and there is the membership test with the in operator.

A more detailed description of strings is contained in chapter 30. Sets are described in more
detail in chapter 28.

1.12 About Vectors and Matrices

A vector is a list of elements from a common field. A matrix is a list of vectors of equal
length. Vectors and matrices are special kinds of lists without holes.

gap> v:= [3, 6, 2, 5/2];
[3, 6, 2, 5/2]
gap> IsVector(v);
true

Vectors may be multiplied by scalars from their field. Multiplication of vectors of equal
length results in their scalar product.

gap> 2 * v;
[6, 12, 4, 5]
gap> v * 1/3;
[1, 2, 2/3, 5/6]
gap> v * v;
221/4 # the scalar product of v with itself

Note that the expression v * 1/3 is actually evaluated by first multiplying v by 1 (which
yields again v) and by then dividing by 3. This is also an allowed scalar operation. The
expression v/3 would result in the same value.

1.12. ABOUT VECTORS AND MATRICES 91

A matrix is a list of vectors of equal length.

gap> m:= [[1, -1, 1],
> [2, 0, -1],
> [1, 1, 1]];
[[1, -1, 1], [2, 0, -1], [1, 1, 1]]
gap> m[2][1];
2

Syntactically a matrix is a list of lists. So the number 2 in the second row and the first
column of the matrix m is referred to as the first element of the second element of the list m
via m[2][1].

A matrix may be multiplied by scalars, vectors and other matrices. The vectors and matrices
involved in such a multiplication must however have suitable dimensions.

gap> m:= [[1, 2, 3, 4],
> [5, 6, 7, 8],
> [9,10,11,12]];
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
gap> PrintArray(m);
[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]

gap> [1, 0, 0, 0] * m;
Error, Vector *: vectors must have the same length
gap> [1, 0, 0] * m;
[1, 2, 3, 4]
gap> m * [1, 0, 0];
Error, Vector *: vectors must have the same length
gap> m * [1, 0, 0, 0];
[1, 5, 9]
gap> m * [0, 1, 0, 0];
[2, 6, 10]

Note that multiplication of a vector with a matrix will result in a linear combination of
the rows of the matrix, while multiplication of a matrix with a vector results in a linear
combination of the columns of the matrix. In the latter case the vector is considered as a
column vector.

Submatrices can easily be extracted and assigned using the { }{ } operator.

gap> sm := m{ [1, 2] }{ [3, 4] };
[[3, 4], [7, 8]]
gap> sm{ [1, 2] }{ [2] } := [[1],[-1]];
[[1], [-1]]
gap> sm;
[[3, 1], [7, -1]]

The first curly brackets contain the selection of rows, the second that of columns.

In this section you have met vectors and matrices as special lists. You have seen how to
refer to elements of a matrix and how to multiply scalars, vectors, and matrices.

92 CHAPTER 1. ABOUT GAP

Fields are described in chapter 6. The known fields in GAP are described in chapters 12,
13, 14, 15 and 18. Vectors and matrices are described in more detail in chapters 32 and 34.
Vector spaces are described in chapter 9 and further matrix related structures are described
in chapters 35 and 36.

1.13 About Records

A record provides another way to build new data structures. Like a list a record is a
collection of other objects. In a record the elements are not indexed by numbers but by
names (i.e., identifiers). An entry in a record is called a record component (or sometimes
also record field).

gap> date:= rec(year:= 1992,
> month:= "Jan",
> day:= 13);
rec(

year := 1992,
month := "Jan",
day := 13)

Initially a record is defined as a comma separated list of assignments to its record com-
ponents. Then the value of a record component is accessible by the record name and the
record component name separated by one dot as the record component selector.

gap> date.year;
1992
gap> date.time:= rec(hour:= 19, minute:= 23, second:= 12);
rec(

hour := 19,
minute := 23,
second := 12)

gap> date;
rec(

year := 1992,
month := "Jan",
day := 13,
time := rec(

hour := 19,
minute := 23,
second := 12))

Assignments to new record components are possible in the same way. The record is auto-
matically resized to hold the new component.

Most of the complex structures that are handled by GAP are represented as records, for
instance groups and character tables.

Records are objects that may be changed. An assignment to a record component changes
the original object. There are many functions in the library that will do such assignments to
a record component of one of their arguments. The function Size for example, will compute
the size of its argument which may be a group for instance, and then store the value in the

1.14. ABOUT RANGES 93

record component size. The next call of Size for this object will use this stored value
rather than compute it again.

Lists and records are the only types of GAP objects that can be changed.

Sometimes it is interesting to know which components of a certain record are bound. This
information is available from the function RecFields (yes, this function should be called
RecComponentNames), which takes a record as its argument and returns a list of all bound
components of this record as a list of strings.

gap> RecFields(date);
["year", "month", "day", "time"]

Finally try the following examples and explain the results.

gap> r:= rec();
rec(

)
gap> r:= rec(r:= r);
rec(
r := rec(

))
gap> r.r:= r;
rec(
r := ~)

Now return to section 1.10 and find out what that section means for records.

In this section you have seen how to define and how to use records. Record objects are
changed by assignments to record fields. Lists and records are the only types of objects that
can be changed.

Records and functions for records are described in detail in chapter 45. More about identical
records is found in 45.3.

1.14 About Ranges

A range is a finite sequence of integers. This is another special kind of list. A range is
described by its minimum (the first entry), its second entry and its maximum, separated by
a comma resp. two dots and enclosed in brackets. In the usual case of an ascending list of
consecutive integers the second entry may be omitted.

gap> [1..999999]; # a range of almost a million numbers
[1 .. 999999]
gap> [1, 2..999999]; # this is equivalent
[1 .. 999999]
gap> [1, 3..999999]; # here the step is 2
[1, 3 .. 999999]
gap> Length(last);
500000
gap> [999999, 999997 .. 1];
[999999, 999997 .. 1]

This compact printed representation of a fairly long list corresponds to a compact internal
representation. The function IsRange tests whether an object is a range. If this is true for

94 CHAPTER 1. ABOUT GAP

a list but the list is not yet represented in the compact form of a range this will be done
then.

gap> a:= [-2,-1,0,1,2,3,4,5];
[-2, -1, 0, 1, 2, 3, 4, 5]
gap> IsRange(a);
true
gap> a;
[-2 .. 5]
gap> a[5];
2
gap> Length(a);
8

Note that this change of representation does not change the value of the list a. The list a
still behaves in any context in the same way as it would have in the long representation.

In this section you have seen that ascending lists of consecutive integers can be represented
in a compact way as ranges.

Chapter 31 contains a detailed description of ranges. A fundamental application of ranges
is introduced in the next section.

1.15 About Loops

Given a list pp of permutations we can form their product by means of a for loop instead
of writing down the product explicitly.

gap> pp:= [(1,3,2,6,8)(4,5,9), (1,6)(2,7,8)(4,9), (1,5,7)(2,3,8,6),
> (1,8,9)(2,3,5,6,4), (1,9,8,6,3,4,7,2)];;
gap> prod:= ();
()
gap> for p in pp do
> prod:= prod * p;
> od;
gap> prod;
(1,8,4,2,3,6,5)

First a new variable prod is initialized to the identity permutation (). Then the loop variable
p takes as its value one permutation after the other from the list pp and is multiplied with
the present value of prod resulting in a new value which is then assigned to prod.

The for loop has the following syntax.

for var in list do statements od;

The effect of the for loop is to execute the statements for every element of the list . A
for loop is a statement and therefore terminated by a semicolon. The list of statements is
enclosed by the keywords do and od (reverse do). A for loop returns no value. Therefore
we had to ask explicitly for the value of prod in the preceding example.

The for loop can loop over any kind of list, even a list with holes. In many programming
languages (and in former versions of GAP, too) the for loop has the form

for var from first to last do statements od;

1.15. ABOUT LOOPS 95

But this is merely a special case of the general for loop as defined above where the list in
the loop body is a range.

for var in [first..last] do statements od;

You can for instance loop over a range to compute the factorial 15! of the number 15 in the
following way.

gap> ff:= 1;
1
gap> for i in [1..15] do
> ff:= ff * i;
> od;
gap> ff;
1307674368000

The following example introduces the while loop which has the following syntax.

while condition do statements od;

The while loop loops over the statements as long as the condition evaluates to true. Like
the for loop the while loop is terminated by the keyword od followed by a semicolon.

We can use our list primes to perform a very simple factorization. We begin by initializing a
list factors to the empty list. In this list we want to collect the prime factors of the number
1333. Remember that a list has to exist before any values can be assigned to positions of
the list. Then we will loop over the list primes and test for each prime whether it divides
the number. If it does we will divide the number by that prime, add it to the list factors
and continue.

gap> n:= 1333;
1333
gap> factors:= [];
[]
gap> for p in primes do
> while n mod p = 0 do
> n:= n/p;
> Add(factors, p);
> od;
> od;
gap> factors;
[31, 43]
gap> n;
1

As n now has the value 1 all prime factors of 1333 have been found and factors contains
a complete factorization of 1333. This can of course be verified by multiplying 31 and 43.

This loop may be applied to arbitrary numbers in order to find prime factors. But as primes
is not a complete list of all primes this loop may fail to find all prime factors of a number
greater than 2000, say. You can try to improve it in such a way that new primes are added
to the list primes if needed.

You have already seen that list objects may be changed. This holds of course also for the
list in a loop body. In most cases you have to be careful not to change this list, but there are

96 CHAPTER 1. ABOUT GAP

situations where this is quite useful. The following example shows a quick way to determine
the primes smaller than 1000 by a sieve method. Here we will make use of the function
Unbind to delete entries from a list.

gap> primes:= [];
[]
gap> numbers:= [2..1000];
[2 .. 1000]
gap> for p in numbers do
> Add(primes, p);
> for n in numbers do
> if n mod p = 0 then
> Unbind(numbers[n-1]);
> fi;
> od;
> od;

The inner loop removes all entries from numbers that are divisible by the last detected
prime p. This is done by the function Unbind which deletes the binding of the list position
numbers[n-1] to the value n so that afterwards numbers[n-1] no longer has an assigned
value. The next element encountered in numbers by the outer loop necessarily is the next
prime.

In a similar way it is possible to enlarge the list which is looped over. This yields a nice and
short orbit algorithm for the action of a group, for example.

In this section you have learned how to loop over a list by the for loop and how to loop
with respect to a logical condition with the while loop. You have seen that even the list in
the loop body can be changed.

The for loop is described in 2.17. The while loop is described in 2.15.

1.16 About Further List Operations

There is however a more comfortable way to compute the product of a list of numbers or
permutations.

gap> Product([1..15]);
1307674368000
gap> Product(pp);
(1,8,4,2,3,6,5)

The function Product takes a list as its argument and computes the product of the elements
of the list. This is possible whenever a multiplication of the elements of the list is defined.
So Product is just an implementation of the loop in the example above as a function.

There are other often used loops available as functions. Guess what the function Sum does.
The function List may take a list and a function as its arguments. It will then apply the
function to each element of the list and return the corresponding list of results. A list of
cubes is produced as follows with the function cubed from 1.8.

gap> List([2..10], cubed);
[8, 27, 64, 125, 216, 343, 512, 729, 1000]

1.17. ABOUT WRITING FUNCTIONS 97

To add all these cubes we might apply the function Sum to the last list. But we may as well
give the function cubed to Sum as an additional argument.

gap> Sum(last) = Sum([2..10], cubed);
true

The primes less than 30 can be retrieved out of the list primes from section 1.9 by the
function Filtered. This function takes the list primes and a property as its arguments and
will return the list of those elements of primes which have this property. Such a property
will be represented by a function that returns a boolean value. In this example the property
of being less than 30 can be reresented by the function x-> x <30 since x <30 will evaluate
to true for values x less than 30 and to false otherwise.

gap> Filtered(primes, x-> x < 30);
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Another useful thing is the operator { } that forms sublists. It takes a list of positions as
its argument and will return the list of elements from the original list corresponding to these
positions.

gap> primes{ [1 .. 10] };
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

In this section you have seen some functions which implement often used for loops. There
are functions like Product to form the product of the elements of a list. The function List
can apply a function to all elements of a list and the functions Filtered and Sublist create
sublists of a given list.

You will find more predefined for loops in chapter 27.

1.17 About Writing Functions

You have already seen how to use the functions of the GAP library, i.e., how to apply them
to arguments. This section will show you how to write your own functions.

Writing a function that prints hello, world. on the screen is a simple exercise in GAP.

gap> sayhello:= function()
> Print("hello, world.\n");
> end;
function () ... end

This function when called will only execute the Print statement in the second line. This
will print the string hello, world. on the screen followed by a newline character \n that
causes the GAP prompt to appear on the next line rather than immediately following the
printed characters.

The function definition has the following syntax.

function(arguments) statements end

A function definition starts with the keyword function followed by the formal parameter
list arguments enclosed in parenthesis. The formal parameter list may be empty as in
the example. Several parameters are separated by commas. Note that there must be no
semicolon behind the closing parenthesis. The function definition is terminated by the
keyword end.

98 CHAPTER 1. ABOUT GAP

A GAP function is an expression like integers, sums and lists. It therefore may be assigned
to a variable. The terminating semicolon in the example does not belong to the function
definition but terminates the assignment of the function to the name sayhello. Unlike in
the case of integers, sums, and lists the value of the function sayhello is echoed in the
abbreviated fashion function () ... end. This shows the most interesting part of a
function: its formal parameter list (which is empty in this example). The complete value of
sayhello is returned if you use the function Print.

gap> Print(sayhello, "\n");
function ()

Print("hello, world.\n");
end

Note the additional newline character "\n" in the Print statement. It is printed after the
object sayhello to start a new line.

The newly defined function sayhello is executed by calling sayhello() with an empty
argument list.

gap> sayhello();
hello, world.

This is however not a typical example as no value is returned but only a string is printed.

A more useful function is given in the following example. We define a function sign which
shall determine the sign of a number.

gap> sign:= function(n)
> if n < 0 then
> return -1;
> elif n = 0 then
> return 0;
> else
> return 1;
> fi;
> end;
function (n) ... end
gap> sign(0); sign(-99); sign(11);
0
-1
1
gap> sign("abc");
1 # strings are defined to be greater than 0

This example also introduces the if statement which is used to execute statements depend-
ing on a condition. The if statement has the following syntax.

if condition then statements elif condition then statements else statements fi;

There may be several elif parts. The elif part as well as the else part of the if statement
may be omitted. An if statement is no expression and can therefore not be assigned to a
variable. Furthermore an if statement does not return a value.

Fibonacci numbers are defined recursively by f(1) = f(2) = 1 and f(n) = f(n− 1) + f(n−
2). Since functions in GAP may call themselves, a function fib that computes Fibonacci
numbers can be implemented basically by typing the above equations.

1.17. ABOUT WRITING FUNCTIONS 99

gap> fib:= function(n)
> if n in [1, 2] then
> return 1;
> else
> return fib(n-1) + fib(n-2);
> fi;
> end;
function (n) ... end
gap> fib(15);
610

There should be additional tests for the argument n being a positive integer. This function
fib might lead to strange results if called with other arguments. Try to insert the tests in
this example.

A function gcd that computes the greatest common divisor of two integers by Euclid’s
algorithm will need a variable in addition to the formal arguments.

gap> gcd:= function(a, b)
> local c;
> while b <> 0 do
> c:= b;
> b:= a mod b;
> a:= c;
> od;
> return c;
> end;
function (a, b) ... end
gap> gcd(30, 63);
3

The additional variable c is declared as a local variable in the local statement of the
function definition. The local statement, if present, must be the first statement of a
function definition. When several local variables are declared in only one local statement
they are separated by commas.

The variable c is indeed a local variable, that is local to the function gcd. If you try to use
the value of c in the main loop you will see that c has no assigned value unless you have
already assigned a value to the variable c in the main loop. In this case the local nature of
c in the function gcd prevents the value of the c in the main loop from being overwritten.

We say that in a given scope an identifier identifies a unique variable. A scope is a lexical
part of a program text. There is the global scope that encloses the entire program text,
and there are local scopes that range from the function keyword, denoting the beginning
of a function definition, to the corresponding end keyword. A local scope introduces new
variables, whose identifiers are given in the formal argument list and the local declaration
of the function. The usage of an identifier in a program text refers to the variable in the
innermost scope that has this identifier as its name.

We will now write a function to determine the number of partitions of a positive integer. A
partition of a positive integer is a descending list of numbers whose sum is the given integer.
For example [4, 2, 1, 1] is a partition of 8. The complete set of all partitions of an integer n

100 CHAPTER 1. ABOUT GAP

may be divided into subsets with respect to the largest element. The number of partitions
of n therefore equals the sum of the numbers of partitions of n− i with elements less than
i for all possible i. More generally the number of partitions of n with elements less than m
is the sum of the numbers of partitions of n− i with elements less than i for i less than m
and n. This description yields the following function.

gap> nrparts:= function(n)
> local np;
> np:= function(n, m)
> local i, res;
> if n = 0 then
> return 1;
> fi;
> res:= 0;
> for i in [1..Minimum(n,m)] do
> res:= res + np(n-i, i);
> od;
> return res;
> end;
> return np(n,n);
> end;
function (n) ... end

We wanted to write a function that takes one argument. We solved the problem of determin-
ing the number of partitions in terms of a recursive procedure with two arguments. So we
had to write in fact two functions. The function nrparts that can be used to compute the
number of partitions takes indeed only one argument. The function np takes two arguments
and solves the problem in the indicated way. The only task of the function nrparts is to
call np with two equal arguments.

We made np local to nrparts. This illustrates the possibility of having local functions in
GAP. It is however not necessary to put it there. np could as well be defined on the main
level. But then the identifier np would be bound and could not be used for other purposes.
And if it were used the essential function np would no longer be available for nrparts.

Now have a look at the function np. It has two local variables res and i. The variable res
is used to collect the sum and i is a loop variable. In the loop the function np calls itself
again with other arguments. It would be very disturbing if this call of np would use the
same i and res as the calling np. Since the new call of np creates a new scope with new
variables this is fortunately not the case.

The formal parameters n and m are treated like local variables.

It is however cheaper (in terms of computing time) to avoid such a recursive solution if this
is possible (and it is possible in this case), because a function call is not very cheap.

In this section you have seen how to write functions in the GAP language. You have also
seen how to use the if statement. Functions may have local variables which are declared in
an initial local statement in the function definition. Functions may call themselves.

The function syntax is described in 2.18. The if statement is described in more detail in
2.14. More about Fibonacci numbers is found in 46.20 and more about partitions in 46.13.

1.18. ABOUT GROUPS 101

1.18 About Groups

In this section we will show some easy computations with groups. The example uses permu-
tation groups, but this is visible for the user only because the output contains permutations.
The functions, like Group, Size or SylowSubgroup (for detailed information, see chapters
4, 7), are the same for all kinds of groups, although the algorithms which compute the
information of course will be different in most cases.

It is not even necessary to know more about permutations than the two facts that they are
elements of permutation groups and that they are written in disjoint cycle notation (see
chapter 20). So let’s construct a permutation group:

gap> s8:= Group((1,2), (1,2,3,4,5,6,7,8));
Group((1,2), (1,2,3,4,5,6,7,8))

We formed the group generated by the permutations (1,2) and (1,2,3,4,5,6,7,8), which
is well known as the symmetric group on eight points, and assigned it to the identifier s8.
s8 contains the alternating group on eight points which can be described in several ways,
e.g., as group of all even permutations in s8, or as its commutator subgroup.

gap> a8:= CommutatorSubgroup(s8, s8);
Subgroup(Group((1,2), (1,2,3,4,5,6,7,8)),
[(1,3,2), (2,4,3), (2,3)(4,5), (2,4,6,5,3), (2,5,3)(4,7,6),
(2,3)(5,6,8,7)])

The alternating group a8 is printed as instruction to compute that subgroup of the group s8
that is generated by the given six permutations. This representation is much shorter than
the internal structure, and it is completely self–explanatory; one could, for example, print
such a group to a file and read it into GAP later. But if one object occurs several times it
is useful to refer to this object; this can be settled by assigning a name to the group.

gap> s8.name:= "s8";
"s8"
gap> a8;
Subgroup(s8, [(1,3,2), (2,4,3), (2,3)(4,5), (2,4,6,5,3),
(2,5,3)(4,7,6), (2,3)(5,6,8,7)])

gap> a8.name:= "a8";
"a8"
gap> a8;
a8

Whenever a group has a component name, GAP prints this name instead of the group itself.
Note that there is no link between the name and the identifier, but it is of course useful to
choose name and identifier compatible.

gap> copya8:= Copy(a8);
a8

We examine the group a8. Like all complex GAP structures, it is represented as a record
(see 7.117).

gap> RecFields(a8);
["isDomain", "isGroup", "parent", "identity", "generators",
"operations", "isPermGroup", "1", "2", "3", "4", "5", "6",

102 CHAPTER 1. ABOUT GAP

"stabChainOptions", "stabChain", "orbit", "transversal",
"stabilizer", "name"]

Many functions store information about the group in this group record, this avoids duplicate
computations. But we are not interested in the organisation of data but in the group, e.g.,
some of its properties (see chapter 7, especially 7.45):

gap> Size(a8); IsAbelian(a8); IsPerfect(a8);
20160
false
true

Some interesting subgroups are the Sylow p subgroups for prime divisors p of the group
order; a call of SylowSubgroup stores the required subgroup in the group record:

gap> Set(Factors(Size(a8)));
[2, 3, 5, 7]
gap> for p in last do
> SylowSubgroup(a8, p);
> od;
gap> a8.sylowSubgroups;
[, Subgroup(s8, [(1,5)(7,8), (1,5)(2,6), (3,4)(7,8), (2,3)(4,6),

(1,7)(2,3)(4,6)(5,8), (1,2)(3,7)(4,8)(5,6)]),
Subgroup(s8, [(3,8,7), (2,6,4)(3,7,8)]),,
Subgroup(s8, [(3,7,8,6,4)]),,
Subgroup(s8, [(2,8,4,5,7,3,6)])]

The record component sylowSubgroups is a list which stores at the p–th position, if bound,
the Sylow p subgroup; in this example this means that there are holes at positions 1, 4 and
6. Note that a call of SylowSubgroup for the cyclic group of order 65521 and for the prime
65521 would cause GAP to store the group at the end of a list of length 65521, so there are
special situations where it is possible to bring GAP and yourselves into troubles.

We now can investigate the Sylow 2 subgroup.

gap> syl2:= last[2];;
gap> Size(syl2);
64
gap> Normalizer(a8, syl2);
Subgroup(s8, [(3,4)(7,8), (2,3)(4,6), (1,2)(3,7)(4,8)(5,6)])
gap> last = syl2;
true
gap> Centre(syl2);
Subgroup(s8, [(1, 5)(2, 6)(3, 4)(7, 8)])
gap> cent:= Centralizer(a8, last);
Subgroup(s8, [(1, 5)(2, 6)(3, 4)(7, 8), (3,4)(7,8), (3,7)(4,8),

(2,3)(4,6), (1,2)(5,6)])
gap> Size(cent);
192
gap> DerivedSeries(cent);
[Subgroup(s8, [(1, 5)(2, 6)(3, 4)(7, 8), (3,4)(7,8),

(3,7)(4,8), (2,3)(4,6), (1,2)(5,6)]),

1.18. ABOUT GROUPS 103

Subgroup(s8, [(1, 6, 3)(2, 4, 5), (1, 8, 3)(4, 5, 7),
(1, 7)(2, 3)(4, 6)(5, 8), (1, 5)(2, 6)]),

Subgroup(s8, [(1, 3)(2, 7)(4, 5)(6, 8),
(1, 6)(2, 5)(3, 8)(4, 7), (1, 5)(3, 4), (1, 5)(7, 8)])

, Subgroup(s8, [(1, 5)(2, 6)(3, 4)(7, 8)]),
Subgroup(s8, [])]

gap> List(last, Size);
[192, 96, 32, 2, 1]
gap> low:= LowerCentralSeries(cent);
[Subgroup(s8, [(1, 5)(2, 6)(3, 4)(7, 8), (3,4)(7,8),

(3,7)(4,8), (2,3)(4,6), (1,2)(5,6)]),
Subgroup(s8, [(1, 6, 3)(2, 4, 5), (1, 8, 3)(4, 5, 7),

(1, 7)(2, 3)(4, 6)(5, 8), (1, 5)(2, 6)])]

Another kind of subgroups is given by the point stabilizers.
gap> stab:= Stabilizer(a8, 1);
Subgroup(s8, [(2,5,6), (2,5)(3,6), (2,5,6,4,3), (2,5,3)(4,6,8),
(2,5)(3,4,7,8)])

gap> Size(stab);
2520
gap> Index(a8, stab);
8

We can fetch an arbitrary group element and look at its centralizer in a8, and then get other
subgroups by conjugation and intersection of already known subgroups. Note that we form
the subgroups inside a8, but GAP regards these groups as subgroups of s8 because this is
the common “parent” group of all these groups and of a8 (for the idea of parent groups, see
7.6).

gap> Random(a8);
(1,6,3,2,7)(4,5,8)
gap> Random(a8);
(1,3,2,4,7,5,6)
gap> cent:= Centralizer(a8, (1,2)(3,4)(5,8)(6,7));
Subgroup(s8, [(1,2)(3,4)(5,8)(6,7), (5,6)(7,8), (5,7)(6,8),
(3,4)(6,7), (3,5)(4,8), (1,3)(2,4)])

gap> Size(cent);
192
gap> conj:= ConjugateSubgroup(cent, (2,3,4));
Subgroup(s8, [(1,3)(2,4)(5,8)(6,7), (5,6)(7,8), (5,7)(6,8),
(2,4)(6,7), (2,8)(4,5), (1,4)(2,3)])

gap> inter:= Intersection(cent, conj);
Subgroup(s8, [(5,6)(7,8), (5,7)(6,8), (1,2)(3,4), (1,3)(2,4)])
gap> Size(inter);
16
gap> IsElementaryAbelian(inter);
true
gap> norm:= Normalizer(a8, inter);
Subgroup(s8, [(6,7,8), (5,6,8), (3,4)(6,8), (2,3)(6,8), (1,2)(6,8),
(1,5)(2,6,3,7,4,8)])

104 CHAPTER 1. ABOUT GAP

gap> Size(norm);
576

Suppose we do not only look which funny things may appear in our group but want to
construct a subgroup, e.g., a group of structure 23 : L3(2) in a8. One idea is to look for an
appropriate 23 which is specified by the fact that all its involutions are fixed point free, and
then compute its normalizer in a8:

gap> elab:= Group((1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8),
> (1,5)(2,6)(3,7)(4,8));;
gap> Size(elab);
8
gap> IsElementaryAbelian(elab);
true
gap> norm:= Normalizer(a8, AsSubgroup(s8, elab));
Subgroup(s8, [(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6),
(2,3)(6,7), (1,2)(7,8)])

gap> Size(norm);
1344

Note that elab was defined as separate group, thus we had to call AsSubgroup to achieve
that it has the same parent group as a8. Let’s look at some usual misuses:

Normalizer(a8, elab);

Intuitively, it is clear that here again we wanted to compute the normalizer of elab in a8,
and in fact we would get it by this call. However, this would be a misuse in the sense that
now GAP cannot use some clever method for the computation of the normalizer. So, for
larger groups, the computation may be very time consuming. That is the reason why we
used the the function AsSubgroup in the preceding example.

Let’s have a closer look at that function.

gap> IsSubgroup(a8, AsSubgroup(a8, elab));
Error, <G> must be a parent group in
AsSubgroup(a8, elab) called from
main loop
brk> quit;
gap> IsSubgroup(a8, AsSubgroup(s8, elab));
true

What we tried here was not correct. Since all our computations up to now are done inside s8
which is the parent of a8, it is easy to understand that IsSubgroup works for two subgroups
with this parent.

By the way, you should not try the operator < instead of the function IsSubgroup. Some-
thing like

gap> elab < a8;
false

or

gap> AsSubgroup(s8, elab) < a8;
false

1.18. ABOUT GROUPS 105

will not cause an error, but the result does not tell anything about the inclusion of one group
in another; < looks at the element lists for the two domains which means that it computes
them if they are not already stored –which is not desirable to do for large groups– and then
simply compares the lists with respect to lexicographical order (see 4.7).

On the other hand, the equality operator = in fact does test the equality of groups. Thus

gap> elab = AsSubgroup(s8, elab);
true

means that the two groups are equal in the sense that they have the same elements. Note
that they may behave differently since they have different parent groups. In our example,
it is necessary to work with subgroups of s8:

gap> elab:= AsSubgroup(s8, elab);;
gap> elab.name:= "elab";;

If we are given the subgroup norm of order 1344 and its subgroup elab, the factor group
can be considered.

gap> f:= norm / elab;
(Subgroup(s8, [(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6),
(2,3)(6,7), (1,2)(7,8)]) / elab)

gap> Size(f);
168

As the output shows, this is not a permutation group. The factor group and its elements
can, however, be handled in the usual way.

gap> Random(f);
FactorGroupElement(elab, (2,8,7)(3,5,6))
gap> Order(f, last);
3

The natural link between the group norm and its factor group f is the natural homomorphism
onto f, mapping each element of norm to its coset modulo the kernel elab. In GAP you can
construct the homomorphism, but note that the images lie in f since they are elements of
the factor group, but the preimage of each such element is only a coset, not a group element
(for cosets, see the relevant sections in chapter 7, for homomorphisms see chapters 8 and
42).

gap> f.name:= "f";;
gap> hom:= NaturalHomomorphism(norm, f);
NaturalHomomorphism(Subgroup(s8,
[(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6), (2,3)(6,7),
(1,2)(7,8)]), (Subgroup(s8,

[(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6), (2,3)(6,7),
(1,2)(7,8)]) / elab))

gap> Kernel(hom) = elab;
true
gap> x:= Random(norm);
(1,7,5,8,3,6,2)
gap> Image(hom, x);
FactorGroupElement(elab, (2,7,3,4,6,8,5))

106 CHAPTER 1. ABOUT GAP

gap> coset:= PreImages(hom, last);
(elab*(2,7,3,4,6,8,5))
gap> IsCoset(coset);
true
gap> x in coset;
true
gap> coset in f;
false

The group f acts on its elements (not on the cosets) via right multiplication, yielding the
regular permutation representation of f and thus a new permutation group, namely the
linear group L3(2). A more elaborate discussion of operations of groups can be found in
section 1.19 and chapter 8.

gap> op:= Operation(f, Elements(f), OnRight);;
gap> IsPermGroup(op);
true
gap> Maximum(List(op.generators, LargestMovedPointPerm));
168
gap> IsSimple(op);
true

norm acts on the seven nontrivial elements of its normal subgroup elab by conjugation,
yielding a representation of L3(2) on seven points. We embed this permutation group in
norm and deduce that norm is a split extension of an elementary abelian group 23 with L3(2).

gap> op:= Operation(norm, Elements(elab), OnPoints);
Group((5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6), (2,3)(6,7),
(3,4)(5,6))
gap> IsSubgroup(a8, AsSubgroup(s8, op));
true
gap> IsSubgroup(norm, AsSubgroup(s8, op));
true
gap> Intersection(elab, op);
Group(())

Yet another kind of information about our a8 concerns its conjugacy classes.

gap> ccl:= ConjugacyClasses(a8);
[ConjugacyClass(a8, ()), ConjugacyClass(a8, (1,3)(2,6)(4,7)(5,8))

, ConjugacyClass(a8, (1,3)(2,8,5)(6,7)),
ConjugacyClass(a8, (2,5,8)), ConjugacyClass(a8, (1,3)(6,7)),
ConjugacyClass(a8, (1,3,2,5,4,7,8)),
ConjugacyClass(a8, (1,5,8,2,7,3,4)),
ConjugacyClass(a8, (1,5)(2,8,7,4,3,6)),
ConjugacyClass(a8, (2,7,3)(4,6,8)),
ConjugacyClass(a8, (1,6)(3,8,5,4)),
ConjugacyClass(a8, (1,3,5,2)(4,6,8,7)),
ConjugacyClass(a8, (1,8,6,2,5)),
ConjugacyClass(a8, (1,7,2,4,3)(5,8,6)),
ConjugacyClass(a8, (1,2,3,7,4)(5,8,6))]

gap> Length(ccl);

1.18. ABOUT GROUPS 107

14
gap> reps:= List(ccl, Representative);
[(), (1,3)(2,6)(4,7)(5,8), (1,3)(2,8,5)(6,7), (2,5,8), (1,3)(6,7),
(1,3,2,5,4,7,8), (1,5,8,2,7,3,4), (1,5)(2,8,7,4,3,6),
(2,7,3)(4,6,8), (1,6)(3,8,5,4), (1,3,5,2)(4,6,8,7), (1,8,6,2,5),
(1,7,2,4,3)(5,8,6), (1,2,3,7,4)(5,8,6)]

gap> List(reps, r -> Order(a8, r));
[1, 2, 6, 3, 2, 7, 7, 6, 3, 4, 4, 5, 15, 15]
gap> List(ccl, Size);
[1, 105, 1680, 112, 210, 2880, 2880, 3360, 1120, 2520, 1260, 1344,
1344, 1344]

Note the difference between Order (which means the element order), Size (which means
the size of the conjugacy class) and Length (which means the length of a list).

Having the conjugacy classes, we can consider class functions, i.e., maps that are defined
on the group elements, and that are constant on each conjugacy class. One nice example is
the number of fixed points; here we use that permutations act on points via ^.

gap> nrfixedpoints:= function(perm, support)
> return Number([1 .. support], x -> x^perm = x);
> end;
function (perm, support) ... end

Note that we must specify the support since a permutation does not know about the group
it is an element of; e.g. the trivial permutation () has as many fixed points as the support
denotes.

gap> permchar1:= List(reps, x -> nrfixedpoints(x, 8));
[8, 0, 1, 5, 4, 1, 1, 0, 2, 2, 0, 3, 0, 0]

This is the character of the natural permutation representation of a8 (More about characters
can be found in chapters 48 ff.). In order to get another representation of a8, we consider
another action, namely that on the elements of a conjugacy class by conjugation; note that
this is denoted by OnPoints, too.

gap> class := First(ccl, c -> Size(c) = 112);
ConjugacyClass(a8, (2,5,8))
gap> op:= Operation(a8, Elements(class), OnPoints);;

We get a permutation representation op on 112 points. It is more useful to look for properties
than at the permutations.

gap> IsPrimitive(op, [1 .. 112]);
false
gap> blocks:= Blocks(op, [1 .. 112]);
[[1, 2], [6, 8], [14, 19], [17, 20], [36, 40], [32, 39],
[3, 5], [4, 7], [10, 15], [65, 70], [60, 69], [54, 63],
[55, 68], [50, 67], [13, 16], [27, 34], [22, 29],
[28, 38], [24, 37], [31, 35], [9, 12], [106, 112],
[100, 111], [11, 18], [93, 104], [23, 33], [26, 30],
[94, 110], [88, 109], [49, 62], [44, 61], [43, 56],
[53, 58], [48, 57], [45, 66], [59, 64], [87, 103],
[81, 102], [80, 96], [92, 98], [47, 52], [42, 51],

108 CHAPTER 1. ABOUT GAP

[41, 46], [82, 108], [99, 105], [21, 25], [75, 101],
[74, 95], [86, 97], [76, 107], [85, 91], [73, 89],
[72, 83], [79, 90], [78, 84], [71, 77]]

gap> op2:= Operation(op, blocks, OnSets);;
gap> IsPrimitive(op2, [1 .. 56]);
true

The action of op on the given block system gave us a new representation on 56 points which
is primitive, i.e., the point stabilizer is a maximal subgroup. We compute its preimage in the
representation on eight points using homomorphisms (which of course are monomorphisms).

gap> ophom := OperationHomomorphism(a8, op);;
gap> Kernel(ophom);
Subgroup(s8, [])
gap> ophom2:= OperationHomomorphism(op, op2);;
gap> stab:= Stabilizer(op2, 1);;
gap> Size(stab);
360
gap> composition:= ophom * ophom2;;
gap> preim:= PreImage(composition, stab);
Subgroup(s8, [(1,3,2), (2,4,3), (1,3)(7,8), (2,3)(4,5), (6,8,7)])

And this is the permutation character (with respect to the succession of conjugacy classes
in ccl):

gap> permchar2:= List(reps, x->nrfixedpoints(x^composition,56));
[56, 0, 3, 11, 12, 0, 0, 0, 2, 2, 0, 1, 1, 1]

The normalizer of an element in the conjugacy class class is a group of order 360, too. In
fact, it is essentially the same as the maximal subgroup we had found before

gap> sgp:= Normalizer(a8,
> Subgroup(s8, [Representative(class)]));
Subgroup(s8, [(2,5)(3,4), (1,3,4), (2,5,8), (1,3,7)(2,5,8),

(1,4,7,3,6)(2,5,8)])
gap> Size(sgp);
360
gap> IsConjugate(a8, sgp, preim);
true

The scalar product of permutation characters of two subgroups U , V , say, equals the number
of (U, V)–double cosets (again, see chapters 48 ff. for the details). For example, the norm
of the permutation character permchar1 of degree eight is two since the action of a8 on the
cosets of a point stabilizer is at least doubly transitive:

gap> stab:= Stabilizer(a8, 1);;
gap> double:= DoubleCosets(a8, stab, stab);
[DoubleCoset(Subgroup(s8, [(3,8,7), (3,4)(7,8), (3,5,4,8,7),

(3,6,5)(4,8,7), (2,6,4,5)(7,8)]), (), Subgroup(s8,
[(3,8,7), (3,4)(7,8), (3,5,4,8,7), (3,6,5)(4,8,7),
(2,6,4,5)(7,8)])),

DoubleCoset(Subgroup(s8, [(3,8,7), (3,4)(7,8), (3,5,4,8,7),
(3,6,5)(4,8,7), (2,6,4,5)(7,8)]), (1,2)(7,8), Subgroup(s8,

1.19. ABOUT OPERATIONS OF GROUPS 109

[(3,8,7), (3,4)(7,8), (3,5,4,8,7), (3,6,5)(4,8,7),
(2,6,4,5)(7,8)]))]

gap> Length(double);
2

We compute the numbers of (sgp, sgp) and (sgp, stab) double cosets.

gap> Length(DoubleCosets(a8, sgp, sgp));
4
gap> Length(DoubleCosets(a8, sgp, stab));
2

Thus both irreducible constituents of permchar1 are also constituents of permchar2, i.e.,
the difference of the two permutation characters is a proper character of a8 of norm two.

gap> permchar2 - permchar1;
[48, 0, 2, 6, 8, -1, -1, 0, 0, 0, 0, -2, 1, 1]

1.19 About Operations of Groups

One of the most important tools in group theory is the operation or action of a group on
a certain set.

We say that a group G operates on a set D if we have a function that takes each pair (d, g)
with d ∈ D and g ∈ G to another element dg ∈ D, which we call the image of d under g,
such that didentity = d and (dg)h = dgh for each d ∈ D and g, h ∈ G.

This is equivalent to saying that an operation is a homomorphism of the group G into the
full symmetric group on D. We usually call D the domain of the operation and its elements
points.

In this section we will demonstrate how you can compute with operations of groups. For an
example we will use the alternating group on 8 points.

gap> a8 := Group((1,2,3), (2,3,4,5,6,7,8));;
gap> a8.name := "a8";;

It is important to note however, that the applicability of the functions from the operation
package is not restricted to permutation groups. All the functions mentioned in this section
can also be used to compute with the operation of a matrix group on the vectors, etc. We
only use a permutation group here because this makes the examples more compact.

The standard operation in GAP is always denoted by the caret (^) operator. That means
that when no other operation is specified (we will see below how this can be done) all the
functions from the operations package will compute the image of a point p under an element
g as p^g . Note that this can already denote different operations, depending on the type
of points and the type of elements. For example if the group elements are permutations
it can either denote the normal operation when the points are integers or the conjugation
when the points are permutations themselves (see 20.2). For another example if the group
elements are matrices it can either denote the multiplication from the right when the points
are vectors or again the conjugation when the points are matrices (of the same dimension)
themselves (see 34.1). Which operations are available through the caret operator for a
particular type of group elements is described in the chapter for this type of group elements.

gap> 2 ^ (1,2,3);

110 CHAPTER 1. ABOUT GAP

3
gap> 1 ^ a8.2;
1
gap> (2,4) ^ (1,2,3);
(3,4)

The most basic function of the operations package is the function Orbit, which computes
the orbit of a point under the operation of the group.

gap> Orbit(a8, 2);
[2, 3, 1, 4, 5, 6, 7, 8]

Note that the orbit is not a set, because it is not sorted. See 8.14 for the definition in which
order the points appear in an orbit.

We will try to find several subgroups in a8 using the operations package. One subgroup is
immediately available, namely the stabilizer of one point. The index of the stabilizer must
of course be equal to the length of the orbit, i.e., 8.

gap> u8 := Stabilizer(a8, 1);
Subgroup(a8, [(2,3,4,5,6,7,8), (3,8,7)])
gap> Index(a8, u8);
8

This gives us a hint how to find further subgroups. Each subgroup is the stabilizer of a point
of an appropriate transitive operation (namely the operation on the cosets of that subgroup
or another operation that is equivalent to this operation).

So the question is how to find other operations. The obvious thing is to operate on pairs of
points. So using the function Tuples (see 46.9) we first generate a list of all pairs.

gap> pairs := Tuples([1..8], 2);
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6],
[1, 7], [1, 8], [2, 1], [2, 2], [2, 3], [2, 4],
[2, 5], [2, 6], [2, 7], [2, 8], [3, 1], [3, 2],
[3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8],
[4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6],
[4, 7], [4, 8], [5, 1], [5, 2], [5, 3], [5, 4],
[5, 5], [5, 6], [5, 7], [5, 8], [6, 1], [6, 2],
[6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8],
[7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6],
[7, 7], [7, 8], [8, 1], [8, 2], [8, 3], [8, 4],
[8, 5], [8, 6], [8, 7], [8, 8]]

Now we would like to have a8 operate on this domain. But we cannot use the default
operation (denoted by the caret) because list ^ perm is not defined. So we must tell the
functions from the operations package how the group elements operate on the elements of
the domain. In our example we can do this by simply passing OnPairs as optional last
argument. All functions from the operations package accept such an optional argument
that describes the operation. See 8.1 for a list of the available nonstandard operations.

Note that those operations are in fact simply functions that take an element of the domain
and an element of the group and return the image of the element of the domain under the
group element. So to compute the image of the pair [1,2] under the permutation (1,4,5)
we can simply write

1.19. ABOUT OPERATIONS OF GROUPS 111

gap> OnPairs([1,2], (1,4,5));
[4, 2]

As was mentioned above we have to make sure that the operation is transitive. So we check
this.

gap> IsTransitive(a8, pairs, OnPairs);
false

The operation is not transitive, so we want to find out what the orbits are. The function
Orbits does that for you. It returns a list of all the orbits.

gap> orbs := Orbits(a8, pairs, OnPairs);
[[[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6],

[7, 7], [8, 8]],
[[1, 2], [2, 3], [1, 3], [3, 1], [3, 4], [2, 1],

[1, 4], [4, 1], [4, 5], [3, 2], [2, 4], [1, 5],
[4, 2], [5, 1], [5, 6], [4, 3], [3, 5], [2, 5],
[1, 6], [5, 3], [5, 2], [6, 1], [6, 7], [5, 4],
[4, 6], [3, 6], [2, 6], [1, 7], [6, 4], [6, 3],
[6, 2], [7, 1], [7, 8], [6, 5], [5, 7], [4, 7],
[3, 7], [2, 7], [1, 8], [7, 5], [7, 4], [7, 3],
[7, 2], [8, 1], [8, 2], [7, 6], [6, 8], [5, 8],
[4, 8], [3, 8], [2, 8], [8, 6], [8, 5], [8, 4],
[8, 3], [8, 7]]]

The operation of a8 on the first orbit is of course equivalent to the original operation, so we
ignore it and work with the second orbit.

gap> u56 := Stabilizer(a8, [1,2], OnPairs);
Subgroup(a8, [(3,8,7), (3,6)(4,7,5,8), (6,7,8)])
gap> Index(a8, u56);
56

So now we have found a second subgroup. To make the following computations a little bit
easier and more efficient we would now like to work on the points [1..56] instead of the list
of pairs. The function Operation does what we need. It creates a new group that operates
on [1..56] in the same way that a8 operates on the second orbit.

gap> a8_56 := Operation(a8, orbs[2], OnPairs);
Group((1, 2, 4)(3, 6,10)(5, 7,11)(8,13,16)(12,18,17)(14,21,20)
(19,27,26)(22,31,30)(28,38,37)(32,43,42)(39,51,50)(44,45,55),
(1, 3, 7,12,19,28,39)(2, 5, 9,15,23,33,45)(4, 8,14,22,32,44, 6)
(10,16,24,34,46,56,51)(11,17,25,35,47,43,55)(13,20,29,40,52,38,50)
(18,26,36,48,31,42,54)(21,30,41,53,27,37,49))
gap> a8_56.name := "a8_56";;

We would now like to know if the subgroup u56 of index 56 that we found is maximal or
not. Again we can make use of a function from the operations package. Namely a subgroup
is maximal if the operation on the cosets of this subgroup is primitive, i.e., if there is no
partition of the set of cosets into subsets such that the group operates setwise on those
subsets.

gap> IsPrimitive(a8_56, [1..56]);

112 CHAPTER 1. ABOUT GAP

false

Note that we must specify the domain of the operation. You might think that in the last
example IsPrimitive could use [1..56] as default domain if no domain was given. But
this is not so simple, for example would the default domain of Group((2,3,4)) be [1..4]
or [2..4]? To avoid confusion, all operations package functions require that you specify
the domain of operation.

We see that a8 56 is not primitive. This means of course that the operation of a8 on orb[2]
is not primitive, because those two operations are equivalent. So the stabilizer u56 is not
maximal. Let us try to find its supergroups. We use the function Blocks to find a block
system. The (optional) third argument in the following example tells Blocks that we want
a block system where 1 and 10 lie in one block. There are several other block systems, which
we could compute by specifying a different pair, it just turns out that [1,10] makes the
following computation more interesting.

gap> blocks := Blocks(a8_56, [1..56], [1,10]);
[[1, 10, 13, 21, 31, 43, 45], [2, 3, 16, 20, 30, 42, 55],
[4, 6, 8, 14, 22, 32, 44], [5, 7, 11, 24, 29, 41, 54],
[9, 12, 17, 18, 34, 40, 53], [15, 19, 25, 26, 27, 46, 52],
[23, 28, 35, 36, 37, 38, 56], [33, 39, 47, 48, 49, 50, 51]]

The result is a list of sets, i.e., sorted lists, such that a8 56 operates on those sets. Now we
would like the stabilizer of this operation on the sets. Because we wanted to operate on the
sets we have to pass OnSets as third argument.

gap> u8_56 := Stabilizer(a8_56, blocks[1], OnSets);
Subgroup(a8_56,
[(15,35,48)(19,28,39)(22,32,44)(23,33,52)(25,36,49)(26,37,50)

(27,38,51)(29,41,54)(30,42,55)(31,43,45)(34,40,53)(46,56,47),
(9,25)(12,19)(14,22)(15,34)(17,26)(18,27)(20,30)(21,31)(23,48)
(24,29)(28,39)(32,44)(33,56)(35,47)(36,49)(37,50)(38,51)(40,52)
(41,54)(42,55)(43,45)(46,53), (5,17)(7,12)(8,14)(9,24)(11,18)
(13,21)(15,25)(16,20)(23,47)(28,39)(29,34)(32,44)(33,56)(35,49)
(36,48)(37,50)(38,51)(40,54)(41,53)(42,55)(43,45)(46,52),

(2,11)(3, 7)(4, 8)(5,16)(9,17)(10,13)(20,24)(23,47)(25,26)
(28,39)(29,30)(32,44)(33,56)(35,48)(36,50)(37,49)(38,51)(40,53)
(41,55)(42,54)(43,45)(46,52), (1,10)(2, 6)(3, 4)(5, 7)(8,16)
(12,17)(14,20)(19,26)(22,30)(23,47)(28,50)(32,55)(33,56)(35,48)
(36,49)(37,39)(38,51)(40,53)(41,54)(42,44)(43,45)(46,52)])

gap> Index(a8_56, u8_56);
8

Now we have a problem. We have found a new subgroup, but not as a subgroup of a8,
instead it is a subgroup of a8 56. We know that a8 56 is isomorphic to a8 (in general
the result of Operation is only isomorphic to a factor group of the original group, but in
this case it must be isomorphic to a8, because a8 is simple and has only the full group as
nontrivial factor group). But we only know that an isomorphism exists, we do not know it.

Another function comes to our rescue. OperationHomomorphism returns the homomorphism
of a group onto the group that was constructed by Operation. A later section in this chapter
will introduce mappings and homomorphisms in general, but for the moment we can just

1.19. ABOUT OPERATIONS OF GROUPS 113

regard the result of OperationHomomorphism as a black box that we can use to transfer
information from a8 to a8 56 and back.

gap> h56 := OperationHomomorphism(a8, a8_56);
OperationHomomorphism(a8, a8_56)
gap> u8b := PreImages(h56, u8_56);
Subgroup(a8, [(6,7,8), (5,6)(7,8), (4,5)(7,8), (3,4)(7,8),
(1,3)(7,8)])

gap> Index(a8, u8b);
8
gap> u8 = u8b;
false

So we have in fact found a new subgroup. However if we look closer we note that u8b is not
totally new. It fixes the point 2, thus it lies in the stabilizer of 2, and because it has the
same index as this stabilizer it must in fact be the stabilizer. Thus u8b is conjugated to u8.
A nice way to check this is to check that the operation on the 8 blocks is equivalent to the
original operation.

gap> IsEquivalentOperation(a8, [1..8], a8_56, blocks, OnSets);
true

Now the choice of the third argument [1,10] of Blocks becomes clear. Had we not given
that argument we would have obtained the block system that has [1,3,7,12,19,28,39] as
first block. The preimage of the stabilizer of this set would have been u8 itself, and we would
not have been able to introduce IsEquivalentOperation. Of course we could also use the
general function IsConjugate, but we want to demonstrate IsEquivalentOperation.

Actually there is a third block system of a8 56 that gives rise to a third subgroup.

gap> blocks := Blocks(a8_56, [1..56], [1,6]);
[[1, 6], [2, 10], [3, 4], [5, 16], [7, 8], [9, 24],
[11, 13], [12, 14], [15, 34], [17, 20], [18, 21],
[19, 22], [23, 46], [25, 29], [26, 30], [27, 31],
[28, 32], [33, 56], [35, 40], [36, 41], [37, 42],
[38, 43], [39, 44], [45, 51], [47, 52], [48, 53],
[49, 54], [50, 55]]

gap> u28_56 := Stabilizer(a8_56, [1,6], OnSets);
Subgroup(a8_56,
[(2,38,51)(3,28,39)(4,32,44)(5,41,54)(10,43,45)(16,36,49)

(17,40,53)(20,35,48)(23,47,30)(26,46,52)(33,55,37)(42,56,50),
(5,17,26,37,50)(7,12,19,28,39)(8,14,22,32,44)(9,15,23,33,54)
(11,18,27,38,51)(13,21,31,43,45)(16,20,30,42,55)(24,34,46,56,49)
(25,35,47,41,53)(29,40,52,36,48),

(1, 6)(2,39,38,19,18, 7)(3,51,28,27,12,11)(4,45,32,31,14,13)
(5,55,33,23,15, 9)(8,10,44,43,22,21)(16,50,56,46,34,24)
(17,54,42,47,35,25)(20,49,37,52,40,29)(26,53,41,30,48,36)])

gap> u28 := PreImages(h56, u28_56);
Subgroup(a8, [(3,7,8), (4,5,6,7,8), (1,2)(3,8,7,6,5,4)])
gap> Index(a8, u28);
28

114 CHAPTER 1. ABOUT GAP

We know that the subgroup u28 of index 28 is maximal, because we know that a8 has no
subgroups of index 2, 4, or 7. However we can also quickly verify this by checking that
a8 56 operates primitively on the 28 blocks.

gap> IsPrimitive(a8_56, blocks, OnSets);
true

There is a different way to obtain u28. Instead of operating on the 56 pairs [[1,2],
[1,3], ..., [8,7]] we could operate on the 28 sets of two elements from [1..8]. But
suppose we make a small mistake.

gap> OrbitLength(a8, [2,1], OnSets);
Error, OnSets: <tuple> must be a set

It is your responsibility to make sure that the points that you pass to functions
from the operations package are in normal form. That means that they must be sets
if you operate on sets with OnSets, they must be lists of length 2 if you operate on pairs
with OnPairs, etc. This also applies to functions that accept a domain of operation, e.g.,
Operation and IsPrimitive. All points in such a domain must be in normal form. It is
not guaranteed that a violation of this rule will signal an error, you may obtain
incorrect results.

Note that Stabilizer is not only applicable to groups like a8 but also to their subgroups
like u56. So another method to find a new subgroup is to compute the stabilizer of another
point in u56. Note that u56 already leaves 1 and 2 fixed.

gap> u336 := Stabilizer(u56, 3);
Subgroup(a8, [(4,6,5), (5,6)(7,8), (6,7,8)])
gap> Index(a8, u336);
336

Other functions are also applicable to subgroups. In the following we show that u336
operates regularly on the 60 triples of [4..8] which contain no element twice, which means
that this operation is equivalent to the operations of u336 on its 60 elements from the right.
Note that OnTuples is a generalization of OnPairs.

gap> IsRegular(u336, Orbit(u336, [4,5,6], OnTuples), OnTuples);
true

Just as we did in the case of the operation on the pairs above, we now construct a new
permutation group that operates on [1..336] in the same way that a8 operates on the
cosets of u336. Note that the operation of a group on the cosets is by multiplication from
the right, thus we have to specify OnRight.

gap> a8_336 := Operation(a8, Cosets(a8, u336), OnRight);;
gap> a8_336.name := "a8_336";;

To find subgroups above u336 we again check if the operation is primitive.

gap> blocks := Blocks(a8_336, [1..336], [1,43]);
[[1, 43, 85], [2, 102, 205], [3, 95, 165], [4, 106, 251],
[5, 117, 334], [6, 110, 294], [7, 122, 127], [8, 144, 247],
[9, 137, 207], [10, 148, 293], [11, 45, 159],
[12, 152, 336], [13, 164, 169], [14, 186, 289],
[15, 179, 249], [16, 190, 335], [17, 124, 201],
[18, 44, 194], [19, 206, 211], [20, 228, 331],

1.19. ABOUT OPERATIONS OF GROUPS 115

[21, 221, 291], [22, 46, 232], [23, 166, 243],
[24, 126, 236], [25, 248, 253], [26, 48, 270],
[27, 263, 333], [28, 125, 274], [29, 208, 285],
[30, 168, 278], [31, 290, 295], [32, 121, 312],
[33, 47, 305], [34, 167, 316], [35, 250, 327],
[36, 210, 320], [37, 74, 332], [38, 49, 163], [39, 81, 123],
[40, 59, 209], [41, 70, 292], [42, 66, 252], [50, 142, 230],
[51, 138, 196], [52, 146, 266], [53, 87, 131],
[54, 153, 302], [55, 160, 174], [56, 182, 268],
[57, 178, 234], [58, 189, 304], [60, 86, 199],
[61, 198, 214], [62, 225, 306], [63, 218, 269],
[64, 88, 235], [65, 162, 245], [67, 233, 254],
[68, 90, 271], [69, 261, 301], [71, 197, 288],
[72, 161, 281], [73, 265, 297], [75, 89, 307],
[76, 157, 317], [77, 229, 328], [78, 193, 324],
[79, 116, 303], [80, 91, 158], [82, 101, 195],
[83, 112, 267], [84, 108, 231], [92, 143, 237],
[93, 133, 200], [94, 150, 273], [96, 154, 309],
[97, 129, 173], [98, 184, 272], [99, 180, 238],
[100, 188, 308], [103, 202, 216], [104, 224, 310],
[105, 220, 276], [107, 128, 241], [109, 240, 256],
[111, 260, 311], [113, 204, 287], [114, 130, 277],
[115, 275, 296], [118, 132, 313], [119, 239, 330],
[120, 203, 323], [134, 185, 279], [135, 175, 242],
[136, 192, 315], [139, 171, 215], [140, 226, 314],
[141, 222, 280], [145, 244, 258], [147, 262, 318],
[149, 170, 283], [151, 282, 298], [155, 246, 329],
[156, 172, 319], [176, 227, 321], [177, 217, 284],
[181, 213, 257], [183, 264, 322], [187, 286, 300],
[191, 212, 325], [219, 259, 326], [223, 255, 299]]

To find the subgroup of index 112 that belongs to this operation we could use the same
methods as before, but we actually use a different trick. From the above we see that the
subgroup is the union of u336 with its 43rd and its 85th coset. Thus we simply add a
representative of the 43rd coset to the generators of u336.

gap> u112 := Closure(u336, Representative(Cosets(a8,u336)[43]));
Subgroup(a8, [(4,6,5), (5,6)(7,8), (6,7,8), (1,3,2)])
gap> Index(a8, u112);
112

Above this subgroup of index 112 lies a subgroup of index 56, which is not conjugate to
u56. In fact, unlike u56 it is maximal. We obtain this subgroup in the same way that we
obtained u112, this time forcing two points, namely 39 and 43 into the first block.

gap> blocks := Blocks(a8_336, [1..336], [1,39,43]);;
gap> Length(blocks);
56
gap> u56b := Closure(u112, Representative(Cosets(a8,u336)[39]));
Subgroup(a8, [(4,6,5), (5,6)(7,8), (6,7,8), (1,3,2), (2,3)(7,8)])
gap> Index(a8, u56b);

116 CHAPTER 1. ABOUT GAP

56
gap> IsPrimitive(a8_336, blocks, OnSets);
true

We already mentioned in the beginning that there is another standard operation of permuta-
tions, namely the conjugation. E.g., because no other operation is specified in the following
example OrbitLength simply operates using the caret operator and because perm1^perm2
is defined as the conjugation of perm2 on perm1 we effectively compute the length of the
conjugacy class of (1,2)(3,4)(5,6)(7,8). (In fact element1^element2 is always defined
as the conjugation if element1 and element2 are group elements of the same type. So
the length of a conjugacy class of any element elm in an arbitrary group G can be com-
puted as OrbitLength(G, elm). In general however this may not be a good idea, Size(
ConjugacyClass(G, elm)) is probably more efficient.)

gap> OrbitLength(a8, (1,2)(3,4)(5,6)(7,8));
105
gap> orb := Orbit(a8, (1,2)(3,4)(5,6)(7,8));;
gap> u105 := Stabilizer(a8, (1,2)(3,4)(5,6)(7,8));
Subgroup(a8, [(5,6)(7,8), (1,2)(3,4)(5,6)(7,8), (5,7)(6,8),
(3,4)(7,8), (3,5)(4,6), (1,3)(2,4)])

gap> Index(a8, u105);
105

Of course the last stabilizer is in fact the centralizer of the element (1,2)(3,4)(5,6)(7,8).
Stabilizer notices that and computes the stabilizer using the centralizer algorithm for
permutation groups.

In the usual way we now look for the subgroups that lie above u105.

gap> blocks := Blocks(a8, orb);;
gap> Length(blocks);
15
gap> blocks[1];
[(1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,4)(2,3)(5,8)(6,7),
(1,5)(2,6)(3,7)(4,8), (1,6)(2,5)(3,8)(4,7), (1,7)(2,8)(3,5)(4,6),
(1,8)(2,7)(3,6)(4,5)]

To find the subgroup of index 15 we again use closure. Now we must be a little bit careful
to avoid confusion. u105 is the stabilizer of (1,2)(3,4)(5,6)(7,8). We know that there
is a correspondence between the points of the orbit and the cosets of u105. The point
(1,2)(3,4)(5,6)(7,8) corresponds to u105. To get the subgroup of index 15 we must add
to u105 an element of the coset that corresponds to the point (1,3)(2,4)(5,7)(6,8) (or
any other point in the first block). That means that we must use an element of a8 that
maps (1,2)(3,4)(5,6)(7,8) to (1,3)(2,4)(5,7)(6,8). The important thing is that
(1,3)(2,4)(5,7)(6,8) will not do, in fact (1,3)(2,4)(5,7)(6,8) lies in u105.

The function RepresentativeOperation does what we need. It takes a group and two
points and returns an element of the group that maps the first point to the second. In fact
it also allows you to specify the operation as optional fourth argument as usual, but we do
not need this here. If no such element exists in the group, i.e., if the two points do not lie
in one orbit under the group, RepresentativeOperation returns false.

gap> rep := RepresentativeOperation(a8, (1,2)(3,4)(5,6)(7,8),

1.20. ABOUT FINITELY PRESENTED GROUPS AND PRESENTATIONS 117

> (1,3)(2,4)(5,7)(6,8));
(2,3)(6,7)
gap> u15 := Closure(u105, rep);
Subgroup(a8, [(5,6)(7,8), (1,2)(3,4)(5,6)(7,8), (5,7)(6,8),
(3,4)(7,8), (3,5)(4,6), (1,3)(2,4), (2,3)(6,7)])

gap> Index(a8, u15);
15

u15 is of course a maximal subgroup, because a8 has no subgroups of index 3 or 5.

There is in fact another class of subgroups of index 15 above u105 that we get by adding
(2,3)(6,8) to u105.

gap> u15b := Closure(u105, (2,3)(6,8));
Subgroup(a8, [(5,6)(7,8), (1,2)(3,4)(5,6)(7,8), (5,7)(6,8),

(3,4)(7,8), (3,5)(4,6), (1,3)(2,4), (2,3)(6,8)])
gap> Index(a8, u15b);
15

We now show that u15 and u15b are not conjugate. We showed that u8 and u8b are
conjugate by showing that the operations on the cosets where equivalent. We could show
that u15 and u15b are not conjugate by showing that the operations on their cosets are not
equivalent. Instead we simply call RepresentativeOperation again.

gap> RepresentativeOperation(a8, u15, u15b);
false

RepresentativeOperation tells us that there is no element g in a8 such that u15^g =
u15b. Because ^ also denotes the conjugation of subgroups this tells us that u15 and u15b
are not conjugate. Note that this operation should only be used rarely, because it is usually
not very efficient. The test in this case is however reasonable efficient, and is in fact the one
employed by IsConjugate (see 7.54).

This concludes our example. In this section we demonstrated some functions from the
operations package. There is a whole class of functions that we did not mention, namely
those that take a single element instead of a whole group as first argument, e.g., Cycle and
Permutation. All functions are described in the chapter 8.

1.20 About Finitely Presented Groups and Presenta-
tions

In this section we will show you the investigation of a Coxeter group that is given by its
presentation. You will see that finitely presented groups and presentations are different
kinds of objects in GAP. While finitely presented groups can never be changed after they
have been created as factor groups of free groups, presentations allow manipulations of
the generators and relators by Tietze transformations. The investigation of the example
will involve methods and algorithms like Todd-Coxeter, Reidemeister-Schreier, Nilpotent
Quotient, and Tietze transformations.

We start by defining a Coxeter group c on five generators as a factor group of the free group
of rank 5, whose generators we already call c.1, ..., c.5.

gap> c := FreeGroup(5, "c");;

118 CHAPTER 1. ABOUT GAP

gap> r := List(c.generators, x -> x^2);;
gap> Append(r, [(c.1*c.2)^3, (c.1*c.3)^2, (c.1*c.4)^3,
> (c.1*c.5)^3, (c.2*c.3)^3, (c.2*c.4)^2, (c.2*c.5)^3,
> (c.3*c.4)^3, (c.3*c.5)^3, (c.4*c.5)^3,
> (c.1*c.2*c.5*c.2)^2, (c.3*c.4*c.5*c.4)^2]);
gap> c := c / r;
Group(c.1, c.2, c.3, c.4, c.5)

If we call the function Size for this group GAP will invoke the Todd-Coxeter method, which
however will fail to get a result going up to the default limit of defining 64000 cosets:

gap> Size(c);
Error, the coset enumeration has defined more than 64000 cosets:
type ’return;’ if you want to continue with a new limit of
128000 cosets,
type ’quit;’ if you want to quit the coset enumeration,
type ’maxlimit := 0; return;’ in order to continue without a limit,
in
AugmentedCosetTableMtc(G, H, -1, "_x") called from
D.operations.Size(D) called from
Size(c) called from
main loop
brk> quit;

In fact, as we shall see later, our finitely presented group is infinite and hence we would get
the same answer also with larger limits. So we next look for subgroups of small index, in
our case limiting the index to four.

gap> lis := LowIndexSubgroupsFpGroup(c, TrivialSubgroup(c), 4);;
gap> Length(lis);
10

The LowIndexSubgroupsFpGroup function in fact determines generators for the subgroups,
written in terms of the generators of the given group. We can find the index of these
subgroups by the function Index, and the permutation representation on the cosets of these
subgroups by the function OperationCosetsFpGroup, which use a Todd-Coxeter method.
The size of the image of this permutation representation is found using Size which in this
case uses a Schreier-Sims method for permutation groups.

gap> List(lis, x -> [Index(c,x),Size(OperationCosetsFpGroup(c,x))]);
[[1, 1], [4, 24], [4, 24], [4, 24], [4, 24], [4, 24],

[4, 24], [4, 24], [3, 6], [2, 2]]

We next determine the commutator factor groups of the kernels of these permutation
representations. Note that here the difference of finitely presented groups and presenta-
tions has to be observed: We first determine the kernel of the permutation representa-
tion by the function Core as a subgroup of c, then a presentation of this subgroup using
PresentationSubgroup, which has to be converted into a finitely presented group of its
own right using FpGroupPresentation, before its commutator factor group and the abelian
invariants can be found using integer matrix diagonalisation of the relators matrix by an
elementary divisor algorithm. The conversion is necessary because Core computes a sub-
group given by words in the generators of c but CommutatorFactorGroup needs a parent
group given by generators and relators.

1.20. ABOUT FINITELY PRESENTED GROUPS AND PRESENTATIONS 119

gap> List(lis, x -> AbelianInvariants(CommutatorFactorGroup(
> FpGroupPresentation(PresentationSubgroup(c, Core(c,x))))));
[[2], [2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2],
[0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2], [3]]

More clearly arranged, this is

[[2],
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 2, 2, 2, 2, 2, 2, 2],
[0, 0, 0, 0, 0, 0],
[2, 2, 2, 2, 2, 2],
[3]]

Note that there is another function AbelianInvariantsSubgroupFpGroup which we could
have used to obtain this list which will do an abelianized Reduced Reidemeister-Schreier.
This function is much faster because it does not compute a complete presentation for the
core.

The output obtained shows that the third last of the kernels has a free abelian commutator
factor group of rank 6. We turn our attention to this kernel which we call n, while we call
the associated presentation pr.

gap> lis[8];
Subgroup(Group(c.1, c.2, c.3, c.4, c.5),
[c.1, c.2, c.3*c.2*c.5^-1, c.3*c.4*c.3^-1, c.4*c.1*c.5^-1])
gap> pr := PresentationSubgroup(c, Core(c, lis[8]));
<< presentation with 22 gens and 41 rels of total length 156 >>
gap> n := FpGroupPresentation(pr);;

We first determine p-factor groups for primes 2, 3, 5, and 7.

gap> InfoPQ1:= Ignore;;
gap> List([2,3,5,7], p -> PrimeQuotient(n,p,5).dimensions);
[[6, 10, 18, 30, 54], [6, 10, 18, 30, 54], [6, 10, 18, 30, 54],

[6, 10, 18, 30, 54]]

Observing that the ranks of the lower exponent-p central series are the same for these primes
we suspect that the lower central series may have free abelian factors. To investigate this
we have to call the package ”nq”.

gap> RequirePackage("nq");
gap> NilpotentQuotient(n, 5);
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0,

0, 0]]
gap> List(last, Length);

120 CHAPTER 1. ABOUT GAP

[6, 4, 8, 12, 24]

The ranks of the factors except the first are divisible by four, and we compare them with
the corresponding ranks of a free group on two generators.

gap> f2 := FreeGroup(2);
Group(f.1, f.2)
gap> PrimeQuotient(f2, 2, 5).dimensions;
[2, 3, 5, 8, 14]
gap> NilpotentQuotient(f2, 5);
[[0, 0], [0], [0, 0], [0, 0, 0], [0, 0, 0, 0, 0, 0]]
gap> List(last, Length);
[2, 1, 2, 3, 6]

The result suggests a close relation of our group to the direct product of four free groups of
rank two. In order to study this we want a simple presentation for our kernel n and obtain
this by repeated use of Tietze transformations, using first the default simplification function
TzGoGo and later specific introduction of new generators that are obtained as product of two
of the existing ones using the function TzSubstitute. (Of course, this latter sequence of
Tietze transformations that we display here has only been found after some trial and error.)

gap> pr := PresentationSubgroup(c, Core(c, lis[8]));
<< presentation with 22 gens and 41 rels of total length 156 >>
gap> TzGoGo(pr);
#I there are 6 generators and 14 relators of total length 74
gap> TzGoGo(pr);
#I there are 6 generators and 13 relators of total length 66
gap> TzGoGo(pr);
gap> TzPrintPairs(pr);
#I 1. 3 occurrences of _x6 * _x11^-1
#I 2. 3 occurrences of _x3 * _x15
#I 3. 2 occurrences of _x11^-1 * _x15^-1
#I 4. 2 occurrences of _x6 * _x15
#I 5. 2 occurrences of _x6^-1 * _x15^-1
#I 6. 2 occurrences of _x4 * _x15
#I 7. 2 occurrences of _x4^-1 * _x15^-1
#I 8. 2 occurrences of _x4^-1 * _x11
#I 9. 2 occurrences of _x4 * _x6
#I 10. 2 occurrences of _x3^-1 * _x11
gap> TzSubstitute(pr,10,2);
#I substituting new generator _x26 defined by _x3^-1*_x11
#I eliminating _x11 = _x3*_x26
#I there are 6 generators and 13 relators of total length 70
gap> TzGoGo(pr);
#I there are 6 generators and 12 relators of total length 62
#I there are 6 generators and 12 relators of total length 60
gap> TzGoGo(pr);
gap> TzSubstitute(pr,9,2);
#I substituting new generator _x27 defined by _x1^-1*_x15
#I eliminating _x15 = _x27*_x1
#I there are 6 generators and 12 relators of total length 64

1.20. ABOUT FINITELY PRESENTED GROUPS AND PRESENTATIONS 121

gap> TzGoGo(pr);
#I there are 6 generators and 11 relators of total length 56
gap> TzGoGo(pr);
gap> p2 := Copy(pr);
<< presentation with 6 gens and 11 rels of total length 56 >>
gap> TzPrint(p2);
#I generators: [_x1, _x3, _x4, _x6, _x26, _x27]
#I relators:
#I 1. 4 [-6, -1, 6, 1]
#I 2. 4 [4, 6, -4, -6]
#I 3. 4 [5, 4, -5, -4]
#I 4. 4 [4, -2, -4, 2]
#I 5. 4 [-3, 2, 3, -2]
#I 6. 4 [-3, -1, 3, 1]
#I 7. 6 [-4, 3, 4, 6, -3, -6]
#I 8. 6 [-1, -6, -2, 6, 1, 2]
#I 9. 6 [-6, -2, -5, 6, 2, 5]
#I 10. 6 [2, 5, 1, -5, -2, -1]
#I 11. 8 [-1, -6, -5, 3, 6, 1, 5, -3]
gap> TzPrintPairs(p2);
#I 1. 5 occurrences of _x1^-1 * _x27^-1
#I 2. 3 occurrences of _x6 * _x27
#I 3. 3 occurrences of _x3 * _x26
#I 4. 2 occurrences of _x3 * _x27
#I 5. 2 occurrences of _x1 * _x4
#I 6. 2 occurrences of _x1 * _x3
#I 7. 1 occurrence of _x26 * _x27
#I 8. 1 occurrence of _x26 * _x27^-1
#I 9. 1 occurrence of _x26^-1 * _x27
#I 10. 1 occurrence of _x6 * _x27^-1
gap> TzSubstitute(p2,1,2);
#I substituting new generator _x28 defined by _x1^-1*_x27^-1
#I eliminating _x27 = _x1^-1*_x28^-1
#I there are 6 generators and 11 relators of total length 58
gap> TzGoGo(p2);
#I there are 6 generators and 11 relators of total length 54
gap> TzGoGo(p2);
gap> p3 := Copy(p2);
<< presentation with 6 gens and 11 rels of total length 54 >>
gap> TzSubstitute(p3,3,2);
#I substituting new generator _x29 defined by _x3*_x26
#I eliminating _x26 = _x3^-1*_x29
gap> TzGoGo(p3);
#I there are 6 generators and 11 relators of total length 52
gap> TzGoGo(p3);
gap> TzPrint(p3);
#I generators: [_x1, _x3, _x4, _x6, _x28, _x29]
#I relators:

122 CHAPTER 1. ABOUT GAP

#I 1. 4 [6, 4, -6, -4]
#I 2. 4 [1, -6, -1, 6]
#I 3. 4 [-5, -1, 5, 1]
#I 4. 4 [-2, -5, 2, 5]
#I 5. 4 [4, -2, -4, 2]
#I 6. 4 [-3, 2, 3, -2]
#I 7. 4 [-3, -1, 3, 1]
#I 8. 6 [-2, 5, -6, 2, -5, 6]
#I 9. 6 [4, -1, -5, -4, 5, 1]
#I 10. 6 [-6, 3, -5, 6, -3, 5]
#I 11. 6 [3, -5, 4, -3, -4, 5]

The resulting presentation could further be simplified by Tietze transformations using
TzSubstitute and TzGoGo until one reaches finally a presentation on 6 generators with
11 relators, 9 of which are commutators of the generators. Working by hand from these,
the kernel can be identified as a particular subgroup of the direct product of four copies of
the free group on two generators.

1.21 About Fields

In this section we will show you some basic computations with fields. GAP supports at
present the following fields. The rationals, cyclotomic extensions of rationals and their
subfields (which we will refer to as number fields in the following), and finite fields.

Let us first take a look at the infinite fields mentioned above. While the set of rational
numbers is a predefined domain in GAP to which you may refer by its identifier Rationals,
cyclotomic fields are constructed by using the function CyclotomicField, which may be
abbreviated as CF.

gap> IsField(Rationals);
true
gap> Size(Rationals);
"infinity"
gap> f := CyclotomicField(8);
CF(8)
gap> IsSubset(f, Rationals);
true

The integer argument n of the function call to CF specifies that the cyclotomic field containing
all n-th roots of unity should be returned.

Cyclotomic fields are constructed as extensions of the Rationals by primitive roots of unity.
Thus a primitive n-th root of unity is always an element of CF(n), where n is a natural
number. In GAP, one may construct a primitive n-th root of unity by calling E(n).

gap> (E(8) + E(8)^3)^2;
-2
gap> E(8) in f;
true

For every field extension you can compute the Galois group, i.e., the group of automorphisms
that leave the subfield fixed. For an example, cyclotomic fields are an extension of the
rationals, so you can compute their Galois group over the rationals.

1.21. ABOUT FIELDS 123

gap> Galf := GaloisGroup(f);
Group(NFAutomorphism(CF(8) , 7), NFAutomorphism(CF(8) , 5))
gap> Size(Galf);
4

The above cyclotomic field is a small example where the Galois group is not cyclic.

gap> IsCyclic(Galf);
false
gap> IsAbelian(Galf);
true
gap> AbelianInvariants(Galf);
[2, 2]

This shows us that the 8th cyclotomic field has a Galois group which is isomorphic to group
V4.

The elements of the Galois group are GAP automorphisms, so they may be applied to the
elements of the field in the same way as all mappings are usually applied to objects in GAP.

gap> g := Galf.generators[1];
NFAutomorphism(CF(8) , 7)
gap> E(8) ^ g;
-E(8)^3

There are two functions, Norm and Trace, which compute the norm and the trace of elements
of the field, respectively. The norm and the trace of an element a are defined to be the
product and the sum of the images of a under the Galois group. You should usually specify
the field as a first argument. This argument is however optional. If you omit a default field
will be used. For a cyclotomic a this is the smallest cyclotomic field that contains a (note
that this is not the smallest field that contains a, which may be a number field that is not
a cyclotomic field).

gap> orb := List(Elements(Galf), x -> E(8) ^ x);
[E(8), E(8)^3, -E(8), -E(8)^3]
gap> Sum(orb) = Trace(f, E(8));
true
gap> Product(orb) = Norm(f, E(8));
true
gap> Trace(f, 1);
4

The basic way to construct a finite field is to use the function GaloisField which may be
abbreviated, as usual in algebra, as GF. Thus

gap> k := GF(3, 4);
GF(3^4)

or

gap> k := GaloisField(81);
GF(3^4)

will assign the finite field of order 34 to the variable k.

In fact, what GF does is to set up a record which contains all necessary information, telling
that it represents a finite field of degree 4 over its prime field with 3 elements. Of course, all

124 CHAPTER 1. ABOUT GAP

arguments to GF others than those which represent a prime power are rejected – for obvious
reasons.

Some of the more important entries of the field record are zero, one and root, which hold
the corresponding elements of the field. All elements of a finite field are represented as a
certain power of an appropriate primitive root, which is written as Z(q). As can be seen
below the smallest possible primitive root is used.

gap> k.one + k.root + k.root^10 - k.zero;
Z(3^4)^52
gap> k.root;
Z(3^4)
gap> k.root ^ 20;
Z(3^2)^2
gap> k.one;
Z(3)^0

Note that of course elements from fields of different characteristic cannot be combined in
operations.

gap> Z(3^2) * k.root + k.zero + Z(3^8);
Z(3^8)^6534
gap> Z(2) * k.one;
Error, Finite field *: operands must have the same characteristic

In this example we tried to multiply a primitive root of the field with two elements with the
identity element of the field k. As the characteristic of k equals 3, there is no way to perform
the multiplication. The first statement of the example shows, that if all the elements of the
expression belong to fields of the same characteristic, the result will be computed.

As soon as a primitive root is demanded, GAP internally sets up all relevant data struc-
tures that are necessary to compute in the corresponding finite field. Each finite field is
constructed as a splitting field of a Conway polynomial. These polynomials, as a set, have
special properties that make it easy to embed smaller fields in larger ones and to convert
the representation of the elements when doing so. All Conway polynomials for fields up to
an order of 65536 have been computed and installed in the GAP kernel.

But now look at the following example.

gap> Z(3^3) * Z(3^4);
Error, Finite field *: smallest common superfield to large

Although both factors are elements of fields of characteristic 3, the product can not be
evaluated by GAP. The reason for this is very easy to explain:In order to compute the
product, GAP has to find a field in which both of the factors lie. Here in our example the
smallest field containing Z(33) and Z(34) is GF (312), the field with 531441 elements. As
we have mentioned above that the size of finite fields in GAP is limited at present by 65536
we now see that there is no chance to set up the internal data structures for the common
field to perform the computation.

As before with cyclotomic fields, the Galois group of a finite field and the norm and trace
of its elements may be computed. The calling conventions are the same as for cyclotomic
fields.

gap> Galk := GaloisGroup(k);

1.21. ABOUT FIELDS 125

Group(FrobeniusAutomorphism(GF(3^4)))
gap> Size(Galk);
4
gap> IsCyclic(Galk);
true
gap> Norm(k, k.root ^ 20);
Z(3)^0
gap> Trace(k, k.root ^ 20);
0*Z(3)

So far, in our examples, we were always interested in the Galois group of a field extension k
over its prime field. In fact it often will occur that, given a subfield l of k the Galois group
of k over l is desired. In GAP it is possible to change the structure of a field by using the /
operator. So typing

gap> l := GF(3^2);
GF(3^2)
gap> IsSubset(k, l);
true
gap> k / l;
GF(3^4)/GF(3^2)

changes the representation of k from a field extension of degree 4 over GF (3) to a field given
as an extension of degree 2 over GF (32). The actual elements of the fields are still the same,
only the structure of the field has changed.

gap> k = k / l;
true
gap> Galkl := GaloisGroup(k / l);
Group(FrobeniusAutomorphism(GF(3^4)/GF(3^2))^2)
gap> Size(Galkl);
2

Of course, all the relevant functions behave in a different way when they refer to k / l
instead of k

gap> Norm(k / l, k.root ^ 20);
Z(3)
gap> Trace(k / l, k.root ^ 20);
Z(3^2)^6

This feature, to change the structure of the field without changing the underlying set of
elements, is also available for cyclotomic fields, which we have seen at the beginning of this
chapter.

gap> g := CyclotomicField(4);
GaussianRationals
gap> IsSubset(f, g);
true
gap> f / g;
CF(8)/GaussianRationals
gap> Galfg := GaloisGroup(f / g);
Group(NFAutomorphism(CF(8)/GaussianRationals , 5))

126 CHAPTER 1. ABOUT GAP

gap> Size(Galfg);
2

The examples should have shown that, although the structure of finite fields and cyclotomic
fields is rather different, there is a similar interface to them in GAP, which makes it easy to
write programs that deal with both types of fields in the same way.

1.22 About Matrix Groups

This section intends to show you the things you could do with matrix groups in GAP. In
principle all the set theoretic functions mentioned in chapter 4 and all group functions
mentioned in chapter 7 can be applied to matrix groups. However, you should note that at
present only very few functions can work efficiently with matrix groups. Especially infinite
matrix groups (over the rationals or cyclotomic fields) can not be dealt with at all.

Matrix groups are created in the same way as the other types of groups, by using the function
Group. Of course, in this case the arguments have to be invertable matrices over a field.

gap> m1 := [[Z(3)^0, Z(3)^0, Z(3)],
> [Z(3), 0*Z(3), Z(3)],
> [0*Z(3), Z(3), 0*Z(3)]];;
gap> m2 := [[Z(3), Z(3), Z(3)^0],
> [Z(3), 0*Z(3), Z(3)],
> [Z(3)^0, 0*Z(3), Z(3)]];;
gap> m := Group(m1, m2);
Group([[Z(3)^0, Z(3)^0, Z(3)], [Z(3), 0*Z(3), Z(3)],

[0*Z(3), Z(3), 0*Z(3)]],
[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],

[Z(3)^0, 0*Z(3), Z(3)]])

As usual for groups, the matrix group that we have constructed is represented by a record
with several entries. For matrix groups, there is one additional entry which holds the field
over which the matrix group is written.

gap> m.field;
GF(3)

Note that you do not specify the field when you construct the group. Group automatically
takes the smallest field over which all its arguments can be written.

At this point there is the question what special functions are available for matrix groups.
The size of our group, for example, may be computed using the function Size.

gap> Size(m);
864

If we now compute the size of the corresponding general linear group

gap> (3^3 - 3^0) * (3^3 - 3^1) * (3^3 - 3^2);
11232

we see that we have constructed a proper subgroup of index 13 of GL(3, 3).

Let us now set up a subgroup of m, which is generated by the matrix m2.

gap> n := Subgroup(m, [m2]);

1.23. ABOUT DOMAINS AND CATEGORIES 127

Subgroup(Group([[Z(3)^0, Z(3)^0, Z(3)], [Z(3), 0*Z(3), Z(3)],
[0*Z(3), Z(3), 0*Z(3)]],

[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],
[Z(3)^0, 0*Z(3), Z(3)]]),

[[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],
[Z(3)^0, 0*Z(3), Z(3)]]])

gap> Size(n);
6

And to round up this example we now compute the centralizer of this subgroup in m.
gap> c := Centralizer(m, n);
Subgroup(Group([[Z(3)^0, Z(3)^0, Z(3)], [Z(3), 0*Z(3), Z(3)],
[0*Z(3), Z(3), 0*Z(3)]],

[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],
[Z(3)^0, 0*Z(3), Z(3)]]),

[[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],
[Z(3)^0, 0*Z(3), Z(3)]],

[[Z(3), 0*Z(3), 0*Z(3)], [0*Z(3), Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), Z(3)]]])

gap> Size(c);
12

In this section you have seen that matrix groups are constructed in the same way that all
groups are constructed. You have also been warned that only very few functions can work
efficiently with matrix groups. See chapter 36 to read more about matrix groups.

1.23 About Domains and Categories

Domain is GAP’s name for structured sets. We already saw examples of domains in the
previous sections. For example, the groups s8 and a8 in sections 1.18 and 1.19 are domains.
Likewise the fields in section 1.21 are domains. Categories are sets of domains. For
example, the set of all groups forms a category, as does the set of all fields.
In those sections we treated the domains as black boxes. They were constructed by special
functions such as Group and GaloisField, and they could be passed as arguments to other
functions such as Size and Orbits.
In this section we will also treat domains as black boxes. We will describe how domains
are created in general and what functions are applicable to all domains. Next we will show
how domains with the same structure are grouped into categories and will give an overview
of the categories that are available. Then we will discuss how the organization of the GAP
library around the concept of domains and categories is reflected in this manual. In a later
section we will open the black boxes and give an overview of the mechanism that makes all
this work (see 1.27).
The first thing you must know is how you can obtain domains. You have basically three
possibilities. You can use the domains that are predefined in the library, you can create new
domains with domain constructors, and you can use the domains returned by many library
functions. We will now discuss those three possibilities in turn.
The GAP library predefines some domains. That means that there is a global variable whose
value is this domain. The following example shows some of the more important predefined
domains.

128 CHAPTER 1. ABOUT GAP

gap> Integers;
Integers # the ring of all integers
gap> Size(Integers);
"infinity"
gap> GaussianRationals;
GaussianRationals # the field of all Gaussian
gap> (1/2+E(4)) in GaussianRationals;
true # E(4) is GAP’s name for the complex root of -1
gap> Permutations;
Permutations # the domain of all permutations

Note that GAP prints those domains using the name of the global variable.

You can create new domains using domain constructors such as Group, Field, etc. A
domain constructor is a function that takes a certain number of arguments and returns the
domain described by those arguments. For example, Group takes an arbitrary number of
group elements (of the same type) and returns the group generated by those elements.

gap> gf16 := GaloisField(16);
GF(2^4) # the finite field with 16 elements
gap> Intersection(gf16, GaloisField(64));
GF(2^2)
gap> a5 := Group((1,2,3), (3,4,5));
Group((1,2,3), (3,4,5)) # the alternating group on 5 points
gap> Size(a5);
60

Again GAP prints those domains using more or less the expression that you entered to obtain
the domain.

As with groups (see 1.18) a name can be assigned to an arbitrary domain D with the
assignment D.name := string;, and GAP will use this name from then on in the output.

Many functions in the GAP library return domains. In the last example you already saw
that Intersection returned a finite field domain. Below are more examples.

gap> GaloisGroup(gf16);
Group(FrobeniusAutomorphism(GF(2^4)))
gap> SylowSubgroup(a5, 2);
Subgroup(Group((1,2,3), (3,4,5)), [(2,4)(3,5), (2,3)(4,5)])

The distinction between domain constructors and functions that return domains is a little
bit arbitrary. It is also not important for the understanding of what follows. If you are
nevertheless interested, here are the principal differences. A constructor performs no com-
putation, while a function performs a more or less complicated computation. A constructor
creates the representation of the domain, while a function relies on a constructor to create
the domain. A constructor knows the dirty details of the domain’s representation, while a
function may be independent of the domain’s representation. A constructor may appear as
printed representation of a domain, while a function usually does not.

After showing how domains are created, we will now discuss what you can do with domains.
You can assign a domain to a variable, put a domain into a list or into a record, pass a
domain as argument to a function, and return a domain as result of a function. In this
regard there is no difference between an integer value such as 17 and a domain such as

1.23. ABOUT DOMAINS AND CATEGORIES 129

Group((1,2,3), (3,4,5)). Of course many functions will signal an error when you
call them with domains as arguments. For example, Gcd does not accept two groups as
arguments, because they lie in no Euclidean ring.

There are some functions that accept domains of any type as their arguments. Those
functions are called the set theoretic functions. The full list of set theoretic functions is
given in chapter 4.

Above we already used one of those functions, namely Size. If you look back you will see
that we applied Size to the domain Integers, which is a ring, and the domain a5, which
is a group. Remember that a domain was a structured set. The size of the domain is the
number of elements in the set. Size returns this number or the string "infinity" if the
domain is infinite. Below are more examples.

gap> Size(GaussianRationals);
"infinity" # this string is returned for infinite domains
gap> Size(SylowSubgroup(a5, 2));
4

IsFinite(D) returns true if the domain D is finite and false otherwise. You could also
test if a domain is finite using Size(D) < "infinity" (GAP evaluates n < "infinity"
to true for any number n). IsFinite is more efficient. For example, if D is a permutation
group, IsFinite(D) can immediately return true, while Size(D) may take quite a
while to compute the size of D .

The other function that you already saw is Intersection. Above we computed the inter-
section of the field with 16 elements and the field with 64 elements. The following example
is similar.

gap> Intersection(a5, Group((1,2), (1,2,3,4)));
Group((2,3,4), (1,2)(3,4)) # alternating group on 4 points

In general Intersection tries to return a domain. In general this is not possible however.
Remember that a domain is a structured set. If the two domain arguments have different
structure the intersection may not have any structure at all. In this case Intersection re-
turns the result as a proper set, i.e., as a sorted list without holes and duplicates. The follow-
ing example shows such a case. ConjugacyClass returns the conjugacy class of (1,2,3,4,5)
in the alternating group on 6 points as a domain. If we intersect this class with the sym-
metric group on 5 points we obtain a proper set of 12 permutations, which is only one half
of the conjugacy class of 5 cycles in s5.

gap> a6 := Group((1,2,3), (2,3,4,5,6));
Group((1,2,3), (2,3,4,5,6))
gap> class := ConjugacyClass(a6, (1,2,3,4,5));
ConjugacyClass(Group((1,2,3), (2,3,4,5,6)), (1,2,3,4,5))
gap> Size(class);
72
gap> s5 := Group((1,2), (2,3,4,5));
Group((1,2), (2,3,4,5))
gap> Intersection(class, s5);
[(1,2,3,4,5), (1,2,4,5,3), (1,2,5,3,4), (1,3,5,4,2), (1,3,2,5,4),
(1,3,4,2,5), (1,4,3,5,2), (1,4,5,2,3), (1,4,2,3,5), (1,5,4,3,2),
(1,5,2,4,3), (1,5,3,2,4)]

130 CHAPTER 1. ABOUT GAP

You can intersect arbitrary domains as the following example shows.

gap> Intersection(Integers, a5);
[] # the empty set

Note that we optimized Intersection for typical cases, e.g., computing the intersection of
two permutation groups, etc. The above computation is done with a very simple–minded
method, all elements of a5 are listed (with Elements, described below), and for each element
Intersection tests whether it lies in Integers (with in, described below). So the same
computation with the alternating group on 10 points instead of a5 will probably exhaust
your patience.

Just as Intersection returns a proper set occasionally, it also accepts proper sets as ar-
guments. Intersection also takes an arbitrary number of arguments. And finally it also
accepts a list of domains or sets to intersect as single argument.

gap> Intersection(a5, [(1,2), (1,2,3), (1,2,3,4), (1,2,3,4,5)]);
[(1,2,3), (1,2,3,4,5)]
gap> Intersection([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25]);
[]
gap> Intersection([[1,2,4], [2,3,4], [1,3,4]]);
[4]

The function Union is the obvious counterpart of Intersection. Note that Union usually
does not return a domain. This is because the union of two domains, even of the same
type, is usually not again a domain of that type. For example, the union of two subgroups
is a subgroup if and only if one of the subgroups is a subset of the other. Of course this is
exactly the reason why Union is less important than Intersection in algebra.

Because domains are structured sets there ought to be a membership test that tests whether
an object lies in this domain or not. This is not implemented by a function, instead the
operator in is used. elm in D returns true if the element elm lies in the domain D and
false otherwise. We already used the in operator above when we tested whether 1/2 +
E(4) lies in the domain of Gaussian integers.

gap> (1,2,3) in a5;
true
gap> (1,2) in a5;
false
gap> (1,2,3,4,5,6,7) in a5;
false
gap> 17 in a5;
false # of course an integer does not lie in a permutation group
gap> a5 in a5;
false

As you can see in the last example, in only implements the membership test. It does not
allow you to test whether a domain is a subset of another domain. For such tests the
function IsSubset is available.

gap> IsSubset(a5, a5);
true
gap> IsSubset(a5, Group((1,2,3)));
true

1.23. ABOUT DOMAINS AND CATEGORIES 131

gap> IsSubset(Group((1,2,3)), a5);
false

In the above example you can see that IsSubset tests whether the second argument is a
subset of the first argument. As a general rule GAP library functions take as first arguments
those arguments that are in some sense larger or more structured.

Suppose that you want to loop over all elements of a domain. For example, suppose that you
want to compute the set of element orders of elements in the group a5. To use the for loop
you need a list of elements in the domain D , because for var in D do statements od will
not work. The function Elements does exactly that. It takes a domain D and returns the
proper set of elements of D .

gap> Elements(Group((1,2,3), (2,3,4)));
[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),

(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3)]
gap> ords := [];;
gap> for elm in Elements(a5) do
> Add(ords, Order(a5, elm));
> od;
gap> Set(ords);
[1, 2, 3, 5]
gap> Set(List(Elements(a5), elm -> Order(a5, elm)));
[1, 2, 3, 5] # an easier way to compute the set of orders

Of course, if you apply Elements to an infinite domain, Elements will signal an error. It is
also not a good idea to apply Elements to very large domains because the list of elements
will take much space and computing this large list will probably exhaust your patience.

gap> Elements(GaussianIntegers);
Error, the ring <R> must be finite to compute its elements in
D.operations.Elements(D) called from
Elements(GaussianIntegers) called from
main loop
brk> quit;

There are a few more set theoretic functions. See chapter 4 for a complete list.

All the set theoretic functions treat the domains as if they had no structure. Now a domain
is a structured set (excuse us for repeating this again and again, but it is really important
to get this across). If the functions ignore the structure than they are effectively viewing a
domain only as the set of elements.

In fact all set theoretic functions also accept proper sets, i.e., sorted lists without holes and
duplicates as arguments (we already mentioned this for Intersection). Also set theoretic
functions may occasionally return proper sets instead of domains as result.

This equivalence of a domain and its set of elements is particularly important for the defi-
nition of equality of domains. Two domains D and E are equal (in the sense that D = E
evaluates to true) if and only if the set of elements of D is equal to the set of elements of
E (as returned by Elements(D) and Elements(E)). As a special case either of the
operands of = may also be a proper set, and the value is true if this set is equal to the set
of elements of the domain.

gap> a4 := Group((1,2,3), (2,3,4));

132 CHAPTER 1. ABOUT GAP

Group((1,2,3), (2,3,4))
gap> elms := Elements(a4);
[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),
(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3)]

gap> elms = a4;
true

However the following example shows that this does not imply that all functions return the
same answer for two domains (or a domain and a proper set) that are equal. This is because
those function may take the structure into account.

gap> IsGroup(a4);
true
gap> IsGroup(elms);
false
gap> Intersection(a4, Group((1,2), (1,2,3)));
Group((1,2,3))
gap> Intersection(elms, Group((1,2), (1,2,3)));
[(), (1,2,3), (1,3,2)] # this is not a group
gap> last = last2;
true # but it is equal to the above result
gap> Centre(a4);
Subgroup(Group((1,2,3), (2,3,4)), [])
gap> Centre(elms);
Error, <struct> must be a record in
Centre(elms) called from
main loop
brk> quit;

Generally three things may happen if you have two domains D and E that are equal but
have different structure (or a domain D and a set E that are equal). First a function that
tests whether a domain has a certain structure may return true for D and false for E .
Second a function may return a domain for D and a proper set for E . Third a function may
work for D and fail for E , because it requires the structure.

A slightly more complex example for the second case is the following.

gap> v4 := Subgroup(a4, [(1,2)(3,4), (1,3)(2,4)]);
Subgroup(Group((1,2,3), (2,3,4)), [(1,2)(3,4), (1,3)(2,4)])
gap> v4.name := "v4";;
gap> rc := v4 * (1,2,3);
(v4*(2,4,3))
gap> lc := (1,2,3) * v4;
((1,2,3)*v4)
gap> rc = lc;
true
gap> rc * (1,3,2);
(v4*())
gap> lc * (1,3,2);
[(1,3)(2,4), (), (1,2)(3,4), (1,4)(2,3)]
gap> last = last2;

1.23. ABOUT DOMAINS AND CATEGORIES 133

false

The two domains rc and lc (yes, cosets are domains too) are equal, because they have the
same set of elements. However if we multiply both with (1,3,2) we obtain the trivial right
coset for rc and a list for lc. The result for lc is not a proper set, because it is not sorted,
therefore = evaluates to false. (For the curious. The multiplication of a left coset with an
element from the right will generally not yield another coset, i.e., nothing that can easily be
represented as a domain. Thus to multiply lc with (1,3,2) GAP first converts lc to the
set of its elements with Elements. But the definition of multiplication requires that a list l
multiplied by an element e yields a new list n such that each element n[i] in the new list
is the product of the element l[i] at the same position of the operand list l with e.)

Note that the above definition only defines what the result of the equality comparison of
two domains D and E should be. It does not prescribe that this comparison is actually
performed by listing all elements of D and E . For example, if D and E are groups, it is
sufficient to check that all generators of D lie in E and that all generators of E lie in D .
If GAP would really compute the whole set of elements, the following test could not be
performed on any computer.

gap> Group((1,2), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18))
> = Group((17,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18));
true

If we could only apply the set theoretic functions to domains, domains would be of little
use. Luckily this is not so. We already saw that we could apply GaloisGroup to the finite
field with 16 elements, and SylowSubgroup to the group a5. But those functions are not
applicable to all domains. The argument of GaloisGroup must be a field, and the argument
of SylowSubgroup must be a group.

A category is a set of domains. So we say that the argument of GaloisGroup must
be an element of the category of fields, and the argument of SylowSubgroup must be an
element of the category of groups. The most important categories are rings, fields, groups,
and vector spaces. Which category a domain belongs to determines which functions are
applicable to this domain and its elements. We want to emphasize the each domain belongs
to one and only one category. This is necessary because domains in different categories
have, sometimes incompatible, representations.

Note that the categories only exist conceptually. That means that there is no GAP object
for the categories, e.g., there is no object Groups. For each category there exists a function
that tests whether a domain is an element of this category.

gap> IsRing(gf16);
false
gap> IsField(gf16);
true
gap> IsGroup(gf16);
false
gap> IsVectorSpace(gf16);
false

Note that of course mathematically the field gf16 is also a ring and a vector space. However
in GAP a domain can only belong to one category. So a domain is conceptually a set of
elements with one structure, e.g., a field structure. That the same set of elements may also

134 CHAPTER 1. ABOUT GAP

support a different structure, e.g., a ring or vector space structure, can not be represented
by this domain. So you need a different domain to represent this different structure. (We
are planning to add functions that changes the structure of a domain, e.g. AsRing(field)
should return a new domain with the same elements as field but with a ring structure.)

Domains may have certain properties. For example a ring may be commutative and a group
may be nilpotent. Whether a domain has a certain property Property can be tested with
the function IsProperty .

gap> IsCommutativeRing(GaussianIntegers);
true
gap> IsNilpotent(a5);
false

There are also similar functions that test whether a domain (especially a group) is repre-
sented in a certain way. For example IsPermGroup tests whether a group is represented as
a permutation group.

gap> IsPermGroup(a5);
true
gap> IsPermGroup(a4 / v4);
false # a4 / v4 is represented as a generic factor group

There is a slight difference between a function such as IsNilpotent and a function such
as IsPermGroup. The former tests properties of an abstract group and its outcome is
independent of the representation of that group. The latter tests whether a group is given
in a certain representation.

This (rather philosophical) issue is further complicated by the fact that sometimes repre-
sentations and properties are not independent. This is especially subtle with IsSolvable
(see 7.61) and IsAgGroup (see 25.26). IsSolvable tests whether a group G is solvable.
IsAgGroup tests whether a group G is represented as a finite polycyclic group, i.e., by a
finite presentation that allows to efficiently compute canonical normal forms of elements
(see 25). Of course every finite polycyclic group is solvable, so IsAgGroup(G) implies
IsSolvable(G). On the other hand IsSolvable(G) does not imply IsAgGroup(G
), because, even though each solvable group can be represented as a finite polycyclic group,
it need not, e.g., it could also be represented as a permutation group.

The organization of the manual follows the structure of domains and categories.

After the description of the programming language and the environment chapter 4 describes
the domains and the functions applicable to all domains.

Next come the chapters that describe the categories rings, fields, groups, and vector spaces.

The remaining chapters describe GAP’s data–types and the domains one can make with
those elements of those data-types. The order of those chapters roughly follows the order of
the categories. The data–types whose elements form rings and fields come first (e.g., integers
and finite fields), followed by those whose elements form groups (e.g., permutations), and so
on. The data–types whose elements support little or no algebraic structure come last (e.g.,
booleans). In some cases there may be two chapters for one data–type, one describing the
elements and the other describing the domains made with those elements (e.g., permutations
and permutation groups).

1.24. ABOUT MAPPINGS AND HOMOMORPHISMS 135

The GAP manual not only describes what you can do, it also gives some hints how GAP
performs its computations. However, it can be tricky to find those hints. The index of this
manual can help you.

Suppose that you want to intersect two permutation groups. If you read the section that
describes the function Intersection (see 4.12) you will see that the last paragraph describes
the default method used by Intersection. Such a last paragraph that describes the default
method is rather typical. In this case it says that Intersection computes the proper set
of elements of both domains and intersect them. It also says that this method is often
overlaid with a more efficient one. You wonder whether this is the case for permutation
groups. How can you find out? Well you look in the index under Intersection. There you
will find a reference Intersection, for permutation groups to section Set Functions
for Permutation Groups (see 21.20). This section tells you that Intersection uses a
backtrack for permutation groups (and cites a book where you can find a description of the
backtrack).

Let us now suppose that you intersect two factor groups. There is no reference in the
index for Intersection, for factor groups. But there is a reference for Intersection, for
groups to the section Set Functions for Groups (see 7.113). Since this is the next best
thing, look there. This section further directs you to the section Intersection for Groups
(see 7.115). This section finally tells you that Intersection computes the intersection of
two groups G and H as the stabilizer in G of the trivial coset of H under the operation of
G on the right cosets of H .

In this section we introduced domains and categories. You have learned that a domain is
a structured set, and that domains are either predefined, created by domain constructors,
or returned by library functions. You have seen most functions that are applicable to all
domains. Those functions generally ignore the structure and treat a domain as the set of
its elements. You have learned that categories are sets of domains, and that the category a
domain belongs to determines which functions are applicable to this domain.

More information about domains can be found in chapter 4. Chapters 5, 6, 7, and 9 define
the categories known to GAP. The section 1.27 opens that black boxes and shows how all
this works.

1.24 About Mappings and Homomorphisms

A mapping is an object which maps each element of its source to a value in its range.
Source and range can be arbitrary sets of elements. But in most applications the source
and range are structured sets and the mapping, in such applications called homomorphism,
is compatible with this structure.

In the last sections you have already encountered examples of homomorphisms, namely
natural homomorphisms of groups onto their factor groups and operation homomorphisms
of groups into symmetric groups.

Finite fields also bear a structure and homomorphisms between fields are always bijections.
The Galois group of a finite field is generated by the Frobenius automorphism. It is very
easy to construct.

gap> f := FrobeniusAutomorphism(GF(81));
FrobeniusAutomorphism(GF(3^4))

136 CHAPTER 1. ABOUT GAP

gap> Image(f, Z(3^4));
Z(3^4)^3
gap> A := Group(f);
Group(FrobeniusAutomorphism(GF(3^4)))
gap> Size(A);
4
gap> IsCyclic(A);
true
gap> Order(Mappings, f);
4
gap> Kernel(f);
[0*Z(3)]

For finite fields and cyclotomic fields the function GaloisGroup is an easy way to construct
the Galois group.

gap> GaloisGroup(GF(81));
Group(FrobeniusAutomorphism(GF(3^4)))
gap> Size(last);
4
gap> GaloisGroup(CyclotomicField(18));
Group(NFAutomorphism(CF(9) , 2))
gap> Size(last);
6

Not all group homomorphisms are bijections of course, natural homomorphisms do have a
kernel in most cases and operation homomorphisms need neither be surjective nor injective.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s4.name := "s4";;
gap> v4 := Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)]);
Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)])
gap> v4.name := "v4";;
gap> s3 := s4 / v4;
(s4 / v4)
gap> f := NaturalHomomorphism(s4, s3);
NaturalHomomorphism(s4, (s4 / v4))
gap> IsHomomorphism(f);
true
gap> IsEpimorphism(f);
true
gap> Image(f);
(s4 / v4)
gap> IsMonomorphism(f);
false
gap> Kernel(f);
v4

The image of a group homomorphism is always one element of the range but the preimage
can be a coset. In order to get one representative of this coset you can use the function
PreImagesRepresentative.

1.24. ABOUT MAPPINGS AND HOMOMORPHISMS 137

gap> Image(f, (1,2,3,4));
FactorGroupElement(v4, (2,4))
gap> PreImages(f, s3.generators[1]);
(v4*(2,4))
gap> PreImagesRepresentative(f, s3.generators[1]);
(2,4)

But even if the homomorphism is a monomorphism but not surjective you can use the
function PreImagesRepresentative in order to get the preimage of an element of the range.

gap> A := Z(3) * [[0, 1], [1, 0]];;
gap> B := Z(3) * [[0, 1], [-1, 0]];;
gap> G := Group(A, B);
Group([[0*Z(3), Z(3)], [Z(3), 0*Z(3)]],
[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]])
gap> Size(G);
8
gap> G.name := "G";;
gap> d8 := Operation(G, Orbit(G, Z(3)*[1,0]));
Group((1,2)(3,4), (1,2,3,4))
gap> e := OperationHomomorphism(Subgroup(G, [B]), d8);
OperationHomomorphism(Subgroup(G,
[[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]]]), Group((1,2)(3,4),
(1,2,3,4)))
gap> Kernel(e);
Subgroup(G, [])
gap> IsSurjective(e);
false
gap> PreImages(e, (1,3)(2,4));
(Subgroup(G, [])*[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]])
gap> PreImage(e, (1,3)(2,4));
Error, <bij> must be a bijection, not an arbitrary mapping in
bij.operations.PreImageElm(bij, img) called from
PreImage(e, (1,3)(2,4)) called from
main loop
brk> quit;
gap> PreImagesRepresentative(e, (1,3)(2,4));
[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]

Only bijections allow PreImage in order to get the preimage of an element of the range.

gap> Operation(G, Orbit(G, Z(3)*[1,0]));
Group((1,2)(3,4), (1,2,3,4))
gap> d := OperationHomomorphism(G, last);
OperationHomomorphism(G, Group((1,2)(3,4), (1,2,3,4)))
gap> PreImage(d, (1,3)(2,4));
[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]

Both PreImage and PreImages can also be applied to sets. They return the complete
preimage.

gap> PreImages(d, Group((1,2)(3,4), (1,3)(2,4)));

138 CHAPTER 1. ABOUT GAP

Subgroup(G, [[[0*Z(3), Z(3)], [Z(3), 0*Z(3)]],
[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]])

gap> Size(last);
4
gap> f := NaturalHomomorphism(s4, s3);
NaturalHomomorphism(s4, (s4 / v4))
gap> PreImages(f, s3);
Subgroup(s4, [(1,2)(3,4), (1,3)(2,4), (2,4), (3,4)])
gap> Size(last);
24

Another way to construct a group automorphism is to use elements in the normalizer of a
subgroup and construct the induced automorphism. A special case is the inner automor-
phism induced by an element of a group, a more general case is a surjective homomorphism
induced by arbitrary elements of the parent group.

gap> d12 := Group((1,2,3,4,5,6),(2,6)(3,5));; d12.name := "d12";;
gap> i1 := InnerAutomorphism(d12, (1,2,3,4,5,6));
InnerAutomorphism(d12, (1,2,3,4,5,6))
gap> Image(i1, (2,6)(3,5));
(1,3)(4,6)
gap> IsAutomorphism(i1);
true

Mappings can also be multiplied, provided that the range of the first mapping is a subgroup
of the source of the second mapping. The multiplication is of course defined as the com-
position. Note that, in line with the fact that mappings operate from the right, Image(
map1 * map2, elm) is defined as Image(map2, Image(map1, elm)).

gap> i2 := InnerAutomorphism(d12, (2,6)(3,5));
InnerAutomorphism(d12, (2,6)(3,5))
gap> i1 * i2;
InnerAutomorphism(d12, (1,6)(2,5)(3,4))
gap> Image(last, (2,6)(3,5));
(1,5)(2,4)

Mappings can also be inverted, provided that they are bijections.

gap> i1 ^ -1;
InnerAutomorphism(d12, (1,6,5,4,3,2))
gap> Image(last, (2,6)(3,5));
(1,5)(2,4)

Whenever you have a set of bijective mappings on a finite set (or domain) you can construct
the group generated by those mappings. So in the following example we create the group
of inner automorphisms of d12.

gap> autd12 := Group(i1, i2);
Group(InnerAutomorphism(d12,
(1,2,3,4,5,6)), InnerAutomorphism(d12, (2,6)(3,5)))
gap> Size(autd12);
6
gap> Index(d12, Centre(d12));

1.24. ABOUT MAPPINGS AND HOMOMORPHISMS 139

6

Note that the computation with such automorphism groups in their present implementation
is not very efficient. For example to compute the size of such an automorphism group all
elements are computed. Thus work with such automorphism groups should be restricted to
very small examples.

The function ConjugationGroupHomomorphism is a generalization of InnerAutomorphism.
It accepts a source and a range and an element that conjugates the source into the range.
Source and range must lie in a common parent group, and the conjugating element must
also lie in this parent group.

gap> c2 := Subgroup(d12, [(2,6)(3,5)]);
Subgroup(d12, [(2,6)(3,5)])
gap> v4 := Subgroup(d12, [(1,2)(3,6)(4,5), (1,4)(2,5)(3,6)]);
Subgroup(d12, [(1,2)(3,6)(4,5), (1,4)(2,5)(3,6)])
gap> x := ConjugationGroupHomomorphism(c2, v4, (1,3,5)(2,4,6));
ConjugationGroupHomomorphism(Subgroup(d12,
[(2,6)(3,5)]), Subgroup(d12, [(1,2)(3,6)(4,5), (1,4)(2,5)(3,6)
]), (1,3,5)(2,4,6))
gap> IsSurjective(x);
false
gap> Image(x);
Subgroup(d12, [(1,5)(2,4)])

But how can we construct homomorphisms which are not induced by elements of the parent
group? The most general way to construct a group homomorphism is to define the source,
range and the images of the generators under the homomorphism in mind.

gap> c := GroupHomomorphismByImages(G, s4, [A,B], [(1,2),(3,4)]);
GroupHomomorphismByImages(G, s4,
[[[0*Z(3), Z(3)], [Z(3), 0*Z(3)]],
[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]]], [(1,2), (3,4)])

gap> Kernel(c);
Subgroup(G, [[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]])
gap> Image(c);
Subgroup(s4, [(1,2), (3,4)])
gap> IsHomomorphism(c);
true
gap> Image(c, A);
(1,2)
gap> PreImages(c, (1,2));
(Subgroup(G, [[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]])*
[[0*Z(3), Z(3)], [Z(3), 0*Z(3)]])

Note that it is possible to construct a general mapping this way that is not a homomorphism,
because GroupHomomorphismByImages does not check if the given images fulfill the relations
of the generators.

gap> b := GroupHomomorphismByImages(G, s4, [A,B], [(1,2,3),(3,4)]);
GroupHomomorphismByImages(G, s4,
[[[0*Z(3), Z(3)], [Z(3), 0*Z(3)]],

140 CHAPTER 1. ABOUT GAP

[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]]], [(1,2,3), (3,4)])
gap> IsHomomorphism(b);
false
gap> Images(b, A);
(Subgroup(s4, [(1,3,2), (2,3,4), (1,3,4), (1,4)(2,3), (1,4,2)
])*())

The result is a multi valued mapping, i.e., one that maps each element of its source to a
set of elements in its range. The set of images of A under b is defined as follows. Take all
the words of two letters w(x, y) such that w(A,B) = A, e.g., x and xyxyx. Then the set of
images is the set of elements that you get by inserting the images of A and B in those words,
i.e., w((1, 2, 3), (3, 4)), e.g., (1, 2, 3) and (1, 4, 2). One can show that the set of images of the
identity under a multi valued mapping such as b is a subgroup and that the set of images
of other elements are cosets of this subgroup.

1.25 About Character Tables

This section contains some examples of the use of GAP in character theory. First a few
very simple commands for handling character tables are introduced, and afterwards we will
construct the character tables of (A5 × 3) :2 and of A6.22.

GAP has a large library of character tables, so let us look at one of these tables, e.g., the
table of the Mathieu group M11:

gap> m11:= CharTable("M11");
CharTable("M11")

Character tables contain a lot of information. This is not printed in full length since the
internal structure is not easy to read. The next statement shows a more comfortable output
format.

gap> DisplayCharTable(m11);
M11

2 4 4 1 3 . 1 3 3 . .
3 2 1 2 . . 1
5 1 . . . 1
11 1 1 1

1a 2a 3a 4a 5a 6a 8a 8b 11a 11b
2P 1a 1a 3a 2a 5a 3a 4a 4a 11b 11a
3P 1a 2a 1a 4a 5a 2a 8a 8b 11a 11b
5P 1a 2a 3a 4a 1a 6a 8b 8a 11a 11b

11P 1a 2a 3a 4a 5a 6a 8a 8b 1a 1a

X.1 1 1 1 1 1 1 1 1 1 1
X.2 10 2 1 2 . -1 . . -1 -1
X.3 10 -2 1 . . 1 A -A -1 -1
X.4 10 -2 1 . . 1 -A A -1 -1
X.5 11 3 2 -1 1 . -1 -1 . .
X.6 16 . -2 . 1 . . . B /B

1.25. ABOUT CHARACTER TABLES 141

X.7 16 . -2 . 1 . . . /B B
X.8 44 4 -1 . -1 1
X.9 45 -3 . 1 . . -1 -1 1 1
X.10 55 -1 1 -1 . -1 1 1 . .

A = E(8)+E(8)^3
= ER(-2) = i2

B = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9
= (-1+ER(-11))/2 = b11

We are not too much interested in the internal structure of this character table (see 48.2);
but of course we can access all information about the centralizer orders (first four lines),
element orders (next line), power maps for the prime divisors of the group order (next four
lines), irreducible characters (lines parametrized by X.1 . . . X.10) and irrational character
values (last four lines), see 48.37 for a detailed description of the format of the displayed
table. E.g., the irreducible characters are a list with name m11.irreducibles, and each
character is a list of cyclotomic integers (see chapter 13). There are various ways to describe
the irrationalities; e.g., the square root of −2 can be entered as E(8) + E(8)^3 or ER(-2),
the famous ATLAS of Finite Groups [CCN+85] denotes it as i2.

gap> m11.irreducibles[3];
[10, -2, 1, 0, 0, 1, E(8)+E(8)^3, -E(8)-E(8)^3, -1, -1]

We can for instance form tensor products of this character with all irreducibles, and compute
the decomposition into irreducibles.

gap> tens:= Tensored([last], m11.irreducibles);;
gap> MatScalarProducts(m11, m11.irreducibles, tens);
[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 1, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 0, 1, 1, 1], [0, 0, 1, 1, 0, 1, 1, 2, 3, 3],
[0, 1, 0, 1, 1, 1, 1, 3, 2, 3], [0, 1, 1, 0, 1, 1, 1, 3, 3, 4]]

The decomposition means for example that the third character in the list tens is the sum
of the irreducible characters at positions 5, 8 and 9.

gap> tens[3];
[100, 4, 1, 0, 0, 1, -2, -2, 1, 1]
gap> tens[3] = Sum(Sublist(m11.irreducibles, [5, 8, 9]));
true

Or we can compute symmetrizations, e.g., the characters χ2+, defined by χ2+(g) = 1
2 (χ2(g)+

χ(g2)), for all irreducibles.

gap> sym:= SymmetricParts(m11, m11.irreducibles, 2);;
gap> MatScalarProducts(m11, m11.irreducibles, sym);
[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0],
[1, 1, 0, 0, 1, 0, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0, 1, 1, 0, 1],
[0, 1, 0, 0, 1, 1, 0, 1, 0, 1], [1, 3, 0, 0, 3, 2, 2, 8, 4, 6],
[1, 2, 0, 0, 3, 2, 2, 8, 4, 7],
[1, 3, 1, 1, 4, 3, 3, 11, 7, 10]]

142 CHAPTER 1. ABOUT GAP

gap> sym[2];
[55, 7, 1, 3, 0, 1, 1, 1, 0, 0]
gap> sym[2] = Sum(Sublist(m11.irreducibles, [1, 2, 8]));
true

If the subgroup fusion into a supergroup is known, characters can be induced to this group,
e.g., to obtain the permutation character of the action of M12 on the cosets of M11.

gap> m12:= CharTable("M12");;
gap> permchar:= Induced(m11, m12, [m11.irreducibles[1]]);
[[12, 0, 4, 3, 0, 0, 4, 2, 0, 1, 0, 2, 0, 1, 1]]
gap> MatScalarProducts(m12, m12.irreducibles, last);
[[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
gap> DisplayCharTable(m12, rec(chars:= permchar));
M12

2 6 4 6 1 2 5 5 1 2 1 3 3 1 . .
3 3 1 1 3 2 . . . 1 1
5 1 1 1 1 . .

11 1 1 1

1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
2P 1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b 5a 11b 11a
3P 1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
5P 1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b 2a 11a 11b
11P 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 1a 1a

Y.1 12 . 4 3 . . 4 2 . 1 . 2 . 1 1

It should be emphasized that the heart of character theory is dealing with lists. Characters
are lists, and also the maps which occur are represented as lists. Note that the multiplication
of group elements is not available, so we neither have homomorphisms. All we can talk of
are class functions, and the lists are regarded as such functions, being the lists of images
with respect to a fixed order of conjugacy classes. Therefore we do not write chi(cl)
or cl^chi for the value of the character chi on the class cl, but chi[i] where i is the
position of the class cl.

Since the data structures are so basic, most calculations involve compositions of maps; for
example, the embedding of a subgroup in a group is described by the so–called subgroup
fusion which is a class function that maps each class c of the subgroup to that class of the
group that contains c. Consider the symmetric group S5

∼= A5.2 as subgroup of M11. (Do
not worry about the names that are used to get library tables, see 48.12 for an overview.)

gap> s5:= CharTable("A5.2");;
gap> map:= GetFusionMap(s5, m11);
[1, 2, 3, 5, 2, 4, 6]

The subgroup fusion is already stored on the table. We see that class 1 of s5 is mapped to
class 1 of m11 (which means that the identity of S5 maps to the identity of M11), classes 2
and 5 of s5 both map to class 2 of m11 (which means that all involutions of S5 are conjugate
in M11), and so on.

1.25. ABOUT CHARACTER TABLES 143

The restriction of a character of m11 to s5 is just the composition of this character with
the subgroup fusion map. Viewing this map as list one would call this composition an
indirection.

gap> chi:= m11.irreducibles[3];
[10, -2, 1, 0, 0, 1, E(8)+E(8)^3, -E(8)-E(8)^3, -1, -1]
gap> rest:= List(map, x -> chi[x]);
[10, -2, 1, 0, -2, 0, 1]

This looks very easy, and many GAP functions in character theory do such simple calcu-
lations. But note that it is not always obvious that a list is regarded as a map, where
preimages and/or images refer to positions of certain conjugacy classes.

gap> alt:= s5.irreducibles[2];
[1, 1, 1, 1, -1, -1, -1]
gap> kernel:= KernelChar(last);
[1, 2, 3, 4]

The kernel of a character is represented as the list of (positions of) classes lying in the kernel.
We know that the kernel of the alternating character alt of s5 is the alternating group A5.
The order of the kernel can be computed as sum of the lengths of the contained classes from
the character table, using that the classlengths are stored in the classes component of the
table.

gap> s5.classes;
[1, 15, 20, 24, 10, 30, 20]
gap> last{ kernel };
[1, 15, 20, 24]
gap> Sum(last);
60

We chose those classlengths of s5 that belong to the S5–classes contained in the alternating
group. The same thing is done in the following command, reflecting the view of the kernel
as map.

gap> List(kernel, x -> s5.classes[x]);
[1, 15, 20, 24]
gap> Sum(kernel, x -> s5.classes[x]);
60

This small example shows how the functions List and Sum can be used. These functions
as well as Filtered were introduced in 1.16, and we will make heavy use of them; in many
cases such a command might look very strange, but it is just the translation of a (hardly
less complicated) mathematical formula to character theory.
And now let us construct some small character tables!
The group G = (A5 × 3) :2 is a maximal sub-
group of the alternating group A8; G extends
to S5 × S3 in S8. We want to construct the
character table of G.
First the tables of the subgroup A5 × 3 and
the supergroup S5 × S3 are constructed; the
tables of the factors of each direct product are
again got from the table library using admis-
sible names, see 48.12 for this. b

b
bb
b

bb b
b b

S5

A5

S3

3

G

S5 × S3

S5 × 3 A5 × S3

@
@

@
@@

�
�
�
��@

@
@

@@

�
�
�
��

@
@

@
@@

�
�
�
��

144 CHAPTER 1. ABOUT GAP

gap> a5:= CharTable("A5");;
gap> c3:= CharTable("Cyclic", 3);;
gap> a5xc3:= CharTableDirectProduct(a5, c3);;
gap> s5:= CharTable("A5.2");;
gap> s3:= CharTable("Symmetric", 3);;
gap> s3.irreducibles;
[[1, -1, 1], [2, 0, -1], [1, 1, 1]]
The trivial character shall be the first one.
gap> SortCharactersCharTable(s3); # returns the applied permutation
(1,2,3)
gap> s5xs3:= CharTableDirectProduct(s5, s3);;

G is the normal subgroup of index 2 in S5 × S3 which contains neither S5 nor the normal
S3. We want to find the classes of s5xs3 whose union is G. For that, we compute the
set of kernels of irreducibles –remember that they are given simply by lists of numbers of
contained classes– and then choose those kernels belonging to normal subgroups of index 2.

gap> kernels:= Set(List(s5xs3.irreducibles, KernelChar));
[[1], [1, 2, 3], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21], [1, 3],

[1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21],
[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20], [1, 4, 7, 10],
[1, 4, 7, 10, 13, 16, 19]]

gap> sizes:= List(kernels, x -> Sum(Sublist(s5xs3.classes, x)));
[1, 6, 360, 720, 3, 360, 360, 60, 120]
gap> s5xs3.size;
720
gap> index2:= Sublist(kernels, [3, 6, 7]);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
[1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21],
[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20]]

In order to decide which kernel describes G, we consider the embeddings of s5 and s3 in
s5xs3, given by the subgroup fusions.

gap> s5ins5xs3:= GetFusionMap(s5, s5xs3);
[1, 4, 7, 10, 13, 16, 19]
gap> s3ins5xs3:= GetFusionMap(s3, s5xs3);
[1, 2, 3]
gap> Filtered(index2, x->Intersection(x,s5ins5xs3)<>s5ins5xs3 and
> Intersection(x,s3ins5xs3)<>s3ins5xs3);
[[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20]]
gap> nsg:= last[1];
[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20]

We now construct a first approximation of the character table of this normal subgroup,
namely the restriction of s5xs3 to the classes given by nsg.

gap> sub:= CharTableNormalSubgroup(s5xs3, nsg);;
#I CharTableNormalSubgroup: classes in [8] necessarily split
gap> PrintCharTable(sub);

1.25. ABOUT CHARACTER TABLES 145

rec(identifier := "Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 2\
0])", size :=
360, name := "Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20])",\
order := 360, centralizers := [360, 180, 24, 12, 18, 9, 15, 15/2,
12, 4, 6], orders := [1, 3, 2, 6, 3, 3, 5, 15, 2, 4, 6

], powermap := [, [1, 2, 1, 2, 5, 6, 7, 8, 1, 3, 5],
[1, 1, 3, 3, 1, 1, 7, 7, 9, 10, 9],,
[1, 2, 3, 4, 5, 6, 1, 2, 9, 10, 11]], classes :=

[1, 2, 15, 30, 20, 40, 24, 48, 30, 90, 60
], operations := CharTableOps, irreducibles :=
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1],
[2, -1, 2, -1, 2, -1, 2, -1, 0, 0, 0],
[6, 6, -2, -2, 0, 0, 1, 1, 0, 0, 0],
[4, 4, 0, 0, 1, 1, -1, -1, 2, 0, -1],
[4, 4, 0, 0, 1, 1, -1, -1, -2, 0, 1],
[8, -4, 0, 0, 2, -1, -2, 1, 0, 0, 0],
[5, 5, 1, 1, -1, -1, 0, 0, 1, -1, 1],
[5, 5, 1, 1, -1, -1, 0, 0, -1, 1, -1],
[10, -5, 2, -1, -2, 1, 0, 0, 0, 0, 0]], fusions := [rec(

name := [’A’, ’5’, ’.’, ’2’, ’x’, ’S’, ’3’],
map := [1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20])])

Not all restrictions of irreducible characters of s5xs3 to sub remain irreducible. We compute
those restrictions with norm larger than 1.

gap> red:= Filtered(Restricted(s5xs3, sub, s5xs3.irreducibles),
> x -> ScalarProduct(sub, x, x) > 1);
[[12, -6, -4, 2, 0, 0, 2, -1, 0, 0, 0]]
gap> Filtered([1 .. Length(nsg)],
> x -> not IsInt(sub.centralizers[x]));
[8]

Note that sub is not actually a character table in the sense of mathematics but only a record
with components like a character table. GAP does not know about this subtleties and treats
it as a character table.

As the list centralizers of centralizer orders shows, at least class 8 splits into two conjugacy
classes in G, since this is the only possibility to achieve integral centralizer orders.

Since 10 restrictions of irreducible characters remain irreducible for G (sub contains 10
irreducibles), only one of the 11 irreducibles of S5 × S3 splits into two irreducibles of G, in
other words, class 8 is the only splitting class.

Thus we create a new approximation of the desired character table (which we call split)
where this class is split; 8th and 9th column of the known irreducibles are of course equal,
and due to the splitting the second powermap for these columns is ambiguous.

gap> splitting:= [1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11];;
gap> split:= CharTableSplitClasses(sub, splitting);;
gap> PrintCharTable(split);
rec(identifier := "Split(Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14,\

146 CHAPTER 1. ABOUT GAP

17, 20]),[1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11])", size :=
360, order :=
360, name := "Split(Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 2\
0]),[1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11])", centralizers :=
[360, 180, 24, 12, 18, 9, 15, 15, 15, 12, 4, 6], classes :=
[1, 2, 15, 30, 20, 40, 24, 24, 24, 30, 90, 60], orders :=
[1, 3, 2, 6, 3, 3, 5, 15, 15, 2, 4, 6], powermap :=
[, [1, 2, 1, 2, 5, 6, 7, [8, 9], [8, 9], 1, 3, 5],
[1, 1, 3, 3, 1, 1, 7, 7, 7, 10, 11, 10],,
[1, 2, 3, 4, 5, 6, 1, 2, 2, 10, 11, 12]], irreducibles :=

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1],
[2, -1, 2, -1, 2, -1, 2, -1, -1, 0, 0, 0],
[6, 6, -2, -2, 0, 0, 1, 1, 1, 0, 0, 0],
[4, 4, 0, 0, 1, 1, -1, -1, -1, 2, 0, -1],
[4, 4, 0, 0, 1, 1, -1, -1, -1, -2, 0, 1],
[8, -4, 0, 0, 2, -1, -2, 1, 1, 0, 0, 0],
[5, 5, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1],
[5, 5, 1, 1, -1, -1, 0, 0, 0, -1, 1, -1],
[10, -5, 2, -1, -2, 1, 0, 0, 0, 0, 0, 0]], fusions := [rec(

name := "Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20])"
,
map := [1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11])

], operations := CharTableOps)
gap> Restricted(sub, split, red);
[[12, -6, -4, 2, 0, 0, 2, -1, -1, 0, 0, 0]]

To complete the table means to find the missing two irreducibles and to complete the
powermaps. For this, there are different possibilities. First, one can try to embed G in A8.

gap> a8:= CharTable("A8");;
gap> fus:= SubgroupFusions(split, a8);
[[1, 4, 3, 9, 4, 5, 8, 13, 14, 3, 7, 9],
[1, 4, 3, 9, 4, 5, 8, 14, 13, 3, 7, 9]]

gap> fus:= RepresentativesFusions(split, fus, a8);
#I RepresentativesFusions: no subtable automorphisms stored
[[1, 4, 3, 9, 4, 5, 8, 13, 14, 3, 7, 9]]
gap> StoreFusion(split, a8, fus[1]);

The subgroup fusion is unique up to table automorphisms. Now we restrict the irreducibles
of A8 to G and reduce.

gap> rest:= Restricted(a8, split, a8.irreducibles);;
gap> red:= Reduced(split, split.irreducibles, rest);
rec(
remainders := [],
irreducibles :=
[[6, -3, -2, 1, 0, 0, 1, -E(15)-E(15)^2-E(15)^4-E(15)^8,

-E(15)^7-E(15)^11-E(15)^13-E(15)^14, 0, 0, 0],
[6, -3, -2, 1, 0, 0, 1, -E(15)^7-E(15)^11-E(15)^13-E(15)^14,

-E(15)-E(15)^2-E(15)^4-E(15)^8, 0, 0, 0]])

1.25. ABOUT CHARACTER TABLES 147

gap> Append(split.irreducibles, red.irreducibles);

The list of irreducibles is now complete, but the powermaps are not yet adjusted. To
complete the 2nd powermap, we transfer that of A8 to G using the subgroup fusion.

gap> split.powermap;
[, [1, 2, 1, 2, 5, 6, 7, [8, 9], [8, 9], 1, 3, 5],
[1, 1, 3, 3, 1, 1, 7, 7, 7, 10, 11, 10],,
[1, 2, 3, 4, 5, 6, 1, 2, 2, 10, 11, 12]]

gap> TransferDiagram(split.powermap[2], fus[1], a8.powermap[2]);;

And this is the complete table.

gap> split.identifier:= "(A5x3):2";;
gap> DisplayCharTable(split);
Split(Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20]),[1, 2, 3\
, 4, 5, 6, 7, 8, 8, 9, 10, 11])

2 3 2 3 2 1 2 2 1
3 2 2 1 1 2 2 1 1 1 1 . 1
5 1 1 1 1 1 . . .

1a 3a 2a 6a 3b 3c 5a 15a 15b 2b 4a 6b
2P 1a 3a 1a 3a 3b 3c 5a 15a 15b 1a 2a 3b
3P 1a 1a 2a 2a 1a 1a 5a 5a 5a 2b 4a 2b
5P 1a 3a 2a 6a 3b 3c 1a 3a 3a 2b 4a 6b

X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 -1 -1 -1
X.3 2 -1 2 -1 2 -1 2 -1 -1 . . .
X.4 6 6 -2 -2 . . 1 1 1 . . .
X.5 4 4 . . 1 1 -1 -1 -1 2 . -1
X.6 4 4 . . 1 1 -1 -1 -1 -2 . 1
X.7 8 -4 . . 2 -1 -2 1 1 . . .
X.8 5 5 1 1 -1 -1 . . . 1 -1 1
X.9 5 5 1 1 -1 -1 . . . -1 1 -1
X.10 10 -5 2 -1 -2 1
X.11 6 -3 -2 1 . . 1 A /A . . .
X.12 6 -3 -2 1 . . 1 /A A . . .

A = -E(15)-E(15)^2-E(15)^4-E(15)^8
= (-1-ER(-15))/2 = -1-b15

There are many ways around the block, so two further methods to complete the table split
shall be demonstrated; but we will not go into details.

Without use of GAP one could work as follows:

The irrationalities –and there must be irrational entries in the character table of G, since
the outer 2 can conjugate at most two of the four Galois conjugate classes of elements of
order 15– could also have been found from the structure of G and the restriction of the
irreducible S5 × S3 character of degree 12.

148 CHAPTER 1. ABOUT GAP

On the classes that did not split the values of this character must just be divided by 2. Let
x be one of the irrationalities. The second orthogonality relation tells us that x · x = 4 (at
class 15a) and x + x∗ = −1 (at classes 1a and 15a); here x∗ denotes the nontrivial Galois
conjugate of x. This has no solution for x = x, otherwise it leads to the quadratic equation
x2 + x+ 4 = 0 with solutions b15 = 1

2 (−1 +
√
−15) and −1− b15.

The third possibility to complete the table is to embed A5 × 3:

gap> split.irreducibles := split.irreducibles{ [1 .. 10] };;
gap> SubgroupFusions(a5xc3, split);
[[1, 2, 2, 3, 4, 4, 5, 6, 6, 7, [8, 9], [8, 9], 7, [8, 9],

[8, 9]]]

The images of the four classes of element order 15 are not determined, the returned list
parametrizes the 24 possibilities.

gap> fus:= ContainedMaps(last[1]);;
gap> Length(fus);
16
gap> fus[1];
[1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 7, 8, 8]

Most of these 16 possibilities are excluded using scalar products of induced characters. We
take a suitable character chi of a5xc3 and compute the norm of the induced character with
respect to each possible map.

gap> chi:= a5xc3.irreducibles[5];
[3, 3*E(3), 3*E(3)^2, -1, -E(3), -E(3)^2, 0, 0, 0, -E(5)-E(5)^4,
-E(15)^2-E(15)^8, -E(15)^7-E(15)^13, -E(5)^2-E(5)^3,
-E(15)^11-E(15)^14, -E(15)-E(15)^4]

gap> List(fus, x -> List(Induced(a5xc3, split, [chi], x),
> y -> ScalarProduct(split, y, y))[1]);
[8/15, -2/3*E(5)-11/15*E(5)^2-11/15*E(5)^3-2/3*E(5)^4,
-2/3*E(5)-11/15*E(5)^2-11/15*E(5)^3-2/3*E(5)^4, 2/3,
-11/15*E(5)-2/3*E(5)^2-2/3*E(5)^3-11/15*E(5)^4, 3/5, 1,
-11/15*E(5)-2/3*E(5)^2-2/3*E(5)^3-11/15*E(5)^4,
-11/15*E(5)-2/3*E(5)^2-2/3*E(5)^3-11/15*E(5)^4, 1, 3/5,
-11/15*E(5)-2/3*E(5)^2-2/3*E(5)^3-11/15*E(5)^4, 2/3,
-2/3*E(5)-11/15*E(5)^2-11/15*E(5)^3-2/3*E(5)^4,
-2/3*E(5)-11/15*E(5)^2-11/15*E(5)^3-2/3*E(5)^4, 8/15]

gap> Filtered([1 .. Length(fus)], x -> IsInt(last[x]));
[7, 10]

So only fusions 7 and 10 may be possible. They are equivalent (with respect to table
automorphisms), and the list of induced characters contains the missing irreducibles of G:

gap> Sublist(fus, last);
[[1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 9, 7, 9, 8],
[1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 9, 8, 7, 8, 9]]

gap> ind:= Induced(a5xc3, split, a5xc3.irreducibles, last[1]);;
gap> Reduced(split, split.irreducibles, ind);
rec(
remainders := [],

1.25. ABOUT CHARACTER TABLES 149

irreducibles :=
[[6, -3, -2, 1, 0, 0, 1, -E(15)-E(15)^2-E(15)^4-E(15)^8,

-E(15)^7-E(15)^11-E(15)^13-E(15)^14, 0, 0, 0],
[6, -3, -2, 1, 0, 0, 1, -E(15)^7-E(15)^11-E(15)^13-E(15)^14,

-E(15)-E(15)^2-E(15)^4-E(15)^8, 0, 0, 0]])

The following example is thought mainly for experts. It shall demonstrate how one can work
together with GAP and the ATLAS [CCN+85], so better leave out the rest of this section if
you are not familiar with the ATLAS.

We shall construct the character table of the group G =
A6.22 ∼= Aut(A6) from the tables of the normal subgroups
A6.21

∼= S6, A6.22
∼= PGL(2, 9) and A6.23

∼= M10.
We regard G as a downward extension of the Klein four-
group 22 with A6. The set of classes of all preimages of
cyclic subgroups of 22 covers the classes of G, but it may
happen that some representatives are conjugate in G, i.e.,
the classes fuse.
The ATLAS denotes the character tables of G, G.21, G.22

and G.23 as follows:
b
A6

A6.23A6.21 A6.22

G

@
@

�
�

�
�

@
@

; @ @ @ @ @ @ @ ; ; @ @ @ @ @

360 8 9 9 4 5 5 24 24 4 3 3
p power A A A A A A A A A AB BC
p' part A A A A A A A A A AB BC
ind 1A 2A 3A 3B 4A 5A B* fus ind 2B 2C 4B 6A 6B

χ1 + 1 1 1 1 1 1 1 : ++ 1 1 1 1 1

χ2 + 5 1 2 -1 -1 0 0 : ++ 3 -1 1 0 -1

χ3 + 5 1 -1 2 -1 0 0 : ++ -1 3 1 -1 0

χ4 + 8 0 -1 -1 0 -b5 * . + 0 0 0 0 0

χ5 + 8 0 -1 -1 0 * -b5 .

χ6 + 9 1 0 0 1 -1 -1 : ++ 3 3 -1 0 0

χ7 + 10 -2 1 1 0 0 0 : ++ 2 -2 0 -1 1

150 CHAPTER 1. ABOUT GAP

; ; @ @ @ @ @ ; ; @ @ @

10 4 4 5 5 2 4 4
A A A BD AD A A A
A A A AD BD A A A

fus ind 2D 8A B* 10A B* fus ind 4C 8C D**

: ++ 1 1 1 1 1 : ++ 1 1 1 χ1

. + 0 0 0 0 0 . + 0 0 0 χ2

. . χ3

: ++ 2 0 0 b5 * . + 0 0 0 χ4

: ++ 2 0 0 * b5 . χ5

: ++ -1 1 1 -1 -1 : ++ 1 -1 -1 χ6

: ++ 0 r2 -r2 0 0 : oo 0 i2 -i2 χ7

First we construct a table whose classes are those of the three subgroups. Note that the
exponent of A6 is 60, so the representative orders could become at most 60 times the value
in 22.

gap> s1:= CharTable("A6.2_1");;
gap> s2:= CharTable("A6.2_2");;
gap> s3:= CharTable("A6.2_3");;
gap> c2:= CharTable("Cyclic", 2);;
gap> v4:= CharTableDirectProduct(c2, c2);;
#I CharTableDirectProduct: existing subgroup fusion on <tbl2> replaced
#I by actual one
gap> for tbl in [s1, s2, s3] do
> Print(tbl.irreducibles[2], "\n");
> od;
[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1]
[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1]
[1, 1, 1, 1, 1, -1, -1, -1]
gap> split:= CharTableSplitClasses(v4,
> [1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4], 60);;
gap> PrintCharTable(split);
rec(identifier := "Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, \
3, 3, 3, 4, 4, 4])", size := 4, order :=
4, name := "Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,\
4, 4, 4])", centralizers := [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4], classes := [1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5,
1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/3, 1/3, 1/3], orders :=

[1, [2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60],
[2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60],

1.25. ABOUT CHARACTER TABLES 151

[2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60],
[2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120],
[2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120]], powermap :=

[, [1, [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5],
[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5],
[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5],
[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5],
[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5],
[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]], irreducibles :=

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]

], fusions := [rec(
name := [’C’, ’2’, ’x’, ’C’, ’2’],
map := [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4]
)], operations := CharTableOps)

Now we embed the subgroups and adjust the classlengths, order, centralizers, powermaps
and thus the representative orders.

gap> StoreFusion(s1, split, [1,2,3,3,4,5,6,7,8,9,10]);
gap> StoreFusion(s2, split, [1,2,3,4,5,5,11,12,13,14,15]);
gap> StoreFusion(s3, split, [1,2,3,4,5,16,17,18]);
gap> for tbl in [s1, s2, s3] do
> fus:= GetFusionMap(tbl, split);
> for class in Difference([1 .. Length(tbl.classes)],
> KernelChar(tbl.irreducibles[2])) do
> split.classes[fus[class]]:= tbl.classes[class];
> od;
> od;
gap> for class in [1 .. 5] do
> split.classes[class]:= s3.classes[class];
> od;
gap> split.classes;
[1, 45, 80, 90, 144, 15, 15, 90, 120, 120, 36, 90, 90, 72, 72, 180,
90, 90]

152 CHAPTER 1. ABOUT GAP

gap> split.size:= Sum(last);
1440
gap> split.order:= last;
gap> split.centralizers:= List(split.classes, x -> split.order / x);
[1440, 32, 18, 16, 10, 96, 96, 16, 12, 12, 40, 16, 16, 20, 20, 8,
16, 16]

gap> split.powermap[3]:= InitPowermap(split, 3);;
gap> split.powermap[5]:= InitPowermap(split, 5);;
gap> for tbl in [s1, s2, s3] do
> fus:= GetFusionMap(tbl, split);
> for p in [2, 3, 5] do
> TransferDiagram(tbl.powermap[p], fus, split.powermap[p]);
> od;
> od;
gap> split.powermap;
[, [1, 1, 3, 2, 5, 1, 1, 2, 3, 3, 1, 4, 4, 5, 5, 2, 4, 4],
[1, 2, 1, 4, 5, 6, 7, 8, 6, 7, 11, 13, 12, 15, 14, 16, 17, 18],,
[1, 2, 3, 4, 1, 6, 7, 8, 9, 10, 11, 13, 12, 11, 11, 16, 18, 17]]

gap> split.orders:= ElementOrdersPowermap(split.powermap);
[1, 2, 3, 4, 5, 2, 2, 4, 6, 6, 2, 8, 8, 10, 10, 4, 8, 8]

In order to decide which classes fuse in G, we look at the norms of suitable induced charac-
ters, first the + extension of χ2 to A6.21.

gap> ind:= Induced(s1, split, [s1.irreducibles[3]])[1];
[10, 2, 1, -2, 0, 6, -2, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0]
gap> ScalarProduct(split, ind, ind);
3/2

The inertia group of this character is A6.21, thus the norm of the induced character must
be 1. If the classes 2B and 2C fuse, the contribution of these classes is changed from
15 · 62 + 15 · (−2)2 to 30 · 22, the difference is 480. But we have to subtract 720 which is half
the group order, so also 6A and 6B fuse. This is not surprising, since it reflects the action of
the famous outer automorphism of S6. Next we examine the + extension of χ4 to A6.22.

gap> ind:= Induced(s2, split, [s2.irreducibles[4]])[1];
[16, 0, -2, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 2*E(5)+2*E(5)^4,
2*E(5)^2+2*E(5)^3, 0, 0, 0]

gap> ScalarProduct(split, ind, ind);
3/2

Again, the norm must be 1, 10A and 10B fuse.

gap> collaps:= CharTableCollapsedClasses(split,
> [1,2,3,4,5,6,6,7,8,8,9,10,11,12,12,13,14,15]);;
gap> PrintCharTable(collaps);
rec(identifier := "Collapsed(Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2,\
2, 3, 3, 3, 3, 3, 4, 4, 4]),[1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 1\
1, 12, 12, 13, 14, 15])", size := 1440, order :=
1440, name := "Collapsed(Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3\
, 3, 3, 3, 3, 4, 4, 4]),[1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12\
, 12, 13, 14, 15])", centralizers := [1440, 32, 18, 16, 10, 48, 16,

1.25. ABOUT CHARACTER TABLES 153

6, 40, 16, 16, 10, 8, 16, 16], orders :=
[1, 2, 3, 4, 5, 2, 4, 6, 2, 8, 8, 10, 4, 8, 8], powermap :=
[, [1, 1, 3, 2, 5, 1, 2, 3, 1, 4, 4, 5, 2, 4, 4],
[1, 2, 1, 4, 5, 6, 7, 6, 9, 11, 10, 12, 13, 14, 15],,
[1, 2, 3, 4, 1, 6, 7, 8, 9, 11, 10, 9, 13, 15, 14]

], fusionsource :=
["Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4 \
])"], irreducibles :=
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1],
[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]

], classes := [1, 45, 80, 90, 144, 30, 90, 240, 36, 90, 90, 144,
180, 90, 90], operations := CharTableOps)

gap> split.fusions;
[rec(

name := [’C’, ’2’, ’x’, ’C’, ’2’],
map := [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4]
), rec(
name :=
"Collapsed(Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3,\

3, 3, 4, 4, 4]),[1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 1\
3, 14, 15])",

map := [1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13,
14, 15])]

gap> for tbl in [s1, s2, s3] do
> StoreFusion(tbl, collaps,
> CompositionMaps(GetFusionMap(split, collaps),
> GetFusionMap(tbl, split)));
> od;
gap> ind:= Induced(s1, collaps, [s1.irreducibles[10]])[1];
[20, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
gap> ScalarProduct(collaps, ind, ind);
1

This character must be equal to any induced character of an irreducible character of degree
10 of A6.22 and A6.23. That means, 8A fuses with 8B, and 8C with 8D.

gap> a6v4:= CharTableCollapsedClasses(collaps,
> [1,2,3,4,5,6,7,8,9,10,10,11,12,13,13]);;
gap> PrintCharTable(a6v4);
rec(identifier := "Collapsed(Collapsed(Split(C2xC2,[1, 1, 1, 1, 1, 2\
, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4]),[1, 2, 3, 4, 5, 6, 6, 7, 8, 8\
, 9, 10, 11, 12, 12, 13, 14, 15]),[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10\
, 11, 12, 13, 13])", size := 1440, order :=
1440, name := "Collapsed(Collapsed(Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, \
2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4]),[1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, \
10, 11, 12, 12, 13, 14, 15]),[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11,\
12, 13, 13])", centralizers := [1440, 32, 18, 16, 10, 48, 16, 6,

154 CHAPTER 1. ABOUT GAP

40, 8, 10, 8, 8], orders := [1, 2, 3, 4, 5, 2, 4, 6, 2, 8, 10, 4,
8], powermap := [, [1, 1, 3, 2, 5, 1, 2, 3, 1, 4, 5, 2, 4],
[1, 2, 1, 4, 5, 6, 7, 6, 9, 10, 11, 12, 13],,
[1, 2, 3, 4, 1, 6, 7, 8, 9, 10, 9, 12, 13]], fusionsource :=

["Collapsed(Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3\
, 4, 4, 4]),[1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14\
, 15])"], irreducibles :=
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1],
[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1],
[1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1]], classes :=

[1, 45, 80, 90, 144, 30, 90, 240, 36, 180, 144, 180, 180
], operations := CharTableOps)
gap> for tbl in [s1, s2, s3] do
> StoreFusion(tbl, a6v4,
> CompositionMaps(GetFusionMap(collaps, a6v4),
> GetFusionMap(tbl, collaps)));
> od;

Now the classes of G are known, the only remaining work is to compute the irreducibles.

gap> a6v4.irreducibles;
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1],
[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1],
[1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1]]

gap> for tbl in [s1, s2, s3] do
> ind:= Set(Induced(tbl, a6v4, tbl.irreducibles));
> Append(a6v4.irreducibles,
> Filtered(ind, x -> ScalarProduct(a6v4,x,x) = 1));
> od;
gap> a6v4.irreducibles:= Set(a6v4.irreducibles);
[[1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1],
[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[10, 2, 1, -2, 0, -2, -2, 1, 0, 0, 0, 0, 0],
[10, 2, 1, -2, 0, 2, 2, -1, 0, 0, 0, 0, 0],
[16, 0, -2, 0, 1, 0, 0, 0, -4, 0, 1, 0, 0],
[16, 0, -2, 0, 1, 0, 0, 0, 4, 0, -1, 0, 0],
[20, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

gap> sym:= Symmetrizations(a6v4, [a6v4.irreducibles[5]], 2);
[[45, -3, 0, 1, 0, -3, 1, 0, -5, 1, 0, -1, 1],
[55, 7, 1, 3, 0, 7, 3, 1, 5, -1, 0, 1, -1]]

gap> Reduced(a6v4, a6v4.irreducibles, sym);
rec(
remainders := [[27, 3, 0, 3, -3, 3, -1, 0, 1, -1, 1, 1, -1]],
irreducibles := [[9, 1, 0, 1, -1, -3, 1, 0, -1, 1, -1, -1, 1]])

gap> Append(a6v4.irreducibles,

1.26. ABOUT GROUP LIBRARIES 155

> Tensored(last.irreducibles,
> Sublist(a6v4.irreducibles, [1 .. 4])));
gap> SortCharactersCharTable(a6v4,
> (1,4)(2,3)(5,6)(7,8)(9,13,10,11,12));;
gap> a6v4.identifier:= "A6.2^2";;
gap> DisplayCharTable(a6v4);
Collapsed(Collapsed(Split(C2xC2,[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, \
3, 3, 3, 4, 4, 4]),[1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12,\
13, 14, 15]),[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 13])

2 5 5 1 4 1 4 4 1 3 3 1 3 3
3 2 . 2 . . 1 . 1
5 1 . . . 1 . . . 1 . 1 . .

1a 2a 3a 4a 5a 2b 4b 6a 2c 8a 10a 4c 8b
2P 1a 1a 3a 2a 5a 1a 2a 3a 1a 4a 5a 2a 4a
3P 1a 2a 1a 4a 5a 2b 4b 2b 2c 8a 10a 4c 8b
5P 1a 2a 3a 4a 1a 2b 4b 6a 2c 8a 2c 4c 8b

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.3 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1
X.5 10 2 1 -2 . 2 2 -1
X.6 10 2 1 -2 . -2 -2 1
X.7 16 . -2 . 1 . . . 4 . -1 . .
X.8 16 . -2 . 1 . . . -4 . 1 . .
X.9 9 1 . 1 -1 -3 1 . 1 -1 1 1 -1
X.10 9 1 . 1 -1 -3 1 . -1 1 -1 -1 1
X.11 9 1 . 1 -1 3 -1 . 1 -1 1 -1 1
X.12 9 1 . 1 -1 3 -1 . -1 1 -1 1 -1
X.13 20 -4 2

1.26 About Group Libraries

When you start GAP it already knows several groups. For example, some basic groups such
as cyclic groups or symmetric groups, all primitive permutation groups of degree at most
50, and all 2-groups of size at most 256.

Each of the sets above is called a group library. The set of all groups that GAP knows
initially is called the collection of group libraries.

In this section we show you how you can access the groups in those libraries and how you
can extract groups with certain properties from those libraries.

Let us start with the basic groups, because they are not accessed in the same way as the
groups in the other libraries.

To access such a basic group you just call a function with an appropriate name, such as
CyclicGroup or SymmetricGroup.

156 CHAPTER 1. ABOUT GAP

gap> c13 := CyclicGroup(13);
Group((1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13))
gap> Size(c13);
13
gap> s8 := SymmetricGroup(8);
Group((1,8), (2,8), (3,8), (4,8), (5,8), (6,8), (7,8))
gap> Size(s8);
40320

The functions above also accept an optional first argument that describes the type of group.
For example you can pass AgWords to CyclicGroup to get a cyclic group as a finite polycyclic
group (see 25).

gap> c13 := CyclicGroup(AgWords, 13);
Group(c13)

Of course you cannot pass AgWords to SymmetricGroup, because symmetric groups are in
general not polycyclic.
The default is to construct the groups as permutation groups, but you can also explicitly pass
Permutations. Other possible arguments are AgWords for finite polycyclic groups, Words
for finitely presented groups, and Matrices for matrix groups (however only Permutations
and AgWords currently work).
Let us now turn to the other libraries. They are all accessed in a uniform way. For a first
example we will use the group library of primitive permutation groups.
To extract a group from a group library you generally use the extraction function. In
our example this function is called PrimitiveGroup. It takes two arguments. The first is
the degree of the primitive permutation group that you want and the second is an integer
that specifies which of the primitive permutation groups of that degree you want.

gap> g := PrimitiveGroup(12, 3);
M(11)
gap> g.generators;
[(2, 6)(3, 5)(4, 7)(9,10), (1, 5, 7)(2, 9, 4)(3, 8,10),

(1,11)(2, 7)(3, 5)(4, 6), (2, 5)(3, 6)(4, 7)(11,12)]
gap> Size(g);
7920
gap> IsSimple(g);
true
gap> h := PrimitiveGroup(16, 19);
2^4.A(7)
gap> Size(h);
40320

The reason for the extraction function is as follows. A group library is usually not stored as
a list of groups. Instead a more compact representation for the groups is used. For example
the groups in the library of 2-groups are represented by 4 integers. The extraction function
hides this representation from you, and allows you to access the group library as if it was a
table of groups (two dimensional in the above example).
What arguments the extraction function accepts, and how they are interpreted is described
in the sections that describe the individual group libraries in chapter 37. Those functions
will of course signal an error when you pass illegal arguments.

1.26. ABOUT GROUP LIBRARIES 157

Suppose that you want to get a list of all primitive permutation groups that have a degree
10 and are simple but not cyclic. It would be very difficult to use the extraction function to
extract all groups in the group library, and test each of those. It is much simpler to use the
selection function. The name of the selection function always begins with All and ends
with Groups, in our example it is thus called AllPrimitiveGroups.

gap> AllPrimitiveGroups(DegreeOperation, 10,
> IsSimple, true,
> IsCyclic, false);
[A(5), PSL(2,9), A(10)]

AllPrimitiveGroups takes a variable number of argument pairs consisting of a function
(e.g. DegreeOperation) and a value (e.g. 10). To understand what AllPrimitiveGroups
does, imagine that the group library was stored as a long list of permutation groups.
AllPrimitiveGroups takes all those groups in turn. To each group it applies each func-
tion argument and compares the result with the corresponding value argument. It selects
a group if and only if all the function results are equal to the corresponding value. So in
our example AllPrimitiveGroups selects those groups g for which DegreeOperation(g) =
10 and IsSimple(g) = true and IsCyclic(g) = false. Finally AllPrimitiveGroups
returns the list of the selected groups.

Next suppose that you want all the primitive permutation groups that have degree at
most 10, are simple but are not cyclic. You could obtain such a list with 10 calls to
AllPrimitiveGroups (i.e., one call for the degree 1 groups, another for the degree 2 groups
and so on), but there is a simple way. Instead of specifying a single value that a function
must return you can simply specify a list of such values.

gap> AllPrimitiveGroups(DegreeOperation, [1..10],
> IsSimple, true,
> IsCyclic, false);
[A(5), PSL(2,5), A(6), PSL(3,2), A(7), PSL(2,7), A(8), PSL(2,8),
A(9), A(5), PSL(2,9), A(10)]

Note that the list that you get contains A(5) twice, first in its primitive presentation on 5
points and second in its primitive presentation on 10 points.

Thus giving several argument pairs to the selection function allows you to express the logical
and of properties that a group must have to be selected, and giving a list of values allows
you to express a (restricted) logical or of properties that a group must have to be selected.

There is no restriction on the functions that you can use. It is even possible to use functions
that you have written yourself. Of course, the functions must be unary, i.e., accept only one
argument, and must be able to deal with the groups.

gap> NumberConjugacyClasses := function (g)
> return Length(ConjugacyClasses(g));
> end;
function (g) ... end
gap> AllPrimitiveGroups(DegreeOperation, [1..10],
> IsSimple, true,
> IsCyclic, false,
> NumberConjugacyClasses, 9);
[A(7), PSL(2,8)]

158 CHAPTER 1. ABOUT GAP

Note that in some cases a selection function will issue a warning. For example if you call
AllPrimitiveGroups without specifying the degree, it will issue such a warning.

gap> AllPrimitiveGroups(Size, [100..400],
> IsSimple, true,
> IsCyclic, false);
#W AllPrimitiveGroups: degree automatically restricted to [1..50]
[A(6), PSL(3,2), PSL(2,7), PSL(2,9), A(6)]

If selection functions would really run over the list of all groups in a group library and apply
the function arguments to each of those, they would be very inefficient. For example the
2-groups library contains 58760 groups. Simply creating all those groups would take a very
long time.

Instead selection functions recognize certain functions and handle them more efficiently. For
example AllPrimitiveGroups recognizes DegreeOperation. If you pass DegreeOperation
to AllPrimitiveGroups it does not create a group to apply DegreeOperation to it. In-
stead it simply consults an index and quickly eliminates all groups that have a different
degree. Other functions recognized by AllPrimitiveGroups are IsSimple, Size, and
Transitivity.

So in our examples AllPrimitiveGroups, recognizing DegreeOperation and IsSimple,
eliminates all but 16 groups. Then it creates those 16 groups and applies IsCyclic to
them. This eliminates 4 more groups (C(2), C(3), C(5), and C(7)). Then in our last
example it applies NumberConjugacyClasses to the remaining 12 groups and eliminates all
but A(7) and PSL(2,8).

The catch is that the selection functions will take a large amount of time if they cannot rec-
ognize any special functions. For example the following selection will take a large amount of
time, because only IsSimple is recognized, and there are 116 simple groups in the primitive
groups library.

AllPrimitiveGroups(IsSimple, true, NumberConjugacyClasses, 9);

So you should specify a sufficiently large set of recognizable functions when you call a
selection function. It is also advisable to put those functions first (though in some group
libraries the selection function will automatically rearrange the argument pairs so that the
recognized functions come first). The sections describing the individual group libraries in
chapter 37 tell you which functions are recognized by the selection function of that group
library.

There is another function, called the example function that behaves similar to the selection
function. Instead of returning a list of all groups with a certain set of properties it only
returns one such group. The name of the example function is obtained by replacing All by
One and stripping the s at the end of the name of the selection function.

gap> OnePrimitiveGroup(DegreeOperation, [1..10],
> IsSimple, true,
> IsCyclic, false,
> NumberConjugacyClasses, 9);
A(7)

The example function works just like the selection function. That means that all the above
comments about the special functions that are recognized also apply to the example function.

1.26. ABOUT GROUP LIBRARIES 159

Let us now look at the 2-groups library. It is accessed in the same way as the primitive groups
library. There is an extraction function TwoGroup, a selection function AllTwoGroups, and
an example function OneTwoGroup.

gap> g := TwoGroup(128, 5);
Group(a1, a2, a3, a4, a5, a6, a7)
gap> Size(g);
128
gap> NumberConjugacyClasses(g);
80

The groups are all displayed as Group(a1, a2, ..., an), where 2n is the size of the
group.

gap> AllTwoGroups(Size, 256,
> Rank, 3,
> pClass, 2);
[Group(a1, a2, a3, a4, a5, a6, a7, a8),
Group(a1, a2, a3, a4, a5, a6, a7, a8),
Group(a1, a2, a3, a4, a5, a6, a7, a8),
Group(a1, a2, a3, a4, a5, a6, a7, a8)]

gap> l := AllTwoGroups(Size, 256,
> Rank, 3,
> pClass, 5,
> g -> Length(DerivedSeries(g)), 4);;
gap> Length(l);
28

The selection and example function of the 2-groups library recognize Size, Rank, and
pClass. Note that Rank and pClass are functions that can in fact only be used in this
context, i.e., they can not be applied to arbitrary groups.

The following discussion is a bit technical and you can ignore it safely.

For very big group libraries, such as the 2-groups library, the groups (or their compact
representations) are not stored on a single file. This is because this file would be very large
and loading it would take a long time and a lot of main memory.

Instead the groups are stored on a small number of files (27 in the case of the 2-groups).
The selection and example functions are careful to load only those files that may actually
contain groups with the specified properties. For example in the above example the files
containing the groups of size less than 256 are never loaded. In fact in the above example
only one very small file is loaded.

When a file is loaded the selection and example functions also unload the previously loaded
file. That means that they forget all the groups in this file again (except those selected of
course). Thus even if the selection or example functions have to search through the whole
group library, only a small part of the library is held in main memory at any time. In
principle it should be possible to search the whole 2-groups library with as little as 2 MByte
of main memory.

If you have sufficient main memory available you can explicitly load files from the 2-groups
library with ReadTwo(filename), e.g., Read("twogp64") to load the file with the groups
of size 64. Those files will then not be unloaded again. This will take up more main memory,

160 CHAPTER 1. ABOUT GAP

but the selection and example function will work faster, because they do not have to load
those files again each time they are needed.

In this section you have seen the basic groups library and the group libraries of primitive
groups and 2-groups. You have seen how you can extract a single group from such a
library with the extraction function. You have seen how you can select groups with certain
properties with the selection and example function. Chapter 37 tells you which other group
libraries are available.

1.27. ABOUT THE IMPLEMENTATION OF DOMAINS 161

1.27 About the Implementation of Domains

In this section we will open the black boxes and describe how all this works. This is complex
and you do not need to understand it if you are content to use domains only as black boxes.
So you may want to skip this section (and the remainder of this chapter).

Domains are represented by records, which we will call domain records in the following.
Which components have to be present, which may, and what those components hold, differs
from category to category, and, to a smaller extent, from domain to domain. It is possible,
though, to generally distinguish four types of components.

The first type of components are called the category components. They determine to
which category a domain belongs. A domain D in a category Cat has a component isCat
with the value true. For example, each group has the component isGroup. Also each
domain has the component isDomain (again with the value true). Finally a domain may
also have components that describe the representation of this domain. For example, each
permutation group has a component isPermGroup (again with the value true). Functions
such as IsPermGroup test whether such a component is present, and whether it has the
value true.

The second type of components are called the identification components. They distin-
guish the domain from other domains in the same category. The identification components
uniquely identify the domain. For example, for groups the identification components are
generators, which holds a list of generators of the group, and identity, which holds the
identity of the group (needed for the trivial group, for which the list of generators is empty).

The third type of components are called knowledge components. They hold all the
knowledge GAP has about the domain. For example the size of the domain D is stored
in the knowledge component D.size, the commutator subgroup of a group is stored in
the knowledge component D.commutatorSubgroup, etc. Of course, the knowledge about
a certain domain will usually increase as you work with a domain. For example, a group
record may initially hold only the knowledge that the group is finite, but may later hold all
kinds of knowledge, for example the derived series, the Sylow subgroups, etc.

Finally each domain record contains an operations record. The operations record is
discussed below.

We want to emphasize that really all information that GAP has about a domain is stored in
the knowledge components. That means that you can access all this information, at least
if you know where to look and how to interpret what you see. The chapters describing
categories and domains will tell you what knowledge components a domain may have, and
how the knowledge is represented in those components.

For an example let us return to the permutation group a5 from section 1.23. If we print the
record using the function PrintRec we see all the information. GAP stores the stabilizer
chain of a5 in the components orbit, transversal, and stabilizer. It is not important
that you understand what a stabilizer chain is (this is discussed in chapter 21), the important
point here is that it is the vital information that GAP needs to work efficiently with a5 and
that you can access it.

gap> a5 := Group((1,2,3), (3,4,5));
Group((1,2,3), (3,4,5))
gap> Size(a5);

162 CHAPTER 1. ABOUT GAP

60
gap> PrintRec(a5); Print("\n");
rec(
isDomain := true,
isGroup := true,
identity := (),
generators := [(1,2,3), (3,4,5)],
operations := ...,
isPermGroup := true,
isFinite := true,
1 := (1,2,3),
2 := (3,4,5),
orbit := [1, 3, 2, 5, 4],
transversal := [(), (1,2,3), (1,2,3), (3,4,5), (3,4,5)],
stabilizer := rec(
identity := (),
generators := [(3,4,5), (2,5,3)],
orbit := [2, 3, 5, 4],
transversal := [, (), (2,5,3), (3,4,5), (3,4,5)],
stabilizer := rec(
identity := (),
generators := [(3,4,5)],
orbit := [3, 5, 4],
transversal := [,, (), (3,4,5), (3,4,5)],
stabilizer := rec(
identity := (),
generators := [],
operations := ...),

operations := ...),
operations := ...),

isParent := true,
stabChainOptions := rec(
random := 1000,
operations := ...),

stabChain := rec(
generators := [(1,2,3), (3,4,5)],
identity := (),
orbit := [1, 3, 2, 5, 4],
transversal := [(), (1,2,3), (1,2,3), (3,4,5), (3,4,5)],
stabilizer := rec(
identity := (),
generators := [(3,4,5), (2,5,3)],
orbit := [2, 3, 5, 4],
transversal := [, (), (2,5,3), (3,4,5), (3,4,5)],
stabilizer := rec(
identity := (),
generators := [(3,4,5)],
orbit := [3, 5, 4],

1.27. ABOUT THE IMPLEMENTATION OF DOMAINS 163

transversal := [,, (), (3,4,5), (3,4,5)],
stabilizer := rec(
identity := (),
generators := [],
operations := ...),

operations := ...),
operations := ...),

operations := ...),
size := 60)

Note that you can not only read this information, you can also modify it. However, unless
you truly understand what you are doing, we discourage you from playing around. All GAP
functions assume that the information in the domain record is in a consistent state, and
everything will go wrong if it is not.

gap> a5.size := 120;
120
gap> Size(ConjugacyClass(a5, (1,2,3,4,5)));
24 # this is of course wrong

As was mentioned above, each domain record has an operations record. We have already
seen that functions such as Size can be applied to various types of domains. It is clear that
there is no general method that will compute the size of all domains efficiently. So Size
must somehow decide which method to apply to a given domain. The operations record
makes this possible.

The operations record of a domain D is the component with the name D.operations, its
value is a record. For each function that you can apply to D this record contains a function
that will compute the required information (hopefully in an efficient way).

To understand this let us take a look at what happens when we compute Size(a5). Not
much happens. Size simply calls a5.operations.Size(a5). a5.operations.Size is a
function written especially for permutation groups. It computes the size of a5 and returns
it. Then Size returns this value.

Actually Size does a little bit more than that. It first tests whether a5 has the knowledge
component a5.size. If this is the case, Size simply returns that value. Otherwise it
calls a5.operations.Size(a5) to compute the size. Size remembers the result in the
knowledge component a5.size so that it is readily available the next time Size(a5) is
called. The complete definition of Size is as follows.

gap> Size := function (D)
> local size;
> if IsSet(D) then
> size := Length(D);
> elif IsRec(D) and IsBound(D.size) then
> size := D.size;
> elif IsDomain(D) then
> D.size := D.operations.Size(D);
> size := D.size;
> else
> Error("<D> must be a domain or a set");

164 CHAPTER 1. ABOUT GAP

> fi;
> return size;
> end;;

Because functions such as Size only dispatch to the functions in the operations record, they
are called dispatcher functions. Almost all functions that you call directly are dispatcher
functions, and almost all functions that do the hard work are components in an operations
record.

Which function is called by a dispatcher obviously depends on the domain and its oper-
ations record (that is the whole point of having an operations record). In principle each
domain could have its own Size function. In practice however, this would require too many
functions. So different domains share the functions in their operations records, usually all
domains with the same representation share all their operations record functions. For exam-
ple all permutation groups share the same Size function. Because this shared Size function
must be able to access the information in the domain record to compute the correct result,
the Size dispatcher function (and all other dispatchers as well) pass the domain as first
argument

In fact the domains not only have the same functions in their operations record, they share
the operations record. So for example all permutation groups share a common operations
record, which is called PermGroupOps. This means that changing a function in the operations
record for a domain D in the following way D.operations.function := new-function;
will also change this function for all domains of the same type, even those that do not
yet exist at the moment of the assignment and will only be constructed later. This is
usually not desirable, since supposedly new-function uses some special properties of the
domain D to work more efficiently. We suggest therefore that you first make a copy of the
operations record with D.operations := Copy(D.operations); and only afterwards
do D.operations.function := new-function;.

If a programmer that implements a new domain D , a new type of groups say, would have
to write all functions applicable to D , this would require a lot of effort. For example, there
are about 120 functions applicable to groups. Luckily many of those functions are inde-
pendent of the particular type of groups. For example the following function will compute
the commutator subgroup of any group, assuming that TrivialSubgroup, Closure, and
NormalClosure work. We say that this function is generic.

gap> GroupOps.CommutatorSubgroup := function (U, V)
> local C, u, v, c;
> C := TrivialSubgroup(U);
> for u in U.generators do
> for v in V.generators do
> c := Comm(u, v);
> if not c in C then
> C := Closure(C, c);
> fi;
> od;
> od;
> return NormalClosure(Closure(U, V), C);
> end;;

So it should be possible to use this function for the new type of groups. The mechanism to do

1.27. ABOUT THE IMPLEMENTATION OF DOMAINS 165

this is called inheritance. How it works is described in 1.28, but basically the programmer
just copies the generic functions from the generic group operations record into the operations
record for his new type of groups.

The generic functions are also called default functions, because they are used by default,
unless the programmer overlaid them for the new type of groups.

There is another mechanism through which work can be simplified. It is called delegation.
Suppose that a generic function works for the new type of groups, but that some special
cases can be handled more efficiently for the new type of groups. Then it is possible to
handle only those cases and delegate the general cases back to the generic function. An
example of this is the function that computes the orbit of a point under a permutation
group. If the point is an integer then the generic algorithm can be improved by keeping a
second list that remembers which points have already been seen. The other cases (remember
that Orbit can also be used for other operations, e.g., the operation of a permutation group
on pairs of points or the operations on subgroups by conjugation) are delegated back to the
generic function. How this is done can be seen in the following definition.

gap> PermGroupOps.Orbit := function (G, d, opr)
> local orb, # orbit of d under G , result
> max, # largest point moved by the group G
> new, # boolean list indicating if a point is new
> gen, # one generator of the group G
> pnt, # one point in the orbit orb
> img; # image of pnt under gen
>
> # standard operation
> if opr = OnPoints and IsInt(d) then
>
> # get the largest point max moved by the group G
> max := 0;
> for gen in G.generators do
> if max < LargestMovedPointPerm(gen) then
> max := LargestMovedPointPerm(gen);
> fi;
> od;
>
> # handle fixpoints
> if not d in [1..max] then
> return [d];
> fi;
>
> # start with the singleton orbit
> orb := [d];
> new := BlistList([1..max], [1..max]);
> new[d] := false;
>
> # loop over all points found
> for pnt in orb do
> for gen in G.generators do

166 CHAPTER 1. ABOUT GAP

> img := pnt ^ gen;
> if new[img] then
> Add(orb, img);
> new[img] := false;
> fi;
> od;
> od;
>
> # other operation, delegate back on default function
> else
> orb := GroupOps.Orbit(G, d, opr);
> fi;
>
> # return the orbit orb
> return orb;
> end;;

Inheritance and delegation allow the programmer to implement a new type of groups by
merely specifying how those groups differ from generic groups. This is far less work than
having to implement all possible functions (apart from the problem that in this case it is
very likely that the programmer would forget some of the more exotic functions).

To make all this clearer let us look at an extended example to show you how a computation
in a domain may use default and special functions to achieve its goal. Suppose you defined
g, x, and y as follows.

gap> g := SymmetricGroup(8);;
gap> x := [(2,7,4)(3,5), (1,2,6)(4,8)];;
gap> y := [(2,5,7)(4,6), (1,5)(3,8,7)];;

Now you ask for an element of g that conjugates x to y, i.e., a permutation on 8 points that
takes (2,7,4)(3,5) to (2,5,7)(4,6) and (1,2,6)(4,8) to (1,5)(3,8,7). This is done
as follows (see 8.23 and 8.1).

gap> RepresentativeOperation(g, x, y, OnTuples);
(1,8)(2,7)(3,4,5,6)

Now lets look at what happens step for step. First RepresentativeOperation is called. Af-
ter checking the arguments it calls the function g.operations.RepresentativeOperation,
which is the function SymmetricGroupOps.RepresentativeOperation, passing the argu-
ments g, x, y, and OnTuples.

SymmetricGroupOps.RepresentativeOperation handles a lot of cases special, but the op-
eration on tuples of permutations is not among them. Therefore it delegates this problem
to the function that it overlays, which is PermGroupOps.RepresentativeOperation.

PermGroupOps.RepresentativeOperation also does not handle this special case, and del-
egates the problem to the function that it overlays, which is the default function called
GroupOps.RepresentativeOperation.

GroupOps.RepresentativeOperation views this problem as a general tuples problem, i.e.,
it does not care whether the points in the tuples are integers or permutations, and decides
to solve it one step at a time. So first it looks for an element taking (2,7,4)(3,5) to

1.27. ABOUT THE IMPLEMENTATION OF DOMAINS 167

(2,5,7)(4,6) by calling RepresentativeOperation(g, (2,7,4)(3,5), (2,5,7)(4,6)
).

RepresentativeOperation calls g.operations.RepresentativeOperation next, which is
the function SymmetricGroupOps.RepresentativeOperation, passing the arguments g,
(2,7,4)(3,5), and (2,5,7)(4,6).

SymmetricGroupOps.RepresentativeOperation can handle this case. It knows that g
contains every permutation on 8 points, so it contains (3,4,7,5,6), which obviously does
what we want, namely it takes x[1] to y[1]. We will call this element t.

Now GroupOps.RepresentativeOperation (see above) looks for an s in the stabilizer of
x[1] taking x[2] to y[2]^(t^-1), since then for r=s*t we have x[1]^r = (x[1]^s)^t
= x[1]^t = y[1] and also x[2]^r = (x[2]^s)^t = (y[2]^(t^-1))^t = y[2]. So the
next step is to compute the stabilizer of x[1] in g. To do this it calls Stabilizer(g,
(2,7,4)(3,5)).

Stabilizer calls g.operations.Stabilizer, which is SymmetricGroupOps.Stabilizer,
passing the arguments g and (2,7,4)(3,5). SymmetricGroupOps.Stabilizer detects that
the second argument is a permutation, i.e., an element of the group, and calls Centralizer(
g, (2,7,4)(3,5)). Centralizer calls the function g.operations.Centralizer, which
is SymmetricGroupOps.Centralizer, again passing the arguments g, (2,7,4)(3,5).

SymmetricGroupOps.Centralizer again knows how centralizer in symmetric groups look,
and after looking at the permutation (2,7,4)(3,5) sharply for a short while returns the
centralizer as Subgroup(g, [(1,6), (6,8), (2,7,4), (3,5)]), which we will call c.
Note that c is of course not a symmetric group, therefore SymmetricGroupOps.Subgroup
gives it PermGroupOps as operations record and not SymmetricGroupOps.

As explained above GroupOps.RepresentativeOperation needs an element of c taking
x[2] ((1,2,6)(4,8)) to y[2]^(t^-1) ((1,7)(4,6,8)). So RepresentativeOperation(
c, (1,2,6)(4,8), (1,7)(4,6,8)) is called. RepresentativeOperation in turn calls
the function c.operations.RepresentativeOperation, which is, since c is a permutation
group, the function PermGroupOps.RepresentativeOperation, passing the arguments c,
(1,2,6)(4,8), and (1,7)(4,6,8).

PermGroupOps.RepresentativeOperation detects that the points are permutations and
and performs a backtrack search through c. It finds and returns (1,8)(2,4,7)(3,5),
which we call s.

Then GroupOps.RepresentativeOperation returns r = s*t = (1,8)(2,7)(3,6)(4,5),
and we are done.

In this example you have seen how functions use the structure of their domain to solve
a problem most efficiently, for example SymmetricGroupOps.RepresentativeOperation
but also the backtrack search in PermGroupOps.RepresentativeOperation, how they use
other functions, for example SymmetricGroupOps.Stabilizer called Centralizer, and
how they delegate cases which they can not handle more efficiently back to the func-
tion they overlaid, for example SymmetricGroupOps.RepresentativeOperation delegated
to PermGroupOps.RepresentativeOperation, which in turn delegated to to the function
GroupOps.RepresentativeOperation.

If you think this whole mechanism using dispatcher functions and the operations record is
overly complex let us look at some of the alternatives. This is even more technical than the
previous part of this section so you may want to skip the remainder of this section.

168 CHAPTER 1. ABOUT GAP

One alternative would be to let the dispatcher know about the various types of domains,
test which category a domain lies in, and dispatch to an appropriate function. Then we
would not need an operations record. The dispatcher function CommutatorSubgroup would
then look as follows. Note this is not how CommutatorSubgroup is implemented in GAP.

CommutatorSubgroup := function (G)
local C;
if IsAgGroup(G) then

C := CommutatorSubgroupAgGroup(G);
elif IsMatGroup(G) then

C := CommutatorSubgroupMatGroup(G);
elif IsPermGroup(G) then

C := CommutatorSubgroupPermGroup(G);
elif IsFpGroup(G) then

C := CommutatorSubgroupFpGroup(G);
elif IsFactorGroup(G) then

C := CommutatorSubgroupFactorGroup(G);
elif IsDirectProduct(G) then

C := CommutatorSubgroupDirectProduct(G);
elif IsDirectProductAgGroup(G) then

C := CommutatorSubgroupDirectProductAgGroup(G);
elif IsSubdirectProduct(G) then

C := CommutatorSubgroupSubdirectProduct(G);
elif IsSemidirectProduct(G) then

C := CommutatorSubgroupSemidirectProduct(G);
elif IsWreathProduct(G) then

C := CommutatorSubgroupWreathProduct(G);
elif IsGroup(G) then

C := CommutatorSubgroupGroup(G);
else

Error("<G> must be a group");
fi;
return C;

end;

You already see one problem with this approach. The number of cases that the dispatcher
functions would have to test is simply to large. It is even worse for set theoretic functions,
because they would have to handle all different types of domains (currently about 30).
The other problem arises when a programmer implements a new domain. Then he would
have to rewrite all dispatchers and add a new case to each. Also the probability that the
programmer forgets one dispatcher is very high.
Another problem is that inheritance becomes more difficult. Instead of just copying one
operations record the programmer would have to copy each function that should be inherited.
Again the probability that he forgets one is very high.
Another alternative would be to do completely without dispatchers. In this case there would
be the functions CommutatorSugroupAgGroup, CommutatorSubgroupPermGroup, etc., and it
would be your responsibility to call the right function. For example to compute the size of
a permutation group you would call SizePermGroup and to compute the size of a coset you
would call SizeCoset (or maybe even SizeCosetPermGroup).

1.27. ABOUT THE IMPLEMENTATION OF DOMAINS 169

The most obvious problem with this approach is that it is much more cumbersome. You
would always have to know what kind of domain you are working with and which function
you would have to call.

Another problem is that writing generic functions would be impossible. For example the
above generic implementation of CommutatorSubgroup could not work, because for a con-
crete group it would have to call ClosurePermGroup or ClosureAgGroup etc.

If generic functions are impossible, inheritance and delegation can not be used. Thus for
each type of domain all functions must be implemented. This is clearly a lot of work, more
work than we are willing to do.

So we argue that our mechanism is the easiest possible that serves the following two goals.
It is reasonably convenient for you to use. It allows us to implement a large (and ever
increasing) number of different types of domains.

This may all sound a lot like object oriented programming to you. This is not surprising
because we want to solve the same problems that object oriented programming tries to solve.
Let us briefly discuss the similarities and differences to object oriented programming, taking
C++ as an example (because it is probably the widest known object oriented programming
language nowadays). This discussion is very technical and again you may want to skip the
remainder of this section.

Let us first recall the problems that the GAP mechanism wants to handle.

1 How can we represent domains in such a way that we can handle domains of different
type in a common way?

2 How can we make it possible to allow functions that take domains of different type
and perform the same operation for those domains (but using different methods)?

3 How can we make it possible that the implementation of a new type of domains
only requires that one implements what distinguishes this new type of domains from
domains of an old type (without the need to change any old code)?

For object oriented programming the problems are the same, though the names used are
different. We talk about domains, object oriented programming talks about objects, and
we talk about categories, object oriented programming talks about classes.

1 How can we represent objects in such a way that we can handle objects of different
classes in a common way (e.g., declare variables that can hold objects of different
classes)?

2 How can we make it possible to allow functions that take objects of different classes
(with a common base class) and perform the same operation for those objects (but
using different methods)?

3 How can we make it possible that the implementation of a new class of objects only
requires that one implements what distinguishes the objects of this new class from
the objects of an old (base) class (without the need to change any old code)?

In GAP the first problem is solved by representing all domains using records. Actually
because GAP does not perform strong static type checking each variable can hold objects
of arbitrary type, so it would even be possible to represent some domains using lists or
something else. But then, where would we put the operations record?

170 CHAPTER 1. ABOUT GAP

C++ does something similar. Objects are represented by struct-s or pointers to structures.
C++ then allows that a pointer to an object of a base class actually holds a pointer to an
object of a derived class.

In GAP the second problem is solved by the dispatchers and the operations record. The
operations record of a given domain holds the methods that should be applied to that
domain, and the dispatcher does nothing but call this method.

In C++ it is again very similar. The difference is that the dispatcher only exists conceptu-
ally. If the compiler can already decide which method will be executed by a given call to the
dispatcher it directly calls this function. Otherwise (for virtual functions that may be over-
laid in derived classes) it basically inlines the dispatcher. This inlined code then dispatches
through the so–called virtual method table (vmt). Note that this virtual method table
is the same as the operations record, except that it is a table and not a record.

In GAP the third problem is solved by inheritance and delegation. To inherit functions you
simply copy them from the operations record of domains of the old category to the operations
record of domains of the new category. Delegation to a method of a larger category is done
by calling super-category-operations-record.function

C++ also supports inheritance and delegation. If you derive a class from a base class,
you copy the methods from the base class to the derived class. Again this copying is
only done conceptually in C++. Delegation is done by calling a qualified function base-
class::function.

Now that we have seen the similarities, let us discuss the differences.

The first differences is that GAP is not an object oriented programming language. We only
programmed the library in an object oriented way using very few features of the language
(basically all we need is that GAP has no strong static type checking, that records can
hold functions, and that records can grow dynamically). Following Stroustrup’s convention
we say that the GAP language only enables object oriented programming, but does not
support it.

The second difference is that C++ adds a mechanism to support data hiding. That means
that fields of a struct can be private. Those fields can only be accessed by the functions
belonging to this class (and friend functions). This is not possible in GAP. Every field of
every domain is accessible. This means that you can also modify those fields, with probably
catastrophic results.

The final difference has to do with the relation between categories and their domains and
classes and their objects. In GAP a category is a set of domains, thus we say that a domain is
an element of a category. In C++ (and most other object oriented programming languages)
a class is a prototype for its objects, thus we say that an object is an instance of the class.
We believe that GAP’s relation better resembles the mathematical model.

In this section you have seen that domains are represented by domain records, and that you
can therefore access all information that GAP has about a certain domain. The following
sections in this chapter discuss how new domains can be created (see 1.28, and 1.29) and
how you can even define a new type of elements (see 1.30).

1.28 About Defining New Domains

In this section we will show how one can add a new domain to GAP. All domains are

1.28. ABOUT DEFINING NEW DOMAINS 171

implemented in the library in this way. We will use the ring of Gaussian integers as our
example.

Note that everything defined here is already in the library file LIBNAME/"gaussian.g", so
there is no need for you to type it in. You may however like to make a copy of this file and
modify it.

The elements of this domain are already available, because Gaussian integers are just a
special case of cyclotomic numbers. As is described in chapter 13 E(4) is GAP’s name for
the complex root of -1. So all Gaussian integers can be represented as a + b*E(4), where
a and b are ordinary integers.

As was already mentioned each domain is represented by a record. So we create a record to
represent the Gaussian integers, which we call GaussianIntegers.

gap> GaussianIntegers := rec();;

The first components that this record must have are those that identify this record as a
record denoting a ring domain. Those components are called the category components.

gap> GaussianIntegers.isDomain := true;;
gap> GaussianIntegers.isRing := true;;

The next components are those that uniquely identify this ring. For rings this must be
generators, zero, and one. Those components are called the identification components
of the domain record. We also assign a name component. This name will be printed when
the domain is printed.

gap> GaussianIntegers.generators := [1, E(4)];;
gap> GaussianIntegers.zero := 0;;
gap> GaussianIntegers.one := 1;;
gap> GaussianIntegers.name := "GaussianIntegers";;

Next we enter some components that represent knowledge that we have about this domain.
Those components are called the knowledge components. In our example we know that
the Gaussian integers form a infinite, commutative, integral, Euclidean ring, which has an
unique factorization property, with the four units 1, -1, E(4), and -E(4).

gap> GaussianIntegers.size := "infinity";;
gap> GaussianIntegers.isFinite := false;;
gap> GaussianIntegers.isCommutativeRing := true;;
gap> GaussianIntegers.isIntegralRing := true;;
gap> GaussianIntegers.isUniqueFactorizationRing := true;;
gap> GaussianIntegers.isEuclideanRing := true;;
gap> GaussianIntegers.units := [1,-1,E(4),-E(4)];;

This was the easy part of this example. Now we have to add an operations record to
the domain record. This operations record (GaussianIntegers.operations) shall con-
tain functions that implement all the functions mentioned in chapter 5, e.g., DefaultRing,
IsCommutativeRing, Gcd, or QuotientRemainder.

Luckily we do not have to implement all this functions. The first class of functions that we
need not implement are those that can simply get the result from the knowledge components.
E.g., IsCommutativeRing looks for the knowledge component isCommutativeRing, finds it
and returns this value. So GaussianIntegers.operations.IsCommutativeRing is never
called.

172 CHAPTER 1. ABOUT GAP

gap> IsCommutativeRing(GaussianIntegers);
true
gap> Units(GaussianIntegers);
[1, -1, E(4), -E(4)]

The second class of functions that we need not implement are those for which there is a gen-
eral algorithm that can be applied for all rings. For example once we can do a division with
remainder (which we will have to implement) we can use the general Euclidean algorithm
to compute the greatest common divisor of elements.

So the question is, how do we get those general functions into our operations record. This is
very simple, we just initialize the operations record as a copy of the record RingOps, which
contains all those general functions. We say that GaussianIntegers.operations inherits
the general functions from RingOps.

gap> GaussianIntegersOps := OperationsRecord(
> "GaussianIntegersOps", RingOps);;
gap> GaussianIntegers.operations := GaussianIntegersOps;;

So now we have to add those functions whose result can not (easily) be derived from the
knowledge components and that we can not inherit from RingOps.

The first such function is the membership test. This function must test whether an object is
an element of the domain GaussianIntegers. IsCycInt(x) tests whether x is a cyclotomic
integer and NofCyc(x) returns the smallest n such that the cyclotomic x can be written
as a linear combination of powers of the primitive n-th root of unity E(n). If NofCyc(x)
returns 1, x is an ordinary rational number.

gap> GaussianIntegersOps.\in := function (x, GaussInt)
> return IsCycInt(x) and (NofCyc(x) = 1 or NofCyc(x) = 4);
> end;;

Note that the second argument GaussInt is not used in the function. Whenever this function
is called, the second argument must be GaussianIntegers, because GaussianIntegers
is the only domain that has this particular function in its operations record. This also
happens for most other functions that we will write. This argument can not be dropped
though, because there are other domains that share a common in function, for example all
permutation groups have the same in function. If the operator in would not pass the second
argument, this function could not know for which permutation group it should perform the
membership test.

So now we can test whether a certain object is a Gaussian integer or not.

gap> E(4) in GaussianIntegers;
true
gap> 1/2 in GaussianIntegers;
false
gap> GaussianIntegers in GaussianIntegers;
false

Another function that is just as easy is the function Random that should return a random
Gaussian integer.

gap> GaussianIntegersOps.Random := function (GaussInt)
> return Random(Integers) + Random(Integers) * E(4);

1.28. ABOUT DEFINING NEW DOMAINS 173

> end;;

Note that actually a Random function was inherited from RingOps. But this function can
not be used. It tries to construct the sorted list of all elements of the domain and then
picks a random element from that list. Therefor this function is only applicable for finite
domains, and can not be used for GaussianIntegers. So we overlay this default function
by simply putting another function in the operations record.

Now we can already test whether a Gaussian integer is a unit or not. This is because the
default function inherited from RingOps tests whether the knowledge component units is
present, and it returns true if the element is in that list and false otherwise.

gap> IsUnit(GaussianIntegers, E(4));
true
gap> IsUnit(GaussianIntegers, 1 + E(4));
false

Now we finally come to more interesting stuff. The function Quotient should return the
quotient of its two arguments x and y . If the quotient does not exist in the ring (i.e., if it is
a proper Gaussian rational), it must return false. (Without this last requirement we could
do without the Quotient function and always simply use the / operator.)

gap> GaussianIntegersOps.Quotient := function (GaussInt, x, y)
> local q;
> q := x / y;
> if not IsCycInt(q) then
> q := false;
> fi;
> return q;
> end;;

The next function is used to test if two elements are associate in the ring of Gaussian
integers. In fact we need not implement this because the function that we inherit from
RingOps will do fine. The following function is a little bit faster though that the inherited
one.

gap> GaussianIntegersOps.IsAssociated := function (GaussInt, x, y)
> return x = y or x = -y or x = E(4)*y or x = -E(4)*y;
> end;;

We must however implement the function StandardAssociate. It should return an associate
that is in some way standard. That means, whenever we apply StandardAssociate to two
associated elements we must obtain the same value. For Gaussian integers we return that
associate that lies in the first quadrant of the complex plane. That is, the result is that
associated element that has positive real part and nonnegative imaginary part. 0 is its
own standard associate of course. Note that this is a generalization of the absolute value
function, which is StandardAssociate for the integers. The reason that we must implement
StandardAssociate is of course that there is no general way to compute a standard associate
for an arbitrary ring, there is not even a standard way to define this!

gap> GaussianIntegersOps.StandardAssociate := function (GaussInt, x)
> if IsRat(x) and 0 <= x then
> return x;
> elif IsRat(x) then

174 CHAPTER 1. ABOUT GAP

> return -x;
> elif 0 < COEFFSCYC(x)[1] and 0 <= COEFFSCYC(x)[2] then
> return x;
> elif COEFFSCYC(x)[1] <= 0 and 0 < COEFFSCYC(x)[2] then
> return - E(4) * x;
> elif COEFFSCYC(x)[1] < 0 and COEFFSCYC(x)[2] <= 0 then
> return - x;
> else
> return E(4) * x;
> fi;
> end;;

Note that COEFFSCYC is an internal function that returns the coefficients of a Gaussian
integer (actually of an arbitrary cyclotomic) as a list.

Now we have implemented all functions that are necessary to view the Gaussian integers
plainly as a ring. Of course there is not much we can do with such a plain ring, we can
compute with its elements and can do a few things that are related to the group of units.

gap> Quotient(GaussianIntegers, 2, 1+E(4));
1-E(4)
gap> Quotient(GaussianIntegers, 3, 1+E(4));
false
gap> IsAssociated(GaussianIntegers, 1+E(4), 1-E(4));
true
gap> StandardAssociate(GaussianIntegers, 3 - E(4));
1+3*E(4)

The remaining functions are related to the fact that the Gaussian integers are an Euclidean
ring (and thus also a unique factorization ring).

The first such function is EuclideanDegree. In our example the Euclidean degree of a
Gaussian integer is of course simply its norm. Just as with StandardAssociate we must
implement this function because there is no general way to compute the Euclidean degree
for an arbitrary Euclidean ring. The function itself is again very simple. The Euclidean
degree of a Gaussian integer x is the product of x with its complex conjugate, which is
denoted in GAP by GaloisCyc(x, -1).

gap> GaussianIntegersOps.EuclideanDegree := function (GaussInt, x)
> return x * GaloisCyc(x, -1);
> end;;

Once we have defined the Euclidean degree we want to implement the QuotientRemainder
function that gives us the Euclidean quotient and remainder of a division.

gap> GaussianIntegersOps.QuotientRemainder := function (GaussInt, x, y)
> return [RoundCyc(x/y), x - RoundCyc(x/y) * y];
> end;;

Note that in the definition of QuotientRemainder we must use the function RoundCyc, which
views the Gaussian rational x/y as a point in the complex plane and returns the point of
the lattice spanned by 1 and E(4) closest to the point x/y . If we would truncate towards
the origin instead (this is done by the function IntCyc) we could not guarantee that the

1.28. ABOUT DEFINING NEW DOMAINS 175

result of EuclideanRemainder always has Euclidean degree less than the Euclidean degree
of y as the following example shows.

gap> x := 2 - E(4);; EuclideanDegree(GaussianIntegers, x);
5
gap> y := 2 + E(4);; EuclideanDegree(GaussianIntegers, y);
5
gap> q := x / y; q := IntCyc(q);
3/5-4/5*E(4)
0
gap> EuclideanDegree(GaussianIntegers, x - q * y);
5

Now that we have implemented the QuotientRemainder function we can compute greatest
common divisors in the ring of Gaussian integers. This is because we have inherited from
RingOps the general function Gcd that computes the greatest common divisor using Euclid’s
algorithm, which only uses QuotientRemainder (and StandardAssociate to return the
result in a normal form). Of course we can now also compute least common multiples,
because that only uses Gcd.

gap> Gcd(GaussianIntegers, 2, 5 - E(4));
1+E(4)
gap> Lcm(GaussianIntegers, 2, 5 - E(4));
6+4*E(4)

Since the Gaussian integers are a Euclidean ring they are also a unique factorization ring.
The next two functions implement the necessary operations. The first is the test for pri-
mality. A rational integer is a prime in the ring of Gaussian integers if and only if it is
congruent to 3 modulo 4 (the other rational integer primes split into two irreducibles), and
a Gaussian integer that is not a rational integer is a prime if its norm is a rational integer
prime.

gap> GaussianIntegersOps.IsPrime := function (GaussInt, x)
> if IsInt(x) then
> return x mod 4 = 3 and IsPrimeInt(x);
> else
> return IsPrimeInt(x * GaloisCyc(x, -1));
> fi;
> end;;

The factorization is based on the same observation. We compute the Euclidean degree of
the number that we want to factor, and factor this rational integer. Then for every rational
integer prime that is congruent to 3 modulo 4 we get one factor, and we split the other
rational integer primes using the function TwoSquares and test which irreducible divides.

gap> GaussianIntegersOps.Factors := function (GaussInt, x)
> local facs, # factors (result)
> prm, # prime factors of the norm
> tsq; # representation of prm as x^2 + y^2
>
> # handle trivial cases
> if x in [0, 1, -1, E(4), -E(4)] then

176 CHAPTER 1. ABOUT GAP

> return [x];
> fi;
>
> # loop over all factors of the norm of x
> facs := [];
> for prm in Set(FactorsInt(EuclideanDegree(x))) do
>
> # p = 2 and primes p = 1 mod 4 split according to p = x^2+y^2
> if prm = 2 or prm mod 4 = 1 then
> tsq := TwoSquares(prm);
> while IsCycInt(x / (tsq[1]+tsq[2]*E(4))) do
> Add(facs, (tsq[1]+tsq[2]*E(4)));
> x := x / (tsq[1]+tsq[2]*E(4));
> od;
> while IsCycInt(x / (tsq[2]+tsq[1]*E(4))) do
> Add(facs, (tsq[2]+tsq[1]*E(4)));
> x := x / (tsq[2]+tsq[1]*E(4));
> od;
>
> # primes p = 3 mod 4 stay prime
> else
> while IsCycInt(x / prm) do
> Add(facs, prm);
> x := x / prm;
> od;
> fi;
>
> od;
>
> # the first factor takes the unit
> facs[1] := x * facs[1];
>
> # return the result
> return facs;
> end;;

So now we can factorize numbers in the ring of Gaussian integers.
gap> Factors(GaussianIntegers, 10);
[-1-E(4), 1+E(4), 1+2*E(4), 2+E(4)]
gap> Factors(GaussianIntegers, 103);
[103]

Now we have written all the functions for the operations record that implement the oper-
ations. We would like one more thing however. Namely that we can simply write Gcd(
2, 5 - E(4)) without having to specify GaussianIntegers as first argument. Gcd and
the other functions should be clever enough to find out that the arguments are Gaussian
integers and call GaussianIntegers.operations.Gcd automatically.
To do this we must first understand what happens when Gcd is called without a ring as
first argument. For an example suppose that we have called Gcd(66, 123) (and want to

1.28. ABOUT DEFINING NEW DOMAINS 177

compute the gcd over the integers).

First Gcd calls DefaultRing([66, 123]), to obtain a ring that contains 66 and 123.
DefaultRing then calls Domain([66, 123]) to obtain a domain, which need not be
a ring, that contains 66 and 123. Domain is the only function in the whole GAP library
that knows about the various types of elements. So it looks at its argument and decides
to return the domain Integers (which is in fact already a ring, but it could in princi-
ple also return Rationals). DefaultRing now calls Integers.operations.DefaultRing(
[66, 123]) and expects a ring in which the requested gcd computation can be per-
formed. Integers.operations.DefaultRing([66, 123]) also returns Integers. So
DefaultRing returns Integers to Gcd and Gcd finally calls Integers.operations.Gcd(
Integers, 66, 123).

So the first thing we must do is to tell Domain about Gaussian integers. We do this by
extending Domain with the two lines

elif ForAll(elms, IsGaussInt) then
return GaussianIntegers;

so that it now looks as follows.

gap> Domain := function (elms)
> local elm;
> if ForAll(elms, IsInt) then
> return Integers;
> elif ForAll(elms, IsRat) then
> return Rationals;
> elif ForAll(elms, IsFFE) then
> return FiniteFieldElements;
> elif ForAll(elms, IsPerm) then
> return Permutations;
> elif ForAll(elms, IsMat) then
> return Matrices;
> elif ForAll(elms, IsWord) then
> return Words;
> elif ForAll(elms, IsAgWord) then
> return AgWords;
> elif ForAll(elms, IsGaussInt) then
> return GaussianIntegers;
> elif ForAll(elms, IsCyc) then
> return Cyclotomics;
> else
> for elm in elms do
> if IsRec(elm) and IsBound(elm.domain)
> and ForAll(elms, l -> l in elm.domain)
> then
> return elm.domain;
> fi;
> od;
> Error("sorry, the elements lie in no common domain");
> fi;

178 CHAPTER 1. ABOUT GAP

> end;;

Of course we must define a function IsGaussInt, otherwise this could not possibly work.
This function is similar to the membership test we already defined above.

gap> IsGaussInt := function (x)
> return IsCycInt(x) and (NofCyc(x) = 1 or NofCyc(x) = 4);
> end;;

Then we must define a function DefaultRing for the Gaussian integers that does nothing
but return GaussianIntegers.

gap> GaussianIntegersOps.DefaultRing := function (elms)
> return GaussianIntegers;
> end;;

Now we can call Gcd with two Gaussian integers without having to pass GaussianIntegers
as first argument.

gap> Gcd(2, 5 - E(4));
1+E(4)

Of course GAP can not read your mind. In the following example it assumes that you
want to factor 10 over the ring of integers, not over the ring of Gaussian integers (because
Integers is the default ring containing 10). So if you want to factor a rational integer over
the ring of Gaussian integers you must pass GaussianIntegers as first argument.

gap> Factors(10);
[2, 5]
gap> Factors(GaussianIntegers, 10);
[-1-E(4), 1+E(4), 1+2*E(4), 2+E(4)]

This concludes our example. In the file LIBNAME/"gaussian.g" you will also find the defini-
tion of the field of Gaussian rationals. It is so similar to the above definition that there is no
point in discussing it here. The next section shows you what further considerations are nec-
essary when implementing a type of parametrized domains (demonstrated by implementing
full symmetric permutation groups). For further details see chapter 14 for a description of
the Gaussian integers and rationals and chapter 5 for a list of all functions applicable to
rings.

1.29 About Defining New Parametrized Domains

In this section we will show you an example that is slightly more complex than the example
in the previous section. Namely we will demonstrate how one can implement parametrized
domains. As an example we will implement symmetric permutation groups. This works
similar to the implementation of a single domain. Therefore we can be very brief. Of course
you should have read the previous section.

Note that everything defined here is already in the file GRPNAME/"permgrp.grp", so there is
no need for you to type it in. You may however like to make a copy of this file and modify
it.

In the example of the previous section we simply had a variable (GaussianIntegers), whose
value was the domain. This can not work in this example, because there is not one sym-
metric permutation group. The solution is obvious. We simply define a function that takes
the degree and returns the symmetric permutation group of this degree (as a domain).

1.29. ABOUT DEFINING NEW PARAMETRIZED DOMAINS 179

gap> SymmetricPermGroup := function (n)
> local G; # symmetric group on <n> points, result
>
> # make the group generated by (1,n), (2,n), .., (n-1,n)
> G := Group(List([1..n-1], i -> (i,n)), ());
> G.degree := n;
>
> # give it the correct operations record
> G.operations := SymmetricPermGroupOps;
>
> # return the symmetric group
> return G;
> end;;

The key is of course to give the domains returned by SymmetricPermGroup a new operations
record. This operations record will hold functions that are written especially for symmetric
permutation groups. Note that all symmetric groups created by SymmetricPermGroup share
one operations record.

Just as we inherited in the example in the previous section from the operations record
RingOps, here we can inherit from the operations record PermGroupOps (after all, each
symmetric permutation group is also a permutation group).

gap> SymmetricPermGroupOps := Copy(PermGroupOps);

We will now overlay some of the functions in this operations record with new functions
that make use of the fact that the domain is a full symmetric permutation group. The first
function that does this is the membership test function.

gap> SymmetricPermGroupOps.\in := function (g, G)
> return IsPerm(g)
> and (g = ()
> or LargestMovedPointPerm(g) <= G.degree);
> end;;

The most important knowledge for a permutation group is a base and a strong generating
set with respect to that base. It is not important that you understand at this point what
this is mathematically. The important point here is that such a strong generating set with
respect to an appropriate base is used by many generic permutation group functions, most
of which we inherit for symmetric permutation groups. Therefore it is important that we
are able to compute a strong generating set as fast as possible. Luckily it is possible to
simply write down such a strong generating set for a full symmetric group. This is done by
the following function.

gap> SymmetricPermGroupOps.MakeStabChain := function (G, base)
> local sgs, # strong generating system of G wrt. base
> last; # last point of the base
>
> # remove all unwanted points from the base
> base := Filtered(base, i -> i <= G.degree);
>
> # extend the base with those points not already in the base

180 CHAPTER 1. ABOUT GAP

> base := Concatenation(base, Difference([1..G.degree], base));
>
> # take the last point
> last := base[Length(base)];
>
> # make the strong generating set
> sgs := List([1..Length(base)-1], i -> (base[i], last));
>
> # make the stabilizer chain
> MakeStabChainStrongGenerators(G, base, sgs);
> end;;

One of the things that are very easy for symmetric groups is the computation of centralizers
of elements. The next function does this. Again it is not important that you understand
this mathematically. The centralizer of an element g in the symmetric group is generated
by the cycles c of g and an element x for each pair of cycles of g of the same length that
maps one cycle to the other.

gap> SymmetricPermGroupOps.Centralizer := function (G, g)
> local C, # centralizer of g in G, result
> sgs, # strong generating set of C
> gen, # one generator in sgs
> cycles, # cycles of g
> cycle, # one cycle from cycles
> lasts, # lasts[l] is the last cycle of length l
> last, # one cycle from lasts
> i; # loop variable
>
> # handle special case
> if IsPerm(g) and g in G then
>
> # start with the empty strong generating system
> sgs := [];
>
> # compute the cycles and find for each length the last one
> cycles := Cycles(g, [1..G.degree]);
> lasts := [];
> for cycle in cycles do
> lasts[Length(cycle)] := cycle;
> od;
>
> # loop over the cycles
> for cycle in cycles do
>
> # add that cycle itself to the strong generators
> if Length(cycle) <> 1 then
> gen := [1..G.degree];
> for i in [1..Length(cycle)-1] do
> gen[cycle[i]] := cycle[i+1];

1.29. ABOUT DEFINING NEW PARAMETRIZED DOMAINS 181

> od;
> gen[cycle[Length(cycle)]] := cycle[1];
> gen := PermList(gen);
> Add(sgs, gen);
> fi;
>
> # and it can be mapped to the last cycle of this length
> if cycle <> lasts[Length(cycle)] then
> last := lasts[Length(cycle)];
> gen := [1..G.degree];
> for i in [1..Length(cycle)] do
> gen[cycle[i]] := last[i];
> gen[last[i]] := cycle[i];
> od;
> gen := PermList(gen);
> Add(sgs, gen);
> fi;
>
> od;
>
> # make the centralizer
> C := Subgroup(G, sgs);
>
> # make the stabilizer chain
> MakeStabChainStrongGenerators(C, [1..G.degree], sgs);
>
> # delegate general case
> else
> C := PermGroupOps.Centralizer(G, g);
> fi;
>
> # return the centralizer
> return C;
> end;;

Note that the definition C := Subgroup(G, sgs); defines a subgroup of a symmetric
permutation group. But this subgroup is usually not a full symmetric permutation group
itself. Thus C must not have the operations record SymmetricPermGroupOps, instead it
should have the operations record PermGroupOps. And indeed C will have this operations
record. This is because Subgroup calls G.operations.Subgroup, and we inherited this
function from PermGroupOps.

Note also that we only handle one special case in the function above. Namely the compu-
tation of a centralizer of a single element. This function can also be called to compute the
centralizer of a whole subgroup. In this case SymmetricPermGroupOps.Centralizer simply
delegates the problem by calling PermGroupOps.Centralizer.

The next function computes the conjugacy classes of elements in a symmetric group. This
is very easy, because two elements are conjugated in a symmetric group when they have the
same cycle structure. Thus we can simply compute the partitions of the degree, and for

182 CHAPTER 1. ABOUT GAP

each degree we get one conjugacy class.

gap> SymmetricPermGroupOps.ConjugacyClasses := function (G)
> local classes, # conjugacy classes of G, result
> prt, # partition of G
> sum, # partial sum of the entries in prt
> rep, # representative of a conjugacy class of G
> i; # loop variable
>
> # loop over the partitions
> classes := [];
> for prt in Partitions(G.degree) do
>
> # compute the representative of the conjugacy class
> rep := [2..G.degree];
> sum := 1;
> for i in prt do
> rep[sum+i-1] := sum;
> sum := sum + i;
> od;
> rep := PermList(rep);
>
> # add the new class to the list of classes
> Add(classes, ConjugacyClass(G, rep));
>
> od;
>
> # return the classes
> return classes;
> end;;

This concludes this example. You have seen that the implementation of a parametrized
domain is not much more difficult than the implementation of a single domain. You have
also seen how functions that overlay generic functions may delegate problems back to the
generic function. The library file for symmetric permutation groups contain some more
functions for symmetric permutation groups.

1.30 About Defining New Group Elements

In this section we will show how one can add a new type of group elements to GAP. A lot
of group elements in GAP are implemented this way, for example elements of generic factor
groups, or elements of generic direct products.

We will use prime residue classes modulo an integer as our example. They have the advan-
tage that the arithmetic is very simple, so that we can concentrate on the implementation
without being carried away by mathematical details.

Note that everything we define is already in the library in the file LIBNAME/"numtheor.g",
so there is no need for you to type it in. You may however like to make a copy of this file
and modify it.

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 183

We will represent residue classes by records. This is absolutely typical, all group elements
not built into the GAP kernel are realized by records.

To distinguish records representing residue classes from other records we require that residue
class records have a component with the name isResidueClass and the value true. We
also require that they have a component with the name isGroupElement and again the
value true. Those two components are called the tag components.

Next each residue class record must of course have components that tell us which residue
class this record represents. The component with the name representative contains the
smallest nonnegative element of the residue class. The component with the name modulus
contains the modulus. Those two components are called the identifying components.

Finally each residue class record must have a component with the name operations that
contains an appropriate operations record (see below). In this way we can make use of the
possibility to define operations for records (see 45.4 and 45.5).

Below is an example of a residue class record.

r13mod43 := rec(
isGroupElement := true,
isResidueClass := true,
representative := 13,
modulus := 43,
domain := GroupElements,
operations := ResidueClassOps);

The first function that we have to write is very simple. Its only task is to test whether an
object is a residue class. It does this by testing for the tag component isResidueClass.

gap> IsResidueClass := function (obj)
> return IsRec(obj)
> and IsBound(obj.isResidueClass)
> and obj.isResidueClass;
> end;;

Our next function takes a representative and a modulus and constructs a new residue class.
Again this is not very difficult.

gap> ResidueClass := function (representative, modulus)
> local res;
> res := rec();
> res.isGroupElement := true;
> res.isResidueClass := true;
> res.representative := representative mod modulus;
> res.modulus := modulus;
> res.domain := GroupElements;
> res.operations := ResidueClassOps;
> return res;
> end;;

Now we have to define the operations record for residue classes. Remember that this record
contains a function for each binary operation, which is called to evaluate such a binary
operation (see 45.4 and 45.5). The operations =, <, *, /, mod, ^, Comm, and Order are the

184 CHAPTER 1. ABOUT GAP

ones that are applicable to all group elements. The meaning of those operations for group
elements is described in 7.2 and 7.3.

Luckily we do not have to define everything. Instead we can inherit a lot of those functions
from generic group elements. For example, for all group elements g/h should be equivalent
to g*h^-1. So the function for / could simply be function(g,h) return g*h^-1; end.
Note that this function can be applied to all group elements, independently of their type,
because all the dependencies are in * and ^.

The operations record GroupElementOps contains such functions that can be used by all
types of group elements. Note that there is no element that has GroupElementsOps as its
operations record. This is impossible, because there is for example no generic method to
multiply or invert group elements. Thus GroupElementsOps is only used to inherit general
methods as is done below.

gap> ResidueClassOps := Copy(GroupElementOps);;

Note that the copy is necessary, otherwise the following assignments would not only change
ResidueClassOps but also GroupElementOps.

The first function we are implementing is the equality comparison. The required operation
is described simply enough. = should evaluate to true if the operands are equal and false
otherwise. Two residue classes are of course equal if they have the same representative and
the same modulus. One complication is that when this function is called either operand
may not be a residue class. Of course at least one must be a residue class otherwise this
function would not have been called at all.

gap> ResidueClassOps.\= := function (l, r)
> local isEql;
> if IsResidueClass(l) then
> if IsResidueClass(r) then
> isEql := l.representative = r.representative
> and l.modulus = r.modulus;
> else
> isEql := false;
> fi;
> else
> if IsResidueClass(r) then
> isEql := false;
> else
> Error("panic, neither <l> nor <r> is a residue class");
> fi;
> fi;
> return isEql;
> end;;

Note that the quotes around the equal sign = are necessary, otherwise it would not be taken
as a record component name, as required, but as the symbol for equality, which must not
appear at this place.

Note that we do not have to implement a function for the inequality operator <>, because
it is in the GAP kernel implemented by the equivalence l <> r is not l = r .

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 185

The next operation is the comparison. We define that one residue class is smaller than
another residue class if either it has a smaller modulus or, if the moduli are equal, it has a
smaller representative. We must also implement comparisons with other objects.

gap> ResidueClassOps.\< := function (l, r)
> local isLess;
> if IsResidueClass(l) then
> if IsResidueClass(r) then
> isLess := l.representative < r.representative
> or (l.representative = r.representative
> and l.modulus < r.modulus);
> else
> isLess := not IsInt(r) and not IsRat(r)
> and not IsCyc(r) and not IsPerm(r)
> and not IsWord(r) and not IsAgWord(r);
> fi;
> else
> if IsResidueClass(r) then
> isLess := IsInt(l) or IsRat(l)
> or IsCyc(l) or IsPerm(l)
> or IsWord(l) or IsAgWord(l);
> else
> Error("panic, neither <l> nor <r> is a residue class");
> fi;
> fi;
> return isLess;
> end;;

The next operation that we must implement is the multiplication *. This function is quite
complex because it must handle several different tasks. To make its implementation easier
to understand we will start with a very simple–minded one, which only multiplies residue
classes, and extend it in the following paragraphs.

gap> ResidueClassOps.* := function (l, r)
> local prd; # product of l and r, result
> if IsResidueClass(l) then
> if IsResidueClass(r) then
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> prd := ResidueClass(
> l.representative * r.representative,
> l.modulus);
> else
> Error("product of <l> and <r> must be defined");
> fi;
> else
> if IsResidueClass(r) then
> Error("product of <l> and <r> must be defined");
> else

186 CHAPTER 1. ABOUT GAP

> Error("panic, neither <l> nor <r> is a residue class");
> fi;
> fi;
> return prd;
> end;;

This function correctly multiplies residue classes, but there are other products that must
be implemented. First every group element can be multiplied with a list of group elements,
and the result shall be the list of products (see 7.3 and 27.13). In such a case the above
function would only signal an error, which is not acceptable. Therefore we must extend this
definition.

gap> ResidueClassOps.* := function (l, r)
> local prd; # product of l and r, result
> if IsResidueClass(l) then
> if IsResidueClass(r) then
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> prd := ResidueClass(
> l.representative * r.representative,
> l.modulus);
> elif IsList(r) then
> prd := List(r, x -> l * x);
> else
> Error("product of <l> and <r> must be defined");
> fi;
> elif IsList(l) then
> if IsResidueClass(r) then
> prd := List(l, x -> x * r);
> else
> Error("panic: neither <l> nor <r> is a residue class");
> fi;
> else
> if IsResidueClass(r) then
> Error("product of <l> and <r> must be defined");
> else
> Error("panic, neither <l> nor <r> is a residue class");
> fi;
> fi;
> return prd;
> end;;

This function is almost complete. However it is also allowed to multiply a group element
with a subgroup and the result shall be a coset (see 7.85). The operations record of sub-
groups, which are of course also represented by records (see 7.117), contains a function that
constructs such a coset. The problem is that in an expression like subgroup * residue-class,
this function is not called. This is because the multiplication function in the operations
record of the right operand is called if both operands have such a function (see 45.5). Now
in the above case both operands have such a function. The left operand subgroup has the

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 187

operations record GroupOps (or some refinement thereof), the right operand residue-class
has the operations record ResidueClassOps. Thus ResidueClassOps.* is called. But it
does not and also should not know how to construct a coset. The solution is simple. The
multiplication function for residue classes detects this special case and simply calls the
multiplication function of the left operand.

gap> ResidueClassOps.* := function (l, r)
> local prd; # product of l and r, result
> if IsResidueClass(l) then
> if IsResidueClass(r) then
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> prd := ResidueClass(
> l.representative * r.representative,
> l.modulus);
> elif IsList(r) then
> prd := List(r, x -> l * x);
> else
> Error("product of <l> and <r> must be defined");
> fi;
> elif IsList(l) then
> if IsResidueClass(r) then
> prd := List(l, x -> x * r);
> else
> Error("panic: neither <l> nor <r> is a residue class");
> fi;
> else
> if IsResidueClass(r) then
> if IsRec(l) and IsBound(l.operations)
> and IsBound(l.operations.*)
> and l.operations.* <> ResidueClassOps.*
> then
> prd := l.operations.*(l, r);
> else
> Error("product of <l> and <r> must be defined");
> fi;
> else
> Error("panic, neither <l> nor <r> is a residue class");
> fi;
> fi;
> return prd;
> end;;

Now we are done with the multiplication.

Next is the powering operation ^. It is not very complicated. The PowerMod function (see
5.25) does most of what we need, especially the inversion of elements with the Euclidean
algorithm when the exponent is negative. Note however, that the definition of operations
(see 7.3) requires that the conjugation is available as power of a residue class by another

188 CHAPTER 1. ABOUT GAP

residue class. This is of course very easy since residue classes form an abelian group.
gap> ResidueClassOps.\^ := function (l, r)
> local pow;
> if IsResidueClass(l) then
> if IsResidueClass(r) then
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> if GcdInt(r.representative, r.modulus) <> 1 then
> Error("<r> must be invertable");
> fi;
> pow := l;
> elif IsInt(r) then
> pow := ResidueClass(
> PowerMod(l.representative, r, l.modulus),
> l.modulus);
> else
> Error("power of <l> and <r> must be defined");
> fi;
> else
> if IsResidueClass(r) then
> Error("power of <l> and <r> must be defined");
> else
> Error("panic, neither <l> nor <r> is a residue class");
> fi;
> fi;
> return pow;
> end;;

The last function that we have to write is the printing function. This is called to print
a residue class. It prints the residue class in the form ResidueClass(representative,
modulus). It is fairly typical to print objects in such a form. This form has the advantage
that it can be read back, resulting in exactly the same element, yet it is very concise.

gap> ResidueClassOps.Print := function (r)
> Print("ResidueClass(",r.representative,", ",r.modulus,")");
> end;;

Now we are done with the definition of residue classes as group elements. Try them. We
can at this point actually create groups of such elements, and compute in them.
However, we are not yet satisfied. There are two problems with the code we have imple-
mented so far. Different people have different opinions about which of those problems is the
graver one, but hopefully all agree that we should try to attack those problems.
The first problem is that it is still possible to define objects via Group (see 7.9) that are not
actually groups.

gap> G := Group(ResidueClass(13,43), ResidueClass(13,41));
Group(ResidueClass(13, 43), ResidueClass(13, 41))

The other problem is that groups of residue classes constructed with the code we have
implemented so far are not handled very efficiently. This is because the generic group

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 189

algorithms are used, since we have not implemented anything else. For example to test
whether a residue class lies in a residue class group, all elements of the residue class group
are computed by a Dimino algorithm, and then it is tested whether the residue class is an
element of this proper set.

To solve the first problem we must first understand what happens with the above code if we
create a group with Group(res1, res2...). Group tries to find a domain that contains
all the elements res1 , res2 , etc. It first calls Domain([res1, res2...]) (see 4.5).
Domain looks at the residue classes and sees that they all are records and that they all
have a component with the name domain. This is understood to be a domain in which the
elements lie. And in fact res1 in GroupElements is true, because GroupElements accepts
all records with tag isGroupElement. So Domain returns GroupElements. Group then calls
GroupElements.operations.Group(GroupElements,[res1,res2...],id), where id is the
identity residue class, obtained by res1 ^ 0, and returns the result.

GroupElementsOps.Group is the function that actually creates the group. It does this by
simply creating a record with its second argument as generators list, its third argument
as identity, and the generic GroupOps as operations record. It ignores the first argument,
which is passed only because convention dictates that a dispatcher passes the domain as
first argument.

So to solve the first problem we must achieve that another function instead of the generic
function GroupElementsOps.Group is called. This can be done by persuading Domain to
return a different domain. And this will happen if the residue classes hold this other domain
in their domain component.

The obvious choice for such a domain is the (yet to be written) domain ResidueClasses.
So ResidueClass must be slightly changed.

gap> ResidueClass := function (representative, modulus)
> local res;
> res := rec();
> res.isGroupElement := true;
> res.isResidueClass := true;
> res.representative := representative mod modulus;
> res.modulus := modulus;
> res.domain := ResidueClasses;
> res.operations := ResidueClassOps;
> return res;
> end;;

The main purpose of the domain ResidueClasses is to construct groups, so there is very
little we have to do. And in fact most of that can be inherited from GroupElements.

gap> ResidueClasses := Copy(GroupElements);;
gap> ResidueClasses.name := "ResidueClasses";;
gap> ResidueClassesOps := Copy(GroupElementsOps);;
gap> ResidueClasses.operations := ResidueClassesOps;;

So now we must implement ResidueClassesOps.Group, which should check whether the
passed elements do in fact form a group. After checking it simply delegates to the generic
function GroupElementsOps.Group to create the group as before.

gap> ResidueClassesOps.Group := function (ResidueClasses, gens, id)

190 CHAPTER 1. ABOUT GAP

> local g; # one generator from gens
> for g in gens do
> if g.modulus <> id.modulus then
> Error("the generators must all have the same modulus");
> fi;
> if GcdInt(g.representative, g.modulus) <> 1 then
> Error("the generators must all be prime residue classes");
> fi;
> od;
> return GroupElementOps.Group(ResidueClasses, gens, id);
> end;;

This solves the first problem. To solve the second problem, i.e., to make operations with
residue class groups more efficient, we must extend the function ResidueClassesOps.Group.
It now enters a new operations record into the group. It also puts the modulus into the
group record, so that it is easier to access.

gap> ResidueClassesOps.Group := function (ResidueClasses, gens, id)
> local G, # group G, result
> gen; # one generator from gens
> for gen in gens do
> if gen.modulus <> id.modulus then
> Error("the generators must all have the same modulus");
> fi;
> if GcdInt(gen.representative, gen.modulus) <> 1 then
> Error("the generators must all be prime residue classes");
> fi;
> od;
> G := GroupElementsOps.Group(ResidueClasses, gens, id);
> G.modulus := id.modulus;
> G.operations := ResidueClassGroupOps;
> return G;
> end;;

Of course now we must build such an operations record. Luckily we do not have to implement
all functions, because we can inherit a lot of functions from GroupOps. This is done by
copying GroupOps as we have done before for ResidueClassOps and ResidueClassesOps.

gap> ResidueClassGroupOps := Copy(GroupOps);;

Now the first function that we must write is the Subgroup function to ensure that not only
groups constructed by Group have the correct operations record, but also subgroups of those
groups created by Subgroup. As in Group we only check the arguments and then leave the
work to GroupOps.Subgroup.

gap> ResidueClassGroupOps.Subgroup := function (G, gens)
> local S, # subgroup of G, result
> gen; # one generator from gens
> for gen in gens do
> if gen.modulus <> G.modulus then
> Error("the generators must all have the same modulus");
> fi;

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 191

> if GcdInt(gen.representative, gen.modulus) <> 1 then
> Error("the generators must all be prime residue classes");
> fi;
> od;
> S := GroupOps.Subgroup(G, gens);
> S.modulus := G.modulus;
> S.operations := ResidueClassGroupOps;
> return S;
> end;;

The first function that we write especially for residue class groups is SylowSubgroup. Since
residue class groups are abelian we can compute a Sylow subgroup of such a group by simply
taking appropriate powers of the generators.

gap> ResidueClassGroupOps.SylowSubgroup := function (G, p)
> local S, # Sylow subgroup of G, result
> gen, # one generator of G
> ord, # order of gen
> gens; # generators of S
> gens := [];
> for gen in G.generators do
> ord := OrderMod(gen.representative, G.modulus);
> while ord mod p = 0 do ord := ord / p; od;
> Add(gens, gen ^ ord);
> od;
> S := Subgroup(Parent(G), gens);
> return S;
> end;;

To allow the other functions that are applicable to residue class groups to work efficiently
we now want to make use of the fact that residue class groups are direct products of cyclic
groups and that we know what those factors are and how we can project onto those factors.

To do this we write ResidueClassGroupOps.MakeFactors that adds the components facts,
roots, sizes, and sgs to the group record G . This information, detailed below, will enable
other functions to work efficiently with such groups. Creating such information is a fairly
typical thing, for example for permutation groups the corresponding information is the
stabilizer chain computed by MakeStabChain.

G.facts will be the list of prime power factors of G.modulus. Actually this is a little bit
more complicated, because the residue class group modulo the largest power q of 2 that
divides G.modulus need not be cyclic. So if q is a multiple of 4, G.facts[1] will be 4,
corresponding to the projection of G into (Z/4Z)∗ (of size 2), furthermore if q is a multiple of
8, G.facts[2] will be q , corresponding to the projection of G into the subgroup generated
by 5 in (Z/qZ)∗ (of size q/4).

G.roots will be a list of primitive roots, i.e., of generators of the corresponding factors in
G.facts. G.sizes will be a list of the sizes of the corresponding factors in G.facts, i.e.,
G.sizes[i] = Phi(G.facts[i]). (If G.modulus is a multiple of 8, G.roots[2] will
be 5, and G.sizes[2] will be q/4.)

Now we can represent each element g of the group G by a list e, called the exponent
vector, of the length of G.facts, where e[i] is the logarithm of g.representative mod

192 CHAPTER 1. ABOUT GAP

G.facts[i] with respect to G.roots[i]. The multiplication of elements of G corresponds
to the componentwise addition of their exponent vectors, where we add modulo G.sizes[i]
in the i -th component. (Again special consideration are necessary if G.modulus is divisible
by 8.)

Next we compute the exponent vectors of all generators of G , and represent this information
as a matrix. Then we bring this matrix into upper triangular form, with an algorithm that
is very much like the ordinary Gaussian elimination, modified to account for the different
sizes of the components. This upper triangular matrix of exponent vectors is the component
G.sgs. This new matrix obviously still contains the exponent vectors of a generating system
of G , but a much nicer one, which allows us to tackle problems one component at a time. (It
is not necessary that you fully check this, the important thing here is not the mathematical
side.)

gap> ResidueClassGroupOps.MakeFactors := function (G)
> local p, q, # prime factor of modulus and largest power
> r, s, # two rows of the standard generating system
> g, # extended gcd of leading entries in r, s
> x, y, # two entries in r and s
> i, k, l; # loop variables
>
> # find the factors of the direct product
> G.facts := [];
> G.roots := [];
> G.sizes := [];
> for p in Set(Factors(G.modulus)) do
> q := p;
> while G.modulus mod (p*q) = 0 do q := p*q; od;
> if q mod 4 = 0 then
> Add(G.facts, 4);
> Add(G.roots, 3);
> Add(G.sizes, 2);
> fi;
> if q mod 8 = 0 then
> Add(G.facts, q);
> Add(G.roots, 5);
> Add(G.sizes, q/4);
> fi;
> if p <> 2 then
> Add(G.facts, q);
> Add(G.roots, PrimitiveRootMod(q));
> Add(G.sizes, (p-1)*q/p);
> fi;
> od;
>
> # represent each generator in this factorization
> G.sgs := [];
> for k in [1 .. Length(G.generators)] do
> G.sgs[k] := [];

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 193

> for i in [1 .. Length(G.facts)] do
> if G.facts[i] mod 8 = 0 then
> if G.generators[k].representative mod 4 = 1 then
> G.sgs[k][i] := LogMod(
> G.generators[k].representative,
> G.roots[i], G.facts[i]);
> else
> G.sgs[k][i] := LogMod(
> -G.generators[k].representative,
> G.roots[i], G.facts[i]);
> fi;
> else
> G.sgs[k][i] := LogMod(
> G.generators[k].representative,
> G.roots[i], G.facts[i]);
> fi;
> od;
> od;
> for i in [Length(G.sgs) + 1 .. Length(G.facts)] do
> G.sgs[i] := 0 * G.facts;
> od;
>
> # bring this matrix to diagonal form
> for i in [1 .. Length(G.facts)] do
> r := G.sgs[i];
> for k in [i+1 .. Length(G.sgs)] do
> s := G.sgs[k];
> g := Gcdex(r[i], s[i]);
> for l in [i .. Length(r)] do
> x := r[l]; y := s[l];
> r[l] := (g.coeff1 * x + g.coeff2 * y) mod G.sizes[l];
> s[l] := (g.coeff3 * x + g.coeff4 * y) mod G.sizes[l];
> od;
> od;
> s := [];
> x := G.sizes[i] / GcdInt(G.sizes[i], r[i]);
> for l in [1 .. Length(r)] do
> s[l] := (x * r[l]) mod G.sizes[l];
> od;
> Add(G.sgs, s);
> od;
>
> end;;

With the information computed by MakeFactors it is now of course very easy to compute
the size of a residue class group. We just look at the G.sgs, and multiply the orders of the
leading exponents of the nonzero exponent vectors.

gap> ResidueClassGroupOps.Size := function (G)

194 CHAPTER 1. ABOUT GAP

> local s, # size of G, result
> i; # loop variable
> if not IsBound(G.facts) then
> G.operations.MakeFactors(G);
> fi;
> s := 1;
> for i in [1 .. Length(G.facts)] do
> s := s * G.sizes[i] / GcdInt(G.sizes[i], G.sgs[i][i]);
> od;
> return s;
> end;;

The membership test is a little bit more complicated. First we test that the first argument
is really a residue class with the correct modulus. Then we compute the exponent vector of
this residue class and reduce this exponent vector using the upper triangular matrix G.sgs.

gap> ResidueClassGroupOps.\in := function (res, G)
> local s, # exponent vector of res
> g, # extended gcd
> x, y, # two entries in s and G.sgs[i]
> i, l; # loop variables
> if not IsResidueClass(res)
> or res.modulus <> G.modulus
> or GcdInt(res.representative, res.modulus) <> 1
> then
> return false;
> fi;
> if not IsBound(G.facts) then
> G.operations.MakeFactors(G);
> fi;
> s := [];
> for i in [1 .. Length(G.facts)] do
> if G.facts[i] mod 8 = 0 then
> if res.representative mod 4 = 1 then
> s[i] := LogMod(res.representative,
> G.roots[i], G.facts[i]);
> else
> s[i] := LogMod(-res.representative,
> G.roots[i], G.facts[i]);
> fi;
> else
> s[i] := LogMod(res.representative,
> G.roots[i], G.facts[i]);
> fi;
> od;
> for i in [1 .. Length(G.facts)] do
> if s[i] mod GcdInt(G.sizes[i], G.sgs[i][i]) <> 0 then
> return false;
> fi;

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 195

> g := Gcdex(s[i], G.sgs[i][i]);
> for l in [i .. Length(G.facts)] do
> x := s[l]; y := G.sgs[i][l];
> s[l] := (g.coeff3 * x + g.coeff4 * y) mod G.sizes[l];
> od;
> od;
> return true;
> end;;

We also add a function Random that works by creating a random exponent as a random
linear combination of the exponent vectors in G.sgs, and converts this exponent vector to
a residue class. (The main purpose of this function is to allow you to create random test
examples for the other functions.)

gap> ResidueClassGroupOps.Random := function (G)
> local s, # exponent vector of random element
> r, # vector of remainders in each factor
> i, k, l; # loop variables
> if not IsBound(G.facts) then
> G.operations.MakeFactors(G);
> fi;
> s := 0 * G.facts;
> for i in [1 .. Length(G.facts)] do
> l := G.sizes[i] / GcdInt(G.sizes[i], G.sgs[i][i]);
> k := Random([0 .. l-1]);
> for l in [i .. Length(s)] do
> s[l] := (s[l] + k * G.sgs[i][l]) mod G.sizes[l];
> od;
> od;
> r := [];
> for l in [1 .. Length(s)] do
> r[l] := PowerModInt(G.roots[l], s[l], G.facts[l]);
> if G.facts[l] mod 8 = 0 and r[1] = 3 then
> r[l] := G.facts[l] - r[l];
> fi;
> od;
> return ResidueClass(ChineseRem(G.facts, r), G.modulus);
> end;;

There are a lot more functions that would benefit from being implemented especially for
residue class groups. We do not show them here, because the above functions already
displayed how such functions can be written.

To round things up, we finally add a function that constructs the full residue class group
given a modulus m. This function is totally independent of the implementation of residue
classes and residue class groups. It only has to find a (minimal) system of generators of the
full prime residue classes group, and to call Group to construct this group. It also adds the
information entry size to the group record, of course with the value φ(n).

gap> PrimeResidueClassGroup := function (m)
> local G, # group Z/mZ, result

196 CHAPTER 1. ABOUT GAP

> gens, # generators of G
> p, q, # prime and prime power dividing m
> r, # primitive root modulo q
> g; # is = r mod q and = 1 mod m/q
>
> # add generators for each prime power factor q of m
> gens := [];
> for p in Set(Factors(m)) do
> q := p;
> while m mod (q * p) = 0 do q := q * p; od;
>
> # (Z/4Z)^* = < 3 >
> if q = 4 then
> r := 3;
> g := r + q * (((1/q mod (m/q)) * (1 - r)) mod (m/q));
> Add(gens, ResidueClass(g, m));
>
> # (Z/8nZ)^* = < 5, -1 > is not cyclic
> elif q mod 8 = 0 then
> r := q-1;
> g := r + q * (((1/q mod (m/q)) * (1 - r)) mod (m/q));
> Add(gens, ResidueClass(g, m));
> r := 5;
> g := r + q * (((1/q mod (m/q)) * (1 - r)) mod (m/q));
> Add(gens, ResidueClass(g, m));
>
> # for odd q, (Z/qZ)^* is cyclic
> elif q <> 2 then
> r := PrimitiveRootMod(q);
> g := r + q * (((1/q mod (m/q)) * (1 - r)) mod (m/q));
> Add(gens, ResidueClass(g, m));
> fi;
>
> od;
>
> # return the group generated by gens
> G := Group(gens, ResidueClass(1, m));
> G.size := Phi(n);
> return G;
> end;;

There is one more thing that we can learn from this example. Mathematically a residue
class is not only a group element, but a set as well. We can reflect this in GAP by turning
residue classes into domains (see 4). Section 1.28 gives an example of how to implement a
new domain, so we will here only show the code with few comments.

First we must change the function that constructs a residue class, so that it enters the
necessary fields to tag this record as a domain. It also adds the information that residue
classes are infinite.

1.30. ABOUT DEFINING NEW GROUP ELEMENTS 197

gap> ResidueClass := function (representative, modulus)
> local res;
> res := rec();
> res.isGroupElement := true;
> res.isDomain := true;
> res.isResidueClass := true;
> res.representative := representative mod modulus;
> res.modulus := modulus;
> res.isFinite := false;
> res.size := "infinity";
> res.domain := ResidueClasses;
> res.operations := ResidueClassOps;
> return res;
> end;;

The initialization of the ResidueClassOps record must be changed too, because now we
want to inherit both from GroupElementsOps and DomainOps. This is done by the func-
tion MergedRecord, which takes two records and returns a new record that contains all
components from either record.

Note that the record returned by MergedRecord does not have those components that appear
in both arguments. This forces us to explicitly write down from which record we want to
inherit those functions, or to define them anew. In our example the components common to
GroupElementOps and DomainOps are only the equality and ordering functions, which we
have to define anyhow. (This solution for the problem of which definition to choose in the
case of multiple inheritance is also taken by C++.)

With this function definition we can now initialize ResidueClassOps.

gap> ResidueClassOps := MergedRecord(GroupElementOps, DomainOps);;

Now we add all functions to this record as described above.

Next we add a function to the operations record that tests whether a certain object is in a
residue class.

gap> ResidueClassOps.\in := function (element, class)
> if IsInt(element) then
> return (element mod class.modulus = class.representative);
> else
> return false;
> fi;
> end;;

Finally we add a function to compute the intersection of two residue classes.

gap> ResidueClassOps.Intersection := function (R, S)
> local I, # intersection of R and S, result
> gcd; # gcd of the moduli
> if IsResidueClass(R) then
> if IsResidueClass(S) then
> gcd := GcdInt(R.modulus, S.modulus);
> if R.representative mod gcd
> <> S.representative mod gcd

198 CHAPTER 1. ABOUT GAP

> then
> I := [];
> else
> I := ResidueClass(
> ChineseRem(
> [R.modulus, S.modulus] ,
> [R.representative, S.representative]),
> Lcm(R.modulus, S.modulus));
> fi;
> else
> I := DomainOps.Intersection(R, S);
> fi;
> else
> I := DomainOps.Intersection(R, S);
> fi;
> return I;
> end;;

There is one further thing that we have to do. When Group is called with a single argument
that is a domain, it assumes that you want to create a new group such that there is a
bijection between the original domain and the new group. This is not what we want here.
We want that in this case we get the cyclic group that is generated by the single residue
class. (This overloading of Group is probably a mistake, but so is the overloading of residue
classes, which are both group elements and domains.) The following definition solves this
problem.

gap> ResidueClassOps.Group := function (R)
> return ResidueClassesOps.Group(ResidueClasses, [R], R^0);
> end;;

This concludes our example. There are however several further things that you could do.
One is to add functions for the quotient, the modulus, etc. Another is to fix the functions
so that they do not hang if asked for the residue class group mod 1. Also you might try
to implement residue class rings analogous to residue class groups. Finally it might be
worthwhile to improve the speed of the multiplication of prime residue classes. This can be
done by doing some precomputation in ResidueClass and adding some information to the
residue class record for prime residue classes ([Mon85]).

Chapter 2

The Programming Language

This chapter describes the GAP programming language. It should allow you in principle to
predict the result of each and every input. In order to know what we are talking about, we
first have to look more closely at the process of interpretation and the various representations
of data involved.

First we have the input to GAP, given as a string of characters. How those characters
enter GAP is operating system dependent, e.g., they might be entered at a terminal, pasted
with a mouse into a window, or read from a file. The mechanism does not matter. This
representation of expressions by characters is called the external representation of the
expression. Every expression has at least one external representation that can be entered
to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to
an internal representation. At this point the input is analyzed and inputs that are not legal
external representations, according to the rules given below, are rejected as errors. Those
rules are usually called the syntax of a programming language.

The internal representation created by reading is called either an expression or a state-
ment. Later we will distinguish between those two terms, however now we will use them
interchangeably. The exact form of the internal representation does not matter. It could be
a string of characters equal to the external representation, in which case the reading would
only need to check for errors. It could be a series of machine instructions for the processor
on which GAP is running, in which case the reading would more appropriately be called
compilation. It is in fact a tree–like structure.

After the input has been read it is again transformed in a process called evaluation or
execution. Later we will distinguish between those two terms too, but for the moment
we will use them interchangeably. The name hints at the nature of this process, it replaces
an expression with the value of the expression. This works recursively, i.e., to evaluate an
expression first the subexpressions are evaluated and then the value of the expression is
computed according to rules given below from those values. Those rules are usually called
the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. The set of values is of course
a much smaller set than the set of expressions; for every value there are several expressions

199

200 CHAPTER 2. THE PROGRAMMING LANGUAGE

that will evaluate to this value. Again the form in which such a value is represented internally
does not matter. It is in fact a tree–like structure again.

The last process is called printing. It takes the value produced by the evaluation and
creates an external representation, i.e., a string of characters again. What you do with this
external representation is up to you. You can look at it, paste it with the mouse into another
window, or write it to a file.

Lets look at an example to make this more clear. Suppose you type in the following string
of 8 characters

1 + 2 * 3;

GAP takes this external representation and creates a tree like internal representation, which
we can picture as follows

+
/ \

1 *
/ \
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression
2*3. Again to do this GAP first evaluates its subexpressions 2 and 3. However they are
so simple that they are their own value, we say that they are self–evaluating. After this
has been done, the rule for * tells us that the value is the product of the values of the two
subexpressions, which in this case is clearly 6. Combining this with the value of the left
operand of the +, which is self–evaluating too gives us the value of the whole expression 7.
This is then printed, i.e., converted into the external representation consisting of the single
character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how
its value is computed in terms of the values of the subexpressions. The syntactic rules are
given in sections 2.1, 2.2, 2.3, 2.4, 2.5, and 2.20, the semantic rules are given in sections 2.6,
2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, and the chapters describing
the individual data types.

2.1 Lexical Structure

The input of GAP consists of sequences of the following characters.

Digits, uppercase and lowercase letters, space, tab, newline, and the special characters

" ’ () * + , _
. / : ; < = > ~
[\] ^ _ { } #

Other characters will be signalled as illegal. Inside strings and comments the full character
set supported by the computer is allowed.

2.2 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess,
called scanning, that assembles the characters into symbols. A symbol is a sequence of

2.3. WHITESPACES 201

characters that form a lexical unit. The set of symbols consists of keywords, identifiers,
strings, integers, and operator and delimiter symbols.

A keyword is a reserved word consisting entirely of lowercase letters (see 2.4). An identifier
is a sequence of letters and digits that contains at least one letter and is not a keyword
(see 2.5). An integer is a sequence of digits (see 10). A string is a sequence of arbitrary
characters enclosed in double quotes (see 30).

Operator and delimiter symbols are

+ - * / ^ ~
= <> < <= > >=
:= . .. -> , ;
[] { } ()

Note that during the process of scanning also all whitespace is removed (see 2.3).

2.3 Whitespaces

The characters space, tab, newline, and return are called whitespace characters. Whites-
pace is used as necessary to separate lexical symbols, such as integers, identifiers, or key-
words. For example Thorondor is a single identifier, while Th or ondor is the keyword or
between the two identifiers Th and ondor. Whitespace may occur between any two sym-
bols, but not within a symbol. Two or more adjacent whitespaces are equivalent to a single
whitespace. Apart from the role as separator of symbols, whitespaces are otherwise insignif-
icant. Whitespaces may also occur inside a string, where they are significant. Whitespaces
should also be used freely for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and
continues to the end of the line on which the comment character appears. The whole
comment, including # and the newline character is treated as a single whitespace. Inside a
string, the comment character # looses its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if i < 0 then # if i is negative
a := -i; # take its inverse

else # otherwise
a := i; # take itself

fi;

(which by the way shows that it is possible to write superfluous comments). However the
first statement is not equivalent to

ifi<0thena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly
then and a, and else and a must be separated.

202 CHAPTER 2. THE PROGRAMMING LANGUAGE

2.4 Keywords

Keywords are reserved words that are used to denote special operations or are part of
statements. They must not be used as identifiers. The keywords are

and do elif else end fi
for function if in local mod
not od or repeat return then
until while quit

Note that all keywords are written in lowercase. For example only else is a keyword; Else,
eLsE, ELSE and so forth are ordinary identifiers. Keywords must not contain whitespace,
for example el if is not the same as elif.

2.5 Identifiers

An identifier is used to refer to a variable (see 2.7). An identifier consists of letters, digits,
and underscores , and must contain at least one letter or underscore. An identifier is
terminated by the first character not in this class. Examples of valid identifiers are

a foo aLongIdentifier
hello Hello HELLO
x100 100x _100
some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed
by a character is equivalent to the character, except that this escape sequence is considered
to be an ordinary letter. For example G\(2\,5\) is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example * and \mod
are identifier.

The length of identifiers is not limited, however only the first 1023 characters are significant.
The escape sequence \newline is ignored, making it possible to split long identifiers over
multiple lines.

2.6 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are
executed to produce a side effect and return no value are called statements (see 2.11).
Expressions appear as right hand sides of assignments (see 2.12), as actual arguments in
function calls (see 2.8), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression,
whose value is the integer 12. The external representation of this integer is the character
sequence 12, i.e., this sequence is output if the integer is printed. This sequence is another
expression whose value is the integer 12. The process of finding the value of an expression
is done by the interpreter and is called the evaluation of the expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals
(see 2.7, 2.8, 10, 20, 30, 2.18, 27, 45), are the simplest cases of expressions.

2.7. VARIABLES 203

Expressions, for example the simple expressions mentioned above, can be combined with
the operators to form more complex expressions. Of course those expressions can then be
combined further with the operators to form even more complex expressions. The operators
fall into three classes. The comparisons are =, <>, <=, >, >=, and in (see 2.9 and 27.14).
The arithmetic operators are +, -, *, /, mod, and ^ (see 2.10). The logical operators
are not, and, and or (see 44.2).

gap> 2 * 2; # a very simple expression with value
4
gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true # a more complex expression

2.7 Variables

A variable is a location in a GAP program that points to a value. We say the variable is
bound to this value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a
value by assigning this value to the variable (see 2.12). Because of this we sometimes say
that a variable that is not bound to any value has no assigned value. Assignment is in fact
the only way by which a variable, which is not an argument of a function, can be bound to
a value. After a variable has been bound to a value an assignment can also be used to bind
the variable to another value.

A special class of variables are arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call
(see 2.8).

Each variable has a name that is also called its identifier. This is because in a given scope
an identifier identifies a unique variable (see 2.5). A scope is a lexical part of a program text.
There is the global scope that encloses the entire program text, and there are local scopes
that range from the function keyword, denoting the beginning of a function definition, to
the corresponding end keyword. A local scope introduces new variables, whose identifiers
are given in the formal argument list and the local declaration of the function (see 2.18).
Usage of an identifier in a program text refers to the variable in the innermost scope that
has this identifier as its name. Because this mapping from identifiers to variables is done
when the program is read, not when it is executed, GAP is said to have lexical scoping. The
following example shows how one identifier refers to different variables at different points in
the program text.

g := 0; # global variable g
x := function (a, b, c)

local y;
g := c; # c refers to argument c of function x
y := function (y)

local d, e, f;
d := y; # y refers to argument y of function y
e := b; # b refers to argument b of function x
f := g; # g refers to global variable g
return d + e + f;

end;

204 CHAPTER 2. THE PROGRAMMING LANGUAGE

return y(a); # y refers to local y of function x
end;

It is important to note that the concept of a variable in GAP is quite different from the
concept of a variable in programming languages like PASCAL. In those languages a variable
denotes a block of memory. The value of the variable is stored in this block. So in those
languages two variables can have the same value, but they can never have identical values,
because they denote different blocks of memory. (Note that PASCAL has the concept of
a reference argument. It seems as if such an argument and the variable used in the actual
function call have the same value, since changing the argument’s value also changes the value
of the variable used in the actual function call. But this is not so; the reference argument is
actually a pointer to the variable used in the actual function call, and it is the compiler that
inserts enough magic to make the pointer invisible.) In order for this to work the compiler
needs enough information to compute the amount of memory needed for each variable in a
program, which is readily available in the declarations PASCAL requires for every variable.
In GAP on the other hand each variable justs points to a value.

2.8 Function Calls

function-var()
function-var(arg-expr {, arg-expr})

The function call has the effect of calling the function function-var . The precise semantics
are as follows.
First GAP evaluates the function-var . Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, namely it can for example be a selection of a list element
list-var[int-expr], or a selection of a record component record-var.ident . In any case GAP
tests whether the value is a function. If it is not, GAP signals an error.
Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an
error. An exception is the case when there is exactly one formal argument with the name
arg, in which case any number of actual arguments is allowed.
Now GAP allocates for each formal argument and for each formal local a new variable.
Remember that a variable is a location in a GAP program that points to a value. Thus for
each formal argument and for each formal local such a location is allocated.
Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created
variables corresponding to the formal arguments. Of course the first value is assigned to
the new variable corresponding to the first formal argument, the second value is assigned to
the new variable corresponding to the second formal argument, and so on. However, GAP
does not make any guarantee about the order in which the arguments are evaluated. They
might be evaluated left to right, right to left, or in any other order, but each argument is
evaluated once. An exception again occurs if the function has only one formal argument
with the name arg. In this case the values of all the actual arguments are stored in a list
and this list is assigned to the new variable corresponding to the formal argument arg.
The new variables corresponding to the formal locals are initially not bound to any value.
So trying to evaluate those variables before something has been assigned to them will signal
an error.

2.9. COMPARISONS 205

Now the body of the function, which is a statement, is executed. If the identifier of one of
the formal arguments or formal locals appears in the body of the function it refers to the
new variable that was allocated for this formal argument or formal local, and evaluates to
the value of this variable.

If during the execution of the body of the function a return statement with an expression
(see 2.19) is executed, execution of the body is terminated and the value of the function call
is the value of the expression of the return. If during the execution of the body a return
statement without an expression is executed, execution of the body is terminated and the
function call does not produce a value, in which case we call this call a procedure call (see
2.13). If the execution of the body completes without execution of a return statement, the
function call again produces no value, and again we talk about a procedure call.

gap> Fibonacci(11);
a call to the function Fibonacci with actual argument 11

89

gap> G.operations.RightCosets(G, Intersection(U, V));;
a call to the function in G.operations.RightCosets
where the second actual argument is another function call

2.9 Comparisons

left-expr = right-expr
left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal
and to false otherwise. Likewise <> tests for inequality of its two operands. Note that
any two objects can be compared, i.e., = and <> will never signal an error. For each type
of objects the definition of equality is given in the respective chapter. Objects of different
types are never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr
left-expr > right-expr
left-expr <= right-expr
left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal
of its two operands. For each type of objects the definition of the ordering is given in the
respective chapter. The ordering of objects of different types is as follows. Rationals are
smallest, next are cyclotomics, followed by finite field elements, permutations, words, words
in solvable groups, boolean values, functions, lists, and records are largest.

Comparison operators, which includes the operator in (see 27.14) are not associative, i.e.,
it is not allowed to write a = b <> c = d , you must use (a = b) <> (c = d) instead.
The comparison operators have higher precedence than the logical operators (see 44.2), but
lower precedence than the arithmetic operators (see 2.10). Thus, for example, a * b = c
and d is interpreted, ((a * b) = c) and d).

gap> 2 * 2 + 9 = Fibonacci(7); # a comparison where the left
true # operand is an expression

206 CHAPTER 2. THE PROGRAMMING LANGUAGE

2.10 Operations

+ right-expr
- right-expr
left-expr + right-expr
left-expr - right-expr
left-expr * right-expr
left-expr / right-expr
left-expr mod right-expr
left-expr ^ right-expr

The arithmetic operators are +, -, *, /, mod, and ^. The meanings (semantic) of those
operators generally depend on the types of the operands involved, and they are defined in
the various chapters describing the types. However basically the meanings are as follows.

+ denotes the addition, and - the subtraction of ring and field elements. * is the multi-
plication of group elements, / is the multiplication of the left operand with the inverse of
the right operand. mod is only defined for integers and rationals and denotes the modulo
operation. + and - can also be used as unary operations. The unary + is ignored and unary
- is equivalent to multiplication by -1. ^ denotes powering of a group element if the right
operand is an integer, and is also used to denote operation if the right operand is a group
element.

The precedence of those operators is as follows. The powering operator ^ has the highest
precedence, followed by the unary operators + and -, which are followed by the multiplica-
tive operators *, /, and mod, and the additive binary operators + and - have the lowest
precedence. That means that the expression -2 ^ -2 * 3 + 1 is interpreted as (-(2 ^
(-2)) * 3) + 1. If in doubt use parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows.^ is not associative, i.e., it is
illegal to write 2^3^4, use parentheses to clarify whether you mean (2^3) ^ 4 or 2 ^ (3^4).
The unary operators + and - are right associative, because they are written to the left of
their operands. *, /, mod, +, and - are all left associative, i.e., 1-2-3 is interpreted as
(1-2)-3 not as 1-(2-3). Again, if in doubt use parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 2.9
and 27.14) and the logical operators (see 44.2). Thus, for example, a * b = c and d is
interpreted, ((a * b) = c) and d .

gap> 2 * 2 + 9; # a very simple arithmetic expression
13

2.11 Statements

Assignments (see 2.12), Procedure calls (see 2.13), if statements (see 2.14), while (see
2.15), repeat (see 2.16) and for loops (see 2.17), and the return statement (see 2.19) are
called statements. They can be entered interactively or be part of a function definition.
Every statement must be terminated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect.
For example an assignment has the effect of assigning a value to a variable, a for loop has
the effect of executing a statement sequence for all elements in a list and so on. We will

2.12. ASSIGNMENTS 207

talk about evaluation of expressions but about execution of statements to emphasize this
difference.

It is possible to use expressions as statements. However this does cause a warning.

gap> if i <> 0 then k = 16/i; fi;
Syntax error: warning, this statement has no effect
if i <> 0 then k = 16/i; fi;

^

As you can see from the example this is useful for those users who are used to languages
where = instead of := denotes assignment.

A sequence of one or more statements is a statement sequence, and may occur everywhere
instead of a single statement. There is nothing like PASCAL’s BEGIN-END, instead each
construct is terminated by a keyword. The most simple statement sequence is a single
semicolon, which can be used as an empty statement sequence.

2.12 Assignments

var := expr;

The assignment has the effect of assigning the value of the expressions expr to the variable
var .

The variable var may be an ordinary variable (see 2.7), a list element selection list-var[int-
expr] (see 27.6) or a record component selection record-var.ident (see 45.2). Since a list
element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable.
For example a variable with an integer value may be assigned a permutation or a list or
anything else.

If the expression expr is a function call then this function must return a value. If the
function does not return a value an error is signalled and you enter a break loop (see 3.2).
As usual you can leave the break loop with quit;. If you enter return return-expr; the
value of the expression return-expr is assigned to the variable, and execution continues after
the assignment.

gap> S6 := rec(size := 720);; S6;
rec(
size := 720)

gap> S6.generators := [(1,2), (1,2,3,4,5)];; S6;
rec(
size := 720,
generators := [(1,2), (1,2,3,4,5)])

gap> S6.generators[2] := (1,2,3,4,5,6);; S6;
rec(
size := 720,
generators := [(1,2), (1,2,3,4,5,6)])

208 CHAPTER 2. THE PROGRAMMING LANGUAGE

2.13 Procedure Calls

procedure-var();
procedure-var(arg-expr {, arg-expr});

The procedure call has the effect of calling the procedure procedure-var . A procedure call is
done exactly like a function call (see 2.8). The distinction between functions and procedures
is only for the sake of the discussion, GAP does not distinguish between them.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., Length, Concatenation
and Order.

A procedure is a function that does not return a value but produces some effect. Procedures
are called only for this effect. As a convention the name of a procedure is a verb, denoting
what the procedure does, e.g., Print, Append and Sort.

gap> Read("myfile.g"); # a call to the procedure Read
gap> l := [1, 2];;
gap> Append(l, [3,4,5]); # a call to the procedure Append

2.14 If

if bool-expr1 then statements1
{ elif bool-expr2 then statements2 }
[else statements3]
fi;

The if statement allows one to execute statements depending on the value of some boolean
expression. The execution is done as follows.

First the expression bool-expr1 following the if is evaluated. If it evaluates to true the
statement sequence statements1 after the first then is executed, and the execution of the
if statement is complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to
true the corresponding statement sequence statements2 is executed and execution of the
if statement is complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of
the if statement is complete. If there is no else part the if statement is complete without
executing any statement sequence.

Since the if statement is terminated by the fi keyword there is no question where an else
part belongs, i.e., GAP has no dangling else.
In if expr1 then if expr2 then stats1 else stats2 fi; fi;
the else part belongs to the second if statement, whereas in
if expr1 then if expr2 then stats1 fi; else stats2 fi;
the else part belongs to the first if statement.

Since an if statement is not an expression it is not possible to write

abs := if x > 0 then x; else -x; fi;

2.15. WHILE 209

which would, even if legal syntax, be meaningless, since the if statement does not produce
a value that could be assigned to abs.

If one expression evaluates neither to true nor to false an error is signalled and a break
loop (see 3.2) is entered. As usual you can leave the break loop with quit;. If you enter
return true;, execution of the if statement continues as if the expression whose evaluation
failed had evaluated to true. Likewise, if you enter return false;, execution of the if
statement continues as if the expression whose evaluation failed had evaluated to false.

gap> i := 10;;
gap> if 0 < i then
> s := 1;
> elif i < 0 then
> s := -1;
> else
> s := 0;
> fi;
gap> s;
1 # the sign of i

2.15 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
and the statement immediately following the while loop is executed next. Otherwise if it
evaluates to true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 2.16) is that the
statements in the repeat until loop are executed at least once, while the statements in
the while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 3.2)
is entered. As usual you can leave the break loop with quit;. If you enter return false;,
execution continues with the next statement immediately following the while loop. If you
enter return true;, execution continues at statements, after which the next evaluation of
bool-expr may cause another error.

gap> i := 0;; s := 0;;
gap> while s <= 200 do
> i := i + 1; s := s + i^2;
> od;
gap> s;
204 # first sum of the first i squares larger than 200

2.16 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.

210 CHAPTER 2. THE PROGRAMMING LANGUAGE

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the
repeat loop terminates and the statement immediately following the repeat loop is executed
next. Otherwise if it evaluates to false the whole process begins again with the execution
of the statements.

The difference between the while loop (see 2.15) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in
the while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false a error is signalled and a break loop (see 3.2)
is entered. As usual you can leave the break loop with quit;. If you enter return true;,
execution continues with the next statement immediately following the repeat loop. If you
enter return false;, execution continues at statements, after which the next evaluation of
bool-expr may cause another error.

gap> i := 0;; s := 0;;
gap> repeat
> i := i + 1; s := s + i^2;
> until s > 200;
gap> s;
204 # first sum of the first i squares larger than 200

2.17 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list list-
expr .

The statement sequence statements is first executed with simple-var bound to the first
element of the list list , then with simple-var bound to the second element of list and so on.
simple-var must be a simple variable, it must not be a list element selection list-var[int-
expr] or a record component selection record-var.ident .

The execution of the for loop is exactly equivalent to the while loop

loop-list := list;
loop-index := 1;
while loop-index <= Length(loop-list) do

variable := loop-list[loop-index];
statements
loop-index := loop-index + 1;

od;

with the exception that loop-list and loop-index are different variables for each for loop
that do not interfere with each other.

The list list is very often a range.
for variable in [from..to] do statements od;
corresponds to the more common
for variable from from to to do statements od;
in other programming languages.

gap> s := 0;;

2.18. FUNCTIONS 211

gap> for i in [1..100] do
> s := s + i;
> od;
gap> s;
5050

Note in the following example how the modification of the list in the loop body causes the
loop body also to be executed for the new values

gap> l := [1, 2, 3, 4, 5, 6];;
gap> for i in l do
> Print(i, " ");
> if i mod 2 = 0 then Add(l, 3 * i / 2); fi;
> od; Print("\n");
1 2 3 4 5 6 3 6 9 9
gap> l;
[1, 2, 3, 4, 5, 6, 3, 6, 9, 9]

Note in the following example that the modification of the variable that holds the list has
no influence on the loop

gap> l := [1, 2, 3, 4, 5, 6];;
gap> for i in l do
> Print(i, " ");
> l := [];
> od; Print("\n");
1 2 3 4 5 6
gap> l;
[]

2.18 Functions

function ([arg-ident {, arg-ident}])
[local loc-ident {, loc-ident} ;]
statements

end

A function is in fact a literal and not a statement. Such a function literal can be assigned
to a variable or to a list element or a record component. Later this function can be called
as described in 2.8.

The following is an example of a function definition. It is a function to compute values of
the Fibonacci sequence (see 46.20)

gap> fib := function (n)
> local f1, f2, f3, i;
> f1 := 1; f2 := 1;
> for i in [3..n] do
> f3 := f1 + f2;
> f1 := f2;
> f2 := f3;
> od;

212 CHAPTER 2. THE PROGRAMMING LANGUAGE

> return f2;
> end;;
gap> List([1..10], fib);
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Because for each of the formal arguments arg-ident and for each of the formal locals loc-
ident a new variable is allocated when the function is called (see 2.8), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function
that computes values of the Fibonacci sequence

gap> fib := function (n)
> if n < 3 then
> return 1;
> else
> return fib(n-1) + fib(n-2);
> fi;
> end;;
gap> List([1..10], fib);
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Note that the recursive version needs 2 * fib(n)-1 steps to compute fib(n), while the
iterative version of fib needs only n-2 steps. Both are not optimal however, the library
function Fibonacci only needs on the order of Log(n) steps.

arg-ident -> expr

This is a shorthand for
function (arg-ident) return expr; end.
arg-ident must be a single identifier, i.e., it is not possible to write functions of several
arguments this way. Also arg is not treated specially, so it is also impossible to write
functions that take a variable number of arguments this way.

The following is an example of a typical use of such a function

gap> Sum(List([1..100], x -> x^2));
338350

When a function fun1 definition is evaluated inside another function fun2 , GAP binds all
the identifiers inside the function fun1 that are identifiers of an argument or a local of
fun2 to the corresponding variable. This set of bindings is called the environment of the
function fun1 . When fun1 is called, its body is executed in this environment. The following
implementation of a simple stack uses this. Values can be pushed onto the stack and then
later be popped off again. The interesting thing here is that the functions push and pop in
the record returned by Stack access the local variable stack of Stack. When Stack is called
a new variable for the identifier stack is created. When the function definitions of push and
pop are then evaluated (as part of the return statement) each reference to stack is bound
to this new variable. Note also that the two stacks A and B do not interfere, because each
call of Stack creates a new variable for stack.

gap> Stack := function ()
> local stack;
> stack := [];
> return rec(
> push := function (value)

2.19. RETURN 213

> Add(stack, value);
> end,
> pop := function ()
> local value;
> value := stack[Length(stack)];
> Unbind(stack[Length(stack)]);
> return value;
> end
>);
> end;;
gap> A := Stack();;
gap> B := Stack();;
gap> A.push(1); A.push(2); A.push(3);
gap> B.push(4); B.push(5); B.push(6);
gap> A.pop(); A.pop(); A.pop();
3
2
1
gap> B.pop(); B.pop(); B.pop();
6
5
4

This feature should be used rarely, since its implementation in GAP is not very efficient.

2.19 Return

return;

In this form return terminates the call of the innermost function that is currently executing,
and control returns to the calling function. An error is signalled if no function is currently
executing. No value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing,
and returns the value of the expression expr . Control returns to the calling function. An
error is signalled if no function is currently executing.

Both statements can also be used in break loops (see 3.2). return; has the effect that the
computation continues where it was interrupted by an error or the user hitting ctrC. return
expr; can be used to continue execution after an error. What happens with the value expr
depends on the particular error.

2.20 The Syntax in BNF

This section contains the definition of the GAP syntax in Backus-Naur form.

A BNF is a set of rules, whose left side is the name of a syntactical construct. Those names
are enclosed in angle brackets and written in italics. The right side of each rule contains
a possible form for that syntactic construct. Each right side may contain names of other

214 CHAPTER 2. THE PROGRAMMING LANGUAGE

syntactic constructs, again enclosed in angle brackets and written in italics, or character
sequences that must occur literally; they are written in typewriter style.

Furthermore each righthand side can contain the following metasymbols written in bold-
face. If the right hand side contains forms separated by a pipe symbol (|) this means that
one of the possible forms can occur. If a part of a form is enclosed in square brackets ([])
this means that this part is optional, i.e. might be present or missing. If part of the form
is enclosed in curly braces ({ }) this means that the part may occur arbitrarily often, or
possibly be missing.

2.20. THE SYNTAX IN BNF 215

Ident := a|...|z|A|...|Z| {a|...|z|A|...|Z|0|...|9| }
Var := Ident

| Var . Ident
| Var . (Expr)
| Var [Expr]
| Var { Expr }
| Var ([Expr { , Expr }])

List := [[Expr] {, [Expr] }]
| [Expr [, Expr] .. Expr]

Record := rec([Ident := Expr {, Ident := Expr }])
Permutation := (Expr {, Expr }) { (Expr {, Expr }) }
Function := function ([Ident {, Ident }])

[local Ident {, Ident } ;]
Statements
end

Char := ’ any character ’
String := " { any character } "
Int := 0|1|...|9 { 0|1|...|9 }
Atom := Int

| Var
| (Expr)
| Permutation
| Char
| String
| Function
| List
| Record

Factor := {+|-} Atom [^ {+|-} Atom]
Term := Factor { *|/|mod Factor }
Arith := Term { +|- Term }
Rel := { not } Arith { =|<>|<|>|<=|>=|in Arith }
And := Rel { and Rel }
Log := And { or And }
Expr := Log

| Var [-> Log]
Statement := Expr

| Var := Expr
| if Expr then Statements
{ elif Expr then Statements }
[else Statements] fi

| for Var in Expr do Statements od
| while Expr do Statements od
| repeat Statements until Expr
| return [Expr]
| quit

Statements := { Statement ; }
| ;

216 CHAPTER 2. THE PROGRAMMING LANGUAGE

Chapter 3

Environment

This chapter describes the interactive environment in which you use GAP.

The first sections describe the main read eval print loop and the break loop (see 3.1, 3.2,
and 3.3).

The next section describes the commands you can use to edit the current input line (see
3.4).

The next sections describe the GAP help system (see 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11).

The next sections describe the input and output functions (see 3.12, 3.13, 3.14, 3.15, 3.16,
3.17, 3.18, and 3.19).

The next sections describe the functions that allow you to collect statistics about a compu-
tation (see 3.20, 3.21).

The last sections describe the functions that allow you to execute other programs as sub-
processes from within GAP (see 3.22 and 3.23).

3.1 Main Loop

The normal interaction with GAP happens in the so–called read eval print loop. This
means that you type an input, GAP first reads it, evaluates it, and prints the result. The
exact sequence is as follows.

To show you that it is ready to accept your input, GAP displays the prompt gap> . When
you see this, you know that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter return
before GAP starts to read and evaluate your input. Because GAP does not do anything until
you enter return, you can edit your input to fix typos and only when everything is correct
enter return and have GAP take a look at it (see 3.4). It is also possible to enter several
statements as input on a single line. Of course each statement must be terminated by a
semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have
entered the beginning of a statement, but the statement is not yet complete, and you enter
return, GAP will display the partial prompt > . When you see this, you know that GAP

217

218 CHAPTER 3. ENVIRONMENT

is waiting for the rest of the statement. This happens also when you forget the semicolon ;
that terminates every GAP statement.

When you enter return, GAP first checks your input to see if it is syntactically correct (see
chapter 2 for the definition of syntactically correct). If it is not, GAP prints an error message
of the following form

gap> 1 * ;
Syntax error: expression expected
1 * ;

^

The first line tells you what is wrong about the input, in this case the * operator takes two
expressions as operands, so obviously the right one is missing. If the input came from a file
(see 3.12), this line will also contain the filename and the line number. The second line is a
copy of the input. And the third line contains a caret pointing to the place in the previous
line where GAP realized that something is wrong. This need not be the exact place where
the error is, but it is usually quite close.

Sometimes, you will also see a partial prompt after you have entered an input that is
syntactically incorrect. This is because GAP is so confused by your input, that it thinks
that there is still something to follow. In this case you should enter ;return repeatedly,
ignoring further error messages, until you see the full prompt again. When you see the full
prompt, you know that GAP forgave you and is now ready to accept your next – hopefully
correct – input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required
computations (see chapter 2 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course,
you can type ahead, i.e., already start entering new input, but it will not be accepted by
GAP until GAP has completed the ongoing computation.

When GAP is ready it will usually print the result of the computation, i.e., the value com-
puted. Note that not all statements produce a value, for example, if you enter a for loop,
nothing will be printed, because the for loop does not produce a value that could be printed.

Also sometimes you do not want to see the result. For example if you have computed a
value and now want to assign the result to a variable, you probably do not want to see the
value again. You can terminate statements by two semicolons to suppress the printing of
the result.

If you have entered several statements on a single line GAP will first read, evaluate, and
print the first one, then read evaluate, and print the second one, and so on. This means
that the second statement will not even be checked for syntactical correctness until GAP
has completed the first computation.

After the result has been printed GAP will display another prompt, and wait for your next
input. And the whole process starts all over again. Note that a new prompt will only be
printed after GAP has read, evaluated, and printed the last statement if you have entered
several statements on a single line.

In each statement that you enter the result of the previous statement that produced a value
is available in the variable last. The next to previous result is available in last2 and the
result produced before that is available in last3.

3.2. BREAK LOOPS 219

gap> 1; 2; 3;
1
2
3
gap> last3 + last2 * last;
7

Also in each statement the time spent by the last statement, whether it produced a value
or not, is available in the variable time. This is an integer that holds the number of
milliseconds.

3.2 Break Loops

When an error has occurred or when you interrupt GAP, usually by hitting ctr -C, GAP
enters a break loop, that is in most respects like the main read eval print loop (see 3.1).
That is, you can enter statements, GAP reads them, evaluates them, and prints the result if
any. However those evaluations happen within the context in which the error occurred. So
you can look at the arguments and local variables of the functions that were active when
the error happened and even change them. The prompt is changed from gap> to brk> to
indicate that you are in a break loop.

There are two ways to leave a break loop.

The first is to quit the break loop and continue in the main loop. To do this you enter quit;
or hit the eof (end of file) character, which is usually ctr -D. In this case control returns to
the main loop, and you can enter new statements.

The other way is to return from a break loop. To do this you enter return; or return
expr;. If the break loop was entered because you interrupted GAP, then you can continue by
entering return;. If the break loop was entered due to an error, you usually have to return
a value to continue the computation. For example, if the break loop was entered because a
variable had no assigned value, you must return the value that this variable should have to
continue the computation.

3.3 Error

Error(messages...)

Error signals an error. First the messages messages are printed, this is done exactly as if
Print (see 3.14) were called with these arguments. Then a break loop (see 3.2) is entered,
unless the standard error output is not connected to a terminal. You can leave this break
loop with return; to continue execution with the statement following the call to Error.

3.4 Line Editing

GAP allows you to edit the current input line with a number of editing commands. Those
commands are accessible either as control keys or as escape keys. You enter a control
key by pressing the ctr key, and, while still holding the ctr key down, hitting another key
key . You enter an escape key by hitting esc and then hitting another key key . Below we
denote control keys by ctr -key and escape keys by esc-key . The case of key does not matter,
i.e., ctr -A and ctr -a are equivalent.

220 CHAPTER 3. ENVIRONMENT

Characters not mentioned below always insert themselves at the current cursor position.

The first few commands allow you to move the cursor on the current line.

ctr -A move the cursor to the beginning of the line.
esc-B move the cursor to the beginning of the previous word.
ctr -B move the cursor backward one character.
ctr -F move the cursor forward one character.
esc-F move the cursor to the end of the next word.
ctr -E move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a
different position with the yank command.

ctr -H or del delete the character left of the cursor.
ctr -D delete the character under the cursor.
ctr -K kill up to the end of the line.
esc-D kill forward to the end of the next word.
esc-del kill backward to the beginning of the last word.
ctr -X kill entire input line, and discard all pending input.
ctr -Y insert (yank) a just killed text.

The next commands allow you to change the input.

ctr -T exchange (twiddle) current and previous character.
esc-U uppercase next word.
esc-L lowercase next word.
esc-C capitalize next word.

The tab character, which is in fact the control key ctr -I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier.
If there is more than one possible completion, it completes to the longest common prefix of all
those completions. If the characters to the left of the cursor are already the longest common
prefix of all completions hitting tab a second time will display all possible completions.

tab complete the identifier before the cursor.

The next commands allow you to fetch previous lines, e.g., to correct typos, etc. This history
is limited to about 8000 characters.

ctr -L insert last input line before current character.
ctr -P redisplay the last input line, another ctr -P will redisplay the line before that, etc. If
the cursor is not in the first column only the lines starting with the string to the left of the
cursor are taken.
ctr -N Like ctr -P but goes the other way round through the history.
esc-< goes to the beginning of the history.
esc-> goes to the end of the history.
ctr -O accepts this line and perform a ctr -N.

Finally there are a few miscellaneous commands.

ctr -V enter next character literally, i.e., enter it even if it is one of the control keys.
ctr -U execute the next command 4 times.
esc-num execute the next command num times.
esc-ctr -L repaint input line.

3.5. HELP 221

3.5 Help

This section describes together with the following sections the GAP help system. The help
system lets you read the manual interactively.

?section

The help command ? displays the section with the name section on the screen. For example
?Help will display this section on the screen. You should not type in the single quotes, they
are only used in help sections to delimit text that you should enter into GAP or that GAP
prints in response. When the whole section has been displayed the normal GAP prompt
gap> is shown and normal GAP interaction resumes.

The section 3.6 tells you what actions you can perform while you are reading a section. You
command GAP to display this section by entering ?Reading Sections, without quotes. The
section 3.7 describes the format of sections and the conventions used, 3.8 lists the commands
you use to flip through sections, 3.9 describes how to read a section again, 3.10 tells you
how to avoid typing the long section names, and 3.11 describes the index command.

3.6 Reading Sections

If the section is longer than 24 lines GAP stops after 24 lines and displays

-- <space> for more --

If you press space GAP displays the next 24 lines of the section and then stops again.
This goes on until the whole section has been displayed, at which point GAP will return
immediately to the main GAP loop. Pressing f has the same effect as space.

You can also press b or the key labeled del which will scroll back to the previous 24 lines
of the section. If you press b or del when GAP is displaying the top of a section GAP will
ring the bell.

You can also press q to quit and return immediately back to the main GAP loop without
reading the rest of the section.

Actually the 24 is only a default, if you have a larger screen that can display more lines of
text you may want to tell this to GAP with the -y rows option when you start GAP.

3.7 Format of Sections

This section describes the format of sections when they are displayed on the screen and the
special conventions used.

As you can see GAP indents sections 4 spaces and prints a header line containing the name
of the section on the left and the name of the chapter on the right.

<text>

Text enclosed in angle brackets is used for arguments in the descriptions of functions and
for other placeholders. It means that you should not actually enter this text into GAP but
replace it by an appropriate text depending on what you want to do. For example when
we write that you should enter ?section to see the section with the name section, section
servers as a placeholder, indicating that you can enter the name of the section that you
want to see at this place. In the printed manual such text is printed in italics.

222 CHAPTER 3. ENVIRONMENT

’text’

Text enclosed in single quotes is used for names of variables and functions and other text
that you may actually enter into your computer and see on your screen. The text enclosed
in single quotes may contain placeholders enclosed in angle brackets as described above. For
example when the help text for IsPrime says that the form of the call is ’IsPrime(<n>
)’ this means that you should actually enter the IsPrime(and), without the quotes, but
replace the n with the number (or expression) that you want to test. In the printed manual
this text is printed in a monospaced (all characters have the same width) typewriter font.

"text"

Text enclosed in double quotes is used for cross references to other parts of the manual. So
the text inside the double quotes is the name of another section of the manual. This is used
to direct you to other sections that describe a topic or a function used in this section. So
for example 3.10 is a cross reference to the next section. In the printed manual the text is
replaced by the number of the section.

_ and ^

In mathematical formulas the underscore and the caret are used to denote subscription and
superscription. Ordinarily they apply only to the very next character following, unless a
whole expression enclosed in parentheses follows. So for example x_1^(i+1) denotes the
variable x with subscript 1 raised to the i+1 power. In the printed manual mathematical
formulas are typeset in italics (actually mathitalics) and subscripts and superscripts are
actually lowered and raised.

Longer examples are usually paragraphs of their own that are indented 8 spaces from the
left margin, i.e. 4 spaces further than the surrounding text. Everything on the lines with
the prompts gap> and >, except the prompts themselves of course, is the input you have to
type, everything else is GAP’s response. In the printed manual examples are also indented
4 spaces and are printed in a monospaced typewriter font.

gap> ?Format of Sections
Format of Sections ______________________________________ Environment

This section describes the format of sections when they are displayed
on the screen and the special conventions used.

...

3.8 Browsing through the Sections

The help sections are organized like a book into chapters. This should not surprise you,
since the same source is used both for the printed manual and the online help. Just as you
can flip through the pages of a book there are special commands to browse through the help
sections.

?>
?<

The two help commands ?< and ?> correspond to the flipping of pages. ?< takes you to
the section preceding the current section and displays it, and ?> takes you to the section
following the current section.

3.9. REDISPLAYING A SECTION 223

?<<
?>>

?<< is like ?<, only more so. It takes you back to the first section of the current chapter,
which gives an overview of the sections described in this chapter. If you are already in this
section ?<< takes you to the first section of the previous chapter. ?>> takes you to the first
section of the next chapter.

?-
?+

GAP remembers the sections that you have read. ?- takes you to the one that you have
read before the current one, and displays it again. Further ?- takes you further back in this
history. ?+ reverses this process, i.e., it takes you back to the section that you have read
after the current one. It is important to note, that ?- and ?+ do not alter the history like
the other help commands.

3.9 Redisplaying a Section

?

The help command ? followed by no section name redisplays the last help section again. So
if you reach the bottom of a long help section and already forgot what was mentioned at
the beginning, or, for example, the examples do not seem to agree with your interpretation
of the explanations, use ? to read the whole section again from the beginning.

When ? is used before any section has been read GAP displays the section Welcome to GAP.

3.10 Abbreviating Section Names

Upper and lower case in section are not distinguished, so typing either ?Abbreviating
Section Names or ?abbreviating section names will show this very section.

Each word in section may be abbreviated. So instead of typing ?abbreviating section
names you may also type ?abb sec nam, or even ?a s n. You must not omit the spaces
separating the words. For each word in the section name you must give at least the first
character. As another example you may type ?oper for int instead of ?operations for
integers, which is especially handy when you can not remember whether it was operations
or operators.

If an abbreviation matches multiple section names a list of all these section names is dis-
played.

3.11 Help Index

??topic

?? looks up topic in GAP’s index and prints all the index entries that contain the substring
topic. Then you can decide which section is the one you are actually interested in and
request this one.

gap> ??help
help __ Index
Help

224 CHAPTER 3. ENVIRONMENT

Reading Sections (help!scrolling)
Format of the Sections (help!format)
Browsing through the Sections (help!browsing)
Redisplaying a Section (help!redisplaying)
Abbreviating Section Names (help!abbreviating)
Help Index

gap>

The first thing on each line is the name of the section. If the name of the section matches
topic nothing more is printed. Otherwise the index entry that matched topic is printed in
parentheses following the section name. For each section only the first matching index entry
is printed. The order of the sections corresponds to their order in the GAP manual, so that
related sections should be adjacent.

3.12 Read

Read(filename)

Read reads the input from the file with the filename filename, which must be a string.

Read first opens the file filename. If the file does not exist, or if GAP can not open it, e.g.,
because of access restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The
reading and printing happens exactly as described for the main loop (see 3.1).

If an input in the file contains a syntactical error, a message is printed, and the rest of this
statement is ignored, but the rest of the file is read.

If a statement in the file causes an error a break loop is entered (see 3.2). The input for this
break loop is not taken from the file, but from the input connected to the stderr output of
GAP. If stderr is not connected to a terminal, no break loop is entered. If this break loop
is left with quit (or ctr -D) the file is closed and GAP does not continue to read from it.

Note that a statement may not begin in one file and end in another, i.e., eof (end of
file) is not treated as whitespace, but as a special symbol that must not appear inside any
statement.

Note that one file may very well contain a read statement causing another file to be read,
before input is again taken from the first file. There is an operating system dependent
maximum on the number of files that may be open at once, usually it is 15.

The special file name "*stdin*" denotes the standard input, i.e., the stream through which
the user enters commands to GAP. The exact behaviour of Read("*stdin*") is operating
system dependent, but usually the following happens. If GAP was started with no input
redirection, statements are read from the terminal stream until the user enters the end of file
character, which is usually ctr -D. Note that terminal streams are special, in that they may
yield ordinary input after an end of file. Thus when control returns to the main read eval
print loop the user can continue with GAP. If GAP was started with an input redirection,
statements are read from the current position in the input file up to the end of the file.
When control returns to the main read eval print loop the input stream will still return
end of file, and GAP will terminate. The special file name "*errin*" denotes the stream
connected with the stderr output. This stream is usually connected to the terminal, even

3.13. READLIB 225

if the standard input was redirected, unless the standard error stream was also redirected,
in which case opening of "*errin*" fails, and Read will signal an error.

Read is implemented in terms of the function READ, which behaves exactly like Read, except
that READ does not signal an error when it can not open the file. Instead it returns true or
false to indicate whether opening the file was successful or not.

3.13 ReadLib

ReadLib(name)

ReadLib reads input from the library file with the name name. ReadLib prefixes name with
the value of the variable LIBNAME and appends the string ".g" and calls Read (see 3.12)
with this file name.

3.14 Print

Print(obj1, obj2...)

Print prints the objects obj1 , obj2 ... etc. to the standard output. The output looks exactly
like the printed representation of the objects printed by the main loop. The exception are
strings, which are printed without the enclosing quotes and a few other transformations (see
30). Note that no space or newline is printed between the objects. PrintTo can be used to
print to a file (see 3.15).

gap> for i in [1..5] do
> Print(i, " ", i^2, " ", i^3, "\n");
> od;
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125

3.15 PrintTo

PrintTo(filename, obj1, obj2...)

PrintTo works like Print, except that the output is printed to the file with the name
filename instead of the standard output. This file must of course be writable by GAP,
otherwise an error is signalled. Note that PrintTo will overwrite the previous contents of
this file if it already existed. AppendTo can be used to append to a file (see 3.16).

The special file name "*stdout*" can be used to print to the standard output. This is
equivalent to a plain Print, except that a plain Print that is executed while evaluating an
argument to a PrintTo call will also print to the output file opened by the last PrintTo call,
while PrintTo("*stdout*", obj1, obj2...) always prints to the standard output.
The special file name "*errout*" can be used to print to the standard error output file,
which is usually connected with the terminal, even if the standard output was redirected.

There is an operating system dependent maximum to the number of output files that may
be open at once, usually this is 14.

226 CHAPTER 3. ENVIRONMENT

3.16 AppendTo

AppendTo(filename, obj1, obj2...)

AppendTo works like PrintTo (see 3.15), except that the output does not overwrite the
previous contents of the file, but is appended to the file.

3.17 LogTo

LogTo(filename)

LogTo causes the subsequent interaction to be logged to the file with the name filename,
i.e., everything you see on your terminal will also appear in this file. This file must of course
be writable by GAP, otherwise an error is signalled. Note that LogTo will overwrite the
previous contents of this file if it already existed.

LogTo()

In this form LogTo stops logging again.

3.18 LogInputTo

LogInputTo(filename)

LogInputTo causes the subsequent input lines to be logged to the file with the name filename,
i.e., every line you type will also appear in this file. This file must of course be writable
by GAP, otherwise an error is signalled. Note that LogInputTo will overwrite the previous
contents of this file if it already existed.

LogInputTo()

In this form LogInputTo stops logging again.

3.19 SizeScreen

SizeScreen()

In this form SizeScreen returns the size of the screen as a list with two entries. The first
is the length of each line, the second is the number of lines.

SizeScreen([x, y])

In this form SizeScreen sets the size of the screen. x is the length of each line, y is the
number of lines. Either value may be missing, to leave this value unaffected. Note that
those parameters can also be set with the command line options -x x and -y y (see 55).

3.20 Runtime

Runtime()

Runtime returns the time spent by GAP in milliseconds as an integer. This is usually the
cpu time, i.e., not the wall clock time. Also time spent by subprocesses of GAP (see 3.22) is
not counted.

3.21. PROFILE 227

3.21 Profile

Profile(true)

In this form Profile turns the profiling on. Subsequent computations will record the time
spent by each function and the number of times each function was called. Old profiling
information is cleared.

Profile(false)

In this form Profile turns the profiling off again. Recorded information is still kept, so you
can display it even after turning the profiling off.

Profile()

In this form Profile displays the collected information in the following format.

gap> Factors(10^21+1);; # make sure that the library is loaded
gap> Profile(true);
gap> Factors(10^42+1);
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]
gap> Profile(false);
gap> Profile();
count time percent time/call child function

4 1811 76 452 2324 FactorsRho
18 171 7 9 237 PowerModInt
127 94 3 0 94 GcdInt
41 83 3 2 415 IsPrimeInt
91 59 2 0 59 TraceModQF
511 47 1 0 39 QuoInt
22 23 0 1 23 Jacobi
116 20 0 0 31 log
3 20 0 6 70 SmallestRootInt
1 19 0 19 2370 FactorsInt

26 15 0 0 39 LogInt
4 4 0 1 4 Concatenation
5 4 0 0 20 RootInt
7 0 0 0 0 Add

26 0 0 0 0 Length
13 0 0 0 0 NextPrimeInt
4 0 0 0 0 AddSet
4 0 0 0 0 IsList
4 0 0 0 0 Sort
8 0 0 0 0 Append

2369 100 TOTAL

The last column contains the name of the function. The first column contains the number of
times each function was called. The second column contains the time spent in this function.
The third column contains the percentage of the total time spent in this function. The fourth
column contains the time per call, i.e., the quotient of the second by the first number. The
fifth column contains the time spent in this function and all other functions called, directly
or indirectly, by this function.

228 CHAPTER 3. ENVIRONMENT

3.22 Exec

Exec(command)

Exec executes the command given by the string command in the operating system. How this
happens is operating system dependent. Under UNIX, for example, a new shell is started
and command is passed as a command to this shell.

gap> Exec("date");
Fri Dec 13 17:00:29 MET 1991

Edit (see 3.23) should be used to call an editor from within GAP.

3.23 Edit

Edit(filename)

Edit starts an editor with the file whose filename is given by the string filename, and
reads the file back into GAP when you exit the editor again. You should set the GAP
variable EDITOR to the name of the editor that you usually use, e.g., /usr/ucb/vi. This can
for example be done in your .gaprc file (see the sections on operating system dependent
features in chapter 55).

Chapter 4

Domains

Domain is GAP’s name for structured sets. The ring of Gaussian integers Z[I] is an example
of a domain, the group D12 of symmetries of a regular hexahedron is another.
The GAP library predefines some domains. For example the ring of Gaussian integers
is predefined as GaussianIntegers (see 14) and the field of rationals is predefined as
Rationals (see 12). Most domains are constructed by functions, which are called do-
main constructors. For example the group D12 is constructed by the construction Group(
(1,2,3,4,5,6), (2,6)(3,5)) (see 7.9) and the finite field with 16 elements is constructed
by GaloisField(16) (see 18.10).
The first place where you need domains in GAP is the obvious one. Sometimes you simply
want to talk about a domain. For example if you want to compute the size of the group
D12, you had better be able to represent this group in a way that the Size function can
understand.
The second place where you need domains in GAP is when you want to be able to specify that
an operation or computation takes place in a certain domain. For example suppose you want
to factor 10 in the ring of Gaussian integers. Saying Factors(10) will not do, because
this will return the factorization in the ring of integers [2, 5]. To allow operations and
computations to happen in a specific domain, Factors, and many other functions as well,
accept this domain as optional first argument. Thus Factors(GaussianIntegers, 10)
yields the desired result [1+E(4), 1-E(4), 2+E(4), 2-E(4)].
Each domain in GAP belongs to one or more categories, which are simply sets of domains.
The categories in which a domain lies determine the functions that are applicable to this
domain and its elements. Examples of domains are rings (the functions applicable to a
domain that is a ring are described in 5), fields (see 6), groups (see 7), vector spaces (see
9), and of course the category domains that contains all domains (the functions applicable
to any domain are described in this chapter).
This chapter describes how domains are represented in GAP (see 4.1), how functions that
can be applied to different types of domains know how to solve a problem for each of those
types (see 4.2, 4.3, and 4.4), how domains are compared (see 4.7), and the set theoretic
functions that can be applied to any domain (see 4.6, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14,
4.16).
The functions described in this chapter are implemented in the file LIBNAME/"domain.g".

229

230 CHAPTER 4. DOMAINS

4.1 Domain Records

Domains are represented by records (see 45), which are called domain records in the
following. Which components need to be present, which may, and what those components
hold, differs from category to category, and, to a smaller extent, from domain to domain.
It is generally possible though to distinguish four types of components.

Each domain record has the component isDomain, which has the value true. Furthermore,
most domains also have a component that specifies which category this domain belongs
to. For example, each group has the component isGroup, holding the value true. Those
components are called the category components of the domain record. A domain that
only has the component isDomain is a member only of the category Domains and only the
functions described in this chapter are applicable to such a domain.

Every domain record also contains enough information to identify uniquely the domain in
the so called identification components. For example, for a group the domain record,
called group record in this case, has a component called generators containing a system
of generators (and also a component identity holding the identity element of the group,
needed if the generator list is empty, as is the case for the trivial group).

Next the domain record holds all the knowledge GAP has about the domain, for example
the size of the domain, in the so called knowledge components. Of course, the knowledge
about a certain domain will usually increase as time goes by. For example, a group record
may initially hold only the knowledge that the group is finite, but may end holding all kinds
of knowledge, for example the derived series, the Sylow subgroups, etc.

Finally each domain record has a component, which is called its operations record (be-
cause it is the component with the name operations and it holds a record), that tells
functions like Size how to compute this information for this domain. The exact mechanism
is described later (see 4.2).

4.2 Dispatchers

In the previous section it was mentioned that domains are represented by domain records,
and that each domain record has an operations record. This operations record is used by
functions like Size to find out how to compute this information for the domain. Let us
discuss this mechanism using the example of Size. Suppose you call Size with a domain
D .

First Size tests whether D has a component called size, i.e., if D.size is bound. If it is,
Size assumes that it holds the size of the domain and returns this value.

Let us suppose that this component has no assigned value. Then Size looks at the compo-
nent D.operations, which must be a record. Size takes component D.operations.Size
of this record, which must be a function. Size calls this function passing D as argument.
If a domain record has no Size function in its operations record, an error is signalled.

Finally Size stores the value returned by D.operations.Size(D) in the component
D.size, where it is available for the next call of Size(D).

Because functions like Size do little except dispatch to the function in the operations record
they are called dispatcher functions.

4.3. MORE ABOUT DISPATCHERS 231

Which function is called through this mechanism obviously depends on the domain and its
operations record. In principle each domain could have its own Size function. In practice
however this is not the case. For example all permutation groups share the operations record
PermGroupOps so they all use the same Size function PermGroupOps.Size.

Note that in fact domains of the same type not only share the functions, in fact they share
the operations record. So for example all permutation groups have the same operations
record. This means that changing such a function for a domain D in the following way
D.operations.function := new-function; will also change this function for all domains of
the same type, even those that do not yet exist at the moment of the assignment and will
only be constructed later. This is usually not desirable, since supposedly new-function uses
some special properties of the domain D to work efficiently. We suggest therefore, that you
use the following assignments instead:
D.operations := Copy(D.operations);
D.operations.function := new-function;.

Some domains do not provide a special Size function, either because no efficient method
is known or because the author that implemented the domain simply was too lazy to write
one. In those cases the domain inherits the default function, which is DomainOps.Size.
Such inheritance is uncommon for the Size function, but rather common for the Union
function.

4.3 More about Dispatchers

Usually you need not care about the mechanism described in the previous section. You just
call the dispatcher functions like Size. They will call the function in the operations record,
which is hopefully implementing an algorithm that is well suited for their domain, by using
the structure of this domain.

There are three reasons why you might want to avoid calling the dispatcher function and
call the dispatched to function directly.

The first reason is efficiency. The dispatcher functions don’t do very much. They only check
the types of their arguments, check if the requested information is already present, and
dispatch to the appropriate function in the operations record. But sometimes, for example
in the innermost loop of your algorithm, even this little is too much. In those cases you
can avoid the overhead introduced by the dispatcher function by calling the function in the
operations record directly. For example, you would use G.operations.Size(G) instead
of Size(G).

The second reason is flexibility. Sometimes you do not want to call the function in the
operations record, but another function that performs the same task, using a different algo-
rithm. In that case you will call this different function. For example, if G is a permutation
group, and the orbit of p under G is very short, GroupOps.Orbit(G,p), which is the default
function to compute an orbit, may be slightly more efficient than Orbit(G,p), which calls
G.operations.Orbit(G,p), which is the same as PermGroupOps.Orbit(G,p).

The third has to do with the fact that the dispatcher functions check for knowledge com-
ponents like D.size or D.elements and also store their result in such components. For
example, suppose you know that the result of a computation takes up quite some space, as is
the case with Elements(D), and that you will never need the value again. In this case you

232 CHAPTER 4. DOMAINS

would not want the dispatcher function to enter the value in the domain record, and there-
fore would call D.operations.Elements(D) directly. On the other hand you may not want
to use the value in the domain record, because you mistrust it. In this case you should call
the function in the operations record directly, e.g., you would use G.operations.Size(G)
instead of Size(G) (and then compare the result with G.size).

4.4 An Example of a Computation in a Domain

This section contains an extended example to show you how a computation in a domain
may use default and special functions to achieve its goal. Suppose you defined G, x, and y
as follows.

gap> G := SymmetricGroup(8);;
gap> x := [(2,7,4)(3,5), (1,2,6)(4,8)];;
gap> y := [(2,5,7)(4,6), (1,5)(3,8,7)];;

Now you ask for an element of G that conjugates x to y, i.e., a permutation on 8 points that
takes (2,7,4)(3,5) to (2,5,7)(4,6) and (1,2,6)(4,8) to (1,5)(3,8,7). This is done
as follows (see 8.23 and 8.1).

gap> RepresentativeOperation(G, x, y, OnTuples);
(1,8)(2,7)(3,4,5,6)

Let us look at what happens step by step. First RepresentativeOperation is called. Af-
ter checking the arguments it calls the function G.operations.RepresentativeOperation,
which is the function SymmetricGroupOps.RepresentativeOperation, passing the argu-
ments G, x, y, and OnTuples.

SymmetricGroupOps.RepresentativeOperation handles a lot of cases specially, but the
operation on tuples of permutations is not among them. Therefore it delegates this problem
to the function that it overlays, which is PermGroupOps.RepresentativeOperation.

PermGroupOps.RepresentativeOperation also does not handle this special case, and del-
egates the problem to the function that it overlays, which is the default function called
GroupOps.RepresentativeOperation.

GroupOps.RepresentativeOperation views this problem as a general tuples problem, i.e.,
it does not care whether the points in the tuples are integers or permutations, and decides
to solve it one step at a time. So first it looks for an element taking (2,7,4)(3,5) to
(2,5,7)(4,6) by calling RepresentativeOperation(G, (2,7,4)(3,5), (2,5,7)(4,6)
).

RepresentativeOperation calls G.operations.RepresentativeOperation next, which is
the function SymmetricGroupOps.RepresentativeOperation, passing the arguments G,
(2,7,4)(3,5), and (2,5,7)(4,6).

SymmetricGroupOps.RepresentativeOperation can handle this case. It knows that G
contains every permutation on 8 points, so it contains (3,4,7,5,6), which obviously does
what we want, namely it takes x[1] to y[1]. We will call this element t.

Now GroupOps.RepresentativeOperation (see above) looks for an s in the stabilizer of
x[1] taking x[2] to y[2]^(t^-1), since then for r=s*t we have x[1]^r = (x[1]^s)^t
= x[1]^t = y[1] and also x[2]^r = (x[2]^s)^t = (y[2]^(t^-1))^t = y[2]. So the
next step is to compute the stabilizer of x[1] in G. To do this it calls Stabilizer(G,
(2,7,4)(3,5)).

4.5. DOMAIN 233

Stabilizer calls G.operations.Stabilizer, which is SymmetricGroupOps.Stabilizer,
passing the arguments G and (2,7,4)(3,5). SymmetricGroupOps.Stabilizer detects that
the second argument is a permutation, i.e., an element of the group, and calls Centralizer(
G, (2,7,4)(3,5)). Centralizer calls the function G.operations.Centralizer, which
is SymmetricGroupOps.Centralizer, again passing the arguments G, (2,7,4)(3,5).

SymmetricGroupOps.Centralizer again knows how centralizers in symmetric groups look,
and after looking at the permutation (2,7,4)(3,5) sharply for a short while returns the
centralizer as Subgroup(G, [(1,6), (1,6,8), (2,7,4), (3,5)]), which we will call
S. Note that S is of course not a symmetric group, therefore SymmetricGroupOps.Subgroup
gives it PermGroupOps as operations record and not SymmetricGroupOps.

As explained above GroupOps.RepresentativeOperation needs an element of S taking
x[2] ((1,2,6)(4,8)) to y[2]^(t^-1) ((1,7)(4,6,8)). So RepresentativeOperation(
S, (1,2,6)(4,8), (1,7)(4,6,8)) is called. RepresentativeOperation in turn calls
the function S.operations.RepresentativeOperation, which is, since S is a permutation
group, the function PermGroupOps.RepresentativeOperation, passing the arguments S,
(1,2,6)(4,8), and (1,7)(4,6,8).

PermGroupOps.RepresentativeOperation detects that the points are permutations and
and performs a backtrack search through S. It finds and returns (1,8)(2,4,7)(3,5), which
we call s.

Then GroupOps.RepresentativeOperation returns r = s*t = (1,8)(2,7)(3,6)(4,5),
and we are done.

In this example you have seen how functions use the structure of their domain to solve
a problem most efficiently, for example SymmetricGroupOps.RepresentativeOperation
but also the backtrack search in PermGroupOps.RepresentativeOperation, how they use
other functions, for example SymmetricGroupOps.Stabilizer called Centralizer, and
how they delegate cases which they can not handle more efficiently back to the func-
tion they overlaid, for example SymmetricGroupOps.RepresentativeOperation delegated
to PermGroupOps.RepresentativeOperation, which in turn delegated to to the function
GroupOps.RepresentativeOperation.

4.5 Domain

Domain(list)

Domain returns a domain that contains all the elements in list and that knows how to make
the ring, field, group, or vector space that contains those elements.

Note that the domain returned by Domain need in general not be a ring, field, group, or
vector space itself. For example if passed a list of elements of finite fields Domain will return
the domain FiniteFieldElements. This domain contains all finite field elements, no matter
of which characteristic. This domain has a function FiniteFieldElementsOps.Field that
knows how to make a finite field that contains the elements in list . This function knows
that all elements must have the same characteristic for them to lie in a common field.

gap> D := Domain([Z(4), Z(8)]);
FiniteFieldElements
gap> IsField(D);
false

234 CHAPTER 4. DOMAINS

gap> D.operations.Field([Z(4), Z(8)]);
GF(2^6)

Domain is the only function in the whole GAP library that knows about the various types of
elements. For example, when Norm is confronted by a field element z , it does not know what
to do with it. So it calls F := DefaultField([z]) to get a field in which z lies, because
this field (more precisely F.operations.Norm) will know better. However, DefaultField
also does not know what to do with z . So it calls D := Domain([z]) to get a domain
in which z lies, because it (more precisely D.operations.DefaultField) will know how to
make a default field in which z lies.

4.6 Elements

Elements(D)

Elements returns the set of elements of the domain D . The set is returned as a new proper
set, i.e., as a new sorted list without holes and duplicates (see 28). D may also be a list, in
which case the set of elements of this list is returned. An error is signalled if D is an infinite
domain.

gap> Elements(GaussianIntegers);
Error, the ring <R> must be finite to compute its elements
gap> D12 := Group((2,6)(3,5), (1,2)(3,6)(4,5));;
gap> Elements(D12);
[(), (2,6)(3,5), (1,2)(3,6)(4,5), (1,2,3,4,5,6), (1,3)(4,6),

(1,3,5)(2,4,6), (1,4)(2,3)(5,6), (1,4)(2,5)(3,6), (1,5)(2,4),
(1,5,3)(2,6,4), (1,6,5,4,3,2), (1,6)(2,5)(3,4)]

Elements remembers the set of elements in the component D.elements and will return
a shallow copy (see 45.12) next time it is called to compute the elements of D . If you
want to avoid this, for example for a large domain, for which you know that you will
not need the list of elements in the future, either unbind (see 45.10) D.elements or call
D.operation.Elements(D) directly.

Since there is no general method to compute the elements of a domain the default function
DomainOps.Elements just signals an error. This default function is overlaid for each special
finite domain. In fact, implementors of domains, must implement this function for new
domains, since it is, together with IsFinite (see 4.9) the most basic function for domains,
used by most of the default functions in the domain package.

In general functions that return a set of elements are free, in fact encouraged, to return a
domain instead of the proper set of elements. For one thing this allows to keep the structure,
for another the representation by a domain record is usually more space efficient. Elements
must not do this, its only purpose is to create the proper set of elements.

4.7 Comparisons of Domains

D = E
D <> E

= evaluates to true if the two domains D and E are equal, to false otherwise. <> evaluates
to true if the two domains D and E are different and to false if they are equal.

4.7. COMPARISONS OF DOMAINS 235

Two domains are considered equal if and only if the sets of their elements as computed by
Elements (see 4.6) are equal. Thus, in general = behaves as if each domain operand were
replaced by its set of elements. Except that = will also sometimes, but not always, work
for infinite domains, for which it is of course difficult to compute the set of elements. Note
that this implies that domains belonging to different categories may well be equal. As a
special case of this, either operand may also be a proper set, i.e., a sorted list without holes
or duplicates (see 28.2), and the result will be true if and only if the set of elements of the
domain is, as a set, equal to the set. It is also possible to compare a domain with something
else that is not a domain or a set, but the result will of course always be false in this case.

gap> GaussianIntegers = D12;
false # GAP knows that those domains cannot be equal because

GaussianIntegers is infinite and D12 is finite
gap> GaussianIntegers = Integers;
false # GAP knows how to compare those two rings
gap> GaussianIntegers = Rationals;
Error, sorry, cannot compare the infinite domains <D> and <E>
gap> D12 = Group((2,6)(3,5), (1,2)(3,6)(4,5));
true
gap> D12 = [(),(2,6)(3,5),(1,2)(3,6)(4,5),(1,2,3,4,5,6),(1,3)(4,6),
> (1,3,5)(2,4,6),(1,4)(2,3)(5,6),(1,4)(2,5)(3,6),
> (1,5)(2,4),(1,5,3)(2,6,4),(1,6,5,4,3,2),(1,6)(2,5)(3,4)];
true
gap> D12 = [(1,6,5,4,3,2),(1,6)(2,5)(3,4),(1,5,3)(2,6,4),(1,5)(2,4),
> (1,4)(2,5)(3,6),(1,4)(2,3)(5,6),(1,3,5)(2,4,6),(1,3)(4,6),
> (1,2,3,4,5,6),(1,2)(3,6)(4,5),(2,6)(3,5),()];
false # since the left operand behaves as a set

while the right operand is not a set

The default function DomainOps.’=’ checks whether both domains are infinite. If they are,
an error is signalled. Otherwise, if one domain is infinite, false is returned. Otherwise
the sizes (see 4.10) of the domains are compared. If they are different, false is returned.
Finally the sets of elements of both domains are computed (see 4.6) and compared. This
default function is overlaid by more special functions for other domains.

D < E
D <= E
D > E
D >= E

<, <=, >, and >= evaluate to true if the domain D is less than, less than or equal to, greater
than, and greater than or equal to the domain E and to false otherwise.

A domain D is considered less than a domain E if and only if the set of elements of D is
less than the set of elements of the domain E . Generally you may just imagine that each
domain operand is replaced by the set of its elements, and that the comparison is performed
on those sets (see 27.12). This implies that, if you compare a domain with an object that
is not a list or a domain, this other object will be less than the domain, except if it is a
record, in which case it is larger than the domain (see 2.9).

Note that < does not test whether the left domain is a subset of the right operand, even
though it resembles the mathematical subset notation.

236 CHAPTER 4. DOMAINS

gap> GaussianIntegers < Rationals;
Error, sorry, cannot compare <E> with the infinite domain <D>
gap> Group((1,2), (1,2,3,4,5,6)) < D12;
true # since (5,6), the second element of the left operand,

is less than (2,6)(3,5), the second element of D12.
gap> D12 < [(1,6,5,4,3,2),(1,6)(2,5)(3,4),(1,5,3)(2,6,4),(1,5)(2,4),
> (1,4)(2,5)(3,6),(1,4)(2,3)(5,6),(1,3,5)(2,4,6),(1,3)(4,6),
> (1,2,3,4,5,6),(1,2)(3,6)(4,5),(2,6)(3,5),()];
true # since (), the first element of D12, is less than

(1,6,5,4,3,2), the first element of the right operand.
gap> 17 < D12;
true # objects that are not lists or records are smaller

than domains, which behave as if they were a set

The default function DomainOps.’<’ checks whether either domain is infinite. If one is, an
error is signalled. Otherwise the sets of elements of both domains are computed (see 4.6)
and compared. This default function is only very seldom overlaid by more special functions
for other domains. Thus the operators <, <=, >, and >= are quite expensive and their use
should be avoided if possible.

4.8 Membership Test for Domains

elm in D

in returns true if the element elm, which may be an object of any type, lies in the domain
D , and false otherwise.

gap> 13 in GaussianIntegers;
true
gap> GaussianIntegers in GaussianIntegers;
false
gap> (1,2) in D12;
false
gap> (1,2)(3,6)(4,5) in D12;
true

The default function for domain membership tests is DomainOps.’in’, which computes the
set of elements of the domain with the function Elements (see 4.6) and tests whether elm
lies in this set. Special domains usually overlay this function with more efficient membership
tests.

4.9 IsFinite

IsFinite(D)

IsFinite returns true if the domain D is finite and false otherwise. D may also be a
proper set (see 28.2), in which case the result is of course always true.

gap> IsFinite(GaussianIntegers);
false
gap> IsFinite(D12);
true

4.10. SIZE 237

The default function DomainOps.IsFinite just signals an error, since there is no general
method to determine whether a domain is finite or not. This default function is overlaid
for each special domain. In fact, implementors of domains must implement this function
for new domains, since it is, together with Elements (see 4.6), the most basic function for
domains, used by most of the default functions in the domain package.

4.10 Size

Size(D)

Size returns the size of the domain D . If D is infinite, Size returns the string "infinity".
D may also be a proper set (see 28.2), in which case the result is the length of this list. Size
will, however, signal an error if D is a list that is not a proper set, i.e., that is not sorted,
or has holes, or contains duplicates.

gap> Size(GaussianIntegers);
"infinity"
gap> Size(D12);
12

The default function to compute the size of a domain is DomainOps.Size, which computes
the set of elements of the domain with the function Elements (see 4.6) and returns the
length of this set. This default function is overlaid in practically every domain.

4.11 IsSubset

IsSubset(D, E)

IsSubset returns true if the domain E is a subset of the domain D and false otherwise.
E is considered a subset of D if and only if the set of elements of E is as a set a subset of
the set of elements of D (see 4.6 and 28.9). That is IsSubset behaves as if implemented
as IsSubsetSet(Elements(D), Elements(E)), except that it will also sometimes, but
not always, work for infinite domains, and that it will usually work much faster than the
above definition. Either argument may also be a proper set.

gap> IsSubset(GaussianIntegers, [1,E(4)]);
true
gap> IsSubset(GaussianIntegers, Rationals);
Error, sorry, cannot compare the infinite domains <D> and <E>
gap> IsSubset(Group((1,2), (1,2,3,4,5,6)), D12);
true
gap> IsSubset(D12, [(), (1,2)(3,4)(5,6)]);
false

The default function DomainOps.IsSubset checks whether both domains are infinite. If
they are it signals an error. Otherwise if the E is infinite it returns false. Otherwise if
D is infinite it tests if each element of E is in D (see 4.8). Otherwise it tests whether the
proper set of elements of E is a subset of the proper set of elements of D (see 4.6 and 28.9).

4.12 Intersection

Intersection(D1, D2...)
Intersection(list)

238 CHAPTER 4. DOMAINS

In the first form Intersection returns the intersection of the domains D1 , D2 , etc. In the
second form list must be a list of domains and Intersection returns the intersection of
those domains. Each argument D or element of list respectively may also be an arbitrary
list, in which case Intersection silently applies Set (see 28.2) to it first.

The result of Intersection is the set of elements that lie in every of the domains D1 , D2 ,
etc. Functions called by the dispatcher function Intersection however, are encouraged to
keep as much structure as possible. So if D1 and D2 are elements of a common category
and if this category is closed under taking intersections, then the result should be a domain
lying in this category too. So for example the intersection of permutation groups will again
be a permutation group.

gap> Intersection(CyclotomicField(9), CyclotomicField(12));
CF(3) # CF is a shorthand for CyclotomicField

this is one of the rare cases where the intersection
of two infinite domains works

gap> Intersection(GaussianIntegers, Rationals);
Error, sorry, cannot intersect infinite domains <D> and <E>
gap> Intersection(D12, Group((1,2), (1,2,3,4,5)));
Group((1,5)(2,4))
gap> Intersection(D12, [(1,3)(4,6), (1,2)(3,4)]);
[(1,3)(4,6)] # note that the second argument is not a set
gap> Intersection(D12, [(), (1,2)(3,4), (1,3)(4,6), (1,4)(5,6)]);
[(), (1,3)(4,6)] # although the result is mathematically a

group it is returned as a proper set
because the second argument was not a group

gap> Intersection([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25]);
[] # two or more domains or sets as arguments are legal
gap> Intersection([[1,2,4], [2,3,4], [1,3,4]]);
[4] # or a list of domains or sets
gap> Intersection([]);
Error, List Element: <list>[1] must have a value

The dispatcher function (see 4.2) Intersection is slightly different from other dispatcher
functions. It does not simply call the function in the operations record passings its argu-
ments. Instead it loops over its arguments (or the list of domains or sets) and calls the
function in the operations record repeatedly, and passes each time only two domains. This
obviously makes writing the function for the operations record simpler.

The default function DomainOps.Intersection checks whether both domains are infinite.
If they are it signals an error. Otherwise, if one of the domains is infinite it loops over the
elements of the other domain, and tests for each element whether it lies in the infinite domain.
If both domains are finite it computes the proper sets of elements of both and intersects
them (see 4.6 and 28.9). This default method is overlaid by more special functions for most
other domains. Those functions usually are faster and keep the structure of the domains if
possible.

4.13 Union

Union(D1, D2...)
Union(list)

4.14. DIFFERENCE 239

In the first form Union returns the union of the domains D1 , D2 , etc. In the second form
list must be a list of domains and Union returns the union of those domains. Each argument
D or element of list respectively may also be an arbitrary list, in which case Union silently
applies Set (see 28.2) to it first.

The result of Union is the set of elements that lie in any the domains D1 , D2 , etc. Functions
called by the dispatcher function Union however, are encouraged to keep as much structure
as possible. However, currently GAP does not support any category that is closed under
taking unions except the category of all domains. So the only case that structure will be
kept is when one argument D or element of list respectively is a superset of all the other
arguments or elements of list .

gap> Union(GaussianIntegers, Rationals);
Error, sorry, cannot unite <E> with the infinite domain <D>
gap> Union(D12, Group((1,2), (1,2,3)));
[(), (2,3), (2,6)(3,5), (1,2), (1,2)(3,6)(4,5), (1,2,3),
(1,2,3,4,5,6), (1,3,2), (1,3), (1,3)(4,6), (1,3,5)(2,4,6),
(1,4)(2,3)(5,6), (1,4)(2,5)(3,6), (1,5)(2,4), (1,5,3)(2,6,4),
(1,6,5,4,3,2), (1,6)(2,5)(3,4)]

gap> Union([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25]);
[2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 20, 25]

two or more domains or sets as arguments are legal
gap> Union([[1,2,4], [2,3,4], [1,3,4]]);
[1, 2, 3, 4] # or a list of domains or sets
gap> Union([]);
[]

The dispatcher function (see 4.2) Union is slightly different from other dispatcher functions.
It does not simply call the function in the operations record passings its arguments. Instead
it loops over its arguments (or the list of domains or sets) and calls the function in the
operations record repeatedly, and passes each time only two domains. This obviously makes
writing the function for the operations record simpler.

The default function DomainOps.Union checks whether either domain is infinite. If one is
it signals an error. If both domains are finite it computes the proper sets of elements of
both and unites them (see 4.6 and 28.9). This default method is overlaid by more special
functions for some other domains. Those functions usually are faster.

4.14 Difference

Difference(D, E)

Difference returns the set difference of the domains D and E . Either argument may also
be an arbitrary list, in which case Difference silently applies Set (see 28.2) to it first.

The result of Difference is the set of elements that lie in D but not in E . Note that E
need not be a subset of D . The elements of E , however, that are not element of D play no
role for the result.

gap> Difference(D12, [(),(1,2,3,4,5,6),(1,3,5)(2,4,6),
> (1,4)(2,5)(3,6),(1,6,5,4,3,2),(1,5,3)(2,6,4)]);
[(2,6)(3,5), (1,2)(3,6)(4,5), (1,3)(4,6), (1,4)(2,3)(5,6),

240 CHAPTER 4. DOMAINS

(1,5)(2,4), (1,6)(2,5)(3,4)]

The default function DomainOps.Difference checks whether D is infinite. If it is it signals
an error. Otherwise Difference computes the proper sets of elements of D and E and
returns the difference of those sets (see 4.6 and 28.8). This default function is currently not
overlaid for any domain.

4.15 Representative

Representative(D)

Representative returns a representative of the domain D .

The existence of a representative, and the exact definition of what a representative is,
depends on the category of D . The representative should be an element that, within a given
context, identifies the domain D . For example if D is a cyclic group, its representative would
be a generator of D , or if D is a coset, its representative would be an arbitrary element of
the coset.

Note that Representative is pretty free in choosing a representative if there are several.
It is not even guaranteed that Representative returns the same representative if it is
called several times for one domain. Thus the main difference between Representative
and Random (see 4.16) is that Representative is free to choose a value that is cheap to
compute, while Random must make an effort to randomly distribute its answers.

gap> C := Coset(Subgroup(G, [(1,4)(2,5)(3,6)]), (1,6,5,4,3,2));;
gap> Representative(C);
(1,3,5)(2,4,6)

Representative first tests whether the component D.representative is bound. If the
field is bound it returns its value. Otherwise it calls D.operations.Representative(D
), remembers the returned value in D.representative, and returns it.

The default function called this way is DomainOps.Representative, which simply signals
an error, since there is no default way to find a representative.

4.16 Random

Random(D)

Random returns a random element of the domain D . The distribution of elements returned
by Random depends on the domain D . For finite domains all elements are usually equally
likely. For infinite domains some reasonable distribution is used. See the chapters of the
various domains to find out which distribution is being used.

gap> Random(GaussianIntegers);
1-4*E(4)
gap> Random(GaussianIntegers);
1+2*E(4)
gap> Random(D12);
()
gap> Random(D12);
(1,4)(2,5)(3,6)

4.16. RANDOM 241

The default function for random selection is DomainOps.Random, which computes the set of
elements using Elements and selects a random element of this list using RandomList (see
27.41 for a description of the pseudo random number generator used). This default function
can of course only be applied to finite domains. It is overlaid by other functions for most
other domains.

All random functions called this way rely on the low level random number generator provided
by RandomList (see 27.41).

242 CHAPTER 4. DOMAINS

Chapter 5

Rings

Rings are important algebraic domains. Mathematically a ring is a set R with two oper-
ations + and * called addition and multiplication. (R,+) must be an abelian group. The
identity of this group is called 0R. (R − {0R}, ∗) must be a monoid. If this monoid has an
identity element it is called 1R.

Important examples of rings are the integers (see 10), the Gaussian integers (see 14), the
integers of a cyclotomic field (see 15), and matrices (see 34).

This chapter contains sections that describe how to test whether a domain is a ring (see
5.1), and how to find the smallest and the default ring in which a list of elements lies (see
5.2 and 5.3).

The next sections describe the operations applicable to ring elements (see 5.4, 5.5, 5.6).

The next sections describe the functions that test whether a ring has certain properties (5.7,
5.8, 5.9, and 5.10).

The next sections describe functions that are related to the units of a ring (see 5.11, 5.12,
5.13, 5.14, and 5.15).

Then come the sections that describe the functions that deal with the irreducible and prime
elements of a ring (see 5.16, 5.17, and 5.18).

Then come the sections that describe the functions that are applicable to elements of rings
(see 5.19, 5.20, 5.21, 5.22, 5.24, 5.25, 5.26, 5.27, 5.28).

The last section describes how ring records are represented internally (see 5.29).

Because rings are a category of domains all functions applicable to domains are also appli-
cable to rings (see chapter 4) .

All functions described in this chapter are in LIBNAME/"ring.g".

5.1 IsRing

IsRing(domain)

IsRing returns true if the object domain is a ring record, representing a ring (see 5.29),
and false otherwise.

243

244 CHAPTER 5. RINGS

More precisely IsRing tests whether domain is a ring record (see 5.29). So for example a
matrix group may in fact be a ring, yet IsRing would return false.

gap> IsRing(Integers);
true
gap> IsRing(Rationals);
false # Rationals is a field record not a ring record
gap> IsRing(rec(isDomain := true, isRing := true));
true # it is possible to fool IsRing

5.2 Ring

Ring(r, s...)
Ring(list)

In the first form Ring returns the smallest ring that contains all the elements r , s... etc. In
the second form Ring returns the smallest ring that contains all the elements in the list list .
If any element is not an element of a ring or if the elements lie in no common ring an error
is raised.

gap> Ring(1, -1);
Integers
gap> Ring([10..20]);
Integers

Ring differs from DefaultRing (see 5.3) in that it returns the smallest ring in which the
elements lie, while DefaultRing may return a larger ring if that makes sense.

5.3 DefaultRing

DefaultRing(r, s...)
DefaultRing(list)

In the first form DefaultRing returns the default ring that contains all the elements r , s...
etc. In the second form DefaultRing returns the default ring that contains all the elements
in the list list . If any element is not an element of a ring or if the elements lie in no common
ring an error is raised.

The ring returned by DefaultRing need not be the smallest ring in which the elements
lie. For example for elements from cyclotomic fields DefaultRing may return the ring of
integers of the smallest cyclotomic field in which the elements lie, which need not be the
smallest ring overall, because the elements may in fact lie in a smaller number field which
is not a cyclotomic field.

For the exact definition of the default ring of a certain type of elements read the chapter
describing this type.

DefaultRing is used by the ring functions like Quotient, IsPrime, Factors, or Gcd if no
explicit ring is given.

gap> DefaultRing(1, -1);
Integers
gap> DefaultRing([10..20]);
Integers

5.4. COMPARISONS OF RING ELEMENTS 245

Ring (see 5.2) differs from DefaultRing in that it returns the smallest ring in which the
elements lie, while DefaultRing may return a larger ring if that makes sense.

5.4 Comparisons of Ring Elements

r = s
r <> s

The equality operator = evaluates to true if the two ring elements r and s are equal, and
to false otherwise. The inequality operator <> evaluates to true if the two ring elements
r and s are not equal, and to false otherwise. Note that any two ring elements can be
compared, even if they do not lie in compatible rings. In this case they can, of course, never
be equal. For each type of rings the equality of those ring elements is given in the respective
chapter.

Ring elements can also be compared with objects of other types. Of course they are never
equal.

r < s
r <= s
r > s
r >= s

The operators <, <=, >, and >= evaluate to true if the ring element r is less than, less than
or equal to, greater than, or greater than or equal to the ring element s, and to false
otherwise. For each type of rings the definition of the ordering of those ring elements is
given in the respective chapter. The ordering of ring elements is as follows. Rationals are
smallest, next are cyclotomics, followed by finite ring elements.

Ring elements can also be compared with objects of other types. They are smaller than
everything else.

5.5 Operations for Ring Elements

The following operations are always available for ring elements. Of course the operands must
lie in compatible rings, i.e., the rings must be equal, or at least have a common superring.

r + s

The operator + evaluates to the sum of the two ring elements r and s, which must lie in
compatible rings.

r - s

The operator - evaluates to the difference of the two ring elements r and s, which must lie
in compatible rings.

r * s

The operator * evaluates to the product of the two ring elements r and s, which must lie
in compatible rings.

r ^ n

The operator ^ evaluates to the n-th power of the ring element r . If n is a positive integer
then r^n is r*r*..*r (n factors). If n is a negative integer r^n is defined as 1/r−n . If 0

246 CHAPTER 5. RINGS

is raised to a negative power an error is signalled. Any ring element, even 0, raised to the
0-th power yields 1.

For the precedence of the operators see 2.10.

Note that the quotient operator / usually performs the division in the quotient field of the
ring. To compute a quotient in a ring use the function Quotient (see 5.6).

5.6 Quotient

Quotient(r, s)
Quotient(R, r, s)

In the first form Quotient returns the quotient of the two ring elements r and s in their
default ring (see 5.3). In the second form Quotient returns the quotient of the two ring
elements r and s in the ring R. It returns false if the quotient does not exist.

gap> Quotient(4, 2);
2
gap> Quotient(Integers, 3, 2);
false

Quotient calls R.operations.Quotient(R, r, s) and returns the value.

The default function called this way is RingOps.Quotient, which just signals an error,
because there is no generic method to compute the quotient of two ring elements. Thus
special categories of rings must overlay this default function with other functions.

5.7 IsCommutativeRing

IsCommutativeRing(R)

IsCommutativeRing returns true if the ring R is commutative and false otherwise.

A ring R is called commutative if for all elements r and s of R we have rs = sr.

gap> IsCommutativeRing(Integers);
true

IsCommutativeRing first tests whether the flag R.isCommutativeRing is bound. If the flag
is bound, it returns this value. Otherwise it calls R.operations.IsCommutativeRing(R
), remembers the returned value in R.isCommutativeRing, and returns it.

The default function called this way is RingOps.IsCommutativeRing, which tests whether
all the generators commute if the component R.generators is bound, and tests whether all
elements commute otherwise, unless R is infinite. This function is seldom overlaid, because
most rings already have the flag bound.

5.8 IsIntegralRing

IsIntegralRing(R)

IsIntegeralRing returns true if the ring R is integral and false otherwise.

A ring R is called integral if it is commutative and if for all elements r and s of R we have
rs = 0R implies that either r or s is 0R.

5.9. ISUNIQUEFACTORIZATIONRING 247

gap> IsIntegralRing(Integers);
true

IsIntegralRing first tests whether the flag R.isIntegralRing is bound. If the flag is
bound, it returns this value. Otherwise it calls R.operations.IsIntegralRing(R),
remembers the returned value in R.isIntegralRing, and returns it.

The default function called this way is RingOps.IsIntegralRing, which tests whether the
product of each pair of nonzero elements is unequal to zero, unless R is infinite. This
function is seldom overlaid, because most rings already have the flag bound.

5.9 IsUniqueFactorizationRing

IsUniqueFactorizationRing(R)

IsUniqueFactorizationRing returns true if R is a unique factorization ring and false
otherwise.

A ring R is called a unique factorization ring if it is an integral ring, and every element
has a unique factorization into irreducible elements, i.e., a unique representation as product
of irreducibles (see 5.16). Unique in this context means unique up to permutations of the
factors and up to multiplication of the factors by units (see 5.12).

gap> IsUniqueFactorizationRing(Integers);
true

IsUniqueFactorizationRing tests whether R.isUniqueFactorizationRing is bound. If
the flag is bound, it returns this value. If this flag has no assigned value it calls the func-
tion R.operations.IsUniqueFactorizationRing(R), remembers the returned value in
R.isUniqueFactorizationRing, and returns it.

The default function called this way is RingOps.IsUniqueFactorizationRing, which just
signals an error, since there is no generic method to test whether a ring is a unique factor-
ization ring. Special categories of rings thus must either have the flag bound or overlay this
default function.

5.10 IsEuclideanRing

IsEuclideanRing(R)

IsEuclideanRing returns true if the ring R is a Euclidean ring and false otherwise.

A ring R is called a Euclidean ring if it is an integral ring and there exists a function δ,
called the Euclidean degree, from R−{0R} to the nonnegative integers, such that for every
pair r ∈ R and s ∈ R − {0R} there exists an element q such that either r − qs = 0R or
δ(r − qs) < δ(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisor of two elements, which in
turn implies that R is a unique factorization ring.

gap> IsEuclideanRing(Integers);
true

IsEuclideanRing first tests whether the flag R.isEuclideanRing is bound. If the flag is
bound, it returns this value. Otherwise it calls R.operations.IsEuclideanRing(R),
remembers the returned value in R.isEuclideanRing, and returns it.

248 CHAPTER 5. RINGS

The default function called this way is RingOps.IsEuclideanRing, which just signals an
error, because there is no generic way to test whether a ring is a Euclidean ring. This
function is seldom overlaid because most rings already have the flag bound.

5.11 IsUnit

IsUnit(r)
IsUnit(R, r)

In the first form IsUnit returns true if the ring element r is a unit in its default ring (see
5.3). In the second form IsUnit returns true if r is a unit in the ring R.

An element r is called a unit in a ring R, if r has an inverse in R.

gap> IsUnit(Integers, 2);
false
gap> IsUnit(Integers, -1);
true

IsUnit calls R.operations.IsUnit(R, r) and returns the value.

The default function called this way is RingOps.IsUnit, which tries to compute the inverse
of r with R.operations.Quotient(R, R.one, r) and returns true if the result is not
false, and false otherwise. Special categories of rings overlay this default function with
more efficient functions.

5.12 Units

Units(R)

Units returns the group of units of the ring R. This may either be returned as a list or as
a group described by a group record (see 7).

An element r is called a unit of a ring R, if r has an inverse in R. It is easy to see that the
set of units forms a multiplicative group.

gap> Units(Integers);
[-1, 1]

Units first tests whether the component R.units is bound. If the component is bound, it
returns this value. Otherwise it calls R.operations.Units(R), remembers the returned
value in R.units, and returns it.

The default function called this way is RingOps.Units, which runs over all elements of R
and tests for each whether it is a unit, provided that R is finite. Special categories of rings
overlay this default function with more efficient functions.

5.13 IsAssociated

IsAssociated(r, s)
IsAssociated(R, r, s)

In the first form IsAssociated returns true if the two ring elements r and s are associated
in their default ring (see 5.3) and false otherwise. In the second form IsAssociated returns
true if the two ring elements r and s are associated in the ring R and false otherwise.

5.14. STANDARDASSOCIATE 249

Two elements r and s of a ring R are called associates if there is a unit u of R such that
ru = s.

gap> IsAssociated(Integers, 2, 3);
false
gap> IsAssociated(Integers, 17, -17);
true

IsAssociated calls R.operations.IsAssociated(R, r, s) and returns the value.

The default function called this way is RingOps.IsAssociated, which tries to compute the
quotient of r and s and returns true if the quotient exists and is a unit. Special categories
of rings overlay this default function with more efficient functions.

5.14 StandardAssociate

StandardAssociate(r)
StandardAssociate(R, r)

In the first form StandardAssociate returns the standard associate of the ring element r
in its default ring (see 5.3). In the second form StandardAssociate returns the standard
associate of the ring element r in the ring R.

The standard associate of an ring element r of R is an associated element of r which is,
in a ring dependent way, distinguished among the set of associates of r. For example, in the
ring of integers the standard associate is the absolute value.

gap> StandardAssociate(Integers, -17);
17

StandardAssociate calls R.operations.StandardAssociate(R, r) and returns the
value.

The default function called this way is RingOps.StandardAssociate, which just signals an
error, because there is no generic way even to define the standard associate. Thus special
categories of rings must overlay this default function with other functions.

5.15 Associates

Associates(r)
Associates(R, r)

In the first form Associates returns the set of associates of the ring element r in its default
ring (see 5.3). In the second form Associates returns the set of associates of r in the ring
R.

Two elements r and s of a ring R are called associate if there is a unit u of R such that
ru = s.

gap> Associates(Integers, 17);
[-17, 17]

Associates calls R.operations.Associates(R, r) and returns the value.

The default function called this way is RingOps.Associates, which multiplies the set of
units of R with the element r , and returns the set of those elements. Special categories of
rings overlay this default function with more efficient functions.

250 CHAPTER 5. RINGS

5.16 IsIrreducible

IsIrreducible(r)
IsIrreducible(R, r)

In the first form IsIrreducible returns true if the ring element r is irreducible in its default
ring (see 5.3) and false otherwise. In the second form IsIrreducible returns true if the
ring element r is irreducible in the ring R and false otherwise.

An element r of a ring R is called irreducible if there is no nontrivial factorization of r in
R, i.e., if there is no representation of r as product st such that neither s nor t is a unit (see
5.11). Each prime element (see 5.17) is irreducible.

gap> IsIrreducible(Integers, 4);
false
gap> IsIrreducible(Integers, 3);
true

IsIrreducible calls R.operations.IsIrreducible(R, r) and returns the value.

The default function called this way is RingOps.IsIrreducible, which justs signals an
error, because there is no generic way to test whether an element is irreducible. Thus
special categories of rings must overlay this default function with other functions.

5.17 IsPrime

IsPrime(r)
IsPrime(R, r)

In the first form IsPrime returns true if the ring element r is a prime in its default ring
(see 5.3) and false otherwise. In the second form IsPrime returns true if the ring element
r is a prime in the ring R and false otherwise.

An element r of a ring R is called prime if for each pair s and t such that r divides st
the element r divides either s or t. Note that there are rings where not every irreducible
element (see 5.16) is a prime.

gap> IsPrime(Integers, 4);
false
gap> IsPrime(Integers, 3);
true

IsPrime calls R.operations.IsPrime(R, r) and returns the value.

The default function called this way is RingOps.IsPrime, which just signals an error, be-
cause there is no generic way to test whether an element is prime. Thus special categories
of rings must overlay this default function with other functions.

5.18 Factors

Factors(r)
Factors(R, r)

In the first form Factors returns the factorization of the ring element r in its default ring
(see 5.3). In the second form Factors returns the factorization of the ring element r in

5.19. EUCLIDEANDEGREE 251

the ring R. The factorization is returned as a list of primes (see 5.17). Each element in the
list is a standard associate (see 5.14) except the first one, which is multiplied by a unit as
necessary to have Product(Factors(R, r)) = r . This list is usually also sorted, thus
smallest prime factors come first. If r is a unit or zero, Factors(R, r) = [r].

gap> Factors(-Factorial(6));
[-2, 2, 2, 2, 3, 3, 5]
gap> Set(Factors(Factorial(13)/11));
[2, 3, 5, 7, 13]
gap> Factors(2^63 - 1);
[7, 7, 73, 127, 337, 92737, 649657]
gap> Factors(10^42 + 1);
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]

Factors calls R.operations.Factors(R, r) and returns the value.

The default function called this way is RingOps.Factors, which just signals an error, be-
cause there is no generic way to compute the factorization of ring elements. Thus special
categories of ring elements must overlay this default function with other functions.

5.19 EuclideanDegree

EuclideanDegree(r)
EuclideanDegree(R, r)

In the first form EuclideanDegree returns the Euclidean degree of the ring element r in its
default ring. In the second form EuclideanDegree returns the Euclidean degree of the ring
element in the ring R. R must of course be an Euclidean ring (see 5.10).

A ring R is called a Euclidean ring, if it is an integral ring, and there exists a function δ,
called the Euclidean degree, from R−{0R} to the nonnegative integers, such that for every
pair r ∈ R and s ∈ R − {0R} there exists an element q such that either r − qs = 0R or
δ(r − qs) < δ(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which in
turn implies that R is a unique factorization ring.

gap> EuclideanDegree(Integers, 17);
17
gap> EuclideanDegree(Integers, -17);
17

EuclideanDegree calls R.operations.EuclideanDegree(R, r) and returns the value.

The default function called this way is RingOps.EuclideanDegree, which justs signals an
error, because there is no default way to compute the Euclidean degree of an element. Thus
Euclidean rings must overlay this default function with other functions.

5.20 EuclideanRemainder

EuclideanRemainder(r, m)
EuclideanRemainder(R, r, m)

In the first form EuclideanRemainder returns the remainder of the ring element r modulo
the ring element m in their default ring. In the second form EuclideanRemainder returns

252 CHAPTER 5. RINGS

the remainder of the ring element r modulo the ring element m in the ring R. The ring R
must be a Euclidean ring (see 5.10) otherwise an error is signalled.
A ring R is called a Euclidean ring, if it is an integral ring, and there exists a function δ,
called the Euclidean degree, from R−{0R} to the nonnegative integers, such that for every
pair r ∈ R and s ∈ R − {0R} there exists an element q such that either r − qs = 0R or
δ(r − qs) < δ(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which
in turn implies that R is a unique factorization ring. EuclideanRemainder returns this
remainder r − qs.

gap> EuclideanRemainder(16, 3);
1
gap> EuclideanRemainder(Integers, 201, 11);
3

EuclideanRemainder calls R.operations.EuclideanRemainder(R, r, m) in order to
compute the remainder and returns the value.
The default function called this way uses QuotientRemainder in order to compute the
remainder.

5.21 EuclideanQuotient

EuclideanQuotient(r, m)
EuclideanQuotient(R, r, m)

In the first form EuclideanQuotient returns the Euclidean quotient of the ring elements r
and m in their default ring. In the second form EuclideanQuotient returns the Euclidean
quotient of the ring elements rand m in the ring R. The ring R must be a Euclidean ring
(see 5.10) otherwise an error is signalled.
A ring R is called a Euclidean ring, if it is an integral ring, and there exists a function δ,
called the Euclidean degree, from R−{0R} to the nonnegative integers, such that for every
pair r ∈ R and s ∈ R − {0R} there exists an element q such that either r − qs = 0R or
δ(r − qs) < δ(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which in
turn implies that R is a unique factorization ring. EuclideanQuotient returns the quotient
q.

gap> EuclideanQuotient(16, 3);
5
gap> EuclideanQuotient(Integers, 201, 11);
18

EuclideanQuotient calls R.operations.EuclideanQuotient(R, r, m) and returns
the value.
The default function called this way uses QuotientRemainder in order to compute the
quotient.

5.22 QuotientRemainder

QuotientRemainder(r, m)
QuotientRemainder(R, r, m)

5.23. MOD 253

In the first form QuotientRemainder returns the Euclidean quotient and the Euclidean
remainder of the ring elements r and m in their default ring as pair of ring elements. In
the second form QuotientRemainder returns the Euclidean quotient and the Euclidean
remainder of the ring elements r and m in the ring R. The ring R must be a Euclidean ring
(see 5.10) otherwise an error is signalled.

A ring R is called a Euclidean ring, if it is an integral ring, and there exists a function δ,
called the Euclidean degree, from R−{0R} to the nonnegative integers, such that for every
pair r ∈ R and s ∈ R − {0R} there exists an element q such that either r − qs = 0R or
δ(r − qs) < δ(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which in
turn implies that R is a unique factorization ring. QuotientRemainder returns this quotient
q and the remainder r − qs.

gap> qr := QuotientRemainder(16, 3);
[5, 1]
gap> 3 * qr[1] + qr[2];
16
gap> QuotientRemainder(Integers, 201, 11);
[18, 3]

QuotientRemainder calls R.operations.QuotientRemainder(R, r, m) and returns
the value.

The default function called this way is RingOps.QuotientRemainder, which just signals an
error, because there is no default function to compute the Euclidean quotient or remainder
of one ring element modulo another. Thus Euclidean rings must overlay this default function
with other functions.

5.23 Mod

Mod(r, m)
Mod(R, r, m)

Mod is a synonym for EuclideanRemainder and is obsolete, see 5.20.

5.24 QuotientMod

QuotientMod(r, s, m)
QuotientMod(R, r, s, m)

In the first form QuotientMod returns the quotient of the ring elements r and s modulo the
ring element m in their default ring (see 5.3). In the second form QuotientMod returns the
quotient of the ring elements r and s modulo the ring element m in the ring R. R must be
a Euclidean ring (see 5.10) so that EuclideanRemainder (see 5.20) can be applied. If the
modular quotient does not exist, false is returned.

The quotient q of r and s modulo m is an element of R such that qs = r modulo m, i.e.,
such that qs− r is divisable by m in R and that q is either 0 (if r is divisable by m) or the
Euclidean degree of q is strictly smaller than the Euclidean degree of m.

gap> QuotientMod(Integers, 13, 7, 11);
5

254 CHAPTER 5. RINGS

gap> QuotientMod(Integers, 13, 7, 21);
false

QuotientMod calls R.operations.QuotientMod(R, r, s, m) and returns the value.

The default function called this way is RingOps.QuotientMod, which applies the Euclidean
gcd algorithm to compute the gcd g of s and m, together with the representation of this
gcd as linear combination in s and m, g = a * s + b * m. The modular quotient exists
if and only if r is divisible by g , in which case the quotient is a * Quotient(R, r, g).
This default function is seldom overlaid, because there is seldom a better way to compute
the quotient.

5.25 PowerMod

PowerMod(r, e, m)
PowerMod(R, r, e, m)

In the first form PowerMod returns the e-th power of the ring element r modulo the ring
element m in their default ring (see 5.3). In the second form PowerMod returns the e-th
power of the ring element r modulo the ring element m in the ring R. e must be an integer.
R must be a Euclidean ring (see 5.10) so that EuclideanRemainder (see 5.20) can be applied
to its elements.

If e is positive the result is re modulo m. If e is negative then PowerMod first tries to find
the inverse of r modulo m, i.e., i such that ir = 1 modulo m. If the inverse does not exist
an error is signalled. If the inverse does exist PowerMod returns PowerMod(R, i, -e, m
).

PowerMod reduces the intermediate values modulo m, improving performance drastically
when e is large and m small.

gap> PowerMod(Integers, 2, 20, 100);
76 # 220 = 1048576
gap> PowerMod(Integers, 3, 2^32, 2^32+1);
3029026160 # which proves that 232 + 1 is not a prime
gap> PowerMod(Integers, 3, -1, 22);
15 # 3*15 = 45 = 1 modulo 22

PowerMod calls R.operations.PowerMod(R, r, e, m) and returns the value.

The default function called this way is RingOps.PowerMod, which uses QuotientMod (see
5.24) if necessary to invert r , and then uses a right-to-left repeated squaring, reducing the
intermediate results modulo m in each step. This function is seldom overlaid, because there
is seldom a better way of computing the power.

5.26 Gcd

Gcd(r1, r2...)
Gcd(R, r1, r2...)

In the first form Gcd returns the greatest common divisor of the ring elements r1 , r2 ... etc.
in their default ring (see 5.3). In the second form Gcd returns the greatest common divisor
of the ring elements r1 , r2 ... etc. in the ring R. R must be a Euclidean ring (see 5.10) so

5.27. GCDREPRESENTATION 255

that QuotientRemainder (see 5.22) can be applied to its elements. Gcd returns the standard
associate (see 5.14) of the greatest common divisors.

A greatest common divisor of the elements r1, r2... etc. of the ring R is an element of
largest Euclidean degree (see 5.19) that is a divisor of r1, r2... etc. We define gcd(r, 0R) =
gcd(0R, r) = StandardAssociate(r) and gcd(0R, 0R) = 0R.

gap> Gcd(Integers, 123, 66);
3

Gcd calls R.operations.Gcd repeatedly, each time passing the result of the previous call
and the next argument, and returns the value of the last call.

The default function called this way is RingOps.Gcd, which applies the Euclidean algorithm
to compute the greatest common divisor. Special categories of rings overlay this default
function with more efficient functions.

5.27 GcdRepresentation

GcdRepresentation(r1, r2...)
GcdRepresentation(R, r1, r2...)

In the first form GcdRepresentation returns the representation of the greatest common
divisor of the ring elements r1 , r2 ... etc. in their default ring (see 5.3). In the second form
GcdRepresentation returns the representation of the greatest common divisor of the ring
elements r1 , r2 ... etc. in the ring R. R must be a Euclidean ring (see 5.10) so that Gcd
(see 5.26) can be applied to its elements. The representation is returned as a list of ring
elements.

The representation of the gcd g of the elements r1, r2... etc. of a ring R is a list of ring
elements s1, s2... etc. of R, such that g = s1r1 + s2r2.... That this representation exists can
be shown using the Euclidean algorithm, which in fact can compute those coefficients.

gap> GcdRepresentation(123, 66);
[7, -13] # 3 = 7*123 - 13*66
gap> Gcd(123, 66) = last * [123, 66];
true

GcdRepresentation calls R.operations.GcdRepresentation repeatedly, each time pass-
ing the gcd result of the previous call and the next argument, and returns the value of the
last call.

The default function called this way is RingOps.GcdRepresentation, which applies the
Euclidean algorithm to compute the greatest common divisor and its representation. Special
categories of rings overlay this default function with more efficient functions.

5.28 Lcm

Lcm(r1, r2...)
Lcm(R, r1, r2...)

In the first form Lcm returns the least common multiple of the ring elements r1 , r2 ... etc.
in their default ring (see 5.3). In the second form Lcm returns the least common multiple
of the ring elements r1 , r2 ,... etc. in the ring R. R must be a Euclidean ring (see 5.10) so

256 CHAPTER 5. RINGS

that Gcd (see 5.26) can be applied to its elements. Lcm returns the standard associate (see
5.14) of the least common multiples.

A least common multiple of the elements r1, r2... etc. of the ring R is an element of smallest
Euclidean degree (see 5.19) that is a multiple of r1, r2... etc. We define lcm(r, 0R) =
lcm(0R, r) = StandardAssociate(r) and Lcm(0R, 0R) = 0R.

Lcm uses the equality lcm(m,n) = m ∗ n/gcd(m,n) (see 5.26).

gap> Lcm(Integers, 123, 66);
2706

Lcm calls R.operations.Lcm repeatedly, each time passing the result of the previous call
and the next argument, and returns the value of the last call.

The default function called this way is RingOps.Lcm, which simply returns the product of
r with the quotient of s and the greatest common divisor of r and s. Special categories of
rings overlay this default function with more efficient functions.

5.29 Ring Records

A ring R is represented by a record with the following entries.

isDomain
is of course always the value true.

isRing
is of course always the value true.

isCommutativeRing
is true if the multiplication is known to be commutative, false if the multiplication
is known to be noncommutative, and unbound otherwise.

isIntegralRing
is true if R is known to be a commutative domain with 1 without zero divisor, false
if R is known to lack one of these properties, and unbound otherwise.

isUniqueFactorizationRing
is true if R is known to be a domain with unique factorization into primes, false if
R is known to have a nonunique factorization, and unbound otherwise.

isEuclideanRing
is true if R is known to be a Euclidean domain, false if it is known not to be a
Euclidean domain, and unbound otherwise.

zero
is the additive neutral element.

units
is the list of units of the ring if it is known.

size
is the size of the ring if it is known. If the ring is not finite this is the string ”infinity”.

one
is the multiplicative neutral element, if the ring has one.

5.29. RING RECORDS 257

integralBase
if the ring is, as additive group, isomorphic to the direct product of a finite number
of copies of Z this contains a base.

As an example of a ring record, here is the definition of the ring record Integers.

rec(

category components
isDomain := true,
isRing := true,

identity components
generators := [1],
zero := 0,
one := 1,
name := "Integers",

knowledge components
size := "infinity",
isFinite := false,
isCommutativeRing := true,
isIntegralRing := true,
isUniqueFactorizationRing := true,
isEuclideanRing := true,
units := [-1, 1],

operations record
operations := rec(

...
IsPrime := function (Integers, n)

return IsPrimeInt(n);
end,
...
’mod’ := function (Integers, n, m)

return n mod m;
end,
...))

258 CHAPTER 5. RINGS

Chapter 6

Fields

Fields are important algebraic domains. Mathematically a field is a commutative ring F
(see chapter 5), such that every element except 0 has a multiplicative inverse. Thus F has
two operations + and * called addition and multiplication. (F,+) must be an abelian group,
whose identity is called 0F . (F −{0F }, ∗) must be an abelian group, whose identity element
is called 1F .

GAP supports the field of rationals (see 12), subfields of cyclotomic fields (see 15), and finite
fields (see 18).

This chapter begins with sections that describe how to test whether a domain is a field (see
6.1), how to find the smallest field and the default field in which a list of elements lies (see
6.2 and 6.3), and how to view a field over a subfield (see 6.4).

The next sections describes the operation applicable to field elements (see 6.5 and 6.6).

The next sections describe the functions that are applicable to fields (see 6.7) and their
elements (see 6.12, 6.10, 6.11, 6.9, and 6.8).

The following sections describe homomorphisms of fields (see 6.13, 6.14, 6.15, 6.16).

The last section describes how fields are represented internally (see 6.17).

Fields are domains, so all functions that are applicable to all domains are also applicable to
fields (see chapter 4).

All functions for fields are in LIBNAME/"field.g".

6.1 IsField

IsField(D)

IsField returns true if the object D is a field and false otherwise.

More precisely IsField tests whether D is a field record (see 6.17). So, for example, a
matrix group may in fact be a field, yet IsField would return false.

gap> IsField(GaloisField(16));
true
gap> IsField(CyclotomicField(9));

259

260 CHAPTER 6. FIELDS

true
gap> IsField(rec(isDomain := true, isField := true));
true # it is possible to fool IsField
gap> IsField(AsRing(Rationals));
false # though this ring is, as a set, still Rationals

6.2 Field

Field(z,..) Field(list)

In the first form Field returns the smallest field that contains all the elements z ,.. etc. In
the second form Field returns the smallest field that contains all the elements in the list
list . If any element is not an element of a field or the elements lie in no common field an
error is raised.

gap> Field(Z(4));
GF(2^2)
gap> Field(E(9));
CF(9)
gap> Field([Z(4), Z(9)]);
Error, CharFFE: <z> must be a finite field element, vector, or matrix
gap> Field([E(4), E(9)]);
CF(36)

Field differs from DefaultField (see 6.3) in that it returns the smallest field in which the
elements lie, while DefaultField may return a larger field if that makes sense.

6.3 DefaultField

DefaultField(z,..) DefaultField(list)

In the first form DefaultField returns the default field that contains all the elements z ,..
etc. In the second form DefaultField returns the default field that contains all the elements
in the list list . If any element is not an element of a field or the elements lie in no common
field an error is raised.

The field returned by DefaultField need not be the smallest field in which the elements
lie. For example for elements from cyclotomic fields DefaultField may return the smallest
cyclotomic field in which the elements lie, which need not be the smallest field overall,
because the elements may in fact lie in a smaller number field which is not a cyclotomic
field.

For the exact definition of the default field of a certain type of elements read the chapter
describing this type (see 18 and 15).

DefaultField is used by Conjugates, Norm, Trace, CharPol, and MinPol (see 6.12, 6.10,
6.11, 6.9, and 6.8) if no explicit field is given.

gap> DefaultField(Z(4));
GF(2^2)
gap> DefaultField(E(9));
CF(9)
gap> DefaultField([Z(4), Z(9)]);

6.4. FIELDS OVER SUBFIELDS 261

Error, CharFFE: <z> must be a finite field element, vector, or matrix
gap> DefaultField([E(4), E(9)]);
CF(36)

Field (see 6.2) differs from DefaultField in that it returns the smallest field in which the
elements lie, while DefaultField may return a larger field if that makes sense.

6.4 Fields over Subfields

F / G

The quotient operator / evaluates to a new field H . This field has the same elements as F ,
i.e., is a domain equal to F . However H is viewed as a field over the field G , which must be
a subfield of F .

What subfield a field is viewed over determines its Galois group. As described in 6.7 the
Galois group is the group of field automorphisms that leave the subfield fixed. It also
influences the results of 6.10, 6.11, 6.9, and 6.8, because they are defined in terms of the
Galois group.

gap> F := GF(2^12);
GF(2^12)
gap> G := GF(2^2);
GF(2^2)
gap> Q := F / G;
GF(2^12)/GF(2^2)
gap> Norm(F, Z(2^6));
Z(2)^0
gap> Norm(Q, Z(2^6));
Z(2^2)^2

The operator / calls G.operations./(F, G).

The default function called this way is FieldOps./, which simply makes a copy of F and
enters G into the record component F.field (see 6.17).

6.5 Comparisons of Field Elements

f = g
f <> g

The equality operator = evaluates to true if the two field elements f and g are equal, and
to false otherwise. The inequality operator <> evaluates to true if the two field elements
f and g are not equal, and to false otherwise. Note that any two field elements can be
compared, even if they do not lie in compatible fields. In this case they cn, of course, never
be equal. For each type of fields the equality of those field elements is given in the respective
chapter.

Note that you can compare field elements with elements of other types; of course they are
never equal.

f < g
f <= g

262 CHAPTER 6. FIELDS

f > g
f >= g

The operators <, <=, >, and >= evaluate to true if the field element f is less than, less than
or equal to, greater than, or greater than or equal to the field element g . For each type of
fields the definition of the ordering of those field elements is given in the respective chapter.
The ordering of field elements is as follows. Rationals are smallest, next are cyclotomics,
followed by finite field elements.

Note that you can compare field elements with elements of other types; they are smaller
than everything else.

6.6 Operations for Field Elements

The following operations are always available for field elements. Of course the operands must
lie in compatible fields, i.e., the fields must be equal, or at least have a common superfield.

f + g

The operator + evaluates to the sum of the two field elements f and g , which must lie in
compatible fields.

f - g

The operator - evaluates to the difference of the two field elements f and g , which must lie
in compatible fields.

f * g

The operator * evaluates to the product of the two field elements f and g , which must lie
in compatible fields.

f / g

The operator / evaluates to the quotient of the two field elements f and g , which must lie
in compatible fields. If the divisor is 0 an error is signalled.

f ^ n

The operator ^ evaluates to the n-th power of the field element f . If n is a positive integer
then f ^n is f *f *..*f (n factors). If n is a negative integer f ^n is defined as 1/f −n . If 0
is raised to a negative power an error is signalled. Any field element, even 0, raised to the
0-th power yields 1.

For the precedence of the operators see 2.10.

6.7 GaloisGroup

GaloisGroup(F)

GaloisGroup returns the Galois group of the field F as a group (see 7) of field automorphisms
(see 6.13).

The Galois group of a field F over a subfield F.field is the group of automorphisms of
F that leave the subfield F.field fixed. This group can be interpreted as a permutation
group permuting the zeroes of the characteristic polynomial of a primitive element of F .
The degree of this group is equal to the number of zeroes, i.e., to the dimension of F as

6.8. MINPOL 263

a vector space over the subfield F.field. It operates transitively on those zeroes. The
normal divisors of the Galois group correspond to the subfields between F and F.field.

gap> G := GaloisGroup(GF(4096)/GF(4));;
gap> Size(G);
6
gap> IsCyclic(G);
true # the Galois group of every finite field is

generated by the Frobenius automorphism
gap> H := GaloisGroup(CF(60));;
gap> Size(H);
16
gap> IsAbelian(H);
true

The default function FieldOps.GaloisGroup just raises an error, since there is no general
method to compute the Galois group of a field. This default function is overlaid by more
specific functions for special types of domains (see 18.13 and 15.8).

6.8 MinPol

MinPol(z)
MinPol(F, z)

In the first form MinPol returns the coefficients of the minimal polynomial of the element
z in its default field over its prime field (see 6.3). In the second form MinPol returns the
coefficients of the minimal polynomial of the element z in the field F over the subfield
F.field.

Let F/S be a field extension and L a minimal normal extension of S, containing F . The
minimal polynomial of z in F over S is the squarefree polynomial whose roots are precisely
the conjugates of z in L (see 6.12). Because the set of conjugates is fixed under the Galois
group of L over S (see 6.7), so is the polynomial. Thus all the coefficients of the minimal
polynomial lie in S.

gap> MinPol(Z(2^6));
[Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0]
gap> MinPol(GF(2^12), Z(2^6));
[Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0]
gap> MinPol(GF(2^12)/GF(2^2), Z(2^6));
[Z(2^2), Z(2)^0, Z(2)^0, Z(2)^0]

The default function FieldOps.MinPol, which works only for extensions with abelian Galois
group, multiplies the linear factors x − c with c ranging over the set of conjugates of z in
F (see 6.12). For generic algebraic extensions, it is overlayed by solving a system of linear
equations, given by the coefficients of powers of z in respect to a given base.

6.9 CharPol

CharPol(z)
CharPol(F, z)

264 CHAPTER 6. FIELDS

In the first form CharPol returns the coefficients of the characteristic polynomial of the
element z in its default field over its prime field (see 6.3). In the second form CharPol
returns the coefficients of the characteristic polynomial of the element z in the field F over
the subfield F.field. The characteristic polynomial is returned as a list of coefficients, the
i -th entry is the coefficient of xi−1.

The characteristic polynomial of an element z in a field F over a subfield S is the [F :S]
degµ -th

power of µ, where µ denotes the minimal polynomial of z in F over S. It is fixed under
the Galois group of the normal closure of F . Thus all the coefficients of the characteristic
polynomial lie in S. The constant term is (−1)F.degree/S.degree = (−1)[F :S] times the norm
of z (see 6.10), and the coefficient of the second highest degree term is the negative of the
trace of z (see 6.11). The roots (including their multiplicities) in F of the characteristic
polynomial of z in F are the conjugates (see 6.12) of z in F .

gap> CharPol(Z(2^6));
[Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0]
gap> CharPol(GF(2^12), Z(2^6));
[Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2),
Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]

gap> CharPol(GF(2^12)/GF(2^2), Z(2^6));
[Z(2^2)^2, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]

The default function FieldOps.CharPol multiplies the linear factors x − c with c ranging
over the conjugates of z in F (see 6.12). For nonabelian extensions, it is overlayed by a
function, which computes the appropriate power of the minimal polynomial.

6.10 Norm

Norm(z)
Norm(F, z)

In the first form Norm returns the norm of the field element z in its default field over its
prime field (see 6.3). In the second form Norm returns the norm of z in the field F over the
subfield F.field.

The norm of an element z in a field F over a subfield S is (−1)F.degree/S.degree = (−1)[F :S]

times the constant term of the characteristic polynomial of z (see 6.9). Thus the norm lies
in S. The norm is the product of all conjugates of z in the normal closure of F over S (see
6.12).

gap> Norm(Z(2^6));
Z(2)^0
gap> Norm(GF(2^12), Z(2^6));
Z(2)^0
gap> Norm(GF(2^12)/GF(2^2), Z(2^6));
Z(2^2)^2

The default function FieldOps.Norm multiplies the conjugates of z in F (see 6.12). For
nonabelian extensions, it is overlayed by a function, which obtains the norm from the char-
acteristic polynomial.

6.11. TRACE 265

6.11 Trace

Trace(z)
Trace(F, z)

In the first form Trace returns the trace of the field element z in its default field over its
prime field (see 6.3). In the second form Trace returns the trace of the element z in the
field F over the subfield F.field.

The trace of an element z in a field F over a subfield S is the negative of the coefficient
of the second highest degree term of the characteristic polynomial of z (see 6.9). Thus the
trace lies in S. The trace is the sum over all conjugates of z in the normal closure of F over
S (see 6.12).

gap> Trace(Z(2^6));
0*Z(2)
gap> Trace(GF(2^12), Z(2^6));
0*Z(2)
gap> Trace(GF(2^12)/GF(2^2), Z(2^6));
0*Z(2)

The default function FieldOps.Trace adds the conjugates of z in F (see 6.12). For non-
abelian extensions, this is overlayed by a function, which obtains the trace from the char-
acteristic polynomial.

6.12 Conjugates

Conjugates(z)
Conjugates(F, z)

In the first form Conjugates returns the list of conjugates of the field element z in its
default field over its prime field (see 6.3). In the second form Conjugates returns the list
of conjugates of the field element z in the field F over the subfield F.field. In either case
the list may contain duplicates if z lies in a proper subfield of its default field, respectively
of F .

The conjugates of an element z in a field F over a subfield S are the roots in F of the
characteristic polynomial of z in F (see 6.9). If F is a normal extension of S, then the
conjugates of z are the images of z under all elements of the Galois group of F over S
(see 6.7), i.e., under those automorphisms of F that leave S fixed. The number of different
conjugates of z is given by the degree of the smallest extension of S in which z lies.
For a normal extension F , Norm (see 6.10) computes the product, Trace (see 6.11) the sum of
all conjugates. CharPol (see 6.9) computes the polynomial that has precisely the conjugates
with their corresponding multiplicities as roots, MinPol (see 6.8) the squarefree polynomial
that has precisely the conjugates as roots.

gap> Conjugates(Z(2^6));
[Z(2^6), Z(2^6)^2, Z(2^6)^4, Z(2^6)^8, Z(2^6)^16, Z(2^6)^32]
gap> Conjugates(GF(2^12), Z(2^6));
[Z(2^6), Z(2^6)^2, Z(2^6)^4, Z(2^6)^8, Z(2^6)^16, Z(2^6)^32, Z(2^6),
Z(2^6)^2, Z(2^6)^4, Z(2^6)^8, Z(2^6)^16, Z(2^6)^32]

gap> Conjugates(GF(2^12)/GF(2^2), Z(2^6));

266 CHAPTER 6. FIELDS

[Z(2^6), Z(2^6)^4, Z(2^6)^16, Z(2^6), Z(2^6)^4, Z(2^6)^16]

The default function FieldOps.Conjugates applies the automorphisms of the Galois group
of F (see 6.7) to z and returns the list of images. For nonabelian extensions, this is overlayed
by a factorization of the characteristic polynomial.

6.13 Field Homomorphisms

Field homomorphisms are an important class of homomorphisms in GAP (see chapter 43).

A field homomorphism φ is a mapping that maps each element of a field F , called the
source of φ, to an element of another field G, called the range of φ, such that for each pair
x, y ∈ F we have (x + y)φ = xφ + yφ and (xy)φ = xφyφ. We also require that φ maps the
one of F to the one of G (that φ maps the zero of F to the zero of G is implied by the above
relations).

An Example of a field homomorphism is the Frobinius automorphism of a finite field (see
18.11). Look under field homomorphisms in the index for a list of all available field
homomorphisms.

Since field homomorphisms are just a special case of homomorphisms, all functions described
in chapter 43 are applicable to all field homomorphisms, e.g., the function to test if a
homomorphism is a an automorphism (see 43.6). More general, since field homomorphisms
are just a special case of mappings all functions described in chapter 42 are also applicable,
e.g., the function to compute the image of an element under a homomorphism (see 42.8).

The following sections describe the functions that test whether a mapping is a field homo-
morphism (see 6.14), compute the kernel of a field homomorphism (see 6.15), and how the
general mapping functions are implemented for field homomorphisms.

6.14 IsFieldHomomorphism

IsFieldHomomorphism(map)

IsFieldHomomorphism returns true if the mapping map is a field homomorphism and false
otherwise. Signals an error if map is a multi valued mapping.

A mapping map is a field homomorphism if its source F and range G are both fields and if for
each pair of elements x, y ∈ F we have (x+y)map = xmap+ymap and (xy)map = xmapymap.
We also require that 1mapF = 1G.

gap> f := GF(16);
GF(2^4)
gap> fun := FrobeniusAutomorphism(f);
FrobeniusAutomorphism(GF(2^4))
gap> IsFieldHomomorphism(fun);
true

IsFieldHomomorphism first tests if the flag map.isFieldHomomorphism is bound. If the
flag is bound, IsFieldHomomorphism returns its value. Otherwise it calls
map.source.operations.IsFieldHomomorphism(map), remembers the returned value
in map.isFieldHomomorphism, and returns it. Note that of course all functions that create
field homomorphism set the flag map.isFieldHomomorphism to true, so that no function
is called for those field homomorphisms.

6.15. KERNELFIELDHOMOMORPHISM 267

The default function called this way is MappingOps.IsFieldHomomorphism. It computes
all the elements of the source of map and for each pair of elements x, y tests whether
(x + y)map = xmap + ymap and (xy)map = xmapymap. Look under IsHomomorphism in
the index to see for which mappings this function is overlaid.

6.15 KernelFieldHomomorphism

KernelFieldHomomorphism(hom)

KernelFieldHomomorphism returns the kernel of the field homomorphism hom.
Because the kernel must be a ideal in the source and it can not be the full source (because
we require that the one of the source is mapped to the one of the range), it must be the
trivial ideal. Therefor the kernel of every field homomorphism is the set containing only the
zero of the source.

6.16 Mapping Functions for Field Homomorphisms

This section describes how the mapping functions defined in chapter 42 are implemented for
field homomorphisms. Those functions not mentioned here are implemented by the default
functions described in the respective sections.

IsInjective(hom)

Always returns true (see 6.15).

IsSurjective(hom)

The field homomorphism hom is surjective if the size of the image Size(Image(hom))
is equal to the size of the range Size(hom.range).

hom1 = hom2
The two field homomorphism hom1 and hom2 are are equal if the have the same source and
range and if the images of the generators of the source under hom1 and hom2 are equal.

Image(hom)
Image(hom, H)
Images(hom, H)

The image of a subfield under a field homomorphism is computed by computing the images
of a set of generators of the subfield, and the result is the subfield generated by those images.

PreImage(hom)
PreImage(hom, H)
PreImages(hom, H)

The preimages of a subfield under a field homomorphism are computed by computing the
preimages of all the generators of the subfield, and the result is the subfield generated by
those elements.
Look in the index under IsInjective, IsSurjective, Image, Images, PreImage, PreIm-
ages, and equality to see for which field homomorphisms these functions are overlaid.

268 CHAPTER 6. FIELDS

6.17 Field Records

A field is represented by a record that contains important information about this field.
The GAP library predefines some field records, for example Rationals (see 12). Field
constructors construct others, for example Field (see 6.2), and GaloisField (see 18.10).
Of course you may also create such a record by hand.

All field records contain the components isDomain, isField, char, degree, generators,
zero, one, field, base, and dimension. They may also contain the optional components
isFinite, size, galoisGroup. The contents of all components of a field F are described
below.

isDomain
is always true. This indicates that F is a domain.

isField
is always true. This indicates that F is a field.

char
is the characteristic of F . For finite fields this is always a prime, for infinite fields this
is 0.

degree
is the degree of F as extension of the prime field, not as extension of the subfield
S . For finite fields the order of F is given by F.char^F.degree.

generators
a list of elements that together generate F . That is F is the smallest field over the
prime field given by F.char that contains the elements of F.generators.

zero
is the additive neutral element of the finite field.

one
is the multiplicative neutral element of the finite field.

field
is the subfield S over which F was constructed. This is either a field record for S , or
the same value as F.char, denoting the prime field (see 6.4).

base
is a list of elements of F forming a base for F as vector space over the subfield S .

dimension
is the dimension of F as vector space over the subfield S .

isFinite
if present this is true if the field F is finite and false otherwise.

size
if present this is the size of the field F . If F is infinite this holds the string ”infinity”.

galoisGroup
if present this holds the Galois group of F (see 6.7).

Chapter 7

Groups

Finitely generated groups and their subgroups are important domains in GAP. They are
represented as permutation groups, matrix groups, ag groups or even more complicated
constructs as for instance automorphism groups, direct products or semi-direct products
where the group elements are represented by records.

Groups are created using Group (see 7.9), they are represented by records that contain
important information about the groups. Subgroups are created as subgroups of a given
group using Subgroup, and are also represented by records. See 7.6 for details about the
distinction between groups and subgroups.

Because this chapter is very large it is split into several parts. Each part consists of several
sections.

Note that some functions will only work if the elements of a group are represented in an
unique way. This is not true in finitely presented groups, see 23.3 for a list of functions
applicable to finitely presented groups.

The first part describes the operations and functions that are available for group ele-
ments, e.g., Order (see 7.1). The next part tells your more about the distinction of par-
ent groups and subgroups (see 7.6). The next parts describe the functions that compute
subgroups, e.g., SylowSubgroup (7.14), and series of subgroups, e.g., DerivedSeries (see
7.36). The next part describes the functions that compute and test properties of groups, e.g.,
AbelianInvariants and IsSimple (see 7.45), and that identify the isomorphism type. The
next parts describe conjugacy classes of elements and subgroups (see 7.67) and cosets (see
7.83). The next part describes the functions that create new groups, e.g., DirectProduct
(see 7.97). The next part describes group homomorphisms, e.g., NaturalHomomorphism (see
7.105). The last part tells you more about the implementation of groups, e.g., it describes
the format of group records (see 7.113).

The functions described in this chapter are implemented in the following library files.
LIBNAME/"grpelms.g" contains the functions for group elements, LIBNAME/"group.g" con-
tains the dispatcher and default group functions, LIBNAME/"grpcoset.g" contains the func-
tions for cosets and factor groups, LIBNAME/"grphomom.g" implements the group homomor-
phisms, and LIBNAME/"grpprods.g" implements the group constructions.

269

270 CHAPTER 7. GROUPS

7.1 Group Elements

The following sections describe the operations and functions available for group elements
(see 7.2, 7.3, 7.4, and 7.5).

Note that group elements usually exist independently of a group, e.g., you can write down
two permutations and compute their product without ever defining a group that contains
them.

7.2 Comparisons of Group Elements

g = h
g <> h

The equality operator = evaluates to true if the group elements g and h are equal and to
false otherwise. The inequality operator <> evaluates to true if the group elements g and
h are not equal and to false otherwise.

You can compare group elements with objects of other types. Of course they are never
equal. Standard group elements are permutations, ag words and matrices. For examples of
generic group elements see for instance 7.98.

g < h
g <= h
g >= h
g > h

The operators <, <=, >= and > evaluate to true if the group element g is strictly less than,
less than or equal to, greater than or equal to and strictly greater than the group element
h. There is no general ordering on group elements.

Standard group elements may be compared with objects of other types while generic group
elements may disallow such a comparison.

7.3 Operations for Group Elements

g * h
g / h

The operators * and / evaluate to the product and quotient of the two group elements g
and h. The operands must of course lie in a common parent group, otherwise an error is
signaled.

g ^ h

The operator ^ evaluates to the conjugate h−1 ∗ g ∗ h of g under h for two group elements
elements g and h. The operands must of course lie in a common parent group, otherwise
an error is signaled.

g ^ i

7.4. ISGROUPELEMENT 271

The powering operator ^ returns the i -th power of a group element g and an integer i . If i
is zero the identity of a parent group of g is returned.

list * g
g * list

In this form the operator * returns a new list where each entry is the product of g and the
corresponding entry of list . Of course multiplication must be defined between g and each
entry of list .

list / g

In this form the operator / returns a new list where each entry is the quotient of g and the
corresponding entry of list . Of course division must be defined between g and each entry of
list .

Comm(g, h)

Comm returns the commutator g−1 ∗h−1 ∗g ∗h of two group elements g and h. The operands
must of course lie in a common parent group, otherwise an error is signaled.

LeftNormedComm(g1, ..., gn)

LeftNormedComm returns the left normed commutator Comm(LeftNormedComm(g1, ...,
gn-1), gn) of group elements g1 , ..., gn. The operands must of course lie in a common
parent group, otherwise an error is signaled.

RightNormedComm(g1, g2, ..., gn)

RightNormedComm returns the right normed commutator Comm(g1, RightNormedComm(
g2, ..., gn)) of group elements g1 , ..., gn. The operands must of course lie in a
common parent group, otherwise an error is signaled.

LeftQuotient(g, h)

LeftQuotient returns the left quotient g−1∗h of two group elements g and h. The operands
must of course lie in a common parent group, otherwise an error is signaled.

7.4 IsGroupElement

IsGroupElement(obj)

IsGroupElement returns true if obj , which may be an object of arbitrary type, is a group
element, and false otherwise. The function will signal an error if obj is an unbound variable.

gap> IsGroupElement(10);
false
gap> IsGroupElement((11,10));
true
gap> IsGroupElement(IdWord);
true

272 CHAPTER 7. GROUPS

7.5 Order

Order(G, g)

Order returns the order of a group element g in the group G .

The order is the smallest positive integer i such that g i is the identity. The order of the
identity is one.

gap> Order(Group((1,2), (1,2,3,4)), (1,2,3));
3
gap> Order(Group((1,2), (1,2,3,4)), ());
1

7.6 More about Groups and Subgroups

GAP distinguishs between parent groups and subgroups of parent groups. Each subgroup
belongs to a unique parent group. We say that this parent group is the parent of the
subgroup. We also say that a parent group is its own parent.

Parent groups are constructed by Group and subgroups are constructed by Subgroup. The
first argument of Subgroup must be a parent group, i.e., it must not be a subgroup of a
parent group, and this parent group will be the parent of the constructed subgroup.

Those group functions that take more than one argument require that the arguments have a
common parent. Take for instance CommutatorSubgroup. It takes two arguments, a group
G and a group H , and returns the commutator subgroup of H with G . So either G is a
parent group, and H is a subgroup of this parent group, or G and H are subgroups of a
common parent group P .

gap> s4 := Group((1,2), (1,2,3,4));
Group((1,2), (1,2,3,4))
gap> c3 := Subgroup(s4, [(1,2,3)]);
Subgroup(Group((1,2), (1,2,3,4)), [(1,2,3)])
gap> CommutatorSubgroup(s4, c3);
Subgroup(Group((1,2), (1,2,3,4)), [(1,3,2), (1,2,4)])
ok, c3 is a subgroup of the parent group s4
gap> a4 := Subgroup(s4, [(1,2,3), (2,3,4)]);
Subgroup(Group((1,2), (1,2,3,4)), [(1,2,3), (2,3,4)])
gap> CommutatorSubgroup(a4, c3);
Subgroup(Group((1,2), (1,2,3,4)), [(1,4)(2,3), (1,3)(2,4)])
also ok, c3 and a4 are subgroups of the parent group s4
gap> x3 := Group((1,2,3));
Group((1,2,3))
gap> CommutatorSubgroup(s4, x3);
Error, <G> and <H> must have the same parent group
not ok, s4 is its own parent and x3 is its own parent

Those functions that return new subgroups, as with CommutatorSubgroup above, return
this subgroup as a subgroup of the common parent of their arguments. Note especially that
the commutator subgroup of c3 with a4 is returned as a subgroup of their common parent
group s4, not as a subgroup of a4. It can not be a subgroup of a4, because subgroups must

7.7. ISPARENT 273

be subgroups of parent groups, and a4 is not a parent group. Of course, mathematically
the commutator subgroup is a subgroup of a4.
Note that a subgroup of a parent group need not be a proper subgroup, as can be seen in
the following example.

gap> s4 := Group((1,2), (1,2,3,4));
Group((1,2), (1,2,3,4))
gap> x4 := Subgroup(s4, [(1,2,3,4), (3,4)]);
Subgroup(Group((1,2), (1,2,3,4)), [(1,2,3,4), (3,4)])
gap> Index(s4, x4);
1

One exception to the rule are functions that construct new groups such as DirectProduct.
They accept groups with different parents. If you want rename the function DirectProduct
to OuterDirectProduct.
Another exception is Intersection (see 4.12), which allows groups with different parent
groups, it computes the intersection in such cases as if the groups were sets of elements.
This is because Intersection is not a group function, but a domain function, i.e., it accepts
two (or more) arbitrary domains as arguments.
Whenever you have two subgroups which have different parent groups but have a common
supergroup G you can use AsSubgroup (see 7.13) in order to construct new subgroups which
have a common parent group G .

gap> s4 := Group((1,2), (1,2,3,4));
Group((1,2), (1,2,3,4))
gap> x3 := Group((1,2,3));
Group((1,2,3))
gap> CommutatorSubgroup(s4, x3);
Error, <G> and <H> must have the same parent group
not ok, s4 is its own parent and x3 is its own parent
gap> c3 := AsSubgroup(s4, x3);
Subgroup(Group((1,2), (1,2,3,4)), [(1,2,3)])
gap> CommutatorSubgroup(s4, c3);
Subgroup(Group((1,2), (1,2,3,4)), [(1,3,2), (1,2,4)])

The following sections describe the functions related to this concept (see 7.7, 7.8, 7.9, 7.10,
7.11, 7.12, 7.13).

7.7 IsParent

IsParent(G)

IsParent returns true if G is a parent group, and false otherwise (see 7.6).

7.8 Parent

Parent(U1, ..., Un)

Parent returns the common parent group of its subgroups and parent group arguments.
In case more than one argument is given, all groups must have the same parent group. Oth-
erwise an error is signaled. This can be used to ensure that a collection of given subgroups
have a common parent group.

274 CHAPTER 7. GROUPS

7.9 Group

Group(U)

Let U be a parent group or a subgroup. Group returns a new parent group G which is
isomorphic to U . The generators of G need not be the same elements as the generators of
U . The default group function uses the same generators, while the ag group function may
create new generators along with a new collector.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s3 := Subgroup(s4, [(1,2,3), (1,2)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2,3), (1,2)])
gap> Group(s3); # same elements
Group((1,2,3), (1,2))
gap> s4.1 * s3.1;
(1,3,4,2)
gap> s4 := AgGroup(s4);
Group(g1, g2, g3, g4)
gap> a4 := DerivedSubgroup(s4);
Subgroup(Group(g1, g2, g3, g4), [g2, g3, g4])
gap> a4 := Group(a4); # different elements
Group(g1, g2, g3)
gap> s4.1 * a4.1;
Error, AgWord op: agwords have different groups

Group(list, id)

Group returns a new parent group G generated by group elements g1, ..., gn of list . id must
be the identity of this group.

Group(g1, ..., gn)

Group returns a new parent group G generated by group elements g1, ..., gn.

The generators of this new parent group need not be the same elements as g1, ..., gn. The
default group function however returns a group record with generators g1, ..., gn and identity
id , while the ag group function may create new generators along with a new collector.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> z4 := Group(s4.1); # same element
Group((1,2,3,4))
gap> s4.1 * z4.1;
(1,3)(2,4)
gap> s4 := AgGroup(s4);
Group(g1, g2, g3, g4)
gap> z4 := Group(s4.1 * s4.3); # different elements
Group(g1, g2)
gap> s4.1 * z4.1;
Error, AgWord op: agwords have different groups

Let gi1 , ..., gim be the set of nontrivial generators in all four cases. Groups sets record
components G.1, ..., G.m to these generators.

7.10. ASGROUP 275

7.10 AsGroup

AsGroup(D)

Let D be a domain. AsGroup returns a group G such that the set of elements of D is the
same as the set of elements of G if this is possible.

If D is a list of group elements these elements must form a group. Otherwise an error is
signaled.

Note that this function returns a parent group or a subgroup of a parent group depending
on D . In order to convert a subgroup into a parent group you must use Group (see 7.9).

gap> s4 := AgGroup(Group((1,2,3,4), (2,3)));
Group(g1, g2, g3, g4)
gap> Elements(last);
[IdAgWord, g4, g3, g3*g4, g2, g2*g4, g2*g3, g2*g3*g4, g2^2, g2^2*g4,
g2^2*g3, g2^2*g3*g4, g1, g1*g4, g1*g3, g1*g3*g4, g1*g2, g1*g2*g4,
g1*g2*g3, g1*g2*g3*g4, g1*g2^2, g1*g2^2*g4, g1*g2^2*g3,
g1*g2^2*g3*g4]

gap> AsGroup(last);
Group(g1, g2, g3, g4)

The default function GroupOps.AsGroup for a group D returns a copy of D . If D is a
subgroup then a subgroup is returned. The default function GroupElementsOps.AsGroup
expects a list D of group elements forming a group and uses successively Closure in order
to compute a reduced generating set.

7.11 IsGroup

IsGroup(obj)

IsGroup returns true if obj , which can be an object of arbitrary type, is a parent group
or a subgroup and false otherwise. The function will signal an error if obj is an unbound
variable.

gap> IsGroup(Group((1,2,3)));
true
gap> IsGroup(1/2);
false

7.12 Subgroup

Subgroup(G, L)

Let G be a parent group and L be a list of elements g1, ..., gn of G . Subgroup returns the
subgroup U generated by g1, ..., gn with parent group G.

Note that this function is the only group function in which the name Subgroup does not refer
to the mathematical terms subgroup and supergroup but to the implementation of groups
as subgroups and parent groups. IsSubgroup (see 7.62) is not the negation of IsParent
(see 7.7) but decides subgroup and supergroup relations.

Subgroup always binds a copy of L to U.generators, so it is safe to modify L after calling
Subgroup because this will not change the entries in U .

276 CHAPTER 7. GROUPS

Let gi1 , ..., gim be the nontrivial generators. Subgroups binds these generators to U .1, ...,
U .m.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> v4 := Subgroup(s4, [(1,2), (1,2)(3,4)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2), (1,2)(3,4)])
gap> IsParent(v4);
false

7.13 AsSubgroup

AsSubgroup(G, U)

Let G be a parent group and U be a parent group or a subgroup with a possibly different
parent group, such that the generators g1, ..., gn of U are elements of G . AsSubgroup returns
a new subgroup S such that S has parent group G and is generated by g1, ..., gn.

gap> d8 := Group((1,2,3,4), (1,2)(3,4));
Group((1,2,3,4), (1,2)(3,4))
gap> z := Centre(d8);
Subgroup(Group((1,2,3,4), (1,2)(3,4)), [(1,3)(2,4)])
gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> Normalizer(s4, AsSubgroup(s4, z));
Subgroup(Group((1,2,3,4), (1,2)), [(2,4), (1,2,3,4), (1,3)(2,4)
])

7.14 Subgroups

The following sections describe functions that compute certain subgroups of a given group,
e.g., SylowSubgroup computes a Sylow subgroup of a group (see 7.16, 7.17, 7.18, 7.19, 7.20,
7.21, 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28, 7.29, 7.30, 7.31, 7.32).

They return group records as described in 7.117 for the computed subgroups. Some functions
may not terminate if the given group has an infinite set of elements, while other functions
may signal an error in such cases.

Here the term “subgroup” is used in a mathematical sense. But in GAP, every group is
either a parent group or a subgroup of a unique parent group. If you compute a Sylow
subgroup S of a group U with parent group G then S is a subgroup of U but its parent
group is G (see 7.6).

Further sections describe functions that return factor groups of a given group (see 7.33 and
7.35).

7.15 Agemo

Agemo(G, p)

G must be a p-group. Agemo returns the subgroup of G generated by the p.th powers of
the elements of G .

7.16. CENTRALIZER 277

gap> d8 := Group((1,3)(2,4), (1,2));
Group((1,3)(2,4), (1,2))
gap> Agemo(d8, 2);
Subgroup(Group((1,3)(2,4), (1,2)), [(1,2)(3,4)])

The default function GroupOps.Agemo computes the subgroup of G generated by the p.th
powers of the generators of G if G is abelian. Otherwise the function computes the normal
closure of the p.th powers of the representatives of the conjugacy classes of G .

7.16 Centralizer

Centralizer(G, x)

Centralizer returns the centralizer of an element x in G where x must be an element of
the parent group of G .

The centralizer of an element x in G is defined as the set C of elements c of G such that
c and x commute.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> v4 := Centralizer(s4, (1,2));
Subgroup(Group((1,2,3,4), (1,2)), [(3,4), (1,2)])

The default function GroupOps.Centralizer uses Stabilizer (see 8.22) in order to com-
pute the centralizer of x in G acting by conjugation.

Centralizer(G, U)

Centralizer returns the centralizer of a group U in G as group record. Note that G and
U must have a common parent group.

The centralizer of a group U in G is defined as the set C of elements c of C such c
commutes with every element of U .

If G is the parent group of U then Centralizer will set and test the record component
U .centralizer.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> v4 := Centralizer(s4, (1,2));
Subgroup(Group((1,2,3,4), (1,2)), [(3,4), (1,2)])
gap> c2 := Subgroup(s4, [(1,3)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,3)])
gap> Centralizer(v4, c2);
Subgroup(Group((1,2,3,4), (1,2)), [])

The default function GroupOps.Centralizer uses Stabilizer in order to compute succes-
sively the stabilizer of the generators of U .

7.17 Centre

Centre(G)

Centre returns the centre of G .

The centre of a group G is defined as the centralizer of G in G .

278 CHAPTER 7. GROUPS

Note that Centre sets and tests the record component G.centre.

gap> d8 := Group((1,2,3,4), (1,2)(3,4));
Group((1,2,3,4), (1,2)(3,4))
gap> Centre(d8);
Subgroup(Group((1,2,3,4), (1,2)(3,4)), [(1,3)(2,4)])

The default group function GroupOps.Centre uses Centralizer (see 7.16) in order to com-
pute the centralizer of G in G .

7.18 Closure

Closure(U , g)

Let U be a group with parent group G and let g be an element of G. Then Closure returns
the closure C of U and g as subgroup of G. The closure C of U and g is the subgroup
generated by U and g .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s2 := Subgroup(s4, [(1,2)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)])
gap> Closure(s2, (3,4));
Subgroup(Group((1,2,3,4), (1,2)), [(1,2), (3,4)])

The default function GroupOps.Closure returns U if U is a parent group, or if g or its
inverse is a generator of U , or if the set of elements is known and g is in this set, or if g
is trivial. Otherwise the function constructs a new subgroup C which is generated by the
generators of U and the element g .

Note that if the set of elements of U is bound to U .elements then GroupOps.Closure
computes the set of elements for C and binds it to C.elements.

If U is known to be non-abelian or infinite so is C. If U is known to be abelian the function
checks whether g commutes with every generator of U .

Closure(U , S)

Let U and S be two group with a common parent group G. Then Closure returns the
subgroup of G generated by U and S .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s2 := Subgroup(s4, [(1,2)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)])
gap> z3 := Subgroup(s4, [(1,2,3)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2,3)])
gap> Closure(z3, s2);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2,3), (1,2)])

The default function GroupOps.Closure returns the parent of U and S if U or S is a parent
group. Otherwise the function computes the closure of U under all generators of S .

Note that if the set of elements of U is bound to U .elements then GroupOps.Closure
computes the set of elements for the closure C and binds it to C.elements.

7.19. COMMUTATORSUBGROUP 279

7.19 CommutatorSubgroup

CommutatorSubgroup(G, H)

Let G and H be groups with a common parent group. CommutatorSubgroup returns the
commutator subgroup [G,H].

The commutator subgroup of G and H is the group generated by all commutators [g, h]
with g ∈ G and h ∈ H .

See also DerivedSubgroup (7.22).

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> d8 := Group((1,2,3,4), (1,2)(3,4));
Group((1,2,3,4), (1,2)(3,4))
gap> CommutatorSubgroup(s4, AsSubgroup(s4, d8));
Subgroup(Group((1,2,3,4), (1,2)), [(1,3)(2,4), (1,3,2)])

Let G be generated by g1, ..., gn and H be generated by h1, ..., hm. The normal closure
of the subgroup S generated by Comm(gi, hj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m under
G and H is the commutator subgroup of G and H (see [Hup67]). The default function
GroupOps.CommutatorSubgroup returns the normal closure of S under the closure of G and
H .

7.20 ConjugateSubgroup

ConjugateSubgroup(U , g)

ConjugateSubgroup returns the subgroup U g conjugate to U under g , which must be an
element of the parent group of G .

If present, the flags U .isAbelian, U .isCyclic, U .isElementaryAbelian, U .isFinite,
U .isNilpotent, U .isPerfect, U .isSimple, U .isSolvable, and U .size are copied to
U g .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> c2 := Subgroup(s4, [(1,2)(3,4)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)(3,4)])
gap> ConjugateSubgroup(c2, (1,3));
Subgroup(Group((1,2,3,4), (1,2)), [(1,4)(2,3)])

The default function GroupOps.ConjugateSubgroup returns U if the set of elements of U
is known and g is an element of this set or if g is a generator of U . Otherwise it conjugates
the generators of U with g .

If the set of elements of U is known the default function also conjugates and binds it to the
conjugate subgroup.

7.21 Core

Core(S, U)

280 CHAPTER 7. GROUPS

Let S and U be groups with a common parent group G. Then Core returns the core of U
under conjugation of S .

The core of a group U under a group S CoreS (U) is the intersection
⋂
s∈S U s of all groups

conjugate to U under conjugation by elements of S .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s4.name := "s4";;
gap> d8 := Subgroup(s4, [(1,2,3,4), (1,2)(3,4)]);
Subgroup(s4, [(1,2,3,4), (1,2)(3,4)])
gap> Core(s4, d8);
Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)])
gap> Core(d8, s4);
s4

The default function GroupOps.Core starts with U and replaces U with the intersection of
U and a conjugate subgroup of U under a generator of G until the subgroup is normalized
by G .

7.22 DerivedSubgroup

DerivedSubgroup(G)

DerivedSubgroup returns the derived subgroup G ′ = [G ,G] of G .

The derived subgroup of G is the group generated by all commutators [g, h] with g, h ∈ G .

Note that DerivedSubgroup sets and tests G.derivedSubgroup. CommutatorSubgroup
(see 7.19) allows you to compute the commutator group of two subgroups.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> DerivedSubgroup(s4);
Subgroup(Group((1,2,3,4), (1,2)), [(1,3,2), (2,4,3)])

Let G be generated by g1, ..., gn. Then the default function GroupOps.DerivedSubgroup
returns the normal closure of S under G where S is the subgroup of G generated by
Comm(gi, gj) for 1 ≤ j < i ≤ n.

7.23 FittingSubgroup

FittingSubgroup(G)

FittingSubgroup returns the Fitting subgroup of G .

The Fitting subgroup of a group G is the biggest nilpotent normal subgroup of G .

gap> s4;
Group((1,2,3,4), (1,2))
gap> FittingSubgroup(s4);
Subgroup(Group((1,2,3,4), (1,2)), [(1,3)(2,4), (1,4)(2,3)])
gap> IsNilpotent(last);
true

Let G be a finite group. Then the default group function GroupOps.FittingSubgroup
computes the subgroup of G generated by the cores of the Sylow subgroups in G .

7.24. FRATTINISUBGROUP 281

7.24 FrattiniSubgroup

FrattiniSubgroup(G)

FrattiniSubgroup returns the Frattini subgroup of group G .

The Frattini subgroup of a group G is the intersection of all maximal subgroups of G .

gap> s4 := SymmetricGroup(AgWords, 4);;
gap> ss4 := SpecialAgGroup(s4);;
gap> FrattiniSubgroup(ss4);
Subgroup(Group(g1, g2, g3, g4), [])

The generic method computes the Frattini subgroup as intersection of the cores (see 7.21)
of the representatives of the conjugacy classes of maximal subgroups (see 7.79).

7.25 NormalClosure

NormalClosure(S, U)

Let S and U be groups with a common parent group G. Then NormalClosure returns the
normal closure of U under S as a subgroup of G.

The normal closure N of a group U under the action of a group S is the smallest subgroup
in G that contains U and is invariant under conjugation by elements of S . Note that N is
independent of G.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s4.name := "s4";;
gap> d8 := Subgroup(s4, [(1,2,3,4), (1,2)(3,4)]);
Subgroup(s4, [(1,2,3,4), (1,2)(3,4)])
gap> NormalClosure(s4, d8);
Subgroup(s4, [(1,2,3,4), (1,2)(3,4), (1,3,4,2)])
gap> last = s4;
true

7.26 NormalIntersection

NormalIntersection(N , U)

Let N and U be two subgroups with a common parent group. NormalIntersection returns
the intersection in case U normalizes N .

Depending on the domain this may be faster than the general intersection algorithm (see
4.12). The default function GroupOps.NormalIntersection however uses Intersection.

7.27 Normalizer

Normalizer(S, U)

Let S and U be groups with a common parent group G. Then Normalizer returns the
normalizer of U in S .

282 CHAPTER 7. GROUPS

The normalizer NS (U) of U in S is the biggest subgroup of S which leaves U invariant
under conjugation.

If S is the parent group of U then Normalizer sets and tests U .normalizer.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> c2 := Subgroup(s4, [(1,2)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)])
gap> Normalizer(s4, c2);
Subgroup(Group((1,2,3,4), (1,2)), [(3,4), (1,2)])

The default function GroupOps.Normalizer uses Stabilizer (see 8.22) in order to compute
the stabilizer of U in S acting by conjugation (see 7.20).

7.28 PCore

PCore(G, p)

PCore returns the p-core of the finite group G for a prime p.

The p-core is the largest normal subgroup whose size is a power of p. This is the core of
the Sylow-p-subgroups (see 7.21 and 7.31).

Note that PCore sets and tests G.pCores[p].

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> PCore(s4, 2);
Subgroup(Group((1,2,3,4), (1,2)), [(1,4)(2,3), (1,3)(2,4)])
gap> PCore(s4, 3);
Subgroup(Group((1,2,3,4), (1,2)), [])

The default function GroupOps.PCore computes the p-core as the core of a Sylow-p-subgroup
(see 7.21 and 7.31).

7.29 PrefrattiniSubgroup

PrefrattiniSubgroup(G)

PrefrattiniSubgroup returns a Prefrattini subgroup of the group G .

A factor M/N of G is called a Frattini factor if M/N ≤ φ(G/N) holds. The group P is a
Prefrattini subgroup of G if P covers each Frattini chief factor of G, and if for each maximal
subgroup of G there exists a conjugate maximal subgroup, which contains P .

gap> s4 := SymmetricGroup(AgWords, 4);;
gap> ss4 := SpecialAgGroup(s4);;
gap> PrefrattiniSubgroup(ss4);
Subgroup(Group(g1, g2, g3, g4), [])

Currently PrefrattiniSubgroup can only be applied to special Ag groups (see 26).

7.30. RADICAL 283

7.30 Radical

Radical(G)

Radical returns the radical of the finite group G .

The radical is the largest normal solvable subgroup of G .

gap> g := Group((1,5), (1,5,6,7,8)(2,3,4));
Group((1,5), (1,5,6,7,8)(2,3,4))
gap> Radical(g);
Subgroup(Group((1,5), (1,5,6,7,8)(2,3,4)), [(2, 3, 4)])

The default function GroupOps.Radical tests if G is solvable and signals an error if not.

7.31 SylowSubgroup

SylowSubgroup(G, p)

SylowSubgroup returns a Sylow-p-subgroup of the finite group G for a prime p.

Let p be a prime and G be a finite group of order pnm where m is relative prime to p. Then
by Sylow’s theorem there exists at least one subgroup S of G of order pn.

Note that SylowSubgroup sets and tests G.sylowSubgroups[p].

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> SylowSubgroup(s4, 2);
Subgroup(Group((1,2,3,4), (1,2)), [(3,4), (1,2), (1,3)(2,4)])
gap> SylowSubgroup(s4, 3);
Subgroup(Group((1,2,3,4), (1,2)), [(2,3,4)])

The default function GroupOps.SylowSubgroup computes the set of elements of p power
order of G , starts with such an element of maximal order and computes the closure (see
7.18) with normalizing elements of p power order until a Sylow group is found.

7.32 TrivialSubgroup

TrivialSubgroup(U)

Let U be a group with parent group G. Then TrivialSubgroup returns the trivial subgroup
T of U . Note that the parent group of T is G not U (see 7.14).

The default function GroupOps.TrivialSubgroup binds the set of elements of U , namely
[U .identity], to T.elements,

7.33 FactorGroup

FactorGroup(G, N)

FactorGroup returns the factor group G/N where N must be a normal subgroup of G (see
7.58). This is the same as G / N (see 7.116).

NaturalHomomorphism returns the natural homomorphism from G (or a subgroup thereof)
onto the factor group (see 7.109).

284 CHAPTER 7. GROUPS

It is not specified how the factor group N is represented.

gap> a4 := Group((1,2,3), (2,3,4));; a4.name := "a4";
"a4"
gap> v4 := Subgroup(a4,[(1,2)(3,4),(1,3)(2,4)]);; v4.name := "v4";
"v4"
gap> f := FactorGroup(a4, v4);
(a4 / v4)
gap> Size(f);
3
gap> Elements(f);
[FactorGroupElement(v4, ()), FactorGroupElement(v4, (2,3,4)),
FactorGroupElement(v4, (2,4,3))]

If G is the parent group of N , FactorGroup first checks for the knowledge component
N .factorGroup. If this component is bound, FactorGroup returns its value. Otherwise,
FactorGroup calls G.operations.FactorGroup(G, N), remembers the returned value
in N .factorGroup, and returns it. If G is not the parent group of N , FactorGroup calls
G.operations.FactorGroup(G, N) and returns this value.

The default function called this way is GroupOps.FactorGroup. It returns the factor group
as a group of factor group elements (see 7.34). Look under FactorGroup in the index to
see for which groups this function is overlaid.

7.34 FactorGroupElement

FactorGroupElement(N , g)

FactorGroupElement returns the coset N * g as a group element. It is not tested whether
g normalizes N , but g must be an element of the parent group of N .

Factor group elements returned by FactorGroupElement are represented by records. Those
records contain the following components.

isGroupElement
contains true.

isFactorGroupElement
contains true.

element
contains a right coset of N (see 7.85).

domain
contains FactorGroupElements (see 4.5).

operations
contains the operations record FactorGroupElementOps.

All operations for group elements (see 7.3) are available for factor group elements, e.g., two
factor group elements can be multiplied (provided that they have the same subgroup N).

gap> a4 := Group((1,2,3), (2,3,4));; a4.name := "a4";;
gap> v4 := Subgroup(a4,[(1,2)(3,4),(1,3)(2,4)]);; v4.name := "v4";;
gap> x := FactorGroupElement(v4, (1,2,3));
FactorGroupElement(v4, (2,4,3))

7.35. COMMUTATORFACTORGROUP 285

gap> y := FactorGroupElement(v4, (2,3,4));
FactorGroupElement(v4, (2,3,4))
gap> x * y;
FactorGroupElement(v4, ())

7.35 CommutatorFactorGroup

CommutatorFactorGroup(G)

CommutatorFactorGroup returns a group isomorphic to G/G ′ where G ′ is the derived sub-
group of G (see 7.22).

gap> s4 := AgGroup(Group((1,2,3,4), (1,2)));
Group(g1, g2, g3, g4)
gap> CommutatorFactorGroup(s4);
Group(g1)

The default group function GroupOps.CommutatorFactorGroup uses DerivedSubgroup (see
7.22) and FactorGroup (see 7.33) in order to compute the commutator factor group.

7.36 Series of Subgroups

The following sections describe functions that compute and return series of subgroups of a
given group (see 7.37, 7.41, 7.43, and 7.44). The series are returned as lists of subgroups of
the group (see 7.6).

These functions print warnings if the argument is an infinite group, because they may run
forever.

7.37 DerivedSeries

DerivedSeries(G)

DerivedSeries returns the derived series of G .

The derived series is the series of iterated derived subgroups. The group G is solvable if
and only if this series reaches {1} after finitely many steps.

Note that this function does not terminate if G is an infinite group with derived series of
infinite length.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> DerivedSeries(s4);
[Group((1,2,3,4), (1,2)), Subgroup(Group((1,2,3,4), (1,2)),

[(1,3,2), (1,4,3)]), Subgroup(Group((1,2,3,4), (1,2)),
[(1,4)(2,3), (1,3)(2,4)]),

Subgroup(Group((1,2,3,4), (1,2)), [])]

The default function GroupOps.DerivedSeries uses DerivedSubgroup (see 7.22) in order
to compute the derived series of G .

286 CHAPTER 7. GROUPS

7.38 CompositionSeries

CompositionSeries(G)

CompositionSeries returns a composition series of G as list of subgroups.

gap> s4 := SymmetricGroup(4);
Group((1,4), (2,4), (3,4))
gap> s4.name := "s4";;
gap> CompositionSeries(s4);
[Subgroup(s4, [(1,2), (1,3,2), (1,3)(2,4), (1,2)(3,4)]),
Subgroup(s4, [(1,3,2), (1,3)(2,4), (1,2)(3,4)]),
Subgroup(s4, [(1,3)(2,4), (1,2)(3,4)]),
Subgroup(s4, [(1,2)(3,4)]), Subgroup(s4, [])]

gap> d8 := SylowSubgroup(s4, 2);
Subgroup(s4, [(1,2), (3,4), (1,3)(2,4)])
gap> CompositionSeries(d8);
[Subgroup(s4, [(1,3)(2,4), (1,2), (3,4)]),
Subgroup(s4, [(1,2), (3,4)]), Subgroup(s4, [(3,4)]),
Subgroup(s4, [])]

Note that there is no default function. GroupOps.CompositionSeries signals an error if
called.

7.39 ElementaryAbelianSeries

ElementaryAbelianSeries(G)

Let G be a solvable group (see 7.61). Then the functions returns a normal series G =
E0, E1, ..., En = {1} of G such that the factor groups Ei/Ei+1 are elementary abelian
groups.

gap> s5 := SymmetricGroup(5);; s5.name := "s5";;
gap> s4 := Subgroup(s5, [(2,3,4,5), (2,3)]);
Subgroup(s5, [(2,3,4,5), (2,3)])
gap> ElementaryAbelianSeries(s4);
[Subgroup(s5, [(2,3), (2,4,3), (2,5)(3,4), (2,3)(4,5)]),

Subgroup(s5, [(2,4,3), (2,5)(3,4), (2,3)(4,5)]),
Subgroup(s5, [(2,5)(3,4), (2,3)(4,5)]), Subgroup(s5, [])]

The default function GroupOps.ElementaryAbelianSeries uses AgGroup (see 25.25) in
order to convert G into an isomorphic ag group and computes the elementary abelian series
in this group. (see 25.9).

7.40 JenningsSeries

JenningsSeries(G, p)

JenningsSeries returns the Jennings series of a p-group G .

The Jennings series of a p-group G is defined as follows. S1 = G and Sn = [Sn−1, G]Sip

where i is the smallest integer equal or greater than n/p. The length l of S is the smallest
integer such that Sl = {1}.

7.41. LOWERCENTRALSERIES 287

Note that Sn = Sn+1 is possible.

gap> G := CyclicGroup(AgWords, 27);
Group(c27_1, c27_2, c27_3)
gap> G.name := "G";;
gap> JenningsSeries(G);
[G, Subgroup(G, [c27_2, c27_3]), Subgroup(G, [c27_2, c27_3]),

Subgroup(G, [c27_3]), Subgroup(G, [c27_3]),
Subgroup(G, [c27_3]), Subgroup(G, [c27_3]),
Subgroup(G, [c27_3]), Subgroup(G, [c27_3]),
Subgroup(G, [])]

7.41 LowerCentralSeries

LowerCentralSeries(G)

LowerCentralSeries returns the lower central series of G as a list of group records.

The lower central series is the series defined by S1 = G and Si = [G , Si−1]. The group
G is nilpotent if this series reaches {1} after finitely many steps.

Note that this function may not terminate if G is an infinite group. LowerCentralSeries
sets and tests the record component G.lowerCentralSeries in the group record of G .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> LowerCentralSeries(s4);
[Group((1,2,3,4), (1,2)), Subgroup(Group((1,2,3,4), (1,2)),

[(1,3,2), (2,4,3)])]

The default group function GroupOps.LowerCentralSeries uses CommutatorSubgroup (see
7.19) in order to compute the lower central series of G .

7.42 PCentralSeries

PCentralSeries(G, p)

PCentralSeries returns the p-central series of a group G for a prime p.

The p-central series of a group G is defined as follows. S1 = G and Si+1 is set to
[G,Si] ∗ Spi . The length of this series is n, where n = max{i;Si > Si+1}.

gap> s4 := Group((1,2,3,4), (1,2));; s4.name := "s4";;
gap> PCentralSeries(s4, 3);
[s4]
gap> PCentralSeries(s4, 2);
[s4, Subgroup(s4, [(1,2,3), (1,3,4)])]

7.43 SubnormalSeries

SubnormalSeries(G, U)

Let U be a subgroup of G , then SubnormalSeries returns a subnormal series G = G1 >
... > Gn of groups such that U is contained in Gn and there exists no proper subgroup V
between Gn and U which is normal in Gn.

288 CHAPTER 7. GROUPS

Gn is equal to U if and only if U is subnormal in G .

Note that this function may not terminate if G is an infinite group.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> c2 := Subgroup(s4, [(1,2)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)])
gap> SubnormalSeries(s4, c2);
[Group((1,2,3,4), (1,2))]
gap> IsSubnormal(s4, c2);
false
gap> c2 := Subgroup(s4, [(1,2)(3,4)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)(3,4)])
gap> SubnormalSeries(s4, c2);
[Group((1,2,3,4), (1,2)), Subgroup(Group((1,2,3,4), (1,2)),

[(1,2)(3,4), (1,3)(2,4)]),
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)(3,4)])]

gap> IsSubnormal(s4, c2);
true

The default function GroupOps.SubnormalSeries constructs the subnormal series as fol-
lows. G1 = G and Gi+1 is set to the normal closure (see 7.25) of U under Gi. The length
of the series is n, where n = max{i;Gi > Gi+1}.

7.44 UpperCentralSeries

UpperCentralSeries(G)

UpperCentralSeries returns the upper central series of G as a list of subgroups.

The upper central series is the series Sn, ..., S0 defined by S0 = {1} < G and Si/Si−1 =
Z(G/Si−1) where n = min{i;Si = Si+1}

Note that this function may not terminate if G is an infinite group. UpperCentralSeries
sets and tests G.upperCentralSeries in the group record of G .

gap> d8 := AgGroup(Group((1,2,3,4), (1,2)(3,4)));
Group(g1, g2, g3)
gap> UpperCentralSeries(d8);
[Group(g1, g2, g3), Subgroup(Group(g1, g2, g3), [g3]),
Subgroup(Group(g1, g2, g3), [])]

7.45 Properties and Property Tests

The following sections describe the functions that computes or test properties of groups (see
7.46, 7.47, 7.48, 7.49, 7.50, 7.51, 7.52, 7.53, 7.54, 7.55, 7.56, 7.57, 7.58, 7.59, 7.60, 7.61, 7.62,
7.63, 7.64, 7.65, 7.66).

All tests expect a parent group or subgroup and return true if the group has the property
and false otherwise. Some functions may not terminate if the given group has an infinite
set of elements. A warning may be printed in such cases.

7.46. ABELIANINVARIANTS 289

In addition the set theoretic functions Elements, Size and IsFinite, which are described
in chapter 4, can be used for groups. Size (see 4.10) returns the order of a group, this is
either a positive integer or the string “infinity”. IsFinite (see 4.9) returns true if a group
is finite and false otherwise.

7.46 AbelianInvariants

AbelianInvariants(G)

Let G be an abelian group. Then AbelianInvariants returns the abelian invariants of G
as a list of integers. If G is not abelian then the abelian invariants of the commutator factor
group of G are returned.
Let G be a finitely generated abelian group. Then there exist n nontrivial subgroups Ai of
prime power order peii and m infinite cyclic subgroups Zj such that G = A1 × ... × An ×
Z1...× Zm. The invariants of G are the integers pe11 , ..., p

en
n together with m zeros.

Note that AbelianInvariants tests and sets G.abelianInvariants.
gap> AbelianInvariants(AbelianGroup(AgWords, [2,3,4,5,6,9]));
[2, 2, 3, 3, 4, 5, 9]

The default function GroupOps.AbelianInvariants requires that G is finite.
Let G be a finite abelian group of order pe11 ...p

en
n where pi are distinct primes. The default

function constructs for every prime pi the series G ,Gpi ,Gp2
i , ... and computes the abelian

invariants using the indices of these groups.

7.47 DimensionsLoewyFactors

DimensionsLoewyFactors(G)

Let G be p-group. Then DimensionsLoewyFactors returns the dimensions ci of the Loewy
factors of FpG .
The Loewy series of FpG is defined as follows. Let R be the Jacobson radical of the
group ring FpG . The series R0 = FpG > R1 > ... > Rl+1 = {1} is the Loewy series. The
dimensions ci are the dimensions of Ri/Ri+1.

gap> f6 := FreeGroup(6, "f6");;
gap> g := f6 / [f6.1^3, f6.2^3, f6.3^3, f6.4^3, f6.5^3, f6.6^3,
> Comm(f6.3,f6.2)/f6.6^2, Comm(f6.3,f6.1)/(f6.6*f6.5),
> Comm(f6.2,f6.1)/(f6.5*f6.4^2)];;
gap> a := AgGroupFpGroup(g);
Group(f6.1, f6.2, f6.3, f6.4, f6.5, f6.6)
gap> DimensionsLoewyFactors(a);
[1, 3, 9, 16, 30, 42, 62, 72, 87, 85, 87, 72, 62, 42, 30, 16, 9, 3,
1]

The default function GroupOps.DimensionsLoewyFactors computes the Jennings series of
G and uses Jennings thereom in order to calculate the dimensions of the Loewy factors.
Let G = X1 ≥ X2 ≥ ... ≥ Xl > Xl+1 = {1} be the Jennings series of G (see 7.40) and let di
be the dimensions of Xi/Xi+1. Then the Jennings polynomial is

l∑
i=0

cix
i =

l∏
k=1

(1 + xk + x2k + ...+ x(p−1)k)dk .

290 CHAPTER 7. GROUPS

7.48 EulerianFunction

EulerianFunction(G, n)

EulerianFunction returns the number of n-tuples (g1, g2, . . . gn) of elements of the group
G that generate the whole group G . The elements of a tuple need not be different.

gap> s4 := SymmetricGroup(AgWords, 4);;
gap> ss4 := SpecialAgGroup(s4);;
gap> EulerianFunction(ss4, 1);
0
gap> EulerianFunction(ss4, 2);
216
gap> EulerianFunction(ss4, 3);
10080

Currently EulerianFunction can only be applied to special Ag groups (see 26).

7.49 Exponent

Exponent(G)

Let G be a finite group. Then Exponent returns the exponent of G .

Note that Exponent tests and sets G.exponent.

gap> Exponent(Group((1,2,3,4), (1,2)));
12

The default function GroupOps.Exponent computes all elements of G and their orders.

7.50 Factorization

Factorization(G, g)

Let G be a group with generators g1, ..., gn and let g be an element of G . Factorization
returns a representation of g as word in the generators of G .

The group record of G must have a component G.abstractGenerators which contains a
list of n abstract words h1, ..., hn. Otherwise a list of n abstract generators is bound to
G.abstractGenerators. The function returns an abstract word h = he1i1 ∗ ... ∗ h

em
im

such
that ge1i1 ∗ ... ∗ g

em
im

= g .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> Factorization(s4, (1,2,3));
x1^3*x2*x1*x2
gap> (1,2,3,4)^3 * (1,2) * (1,2,3,4) * (1,2);
(1,2,3)

The default group function GroupOps.Factorization needs a finite group G . It computes
the set of elements of G using a Dimino algorithm, together with a representation of these
elements as words in the generators of G .

7.51. INDEX 291

7.51 Index

Index(G, U)

Let U be a subgroup of G . Then Index returns the index of U in G as an integer.

Note that Index sets and checks U .index if G is the parent group of U .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> Index(s4, DerivedSubgroup(s4));
2

The default function GroupOps.Index needs a finite group G . It returns the quotient of
Size(G) and Size(U).

7.52 IsAbelian

IsAbelian(G)

IsAbelian returns true if the group G is abelian and false otherwise.

A group G is abelian if and only if for every g, h ∈ G the equation g ∗ h = h ∗ g holds.

Note that IsAbelian sets and tests the record component G.isAbelian. If G is abelian it
also sets G.centre.

gap> s4 := Group((1,2,3,4), (1,2));;
gap> IsAbelian(s4);
false
gap> IsAbelian(Subgroup(s4, [(1,2)]));
true

The default group function GroupOps.IsAbelian returns true for a group G generated by
g1, ..., gn if gi commutes with gj for i > j.

7.53 IsCentral

IsCentral(G, U)

IsCentral returns true if the group G centralizes the group U and false otherwise.

A group G centralizes a group U if and only if for all g ∈ G and for all u ∈ U the equation
g ∗ u = u ∗ g holds. Note that U need not to be a subgroup of G but they must have a
common parent group.

Note that IsCentral sets and tests U .isCentral if G is the parent group of U .

gap> s4 := Group((1,2,3,4), (1,2));;
gap> d8 := Subgroup(s4, [(1,2,3,4), (1,2)(3,4)]);;
gap> c2 := Subgroup(s4, [(1,3)(2,4)]);;
gap> IsCentral(s4, c2);
false
gap> IsCentral(d8, c2);
true

The default function GroupOps.IsCentral tests whether G centralizes U by testing whether
the generators of G commutes with the generators of U .

292 CHAPTER 7. GROUPS

7.54 IsConjugate

IsConjugate(G, x, y)

Let x and y be elements of the parent group of G . Then IsConjugate returns true if x is
conjugate to y under an element g of G and false otherwise.

gap> s5 := Group((1,2,3,4,5), (1,2));
Group((1,2,3,4,5), (1,2))
gap> a5 := Subgroup(s5, [(1,2,3), (2,3,4), (3,4,5)]);
Subgroup(Group((1,2,3,4,5), (1,2)), [(1,2,3), (2,3,4), (3,4,5)])
gap> IsConjugate(a5, (1,2,3,4,5), (1,2,3,4,5)^2);
false
gap> IsConjugate(s5, (1,2,3,4,5), (1,2,3,4,5)^2);
true

The default function GroupOps.IsConjugate uses Representative (see 4.15) in order to
check whether x is conjugate to y under G .

7.55 IsCyclic

IsCyclic(G)

IsCyclic returns true if G is cyclic and false otherwise.

A group G is cyclic if and only if there exists an element g ∈ G such that G is generated
by g.

Note that IsCyclic sets and tests the record component G.isCyclic.

gap> z6 := Group((1,2,3), (4,5));;
gap> IsCyclic(z6);
true
gap> z36 := AbelianGroup(AgWords, [9, 4]);;
gap> IsCyclic(z36);
true

The default function GroupOps.IsCyclic returns false if G is not an abelian group. Oth-
erwise it computes the abelian invariants (see 7.46) if G is infinite. If G is finite of order
pe11 ...p

en
n , where pi are distinct primes, then G is cyclic if and only if each Gpi has index pi

in G .

7.56 IsElementaryAbelian

IsElementaryAbelian(G)

IsElementaryAbelian returns true if the group G is an elementary abelian p-group for a
prime p and false otherwise.

A p-group G is elementary abelian if and only if for every g, h ∈ G the equations g ∗ h =
h ∗ g and gp = 1 hold.

Note that the IsElementaryAbelian sets and tests G.isElementaryAbelian.

gap> z4 := Group((1,2,3,4));;

7.57. ISNILPOTENT 293

gap> IsElementaryAbelian(z4);
false
gap> v4 := Group((1,2)(3,4), (1,3)(2,4));;
gap> IsElementaryAbelian(v4);
true

The default function GroupOps.IsElementaryAbelian returns true if G is abelian and for
some prime p each generator is of order p.

7.57 IsNilpotent

IsNilpotent(G)

IsNilpotent returns true if the group G is nilpotent and false otherwise.
A group G is nilpotent if and only if the lower central series of G is of finite length and
reaches {1}.
Note that IsNilpotent sets and tests the record component G.isNilpotent.

gap> s4 := Group((1,2,3,4), (1,2));;
gap> IsNilpotent(s4);
false
gap> v4 := Group((1,2)(3,4), (1,3)(2,4));;
gap> IsNilpotent(v4);
true

The default group function GroupOps.IsNilpotent computes the lower central series using
LowerCentralSeries (see 7.41) in order to check whether G is nilpotent.
If G has an infinite set of elements a warning is given, as this function does not stop if G
has a lower central series of infinite length.

7.58 IsNormal

IsNormal(G, U)

IsNormal returns true if the group G normalizes the group U and false otherwise.
A group G normalizes a group U if and only if for every g ∈ G and u ∈ U the element ug

is a member of U . Note that U need not be a subgroup of G but they must have a common
parent group.
Note that IsNormal tests and sets U .isNormal if G is the parent group of U .

gap> s4 := Group((1,2,3,4), (1,2));;
gap> d8 := Subgroup(s4, [(1,2,3,4), (1,2)(3,4)]);;
gap> c2 := Subgroup(s4, [(1,3)(2,4)]);;
gap> IsNormal(s4, c2);
false
gap> IsNormal(d8, c2);
true

Let G be a finite group. Then the default function GroupOps.IsNormal checks whether the
conjugate of each generator of U under each generator of G is an element of U .
If G is an infinite group, then the default function GroupOps.IsNormal checks whether the
conjugate of each generator of U under each generator of G and its inverse is an element of
U .

294 CHAPTER 7. GROUPS

7.59 IsPerfect

IsPerfect(G)

IsPerfect returns true if G is a perfect group and false otherwise.

A group G is perfect if G is equal to its derived subgroup. See 7.22.

Note that IsPerfect sets and tests G.isPerfect.

gap> a4 := Group((1,2,3), (2,3,4));
Group((1,2,3), (2,3,4))
gap> IsPerfect(a4);
false
gap> a5 := Group((1,2,3), (2,3,4), (3,4,5));
Group((1,2,3), (2,3,4), (3,4,5))
gap> IsPerfect(a5);
true

The default group function GroupOps.IsPerfect checks for a finite group G the index of G ′

(see 7.22) in G . For an infinite group it computes the abelian invariants of the commutator
factor group (see 7.46 and 7.35).

7.60 IsSimple

IsSimple(G)

IsSimple returns true if G is simple and false otherwise.

A group G is simple if and only if G and the trivial subgroup are the only normal subgroups
of G .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> IsSimple(DerivedSubgroup(s4));
false
gap> s5 := Group((1,2,3,4,5), (1,2));
Group((1,2,3,4,5), (1,2))
gap> IsSimple(DerivedSubgroup(s5));
true

7.61 IsSolvable

IsSolvable(G)

IsSolvable returns true if the group G is solvable and false otherwise.

A group G is solvable if and only if the derived series of G is of finite length and reaches
{1}.
Note that IsSolvable sets and tests G.isSolvable.

gap> s4 := Group((1,2,3,4), (1,2));;
gap> IsSolvable(s4);
true

7.62. ISSUBGROUP 295

The default function GroupOps.IsSolvable computes the derived series using the function
DerivedSeries (see 7.37) in order to see whether G is solvable.

If G has an infinite set of elements a warning is given, as this function does not stop if G
has a derived series of infinite length.

7.62 IsSubgroup

IsSubgroup(G, U)

IsSubgroup returns true if U is a subgroup of G and false otherwise.

Note that G and U must have a common parent group. This function returns true if and
only if the set of elements of U is a subset of the set of elements of G , it is not the inverse
of IsParent (see 7.7).

gap> s6 := Group((1,2,3,4,5,6), (1,2));;
gap> s4 := Subgroup(s6, [(1,2,3,4), (1,2)]);;
gap> z2 := Subgroup(s6, [(5,6)]);;
gap> IsSubgroup(s4, z2);
false
gap> v4 := Subgroup(s6, [(1,2)(3,4), (1,3)(2,4)]);;
gap> IsSubgroup(s4, v4);
true

If the elements of G are known, then the default function GroupOps.IsSubgroup checks
whether the set of generators of U is a subset of the set of elements of G . Otherwise the
function checks whether each generator of U is an element of G using in.

7.63 IsSubnormal

IsSubnormal(G, U)

IsSubnormal returns true if the subgroup U of G is subnormal in G and false otherwise.

A subgroup U of G is subnormal if and only if there exists a series of subgroups G = G0 >
G1 > ... > Gn = U such that Gi is normal in Gi−1 for all i ∈ {1, ..., n}.
Note that U must be a subgroup of G . The function sets and checks U .isSubnormal if G
is the parent group of G .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> c2 := Subgroup(s4, [(1,2)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)])
gap> IsSubnormal(s4, c2);
false
gap> c2 := Subgroup(s4, [(1,2)(3,4)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2)(3,4)])
gap> IsSubnormal(s4, c2);
true

The default function GroupOps.IsSubnormal uses SubnormalSeries (see 7.43) in order to
check if U is subnormal in G .

296 CHAPTER 7. GROUPS

7.64 IsTrivial for Groups

GroupOps.IsTrivial(G)

GroupOps.IsTrivial returns true if G is the trivial group and false otherwise.

Note that G is trivial if and only if the component generators of the group record of G is
the empty list. It is faster to check this than to call IsTrivial.

7.65 GroupId

GroupId(G)

For certain small groups the function returns a record which will identify the isomorphism
type of G with respect to certain classifications. This record contains the components
described below.

The function will work for all groups of order at most 100 or whose order is a product of
at most three primes. Moreover if the ANU pq is installed and loaded (see 56.1 and 56.2)
you can also use GroupId to identify groups of order 128, 256, 243 and 729. In this case a
standard presentation for G is computed (see 57.6) and the returned record will only contain
the components size, pGroupId, and possibly abelianInvariants. For 2- or 3-groups of
order at most 100 GroupId will return the pGroupId identifier even if the ANU pq is not
installed.

catalogue
a pair [o, n] where o is the size of G and n is the catalogue number of G following the
catalogue of groups of order at most 100. See 37.7 for further details. This catalogue
uses the Neubueser list for groups of order at most 100, excluding groups of orders
64 and 96 (see [Neu67]). It uses the lists developed by [HS64] and [Lau82] for orders
64 and 96 respectively.

Note that there are minor discrepancies between n and the number in [Neu67] for
abelian groups and groups of type D(p,q)xr. However, a solvable group G is iso-
morphic to SolvableGroup(o, n), i.e., GroupId(SolvableGroup(o,n)).catalogue
will be [o,n].

If G is a 2- or 3-group of order at most 100, its number in the appropriate p-group
library is also returned. Note that, for such groups, the number n usually differs from
the p-group identifier returned in pGroupId (see below).

3primes
if G is non-abelian and its size is a product of at most three primes then 3primes
holds an identifier for G . The following isomorphisms are returned in 3primes:
["A",p] = A(p^3), ["B",p] = B(p^3), ["D",p,q,r] = D(p,q)xr,
["D",p,q] = D(p,q), ["G",p,q] = G(p^2,q), ["G",p,q,r,s] = G(p,q,r,s),
["H",p,q] = H(p^2,q), ["H",p,q,r] = H(p,q,r), ["K",p,q] = K(p,q^2),
["L",p,q,s] = L(p,q^2,s), ["M",p,q] = M(p,q^2), ["N",p,q] = N(p,q^2)
(see names below for a definition of A ... N).

pGroupId
if G is a 2- or 3-group, this will be the number of G in the list of 2-groups of order
at most 256, prepared by Newman and O’Brien, or 3-groups of order at most 729,

7.65. GROUPID 297

prepared by O’Brien and Rhodes. In particular, for an integer n and for o a power
of 2 at most 256, GroupId(TwoGroup(o,n)).pGroupId is always n (and similarly for
3-groups). See 37.8 and 37.9 for details about the libraries of 2- and 3-groups. Note
that if G is a 2- or 3-group of order at most 100 its pGroupId usually differs from
its GAP solvable library number returned in catalogue.

abelianInvariants
if G is abelian, this is a list of abelian invariants.

names
a list of names of G . For non-abelian groups of order 96 this name is that used in the
Laue catalogue (see [Lau82]). For the other groups the following symbols are used.
Note that this list of names is neither complete, i.e., most of the groups of order 64
do not have a name even if they are of one of the types described below, nor does it
uniquely determine the group up to isomorphism in some cases.

m is the cyclic group of order m,
Dm is the dihedral group of order m,
Qm is the quaternion group of order m,
QDm is the quasi-dihedral group of order m,
Sm is the symmetric group on m points,
Am is the alternating group on m points,
SL(d,q) is the special linear group,
GL(d,q) is the general linear group,
PSL(d,q) is the projective special linear group,
K^n is the direct power of m copies of K,
K$H is a wreath product of K and H,
K:H is a split extension of K by H,
K.H is a non-split extension of K and H,
K+H is a subdirect product with identified factor groups of K and H,
KYH is a central amalgamated product of the groups K and H,
KxH is the direct product of K and H,
A(p^3) is 〈A,B,C;Ap = Bp = Cp = [A,B] = [A,C] = 1, [B,C] = A〉,
B(p^3) is 〈A,B,C;Bp = Cp = A,Ap = [A,B] = [A,C] = 1, [B,C] = A〉,
D(p,q) is 〈A,B;Aq = Bp = 1, AB = Ax〉 such that p|q − 1, x 6= 1 mod q, and xp = 1
mod q,
G(p^2,q) is 〈A,B,C;Ap = Bq = 1, Cp = A, [A,B] = [A,C] = 1, BC = Bx〉 such that
p|q − 1, x 6= 1 mod q, and xp = 1 mod q,
G(p,q,r,s) is 〈A,B,C;Ar = Bq = Cp = [A,B] = 1, AC = Ax, BC = B(ys)〉 such
that p|q− 1, p|r− 1, x minimal with x 6= 1 mod r and xp = 1 mod r, y minimal with
y 6= 1 mod q and yp = 1 mod q, and 0 < s < p,
H(p^2,q) is 〈A,B;Aq = B(p2) = 1, AB = Ax〉 such that p2|q − 1, xp 6= 1 mod q, and
x(p2) = 1 mod q,
H(p,q,r) is 〈A,B;Ar = Bpq = 1, AB = Ax〉 such that pq|r−1, xp 6= 1 mod r, xq 6= 1
mod r, and xpq = 1 mod r,
K(p,q^2) is 〈A,B,C;Aq = Bq = Cp = [A,B] = 1, AC = Ax, BC = Bx〉 such that
p|q − 1, x 6= 1 mod q, and xp = 1 mod q,
L(p,q^2,s) is 〈A,B,C;Aq = Bq = Cp = [A,B] = 1, AC = Ax, BC = B(xs)〉 such

298 CHAPTER 7. GROUPS

that p|q − 1, x 6= 1 mod q, xp = 1 mod q, and 1 < s < p, note that L(q,p^2,s) ∼=
L(q,p^2,t) iff st = 1 mod p,

M(p,q^2) is 〈A,B;A(q2) = Bp = 1, AB = Ax〉 such that p|q − 1, x 6= 1 mod q2, and
xp = 1 mod q2,
N(p,q^2) is 〈A,B,C;Aq = Bq = Cp = [A,B] = 1, AC = A−1B,BC = A−1Bx

q+x−1〉
such that 2 < p, p|q + 1, x is an element of order p mod q2,
^ has the strongest, x the weakest binding.

gap> q8 := SolvableGroup(8, 5);;
gap> s4 := SymmetricGroup(4);;
gap> d8 := SylowSubgroup(s4, 2);;
gap> GroupId(q8);
rec(
catalogue := [8, 5],
names := ["Q8"],
3primes := ["B", 2],
size := 8,
pGroupId := 4)

gap> GroupId(d8);
rec(
catalogue := [8, 4],
names := ["D8"],
3primes := ["A", 2],
size := 8,
pGroupId := 3)

gap> GroupId(s4);
rec(
catalogue := [24, 15],
names := ["S4"],
size := 24)

gap> GroupId(DirectProduct(d8,d8));
rec(
catalogue := [64, 154],
names := ["D8xD8"],
size := 64,
pGroupId := 226)

gap> GroupId(DirectProduct(q8,d8));
rec(
catalogue := [64, 155],
names := ["D8xQ8"],
size := 64,
pGroupId := 230)

gap> GroupId(WreathProduct(CyclicGroup(2), CyclicGroup(4)));
rec(
catalogue := [64, 250],
names := [],
size := 64,
pGroupId := 32)

7.66. PERMUTATIONCHARACTER 299

gap> f := FreeGroup("c","b","a");; a:=f.3;;b:=f.2;;c:=f.1;;
gap> r := [c^5, b^31, a^31, Comm(b,c)/b^7, Comm(a,c)/a, Comm(a,b)];;
gap> g := AgGroupFpGroup(f / r);
Group(c, b, a)
gap> GroupId(g);
rec(
3primes := ["L", 5, 31, 2],
names := ["L(5,31^2,2)"],
size := 4805)

gap> RequirePackage("anupq");
gap> g := TwoGroup(256,4);
Group(a1, a2, a3, a4, a5, a6, a7, a8)
gap> GroupId(g);
rec(
size := 256,
pGroupId := 4)

gap> g := TwoGroup(256,232);
Group(a1, a2, a3, a4, a5, a6, a7, a8)
gap> GroupId(g);
rec(
size := 256,
pGroupId := 232)

7.66 PermutationCharacter

PermutationCharacter(G, U)

computes the permutation character of the operation of G on the cosets of U . The permu-
tation character is returned as list of integers such that the i.th position contains the value
of the permutation character on the i.th conjugacy class of G (see 7.68).

The value of the permutation character of U in G on a class c of G is the number of
right cosets invariant under the action of an element of c.

gap> G := SymmetricPermGroup(5);;
gap> PermutationCharacter(G, SylowSubgroup(G,2));
[15, 3, 3, 0, 0, 1, 0]

For small groups the default function GroupOps.PermutationCharacter calculates the per-
mutation character by inducing the trivial character of U . For large groups it counts the
fixed points by examining double cosets of U and the subgroup generated by a class element.

7.67 Conjugacy Classes

The following sections describe how one can compute conjugacy classes of elements and
subgroups in a group (see 7.68 and 7.73). Further sections describe how conjugacy classes
of elements are created (see 7.69 and 7.70), and how they are implemented (see 7.71 and
7.72). Further sections describe how classes of subgroups are created (see 7.75 and 7.76),
and how they are implemented (see 7.77 and 7.78). Another section describes the function
that returns a conjugacy class of subgroups as a list of subgroups (see 7.82).

300 CHAPTER 7. GROUPS

7.68 ConjugacyClasses

ConjugacyClasses(G)

ConjugacyClasses returns a list of the conjugacy classes of elements of the group G . The
elements in the list returned are conjugacy class domains as created by ConjugacyClass
(see 7.69). Because conjugacy classes are domains, all set theoretic functions can be applied
to them (see 4).

gap> a5 := Group((1,2,3), (3,4,5));; a5.name := "a5";;
gap> ConjugacyClasses(a5);
[ConjugacyClass(a5, ()), ConjugacyClass(a5, (3,4,5)),

ConjugacyClass(a5, (2,3)(4,5)), ConjugacyClass(a5, (1,2,3,4,5)),
ConjugacyClass(a5, (1,2,3,5,4))]

ConjugacyClasses first checks if G.conjugacyClasses is bound. If the component is
bound, it returns that value. Otherwise it calls G.operations.ConjugacyClasses(G),
remembers the returned value in G.conjugacyClasses, and returns it.

The default function called this way is GroupOps.ConjugacyClasses. This function takes
random elements in G and tests whether such a random element g lies in one of the already
known classes. If it does not it adds the new class ConjugacyClass(G, g) (see 7.69).
Also after adding a new class it tests whether any power of the representative gives rise to
a new class. It returns the list of classes when the sum of the sizes is equal to the size of G .

7.69 ConjugacyClass

ConjugacyClass(G, g)

ConjugacyClass returns the conjugacy class of the element g in the group G . Signals an
error if g is not an element in G . The conjugacy class is returned as a domain, so that all
set theoretic functions are applicable (see 4).

gap> a5 := Group((1,2,3), (3,4,5));; a5.name := "a5";;
gap> c := ConjugacyClass(a5, (1,2,3,4,5));
ConjugacyClass(a5, (1,2,3,4,5))
gap> Size(c);
12
gap> Representative(c);
(1,2,3,4,5)
gap> Elements(c);
[(1,2,3,4,5), (1,2,4,5,3), (1,2,5,3,4), (1,3,5,4,2), (1,3,2,5,4),

(1,3,4,2,5), (1,4,3,5,2), (1,4,5,2,3), (1,4,2,3,5), (1,5,4,3,2),
(1,5,2,4,3), (1,5,3,2,4)]

ConjugacyClass calls G.operations.ConjugacyClass(G, g) and returns that value.

The default function called this way is GroupOps.ConjugacyClass, which creates a conju-
gacy class record (see 7.72) with the operations record ConjugacyClassOps (see 7.71). Look
in the index under ConjugacyClass to see for which groups this function is overlaid.

7.70. ISCONJUGACYCLASS 301

7.70 IsConjugacyClass

IsConjugacyClass(obj)

IsConjugacyClass returns true if obj is a conjugacy class as created by ConjugacyClass
(see 7.69) and false otherwise.

gap> a5 := Group((1,2,3), (3,4,5));; a5.name := "a5";;
gap> c := ConjugacyClass(a5, (1,2,3,4,5));
ConjugacyClass(a5, (1,2,3,4,5))
gap> IsConjugacyClass(c);
true
gap> IsConjugacyClass(
> [(1,2,3,4,5), (1,2,4,5,3), (1,2,5,3,4), (1,3,5,4,2),
> (1,3,2,5,4), (1,3,4,2,5), (1,4,3,5,2), (1,4,5,2,3),
> (1,4,2,3,5), (1,5,4,3,2), (1,5,2,4,3), (1,5,3,2,4)]);
false # even though this is as a set equal to c

7.71 Set Functions for Conjugacy Classes

As mentioned above, conjugacy classes are domains, so all domain functions are applicable
to conjugacy classes (see 4). This section describes the functions that are implemented
especially for conjugacy classes. Functions not mentioned here inherit the default functions
mentioned in the respective sections.

In the following let C be the conjugacy class of the element g in the group G .

Elements(C)

The elements of the conjugacy class C are computed as the orbit of g under G , where G
operates by conjugation.

Size(C)

The size of the conjugacy class C is computed as the index of the centralizer of g in G .

h in C

To test whether an element h lies in C , in tests whether there is an element of G that takes
h to g . This is done by calling RepresentativeOperation(G,h,g) (see 8.23).

Random(C)

A random element of the conjugacy class C is computed by conjugating g with a random
element of G .

7.72 Conjugacy Class Records

A conjugacy class C of an element g in a group G is represented by a record with the
following components.

302 CHAPTER 7. GROUPS

isDomain
always true.

isConjugacyClass
always true.

group
holds the group G .

representative
holds the representative g .

The following component is optional. It is computed and assigned when the size of a
conjugacy class is computed.

centralizer
holds the centralizer of g in G .

7.73 ConjugacyClassesSubgroups

ConjugacyClassesSubgroups(G)

ConjugacyClassesSubgroups returns a list of all conjugacy classes of subgroups of the
group G . The elements in the list returned are conjugacy class domains as created by
ConjugacyClassSubgroups (see 7.75). Because conjugacy classes are domains, all set the-
oretic functions can be applied to them (see 4).

In fact, ConjugacyClassesSubgroups computes much more than it returns, for it calls (indi-
rectly via the function G.operations.ConjugacyClassesSubgroups(G)) the Lattice
command (see 7.74), constructs the whole subgroup lattice of G , stores it in the record
component G.lattice, and finally returns the list G.lattice.classes. This means, in
particular, that it will fail if G is non-solvable and its maximal perfect subgroup is not in
the built-in catalogue of perfect groups (see the description of the Lattice command 7.74
for details).

gap> # Conjugacy classes of subgroups of S4
gap> s4 := Group((1,2,3,4), (1,2));;
gap> s4.name := "s4";;
gap> cl := ConjugacyClassesSubgroups(s4);
[ConjugacyClassSubgroups(s4, Subgroup(s4, [])),

ConjugacyClassSubgroups(s4, Subgroup(s4, [(1,2)(3,4)])),
ConjugacyClassSubgroups(s4, Subgroup(s4, [(3,4)])),
ConjugacyClassSubgroups(s4, Subgroup(s4, [(2,3,4)])),
ConjugacyClassSubgroups(s4, Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)

])), ConjugacyClassSubgroups(s4, Subgroup(s4,
[(3,4), (1,2)])), ConjugacyClassSubgroups(s4, Subgroup(s4,
[(1,2)(3,4), (1,4,2,3)])),

ConjugacyClassSubgroups(s4, Subgroup(s4, [(2,3,4), (3,4)])),
ConjugacyClassSubgroups(s4, Subgroup(s4,
[(3,4), (1,2), (1,3)(2,4)])),

ConjugacyClassSubgroups(s4, Subgroup(s4,
[(1,2)(3,4), (1,3)(2,4), (2,3,4)])),

ConjugacyClassSubgroups(s4, s4)]

7.74. LATTICE 303

Each entry of the resulting list is a domain. As an example, let us take the seventh class in
the above list of conjugacy classes of S4.

gap> # Conjugacy classes of subgroups of S4 (continued)
gap> class7 := cl[7];;
gap> # Print the class representative subgroup.
gap> rep7 := Representative(class7);
Subgroup(s4, [(1,2)(3,4), (1,4,2,3)])
gap> # Print the order of the class representative subgroup.
gap> Size(rep7);
4
gap> # Print the number of conjugates.
gap> Size(class7);
3

7.74 Lattice

Lattice(G)

Lattice returns the lattice of subgroups of the group G in the form of a record L, say, which
contains certain lists with some appropriate information on the subgroups of G and their
conjugacy classes. In particular, in its component L.classes, L provides the same list of all
conjugacy classes of all subgroups of G as is returned by the ConjugacyClassesSubgroups
command (see 7.73).

The construction of the subgroup lattice record L of a group G may be very time consuming.
Therefore, as soon as L has been computed for the first time, it will be saved as a component
G.lattice in the group record G to avoid any duplication of that effort.

The underlying routines are a reimplementation of the subgroup lattice routines which have
been developed since 1958 by several people in Kiel and Aachen under the supervision of
Joachim Neubüser. Their final version, written by Volkmar Felsch in 1984, has been available
since then in Cayley (see [BC92]) and has also been used in SOGOS (see [Leh89a]). The
current implementation in GAP by Jürgen Mnich is described in [Mni92], a summary of the
method and references to all predecessors can be found in [FS84].

The Lattice command invokes the following procedure. In a first step, the solvable residu-
um P , say, of G is computed and looked up in a built-in catalogue of perfect groups which is
given in the file LIBNAME/"lattperf.g". A list of subgroups is read off from that catalogue
which contains just one representative of each conjugacy class of perfect subgroups of P
and hence at least one representative of each conjugacy class of perfect subgroups of G .
Then, starting from the identity subgroup and the conjugacy classes of perfect subgroups,
the so called cyclic extension method is used to compute the non-perfect subgroups of
G by forming for each class representative all its not yet involved cyclic extensions of prime
number index and adding their conjugacy classes to the list.

It is clear that this procedure cannot work if the catalogue of perfect groups does not contain
a group isomorphic to P . At present, it contains only all perfect groups of order less than
5000 and, in addition, the groups PSL(3, 3), M11, and A8. If the Lattice command is
called for a group G with a solvable residuum P not in the catalogue, it will provide an
error message. As an example we handle the group SL(2, 19) of order 6840.

gap> s := [[4,0], [0,5]] * Z(19)^0;;

304 CHAPTER 7. GROUPS

gap> t := [[4,4], [-9,-4]] * Z(19)^0;;
gap> G := Group(s, t);;
gap> Size(G);
6840
gap> Lattice(G);
Error, sorry, can’ t identify the group’s solvable residuum

However, if you know the perfect subgroups of G , you can use the Lattice command to
compute the whole subgroup lattice of G even if the solvable residuum of G is not in the
catalogue. All you have to do in such a case is to create a list of subgroups of G which
contains at least one representative of each conjugacy class of proper perfect subgroups of
G , attach this list to the group record as a new component G.perfectSubgroups, and then
call the Lattice command. The existence of that record component will prevent GAP from
looking up the solvable residuum of G in the catalogue. Instead, it will insert the given
subgroups into the lattice, leaving it to you to guarantee that in fact all conjugacy classes
of proper perfect subgroups are involved.
If you miss classes, the resulting lattice will be incomplete, but you will not get any warning.
As long as you are aware of this fact, you may use this possibility to compute a sublattice
of the subgroup lattice of G without getting the above mentioned error message even if the
solvable residuum of G is not in the catalogue. In particular, you will get at least the classes
of all proper solvable subgroups of G if you define G.perfectSubgroups to be an empty
list.
As an example for the computation of the complete lattice of subgroups of a group which
is not covered by the catalogue, we handle the Mathieu group M12.

gap> # Define the Mathieu group M12.
gap> a := (2,3,5,7,11,9,8,12,10,6,4);;
gap> b := (3,6)(5,8)(9,11)(10,12);;
gap> c := (1,2)(3,4)(5,9)(6,8)(7,12)(10,11);;
gap> M12 := Group(a, b, c);;
gap> Print("#I M12 has order ", Size(M12), "\n");
#I M12 has order 95040
gap> # Define a list of proper perfect subgroups of M_12 and attach
gap> # it to the group record M12 as component M12.perfectSubgroups.
gap> L2_11a := Subgroup(M12, [a, b]);;
gap> M11a := Subgroup(M12, [a, b, c*a^-1*b*a*c]);;
gap> M11b := Subgroup(M12, [a, b, c*a*b*a^-1*c]);;
gap> x := a*b*a^2;;
gap> y := a*c*a^-1*b*a*c*a^6;;
gap> A6a := Subgroup(M12, [x, y]);;
gap> A5c := Subgroup(M12, [x*y, x^3*y^2*x^2*y]);;
gap> x := a^2*b*a;;
gap> y := a^6*c*a*b*a^-1*c*a;;
gap> A6b := Subgroup(M12, [x, y]);;
gap> A5d := Subgroup(M12, [x*y, x^3*y^2*x^2*y]);;
gap> x := a;;
gap> y := b*c*b;;
gap> z := c;;
gap> L2_11b := Subgroup(M12, [x, y, z]);;

7.74. LATTICE 305

gap> A5b := Subgroup(M12, [y, x*z]);;
gap> x := c;;
gap> y := b*a^-1*c*a*b;;
gap> z := a^2*b*a^-1*c*a*b*a^-2;;
gap> A5a := Subgroup(M12, [(x*z)^2, (y*z)^2]);;
gap> M12.perfectSubgroups := [
> L2_11a, L2_11b, M11a, M11b, A6a, A6b, A5a, A5b, A5c, A5d];;
gap> # Now compute the subgroup lattice of M12.
gap> lat := Lattice(M12);
LatticeSubgroups(Group((2, 3, 5, 7,11, 9, 8,12,10, 6, 4), (3, 6)
(5, 8)(9,11)(10,12), (1, 2)(3, 4)(5, 9)(6, 8)(7,12)(10,11)))

The Lattice command returns a record which represents a very complicated structure.

gap> # Subgroup lattice of M12 (continued)
gap> RecFields(lat);
["isLattice", "classes", "group", "printLevel", "operations"]

Probably the most important component of the lattice record is the list lat.classes. Its
elements are domains. They are described in section 7.73. We can use this list, for instance,
to print the number of conjugacy classes of subgroups and the number of subgroups of M12.

gap> # Subgroup lattice of M12 (continued)
gap> n1 := Length(lat.classes);;
gap> n2 := Sum([1 .. n1], i -> Size(lat.classes[i]));;
gap> Print("#I M12 has ", n1, " classes of altogether ", n2,
> " subgroups\n");
#I M12 has 147 classes of altogether 214871 subgroups

It would not make sense to get all components of a subgroup lattice record printed in full
detail whenever we ask GAP to print the lattice. Therefore, as you can see in the above
example, the default printout is just an expression of the form ”Lattice(group)”. However,
you can ask GAP to display some additional information in any subsequent printout of the
lattice by increasing its individual print level. This print level is stored (in the form of a
list of several print flags) in the lattice record and can be changed by an appropriate call of
the SetPrintLevel command described below.

The following example demonstrates the effect of the subgroup lattice print level.

gap> # Subgroup lattice of S4
gap> s4 := Group((1,2,3,4), (1,2));;
gap> lat := Lattice(s4);
LatticeSubgroups(Group((1,2,3,4), (1,2)))

The default subgroup lattice print level is 0. In this case, the print command provides just
the expression mentioned above.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel(lat, 1);
gap> lat;
#I class 1, size 1, length 1
#I class 2, size 2, length 3
#I class 3, size 2, length 6
#I class 4, size 3, length 4

306 CHAPTER 7. GROUPS

#I class 5, size 4, length 1
#I class 6, size 4, length 3
#I class 7, size 4, length 3
#I class 8, size 6, length 4
#I class 9, size 8, length 3
#I class 10, size 12, length 1
#I class 11, size 24, length 1
LatticeSubgroups(Group((1,2,3,4), (1,2)))

If the print level is set to a value greater than 0, you get, in addition, for each class a kind of
heading line. This line contains the position number and the length of the respective class
as well as the order of the subgroups in the class.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel(lat, 2);
gap> lat;
#I class 1, size 1, length 1
#I representative []
#I maximals
#I class 2, size 2, length 3
#I representative [(1,2)(3,4)]
#I maximals [1, 1]
#I class 3, size 2, length 6
#I representative [(3,4)]
#I maximals [1, 1]
#I class 4, size 3, length 4
#I representative [(2,3,4)]
#I maximals [1, 1]
#I class 5, size 4, length 1
#I representative [(1,2)(3,4), (1,3)(2,4)]
#I maximals [2, 1] [2, 2] [2, 3]
#I class 6, size 4, length 3
#I representative [(3,4), (1,2)]
#I maximals [3, 1] [3, 4] [2, 1]
#I class 7, size 4, length 3
#I representative [(1,2)(3,4), (1,4,2,3)]
#I maximals [2, 1]
#I class 8, size 6, length 4
#I representative [(2,3,4), (3,4)]
#I maximals [4, 1] [3, 1] [3, 2] [3, 3]
#I class 9, size 8, length 3
#I representative [(3,4), (1,2), (1,3)(2,4)]
#I maximals [7, 1] [6, 1] [5, 1]
#I class 10, size 12, length 1
#I representative [(1,2)(3,4), (1,3)(2,4), (2,3,4)]
#I maximals [5, 1] [4, 1] [4, 2] [4, 3] [4, 4]
#I class 11, size 24, length 1
#I representative [(1,2,3,4), (1,2)]
#I maximals [10, 1] [9, 1] [9, 2] [9, 3] [8, 1]

7.74. LATTICE 307

[8, 2] [8, 3] [8, 4]
LatticeSubgroups(Group((1,2,3,4), (1,2)))
gap> PrintClassSubgroupLattice(lat, 8);
#I class 8, size 6, length 4
#I representative [(2,3,4), (3,4)]
#I maximals [4, 1] [3, 1] [3, 2] [3, 3]

If the subgroup lattice print level is at least 2, GAP prints, in addition, for each class represen-
tative subgroup a set of generators and a list of its maximal subgroups, where each maximal
subgroup is represented by a pair of integers consisting of its class number and its position
number in that class. As this information blows up the output, it may be convenient to
restrict it to a particular class. We can do this by calling the PrintClassSubgroupLattice
command described below.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel(lat, 3);
gap> PrintClassSubgroupLattice(lat, 8);
#I class 8, size 6, length 4
#I representative [(2,3,4), (3,4)]
#I maximals [4, 1] [3, 1] [3, 2] [3, 3]
#I conjugate 2 by (1,4,3,2) is [(1,2,3), (2,3)]
#I conjugate 3 by (1,2) is [(1,3,4), (3,4)]
#I conjugate 4 by (1,3)(2,4) is [(1,2,4), (1,2)]

If the subgroup lattice print level has been set to at least 3, GAP displays, in addition,
for each non-representative subgroup of a class its number in the class, an element which
transforms the class representative subgroup into that subgroup, and a set of generators.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel(lat, 4);
gap> PrintClassSubgroupLattice(lat, 8);
#I class 8, size 6, length 4
#I representative [(2,3,4), (3,4)]
#I maximals [4, 1] [3, 1] [3, 2] [3, 3]
#I conjugate 2 by (1,4,3,2) is [(1,2,3), (2,3)]
#I maximals [4, 2] [3, 2] [3, 4] [3, 5]
#I conjugate 3 by (1,2) is [(1,3,4), (3,4)]
#I maximals [4, 3] [3, 1] [3, 5] [3, 6]
#I conjugate 4 by (1,3)(2,4) is [(1,2,4), (1,2)]
#I maximals [4, 4] [3, 4] [3, 6] [3, 3]

A subgroup lattice print level value of at least 4 causes GAP to list the maximal subgroups
not only for the class representatives, but also for the other subgroups.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel(lat, 5);
gap> PrintClassSubgroupLattice(lat, 8);
#I class 8, size 6, length 4
#I representative [(2,3,4), (3,4)]
#I maximals [4, 1] [3, 1] [3, 2] [3, 3]
#I minimals [11, 1]
#I conjugate 2 by (1,4,3,2) is [(1,2,3), (2,3)]

308 CHAPTER 7. GROUPS

#I maximals [4, 2] [3, 2] [3, 4] [3, 5]
#I minimals [11, 1]
#I conjugate 3 by (1,2) is [(1,3,4), (3,4)]
#I maximals [4, 3] [3, 1] [3, 5] [3, 6]
#I minimals [11, 1]
#I conjugate 4 by (1,3)(2,4) is [(1,2,4), (1,2)]
#I maximals [4, 4] [3, 4] [3, 6] [3, 3]
#I minimals [11, 1]

The maximal valid value of the subgroup lattice print level is 5. If it is set, GAP displays
not only the maximal subgroups, but also the minimal supergroups of each subgroup. This
is the most extensive output of a subgroup lattice record which you can get with the Print
command, but of course you can use the RecFields command (see 45.13) to list all record
components and then print them out individually in full detail.

If the computation of some subgroup lattice is very time consuming (as in the above example
of the Mathieu group M12), you might wish to see some intermediate printout which informs
you about the progress of the computation. In fact, you can get such messages by activating
a print mechanism which has been inserted into the subgroup lattice routines for diagnostic
purposes. All you have to do is to replace the call

lat := Lattice(M12);

by the three calls

InfoLattice1 := Print;
lat := Lattice(M12);
InfoLattice1 := Ignore;

Note, however, that the final numbering of the conjugacy classes of subgroups will differ
from the order in which they occur in the intermediate listing because they will be reordered
by increasing subgroup orders at the end of the construction.

PrintClassSubgroupLattice(lattice, n)

PrintClassSubgroupLattice prints information on the nth conjugacy class of subgroups
in the subgroup lattice lattice. The amount of this information depends on the current
value of the subgroup lattice print level of lattice. Note that the default of that print level is
zero which means that you will not get any output from the PrintClassSubgroupLattice
command without increasing it (see SetPrintLevel below). Examples are given in the
above description of the Lattice command.

SetPrintLevel(lattice, level)

SetPrintLevel changes the subgroup lattice print level of the subgroup lattice lattice to
the specified value level by an appropriate alteration of the list of print flags which is stored
in lattice.printLevel. The argument level is expected to be an integer between 0 and 5.

Examples of the effect of the subgroup lattice print level are given in the above description
of the Lattice command.

7.75. CONJUGACYCLASSSUBGROUPS 309

7.75 ConjugacyClassSubgroups

ConjugacyClassSubgroups(G, U)

ConjugacyClassSubgroups returns the conjugacy class of the subgroup U in the group G .
Signals an error if U is not a subgroup of G . The conjugacy class is returned as a domain,
so all set theoretic functions are applicable (see 4).

gap> s5 := Group((1,2), (1,2,3,4,5));; s5.name := "s5";;
gap> a5 := DerivedSubgroup(s5);
Subgroup(s5, [(1,2,3), (2,3,4), (3,4,5)])
gap> C := ConjugacyClassSubgroups(s5, a5);
ConjugacyClassSubgroups(s5, Subgroup(s5,
[(1,2,3), (2,3,4), (3,4,5)]))
gap> Size(C);
1

Another example of such domains is given in section 7.73.

ConjugacyClassSubgroups calls
G.operations.ConjugacyClassSubgroups(G, U) and returns this value.

The default function called is GroupOps.ConjugacyClassSubgroups, which creates a conju-
gacy class record (see 7.78) with the operations record ConjugacyClassSubgroupsOps (see
7.77). Look in the index under ConjugacyClassSubgroups to see for which groups this
function is overlaid.

7.76 IsConjugacyClassSubgroups

IsConjugacyClassSubgroups(obj)

IsConjugacyClassSubgroups returns true if obj is a conjugacy class of subgroups as cre-
ated by ConjugacyClassSubgroups (see 7.75) and false otherwise.

gap> s5 := Group((1,2), (1,2,3,4,5));; s5.name := "s5";;
gap> a5 := DerivedSubgroup(s5);
Subgroup(s5, [(1,2,3), (2,3,4), (2,4)(3,5)])
gap> c := ConjugacyClassSubgroups(s5, a5);
ConjugacyClassSubgroups(s5, Subgroup(s5,
[(1,2,3), (2,3,4), (2,4)(3,5)]))
gap> IsConjugacyClassSubgroups(c);
true
gap> IsConjugacyClassSubgroups([a5]);
false # even though this is as a set equal to c

7.77 Set Functions for Subgroup Conjugacy Classes

As mentioned above, conjugacy classes of subgroups are domains, so all set theoretic func-
tions are also are applicable to conjugacy classes (see 4). This section describes the functions
that are implemented especially for conjugacy classes. Functions not mentioned here inherit
the default functions mentioned in the respective sections.

310 CHAPTER 7. GROUPS

Elements(C)

The elements of the conjugacy class C with representative U in the group G are computed
by first finding a right transversal of the normalizer of U in G and by computing the
conjugates of U with the elements in the right transversal.

V in C

Membership of a group V is tested by comparing the set of contained cyclic subgroups of
prime power order of V with those of the groups in C .

Size(C)

The size of the conjugacy class C with representative U in the group G is computed as the
index of the normalizer of U in G .

7.78 Subgroup Conjugacy Class Records

Each conjugacy class of subgroups C is represented as a record with at least the following
components.

isDomain
always true, because conjugacy classes of subgroups are domains.

isConjugacyClassSubgroups
as well, this entry is always set to true.

group
The group in which the members of this conjugacy class lie. This is not necessarily a
parent group; it may also be a subgroup.

representative
The representative of the conjugacy class of subgroups as domain.

The following components are optional and may be bound by some functions which compute
or make use of their value.

normalizer
The normalizer of C.representative in C.group.

normalizerLattice
A special entry that is used when the conjugacy classes of subgroups are computed
by ConjugacyClassesSubgroups. It determines the normalizer of the subgroup
C.representative. It is a list of length 2. The first element is another conju-
gacy class D (in the same group), the second is an element g in C.group. The
normalizer of C.representative is then D.representative ^ g .

conjugands
A right transversal of the normalizer of C.representative in C.group. Thus the
elements of the class C can be computed by conjugating C.representative with
those elements.

7.79. CONJUGACYCLASSESMAXIMALSUBGROUPS 311

7.79 ConjugacyClassesMaximalSubgroups

ConjugacyClassesMaximalSubgroups(G)

ConjugacyClassesMaximalSubgroups returns a list of conjugacy classes of maximal sub-
groups of the group G .

A subgroup H of G is maximal if H is a proper subgroup and for all subgroups I of G
with H < I ≤ G the equality I = G holds.

gap> s4 := SymmetricGroup(AgWords, 4);;
gap> ss4 := SpecialAgGroup(s4);;
gap> ConjugacyClassesMaximalSubgroups(ss4);
[ConjugacyClassSubgroups(Group(g1, g2, g3, g4), Subgroup(Group(

g1, g2, g3, g4), [g2, g3, g4])),
ConjugacyClassSubgroups(Group(g1, g2, g3, g4), Subgroup(Group(
g1, g2, g3, g4), [g1, g3, g4])),

ConjugacyClassSubgroups(Group(g1, g2, g3, g4), Subgroup(Group(
g1, g2, g3, g4), [g1, g2]))]

The generic method computes the entire lattice of conjugacy classes of subgroups (see 7.74)
and returns the maximal ones.

MaximalSubgroups (see 7.80) computes the list of all maximal subgroups.

7.80 MaximalSubgroups

MaximalSubgroups(G)

MaximalSubgroups calculates all maximal subroups of the special ag group G .

gap> s4 := SymmetricGroup(AgWords, 4);;
gap> ss4 := SpecialAgGroup(s4);;
gap> MaximalSubgroups(ss4);
[Subgroup(Group(g1, g2, g3, g4), [g2, g3, g4]),
Subgroup(Group(g1, g2, g3, g4), [g1, g3, g4]),
Subgroup(Group(g1, g2, g3, g4), [g1*g2^2, g3, g4]),
Subgroup(Group(g1, g2, g3, g4), [g1*g2, g3, g4]),
Subgroup(Group(g1, g2, g3, g4), [g1, g2]),
Subgroup(Group(g1, g2, g3, g4), [g1, g2*g3*g4]),
Subgroup(Group(g1, g2, g3, g4), [g1*g4, g2*g4]),
Subgroup(Group(g1, g2, g3, g4), [g1*g4, g2*g3])]

ConjugacyClassesMaximalSubgroups (see 7.79) computes the list of conjugacy classes of
maximal subgroups.

7.81 NormalSubgroups

NormalSubgroups(G)

NormalSubgroups returns a list of all normal subgroups of G . The subgroups are sorted
according to their sizes.

gap> s4 := Group((1,2,3,4), (1,2));; s4.name := "s4";;

312 CHAPTER 7. GROUPS

gap> NormalSubgroups(s4);
[Subgroup(s4, []), Subgroup(s4, [(1,2)(3,4), (1,4)(2,3)]),
Subgroup(s4, [(2,3,4), (1,3,4)]),
Subgroup(s4, [(3,4), (1,4), (1,2,4)])]

The default function GroupOps.NormalSubgroups uses the conjugacy classes of G and nor-
mal closures in order to compute the normal subgroups.

7.82 ConjugateSubgroups

ConjugateSubgroups(G, U)

ConjugateSubgroups returns the orbit of U under G acting by conjugation (see 7.20) as
list of subgroups. U and G must have a common parent group.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s3 := Subgroup(s4, [(1,2,3), (1,2)]);
Subgroup(Group((1,2,3,4), (1,2)), [(1,2,3), (1,2)])
gap> ConjugateSubgroups(s4, s3);
[Subgroup(Group((1,2,3,4), (1,2)), [(1,2,3), (1,2)]),
Subgroup(Group((1,2,3,4), (1,2)), [(2,3,4), (2,3)]),
Subgroup(Group((1,2,3,4), (1,2)), [(1,3,4), (3,4)]),
Subgroup(Group((1,2,3,4), (1,2)), [(1,2,4), (1,4)])]

7.83 Cosets of Subgroups

The following sections describe how one can compute the right, left, and double cosets of
subgroups (see 7.84, 7.89, 7.92). Further sections describe how cosets are created (see 7.85,
7.86, 7.90, 7.91, 7.93, and 7.94), and their implementation (see 7.87, 7.88, 7.95, and 7.96).

A coset is a GAP domain, which is different from a group. Altough the set of elements
of a group and its trivial coset are equal, the group functions do not take trivial cosets as
arguments. A trivial coset must be convert into a group using AsGroup (see 7.10) in order
to be used as group.

7.84 RightCosets

Cosets(G, U)
RightCosets(G, U)

Cosets and RightCosets return a list of the right cosets of the subgroup U in the group
G . The list is not sorted, i.e., the right cosets may appear in any order. The right cosets
are domains as constructed by RightCoset (see 7.85).

gap> G := Group((1,2), (1,2,3,4));;
gap> G.name := "G";;
gap> U := Subgroup(G, [(1,2), (3,4)]);;
gap> RightCosets(G, U);
[(Subgroup(G, [(1,2), (3,4)])*()),
(Subgroup(G, [(1,2), (3,4)])*(2,4,3)),
(Subgroup(G, [(1,2), (3,4)])*(2,3)),

7.85. RIGHTCOSET 313

(Subgroup(G, [(1,2), (3,4)])*(1,2,4,3)),
(Subgroup(G, [(1,2), (3,4)])*(1,2,3)),
(Subgroup(G, [(1,2), (3,4)])*(1,3)(2,4))]

If G is the parent of U , the dispatcher RightCosets first checks whether U has a compo-
nent rightCosets. If U has this component, it returns that value. Otherwise it calls
G.operations.RightCosets(G,U), remembers the returned value in U .rightCosets
and returns it. If G is not the parent of U , RightCosets directly calls the function
G.operations.RightCosets(G,U) and returns that value.

The default function called this way is GroupOps.RightCosets, which calls Orbit(G,
RightCoset(U), OnRight). Look up RightCosets in the index, to see for which groups
this function is overlaid.

7.85 RightCoset

U * u
Coset(U , u)
RightCoset(U , u)
Coset(U)
RightCoset(U)

The first three forms return the right coset of the subgroup U with the representative u. u
must lie in the parent group of U , otherwise an error is signalled. In the last two forms the
right coset of U with the identity element of the parent of U as representative is returned.
In each case the right coset is returned as a domain, so all domain functions are applicable
to right cosets (see chapter 4 and 7.87).

gap> G := Group((1,2), (1,2,3,4));;
gap> U := Subgroup(G, [(1,2), (3,4)]);;
gap> U * (1,2,3);
(Subgroup(Group((1,2), (1,2,3,4)), [(1,2), (3,4)])*(1,2,3))

RightCosets (see 7.84) computes the set of all right cosets of a subgroup in a group.
LeftCoset (see 7.90) constructs left cosets.

RightCoset calls U .operations.RightCoset(U , u) and returns that value.

The default function called this way is GroupOps.RightCoset, which creates a right coset
record (see 7.88) with the operations record RightCosetGroupOps (see 7.87). Look up the
entries for RightCoset in the index to see for which groups this function is overlaid.

7.86 IsRightCoset

IsRightCoset(obj)
IsCoset(obj)

IsRightCoset and IsCoset return true if the object obj is a right coset, i.e., a record with
the component isRightCoset with value true, and false otherwise. Will signal an error
if obj is an unbound variable.

gap> C := Subgroup(Group((1,2), (1,2,3)), [(1,2,3)]) * (1,2);;
gap> IsRightCoset(C);
true

314 CHAPTER 7. GROUPS

gap> D := (1,2) * Subgroup(Group((1,2), (1,2,3)), [(1,2,3)]);;
gap> IsCoset(D);
false # note that D is a left coset record,
gap> C = D;
true # though as a set, it is of course also a right coset
gap> IsCoset(17);
false

7.87 Set Functions for Right Cosets

Right cosets are domains, thus all set theoretic functions are applicable to cosets (see chapter
4). The following describes the functions that are implemented especially for right cosets.
Functions not mentioned here inherit the default function mentioned in the respective sec-
tions.

More technically speaking, all right cosets of generic groups have the operations record
RightCosetGroupOps, which inherits its functions from DomainOps and overlays the com-
ponents mentioned below with more efficient functions.

In the following let C be the coset U * u.

Elements(C)

To compute the proper set of elements of a right coset C the proper set of elements of the
subgroup U is computed, each element is multiplied by u, and the result is sorted.

IsFinite(C)

This returns the result of applying IsFinite to the subgroup U .

Size(C)

This returns the result of applying Size to the subgroup U .

C = D

If C and D are both right cosets of the same subgroup, = returns true if the quotient of
the representatives lies in the subgroup U , otherwise the test is delegated to DomainOps.=.

h in U

If h is an element of the parent group of U , this returns true if the quotient h / u lies in
the subgroup U , otherwise the test is delegated to DomainOps.in.

Intersection(C, D)

If C and D are both right cosets of subgroups U and V with the same parent group the
result is a right coset of the intersection of U and V . The representative is found by a
random search for a common element. In other cases the computation of the intersection is
delegated to DomainOps.Intersection.

7.88. RIGHT COSETS RECORDS 315

Random(C)

This takes a random element of the subgroup U and returns the product of this element by
the representative u.

Print(C)

A right coset C is printed as (U * u) (the parenthesis are used to avoid confusion about
the precedence, which could occur if the coset is part of a larger object).

C * v

If v is an element of the parent group of the subgroup U , the result is a new right coset of
U with representative u * v . Otherwise the result is obtained by multiplying the proper
set of elements of C with the element v , which may signal an error.

v * C

The result is obtained by multiplying the proper set of elements of the coset C with the
element v , which may signal an error.

7.88 Right Cosets Records

A right coset is represented by a domain record with the following tag components.

isDomain
always true.

isRightCoset
always true.

The right coset is determined by the following identity components, which every right coset
record has.

group
the subgroup U of which this right coset is a right coset.

representative
an element of the right coset. It is unspecified which element.

In addition, a right coset record may have the following optional information components.

elements
if present the proper set of elements of the coset.

isFinite
if present this is true if the coset is finite, and false if the coset is infinite. If not
present it is not known whether the coset is finite or infinite.

size
if present the size of the coset. Is ”infinity” if the coset is infinite. If not present the
size of the coset is not known.

316 CHAPTER 7. GROUPS

7.89 LeftCosets

LeftCosets(G, U)

LeftCosets returns a list of the left cosets of the subgroup U in the group G . The list is
not sorted, i.e., the left cosets may appear in any order. The left cosets are domains as
constructed by LeftCosets (see 7.89).

gap> G := Group((1,2), (1,2,3,4));;
gap> G.name := "G";;
gap> U := Subgroup(G, [(1,2), (3,4)]);;
gap> LeftCosets(G, U);
[(()*Subgroup(G, [(1,2), (3,4)])),
((2,3,4)*Subgroup(G, [(1,2), (3,4)])),
((2,3)*Subgroup(G, [(1,2), (3,4)])),
((1,3,4,2)*Subgroup(G, [(1,2), (3,4)])),
((1,3,2)*Subgroup(G, [(1,2), (3,4)])),
((1,3)(2,4)*Subgroup(G, [(1,2), (3,4)]))]

If G is the parent of U , the dispatcher LeftCosets first checks whether U has a component
leftCosets. If U has this component, it returns that value. Otherwise LeftCosets calls
G.operations.LeftCosets(G,U), remembers the returned value in U .leftCosets and
returns it. If G is not the parent of U , LeftCosets calls G.operations.LeftCosets(G,U)
directly and returns that value.

The default function called this way is GroupOps.LeftCosets, which calls RightCosets(
G, U) and turns each right coset U * u into the left coset u^-1 * U . Look up the
entries for LeftCosets in the index, to see for which groups this function is overlaid.

7.90 LeftCoset

u * U
LeftCoset(U , u)
LeftCoset(U)

LeftCoset is exactly like RightCoset, except that it constructs left cosets instead of right
cosets. So everything that applies to RightCoset applies also to LeftCoset, with right
replaced by left (see 7.85, 7.87, 7.88).

gap> G := Group((1,2), (1,2,3,4));;
gap> U := Subgroup(G, [(1,2), (3,4)]);;
gap> (1,2,3) * U;
((1,2,3)*Subgroup(Group((1,2), (1,2,3,4)), [(1,2), (3,4)]))

LeftCosets (see 7.89) computes the set of all left cosets of a subgroup in a group.

7.91 IsLeftCoset

IsLeftCoset(obj)

IsLeftCoset returns true if the object obj is a left coset, i.e., a record with the component
isLeftCoset with value true, and false otherwise. Will signal an error if obj is an unbound
variable.

7.92. DOUBLECOSETS 317

gap> C := (1,2) * Subgroup(Group((1,2), (1,2,3)), [(1,2,3)]);;
gap> IsLeftCoset(C);
true
gap> D := Subgroup(Group((1,2), (1,2,3)), [(1,2,3)]) * (1,2);;
gap> IsLeftCoset(D);
false # note that D is a right coset record,
gap> C = D;
true # though as a set, it is of course also a left coset
gap> IsLeftCoset(17);
false

IsRightCoset (see 7.86) tests if an object is a right coset.

7.92 DoubleCosets

DoubleCosets(G, U , V)

DoubleCosets returns a list of the double cosets of the subgroups U and V in the group
G . The three groups G , U and V must have a common parent. The list is not sorted, i.e.,
the double cosets may appear in any order. The double cosets are domains as constructed
by DoubleCoset (see 7.93).

gap> G := Group((1,2), (1,2,3,4));;
gap> U := Subgroup(G, [(1,2), (3,4)]);; U.name := "U";;
gap> DoubleCosets(G, U, U);
[DoubleCoset(U, (), U), DoubleCoset(U, (2,3), U),
DoubleCoset(U, (1,3)(2,4), U)]

DoubleCosets calls G.operations.DoubleCoset(G, U , V) and returns that value.

The default function called this way is GroupOps.DoubleCosets, which takes random ele-
ments from G , tests if this element lies in one of the already found double cosets, adds the
double coset if this is not the case, and continues this until the sum of the sizes of the found
double cosets equals the size of G . Look up DoubleCosets in the index, to see for which
groups this function is overlaid.

7.93 DoubleCoset

DoubleCoset(U , u, V)

DoubleCoset returns the double coset with representative u and left group U and right
group V . U and V must have a common parent and u must lie in this parent, otherwise
an error is signaled. Double cosets are domains, so all domain function are applicable to
double cosets (see chapter 4 and 7.95).

gap> G := Group((1,2), (1,2,3,4));;
gap> U := Subgroup(G, [(1,2), (3,4)]);;
gap> D := DoubleCoset(U, (1,2,3), U);
DoubleCoset(Subgroup(Group((1,2), (1,2,3,4)), [(1,2), (3,4)]),
(1,2,3), Subgroup(Group((1,2), (1,2,3,4)), [(1,2), (3,4)]))
gap> Size(D);
16

318 CHAPTER 7. GROUPS

DoubleCosets (see 7.92) computes the set of all double cosets of two subgroups in a group.

DoubleCoset calls U .operations.DoubleCoset(U ,u,V) and returns that value.

The default function called this way is GroupOps.DoubleCoset, which creates a double
coset record (see 7.96) with the operations record DoubleCosetGroupOps (see 7.95). Look
up DoubleCosets in the index to see for which groups this function is overlaid.

7.94 IsDoubleCoset

IsDoubleCoset(obj)

IsDoubleCoset returns true if the object obj is a double coset, i.e., a record with the
component isDoubleCoset with value true, and false otherwise. Will signal an error if
obj is an unbound variable.

gap> G := Group((1,2), (1,2,3,4));;
gap> U := Subgroup(G, [(1,2), (3,4)]);;
gap> D := DoubleCoset(U, (1,2,3), U);;
gap> IsDoubleCoset(D);
true

7.95 Set Functions for Double Cosets

Double cosets are domains, thus all set theoretic functions are applicable to double cosets
(see chapter 4). The following describes the functions that are implemented especially for
double cosets. Functions not mentioned here inherit the default functions mentioned in the
respective sections.

More technically speaking, double cosets of generic groups have the operations record
DoubleCosetGroupOps, which inherits its functions from DomainOps and overlays the com-
ponents mentioned below with more efficient functions.

Most functions below use the component D.rightCosets that contains a list of right cosets
of the left group U whose union is this double coset. If this component is unbound they will
compute it by computing the orbit of the right group V on the right coset U * u, where u
is the representative of the double coset (see 7.96).

Elements(D)

To compute the proper set of elements the union of the right cosets D.rightCosets is
computed.

IsFinite(D)

This returns the result of IsFinite(U) and IsFinite(V).

Size(D)

This returns the size of the left group U times the number of cosets in D.rightCosets.

C = D

7.96. DOUBLE COSET RECORDS 319

If C and D are both double cosets with the same left and right groups this returns the result
of testing whether the representative of C lies in D . In other cases the test is delegated to
DomainOps.=.

g in D

If g is an element of the parent group of the left and right group of D , this returns true if
g lies in one of the right cosets in D.rightCosets. In other cases the the test is delegated
to DomainOps.in.

Intersection(C, D)

If C and D are both double cosets that are equal, this returns C . If C and D are both
double cosets with the same left and right groups that are not equal, this returns []. In all
other cases the computation is delegated to DomainsOps.Intersection.

Random(D)

This takes a random right coset from D.rightCosets and returns the result of applying
Random to this right coset.

Print(D)

This prints the double coset in the form DoubleCoset(U , u, V).

D * g
g * D

Those returns the result of multiplying the proper set of element of D with the element g ,
which may signal an error.

7.96 Double Coset Records

A double coset is represented by a domain record with the following tag components.

isDomain
always true.

isDoubleCoset
always true.

The double coset is determined by the following identity components, which every double
coset must have.

leftGroup
the left subgroup U .

rightGroup
the right subgroup V .

representative
an element of the double coset. It is unspecified which element.

320 CHAPTER 7. GROUPS

In addition, a double coset record may have the following optional information components.

rightCosets
a list of disjoint right cosets of the left subgroup U , whose union is the double coset.

elements
if present the proper set of elements of the double coset.

isFinite
if present this is true if the double coset is finite and false if the double coset is
infinite. If not present it is not known whether the double coset is finite or infinite.

size
if present the size of the double coset. Is ”infinity” if the coset is infinite. If not
present the size of the double coset is not known.

7.97 Group Constructions

The following functions construct new parent groups from given groups (see 7.98, 7.100,
7.102 and 7.103).

7.98 DirectProduct

DirectProduct(G1, ..., Gn)

DirectProduct returns a group record of the direct product D of the groups G1,, Gn
which need not to have a common parent group, it is even possible to construct the direct
product of an ag group with a permutation group.

Note that the elements of the direct product may be just represented as records. But more
complicate constructions, as for instance installing a new collector, may be used. The choice
of method strongly depends on the type of group arguments.

Embedding(U , D, i)

Let U be a subgroup of Gi . Embedding returns a homomorphism of U into D which
describes the embedding of U in D .

Projection(D, U , i)

Let U be a supergroup of Gi . Projection returns a homomorphism of D into U which
describes the projection of D onto Gi .

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> S4 := AgGroup(s4);
Group(g1, g2, g3, g4)
gap> D := DirectProduct(s4, S4);
Group(DirectProductElement(
(1,2,3,4), IdAgWord), DirectProductElement(
(1,2), IdAgWord), DirectProductElement((),
g1), DirectProductElement((), g2), DirectProductElement((),
g3), DirectProductElement((), g4))

7.99. DIRECTPRODUCT FOR GROUPS 321

gap> pr := Projection(D, s4, 1);;
gap> Image(pr);
Group((1,2,3,4), (1,2))

7.99 DirectProduct for Groups

GroupOps.DirectProduct(L)

Let L be a list of groups G1, ..., Gn. Then a group element g of the direct product D is
represented as record containing the following components.

element
a list g1 ∈ G1, ..., gn ∈ Gn describing g.

domain
contains GroupElements.

isGroupElement
contains true.

isDirectProductElement
contains true.

operations
contains the operations record DirectProductElementOps (see 4.5).

7.100 SemidirectProduct

SemidirectProduct(G, a, H)

SemidirectProduct returns the semidirect product of G with H . a must be a homomor-
phism that from G onto a group A that operates on H via the caret (^) operator. A may
either be a subgroup of the parent group of H that normalizes H , or a subgroup of the
automorphism group of H , i.e., a group of automorphisms (see 7.105).

The semidirect product of G and H is a the group of pairs (g, h) with g ∈ G and h ∈ H,
where the product of (g1, h1)(g2, h2) is defined as (g1g2, h

ga2
1 h2). Note that the elements

(1G, h) form a normal subgroup in the semidirect product.

Embedding(U , S, 1)

Let U be a subgroup of G . Embedding returns the homomorphism of U into the semidirect
product S where u is mapped to (u,1).

Embedding(U , S, 2)

Let U be a subgroup of H . Embedding returns the homomorphism of U into the semidirect
product S where u is mapped to (1,u).

Projection(S, G, 1)

Projection returns the homomorphism of S onto G , where (g,h) is mapped to g .

Projection(S, H , 2)

Projection returns the homomorphism of S onto H , where (g,h) is mapped to h.

322 CHAPTER 7. GROUPS

It is not specified how the elements of the semidirect product are represented. Thus
Embedding and Projection are the only general possibility to relate G and H with the
semidirect product.

gap> s4 := Group((1,2), (1,2,3,4));; s4.name := "s4";;
gap> s3 := Subgroup(s4, [(1,2), (1,2,3)]);; s3.name := "s3";;
gap> a4 := Subgroup(s4, [(1,2,3), (2,3,4)]);; a4.name := "a4";;
gap> a := IdentityMapping(s3);;
gap> s := SemidirectProduct(s3, a, a4);
Group(SemidirectProductElement((1,2),
(1,2), ()), SemidirectProductElement((1,2,3),
(1,2,3), ()), SemidirectProductElement((), (),
(1,2,3)), SemidirectProductElement((), (), (2,3,4)))
gap> Size(s);
72

Note that the three arguments of SemidirectProductElement are the element g , its image
under a, and the element h.

SemidirectProduct calls the function G.operations.SemidirectProduct with the argu-
ments G , a, and H , and returns the result.

The default function called this way is GroupOps.SemidirectProduct. This function con-
structs the semidirect product as a group of semidirect product elements (see 7.101). Look
in the index under SemidirectProduct to see for which groups this function is overlaid.

7.101 SemidirectProduct for Groups

The function GroupOps.SemidirectProduct constructs the semidirect product as a group
of semidirect product elements. In the following let G , a, and H be the arguments of
SemidirectProduct.

Each such element (g,h) is represented by a record with the following components.

element
the list [g, h].

automorphism
contains the image of g under a.

isGroupElement
always true.

isSemidirectProductElement
always true.

domain
contains GroupElements.

operations
contains the operations record SemidirectProductOps.

The operations of semidirect product elements in done in the obvious way.

7.102. SUBDIRECTPRODUCT 323

7.102 SubdirectProduct

SubdirectProduct(G1, G2, h1, h2)

SubdirectProduct returns the subdirect product of the groups G1 and G2 . h1 and h2
must be homomorphisms from G1 and G2 into a common group H .

The subdirect product of G1 and G2 is the subgroup of the direct product of G1 and G2 of
those elements (g1, g2) with gh1

1 = gh2
2 . This subgroup is generated by the elements (g1, xg1),

where g1 loops over the generators of G1 and xg1 ∈ G2 is an arbitrary element such that
gh1

1 = xh2
g1

together with the element (1G, k2) where k2 loops over the generators of the
kernel of h2.

Projection(S, G1, 1)

Projection returns the projection of S onto G1 , where (g1,g2) is mapped to g1 .

Projection(S, G2, 2)

Projection returns the projection of S onto G2 , where (g1,g2) is mapped to g2 .

It is not specified how the elements of the subdirect product are represented. Therefor
Projection is the only general possibility to relate G1 and G2 with the subdirect product.

gap> s3 := Group((1,2,3), (1,2));;
gap> c3 := Subgroup(s3, [(1,2,3)]);;
gap> x1 := Operation(s3, Cosets(s3, c3), OnRight);;
gap> h1 := OperationHomomorphism(s3, x1);;
gap> d8 := Group((1,2,3,4), (2,4));;
gap> c4 := Subgroup(d8, [(1,2,3,4)]);;
gap> x2 := Operation(d8, Cosets(d8, c4), OnRight);;
gap> h2 := OperationHomomorphism(d8, x2);;
gap> s := SubdirectProduct(s3, d8, h1, h2);
Group((1,2,3), (1,2)(5,7), (4,5,6,7))
gap> Size(s);
24

SubdirectProduct calls the function G1.operations.SubdirectProduct with the argu-
ments G1 , G2 , h1 , and h2 .

The default function called this way is GroupOps.SubdirectProduct. This function con-
structs the subdirect product as a subgroup of the direct product. The generators for this
subgroup are computed as described above.

7.103 WreathProduct

WreathProduct(G, H)
WreathProduct(G, H , α)

In the first form of WreathProduct the right regular permutation representation of H on its
elements is used as the homomorphism α. In the second form α must be a homomorphism
of H into a permutation group. Let d be the degree of the range of α. Then WreathProduct
returns the wreath product of G by H with respect to α, that is the semi-direct product of

324 CHAPTER 7. GROUPS

the direct product of d copies of G which are permuted by H through application of α to
H .

gap> s3 := Group((1,2,3), (1,2));
Group((1,2,3), (1,2))
gap> z2 := CyclicGroup(AgWords, 2);
Group(c2)
gap> f := IdentityMapping(s3);
IdentityMapping(Group((1,2,3), (1,2)))
gap> w := WreathProduct(z2, s3, f);
Group(WreathProductElement(
c2, IdAgWord, IdAgWord, (), ()), WreathProductElement(IdAgWord,
c2, IdAgWord, (), ()), WreathProductElement(IdAgWord, IdAgWord,
c2, (), ()), WreathProductElement(IdAgWord, IdAgWord, IdAgWord,
(1,2,3),
(1,2,3)), WreathProductElement(IdAgWord, IdAgWord, IdAgWord, (1,2),
(1,2)))
gap> Factors(Size(w));
[2, 2, 2, 2, 3]

7.104 WreathProduct for Groups

GroupOps.WreathProduct(G, H , α)

Let d be the degree of α.range. A group element of the wreath product W is represented
as a record containing the following components.

element
a list of d elements of G followed by an element h of H .

permutation
the image of h under α.

domain
contains GroupElements.

isGroupElement
contains true.

isWreathProductElement
contains true.

operations
contains the operations record WreathProductElementOps (see 4.5).

7.105 Group Homomorphisms

Since groups is probably the most important category of domains in GAP group homomor-
phisms are probably the most important homomorphisms (see chapter 43)

A group homomorphism φ is a mapping that maps each element of a group G, called
the source of φ, to an element of another group H, called the range of φ, such that for each
pair x, y ∈ G we have (xy)φ = xφyφ.

7.106. ISGROUPHOMOMORPHISM 325

Examples of group homomorphisms are the natural homomorphism of a group into a factor
group (see 7.109) and the homomorphism of a group into a symmetric group defined by an
operation (see 8.19). Look under group homomorphisms in the index for a list of all
available group homomorphisms.

Since group homomorphisms are just a special case of homomorphisms, all functions de-
scribed in chapter 43 are applicable to all group homomorphisms, e.g., the function to test
if a homomorphism is an automorphism (see 43.6). More general, since group homomor-
phisms are just a special case of mappings all functions described in chapter 42 are also
applicable, e.g., the function to compute the image of an element under a group homomor-
phism (see 42.8).

The following sections describe the functions that test whether a mapping is a group ho-
momorphism (see 7.106), compute the kernel of a group homomorphism (see 7.107), how
the general mapping functions are implemented for group homomorphisms (see 7.108), the
natural homomorphism of a group onto a factor group (see 7.109), homomorphisms by con-
jugation (see 7.110, 7.111), and the most general group homomorphism, which is defined by
simply specifying the images of a set of generators (see 7.112).

7.106 IsGroupHomomorphism

IsGroupHomomorphism(map)

IsGroupHomomorphism returns true if the function map is a group homomorphism and
false otherwise. Signals an error if map is a multi value mapping.

A mapping map is a group homomorphism if its source G and range H are both groups and
if for every pair of elements x, y ∈ G it holds that (xy)map = xmapymap.

gap> s4 := Group((1,2), (1,2,3,4));;
gap> v4 := Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)]);;
gap> phi := NaturalHomomorphism(s4, s4/v4);;
gap> IsGroupHomomorphism(phi);
true
gap> IsHomomorphism(phi);
true # since the source is a group this is equivalent to the above
gap> IsGroupHomomorphism(FrobeniusAutomorphism(GF(16)));
false # it is a field automorphism

IsGroupHomomorphism first tests if the flag map.isGroupHomomorphism is bound. If the
flag is bound, IsGroupHomomorphism returns its value. Otherwise it calls
map.source.operations.IsGroupHomomorphism(map), remembers the returned value
in map.isGroupHomomorphism, and returns it. Note that of course all functions that create
group homomorphisms set the flag map.isGroupHomomorphism to true, so that no function
is called for those group homomorphisms.

The default function called this way is MappingOps.IsGroupHomomorphism. It computes
all the elements of the source of map and for each such element x and each generator y
tests whether (xy)map = xmapymap. Look under IsHomomorphism in the index to see
for which mappings this function is overlaid.

326 CHAPTER 7. GROUPS

7.107 KernelGroupHomomorphism

KernelGroupHomomorphism(hom)

KernelGroupHomomorphism returns the kernel of the group homomorphism hom as a sub-
group of the group hom.source.

The kernel of a group homomorphism hom is the subset of elements x of the source G that
are mapped to the identity of the range H, i.e., xhom = H.identity.

gap> s4 := Group((1,2), (1,2,3,4));;
gap> v4 := Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)]);;
gap> phi := NaturalHomomorphism(s4, s4/v4);;
gap> KernelGroupHomomorphism(phi);
Subgroup(Group((1,2), (1,2,3,4)), [(1,2)(3,4), (1,3)(2,4)])
gap> Kernel(phi);
Subgroup(Group((1,2), (1,2,3,4)), [(1,2)(3,4), (1,3)(2,4)])

since the source is a group this is equivalent to the above
gap> rho := GroupHomomorphismByImages(s4, Group((1,2)),
> [(1,2), (1,2,3,4)], [(1,2), (1,2)]);;
gap> Kernel(rho);
Subgroup(Group((1,2), (1,2,3,4)), [(2,4,3), (1,4,3)])

KernelGroupHomomorphism first tests if hom.kernelGroupHomomorphism is bound. If it is
bound, KernelGroupHomomorphisms returns that value. Otherwise it calls
hom.operations.KernelGroupHomomorphism(hom), remembers the returned value in
hom.kernelGroupHomomorphism, and returns it.

The default function for this is MappingOps.KernelGroupHomomorphism, which simply tries
random elements of the source of hom, until the subgroup generated by those that map
to the identity has the correct size, i.e., Size(hom.source) / Size(Image(hom)).
Note that this implies that the image of hom and its size are computed. Look under Kernel
in the index to see for which group homomorphisms this function is overlaid.

7.108 Mapping Functions for Group Homomorphisms

This section describes how the mapping functions defined in chapter 42 are implemented
for group homomorphisms. Those functions not mentioned here are implemented by the
default functions described in the respective sections.

IsInjective(hom)

The group homomorphism hom is injective if the kernel of hom KernelGroupHomomorphism(
hom) (see 7.107) is trivial.

IsSurjective(hom)

The group homomorphism hom is surjective if the size of the image Size(Image(hom)
) (see 42.8 and below) is equal to the size of the range Size(hom.range).

hom1 = hom2

7.109. NATURALHOMOMORPHISM 327

The two group homomorphisms hom1 and hom2 are equal if the have the same source and
range and if the images of the generators of the source under hom1 and hom2 are equal.

hom1 < hom2

By definition hom1 is smaller than hom2 if either the source of hom1 is smaller than the
source of hom2 , or, if the sources are equal, if the range of hom1 is smaller than the range
of hom2 , or, if sources and ranges are equal, the image of the smallest element x of the
source for that the images are not equal under hom1 is smaller than the image under hom2 .
Therefor GroupHomomorphismOps.< first compares the sources and the ranges. For group
homomorphisms with equal sources and ranges only the images of the smallest irredundant
generating system are compared. A generating system g1, g2, ..., gn is called irredundant if
no gi lies in the subgroup generated by g1, ..., gi−1. The smallest irredundant generating
system is simply the smallest such generating system with respect to the lexicographical
ordering.

Image(hom)
Image(hom, H)
Images(hom, H)

The image of a subgroup under a group homomorphism is computed by computing the
images of a set of generators of the subgroup, and the result is the subgroup generated by
those images.

PreImages(hom, elm)

The preimages of an element under a group homomorphism are computed by computing a
representative with PreImagesRepresentative(hom, elm) and the result is the coset
of Kernel(hom) containing this representative.

PreImage(hom)
PreImage(hom, H)
PreImages(hom, H)

The preimages of a subgroup under a group homomorphism are computed by computing
representatives of the preimages of all the generators of the subgroup, adding the generators
of the kernel of hom, and the result is the subgroup generated by those elements.

Look under IsInjective, IsSurjective, equality, ordering, Image, Images, PreImage,
and PreImages in the index to see for which group homomorphisms these functions are
overlaid.

7.109 NaturalHomomorphism

NaturalHomomorphism(G, F)

NaturalHomomorphism returns the natural homomorphism of the group G into the factor
group F . F must be a factor group, i.e., the result of FactorGroup(H ,N) (see 7.33) or
H /N (see 7.116), and G must be a subgroup of H .

328 CHAPTER 7. GROUPS

Mathematically the factor group H/N consists of the cosets of N , and the natural homomor-
phism φ maps each element h of H to the coset Nh. Note that in GAP the representation
of factor group elements is unspecified, but they are never cosets (see 7.86), because cosets
are domains and not group elements in GAP. Thus the natural homomorphism is the only
connection between a group and one of its factorgroups.

G is the source of the natural homomorphism φ, F is its range. Note that because G may be
a proper subgroup of the group H of which F is a factor group φ need not be surjective, i.e.,
the image of φ may be a proper subgroup of F . The kernel of φ is of course the intersection
of N and G.

gap> s4 := Group((1,2), (1,2,3,4));;
gap> v4 := Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)]);;
gap> v4.name := "v4";;
gap> phi := NaturalHomomorphism(s4, s4/v4);;
gap> (1,2,3) ^ phi;
FactorGroupElement(v4, (2,4,3))
gap> PreImages(phi, last);
(v4*(2,4,3))
gap> (1,2,3) in last;
true
gap> rho :=
> NaturalHomomorphism(Subgroup(s4, [(1,2), (1,2,3)]), s4/v4);;
gap> Kernel(rho);
Subgroup(Group((1,2), (1,2,3,4)), [])
gap> IsIsomorphism(rho);
true

NaturalHomomorphism calls
F.operations.NaturalHomomorphism(G, F) and returns that value.

The default function called this way is GroupOps.NaturalHomomorphism. The homomor-
phism constructed this way has the operations record NaturalHomomorphismOps. It com-
putes the image of an element g of G by calling FactorGroupElement(N , g), the preim-
ages of an factor group element f as Coset(Kernel(phi), f .element.representative
), and the kernel by computing Intersection(G, N). Look under NaturalHomo-
morphism in the index to see for which groups this function is overlaid.

7.110 ConjugationGroupHomomorphism

ConjugationGroupHomomorphism(G, H , x)

ConjugationGroupHomomorphism returns the homomorphism from G into H that takes
each element g in G to the element g ^ x . G and H must have a common parent group P
and x must lie in this parent group. Of course G ^ x must be a subgroup of H .

gap> d12 := Group((1,2,3,4,5,6), (2,6)(3,5));; d12.name := "d12";;
gap> c2 := Subgroup(d12, [(2,6)(3,5)]);
Subgroup(d12, [(2,6)(3,5)])
gap> v4 := Subgroup(d12, [(1,2)(3,6)(4,5), (1,4)(2,5)(3,6)]);
Subgroup(d12, [(1,2)(3,6)(4,5), (1,4)(2,5)(3,6)])
gap> x := ConjugationGroupHomomorphism(c2, v4, (1,3,5)(2,4,6));

7.111. INNERAUTOMORPHISM 329

ConjugationGroupHomomorphism(Subgroup(d12,
[(2,6)(3,5)]), Subgroup(d12, [(1,2)(3,6)(4,5), (1,4)(2,5)(3,6)
]), (1,3,5)(2,4,6))
gap> IsSurjective(x);
false
gap> Image(x);
Subgroup(d12, [(1,5)(2,4)])

ConjugationGroupHomomorphism calls
G.operations.ConjugationGroupHomomorphism(G, H , x) and returns that value.

The default function called is GroupOps.ConjugationGroupHomomorphism. It just creates
a homomorphism record with range G , source H , and the component element with the
value x . It computes the image of an element g of G as g ^ x . If the sizes of the range
and the source are equal the inverse of such a homomorphism is computed as a conjugation
homomorphism from H to G by x^-1. To multiply two such homomorphisms their elements
are multiplied. Look under ConjugationGroupHomomorphism in the index to see for
which groups this default function is overlaid.

7.111 InnerAutomorphism

InnerAutomorphism(G, g)

InnerAutomorphism returns the automorphism on the group G that takes each element h
to h ^ g . g must be an element in the parent group of G (but need not actually be in G)
that normalizes G .

gap> s5 := Group((1,2), (1,2,3,4,5));; s5.name := "s5";;
gap> i := InnerAutomorphism(s5, (1,2));
InnerAutomorphism(s5, (1,2))
gap> (1,2,3,4,5) ^ i;
(1,3,4,5,2)

InnerAutomorphism(G, g) calls ConjugationGroupHomomorphism(G, G, g) (see
7.110).

7.112 GroupHomomorphismByImages

GroupHomomorphismByImages(G, H , gens, imgs)

GroupHomomorphismByImages returns the group homomorphism with source G and range
H that is defined by mapping the list gens of generators of G to the list imgs of images in
H .

gap> g := Group((1,2,3,4), (1,2));;
gap> h := Group((2,3), (1,2));;
gap> m := GroupHomomorphismByImages(g,h,g.generators,h.generators);
GroupHomomorphismByImages(Group((1,2,3,4), (1,2)), Group((2,3),
(1,2)), [(1,2,3,4), (1,2)], [(2,3), (1,2)])
gap> Image(m, (1,3,4));
(1,3,2)
gap> Kernel(m);

330 CHAPTER 7. GROUPS

Subgroup(Group((1,2,3,4), (1,2)), [(1,4)(2,3), (1,2)(3,4)])

Note that the result need not always be a single value mapping, even though the name
seems to imply this. Namely if the elements in imgs do not satisfy all relations that hold
for the generators gens, no element of G has a unique image under the mapping. This is
demonstrated in the following example.

gap> g := Group((1,2,3,4,5,6,7,8,9,10));;
gap> h := Group((1,2,3,4,5,6));;
gap> m := GroupHomomorphismByImages(g,h,g.generators,h.generators);
GroupHomomorphismByImages(Group((1, 2, 3, 4, 5, 6, 7, 8, 9,10
)), Group((1,2,3,4,5,6)), [(1, 2, 3, 4, 5, 6, 7, 8, 9,10)],
[(1,2,3,4,5,6)])
gap> IsMapping(m);
false
gap> Images(m, ());
(Subgroup(Group((1,2,3,4,5,6)), [(1, 3, 5)(2, 4, 6)])*())
gap> g.1^10;
() # the generator of g satisfies this relation
gap> h.1^10;
(1,5,3)(2,6,4) # but its image does not

The set of images of the identity returned by Images is the set of elements h.1^n such that
g.1^n is the identity in g.

The test whether a mapping constructed by GroupHomomorphismByImages is a single valued
mapping, is usually quite expensive. Note that this test is automatically performed the
first time that you apply a function that expects a single valued mapping, e.g., Image or
Images. There are two possibilities to avoid this test. When you know that the mapping
constructed is really a single valued mapping, you can set the flag map.isMapping to true.
Then the functions assume that map is indeed a mapping and do not test it again. On
the other hand if you are not certain whether the mapping is single valued, you can use
ImagesRepresentative instead of Image (see 42.10). ImagesRepresentative returns just
one possible image, without testing whether there might actually be more than one possible
image.

GroupHomomorphismByImages calls
G.operations.GroupHomomorphismByImages(G, H , gens, imgs)
and returns this value.

The default function called this way is GroupOps.GroupHomomorphismByImages. Below we
describe how the mapping functions are implemented for such a mapping. The functions
not mentioned below are implemented by the default functions described in 7.108.

All the function below first compute the list of elements of G with an orbit algorithm, sorts
this list, and stores this list in hom.elements. In parallel they computes and sort a list of
images, and store this list in hom.images.

IsMapping(map)

The mapping constructed by GroupHomomorphismByImages is a single valued mapping if for
each i and for each k the following equation holds

7.113. SET FUNCTIONS FOR GROUPS 331

map.images[Position(map.elements,map.elements[i]*gens[k])]
= map.images[i] * imgs[k].

Image(map, elm)

If the mapping map is a single valued mapping, the image of an element elm is computed
as map.images[Position(map.elements,elm)].

ImagesRepresentative(map, elm)

The representative of the images of an element elm under the mapping map is computed as
map.images[Position(map.elements,elm)].

InverseMapping(map)

The inverse of the mapping map is constructed as GroupHomomorphismByImages(H , G,
imgs, gens).

CompositionMapping(map1, map2)

If map2 is a mapping constructed by GroupHomomorphismByImages the composition is con-
structed by making a copy of map2 and replacing every element in map2.images with its
image under map1 .

Look under GroupHomomorphismByImages in the index to see for which groups this
function is overlaid.

7.113 Set Functions for Groups

As already mentioned in the introduction of the chapter, groups are domains. Thus all set
theoretic functions, for example Intersection and Size can be applied to groups. This and
the following sections give further comments on the definition and implementations of those
functions for groups. All set theoretic functions not mentioned here not treated specially
for groups. The last section describes the format of the records that describe groups (see
7.117).

Elements(G)

The elements of a group G are constructed using a Dimino algorithm. See 7.114.

IsSubset(G, H)

If G and H are groups then IsSubset tests whether the generators of H are elements of G .
Otherwise DomainOps.IsSubset is used.

Intersection(G, H)

The intersection of groups G and H is computed using an orbit algorithm. See 7.115.

332 CHAPTER 7. GROUPS

7.114 Elements for Groups

GroupOps.Elements(G)

GroupOps.Elements returns the sets of elements of G (see 4.6). The function starts with the
trivial subgroup of G , for which the set of elements is known and constructs the successive
closures with the generators of G using GroupOps.Closure (see 7.18).

Note that this function neither checks nor sets the record component G.elements. It
recomputes the set of elements even it is bound to G.elements.

7.115. INTERSECTION FOR GROUPS 333

7.115 Intersection for Groups

GroupOps.Intersection(G, H)

GroupOps.Intersection returns the intersection of G and H either as set of elements or
as a group record (see 4.12).

If one argument, say G , is a set and the other a group, say H , then GroupOps.Intersection
returns the subset of elements of G which lie in H .

If G and H have different parent groups then GroupOps.Intersection uses the function
DomainOps.Intersection in order to compute the intersection.

Otherwise GroupOps.Intersection computes the stabilizer of the trivial coset of the bigger
group in the smaller group using Stabilizer and Coset.

7.116 Operations for Groups

G ^ s

The operator ^ evaluates to the subgroup conjugate to G under a group element s of the
parent group of G . See 7.20.

gap> s4 := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> s4.name := "s4";;
gap> v4 := Subgroup(s4, [(1,2), (1,2)(3,4)]);
Subgroup(s4, [(1,2), (1,2)(3,4)])
gap> v4 ^ (2,3);
Subgroup(s4, [(1,3), (1,3)(2,4)])
gap> v4 ^ (2,5);
Error, <g> must be an element of the parent group of <G>

s in G

The operator in evaluates to true if s is an element of G and false otherwise. s must be
an element of the parent group of G .

gap> (1,2,3,4) in v4;
false
gap> (2,4) in v4^(2,3);
true

G * s

The operator * evaluates to the right coset of G with representative s. s must be an element
of the parent group of G . See 7.85 for details about right cosets.

s * G

The operator * evaluates to the left coset of G with representative s. s must be an element
of the parent group of G . See 7.90 for details about left cosets.

334 CHAPTER 7. GROUPS

gap> v4 * (1,2,3,4);
(Subgroup(s4, [(1,2), (1,2)(3,4)])*(1,2,3))
gap> (1,2,3,4) * v4;
((1,2,3,4)*Subgroup(s4, [(1,2), (1,2)(3,4)]))

G / N

The operator / evaluates to the factor group G/N where N must be a normal subgroup of
G . This is the same as FactorGroup(G,N) (see 7.33).

7.117 Group Records

As for all domains (see 4 and 4.1) groups and their subgroups are represented by records
that contain important information about groups. Most of the following functions return
such records. Of course it is possible to create a group record by hand but generally Group
(see 7.9) and Subgroup (see 7.12) should be used for such tasks.

Once a group record is created you may add record components to it but you must not alter
informations already present, especially not generators and identity.

Group records must always contain the components generators, identity, isDomain and
isGroup. Subgroups contain an additional component parent. The contents of all compo-
nents of a group G are described below.

The following two components are the so-called category components used to identify
the category this domain belongs to.

isDomain
is always true as a group is a domain.

isGroup
is of course true as G is a group.

The following three components determine a group domain. These are the so-called iden-
tification components.

generators
is a list group generators. Duplicate generators are allowed but none of the generators
may be the group identity. The group G is the trivial group if and only if generators
is the empty list. Note that once created this entry must never be changed, as most
of the other entries depend on generators.

identity
is the group identity of G.

parent
if present this contains the group record of the parent group of a subgroup G, other-
wise G itself is a parent group.

The following components are optional and contain knowledge about the group G.

abelianInvariants
a list of integers containing the abelian invariants of an abelian group G.

centralizer
contains the centralizer of G in its parent group.

7.117. GROUP RECORDS 335

centre
contains the centre of G. See 7.17.

commutatorFactorGroup
contains the commutator factor group of G. See 7.35 for details.

conjugacyClasses
contains a list of the conjugacy classes of G. See 7.68 for details.

core
contains the core of G under the action of its parent group. See 7.21 for details.

derivedSubgroup
contains the derived subgroup of G. See 7.22.

elements
is the set of all elements of G. See 4.6.

fittingSubgroup
contains the Fitting subgroup of G. See 7.23.

frattiniSubgroup
contains the Frattini subgroup of G. See 7.24.

index
contains the index of G in its parent group. See 7.51.

lowerCentralSeries
contains the lower central series of G as list of subgroups. See 7.41.

normalizer
contains the normalizer of G in its parent group. See 7.27 for details.

normalClosure
contains the normal closure of G in its parent group. See 7.25 for details.

upperCentralSeries
contains the upper central series of G as list of subgroups. See 7.44.

subnormalSeries
contains a subnormal series from the parent of G down to G. See 7.43 for details.

sylowSubgroups
contains a list of Sylow subgroups of G. See 7.31 for details.

size
is either an integer containing the size of a finite group or the string “infinity” if the
group is infinite. See 4.10.

perfectSubgroups
contains the a list of subgroups which includes at least one representative of each
class of conjugate proper perfect subgroups of G. See 7.74.

lattice
contains the subgroup lattice of G. See 7.74.

conjugacyClassesSubgroups
identical to the list G.lattice.classes, contains the conjugacy classes of subgroups
of G. See 7.73.

336 CHAPTER 7. GROUPS

tableOfMarks
contains the table of narks of G. See 47.4.

The following components are true if the group G has the property, false if not, and are
not present if it is unknown whether the group has the property or not.

isAbelian
is true if the group G is abelian. See 7.52.

isCentral
is true if the group G is central in its parent group. See 7.53.

isCyclic
is true if the group G is cyclic. See 7.55.

isElementaryAbelian
is true if the group G is elementary abelian. See 7.56.

isFinite
is true if the group G is finite. If you know that a group for which you want to
use the generic low level group functions is infinite, you should set this component to
false. This will avoid attempts to compute the set of elements.

isNilpotent
is true if the group G is nilpotent. See 7.57.

isNormal
is true if the group G is normal in its parent group. See 7.58.

isPerfect
is true if the group G is perfect. See 7.59.

isSimple
is true if the group G is simple. See 7.60.

isSolvable
is true if the group G is solvable. See 7.61.

isSubnormal
is true if the group G is subnormal in its parent group. See 7.63.

The component operations contains the operations record (see 4.1 and 4.2).

Chapter 8

Operations of Groups

One of the most important tools in group theory is the operation or action of a group on
a certain set.
We say that a group G operates on a set D if we have a function that takes each d ∈ D
and each g ∈ G to another element dg ∈ D, which we call the image of d under g, such that
didentity = d and (dg)h = dgh for each d ∈ D and g, h ∈ G.
This is equivalent to saying that an operation is a homomorphism of the group G into the
full symmetric group on D. We usually call D the domain of the operation and its elements
points.
An example of the usage of the functions in this package can be found in the introduction
to GAP (see 1.19).
In GAP group elements usually operate through the power operator, which is denoted by
the caret ^. It is possible however to specify other operations (see 8.1).
First this chapter describes the functions that take a single element of the group and compute
cycles of this group element and related information (see 8.2, 8.3, 8.4, and 8.5), and the
function that describes how a group element operates by a permutation that operates the
same way on [1..n] (see 8.6).
Next come the functions that test whether an orbit has minimal or maximal length and
related functions (see 8.7, 8.8, 8.9, 8.10, and 8.11).
Next this chapter describes the functions that take a group and compute orbits of this group
and related information (see 8.14, 8.15, 8.16, and 8.17).
Next are the functions that compute the permutation group P that operates on [1 ..
Length(D)] in the same way that G operates on D , and the corresponding homomorphism
from G to P (see 8.18, 8.19).
Next is the functions that compute block systems, i.e., partitions of D such that G operates
on the sets of the partition (see 8.20), and the function that tests whether D has such a
nontrivial partitioning under the operation of G (see 8.21).
Finally come the functions that relate an orbit of G on D with the subgroup of G that fixes
the first point in the orbit (see 8.22), and the cosets of this subgroup in G (see 8.23 and
8.24).
All functions described in this chapter are in LIBNAME/"operatio.g".

337

338 CHAPTER 8. OPERATIONS OF GROUPS

8.1 Other Operations

The functions in the operation package generally compute with the operation of group
elements defined by the canonical operation that is denoted with the caret (^) in GAP.
However they also allow you to specify other operations. Such operations are specified by
functions, which are accepted as optional argument by all the operations package functions.

This function must accept two arguments. The first argument will be the point and the
second will be the group element. The function must return the image of the point under
the group element.

As an example, the function OnPairs that specifies the operation on pairs could be defined
as follows

OnPairs := function (pair, g)
return [pair[1] ^ g, pair[2] ^ g];

end;

The following operations are predefined.

OnPoints
specifies the canonical default operation. Passing this function is equivalent to speci-
fying no operation. This function exists because there are places where the operation
in not an option.

OnPairs
specifies the componentwise operation of group elements on pairs of points, which are
represented by lists of length 2.

OnTuples
specifies the componentwise operation of group elements on tuples of points, which
are represented by lists. OnPairs is the special case of OnTuples for tuples with two
elements.

OnSets
specifies the operation of group elements on sets of points, which are represented by
sorted lists of points without duplicates (see 28).

OnRight
specifies that group elements operate by multiplication from the right.

OnLeftInverse
specifies that group elements operate by multiplication by their inverses from the left.
This is an operation, unlike OnLeftAntiOperation (see below).

OnRightCosets
specifies that group elements operate by multiplication from the right on sets of
points, which are represented by sorted lists of points without duplicates (see 28).

OnLeftCosets
specifies that group elements operate by multiplication from the left on sets of points,
which are represented by sorted lists of points without duplicates (see 28).

OnLines
specifies that group elements, which must be matrices, operate on lines, which are
represented by vectors with first nonzero coefficient one. That is, OnLines multiplies

8.2. CYCLE 339

the vector by the group element and then divides the vector by the first nonzero
coefficient.

Note that it is your responsibility to make sure that the elements of the domain D on which
you are operating are already in normal form. The reason is that all functions will compare
points using the = operation. For example, if you are operating on sets with OnSets, you
will get an error message it not all elements of the domain are sets.

gap> Cycle((1,2), [2,1], OnSets);
Error, OnSets: <tuple> must be a set

The former function OnLeft which operated by mulitplication from the left has been renamed
OnLeftAntiOperation, to emphasise the point that it does not satisify the axioms of an
operation, and may cause errors if supplied where an operation is expected.

8.2 Cycle

Cycle(g, d)
Cycle(g, d, operation)

Cycle returns the orbit of the point d , which may be an object of arbitrary type, under the
group element g as a list of points.

The points e in the cycle of d under the group element g are those for which a power gi

exists such that dg
i

= e.

The first point in the list returned by Cycle is the point d itself, the ordering of the other
points is such that each point is the image of the previous point.

Cycle accepts a function operation of two arguments d and g as optional third argument,
which specifies how the element g operates (see 8.1).

gap> Cycle((1,5,3,8)(4,6,7), 3);
[3, 8, 1, 5]
gap> Cycle((1,5,3,8)(4,6,7), [3,4], OnPairs);
[[3, 4], [8, 6], [1, 7], [5, 4], [3, 6], [8, 7],
[1, 4], [5, 6], [3, 7], [8, 4], [1, 6], [5, 7]]

Cycle calls
Domain([g]).operations.Cycle(g, d, operation)
and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.Cycle, which starts with d and
applies g to the last point repeatedly until d is reached again. Special categories of group
elements overlay this default function with more efficient functions.

8.3 CycleLength

CycleLength(g, d)
CycleLength(g, d, operation)

CycleLength returns the length of the orbit of the point d , which may be an object of
arbitrary type, under the group elements g . See 8.2 for the definition of cycles.

340 CHAPTER 8. OPERATIONS OF GROUPS

CycleLength accepts a function operation of two arguments d and g as optional third
argument, which specifies how the group element g operates (see 8.1).

gap> CycleLength((1,5,3,8)(4,6,7), 3);
4
gap> CycleLength((1,5,3,8)(4,6,7), [3,4], OnPairs);
12

CycleLength calls
Domain([g]).operations.CycleLength(g, d, operation)
and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.CycleLength, which starts with
d and applies g to the last point repeatedly until d is reached again. Special categories of
group elements overlay this default function with more efficient functions.

8.4 Cycles

Cycles(g, D)
Cycles(g, D, operation)

Cycles returns the set of cycles of the group element g on the domain D , which must be a
list of points of arbitrary type, as a set of lists of points. See 8.2 for the definition of cycles.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of g . In this case D is silently replaced by the smallest superset of D which is
invariant.

The first point in each cycle is the smallest point of D in this cycle. The ordering of the
other points is such that each point is the image of the previous point. If D is invariant
under g , then because Cycles returns a set of cycles, i.e., a sorted list, and because cycles
are compared lexicographically, and because the first point in each cycle is the smallest point
in that cycle, the list returned by Cycles is in fact sorted with respect to the smallest point
in the cycles.

Cycles accepts a function operation of two arguments d and g as optional third argument,
which specifies how the element g operates (see 8.1).

gap> Cycles((1,5,3,8)(4,6,7), [3,5,7]);
[[3, 8, 1, 5], [7, 4, 6]]
gap> Cycles((1,5,3,8)(4,6,7), [[1,3],[4,6]], OnPairs);
[[[1, 3], [5, 8], [3, 1], [8, 5]],
[[4, 6], [6, 7], [7, 4]]]

Cycles calls
Domain([g]).operations.Cycles(g, D, operation)
and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.Cycles, which takes elements
from D , computes their orbit, removes all points in the orbit from D , and repeats this until
D has been emptied. Special categories of group elements overlay this default function with
more efficient functions.

8.5. CYCLELENGTHS 341

8.5 CycleLengths

CycleLengths(g, D)
CycleLengths(g, D, operation)

CycleLengths returns a list of the lengths of the cycles of the group element g on the domain
D , which must be a list of points of arbitrary type. See 8.2 for the definition of cycles.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of g . In this case D is silently replaced by the smallest superset of D which is
invariant.

The ordering of the lengths of cycles in the list returned by CycleLengths corresponds to
the list of cycles returned by Cycles, which is ordered with respect to the smallest point in
each cycle.

CycleLengths accepts a function operation of two arguments d and g as optional third
argument, which specifies how the element g operates (see 8.1).

gap> CycleLengths((1,5,3,8)(4,6,7), [3,5,7]);
[4, 3]
gap> CycleLengths((1,5,3,8)(4,6,7), [[1,3],[4,6]], OnPairs);
[4, 3]

CycleLengths calls
Domain([g]).operations.CycleLengths(g, D, operation)
and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.CycleLengths, which takes el-
ements from D , computes their orbit, removes all points in the orbit from D , and repeats
this until D has been emptied. Special categories of group elements overlay this default
function with more efficient functions.

8.6 Permutation

Permutation(g, D)
Permutation(g, D, operation)

Permutation returns a permutation that operates on the points [1..Length(D)] in the
same way that the group element g operates on the domain D , which may be a list of
arbitrary type.

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
element g .

Permutation accepts a function operation of two arguments d and g as optional third
argument, which specifies how the element g operates (see 8.1).

gap> Permutation((1,5,3,8)(4,6,7), [4,7,6]);
(1,3,2)
gap> D := [[1,4], [1,6], [1,7], [3,4], [3,6], [3,7],
> [4,5], [5,6], [5,7], [4,8], [6,8], [7,8]];;
gap> Permutation((1,5,3,8)(4,6,7), D, OnSets);
(1, 8, 6,10, 2, 9, 4,11, 3, 7, 5,12)

342 CHAPTER 8. OPERATIONS OF GROUPS

Permutation calls
Domain([g]).operations.Permutation(g, D, operation)
and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.Permutation, which simply ap-
plies g to all the points of D , finds the position of the image in D , and finally applies
PermList (see 20.9) to the list of those positions. Actually this is not quite true. Because
finding the position of an image in a sorted list is so much faster than finding it in D ,
GroupElementsOps.Permutation first sorts a copy of D and remembers how it had to re-
arrange the elements of D to achieve this. Special categories of group elements overlay this
default function with more efficient functions.

8.7 IsFixpoint

IsFixpoint(G, d)
IsFixpoint(G, d, operation)

IsFixpoint returns true if the point d is a fixpoint under the operation of the group G .

We say that d is a fixpoint under the operation of G if every element g of G maps d to
itself. This is equivalent to saying that each generator of G maps d to itself.

As a special case it is allowed that the first argument is a single group element, though this
does not make a lot of sense, since in this case IsFixpoint simply has to test d^g = d .

IsFixpoint accepts a function operation of two arguments d and g as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> IsFixpoint(g, 1);
false
gap> IsFixpoint(g, [6,7,8], OnSets);
true

IsFixpoint is so simple that it does all the work by itself, and, unlike the other functions
described in this chapter, does not dispatch to another function.

8.8 IsFixpointFree

IsFixpointFree(G, D)
IsFixpointFree(G, D, operation)

IsFixpointFree returns true if the group G operates without a fixpoint (see 8.7) on the
domain D , which must be a list of points of arbitrary type.

We say that G operates fixpoint free on the domain D if each point of D is moved by at
least one element of G . This is equivalent to saying that each point of D is moved by at
least one generator of G . This definition also applies in the case that D is a proper subset
of a domain, i.e., that D is not invariant under the operation of G .

As a special case it is allowed that the first argument is a single group element.

IsFixpointFree accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

8.9. DEGREEOPERATION 343

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> IsFixpointFree(g, [1..8]);
true
gap> sets := Combinations([1..8], 3);; Length(sets);
56 # a list of all three element subsets of [1..8]
gap> IsFixpointFree(g, sets, OnSets);
false

IsFixpointFree calls
G.operations.IsFixpointFree(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.
The default function called this way is GroupOps.IsFixpointFree, which simply loops over
the elements of D and applies to each all generators of G , and tests whether each is moved
by at least one generator. This function is seldom overlaid, because it is very difficult to
improve it.

8.9 DegreeOperation

DegreeOperation(G, D)
DegreeOperation(G, D, operation)

DegreeOperation returns the degree of the operation of the group G on the domain D ,
which must be a list of points of arbitrary type.
The degree of the operation of G on D is defined as the number of points of D that are
properly moved by at least one element of G . This definition also applies in the case that
D is a proper subset of a domain, i.e., that D is not invariant under the operation of G .
DegreeOperation accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> DegreeOperation(g, [1..10]);
8
gap> sets := Combinations([1..8], 3);; Length(sets);
56 # a list of all three element subsets of [1..8]
gap> DegreeOperation(g, sets, OnSets);
55

DegreeOperation calls
G.operations.DegreeOperation(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.
The default function called this way is GroupOps.DegreeOperation, which simply loops
over the elements of D and applies to each all generators of G , and counts those that are
moved by at least one generator. This function is seldom overlaid, because it is very difficult
to improve it.

8.10 IsTransitive

IsTransitive(G, D)
IsTransitive(G, D, operation)

344 CHAPTER 8. OPERATIONS OF GROUPS

IsTransitive returns true if the group G operates transitively on the domain D , which
must be a list of points of arbitrary type.

We say that a group G acts transitively on a domain D if and only if for every pair of
points d and e there is an element g of G such that dg = e. An alternative characterization
of this property is to say that D as a set is equal to the orbit of every single point.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of G . In this case IsTransitive checks whether for every pair of points d , e of
D there is an element g of G , such that dg = e. This can also be characterized by saying
that D is a subset of the orbit of every single point.

IsTransitive accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> IsTransitive(g, [1..8]);
false
gap> IsTransitive(g, [1,6]);
false # note that the domain need not be invariant
gap> sets := Combinations([1..5], 3);; Length(sets);
10 # a list of all three element subsets of [1..5]
gap> IsTransitive(g, sets, OnSets);
true

IsTransitive calls
G.operations.IsTransitive(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.IsTransitive, which tests whether D is
a subset of the orbit of the first point in D . This function is seldom overlaid, because it is
difficult to improve it.

8.11 Transitivity

Transitivity(G, D)
Transitivity(G, D, operation)

Transitivity returns the degree of transitivity of the group G on the domain D , which
must be a list of points of arbitrary type. If G does not operate transitively on D then
Transitivity returns 0.

The degree of transitivity of the operation of G on D is the largest k such that G
operates k -fold transitively on D . We say that G operates k -fold transitively on D if
it operates transitively on D (see 8.10) and the stabilizer of one point d of D operates
k-1-fold transitively on Difference(D,[d]). Because the stabilizers of the points of D
are conjugate this is equivalent to saying that the stabilizer of each point d of D operates
k-1-fold transitively on Difference(D,[d]).

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
operation of G .

Transitivity accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

8.12. ISREGULAR 345

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> Transitivity(g, [1..8]);
0
gap> Transitivity(g, [1..5]);
3
gap> sets := Combinations([1..5], 3);; Length(sets);
10 # a list of all three element subsets of [1..5]
gap> Transitivity(g, sets, OnSets);
1

Transitivity calls
G.operations.Transitivity(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.Transitivity, which first tests whether
G operates transitively on D . If so, it returns
Transitivity(Stabilizer(G,Difference(D,[D[1]]),operation)+1;
if not, it simply returns 0. Special categories of groups overlay this default function with
more efficient functions.

8.12 IsRegular

IsRegular(G, D) IsRegular(G, D, operation)

IsRegular returns true if the group G operates regularly on the domain D , which must be
a list of points of arbitrary type, and false otherwise.

A group G operates regularly on a domain D if it operates transitively and no element
of G other than the idenity leaves a point of D fixed. An equal characterisation is that
G operates transitively on D and the stabilizer of any point of D is trivial. Yet another
characterisation is that the operation of G on D is equivalent to the operation of G on its
elements by multiplication from the right.

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
operation of G .

IsRegular accepts a function operation of two arguments d and g as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> IsRegular(g, [1..5]);
false
gap> IsRegular(g, Elements(g), OnRight);
true
gap> g := Group((1,2,3), (3,4,5));;
gap> IsRegular(g, Orbit(g, [1,2,3], OnTuples), OnTuples);
true

IsRegular calls
G.operations.IsRegular(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

346 CHAPTER 8. OPERATIONS OF GROUPS

The default function called this way is GroupOps.IsRegular, which tests if G operates
transitively and semiregularly on D (see 8.10 and 8.13).

8.13 IsSemiRegular

IsSemiRegular(G, D)
IsSemiRegular(G, D, operation)

IsSemiRegular returns true if the group G operates semiregularly on the domain D , which
must be a list of points of arbitrary type, and false otherwise.

A group G operates semiregularly on a domain D if no element of G other than the idenity
leaves a point of D fixed. An equal characterisation is that the stabilizer of any point of
D is trivial. Yet another characterisation is that the operation of G on D is equivalent to
multiple copies of the operation of G on its elements by multiplication from the right.

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
operation of G .

IsSemiRegular accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,6)(7,8));;
gap> IsSemiRegular(g, [1..8]);
true
gap> g := Group((1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,6,7,8));;
gap> IsSemiRegular(g, [1..8]);
false
gap> IsSemiRegular(g, Orbit(g, [1,5], OnSets), OnSets);
true

IsSemiRegular calls
G.operations.IsSemiRegular(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.IsSemiRegular, which computes a per-
mutation group P that operates on [1..Length(D)] in the same way that G operates
on D (see 8.18) and then checks if this permutation group operations semiregularly. This
of course only works because this default function is overlaid for permutation groups (see
21.22).

8.14 Orbit

Orbit(G, d)
Orbit(G, d, operation)

Orbit returns the orbit of the point d , which may be an object of arbitrary type, under the
group G as a list of points.

The points e in the orbit of d under the group G are those points for which a group element
g of G exists such that dg = e.

Suppose G has n generators. First we order the words of the free monoid with n abstract
generators according to length and for words with equal length lexicographically. So if G has

8.15. ORBITLENGTH 347

two generators called a and b the ordering is identity, a, b, a2, ab, ba, b2, a3, Next we order
the elements of G that can be written as a product of the generators, i.e., without inverses
of the generators, according to the first occurrence of a word representing the element in the
above ordering. Then the ordering of points in the orbit returned by Orbit is according to
the order of the first representative of each point e, i.e., the smallest g such that dg = e. Note
that because the orbit is finite there is for every point in the orbit at least one representative
that can be written as a product in the generators of G .

Orbit accepts a function operation of two arguments d and g as optional third argument,
which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> Orbit(g, 1);
[1, 2, 3, 4, 5]
gap> Orbit(g, 2);
[2, 3, 1, 4, 5]
gap> Orbit(g, [1,6], OnPairs);
[[1, 6], [2, 7], [3, 6], [2, 8], [1, 7], [4, 6],
[3, 8], [2, 6], [1, 8], [4, 7], [5, 6], [3, 7],
[5, 8], [5, 7], [4, 8]]

Orbit calls
G.operations.Orbit(G, d, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.Orbit, which performs an ordinary orbit
algorithm. Special categories of groups overlay this default function with more efficient
functions.

8.15 OrbitLength

OrbitLength(G, d)
OrbitLength(G, d, operation)

OrbitLength returns the length of the orbit of the point d , which may be an object of
arbitrary type, under the group G . See 8.14 for the definition of orbits.

OrbitLength accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> OrbitLength(g, 1);
5
gap> OrbitLength(g, 10);
1
gap> OrbitLength(g, [1,6], OnPairs);
15

OrbitLength calls
G.operations.OrbitLength(G, d, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

348 CHAPTER 8. OPERATIONS OF GROUPS

The default function called this way is GroupOps.OrbitLength, which performs an ordinary
orbit algorithm. Special categories of groups overlay this default function with more efficient
functions.

8.16 Orbits

Orbits(G, D)
Orbits(G, D, operation)

Orbits returns the orbits of the group G on the domain D , which must be a list of points
of arbitrary type, as a set of lists of points. See 8.14 for the definition of orbits.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of G . In this case D is silently replaced by the smallest superset of D which is
invariant.

The first point in each orbit is the smallest point, the other points of each orbit are ordered
in the standard order defined for orbits (see 8.14). Because Orbits returns a set of orbits,
i.e., a sorted list, and because those orbits are compared lexicographically, and because the
first point in each orbit is the smallest point in that orbit, the list returned by Orbits is in
fact sorted with respect to the smallest points the orbits.

Orbits accepts a function operation of two arguments d and g as optional third argument,
which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> Orbits(g, [1..8]);
[[1, 2, 3, 4, 5], [6, 7, 8]]
gap> Orbits(g, [1,6]);
[[1, 2, 3, 4, 5], [6, 7, 8]] # the domain is not invariant
gap> sets := Combinations([1..8], 3);; Length(sets);
56 # a list of all three element subsets of [1..8]
gap> Orbits(g, sets, OnSets);
[[[1, 2, 3], [1, 2, 4], [2, 3, 4], [1, 2, 5], [1, 3, 4],

[2, 4, 5], [2, 3, 5], [1, 4, 5], [3, 4, 5], [1, 3, 5]
],

[[1, 2, 6], [2, 3, 7], [1, 3, 6], [2, 4, 8], [1, 2, 7],
[1, 4, 6], [3, 4, 8], [2, 5, 7], [2, 3, 6],
[1, 2, 8], [2, 4, 7], [1, 5, 6], [1, 4, 8],
[4, 5, 7], [3, 5, 6], [2, 3, 8], [1, 3, 7],
[2, 4, 6], [3, 4, 6], [2, 5, 8], [1, 5, 7],
[4, 5, 6], [3, 5, 8], [1, 3, 8], [3, 4, 7],
[2, 5, 6], [1, 4, 7], [1, 5, 8], [4, 5, 8], [3, 5, 7]
],

[[1, 6, 7], [2, 6, 7], [1, 6, 8], [3, 6, 7], [2, 6, 8],
[2, 7, 8], [4, 6, 8], [3, 7, 8], [3, 6, 8],
[4, 7, 8], [5, 6, 7], [1, 7, 8], [4, 6, 7],
[5, 7, 8], [5, 6, 8]], [[6, 7, 8]]]

Orbits calls
G.operations.Orbits(G, D, operation)

8.17. ORBITLENGTHS 349

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.Orbits, which takes an element from D ,
computes its orbit, removes all points in the orbit from D , and repeats this until D has
been emptied. Special categories of groups overlay this default function with more efficient
functions.

8.17 OrbitLengths

OrbitLengths(G, D)
OrbitLengths(G, D, operation)

OrbitLengths returns a list of the lengths of the orbits of the group G on the domain D ,
which may be a list of points of arbitrary type. See 8.14 for the definition of orbits.

It is allowed that D is proper subset of a domain, i.e., that D is not invariant under the
operation of G . In this case D is silently replaced by the smallest superset of D which is
invariant.

The ordering of the lengths of orbits in the list returned by OrbitLengths corresponds to
the list of cycles returned by Orbits, which is ordered with respect to the smallest point in
each orbit.

OrbitLengths accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> OrbitLengths(g, [1..8]);
[5, 3]
gap> sets := Combinations([1..8], 3);; Length(sets);
56 # a list of all three element subsets of [1..8]
gap> OrbitLengths(g, sets, OnSets);
[10, 30, 15, 1]

OrbitLengths calls
G.operations.OrbitLenghts(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.OrbitLengths, which takes an element
from D , computes its orbit, removes all points in the orbit from D , and repeats this until
D has been emptied. Special categories of groups overlay this default function with more
efficient functions.

8.18 Operation

Operation(G, D)
Operation(G, D, operation)

Operation returns a permutation group with the same number of generators as G , such
that each generator of the permutation group operates on the set [1..Length(D)] in the
same way that the corresponding generator of the group G operates on the domain D , which
may be a list of arbitrary type.

350 CHAPTER 8. OPERATIONS OF GROUPS

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
element g .

Operation accepts a function operation of two arguments d and g as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

The function OperationHomomorphism (see 8.19) can be used to compute the homomor-
phism that maps G onto the new permutation group. Of course if you are only interested in
mapping single elements of G into the new permutation group you may also use Permutation
(see 8.6).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> Operation(g, [1..5]);
Group((1,2,3), (3,4,5))
gap> Operation(g, Orbit(g, [1,6], OnPairs), OnPairs);
Group((1, 2, 3, 5, 8,12)(4, 7, 9)(6,10)(11,14), (2, 4)(3, 6,11)
(5, 9)(7,10,13,12,15,14))

Operation calls
G.operations.Operation(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.Operation, which simply applies each
generator of G to all the points of D , finds the position of the image in D , and finally
applies PermList (see 20.9) to the list of those positions. Actually this is not quite true.
Because finding the position on an image in a sorted list is so much faster than finding it
in D , GroupElementsOps.Operation first sorts a copy of D and remembers how it had to
rearrange the elements of D to achieve this. Special categories of groups overlay this default
function with more efficient functions.

8.19 OperationHomomorphism

OperationHomomorphism(G, P)

OperationHomomorphism returns the group homomorphism (see 7.105) from the group G
to the permutation group P , which must be the result of a prior call to Operation (see
8.18) with G or a group of which G is a subgroup (see 7.62) as first argument.

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> h := Operation(g, [1..5]);
Group((1,2,3), (3,4,5))
gap> p := OperationHomomorphism(g, h);
OperationHomomorphism(Group((1,2,3)(6,7), (3,4,5)(7,8)), Group(
(1,2,3), (3,4,5)))
gap> (1,4,2,5,3)(6,7,8) ^ p;
(1,4,2,5,3)
gap> h := Operation(g, Orbit(g, [1,6], OnPairs), OnPairs);
Group((1, 2, 3, 5, 8,12)(4, 7, 9)(6,10)(11,14), (2, 4)(3, 6,11)
(5, 9)(7,10,13,12,15,14))
gap> p := OperationHomomorphism(g, h);;
gap> s := SylowSubgroup(g, 2);

8.20. BLOCKS 351

Subgroup(Group((1,2,3)(6,7), (3,4,5)(7,8)),
[(7,8), (7,8), (2,5)(3,4), (2,3)(4,5)])
gap> Images(p, s);
Subgroup(Group((1, 2, 3, 5, 8,12)(4, 7, 9)(6,10)(11,14), (2, 4)
(3, 6,11)(5, 9)(7,10,13,12,15,14)),
[(2, 4)(5, 9)(7,12)(10,15)(13,14),
(2, 4)(5, 9)(7,12)(10,15)(13,14),
(2,14)(3, 6)(4,13)(7,15)(8,11)(10,12),
(2,12)(3, 8)(4, 7)(6,11)(10,14)(13,15)])

gap> OperationHomomorphism(g, Group((1,2,3), (3,4,5)));
Error, Record: element ’operation’ must have an assigned value

OperationHomomorphism calls
P.operations.OperationHomomorphism(G, P)
and returns the value.

The default function called this way is GroupOps.OperationHomomorphism, which uses the
fields P.operationGroup, P.operationDomain, and P.operationOperation (the argu-
ments to the Operation call that created P) to construct a generic homomorphism h. This
homomorphism uses
Permutation(g,h.range.operationDomain,h.range.operationOperation)
to compute the image of an element g of G under h. It uses Representative to compute
the preimages of an element p of P under h. And it computes the kernel by intersecting
the cores (see 7.21) of the stabilizers (see 8.22) of representatives of the orbits of G . Look
under OperationHomomorphism in the index to see for which groups and operations
this function is overlaid.

8.20 Blocks

Blocks(G, D, seed)
Blocks(G, D, seed, operation)

In this form Blocks returns a block system of the domain D , which may be a list of points
of arbitrary type, under the group G , such that the points in the list seed all lie in the same
block. If no such nontrivial block system exists, Blocks returns [D]. G must operate
transitively on D , otherwise an error is signalled.

Blocks(G, D)
Blocks(G, D, operation)

In this form Blocks returns a minimal block system of the domain D , which may be a list
of points of arbitrary type, under the group G . If no nontrivial block system exists, Blocks
returns [D]. G must operate transitively on D , otherwise an error is signalled.

A block system B is a list of blocks with the following properties. Each block b of B is
a subset of D . The blocks are pairwise disjoint. The union of blocks is D . The image of
each block under each element g of G is as a set equal to some block of the block system.
Note that this implies that all blocks contain the same number of elements as G operates
transitive on D . Put differently a block system B of D is a partition of D such that G
operates with OnSets (see 8.1) on B . The block system that consists of only singleton sets
and the block system consisting only of D are called trivial. A block system B is called

352 CHAPTER 8. OPERATIONS OF GROUPS

minimal if there is no nontrivial block system whose blocks are all subsets of the blocks of
B and whose number of blocks is larger than the number of blocks of B .

Blocks accepts a function operation of two arguments d and g as optional third, resp.
fourth, argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> Blocks(g, [1..5]);
[[1 .. 5]]
gap> Blocks(g, Orbit(g, [1,2], OnPairs), OnPairs);
[[[1, 2], [3, 2], [4, 2], [5, 2]],
[[1, 3], [2, 3], [4, 3], [5, 3]],
[[1, 4], [2, 4], [3, 4], [5, 4]],
[[1, 5], [2, 5], [3, 5], [4, 5]],
[[2, 1], [3, 1], [4, 1], [5, 1]]]

Blocks calls
G.operations.Blocks(G, D, seed, operation)
and returns the value. If no seed was given as argument to Blocks it passes the empty list.
Note that the fourth argument is not optional for functions called this way.

The default function called this way is GroupOps.Blocks, which computes a permutation
group P that operates on [1..Length(D)] in the same way that G operates on D (see
8.18) and leaves it to this permutation group to find the blocks. This of course works only
because this default function is overlaid for permutation groups (see 21.22).

8.21 IsPrimitive

IsPrimitive(G, D)
IsPrimitive(G, D, operation)

IsPrimitive returns true if the group G operates primitively on the domain D , which may
be a list of points of arbitrary type, and false otherwise.

A group G operates primitively on a domain D if and only if D operates transitively (see
8.10) and has only the trivial block systems (see 8.20).

IsPrimitive accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> IsPrimitive(g, [1..5]);
true
gap> IsPrimitive(g, Orbit(g, [1,2], OnPairs), OnPairs);
false

IsPrimitive calls
G.operations.IsPrimitive(G, D, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.IsPrimitive, which simply calls Blocks(
G, D, operation) and tests whether the returned block system is [D]. This function
is seldom overlaid, because all the important work is done in Blocks.

8.22. STABILIZER 353

8.22 Stabilizer

Stabilizer(G, d)
Stabilizer(G, d, operation)

Stabilizer returns the stabilizer of the point d under the operation of the group G .

The stabilizer S of d in G is the subgroup of those elements g of G that fix d, i.e., for
which dg = d. The right cosets of S correspond in a canonical way to the points p in the
orbit O of d under G; namely all elements from a right coset Sg map d to the same point
dg ∈ O, and elements from different right cosets Sg and Sh map d to different points dg

and dh. Thus the index of the stabilizer S in G is equal to the length of the orbit O.
RepresentativesOperation (see 8.24) computes a system of representatives of the right
cosets of S in G.

Stabilizer accepts a function operation of two arguments d and g as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> g.name := "G";;
gap> Stabilizer(g, 1);
Subgroup(G, [(3,4,5)(7,8), (2,5,3)(6,7)])
gap> Stabilizer(g, [1,2,3], OnSets);
Subgroup(G, [(7,8), (6,8), (2,3)(4,5)(6,7,8), (1,2)(4,5)(6,7,8)])

Stabilizer calls
G.operations.Stabilizer(G, d, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.Stabilizer, which computes the orbit of d
under G, remembers a representative re for each point e in the orbit, and uses Schreier’s the-
orem, which says that the stabilizer is generated by the elements regr−1

eg . Special categories
of groups overlay this default function with more efficient functions.

8.23 RepresentativeOperation

RepresentativeOperation(G, d, e)
RepresentativeOperation(G, d, e, operation)

RepresentativeOperation returns a representative of the point e in the orbit of the point
d under the group G . If d = e then RepresentativeOperation returns G.identity, other-
wise it is not specified which group element RepresentativeOperation will return if there
are several that map d to e. If e is not in the orbit of d under G , RepresentativeOperation
returns false.

An element g of G is called a representative for the point e in the orbit of d under G if g
maps d to e, i.e., dg = e. Note that the set of such representatives that map d to e forms a
right coset of the stabilizer of d in G (see 8.22).

RepresentativeOperation accepts a function operation of two arguments d and g as op-
tional third argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;

354 CHAPTER 8. OPERATIONS OF GROUPS

gap> RepresentativeOperation(g, 1, 5);
(1,5,4,3,2)(6,8,7)
gap> RepresentativeOperation(g, 1, 6);
false
gap> RepresentativeOperation(g, [1,2,3], [3,4,5], OnSets);
(1,3,5,2,4)
gap> RepresentativeOperation(g, [1,2,3,4], [3,4,5,2], OnTuples);
false

RepresentativeOperation calls
G.operations.RepresentativeOperation(G, d, e, operation)
and returns the value. Note that the fourth argument is not optional for functions called
this way.

The default function called this way is GroupOper.RepresentativeOperation, which starts
a normal orbit calculation to compute the orbit of d under G , and remembers for each
point how it was obtained, i.e., which generator of G took which orbit point to this new
point. When the point e appears this information can be traced back to write down the
representative of e as a word in the generators. Special categories of groups overlay this
default function with more efficient functions.

8.24 RepresentativesOperation

RepresentativesOperation(G, d)
RepresentativesOperation(G, d, operation)

RepresentativesOperation returns a list of representatives of the points in the orbit of
the point d under the group G .

The ordering of the representatives corresponds to the ordering of the points in the orbit
as returned by Orbit (see 8.14). Therefore List(RepresentativesOperation(G,d),
r->d^r) = Orbit(G,d).

An element g of G is called a representative for the point e in the orbit of d under G if g
maps d to e, i.e., dg = e. Note that the set of such representatives that map d to e forms a
right coset of the stabilizer of d in G (see 8.22). The set of all representatives of the orbit
of d under G thus forms a system of representatives of the right cosets of the stabilizer of d
in G.

RepresentativesOperation accepts a function operation of two arguments d and g as
optional third argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group((1,2,3)(6,7), (3,4,5)(7,8));;
gap> RepresentativesOperation(g, 1);
[(), (1,2,3)(6,7), (1,3,2), (1,4,5,3,2)(7,8), (1,5,4,3,2)]
gap> Orbit(g, [1,2], OnSets);
[[1, 2], [2, 3], [1, 3], [2, 4], [1, 4], [3, 4],
[2, 5], [1, 5], [4, 5], [3, 5]]

gap> RepresentativesOperation(g, [1,2], OnSets);
[(), (1,2,3)(6,7), (1,3,2), (1,2,4,5,3)(6,8,7), (1,4,5,3,2)(7,8),
(1,3,2,4,5)(6,8), (1,2,5,4,3)(6,7), (1,5,4,3,2), (1,4,3,2,5)(6,7,8),
(1,3,2,5,4)]

8.25. ISEQUIVALENTOPERATION 355

RepresentativesOperation calls
G.operations.RepresentativesOperation(G, d, operation)
and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.RepresentativesOperation, which com-
putes the orbit of d with the normal algorithm, but remembers for each point e in the orbit
a representative re. When a generator g of G takes an old point e to a point f not yet in the
orbit, the representative rf for f is computed as reg. Special categories of groups overlay
this default function with more efficient functions.

8.25 IsEquivalentOperation

IsEquivalentOperation(G, D, H , E)
IsEquivalentOperation(G, D, H , E, operationH)
IsEquivalentOperation(G, D, operationG, H , E)
IsEquivalentOperation(G, D, operationG, H , E, operationH)

IsEquivalentOperation returns true if G operates on D in like H operates on E , and
false otherwise.

The operations of G on D and H on E are equivalent if they have the same number of
generators and there is a permutation F of the elements of E such that for every generator
g of G and the corresponding generator h of H we have Position(D,Dg

i) = Position(F, Fhi).
Note that this assumes that the mapping defined by mapping G.generators to H.generators
is a homomorphism (actually an isomorphism of factor groups of G and H represented by
the respective operation).

IsEquivalentOperation accepts functions operationG and operationH of two arguments d
and g as optional third and sixth arguments, which specify how the elements of G and H
operate (see 8.1).

gap> g := Group((1,2)(4,5), (1,2,3)(4,5,6));;
gap> h := Group((2,3)(4,5), (1,2,3)(4,5,6));;
gap> IsEquivalentOperation(g, [1..6], h, [1..6]);
true
gap> h := Group((1,2), (1,2,3));;
gap> IsEquivalentOperation(g,[[1,4],[2,5],[3,6]],OnPairs,h,[1..3]);
true
gap> h := Group((1,2), (1,2,3)(4,5,6));;
gap> IsEquivalentOperation(g, [1..6], h, [1..6]);
false
gap> h := Group((1,2,3)(4,5,6), (1,2)(4,5));;
gap> IsEquivalentOperation(g, [1..6], h, [1..6]);
false # the generators must correspond

IsEquivalentOperation calls
G.operations.IsEquivalentOperation(G,D,oprG,H ,E,oprH) and returns the value.
Note that the third and sixth argument are not optional for functions called this way.

The default function called this way is GroupOps.IsEquivalentOperation, which tries to
rearrange E so that the above condition is satisfied. This is done one orbit of G at a time,

356 CHAPTER 8. OPERATIONS OF GROUPS

and for each such orbit all the orbits of H of the same length are tried to see if there is
one which can be rearranged as necessary. Special categories of groups overlay this function
with more efficient ones.

Chapter 9

Vector Spaces

The material described in this chapter is subject to change.

Vector spaces form another important domain in GAP. They may be given in any representa-
tion whenever the underlying set of elements forms a vector space in terms of linear algebra.
Thus, for example, one may construct a vector space by defining generating matrices over
a field or by using the base of a field extension as generators. More complex constructions
may fake elements of a vector space by specifying records with appropriate operations. A
special type of vector space, that is implemented in the GAP library, handles the case where
the elements are lists over a field. This type is the so called RowSpace (see 33 for details).

General vector spaces are created using the function VectorSpace (see 9.1) and they are
represented as records that contain all necessary information to deal with the vector space.
The components listed in 9.3 are common for all vector spaces, but special types of vector
spaces, such as the row spaces, may use additional entries to store specific data.

The following sections contain descriptions of functions and operations defined for vector
spaces.

The next sections describe functions to compute a base (see 9.6) and the dimension (see
9.8) of a vector space over its field.

The next sections describe how to calculate linear combinations of the elements of a base
(see 9.9) and how to find the coefficients of an element of a vector space when expressed as
a linear combination in the current base (see 9.10).

The functions described in this chapter are implemented in the file LIBNAME/"vecspace.g".

9.1 VectorSpace

VectorSpace(generators, field)

Let generators be a list of objects generating a vector space over the field field . Then
VectorSpace returns this vector space represented as a GAP record.

gap> f := GF(3^2);
GF(3^2)
gap> m := [[f.one, f.one], [f.zero, f.zero]];

357

358 CHAPTER 9. VECTOR SPACES

[[Z(3)^0, Z(3)^0], [0*Z(3), 0*Z(3)]]
gap> n := [[f.one, f.zero], [f.zero, f.one]];
[[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]]
gap> VectorSpace([m, n], f);
VectorSpace([[[Z(3)^0, Z(3)^0], [0*Z(3), 0*Z(3)]],
[[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]]], GF(3^2))

VectorSpace(generators, field, zero)

VectorSpace returns the vector space generated by generators over the field field having zero
as the uniquely determined neutral element. This call of VectorSpace always is requested
if generators is the empty list.

gap> VectorSpace([], f, [[f.zero, f.zero], [f.zero, f.zero]]);
VectorSpace([], GF(3^2), [[0*Z(3), 0*Z(3)], [0*Z(3), 0*Z(3)]
])

9.2 IsVectorSpace

IsVectorSpace(obj)

IsVectorSpace returns true if obj , which can be an object of arbitrary type, is a vector
space and false otherwise.

9.3 Vector Space Records

A vector space is represented as a GAP record having several entries to hold some necessary
information about the vector space.

Basically a vector space record is constructed using the function VectorSpace although one
may create such a record by hand. Furthermore vector space records may be returned by
functions described here or somewhere else in this manual.

Once a vector space record is created you are free to add components, but you should never
alter existing entries, especially generators, field and zero.

The following list mentions all components that are requested for a vector space V .

generators
a list of elements generating the vector space V .

field
the field over which the vector space V is written.

zero
the zero element of the vector space.

isDomain
always true, because vector spaces are domains.

isVectorSpace
always true, for obvious reasons.

There are as well some optional components for a vector space record.

9.4. SET FUNCTIONS FOR VECTOR SPACES 359

base
a base for V , given as a list of elements of V .

dimension
the dimension of V which is the length of a base of V .

9.4 Set Functions for Vector Spaces

As mentioned before, vector spaces are domains. So all functions that exist for domains may
also be applied to vector spaces. This and the following chapters give further information
on the implementation of these functions for vector spaces, as far as they differ in their
implementation from the general functions.

Elements(V)

The elements of a vector space V are computed by producing all linear combinations of the
generators of V .

Size(V)

The size of a vector space V is determined by calculating the dimension of V and looking
at the field over which it is written.

IsFinite(V)

A vector space in GAP is finite if it contains only its zero element or if the field over which
it is written is finite. This characterisation is true here, as in GAP all vector spaces have a
finite dimension.

Intersection(V , W)

The intersection of vector spaces is computed by finding a base for the intersection of the
sets of their elements. One may consider the algorithm for finding a base of a vector space
V as another way to write Intersection(V , V).

9.5 IsSubspace

IsSubspace(V , W)

IsSubspace tests whether the vector space W is a subspace of V . It returns true if W lies
in V and false if it does not.

The answer to the question is obtained by testing whether all the generators of W lie in
V , so that, for the general case of vector space handling, a list of all the elements of V is
constructed.

9.6 Base

Base(V)

Base computes a base of the given vector space V . The result is returned as a list of elements
of the vector space V .

360 CHAPTER 9. VECTOR SPACES

The base of a vector space is defined to be a minimal generating set. It can be shown that
for a given vector space V each base has the same number of elements, which is called the
dimension of V (see 9.8).

Unfortunately, no better algorithm is known to compute a base in general than to browse
through the list of all elements of the vector space. So be careful when using this command
on plain vector spaces.

gap> f := GF(3);
GF(3)
gap> m1 := [[f.one, f.one, f.zero, f.zero]];
[[Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3)]]
gap> m2 := [[f.one, f.one, f.one, f.zero]];
[[Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3)]]
gap> V := VectorSpace([m1, m2, m1+m2], GF(3));
VectorSpace([[[Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3)]],

[[Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3)]],
[[Z(3), Z(3), Z(3)^0, 0*Z(3)]]], GF(3))

gap> Base(V);
[[[Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3)]],

[[Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3)]]]
gap> Dimension(V);
2

9.7 AddBase

AddBase(V , base)

AddBase attaches a user-supplied base for the vector space V to the record that represents
V .

Most of the functions for vector spaces make use of a base (see 9.9, 9.10). These functions
get access to a base using the function Base, which normally computes a base for the vector
space using an appropriate algorithm. Once a base is computed it will always be reused, no
matter whether there is a more interesting base available or not.

AddBase installs a given base for V by overwriting any other base of the vector space that
has been installed before. So after AddBase has successfully been used, base will be used
whenever Base is called with V as argument.

Calling AddBase with a base which is not a base for V might produce unpredictable results
in following computations.

gap> f := GF(3);
GF(3)
gap> m1 := [[f.one, f.one, f.zero, f.zero]];
[[Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3)]]
gap> m2 := [[f.one, f.one, f.one, f.zero]];
[[Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3)]]
gap> V := VectorSpace([m1, m2, m1+m2], GF(3));
VectorSpace([[[Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3)]],

[[Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3)]],

9.8. DIMENSION 361

[[Z(3), Z(3), Z(3)^0, 0*Z(3)]]], GF(3))
gap> Base(V);
[[[Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3)]],
[[Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3)]]]

gap> AddBase(V, [m1, m1+m2]);
gap> Base(V);
[[[Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3)]],
[[Z(3), Z(3), Z(3)^0, 0*Z(3)]]]

9.8 Dimension

Dimension(V)

Dimension computes the dimension of the given vector space V over its field.
The dimension of a vector space V is defined to be the length of a minimal generating set
of V , which is called a base of V (see 9.6).
The implementation of Dimension strictly follows its above definition, so that this function
will always determine a base of V .

gap> f := GF(3^4);
GF(3^4)
gap> f.base;
[Z(3)^0, Z(3^4), Z(3^4)^2, Z(3^4)^3]
gap> V := VectorSpace(f.base, GF(3));
VectorSpace([Z(3)^0, Z(3^4), Z(3^4)^2, Z(3^4)^3], GF(3))
gap> Dimension(V);
4

9.9 LinearCombination

LinearCombination(V , cf)

LinearCombination computes the linear combination of the base elements of the vector
space V with coefficients cf .
cf has to be a list of elements of V .field, the field over which the vector space is written.
Its length must be equal to the dimension of V to make sure that one coefficient is specified
for each element of the base.
LinearCombination will use that base of V which is returned when applying the function
Base to V (see 9.6). To perform linear combinations of different bases use AddBase to
specify which base should be used (see 9.7).

gap> f := GF(3^4);
GF(3^4)
gap> f.base;
[Z(3)^0, Z(3^4), Z(3^4)^2, Z(3^4)^3]
gap> V := VectorSpace(f.base, GF(3));
VectorSpace([Z(3)^0, Z(3^4), Z(3^4)^2, Z(3^4)^3], GF(3))
gap> LinearCombination(V, [Z(3), Z(3)^0, Z(3), 0*Z(3)]);
Z(3^4)^16
gap> Coefficients(V, f.root ^ 16);
[Z(3), Z(3)^0, Z(3), 0*Z(3)]

362 CHAPTER 9. VECTOR SPACES

9.10 Coefficients

Coefficients(V , v)

Coefficients computes the coefficients that have to be used to write v as a linear combi-
nation in the base of V .

To make sure that this function produces the correct result, v has to be an element of V .
If v does not lie in V the result is unpredictable.

The result of Coefficients is returned as a list of elements of the field over which the
vector space V is written. Of course, the length of this list equals the dimension of V .

gap> f := GF(3^4);
GF(3^4)
gap> f.base;
[Z(3)^0, Z(3^4), Z(3^4)^2, Z(3^4)^3]
gap> V := VectorSpace(f.base, GF(3));
VectorSpace([Z(3)^0, Z(3^4), Z(3^4)^2, Z(3^4)^3], GF(3))
gap> Dimension(V);
4
gap> Coefficients(V, f.root ^ 16);
[Z(3), Z(3)^0, Z(3), 0*Z(3)]

Chapter 10

Integers

One of the most fundamental datatypes in every programming language is the integer type.
GAP is no exception.

GAP integers are entered as a sequence of digits optionally preceded by a + sign for positive
integers or a - sign for negative integers. The size of integers in GAP is only limited by the
amount of available memory, so you can compute with integers having thousands of digits.

gap> -1234;
-1234
gap> 123456789012345678901234567890123456789012345678901234567890;
123456789012345678901234567890123456789012345678901234567890

The first sections in this chapter describe the operations applicable to integers (see 10.1,
10.2, 10.3 and 10.4).

The next sections describe the functions that test whether an object is an integer (see 10.5)
and convert objects of various types to integers (see 10.6).

The next sections describe functions related to the ordering of integers (see 10.7, 10.8).

The next section describes the function that computes a Chinese remainder (see 10.9).

The next sections describe the functions related to the ordering of integers, logarithms, and
roots (10.10, 10.11, 10.12).

The GAP object Integers is the ring domain of all integers. So all set theoretic functions
are also applicable to this domain (see chapter 4 and 10.13). The only serious use of this
however seems to be the generation of random integers.

Since the integers form a Euclidean ring all the ring functions are applicable to integers (see
chapter 5, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19, 10.20, 10.21, 10.22, 10.23, and 10.24).

Since the integers are naturally embedded in the field of rationals all the field functions are
applicable to integers (see chapter 6 and 12.7).

Many more functions that are mainly related to the prime residue group of integers modulo
an integer are described in chapter 11.

The external functions are in the file LIBNAME/"integer.g".

363

364 CHAPTER 10. INTEGERS

10.1 Comparisons of Integers

n1 = n2
n1 <> n2

The equality operator = evaluates to true if the integer n1 is equal to the integer n2 and
false otherwise. The inequality operator <> evaluates to true if n1 is not equal to n2 and
false otherwise.

Integers can also be compared to objects of other types; of course, they are never equal.

gap> 1 = 1;
true
gap> 1 <> 0;
true
gap> 1 = (1,2); # (1,2) is a permutation
false

n1 < n2
n1 <= n2
n1 > n2
n1 >= n2

The operators <, <=, >, and => evaluate to true if the integer n1 is less than, less than or
equal to, greater than, or greater than or equal to the integer n2 , respectively.

Integers can also be compared to objects of other types, they are considered smaller than
any other object, except rationals, where the ordering reflects the ordering of the rationals
(see 12.4).

gap> 1 < 2;
true
gap> 1 < -1;
false
gap> 1 < 3/2;
true
gap> 1 < false;
true

10.2 Operations for Integers

n1 + n2

The operator + evaluates to the sum of the two integers n1 and n2 .

n1 - n2

The operator - evaluates to the difference of the two integers n1 and n2 .

n1 * n2

The operator * evaluates to the product of the two integers n1 and n2 .

n1 / n2

The operator / evaluates to the quotient of the two integers n1 and n2 . If the divisor does
not divide the dividend the quotient is a rational (see 12). If the divisor is 0 an error is
signalled. The integer part of the quotient can be computed with QuoInt (see 10.3).

10.3. QUOINT 365

n1 mod n2

The operator mod evaluates to the smallest positive representative of the residue class
of the left operand modulo the right, i.e., i mod k is the unique m in the range [0 ..
AbsInt(k)-1] such that k divides i - m. If the right operand is 0 an error is signalled.
The remainder of the division can be computed with RemInt (see 10.4).

n1 ^ n2

The operator ^ evaluates to the n2 -th power of the integer n1 . If n2 is a positive integer
then n1^n2 is n1*n1*..*n1 (n2 factors). If n2 is a negative integer n1^n2 is defined as
1/n1−n2 . If 0 is raised to a negative power an error is signalled. Any integer, even 0, raised
to the zeroth power yields 1.

Since integers embed naturally into the field of rationals all the rational operations are
available for integers too (see 12.5).

For the precedence of the operators see 2.10.

gap> 2 * 3 + 1;
7

10.3 QuoInt

QuoInt(n1, n2)

QuoInt returns the integer part of the quotient of its integer operands.

If n1 and n2 are positive QuoInt(n1, n2) is the largest positive integer q such that
q*n2 <= n1 . If n1 or n2 or both are negative the absolute value of the integer part of
the quotient is the quotient of the absolute values of n1 and n2 , and the sign of it is the
product of the signs of n1 and n2 .

RemInt (see 10.4) can be used to compute the remainder.

gap> QuoInt(5,2); QuoInt(-5,2); QuoInt(5,-2); QuoInt(-5,-2);
2
-2
-2
2

10.4 RemInt

RemInt(n1, n2)

RemInt returns the remainder of its two integer operands.

If n2 is not equal to zero RemInt(n1, n2) = n1 - n2*QuoInt(n1, n2). Note that
the rules given for QuoInt (see 10.3) imply that RemInt(n1, n2) has the same sign as
n1 and its absolute value is strictly less than the absolute value of n2 . Dividing by 0 signals
an error.

gap> RemInt(5,2); RemInt(-5,2); RemInt(5,-2); RemInt(-5,-2);
1
-1
1
-1

366 CHAPTER 10. INTEGERS

10.5 IsInt

IsInt(obj)

IsInt returns true if obj , which can be an arbitrary object, is an integer and false other-
wise. IsInt will signal an error if obj is an unbound variable.

gap> IsInt(1);
true
gap> IsInt(IsInt);
false # IsInt is a function, not an integer

10.6 Int

Int(obj)

Int converts an object obj to an integer. If obj is an integer Int will simply return obj .

If obj is a rational number (see 12) Int returns the unique integer that has the same sign
as obj and the largest absolute value not larger than the absolute value of obj .

If obj is an element of the prime field of a finite field F , Int returns the least positive integer
n such that n*F.one = obj (see 18.8).

If obj is not of one of the above types an error is signalled.

gap> Int(17);
17
gap> Int(17 / 3);
5
gap> Int(Z(5^3)^62);
4 # Z(53)62 = (Z(53)124/4)2 = Z(5)2 = PrimitiveRoot(5)2 = 22

10.7 AbsInt

AbsInt(n)

AbsInt returns the absolute value of the integer n, i.e., n if n is positive, -n if n is negative
and 0 if n is 0 (see 10.8).

gap> AbsInt(33);
33
gap> AbsInt(-214378);
214378
gap> AbsInt(0);
0

10.8 SignInt

SignInt(obj)

SignInt returns the sign of the integer obj , i.e., 1 if obj is positive, -1 if obj is negative and
0 if obj is 0 (see 10.7).

gap> SignInt(33);

10.9. CHINESEREM 367

1
gap> SignInt(-214378);
-1
gap> SignInt(0);
0

10.9 ChineseRem

ChineseRem(moduli, residues)

ChineseRem returns the combination of the residues modulo the moduli , i.e., the unique
integer c from [0..Lcm(moduli)-1] such that c = residues[i] modulo moduli[i] for all
i , if it exists. If no such combination exists ChineseRem signals an error.

Such a combination does exist if and only if
residues[i]=residues[k] mod Gcd(moduli[i],moduli[k]) for every pair i , k . Note that
this implies that such a combination exists if the moduli are pairwise relatively prime. This
is called the Chinese remainder theorem.

gap> ChineseRem([2, 3, 5, 7], [1, 2, 3, 4]);
53
gap> ChineseRem([6, 10, 14], [1, 3, 5]);
103
gap> ChineseRem([6, 10, 14], [1, 2, 3]);
Error, the residues must be equal modulo 2

10.10 LogInt

LogInt(n, base)

LogInt returns the integer part of the logarithm of the positive integer n with respect to the
positive integer base, i.e., the largest positive integer exp such that baseexp <= n. LogInt
will signal an error if either n or base is not positive.

gap> LogInt(1030, 2);
10 # 210 = 1024
gap> LogInt(1, 10);
0

10.11 RootInt

RootInt(n)
RootInt(n, k)

RootInt returns the integer part of the kth root of the integer n. If the optional integer
argument k is not given it defaults to 2, i.e., RootInt returns the integer part of the square
root in this case.

If n is positive RootInt returns the largest positive integer r such that rk <= n. If n is
negative and k is odd RootInt returns -RootInt(-n, k). If n is negative and k is even
RootInt will cause an error. RootInt will also cause an error if k is 0 or negative.

gap> RootInt(361);

368 CHAPTER 10. INTEGERS

19
gap> RootInt(2 * 10^12);
1414213
gap> RootInt(17000, 5);
7 # 75 = 16807

10.12 SmallestRootInt

SmallestRootInt(n)

SmallestRootInt returns the smallest root of the integer n.
The smallest root of an integer n is the integer r of smallest absolute value for which a
positive integer k exists such that n = rk.

gap> SmallestRootInt(2^30);
2
gap> SmallestRootInt(-(2^30));
-4 # note that (−2)30 = +(230)
gap> SmallestRootInt(279936);
6
gap> LogInt(279936, 6);
7
gap> SmallestRootInt(1001);
1001

SmallestRootInt can be used to identify and decompose powers of primes as is demon-
strated in the following example (see 10.17)

p := SmallestRootInt(q); n := LogInt(q, p);
if not IsPrimeInt(p) then Error("GF: <q> must be a primepower"); fi;

10.13 Set Functions for Integers

As already mentioned in the first section of this chapter, Integers is the domain of all
integers. Thus in principle all set theoretic functions, for example Intersection, Size, and
so on can be applied to this domain. This seems generally of little use.

gap> Intersection(Integers, [0, 1/2, 1, 3/2]);
[0, 1]
gap> Size(Integers);
"infinity"

Random(Integers)

This seems to be the only useful domain function that can be applied to the domain
Integers. It returns pseudo random integers between -10 and 10 distributed according
to a binomial distribution.

gap> Random(Integers);
1
gap> Random(Integers);
-4

To generate uniformly distributed integers from a range, use the construct Random([low
.. high]).

10.14. RING FUNCTIONS FOR INTEGERS 369

10.14 Ring Functions for Integers

As was already noted in the introduction to this chapter the integers form a Euclidean ring,
so all ring functions (see chapter 5) are applicable to the integers. This section comments
on the implementation of those functions for the integers and tells you how you can call the
corresponding functions directly, for example to save time.

IsPrime(Integers, n)

This is implemented by IsPrimeInt, which you can call directly to save a little bit of time
(see 10.16).

Factors(Integers, n)

This is implemented as by FactorsInt, which you can call directly to save a little bit of
time (see 10.20).

EuclideanDegree(Integers, n)

The Euclidean degree of an integer is of course simply the absolute value of the integer.
Calling AbsInt directly will be a little bit faster.

EuclideanRemainder(Integers, n, m)

This is implemented as RemInt(n, m), which you can use directly to save a lot of time.

EuclideanQuotient(Integers, n, m)

This is implemented as QuoInt(n, m), which you can use directly to save a lot of time.

QuotientRemainder(Integers, n, m)

This is implemented as [QuoInt(n,m), RemInt(n,m)], which you can use directly to
save a lot of time.

QuotientMod(Integers, n1, n2, m)

This is implemented as (n1 / n2) mod m, which you can use directly to save a lot of time.

PowerMod(Integers, n, e, m)

This is implemented by PowerModInt, which you can call directly to save a little bit of
time. Note that using n ^ e mod m will generally be slower, because it can not reduce
intermediate results like PowerMod.

Gcd(Integers, n1, n2..)

This is implemented by GcdInt, which you can call directly to save a lot of time. Note that
GcdInt takes only two arguments, not several as Gcd does.

Gcdex(n1, n2)

Gcdex returns a record. The component gcd is the gcd of n1 and n2 .

The components coeff1 and coeff2 are integer cofactors such that
g.gcd = g.coeff1*n1 + g.coeff2*n2 .
If n1 and n2 both are nonzero, AbsInt(g.coeff1) is less than or equal to AbsInt(n2)
/ (2*g.gcd) and AbsInt(g.coeff2) is less than or equal to AbsInt(n1) / (2*g.gcd).

The components coeff3 and coeff4 are integer cofactors such that
0 = g.coeff3*n1 + g.coeff4*n2 .
If n1 or n2 or are both nonzero coeff3 is -n2 / g.gcd and coeff4 is n1 / g.gcd.

370 CHAPTER 10. INTEGERS

The coefficients always form a unimodular matrix, i.e., the determinant
g.coeff1*g.coeff4 - g.coeff3*g.coeff2
is 1 or -1.

gap> Gcdex(123, 66);
rec(

gcd := 3,
coeff1 := 7,
coeff2 := -13,
coeff3 := -22,
coeff4 := 41)

3 = 7*123 - 13*66, 0 = -22*123 + 41*66
gap> Gcdex(0, -3);
rec(
gcd := 3,
coeff1 := 0,
coeff2 := -1,
coeff3 := 1,
coeff4 := 0)

gap> Gcdex(0, 0);
rec(
gcd := 0,
coeff1 := 1,
coeff2 := 0,
coeff3 := 0,
coeff4 := 1)

Lcm(Integers, n1, n2..)

This is implemented as LcmInt, which you can call directly to save a little bit of time. Note
that LcmInt takes only two arguments, not several as Lcm does.

10.15 Primes

Primes[n]

Primes is a set, i.e., a sorted list, of the 168 primes less than 1000.

Primes is used in IsPrimeInt (see 10.16) and FactorsInt (see 10.20) to cast out small
prime divisors quickly.

gap> Primes[1];
2
gap> Primes[100];
541

10.16 IsPrimeInt

IsPrimeInt(n)

IsPrimeInt returns false if it can prove that n is composite and true otherwise. By
convention IsPrimeInt(0) = IsPrimeInt(1) = false and we define IsPrimeInt(-n)
= IsPrimeInt(n).

10.17. ISPRIMEPOWERINT 371

IsPrimeInt will return true for all prime n. IsPrimeInt will return false for all composite
n < 1013 and for all composite n that have a factor p < 1000. So for integers n < 1013,
IsPrimeInt is a proper primality test. It is conceivable that IsPrimeInt may return true
for some composite n > 1013, but no such n is currently known. So for integers n > 1013,
IsPrimeInt is a probable-primality test. If composites that fool IsPrimeInt do exist, they
would be extremly rare, and finding one by pure chance is less likely than finding a bug in
GAP.
IsPrimeInt is a deterministic algorithm, i.e., the computations involve no random numbers,
and repeated calls will always return the same result. IsPrimeInt first does trial divisions
by the primes less than 1000. Then it tests that n is a strong pseudoprime w.r.t. the base 2.
Finally it tests whether n is a Lucas pseudoprime w.r.t. the smallest quadratic nonresidue
of n. A better description can be found in the comment in the library file integer.g.
The time taken by IsPrimeInt is approximately proportional to the third power of the
number of digits of n. Testing numbers with several hundreds digits is quite feasible.

gap> IsPrimeInt(2^31 - 1);
true
gap> IsPrimeInt(10^42 + 1);
false

10.17 IsPrimePowerInt

IsPrimePowerInt(n)

IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.
n is a prime power if there exists a prime p and a positive integer i such that pi = n. If
n is negative the condition is that there must exist a negative prime p and an odd positive
integer i such that pi = n. 1 and -1 are not prime powers.
Note that IsPrimePowerInt uses SmallestRootInt (see 10.12) and a probable-primality
test (see 10.16).

gap> IsPrimePowerInt(31^5);
true
gap> IsPrimePowerInt(2^31-1);
true # 231 − 1 is actually a prime
gap> IsPrimePowerInt(2^63-1);
false
gap> Filtered([-10..10], IsPrimePowerInt);
[-8, -7, -5, -3, -2, 2, 3, 4, 5, 7, 8, 9]

10.18 NextPrimeInt

NextPrimeInt(n)

NextPrimeInt returns the smallest prime which is strictly larger than the integer n.
Note that NextPrimeInt uses a probable-primality test (see 10.16).

gap> NextPrimeInt(541);
547
gap> NextPrimeInt(-1);
2

372 CHAPTER 10. INTEGERS

10.19 PrevPrimeInt

PrevPrimeInt(n)

PrevPrimeInt returns the largest prime which is strictly smaller than the integer n.

Note that PrevPrimeInt uses a probable-primality test (see 10.16).

gap> PrevPrimeInt(541);
523
gap> PrevPrimeInt(1);
-2

10.20 FactorsInt

FactorsInt(n)

FactorsInt returns a list of the prime factors of the integer n. If the ith power of a prime
divides n this prime appears i times. The list is sorted, that is the smallest prime factors
come first. The first element has the same sign as n, the others are positive. For any integer
n it holds that Product(FactorsInt(n)) = n.

Note that FactorsInt uses a probable-primality test (see 10.16). Thus FactorsInt might
return a list which contains composite integers.

The time taken by FactorsInt is approximately proportional to the square root of the
second largest prime factor of n, which is the last one that FactorsInt has to find, since
the largest factor is simply what remains when all others have been removed. Thus the time
is roughly bounded by the fourth root of n. FactorsInt is guaranteed to find all factors
less than 106 and will find most factors less than 1010. If n contains multiple factors larger
than that FactorsInt may not be able to factor n and will then signal an error.

gap> FactorsInt(-Factorial(6));
[-2, 2, 2, 2, 3, 3, 5]
gap> Set(FactorsInt(Factorial(13)/11));
[2, 3, 5, 7, 13]
gap> FactorsInt(2^63 - 1);
[7, 7, 73, 127, 337, 92737, 649657]
gap> FactorsInt(10^42 + 1);
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]

10.21 DivisorsInt

DivisorsInt(n)

DivisorsInt returns a list of all positive divisors of the integer n. The list is sorted, so
it starts with 1 and ends with n. We define DivisorsInt(-n) = DivisorsInt(n).
Since the set of divisors of 0 is infinite calling DivisorsInt(0) causes an error.

DivisorsInt calls FactorsInt (see 10.20) to obtain the prime factors. Sigma (see 10.22)
computes the sum, Tau (see 10.23) the number of positive divisors.

gap> DivisorsInt(1);
[1]

10.22. SIGMA 373

gap> DivisorsInt(20);
[1, 2, 4, 5, 10, 20]
gap> DivisorsInt(541);
[1, 541]

10.22 Sigma

Sigma(n)

Sigma returns the sum of the positive divisors (see 10.21) of the integer n.
Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have
σ(nm) = σ(n)σ(m). Together with the formula σ(pe) = (pe+1 − 1)/(p− 1) this allows you
to compute σ(n).
Integers n for which σ(n) = 2n are called perfect. Even perfect integers are exactly of the
form 2n−1(2n − 1) where 2n − 1 is prime. Primes of the form 2n − 1 are called Mersenne
primes, the known ones are obtained for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127,
521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497,
86243, 110503, 132049, 216091, 756839, and 859433. It is not known whether odd perfect
integers exist, however [BC89] show that any such integer must have at least 300 decimal
digits.
Sigma usually spends most of its time factoring n (see 10.20).

gap> Sigma(0);
Error, Sigma: <n> must not be 0
gap> Sigma(1);
1
gap> Sigma(1009);
1010 # thus 1009 is a prime
gap> Sigma(8128) = 2*8128;
true # thus 8128 is a perfect number

10.23 Tau

Tau(n)

Tau returns the number of the positive divisors (see 10.21) of the integer n.
Tau is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have
τ(nm) = τ(n)τ(m). Together with the formula τ(pe) = e + 1 this allows us to compute
τ(n).
Tau usually spends most of its time factoring n (see 10.20).

gap> Tau(0);
Error, Tau: <n> must not be 0
gap> Tau(1);
1
gap> Tau(1013);
2 # thus 1013 is a prime
gap> Tau(8128);
14
gap> Tau(36);
9 # τ(n) is odd if and only if n is a perfect square

374 CHAPTER 10. INTEGERS

10.24 MoebiusMu

MoebiusMu(n)

MoebiusMu computes the value of the Moebius function for the integer n. This is 0 for
integers which are not squarefree, i.e., which are divisible by a square r2. Otherwise it is 1
if n has an even number and -1 if n has an odd number of prime factors.

The importance of µ stems from the so called inversion formula. Suppose f(n) is a function
defined on the positive integers and let g(n) =

∑
d|n f(d). Then f(n) =

∑
d|n µ(d)g(n/d).

As a special case we have φ(n) =
∑
d|n µ(d)n/d since n =

∑
d|n φ(d) (see 11.2).

MoebiusMu usually spends all of its time factoring n (see 10.20).

gap> MoebiusMu(60);
0
gap> MoebiusMu(61);
-1
gap> MoebiusMu(62);
1

Chapter 11

Number Theory

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. This chapter describes the functions that deal with this group.

The first section describes the function that computes the set of representatives of the group
(see 11.1).

The next sections describe the functions that compute the size and the exponent of the
group (see 11.2 and 11.3).

The next section describes the function that computes the order of an element in the group
(see 11.4).

The next section describes the functions that test whether a residue generates the group or
computes a generator of the group, provided it is cyclic (see 11.5, 11.6).

The next section describes the functions that test whether an element is a square in the
group (see 11.7 and 11.8).

The next sections describe the functions that compute general roots in the group (see 11.9
and 11.10).

All these functions are in the file LIBNAME/"numtheor.g".

11.1 PrimeResidues

PrimeResidues(m)

PrimeResidues returns the set of integers from the range 0..Abs(m)− 1 that are relatively
prime to the integer m.

Abs(m) must be less than 228, otherwise the set would probably be too large anyhow.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. φ(m) (see 11.2) is the order of this group, λ(m) (see 11.3) the
exponent. If and only if m is 2, 4, an odd prime power pe, or twice an odd prime power 2pe,
this group is cyclic. In this case the generators of the group, i.e., elements of order φ(m),
are called primitive roots (see 11.5, 11.6).

gap> PrimeResidues(0);

375

376 CHAPTER 11. NUMBER THEORY

[]
gap> PrimeResidues(1);
[0]
gap> PrimeResidues(20);
[1, 3, 7, 9, 11, 13, 17, 19]

11.2 Phi

Phi(m)

Phi returns the value of the Euler totient function φ(m) for the integer m. φ(m) is
defined as the number of positive integers less than or equal to m that are relatively prime
to m.

Suppose that m = pe11 p
e2
2 ...p

ek
k . Then φ(m) is pe1−1

1 (p1 − 1)pe2−1
2 (p2 − 1)...pek−1

k (pk − 1). It
follows that m is a prime if and only if φ(m) = m− 1.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). φ(m) is the
order of this group, λ(m) (see 11.3) the exponent. If and only if m is 2, 4, an odd prime
power pe, or twice an odd prime power 2pe, this group is cyclic. In this case the generators
of the group, i.e., elements of order φ(m), are called primitive roots (see 11.5, 11.6).

Phi usually spends most of its time factoring m (see 10.20).

gap> Phi(12);
4
gap> Phi(2^13-1);
8190 # which proves that 213 − 1 is a prime
gap> Phi(2^15-1);
27000

11.3 Lambda

Lambda(m)

Lambda returns the exponent of the group of relatively prime residues modulo the integer
m.

λ(m) is the smallest positive integer l such that for every a relatively prime to m we have
al = 1 mod m. Fermat’s theorem asserts aφ(m) = 1 mod m, thus λ(m) divides φ(m) (see
11.2).

Carmichael’s theorem states that λ can be computed as follows λ(2) = 1, λ(4) = 2 and
λ(2e) = 2e−2 if 3 <= e, λ(pe) = (p − 1)pe−1 (= φ(pe)) if p is an odd prime, and λ(nm) =
Lcm(λ(n), λ(m)) if n,m are relatively prime.

Composites for which λ(m) divides m − 1 are called Carmichaels. If 6k + 1, 12k + 1 and
18k+1 are primes their product is such a number. It is believed but unproven that there are
infinitely many Carmichaels. There are only 1547 Carmichaels below 1010 but 455052511
primes.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). φ(m) (see

11.4. ORDERMOD 377

11.2) is the order of this group, λ(m) the exponent. If and only if m is 2, 4, an odd prime
power pe, or twice an odd prime power 2pe, this group is cyclic. In this case the generators
of the group, i.e., elements of order φ(m), are called primitive roots (see 11.5, 11.6).

Lambda usually spends most of its time factoring m (see 10.20).

gap> Lambda(10);
4
gap> Lambda(30);
4
gap> Lambda(561);
80 # 561 is the smallest Carmichael number

11.4 OrderMod

OrderMod(n, m)

OrderMod returns the multiplicative order of the integer n modulo the positive integer m.
If n is less than 0 or larger than m it is replaced by its remainder. If n and m are not
relatively prime the order of n is not defined and OrderMod will return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest
positive integer i such that ni = 1 mod m. Elements of maximal order are called primitive
roots (see 11.2).

OrderMod usually spends most of its time factoring m and φ(m) (see 10.20).

gap> OrderMod(2, 7);
3
gap> OrderMod(3, 7);
6 # 3 is a primitive root modulo 7

11.5 IsPrimitiveRootMod

IsPrimitiveRootMod(r, m)

IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive
integer m and false otherwise. If r is less than 0 or larger than m it is replaced by its
remainder.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). φ(m) (see 11.2) is
the order of this group, λ(m) (see 11.3) the exponent. If and only if m is 2, 4, an odd prime
power pe, or twice an odd prime power 2pe, this group is cyclic. In this case the generators
of the group, i.e., elements of order φ(m), are called primitive roots (see also 11.6).

gap> IsPrimitiveRootMod(2, 541);
true
gap> IsPrimitiveRootMod(-539, 541);
true # same computation as above
gap> IsPrimitiveRootMod(4, 541);
false
gap> ForAny([1..29], r -> IsPrimitiveRootMod(r, 30));
false # there does not exist a primitive root modulo 30

378 CHAPTER 11. NUMBER THEORY

11.6 PrimitiveRootMod

PrimitiveRootMod(m)
PrimitiveRootMod(m, start)

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and
false if no such primitive root exists. If the optional second integer argument start is given
PrimitiveRootMod returns the smallest primitive root that is strictly larger than start .

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). φ(m) (see 11.2) is
the order of this group, λ(m) (see 11.3) the exponent. If and only if m is 2, 4, an odd prime
power pe, or twice an odd prime power 2pe, this group is cyclic. In this case the generators
of the group, i.e., elements of order φ(m), are called primitive roots (see also 11.5).

gap> PrimitiveRootMod(409);
21 # largest primitive root for a prime less than 2000
gap> PrimitiveRootMod(541, 2);
10
gap> PrimitiveRootMod(337, 327);
false # 327 is the largest primitive root mod 337
gap> PrimitiveRootMod(30);
false # the exists no primitive root modulo 30

11.7 Jacobi

Jacobi(n, m)

Jacobi returns the value of the Jacobi symbol of the integer n modulo the integer m.

Suppose that m = p1p2..pk as a product of primes, not necessarily distinct. Then for n
relatively prime to m the Jacobi symbol is defined by J(n/m) = L(n/p1)L(n/p2)..L(n/pk),
where L(n/p) is the Legendre symbol (see 11.8). By convention J(n/1) = 1. If the gcd of
n and m is larger than 1 we define J(n/m) = 0.

If n is an quadratic residue modulo m, i.e., if there exists an r such that r2 = n mod m
then J(n/m) = 1. However J(n/m) = 1 implies the existence of such an r only if m is a
prime.

Jacobi is very efficient, even for large values of n and m, it is about as fast as the Euclidean
algorithm (see 5.26).

gap> Jacobi(11, 35);
1 # 92 = 11 mod 35
gap> Jacobi(6, 35);
-1 # thus there is no r such that r2 = 6 mod 35
gap> Jacobi(3, 35);
1 # even though there is no r with r2 = 3 mod 35

11.8 Legendre

Legendre(n, m)

11.9. ROOTMOD 379

Legendre returns the value of the Legendre symbol of the integer n modulo the positive
integer m.

The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e.,
if there exists an integer r such that r2 = n mod m and -1 otherwise.

If a root of n exists it can be found by RootMod (see 11.9).

While the value of the Legendre symbol usually is only defined for m a prime, we have
extended the definition to include composite moduli too. The Jacobi symbol (see 11.7) is
another generalization of the Legendre symbol for composite moduli that is much cheaper
to compute, because it does not need the factorization of m (see 10.20).

gap> Legendre(5, 11);
1 # 42 = 5 mod 11
gap> Legendre(6, 11);
-1 # thus there is no r such that r2 = 6 mod 11
gap> Legendre(3, 35);
-1 # thus there is no r such that r2 = 3 mod 35

11.9 RootMod

RootMod(n, m)
RootMod(n, k, m)

In the first form RootMod computes a square root of the integer n modulo the positive integer
m, i.e., an integer r such that r2 = n mod m. If no such root exists RootMod returns false.

A root of n exists only if Legendre(n,m) = 1 (see 11.8). If m has k different prime factors
then there are 2k different roots of n mod m. It is unspecified which one RootMod returns.
You can, however, use RootsUnityMod (see 11.10) to compute the full set of roots.

In the second form RootMod computes a kth root of the integer n modulo the positive integer
m, i.e., an integer r such that rk = n mod m. If no such root exists RootMod returns false.

In the current implementation k must be a prime.

RootMod is efficient even for large values of m, actually most time is usually spent factoring
m (see 10.20).

gap> RootMod(64, 1009);
1001 # note RootMod does not return 8 in this case but -8
gap> RootMod(64, 3, 1009);
518
gap> RootMod(64, 5, 1009);
656
gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009);
[1001, 8] # set of all square roots of 64 mod 1009

11.10 RootsUnityMod

RootsUnityMod(m)
RootsUnityMod(k, m)

380 CHAPTER 11. NUMBER THEORY

In the first form RootsUnityMod computes the square roots of 1 modulo the integer m, i.e.,
the set of all positive integers r less than n such that r2 = 1 mod m.

In the second form RootsUnityMod computes the kth roots of 1 modulo the integer m, i.e.,
the set of all positive integers r less than n such that rk = 1 mod m.

In general there are kn such roots if the modulus m has n different prime factors p such
that p = 1 mod k. If k2 divides m then there are kn+1 such roots; and especially if k = 2
and 8 divides m there are 2n+2 such roots.

If you are interested in the full set of roots of another number instead of 1 use RootsUnityMod
together with RootMod (see 11.9).

In the current implementation k must be a prime.

RootsUnityMod is efficient even for large values of m, actually most time is usually spent
factoring m (see 10.20).

gap> RootsUnityMod(7*31);
[1, 92, 125, 216]
gap> RootsUnityMod(3,7*31);
[1, 25, 32, 36, 67, 149, 156, 191, 211]
gap> RootsUnityMod(5,7*31);
[1, 8, 64, 78, 190]
gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009);
[1001, 8] # set of all square roots of 64 mod 1009

Chapter 12

Rationals

The rationals form a very important field. On the one hand it is the quotient field of the
integers (see 10). On the other hand it is the prime field of the fields of characteristic zero
(see 15).

The former comment suggests the representation actually used. A rational is represented as
a pair of integers, called numerator and denominator. Numerator and denominator are
reduced, i.e., their greatest common divisor is 1. If the denominator is 1, the rational is
in fact an integer and is represented as such. The numerator holds the sign of the rational,
thus the denominator is always positive.

Because the underlying integer arithmetic can compute with arbitrary size integers, the
rational arithmetic is always exact, even for rationals whose numerators and denominators
have thousands of digits.

gap> 2/3;
2/3
gap> 66/123;
22/41 # numerator and denominator are made relatively prime
gap> 17/-13;
-17/13 # the numerator carries the sign
gap> 121/11;
11 # rationals with denominator 1 (after cancelling) are integers

The first sections of this chapter describe the functions that test whether an object is a
rational (see 12.1), and select the numerator and denominator of a rational (see 12.2, 12.3).

The next sections describe the rational operations (see 12.4, and 12.5).

The GAP object Rationals is the field domain of all rationals. All set theoretic functions
are applicable to this domain (see chapter 4 and 12.6). Since Rationals is a field all field
functions are also applicable to this domain and its elements (see chapter 6 and 12.7).

All external functions are defined in the file "LIBNAME/rational.g".

12.1 IsRat

IsRat(obj)

381

382 CHAPTER 12. RATIONALS

IsRat returns true if obj , which can be an arbitrary object, is a rational and false oth-
erwise. Integers are rationals with denominator 1, thus IsRat returns true for integers.
IsRat will signal an error if obj is an unbound variable or a procedure call.

gap> IsRat(2/3);
true
gap> IsRat(17/-13);
true
gap> IsRat(11);
true
gap> IsRat(IsRat);
false # IsRat is a function, not a rational

12.2 Numerator

Numerator(rat)

Numerator returns the numerator of the rational rat . Because the numerator holds the
sign of the rational it may be any integer. Integers are rationals with denominator 1, thus
Numerator is the identity function for integers.

gap> Numerator(2/3);
2
gap> Numerator(66/123);
22 # numerator and denominator are made relatively prime
gap> Numerator(17/-13);
-17 # the numerator holds the sign of the rational
gap> Numerator(11);
11 # integers are rationals with denominator 1

Denominator (see 12.3) is the counterpart to Numerator.

12.3 Denominator

Denominator(rat)

Denominator returns the denominator of the rational rat . Because the numerator holds the
sign of the rational the denominator is always a positive integer. Integers are rationals with
the denominator 1, thus Denominator returns 1 for integers.

gap> Denominator(2/3);
3
gap> Denominator(66/123);
41 # numerator and denominator are made relatively prime
gap> Denominator(17/-13);
13 # the denominator holds the sign of the rational
gap> Denominator(11);
1 # integers are rationals with denominator 1

Numerator (see 12.2) is the counterpart to Denominator.

12.4. COMPARISONS OF RATIONALS 383

12.4 Comparisons of Rationals

q1 = q2
q1 <> q2

The equality operator = evaluates to true if the two rationals q1 and q2 are equal and to
false otherwise. The inequality operator <> evaluates to true if the two rationals q1 and
q2 are not equal and to false otherwise.

gap> 2/3 = -4/-6;
true
gap> 66/123 <> 22/41;
false
gap> 17/13 = 11;
false

q1 < q2
q1 <= q2
q1 > q2
q1 >= q2

The operators <, <=, >, and => evaluate to true if the rational q1 is less than, less than or
equal to, greater than, and greater than or equal to the rational q2 and to false otherwise.

One rational q1 = n1/d1 is less than another q2 = n2/d2 if and only if n1d2 < n2d2. This
definition is of course only valid because the denominator of rationals is always defined to be
positive. This definition also extends to the comparison of rationals with integers, which are
interpreted as rationals with denominator 1. Rationals can also be compared with objects
of other types. They are smaller than objects of any other type by definition.

gap> 2/3 < 22/41;
false
gap> -17/13 < 11;
true

12.5 Operations for Rationals

q1 + q2
q1 - q2
q1 * q2
q1 / q2

The operators +, -, * and / evaluate to the sum, difference, product, and quotient of the two
rationals q1 and q2 . For the quotient / q2 must of course be nonzero, otherwise an error is
signalled. Either operand may also be an integer i , which is interpreted as a rational with
denominator 1. The result of those operations is always reduced. If, after the reduction,
the denominator is 1, the rational is in fact an integer, and is represented as such.

gap> 2/3 + 4/5;
22/15
gap> 7/6 * 2/3;
7/9 # note how the result is cancelled
gap> 67/6 - 1/6;

384 CHAPTER 12. RATIONALS

11 # the result is an integer

q ^ i

The powering operator ^ returns the i -th power of the rational q . i must be an integer. If
the exponent i is zero, q^i is defined as 1; if i is positive, q^i is defined as the i -fold product
q*q*..*q ; finally, if i is negative, q^i is defined as (1/q)^-i . In this case q must of course
be nonzero.

gap> (2/3) ^ 3;
8/27
gap> (-17/13) ^ -1;
-13/17 # note how the sign switched
gap> (1/2) ^ -2;
4

12.6 Set Functions for Rationals

As was already mentioned in the introduction of this chapter the GAP object Rationals is
the domain of all rationals. All set theoretic functions, e.g., Intersection and Size, are
applicable to this domain.

gap> Intersection(Rationals, [E(4)^0, E(4)^1, E(4)^2, E(4)^3]);
[-1, 1] # E(4) is the complex square root of -1
gap> Size(Rationals);
"infinity"

This does not seem to be very useful.

12.7 Field Functions for Rationals

As was already mentioned in the introduction of this chapter the GAP object Rationals
is the field of all rationals. All field functions, e.g., Norm and MinPol are applicable to
this domain and its elements. However, since the field of rationals is the prime field, all
those functions are trivial. Therefore, Conjugates(Rationals, q) returns [q], Norm(
Rationals, q) and Trace(Rationals, q) return q , and CharPol(Rationals, q)
and MinPol(Rationals, q) both return [-q, 1].

Chapter 13

Cyclotomics

GAP allows computations in abelian extension fields of the rational field Q, i.e., fields with
abelian Galois group over Q. These fields are described in chapter 15. They are subfields
of cyclotomic fields Qn = Q(en) where en = e

2πi
n is a primitive n–th root of unity. Their

elements are called cyclotomics.

The internal representation of a cyclotomic does not refer to the smallest number field but
the smallest cyclotomic field containing it (the so–called conductor). This is because it
is easy to embed two cyclotomic fields in a larger one that contains both, i.e., there is a
natural way to get the sum or the product of two arbitrary cyclotomics as element of a
cyclotomic field. The disadvantage is that the arithmetical operations are too expensive
to do arithmetics in number fields, e.g., calculations in a matrix ring over a number field.
But it suffices to deal with irrationalities in character tables (see 48). (And in fact, the
comfortability of working with the natural embeddings is used there in many situations
which did not actually afford it . . .)

All functions that take a field extension as —possibly optional— argument, e.g., Trace or
Coefficients (see chapter 6), are described in chapter 15.

This chapter informs about
the representation of cyclotomics in GAP (see 13.1),
access to the internal data (see 13.7, 13.8)
integral elements of number fields (see 13.2, 13.3, 13.4),
characteristic functions (see 13.5, 13.6),
comparison and arithmetical operations of cyclotomics (see 13.9, 13.10),
functions concerning Galois conjugacy of cyclotomics (see 13.11, 13.13), or lists of
them (see 13.15, 13.16),
some special cyclotomics, as defined in [CCN+85] (see 13.12, 13.14)

The external functions are in the file LIBNAME/"cyclotom.g".

13.1 More about Cyclotomics

Elements of number fields (see chapter 15), cyclotomics for short, are arithmetical objects
like rationals and finite field elements; they are not implemented as records —like groups—

385

386 CHAPTER 13. CYCLOTOMICS

or e.g. with respect to a character table (although character tables may be the main interest
for cyclotomic arithmetics).

E(n)

returns the primitive n-th root of unity en = e
2πi
n . Cyclotomics are usually entered as

(and irrational cyclotomics are always displayed as) sums of roots of unity with rational
coefficients. (For special cyclotomics, see 13.12.)

gap> E(9); E(9)^3; E(6); E(12) / 3;
-E(9)^4-E(9)^7 # the root needs not to be an element of the base
E(3)
-E(3)^2
-1/3*E(12)^7

For the representation of cyclotomics one has to recall that the cyclotomic field Qn = Q(en)
is a vector space of dimension ϕ(n) over the rationals where ϕ denotes Euler’s phi-function
(see 11.2).

Note that the set of all n-th roots of unity is linearly dependent for n > 1, so multiplication
is not the multiplication of the group ring Q〈en〉; given a Q-basis of Qn the result of the
multiplication (computed as multiplication of polynomials in en, using (en)n = 1) will be
converted to the base.

gap> E(5) * E(5)^2; (E(5) + E(5)^4) * E(5)^2;
E(5)^3
E(5)+E(5)^3
gap> (E(5) + E(5)^4) * E(5);
-E(5)-E(5)^3-E(5)^4

Cyclotomics are always represented in the smallest cyclotomic field they are contained in.
Together with the choice of a fixed base this means that two cyclotomics are equal if and
only if they are equally represented.

Addition and multiplication of two cyclotomics represented in Qn and Qm, respectively, is
computed in the smallest cyclotomic field containing both: QLcm(n,m). Conversely, if the
result is contained in a smaller cyclotomic field the representation is reduced to the minimal
such field.

The base, the base conversion and the reduction to the minimal cyclotomic field are described
in [Zum89], more about the base can be found in 15.9.

Since n must be a short integer, the maximal cyclotomic field implemented in GAP is not
really the field Qab. The biggest allowed (though not very useful) n is 65535.

There is a global variable Cyclotomics in GAP, a record that stands for the domain of all
cyclotomics (see chapter 15).

13.2 Cyclotomic Integers

A cyclotomic is called integral or cyclotomic integer if all coefficients of its minimal
polynomial are integers. Since the base used is an integral base (see 15.9), the subring
of cyclotomic integers in a cyclotomic field is formed by those cyclotomics which have not
only rational but integral coefficients in their representation as sums of roots of unity. For
example, square roots of integers are cyclotomic integers (see 13.12), any root of unity is a

13.3. INTCYC 387

cyclotomic integer, character values are always cyclotomic integers, but all rationals which
are not integers are not cyclotomic integers. (See 13.6)

gap> ER(5); # The square root of 5 is a cyclotomic
E(5)-E(5)^2-E(5)^3+E(5)^4 # integer, it has integral coefficients.
gap> 1/2 * ER(5); # This is not a cyclotomic integer, . . .
1/2*E(5)-1/2*E(5)^2-1/2*E(5)^3+1/2*E(5)^4
gap> 1/2 * ER(5) - 1/2; # . . . but this is one.
E(5)+E(5)^4

13.3 IntCyc

IntCyc(z)

returns the cyclotomic integer (see 13.2) with Zumbroich base coefficients (see 15.9) List(
zumb, x -> Int(x)) where zumb is the vector of Zumbroich base coefficients of the
cyclotomic z ; see also 13.4.

gap> IntCyc(E(5)+1/2*E(5)^2); IntCyc(2/3*E(7)+3/2*E(4));
E(5)
E(4)

13.4 RoundCyc

RoundCyc(z)

returns the cyclotomic integer (see 13.2) with Zumbroich base coefficients (see 15.9) List(
zumb, x -> Int(x+1/2)) where zumb is the vector of Zumbroich base coefficients of
the cyclotomic z ; see also 13.3.

gap> RoundCyc(E(5)+1/2*E(5)^2); RoundCyc(2/3*E(7)+3/2*E(4));
E(5)+E(5)^2
-2*E(28)^3+E(28)^4-2*E(28)^11-2*E(28)^15-2*E(28)^19-2*E(28)^23
-2*E(28)^27

13.5 IsCyc

IsCyc(obj)

returns true if obj is a cyclotomic, and false otherwise. Will signal an error if obj is an
unbound variable.

gap> IsCyc(0); IsCyc(E(3)); IsCyc(1/2 * E(3)); IsCyc(IsCyc);
true
true
true
false

IsCyc is an internal function.

13.6 IsCycInt

IsCycInt(obj)

388 CHAPTER 13. CYCLOTOMICS

returns true if obj is a cyclotomic integer (see 13.2), false otherwise. Will signal an error
if obj is an unbound variable.

gap> IsCycInt(0); IsCycInt(E(3)); IsCycInt(1/2 * E(3));
true
true
false

IsCycInt is an internal function.

13.7 NofCyc

NofCyc(z)
NofCyc(list)

returns the smallest positive integer n for which the cyclotomic z is resp. for which all
cyclotomics in the list list are contained in Qn = Q(e

2πi
n) = Q(E(n)).

gap> NofCyc(0); NofCyc(E(10)); NofCyc(E(12));
1
5
12

NofCyc is an internal function.

13.8 CoeffsCyc

CoeffsCyc(z, n)

If z is a cyclotomic which is contained in Qn, CoeffsCyc(z, n) returns a list cfs of length
n where the entry at position i is the coefficient of E(n)i−1 in the internal representation
of z as element of the cyclotomic field Qn (see 13.1, 15.9): z = cfs[1] + cfs[2] E(n)1 + . . .+
cfs[n] E(n)n−1.

Note that all positions which do not belong to base elements of Qn contain zeroes.

gap> CoeffsCyc(E(5), 5); CoeffsCyc(E(5), 15);
[0, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0]
gap> CoeffsCyc(1+E(3), 9); CoeffsCyc(E(5), 7);
[0, 0, 0, 0, 0, 0, -1, 0, 0]
Error, no representation of <z> in 7th roots of unity

CoeffsCyc calls the internal function COEFFSCYC:

COEFFSCYC(z)

is equivalent to CoeffsCyc(z, NofCyc(z)), see 13.7.

13.9 Comparisons of Cyclotomics

To compare cyclotomics, the operators <, <=, =, >=, > and <> can be used, the result will
be true if the first operand is smaller, smaller or equal, equal, larger or equal, larger, or
inequal, respectively, and false otherwise.

13.10. OPERATIONS FOR CYCLOTOMICS 389

Cyclotomics are ordered as follows: The relation between rationals is as usual, and rationals
are smaller than irrational cyclotomics. For two irrational cyclotomics z1 , z2 which lie in dif-
ferent minimal cyclotomic fields, we have z1 < z2 if and only if NofCyc(z1) < NofCyc(z2));
if NofCyc(z1) = NofCyc(z2)), that one is smaller that has the smaller coefficient vector, i.e.,
z1 ≤ z2 if and only if COEFFSCYC(z1) ≤ COEFFSCYC(z2).

You can compare cyclotomics with objects of other types; all objects which are not cyclo-
tomics are larger than cyclotomics.

gap> E(5) < E(6); # the latter value lies in Q3

false
gap> E(3) < E(3)^2; # both lie in Q3, so compare coefficients
false
gap> 3 < E(3); E(5) < E(7);
true
true
gap> E(728) < (1,2);
true

13.10 Operations for Cyclotomics

The operators +, -, *, / are used for addition, subtraction, multiplication and division of
two cyclotomics; note that division by 0 causes an error.

+ and - can also be used as unary operators;

^ is used for exponentiation of a cyclotomic with an integer; this is in general not equal to
Galois conjugation.

gap> E(5) + E(3); (E(5) + E(5)^4) ^ 2; E(5) / E(3); E(5) * E(3);
-E(15)^2-2*E(15)^8-E(15)^11-E(15)^13-E(15)^14
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(15)^13
E(15)^8

13.11 GaloisCyc

GaloisCyc(z, k)

returns the cyclotomic obtained on raising the roots of unity in the representation of the
cyclotomic z to the k -th power. If z is represented in the field Qn and k is a fixed integer
relative prime to n, GaloisCyc(., k) acts as a Galois automorphism of Qn (see 15.8);
to get Galois automorphisms as functions, use 6.7 GaloisGroup.

gap> GaloisCyc(E(5) + E(5)^4, 2);
E(5)^2+E(5)^3
gap> GaloisCyc(E(5), -1); # the complex conjugate
E(5)^4
gap> GaloisCyc(E(5) + E(5)^4, -1); # this value is real
E(5)+E(5)^4
gap> GaloisCyc(E(15) + E(15)^4, 3);
E(5)+E(5)^4

GaloisCyc is an internal function.

390 CHAPTER 13. CYCLOTOMICS

13.12 ATLAS irrationalities

EB(N), EC(N), . . . , EH(N),
EI(N), ER(N),
EJ(N), EK(N), EL(N), EM(N),
EJ(N , d), EK(N , d), EL(N , d), EM(N , d),
ES(N), ET(N), . . . , EY(N),
ES(N , d), ET(N , d), . . . , EY(N , d),
NK(N , k, d)

For N a positive integer, let z = E(N) = e2πi/N . The following so-called atomic irrational-
ities (see [CCN+85, Chapter 7, Section 10]) can be entered by functions (Note that the
values are not necessary irrational.):

EB(N) = bN = 1
2

∑N−1
j=1 zj

2
(N ≡ 1 mod 2)

EC(N) = cN = 1
3

∑N−1
j=1 zj

3
(N ≡ 1 mod 3)

ED(N) = dN = 1
4

∑N−1
j=1 zj

4
(N ≡ 1 mod 4)

EE(N) = eN = 1
5

∑N−1
j=1 zj

5
(N ≡ 1 mod 5)

EF(N) = fN = 1
6

∑N−1
j=1 zj

6
(N ≡ 1 mod 6)

EG(N) = gN = 1
7

∑N−1
j=1 zj

7
(N ≡ 1 mod 7)

EH(N) = hN = 1
8

∑N−1
j=1 zj

8
(N ≡ 1 mod 8)

(Note that in cN , . . . , hN , N must be a prime.)

ER(N) =
√
N

EI(N) = i
√
N =

√
−N

From a theorem of Gauss we know that

bN =
{

1
2 (−1 +

√
N) if N ≡ 1 mod4

1
2 (−1 + i

√
N) if N ≡ −1 mod4

,

so
√
N can be (and in fact is) computed from bN . If N is a negative integer then ER(N) =

EI(-N).

For given N , let nk = nk(N) be the first integer with multiplicative order exactly k modulo
N , chosen in the order of preference

1,−1, 2,−2, 3,−3, 4,−4,

We have
EY(N) = yn = z + zn (n = n2)
EX(N) = xn = z + zn + zn

2
(n = n3)

EW(N) = wn = z + zn + zn
2

+ zn
3

(n = n4)
EV(N) = vn = z + zn + zn

2
+ zn

3
+ zn

4
(n = n5)

EU(N) = un = z + zn + zn
2

+ . . .+ zn
5

(n = n6)
ET(N) = tn = z + zn + zn

2
+ . . .+ zn

6
(n = n7)

ES(N) = sn = z + zn + zn
2

+ . . .+ zn
7

(n = n8)

13.13. STARCYC 391

EM(N) = mn = z − zn (n = n2)
EL(N) = ln = z − zn + zn

2 − zn3
(n = n4)

EK(N) = kn = z − zn + . . .− zn5
(n = n6)

EJ(N) = jn = z − zn + . . .− zn7
(n = n8)

Let n(d)
k = n

(d)
k (N) be the d + 1-th integer with multiplicative order exactly k modulo N ,

chosen in the order of preference defined above; we write nk = n
(0)
k , n′k = n

(1)
k , n′′k = n

(2)
k

and so on. These values can be computed as NK(N ,k,d)= n
(d)
k (N); if there is no integer

with the required multiplicative order, NK will return false.

The algebraic numbers

y′N = y
(1)
N , y′′N = y

(2)
N , . . . , x′N , x

′′
N , . . . , j

′
N , j

′′
N , . . .

are obtained on replacing nk in the above definitions by n′k, n
′′
k , . . .; they can be entered as

EY(N , d) = y
(d)
N

EX(N , d) = x
(d)
N

...
EJ(N , d) = j

(d)
n

gap> EW(16,3); EW(17,2); ER(3); EI(3); EY(5); EB(9);
0
E(17)+E(17)^4+E(17)^13+E(17)^16
-E(12)^7+E(12)^11
E(3)-E(3)^2
E(5)+E(5)^4
1

13.13 StarCyc

StarCyc(z)

If z is an irrational element of a quadratic number field (i.e. if z is a quadratic irrationality),
StarCyc(z) returns the unique Galois conjugate of z that is different from z ; this is often
called z∗ (see 48.37). Otherwise false is returned.

gap> StarCyc(EB(5)); StarCyc(E(5));
E(5)^2+E(5)^3
false

13.14 Quadratic

Quadratic(z)

If z is a cyclotomic integer that is contained in a quadratic number field over the rationals,
it can be written as z = a+b

√
n

d with integers a, b, n and d, where d is either 1 or 2. In

392 CHAPTER 13. CYCLOTOMICS

this case Quadratic(z) returns a record with fields a, b, root, d and ATLAS where the
first four mean the integers mentioned above, and the last one is a string that is a (not
necessarily shortest) representation of z by bm, im or rm for m = |root| (see 13.12).

If z is not a quadratic irrationality or not a cyclotomic integer, false is returned.

gap> Quadratic(EB(5)); Quadratic(EB(27));
rec(
a := -1,
b := 1,
root := 5,
d := 2,
ATLAS := "b5")

rec(
a := -1,
b := 3,
root := -3,
d := 2,
ATLAS := "1+3b3")

gap> Quadratic(0); Quadratic(E(5));
rec(
a := 0,
b := 0,
root := 1,
d := 1,
ATLAS := "0")

false

13.15 GaloisMat

GaloisMat(mat)

mat must be a matrix of cyclotomics (or possibly unknowns, see 17.1). The conjugate of a
row in mat under a particular Galois automorphism is defined pointwise. If mat consists of
full orbits under this action then the Galois group of its entries acts on mat as a permutation
group, otherwise the orbits must be completed before.

GaloisMat(mat) returns a record with fields mat, galoisfams and generators:

mat
a list with initial segment mat (not a copy of mat); the list consists of full orbits
under the action of the Galois group of the entries of mat defined above. The last
entries are those rows which had to be added to complete the orbits; so if they were
already complete, mat and mat have identical entries.

galoisfams
a list that has the same length as mat; its entries are either 1, 0, -1 or lists:
galoisfams[i] = 1 means that mat[i] consists of rationals, i.e. [mat[i]] forms an
orbit.
galoisfams[i] = −1 means that mat[i] contains unknowns; in this case [mat[i]] is
regarded as an orbit, too, even if mat[i] contains irrational entries.
If galoisfams[i] = [l1, l2] is a list then mat[i] is the first element of its orbit in

13.16. RATIONALIZEDMAT 393

mat; l1 is the list of positions of rows which form the orbit, and l2 is the list of
corresponding Galois automorphisms (as exponents, not as functions); so we have
mat[l1[j]][k] = GaloisCyc(mat[i][k], l2[j]).
galoisfams[i] = 0 means that mat[i] is an element of a nontrivial orbit but not the
first element of it.

generators
a list of permutations generating the permutation group corresponding to the action
of the Galois group on the rows of mat.

Note that mat should be a set, i.e. no two rows should be equal. Otherwise only the first
row of some equal rows is considered for the permutations, and a warning is printed.

gap> GaloisMat([[E(3), E(4)]]);
rec(
mat := [[E(3), E(4)], [E(3), -E(4)], [E(3)^2, E(4)],

[E(3)^2, -E(4)]],
galoisfams := [[[1, 2, 3, 4], [1, 7, 5, 11]], 0, 0, 0],
generators := [(1,2)(3,4), (1,3)(2,4)])

gap> GaloisMat([[1, 1, 1], [1, E(3), E(3)^2]]);
rec(
mat := [[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]],
galoisfams := [1, [[2, 3], [1, 2]], 0],
generators := [(2,3)])

13.16 RationalizedMat

RationalizedMat(mat)

returns the set of rationalized rows of mat , i.e. the set of sums over orbits under the action
of the Galois group of the elements of mat (see 13.15).

This may be viewed as a kind of trace operation for the rows.

Note that mat should be a set, i.e. no two rows should be equal.

gap> mat:= CharTable("A5").irreducibles;
[[1, 1, 1, 1, 1], [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]]

gap> RationalizedMat(mat);
[[1, 1, 1, 1, 1], [6, -2, 0, 1, 1], [4, 0, 1, -1, -1],

[5, 1, -1, 0, 0]]

394 CHAPTER 13. CYCLOTOMICS

Chapter 14

Gaussians

If we adjoin a square root of -1, usually denoted by i, to the field of rationals we obtain a
field that is an extension of degree 2. This field is called the Gaussian rationals and its
ring of integers is called the Gaussian integers, because C.F. Gauss was the first to study
them.

In GAP Gaussian rationals are written in the form a + b*E(4), where a and b are rationals,
because E(4) is GAP’s name for i. Because 1 and i form an integral base the Gaussian
integers are written in the form a + b*E(4), where a and b are integers.

The first sections in this chapter describe the operations applicable to Gaussian rationals
(see 14.1 and 14.2).

The next sections describe the functions that test whether an object is a Gaussian rational
or integer (see 14.3 and 14.4).

The GAP object GaussianRationals is the field domain of all Gaussian rationals, and the
object GaussianIntegers is the ring domain of all Gaussian integers. All set theoretic
functions are applicable to those two domains (see chapter 4 and 14.5).

The Gaussian rationals form a field so all field functions, e.g., Norm, are applicable to the
domain GaussianRationals and its elements (see chapter 6 and 14.6).

The Gaussian integers form a Euclidean ring so all ring functions, e.g., Factors, are appli-
cable to GaussianIntegers and its elements (see chapter 5, 14.7, and 14.8).

The field of Gaussian rationals is just a special case of cyclotomic fields, so everything that
applies to those fields also applies to it (see chapters 13 and 15).

All functions are in the library file LIBNAME/"gaussian.g".

14.1 Comparisons of Gaussians

x = y
x <> y

The equality operator evaluates to true if the two Gaussians x and y are equal, and to
false otherwise. The inequality operator <> evaluates to true if the two Gaussians x and

395

396 CHAPTER 14. GAUSSIANS

y are not equal, and to false otherwise. It is also possible to compare a Gaussian with an
object of another type, of course they are never equal.

Two Gaussians a + b*E(4) and c + d*E(4) are considered equal if a = c and b = d .

gap> 1 + E(4) = 2 / (1 - E(4));
true
gap> 1 + E(4) = 1 - E(4);
false
gap> 1 + E(4) = E(6);
false

x <y
x <= y
x > y
x >= y

The operators <, <=, >, and >= evaluate to true if the Gaussian x is less than, less than or
equal to, greater than, and greater than or equal to the Gaussian y , and to false otherwise.
Gaussians can also be compared to objects of other types, they are smaller than anything
else, except other cyclotomics (see 13.9).

A Gaussian a + b*E(4) is considered less than another Gaussian c + d*E(4) if a is less
than c, or if a is equal to c and b is less than d .

gap> 1 + E(4) < 2 + E(4);
true
gap> 1 + E(4) < 1 - E(4);
false
gap> 1 + E(4) < 1/2;
false

14.2 Operations for Gaussians

x + y
x - y
x * y
x / y

The operators +, -, *, and / evaluate to the sum, difference, product, and quotient of the
two Gaussians x and y . Of course either operand may also be an ordinary rational (see 12),
because the rationals are embedded into the Gaussian rationals. On the other hand the
Gaussian rationals are embedded into other cyclotomic fields, so either operand may also
be a cyclotomic (see 13). Division by 0 is as usual an error.

x ^ n

The operator ^ evaluates to the n-th power of the Gaussian rational x . If n is positive, the
power is defined as the n-fold product x*x*...x ; if n is negative, the power is defined as
(1/x)^(-n); and if n is zero, the power is 1, even if x is 0.

gap> (1 + E(4)) * (E(4) - 1);
-2

14.3. ISGAUSSRAT 397

14.3 IsGaussRat

IsGaussRat(obj)

IsGaussRat returns true if obj , which may be an object of arbitrary type, is a Gaussian
rational and false otherwise. Will signal an error if obj is an unbound variable.

gap> IsGaussRat(1/2);
true
gap> IsGaussRat(E(4));
true
gap> IsGaussRat(E(6));
false
gap> IsGaussRat(true);
false

IsGaussInt can be used to test whether an object is a Gaussian integer (see 14.4).

14.4 IsGaussInt

IsGaussInt(obj)

IsGaussInt returns true if obj , which may be an object of arbitrary type, is a Gaussian
integer, and false otherwise. Will signal an error if obj is an unbound variable.

gap> IsGaussInt(1);
true
gap> IsGaussInt(E(4));
true
gap> IsGaussInt(1/2 + 1/2*E(4));
false
gap> IsGaussInt(E(6));
false

IsGaussRat can be used to test whether an object is a Gaussian rational (see 14.3).

14.5 Set Functions for Gaussians

As already mentioned in the introduction of this chapter the objects GaussianRationals
and GaussianIntegers are the domains of Gaussian rationals and integers respectively. All
set theoretic functions, i.e., Size and Intersection, are applicable to these domains and
their elements (see chapter 4). There does not seem to be an important use of this however.
All functions not mentioned here are not treated specially, i.e., they are implemented by the
default function mentioned in the respective section.

in

The membership test for Gaussian rationals is implemented via IsGaussRat (14.3). The
membership test for Gaussian integers is implemented via IsGaussInt (see 14.4).

Random

398 CHAPTER 14. GAUSSIANS

A random Gaussian rational a + b*E(4) is computed by combining two random rationals a
and b (see 12.6). Likewise a random Gaussian integer a + b*E(4) is computed by combining
two random integers a and b (see 10.13).

gap> Size(GaussianRationals);
"infinity"
gap> Intersection(GaussianIntegers, [1,1/2,E(4),-E(6),E(4)/3]);
[1, E(4)]

14.6 Field Functions for Gaussian Rationals

As already mentioned in the introduction of this chapter, the domain of Gaussian rationals
is a field. Therefore all field functions are applicable to this domain and its elements (see
chapter 6). This section gives further comments on the definitions and implementations
of those functions for the the Gaussian rationals. All functions not mentioned here are
not treated specially, i.e., they are implemented by the default function mentioned in the
respective section.

Conjugates

The field of Gaussian rationals is an extension of degree 2 of the rationals, its prime field.
Therefore there is one further conjugate of every element a + b*E(4), namely a - b*E(4).

Norm, Trace

According to the definition of conjugates above, the norm of a Gaussian rational a + b*E(4)
is a^2 + b^2 and the trace is 2*a.

14.7 Ring Functions for Gaussian Integers

As already mentioned in the introduction to this chapter, the ring of Gaussian integers is a
Euclidean ring. Therefore all ring functions are applicable to this ring and its elements (see
chapter 5). This section gives further comments on the definitions and implementations of
those functions for the Gaussian integers. All functions not mentioned here are not treated
specially, i.e., they are implemented by the default function mentioned in the respective
section.

IsUnit, Units, IsAssociated, Associates

The units of GaussianIntegers are [1, E(4), -1, -E(4)].

StandardAssociate

The standard associate of a Gaussian integer x is the associated element y of x that lies in the
first quadrant of the complex plane. That is y is that element from x * [1,-1,E(4),-E(4)]
that has positive real part and nonnegative imaginary part.

EuclideanDegree

14.8. TWOSQUARES 399

The Euclidean degree of a Gaussian integer x is the product of x and its complex conjugate.

EuclideanRemainder

Define the integer part i of the quotient of x and y as the point of the lattice spanned by
1 and E(4) that lies next to the rational quotient of x and y , rounding towards the origin
if there are several such points. Then EuclideanRemainder(x, y) is defined as x - i *
y . With this definition the ordinary Euclidean algorithm for the greatest common divisor
works, whereas it does not work if you always round towards the origin.

EuclideanQuotient

The Euclidean quotient of two Gaussian integers x and y is the quotient of w and y , where
w is the difference between x and the Euclidean remainder of x and y .

QuotientRemainder

QuotientRemainder uses EuclideanRemainder and EuclideanQuotient.

IsPrime, IsIrreducible

Since the Gaussian integers are a Euclidean ring, primes and irreducibles are equivalent.
The primes are the elements 1 + E(4) and 1 - E(4) of norm 2, the elements a + b*E(4)
and a - b*E(4) of norm p = a^2 + b^2 with p a rational prime congruent to 1 mod 4,
and the elements p of norm p^2 with p a rational prime congruent to 3 mod 4.

Factors

The list returned by Factors is sorted according to the norms of the primes, and among
those of equal norm with respect to <. All elements in the list are standard associates,
except the first, which is multiplied by a unit as necessary.

The above characterization already shows how one can factor a Gaussian integer. First
compute the norm of the element, factor this norm over the rational integers and then split
2 and the primes congruent to 1 mod 4 with TwoSquares (see 14.8).

gap> Factors(GaussianIntegers, 30);
[-1-E(4), 1+E(4), 3, 1+2*E(4), 2+E(4)]

14.8 TwoSquares

TwoSquares(n)

TwoSquares returns a list of two integers x <= y such that the sum of the squares of x and
y is equal to the nonnegative integer n, i.e., n = x2 + y2. If no such representation exists
TwoSquares will return false. TwoSquares will return a representation for which the gcd
of x and y is as small as possible. If there are several such representations, it is not specified
which one TwoSquares returns.

Let a be the product of all maximal powers of primes of the form 4k + 3 dividing n. A
representation of n as a sum of two squares exists if and only if a is a perfect square. Let b

400 CHAPTER 14. GAUSSIANS

be the maximal power of 2 dividing n, or its half, whichever is a perfect square. Then the
minimal possible gcd of x and y is the square root c of ab. The number of different minimal
representations with x <= y is 2l−1, where l is the number of different prime factors of the
form 4k + 1 of n.

gap> TwoSquares(5);
[1, 2]
gap> TwoSquares(11);
false # no representation exists
gap> TwoSquares(16);
[0, 4]
gap> TwoSquares(45);
[3, 6] # 3 is the minimal possible gcd because 9 divides 45
gap> TwoSquares(125);
[2, 11] # not [5, 10] because this has not minimal gcd
gap> TwoSquares(13*17);
[5, 14] # [10,11] would be the other possible representation
gap> TwoSquares(848654483879497562821);
[6305894639, 28440994650] # 848654483879497562821 is prime

Chapter 15

Subfields of Cyclotomic Fields

The only number fields that GAP can handle at the moment are subfields of cyclotomic
fields, e.g., Q(

√
5) is a number field that is not cyclotomic but contained in the cyclotomic

field Q5 = Q(e
2πi
5). Although this means that GAP does not know arbitrary algebraic

number fields but only those with abelian Galois group, here we call these fields number
fields for short. The elements of number fields are called cyclotomics (see chapter 13).
Thus number fields are the domains (see chapter 4) related to cyclotomics; they are special
field records (see 6.17) which are needed to specify the field extension with respect to which
e.g. the trace of a cyclotomic shall be computed.

In many situations cyclotomic fields need not be treated in a special way, except that there
may be more efficient algorithms for them than for arbitrary number fields. For that, there
are the global variables NumberFieldOps and CyclotomicFieldOps, both records which
contain the field operations stored in FieldOps (see chapter 6) and in which some functions
are overlaid (see 15.13). If all necessary information about a function is already given in
chapter 6, this function is not described here; this is the case e.g. for Conjugates and related
functions, like Trace and CharPol. Some functions, however, need further explanation, e.g.,
15.12 tells more about Coefficients for number fields.

There are some functions which are different for cyclotomic fields and other number fields,
e.g., the field constructors CF resp. NF. In such a situation, the special case is described in a
section immediately following the section about the general case.

Besides the single number fields, there is another domain in GAP related to number fields, the
domain Cyclotomics of all cyclotomics. Although this is an abstract field, namely the field
Qab, Cyclotomics is not a field record. It is used by DefaultField, DefaultRing, Domain,
Field and Ring (see 6.3, 5.3, 4.5, 6.2, 5.2) which are mainly interested in the corresponding
entries of Cyclotomics.operations since these functions know how to create fields resp.
integral rings generated by some cyclotomics.

This chapter informs about
characteristic functions (see 15.1, 15.2),
field constructors (see 15.3, 15.4),
(default) fields of cyclotomics (see 15.5), and (default) rings of cyclotomic integers
(see 15.6),
Galois groups of number fields (see 15.7, 15.8),

401

402 CHAPTER 15. SUBFIELDS OF CYCLOTOMIC FIELDS

vector space bases (see 15.9, 15.10, 15.11) and coefficients (see 15.12) and
overlaid functions in the operations records (see 15.13).

The external functions are in the file LIBNAME/"numfield.g"

15.1 IsNumberField

IsNumberField(obj)

returns true if obj is a field record (see 6.1, 6.17) of a field of characteristic zero where
F.generators is a list of cyclotomics (see chapter 13), and false else.

gap> IsNumberField(CF(9)); IsNumberField(NF([ER(3)]));
true
true
gap> IsNumberField(GF(2));
false

15.2 IsCyclotomicField

IsCyclotomicField(obj)

returns true if obj is a number field record (see 15.1) where obj.isCyclotomicField =
true, and false else.

gap> IsCyclotomicField(CF(9));
true
gap> IsCyclotomicField(NF([ER(-3)]));
true
gap> IsCyclotomicField(NF([ER(3)]));
false

15.3 Number Field Records

NumberField(gens)
NumberField(n, stab)
NumberField(subfield, poly)
NumberField(subfield, base)

NumberField may be abbreviated NF; it returns number fields, namely

NumberField(gens):
the number field generated by the cyclotomics in the list gens,

NumberField(n, stab):
the fixed field of the prime residues in the list stab inside the cyclotomic field Qn (see 15.4),

NumberField(subfield, poly):
the splitting field of the polynomial poly (which must have degree at most 2) over the number
field subfield ; subfield = 0 is equivalent to subfield = Rationals,

NumberField(subfield, base):
the extension field of the number field subfield which is as vector space generated by the
elements of the list base of cyclotomics; that means, base must be or at least contain a

15.4. CYCLOTOMIC FIELD RECORDS 403

vector space base of this extension, if base is a base it will be assigned to the base field of
the cyclotomic field (see 15.12). subfield = 0 is equivalent to subfield = Rationals.

gap> NF([EB(7), ER(3)]);
NF(84,[1, 11, 23, 25, 37, 71])
gap> NF(7, [1]);
CF(7)
gap> NF(NF([EB(7)]), [1, 1, 1]);
NF(NF(7,[1, 2, 4]),[1, E(3)])
gap> F:= NF(0, [1, E(4)]); G:= NF(0, NormalBaseNumberField(F));
GaussianRationals
CF(Rationals,[1/2-1/2*E(4), 1/2+1/2*E(4)])
gap> G.base; G.basechangemat; Coefficients(G, 1);
[1/2-1/2*E(4), 1/2+1/2*E(4)]
[[1, 1], [-1, 1]]
[1, 1]

Number field records are field records (see 6.17) representing a number field. Besides the
obligatory record components, a number field record F contains the component

stabilizer
the list of prime residues modulo NofCyc(F.generators) which fix all elements
of F

and possibly

isIntegralBase
true if F.base is an integral vector space base of the field extension F / F.field,
false else (used by 5.2 Ring); for the case that F.field is a cyclotomic field, 15.10
describes integral bases of the field extension;

isNormalBase
true if F.base is a normal vector space base of the field extension F/F.field,
false else;

coeffslist
a list of integers used by 9.10 Coefficients; (see also 15.12);

coeffsmat
a matrix of cyclotomics used by 9.10 Coefficients; bound only if F.field is not a
cyclotomic field (see also 15.12);

basechangemat
square matrix of dimension F.dimension, representing the basechange from the de-
fault base of F / F.field (see 15.12) to the base stored in F.base if these two are
different; used by Coefficients.

Note: These fields and also the field base should not be changed by hand!

15.4 Cyclotomic Field Records

CyclotomicField(n)
CyclotomicField(gens)
CyclotomicField(subfield, n)
CyclotomicField(subfield, base)

404 CHAPTER 15. SUBFIELDS OF CYCLOTOMIC FIELDS

CyclotomicField may be abbreviated CF; it returns cyclotomic fields, namely

CyclotomicField(n)
the field Qn (over the rationals),

CyclotomicField(gens)
the smallest cyclotomic field containing the cyclotomics in the list gens (over the
rationals),

CyclotomicField(subfield, n)
the field Qn over the number field subfield ,

CyclotomicField(subfield, base)
the cyclotomic extension field of the number field subfield which is as vector space
generated by the elements of the list base of cyclotomics; that means, base must be
or at least contain a vector space base of this extension, if base is a base it will be
assigned to the base field of the cyclotomic field (see 15.12). subfield = 0 is equivalent
to subfield = Rationals.

gap> CF(5); CF([EB(7), ER(3)]); CF(NF([ER(3)]), 24);
CF(5)
CF(84)
CF(24)/NF(12,[1, 11])
gap> CF(CF(3), [1, E(4)]);
CF(12)/CF(3)

A cyclotomic field record is a field record (see 6.17), in particular a number field record (see
15.3) that represents a cyclotomic field. Besides the obligatory record fields, a cyclotomic
field record F contains the fields

isCyclotomicField
always true; used by 15.2 IsCyclotomicField,

zumbroichbase
a list containing ZumbroichBase(n, m) (see 15.9) if F represents the field ex-
tension Qn/Qm, and containing Zumbroichbase(n, 1) if F is an extension of a
number field that is not cyclotomic; used by 9.10 Coefficients, see 15.12

and possibly optional fields of number fields (see 15.3).

15.5 DefaultField and Field for Cyclotomics

For a set S of cyclotomics,

DefaultField(S) = CF(S) is the smallest cylotomic field containing S (see 6.3), the
so–called conductor of S ;

Field(S) = NF(S) is the smallest field containing S (see 6.2).

gap> DefaultField([E(5)]); DefaultField([E(3), ER(6)]);
CF(5)
CF(24)
gap> Field([E(5)]); Field([E(3), ER(6)]);
CF(5)
NF(24,[1, 19])

15.6. DEFAULTRING AND RING FOR CYCLOTOMIC INTEGERS 405

DefaultField and Field are used by functions that specify the field for which some cy-
clotomics are regarded as elements (see 6.3, 6.2), e.g., Trace with only one argument will
compute the trace of this argument (which must be a cyclotomic) with respect to its default
field.

15.6 DefaultRing and Ring for Cyclotomic Integers

For a set S of cyclotomic integers,

DefaultRing(S) is the ring of integers in CF(S) (see 5.3),

Ring(S) is the ring of integers in NF(S) (see 5.2).

gap> Ring([E(5)]);
Ring(E(5))
gap> Ring([EB(7)]);
Ring(E(7)+E(7)^2+E(7)^4)
gap> DefaultRing([EB(7)]);
Ring(E(7))

15.7 GeneratorsPrimeResidues

GeneratorsPrimeResidues(n)

returns a record with fields

primes
the set of prime divisors of the integer n,

exponents
the corresponding exponents in the factorization of n and

generators
generators of the group of prime residues: For each odd prime p there is one generator,
corresponding to a primitive root of the subgroup (Z/pνp)∗ of (Z/nZ)∗, where νp is
the exponent of p in the factorization of n; for p = 2, we have one generator in
the case that 8 does not divide n, and a list of two generators (corresponding to
〈∗5, ∗(2ν2 − 1)〉 = (Z/2ν2)∗) else.

gap> GeneratorsPrimeResidues(9); # 2 is a primitive root
rec(
primes := [3],
exponents := [2],
generators := [2])

gap> GeneratorsPrimeResidues(24); # 8 divides 24
rec(
primes := [2, 3],
exponents := [3, 1],
generators := [[7, 13], 17])

gap> GeneratorsPrimeResidues(1155);
rec(
primes := [3, 5, 7, 11],
exponents := [1, 1, 1, 1],
generators := [386, 232, 661, 211])

406 CHAPTER 15. SUBFIELDS OF CYCLOTOMIC FIELDS

15.8 GaloisGroup for Number Fields

The Galois automorphisms of the cyclotomic field Qn are given by linear extension of
the maps ∗k : en 7→ ekn with 1 ≤ k < n and Gcd(n, k) = 1 (see 13.11). Note that this
action is not equal to exponentiation of cyclotomics, i.e., in general z∗k is different from zk:

gap> (E(5) + E(5)^4)^2; GaloisCyc(E(5) + E(5)^4, 2);
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(5)^2+E(5)^3

For Gcd(n, k) 6= 1, the map en 7→ ekn is not a field automorphism but only a linear map:

gap> GaloisCyc(E(5)+E(5)^4, 5); GaloisCyc((E(5)+E(5)^4)^2, 5);
2
-6

The Galois group Gal(Qn, Q) of the field extension Qn/Q is isomorphic to the group
(Z/nZ)∗ of prime residues modulo n, via the isomorphism

(Z/nZ)∗ → Gal(Qn, Q)
k 7→ (z 7→ z∗k) ,

thus the Galois group of the field extension Qn/L with L ⊆ Qn which is simply the factor
group of Gal(Qn, Q) modulo the stabilizer of L, and the Galois group of L/L′ which is
the subgroup in this group that stabilizes L′, are easily described in terms of (Z/nZ)∗

(Generators of (Z/nZ)∗ can be computed using 15.7 GeneratorsPrimeResidues.).

The Galois group of a field extension can be computed using 6.7 GaloisGroup:

gap> f:= NF([EY(48)]);
NF(48,[1, 47])
gap> g:= GaloisGroup(f);
Group(NFAutomorphism(NF(48,[1, 47]) , 17), NFAutomorphism(NF(48,
[1, 47]) , 11), NFAutomorphism(NF(48,[1, 47]) , 17))
gap> Size(g); IsCyclic(g); IsAbelian(g);
8
false
true
gap> f.base[1]; g.1; f.base[1] ^ g.1;
E(24)-E(24)^11
NFAutomorphism(NF(48,[1, 47]) , 17)
E(24)^17-E(24)^19
gap> Operation(g, NormalBaseNumberField(f), OnPoints);
Group((1,6)(2,4)(3,8)(5,7), (1,4,8,5)(2,3,7,6), (1,6)(2,4)(3,8)
(5,7))

The number field automorphism NFAutomorphism(F, k) maps each element x of F to
GaloisCyc(x, k), see 13.11.

15.9 ZumbroichBase

ZumbroichBase(n, m)

15.10. INTEGRAL BASES FOR NUMBER FIELDS 407

returns the set of exponents i where ein belongs to the base Bn,m of the field extension
Qn/Qm; for that, n and m must be positive integers where m divides n.

Bn,m is defined as follows:

Let P denote the set of prime divisors of n, n =
∏
p∈P p

νp , m =
∏
p∈P p

µp with µp ≤ νp,
and {ejn1

}j∈J ⊗ {ekn2
}k∈K = {ejn1

· ekn2
}j∈J,k∈K .

Then

Bn,m =
⊗
p∈P

νp−1⊗
k=µp

{ej
pk+1}j∈Jk,p where Jk,p =

{0} ; k = 0, p = 2
{0, 1} ; k > 0, p = 2
{1, . . . , p− 1} ; k = 0, p 6= 2
{−p−1

2 , . . . , p−1
2 } ; k > 0, p 6= 2

.

Bn,1 is equal to the base B(Qn) of Qn over the rationals given in [Zum89] (Note that the
notation here is slightly different from that there.).

Bn,m consists of roots of unity, it is an integral base (that is, the integral elements in Qn
have integral coefficients, see 13.2), it is a normal base for squarefree n and closed under
complex conjugation for odd n.

gap> ZumbroichBase(15, 1); ZumbroichBase(12, 3);
[1, 2, 4, 7, 8, 11, 13, 14]
[0, 3]
gap> ZumbroichBase(10, 2); ZumbroichBase(32, 4);
[2, 4, 6, 8]
[0, 1, 2, 3, 4, 5, 6, 7]

15.10 Integral Bases for Number Fields

LenstraBase(n, stabilizer, super)

returns a list [b1, b2, . . . , bm] of lists, each bi consisting of integers such that the elements∑
j∈bi E(n)j form an integral base of the number field NF(n, stabilizer), see 15.3.

super is a list representing a supergroup of the group described by the list stabilizer ; the
base is chosen such that the group of super acts on it, as far as this is possible.

Note: The bi are in general not sets, since for stabilizer = super , bi[1] is always an element
of ZumbroichBase(N , 1); this is used by NF (see 15.3) and Coefficients (see 15.12).

stabilizer must not contain the stabilizer of a proper cyclotomic subfield of Qn.

gap> LenstraBase(24, [1, 19], [1, 19]); # a base of
[[1, 19], [8], [11, 17], [16]] # Q3(

√
6),

gap> LenstraBase(24, [1, 19], [1, 5, 19, 23]); # another one
[[1, 19], [5, 23], [8], [16]]
gap> LenstraBase(15, [1, 4], PrimeResidues(15)); # normal base of
[[1, 4], [2, 8], [7, 13], [11, 14]] # Q3(

√
5)

408 CHAPTER 15. SUBFIELDS OF CYCLOTOMIC FIELDS

15.11 NormalBaseNumberField

NormalBaseNumberField(F)
NormalBaseNumberField(F, x)

returns a list of cyclotomics which form a normal base of the number field F (see 15.3), i.e.
a vector space base of the field F over its subfield F.field which is closed under the action
of the Galois group F.galoisGroup of the field extension.

The normal base is computed as described in [Art68]: Let Φ denote the polynomial of a field
extension L/L′, Φ′ its derivative and α one of its roots; then for all except finitely many
elements z ∈ L′, the conjugates of Φ(z)

(z−α)·Φ′(α) form a normal base of L/L′.

When NormalBaseNumberField(F) is called, z is chosen as integer, starting with 1,
NormalBaseNumberField(F, x) starts with z = x , increasing by one, until a normal
base is found.

gap> NormalBaseNumberField(CF(5));
[-E(5), -E(5)^2, -E(5)^3, -E(5)^4]
gap> NormalBaseNumberField(CF(8));
[1/4-2*E(8)-E(8)^2-1/2*E(8)^3, 1/4-1/2*E(8)+E(8)^2-2*E(8)^3,
1/4+2*E(8)-E(8)^2+1/2*E(8)^3, 1/4+1/2*E(8)+E(8)^2+2*E(8)^3]

15.12 Coefficients for Number Fields

Coefficients(z)
Coefficients(F, z)

return the coefficient vector cfs of z with respect to a particular base B , i.e., we have z =
cfs * B . If z is the only argument, B is the default base of the default field of z (see 15.5),
otherwise F must be a number field containing z , and we have B = F.base.

The default base of a number field is defined as follows:

For the field extension Qn/Qm (i.e. both F and F.field are cyclotomic fields), B is the
base Bn,m described in 15.9. This is an integral base which is closely related to the internal
representation of cyclotomics, thus the coefficients are easy to compute, using only the
zumbroichbase fields of F and F.field.

For the field extension L/Q where L is not a cyclotomic field, B is the integral base described
in 15.10 that consists of orbitsums on roots of unity. The computation of coefficients requires
the field F.coeffslist.

in future: replace Q by Qm
In all other cases, B = NormalBaseNumberField(F). Here, the coefficients of z with
respect to B are computed using F.coeffslist and F.coeffsmat.

If F.base is not the default base of F , the coefficients with respect to the default base are
multiplied with F.basechangemat. The only possibility where it is allowed to prescribe a
base is when the field is constructed (see 15.3, 15.4).

gap> F:= NF([ER(3), EB(7)]) / NF([ER(3)]);
NF(84,[1, 11, 23, 25, 37, 71])/NF(12,[1, 11])
gap> Coefficients(F, ER(3)); Coefficients(F, EB(7));

15.13. DOMAIN FUNCTIONS FOR NUMBER FIELDS 409

[-E(12)^7+E(12)^11, -E(12)^7+E(12)^11]
[11*E(12)^4+7*E(12)^7+11*E(12)^8-7*E(12)^11,
-10*E(12)^4-7*E(12)^7-10*E(12)^8+7*E(12)^11]

gap> G:= CF(8); H:= CF(0, NormalBaseNumberField(G));
CF(8)
CF(0,[1/4-2*E(8)-E(8)^2-1/2*E(8)^3, 1/4-1/2*E(8)+E(8)^2-2*E(8)^3,
1/4+2*E(8)-E(8)^2+1/2*E(8)^3, 1/4+1/2*E(8)+E(8)^2+2*E(8)^3])

gap> Coefficients(G, ER(2)); Coefficients(H, ER(2));
[0, 1, 0, -1]
[-1/3, 1/3, 1/3, -1/3]

15.13 Domain Functions for Number Fields

The following functions of FieldOps (see chapter 6) are overlaid in NumberFieldOps:

/, Coefficients, Conjugates, GaloisGroup, in, Intersection, Norm, Order, Print,
Random, Trace.

The following functions of NumberFieldOps are overlaid in CyclotomicFieldOps:

Coefficients, Conjugates, in, Norm, Print, Trace.

410 CHAPTER 15. SUBFIELDS OF CYCLOTOMIC FIELDS

Chapter 16

Algebraic extensions of fields

If we adjoin a root α of an irreducible polynomial p ∈ K[x] to the field K we get an
algebraic extension K(α), which is again a field. By Kronecker’s construction, we may
identify K(α) with the factor ring K[x]/(p), an identification that also provides a method
for computing in these extension fields.
Currently GAP only allows extension fields of fields K, when K itself is not an extension
field.
As it is planned to modify the representation of field extensions to unify vector space struc-
tures and to speed up computations, All information in this chapter is subject to
change in future versions.

16.1 AlgebraicExtension

AlgebraicExtension(pol)

constructs the algebraic extension L corresponding to the polynomial pol . pol must be an
irreducible polynomial defined over a “defining”field K . The elements of K are embedded
into L in the canonical way. As L is a field, all field functions are applicable to L. Similarly,
all field element functions apply to the elements of L.
L is considered implicitely to be a field over the subfield K . This means, that functions like
Trace and Norm relative to subfields are not supported.

gap> x:=X(Rationals);;x.name:="x";;
gap> p:=x^4+3*x^2+1;
x^4 + 3*x^2 + 1
gap> e:=AlgebraicExtension(p);
AlgebraicExtension(Rationals,x^4 + 3*x^2 + 1)
gap> e.name:="e";;
gap> IsField(e);
true
gap> y:=X(GF(2));;y.name:="y";;
gap> q:=y^2+y+1;
Z(2)^0*(y^2 + y + 1)
gap> f:=AlgebraicExtension(q);
AlgebraicExtension(GF(2),Z(2)^0*(y^2 + y + 1))

411

412 CHAPTER 16. ALGEBRAIC EXTENSIONS OF FIELDS

16.2 IsAlgebraicExtension

IsAlgebraicExtension(D)

IsAlgebraicExtension returns true if the object D is an algebraic field extension and
false otherwise.

More precisely, IsAlgebraicExtension tests whether D is an algebraic field extension
record (see 16.11). So, for example, a matrix ring may in fact be a field extension, yet
IsAlgebraicExtension would return false.

gap> IsAlgebraicExtension(e);
true
gap> IsAlgebraicExtension(Rationals);
false

16.3 RootOf

RootOf(pol)

returns a root of the irreducible polynomial pol as element of the corresponding exten-
sion field AlgebraicExtension(pol). This root is called the primitive element of this
extension.

gap> r:=RootOf(p);
RootOf(x^4 + 3*x^2 + 1)
gap> r.name:="alpha";;

16.4 Algebraic Extension Elements

According to Kronecker’s construction, the elements of an algebraic extension are considered
to be polynomials in the primitive element. Unless they are already in the defining field (in
which case they are represented as elements of this field), they are represented by records
in GAP (see 16.12). These records contain a representation a polynomial in the primitive
element. The extension corresponding to this primitive element is the default field for the
algebraic element.

The usual field operations are applicable to algebraic elements.

gap> r^3/(r^2+1);
-1*alpha^3-1*alpha
gap> DefaultField(r^2);
e

16.5 Set functions for Algebraic Extensions

As algebraic extensions are fields, all set theoretic functions are applicable to algebraic
elements. The following two routines are treated specially:

in

16.6. ISNORMALEXTENSION 413

tests, whether a given object is contained in an algebraic extension. The base field is
embedded in the natural way into the extension. Two extensions are considered to be
distinct, even if the minimal polynomial of one has a root in the other one.

gap> r in e;5 in e;
true
true
gap> p1:=Polynomial(Rationals,MinPol(r^2));
x^2 + 3*x + 1
gap> r2:=RootOf(p1);
RootOf(x^2 + 3*x + 1)
gap> r2 in e;
false

Random

A random algebraic element is computed by taking a linear combination of the powers of
the primitive element with random coefficients from the ground field.

gap> ran:=Random(e);
-1*alpha^3-4*alpha^2

16.6 IsNormalExtension

IsNormalExtension(L)

An algebraic extension field is called a normal extension, if it is a splitting field of the
defining polynomial. The second version returns whether L is a normal extension of K . The
first version returns whether L is a normal extension of its definition field.

gap> IsNormalExtension(e);
true
gap> p2:=x^4+x+1;;
gap> e2:=AlgebraicExtension(p2);
AlgebraicExtension(Rationals,x^4 + x + 1)
gap> IsNormalExtension(e2);
false

16.7 MinpolFactors

MinpolFactors(L)

returns the factorization of the defining polynomial of L over L.

gap> X(e).name:="X";;
gap> MinpolFactors(e);
[X + (-1*alpha), X + (-1*alpha^3-3*alpha), X + (alpha),
X + (alpha^3+3*alpha)]

16.8 GaloisGroup for Extension Fields

GaloisGroup(L)

414 CHAPTER 16. ALGEBRAIC EXTENSIONS OF FIELDS

returns the Galois group of the field L if L is a normal extension and issues an error if not.
The Galois group is a group of extension automorphisms (see 16.9).

The computation of a Galois group is computationally relatively hard, and can take signif-
icant time.

gap> g:=GaloisGroup(f);
Group(ExtensionAutomorphism(AlgebraicExtension(GF(2),Z(2)^0*(y^
2 + y + 1)),RootOf(Z(2)^0*(y^2 + y + 1))+Z(2)^0))
gap> h:=GaloisGroup(e);
Group(ExtensionAutomorphism(e,alpha^3+
3*alpha), ExtensionAutomorphism(e,-1*alpha), ExtensionAutomorphism(e,
-1*alpha^3-3*alpha))
gap> Size(h);
4
gap> AbelianInvariants(h);
[2, 2]

16.9 ExtensionAutomorphism

ExtensionAutomorphism(L, img)

is the automorphism of the extension L, that maps the primitive root of L to img . As it is
a field automorphism, section 6.13 applies.

16.10 Field functions for Algebraic Extensions

As already mentioned, algebraic extensions are fields. Thus all field functions like Norm and
Trace are applicable.

gap> Trace(r^4+2*r);
14
gap> Norm(ran);
305

DefaultField always returns the algebraic extension, which contains the primitive element
by which the number is represented, see 16.4.

gap> DefaultField(r^2);
e

As subfields are not yet supported, Field will issue an error, if several elements are given,
or if the element is not a primitive element for its default field.

You can create a polynomial ring over an algebraic extension to which all functions described
in 19.18 can be applied, for example you can factor polynomials. Factorization is done —
depending on the polynomial — by factoring the squarefree norem or using a hensel lift (with
possibly added lattice reduction) as described in [Abb89], using bounds from [BTW93].

gap> X(e).name:="X";;
gap> p1:=EmbeddedPolynomial(PolynomialRing(e),p1);
X^2 + 3*X + 1
gap> Factors(p1);
[X + (-1*alpha^2), X + (alpha^2+3)]

16.11. ALGEBRAIC EXTENSION RECORDS 415

16.11 Algebraic Extension Records

Since every algebraic extension is a field, it is represented as a record. This record contains
all components, a field record will contain (see 6.17). Additionally, it contains the com-
ponents isAlgebraicExtension, minpol, primitiveElm and may contain the components
isNormalExtension, minpolFactors and galoisType.

isAlgebraicExtension
is always true. This indicates that F is an algebraic extension.

minpol
is the defining polynomial of F .

primitiveElm
contains RootOf(F.minpol).

isNormalExtension
indicates, whether F is a normal extension field.

minpolFactors
contains a factorization of F.minpol over F .

galoisType
contains the Galois type of the normal closure of F . See section 16.16.

16.12 Extension Element Records

Elements of an algebraic extension are represented by a record. The record for the element
e of L contains the components isAlgebraicElement, domain and coefficients:

isAlgebraicElement
is always true, and indicates, that e is an algebraic element.

domain
contains L.

coefficients
contains the coefficients of e as a polynomial in the primitive root of L.

16.13 IsAlgebraicElement

IsAlgebraicElement(obj)

returns true if obj is an algebraic element, i.e., an element of an algebraic extension, that
is not in the defining field, and false otherwise.

gap> IsAlgebraicElement(r);
true
gap> IsAlgebraicElement(3);
false

16.14 Algebraic extensions of the Rationals

The following sections describe functions that are specific to algebraic extensions of Q′ .

416 CHAPTER 16. ALGEBRAIC EXTENSIONS OF FIELDS

16.15 DefectApproximation

DefectApproximation(L)

computes a multiple of the defect of the basis of L, given by the powers of the primitive
element. The defect indicates, which denominator is necessary in the coefficients, to express
algebraic integers in L as a linear combination of the base of L. DefectApproximation takes
the maximal square in the discriminant as a first approximation, and then uses Berwicks
and Hesses method (see [Bra89]) to improve this approximation. The number returned is
not neccessarily the defect, but may be a proper multiple of it.

gap> DefectApproximation(e);
1

16.16 GaloisType

GaloisType(L)
Galois(f)

The first version returns the number of the permutation isomorphism type of the Galois
group of the normal closure of L, considered as a transitive permutation group of the roots
of the defining polynomial (see 37.6). The second version returns the Galois type of the
splitting field of f . Identification is done by factoring appropriate Galois resolvents as
proposed in [MS85]. This function is provided for rational polynomials of degree up to 15.
However, it may be not feasible to call this function for polynomials of degree 14 or 15, as
the involved computations may be enormous. For some polynomials of degree 14, a complete
discrimination is not yet possible, as it would require computations, that are not feasible
with current factoring methods.

gap> GaloisType(e);
2
gap> TransitiveGroup(e.degree,2);
E(4) = 2[x]2

16.17 ProbabilityShapes

ProbabilityShapes(pol)

returns a list of numbers, which contains most likely the isomorphism type of the galois
group of pol (see 16.16). This routine only applies the cycle structure test according to
Tschebotareff’s theorem. Accordingly, it is very fast, but the result is not guaranteed to be
correct.

gap> ProbabilityShapes(e.minpol);
[2]

16.18 DecomPoly

DecomPoly(pol)
DecomPoly(pol, "all")

returns an ideal decomposition of the polynomial pol . An ideal decomposition is given by
two polynomials g and h, such that pol divides (g ◦ h). By the Galois correspondence any

16.18. DECOMPOLY 417

ideal decomposition corresponds to a block system of the Galois group. The polynomial g
defines a subfield K(β) of K(α) with h(α) = β. The first form finds one ideal decomposition,
while the second form finds all possible different ideal decompositions (i.e. all subfields).

gap> d:=DecomPoly(e.minpol);
[x^2 + 5, x^3 + 4*x]
gap> p:=x^6+108;;
gap> d:=DecomPoly(p,"all");
[[x^2 + 108, x^3], [x^3 + 108, x^2],
[x^3 - 186624, x^5 + 6*x^2], [x^3 + 186624, x^5 - 6*x^2]]

gap> Value(d[1][1],d[1][2]);
x^6 + 108

418 CHAPTER 16. ALGEBRAIC EXTENSIONS OF FIELDS

Chapter 17

Unknowns

Sometimes the result of an operation does not allow further computations with it. In many
cases, then an error is signalled, and the computation is stopped.

This is not appropriate for some applications in character theory. For example, if a character
shall be induced up (see 50.22) but the subgroup fusion is only a parametrized map (see
chapter 51), there are positions where the value of the induced character are not known,
and other values which are determined by the fusion map:

gap> m11:= CharTable("M11");; m12:= CharTable("M12");;
gap> fus:= InitFusion(m11, m12);
[1, [2, 3], [4, 5], [6, 7], 8, [9, 10], [11, 12],
[11, 12], [14, 15], [14, 15]]

gap> Induced(m11,m12,Sublist(m11.irreducibles,[6 .. 9]),fus);
#I Induced: subgroup order not dividing sum in character 1 at class 4
#I Induced: subgroup order not dividing sum in character 1 at class 5
#I Induced: subgroup order not dividing sum in character 1 at class 14
#I Induced: subgroup order not dividing sum in character 1 at class 15
#I Induced: subgroup order not dividing sum in character 2 at class 4
#I Induced: subgroup order not dividing sum in character 2 at class 5
#I Induced: subgroup order not dividing sum in character 2 at class 14
#I Induced: subgroup order not dividing sum in character 2 at class 15
#I Induced: subgroup order not dividing sum in character 3 at class 2
#I Induced: subgroup order not dividing sum in character 3 at class 3
#I Induced: subgroup order not dividing sum in character 3 at class 4
#I Induced: subgroup order not dividing sum in character 3 at class 5
#I Induced: subgroup order not dividing sum in character 3 at class 9
#I Induced: subgroup order not dividing sum in character 3 at class 10
#I Induced: subgroup order not dividing sum in character 4 at class 2
#I Induced: subgroup order not dividing sum in character 4 at class 3
#I Induced: subgroup order not dividing sum in character 4 at class 6
#I Induced: subgroup order not dividing sum in character 4 at class 7
#I Induced: subgroup order not dividing sum in character 4 at class 11
#I Induced: subgroup order not dividing sum in character 4 at class 12

419

420 CHAPTER 17. UNKNOWNS

#I Induced: subgroup order not dividing sum in character 4 at class 14
#I Induced: subgroup order not dividing sum in character 4 at class 15
[[192, 0, 0, Unknown(9), Unknown(12), 0, 0, 2, 0, 0, 0, 0, 0,

Unknown(15), Unknown(18)],
[192, 0, 0, Unknown(27), Unknown(30), 0, 0, 2, 0, 0, 0, 0, 0,

Unknown(33), Unknown(36)],
[528, Unknown(45), Unknown(48), Unknown(51), Unknown(54), 0, 0,

-2, Unknown(57), Unknown(60), 0, 0, 0, 0, 0],
[540, Unknown(75), Unknown(78), 0, 0, Unknown(81), Unknown(84), 0,

0, 0, Unknown(87), Unknown(90), 0, Unknown(93), Unknown(96)]]

For this and other situations, in GAP there is the data type unknown. Objects of this type,
further on called unknowns, may stand for any cyclotomic (see 13).

Unknowns are parametrized by positive integers. When a GAP session is started, no un-
knowns do exist.

The only ways to create unknowns are to call 17.1 Unknown or a function that calls it, or to
do arithmetical operations with unknowns (see 17.4).

Two properties should be noted:

Lists of cyclotomics and unknowns are no vectors, so cannot be added or multiplied like
vectors; as a consequence, unknowns never occur in matrices.

GAP objects which are printed to files will contain fixed unknowns, i.e., function calls
Unknown(n) instead of Unknown(), so be careful to read files printed in different ses-
sions, since there may be the same unknown at different places.

The rest of this chapter contains informations about the unknown constructor (see 17.1),
the characteristic function (see 17.2), and comparison of and arithmetical operations for
unknowns (see 17.3, 17.4); more is not yet known about unknowns.

17.1 Unknown

Unknown()
Unknown(n)

Unknown() returns a new unknown value, i.e. the first one that is larger than all unknowns
which exist in the actual GAP session.

Unknown(n) returns the n-th unknown; if it did not exist already, it is created.

gap> Unknown(); Unknown(2000); Unknown();
Unknown(97) # There were created already 96 unknowns.
Unknown(2000)
Unknown(2001)

17.2 IsUnknown

IsUnknown(obj)

returns true if obj is an object of type unknown, and false otherwise. Will signal an error
if obj is an unbound variable.

gap> IsUnknown(Unknown); IsUnknown(Unknown());

17.3. COMPARISONS OF UNKNOWNS 421

false
true
gap> IsUnknown(Unknown(2));
true

17.3 Comparisons of Unknowns

To compare unknowns with other objects, the operators <, <=, =, >=, > and <> can be used.
The result will be true if the first operand is smaller, smaller or equal, equal, larger or
equal, larger, or inequal, respectively, and false otherwise.

We have Unknown(n) >= Unknown(m) if and only if n >= m holds; unknowns are
larger than cyclotomics and finite field elements, unknowns are smaller than all objects
which are not cyclotomics, finite field elements or unknowns.

gap> Unknown() >= Unknown();
false
gap> Unknown(2) < Unknown(3);
true
gap> Unknown() > 3;
true
gap> Unknown() > Z(8);
false
gap> Unknown() > E(3);
true
gap> Unknown() > [];
false

17.4 Operations for Unknowns

The operators +, -, * and / are used for addition, subtraction, multiplication and division of
unknowns and cyclotomics. The result will be a new unknown except in one of the following
cases:

Multiplication with zero yields zero, and multiplication with one or addition of zero yields
the old unknown.

gap> Unknown() + 1; Unknown(2) + 0; last * 3; last * 1; last * 0;
Unknown(2010)
Unknown(2)
Unknown(2011)
Unknown(2011)
0

Note that division by an unknown causes an error, since an unknown might stand for zero.

422 CHAPTER 17. UNKNOWNS

Chapter 18

Finite Fields

Finite fields comprise an important algebraic domain. The elements in a field form an
additive group and the nonzero elements form a multiplicative group. For every prime
power q there exists a unique field of size q up to isomorphism. GAP supports finite fields
of size at most 216.

The first section in this chapter describes how you can enter elements of finite fields and
how GAP prints them (see 18.1).

The next sections describe the operations applicable to finite field elements (see 18.2 and
18.3).

The next section describes the function that tests whether an object is a finite field element
(see 18.4).

The next sections describe the functions that give basic information about finite field ele-
ments (see 18.5, 18.6, and 18.7).

The next sections describe the functions that compute various other representations of finite
field elements (see 18.8 and 18.9).

The next section describes the function that constructs a finite field (see 18.10).

Finite fields are domains, thus all set theoretic functions are applicable to them (see chapter
4 and 18.12).

Finite fields are of course fields, thus all field functions are applicable to them and to their
elements (see chapter 6 and 18.13).

All functions are in LIBNAME/"finfield.g".

18.1 Finite Field Elements

Z(p^d)

The function Z returns the designated generator of the multiplicative group of the finite field
with p^d elements. p must be a prime and p^d must be less than or equal to 216 = 65536.

The root returned by Z is a generator of the multiplicative group of the finite field with pd

elements, which is cyclic. The order of the element is of course pd − 1. The pd − 1 different
powers of the root are exactly the nonzero elements of the finite field.

423

424 CHAPTER 18. FINITE FIELDS

Thus all nonzero elements of the finite field with p^d elements can be entered as Z(p^d)^i .
Note that this is also the form that GAP uses to output those elements.

The additive neutral element is 0*Z(p). It is different from the integer 0 in subtle ways. First
IsInt(0*Z(p)) (see 10.5) is false and IsFFE(0*Z(p)) (see 18.4) is true, whereas it
is just the other way around for the integer 0.

The multiplicative neutral element is Z(p)^0. It is different from the integer 1 in subtle
ways. First IsInt(Z(p)^0) (see 10.5) is false and IsFFE(Z(p)^0) (see 18.4) is true,
whereas it is just the other way around for the integer 1. Also 1+1 is 2, whereas, e.g., Z(2)^0
+ Z(2)^0 is 0*Z(2).

The various roots returned by Z for finite fields of the same characteristic are compatible
in the following sense. If the field GF (pn) is a subfield of the field GF (pm), i.e., n divides
m, then Z(pn) = Z(pm)(pm−1)/(pn−1). Note that this is the simplest relation that may hold
between a generator of GF (pn) and GF (pm), since Z(pn) is an element of order pm − 1
and Z(pm) is an element of order pn − 1. This is achieved by choosing Z(p) as the smallest
primitive root modulo p and Z(pn) as a root of the n-th Conway polynomial of characteristic
p. Those polynomials where defined by J.H. Conway and computed by R.A. Parker.

gap> z := Z(16);
Z(2^4)
gap> z*z;
Z(2^4)^2

18.2 Comparisons of Finite Field Elements

z1 = z2
z1 <> z2

The equality operator = evaluates to true if the two elements in a finite field z1 and z2
are equal and to false otherwise. The inequality operator <> evaluates to true if the two
elements in a finite finite field z1 and z2 are not equal and to false otherwise.

Note that the integer 0 is not equal to the zero element in any finite field. There comparisons
z = 0 will always evaluate to false. Use z = 0*z instead, or even better z = F.zero,
where F is the field record for a finite field of the same characteristic.

gap> Z(2^4)^10 = Z(2^4)^25;
true # Z(2^4) has order 15
gap> Z(2^4)^10 = Z(2^2)^2;
true # shows the embedding of GF(4) into GF(16)
gap> Z(2^4)^10 = Z(3);
false

z1 < z2
z1 <= z2
z1 > z2
z1 >= z2

The operators <, <=, >, and => evaluate to true if the element in a finite field z1 is less
than, less than or equal to, greater than, and greater than or equal to the element in a finite
field z2 .

18.3. OPERATIONS FOR FINITE FIELD ELEMENTS 425

Elements in finite fields are ordered as follows. If the two elements lie in fields of different
characteristics the one that lies in the field with the smaller characteristic is smaller. If the
two elements lie in different fields of the same characteristic the one that lies in the smaller
field is smaller. If the two elements lie in the same field and one is the zero and the other
is not, the zero element is smaller. If the two elements lie in the same field and both are
nonzero, and are represented as Z(pd)i1 and Z(pd)i2 respectively, then the one with the
smaller i is smaller.

You can compare elements in a finite field with objects of other types. Integers, rationals,
and cyclotomics are smaller than elements in finite fields, all other objects are larger. Note
especially that the integer 0 is smaller than the zero in every finite field.

gap> Z(2) < Z(3);
true
gap> Z(2) < Z(4);
true
gap> 0*Z(2) < Z(2);
true
gap> Z(4) < Z(4)^2;
true
gap> 0 < 0*Z(2);
true
gap> Z(4) < [Z(4)];
true

18.3 Operations for Finite Field Elements

z1 + z2
z1 - z2
z1 * z2
z1 / z2

The operators +, -, * and / evaluate to the sum, difference, product, and quotient of the
two finite field elements z1 and z2 , which must lie in fields of the same characteristic. For
the quotient / z2 must of course be nonzero. The result must of course lie in a finite field
of size less than or equal to 216, otherwise an error is signalled.

Either operand may also be an integer i . If i is zero it is taken as the zero in the finite field,
i.e., F.zero, where F is a field record for the finite field in which the other operand lies. If
i is positive, it is taken as i -fold sum F.one+F.one+..+F.one. If i is negative it is taken
as the additive inverse of -i .

gap> Z(8) + Z(8)^4;
Z(2^3)^2
gap> Z(8) - 1;
Z(2^3)^3
gap> Z(8) * Z(8)^6;
Z(2)^0
gap> Z(8) / Z(8)^6;
Z(2^3)^2
gap> -Z(9);

426 CHAPTER 18. FINITE FIELDS

Z(3^2)^5

z ^ i

The powering operator ^ returns the i -th power of the element in a finite field z . i must be
an integer. If the exponent i is zero, z^i is defined as the one in the finite field, even if z is
zero; if i is positive, z^i is defined as the i -fold product z*z*..*z ; finally, if i is negative,
z^i is defined as (1/z)^-i . In this case z must of course be nonzero.

gap> Z(4)^2;
Z(2^2)^2
gap> Z(4)^3;
Z(2)^0 # is in fact 1
gap> (0*Z(4))^0;
Z(2)^0

18.4 IsFFE

IsFFE(obj)

IsFFE returns true if obj , which may be an object of an arbitrary type, is an element in a
finite field and false otherwise. Will signal an error if obj is an unbound variable.

Note that integers, even though they can be multiplied with elements in finite fields, are
not considered themselves elements in finite fields. Therefore IsFFE will return false for
integer arguments.

gap> IsFFE(Z(2^4)^7);
true
gap> IsFFE(5);
false

18.5 CharFFE

CharFFE(z) or CharFFE(vec) or CharFFE(mat)

CharFFE returns the characteristic of the finite field F containing the element z , respectively
all elements of the vector vec over a finite field (see 32), or matrix mat over a finite field
(see 34).

gap> CharFFE(Z(16)^7);
2
gap> CharFFE(Z(16)^5);
2
gap> CharFFE([Z(3), Z(27)^11, Z(9)^3]);
3
gap> CharFFE([[Z(5), Z(125)^3], [Z(625)^13, Z(5)]]);
Error, CharFFE: <z> must be a finite field element, vector, or matrix
The smallest finite field which contains all four of these elements
is too large for GAP

18.6. DEGREEFFE 427

18.6 DegreeFFE

DegreeFFE(z) or DegreeFFE(vec) or DegreeFFE(mat)

DegreeFFE returns the degree of the smallest finite field F containing the element z , re-
spectively all elements of the vector vec over a finite field (see 32), or matrix mat over a
finite field (see 34). For vectors and matrices, an error is signalled if the smallest finite field
containing all elements of the vector or matrix has size larger than 216.

gap> DegreeFFE(Z(16)^7);
4
gap> DegreeFFE(Z(16)^5);
2
gap> DegreeFFE([Z(3), Z(27)^11, Z(9)^3]);
6
gap> DegreeFFE([[Z(5), Z(125)^3], [Z(625)^13, Z(5)]]);
Error, DegreeFFE: <z> must be a finite field element, vector, or matrix
The smallest finite field which contains all four of these elements
is too large for GAP

18.7 OrderFFE

OrderFFE(z)

OrderFFE returns the order of the element z in a finite field. The order is the smallest
positive integer i such that z^i is 1. The order of the zero in a finite field is defined to be 0.

gap> OrderFFE(Z(16)^7);
15
gap> OrderFFE(Z(16)^5);
3
gap> OrderFFE(Z(27)^11);
26
gap> OrderFFE(Z(625)^13);
48
gap> OrderFFE(Z(211)^0);
1

18.8 IntFFE

IntFFE(z)

IntFFE returns the integer corresponding to the element z , which must lie in a finite prime
field. That is IntFFE returns the smallest nonnegative integer i such that i * z^0 = z .

The correspondence between elements from a finite prime field of characteristic p and the
integers between 0 and p-1 is defined by choosing Z(p) the smallest primitive root mod p
(see 11.6).

gap> IntFFE(Z(13));
2
gap> PrimitiveRootMod(13);

428 CHAPTER 18. FINITE FIELDS

2
gap> IntFFE(Z(409));
21
gap> IntFFE(Z(409)^116);
311
gap> 21^116 mod 409;
311

18.9 LogFFE

LogFFE(z)
LogFFE(z, r)

In the first form LogFFE returns the discrete logarithm of the element z in a finite field with
respect to the root FieldFFE(z).root. An error is signalled if z is zero.

In the second form LogFFE returns the discrete logarithm of the element z in a finite field
with respect to the root r . An error is signalled if z is zero, or if z is not a power of r .

The discrete logarithm of an element z with respect to a root r is the smallest nonnegative
integer i such that ri = z.

gap> LogFFE(Z(409)^116);
116
gap> LogFFE(Z(409)^116, Z(409)^2);
58

18.10 GaloisField

GaloisField(p^d)
GF(p^d)
GaloisField(p|S, d|pol|bas)
GF(p|S, d|pol|bas)

GaloisField returns a field record (see 6.17) for a finite field. It takes two arguments. The
form GaloisField(p,d), where p,d are integers, can also be given as GaloisField(p^d).
GF is an abbreviation for GaloisField.

The first argument specifies the subfield S over which the new field F is to be taken. It can
be a prime or a finite field record. If it is a prime p, the subfield is the prime field of this
characteristic. If it is a field record S , the subfield is the field described by this record.

The second argument specifies the extension. It can be an integer, an irreducible polynomial,
or a base. If it is an integer d , the new field is constructed as the polynomial extension with
the Conway polynomial of degree d over the subfield S . If it is an irreducible polynomial
pol , in which case the elements of the list pol must all lie in the subfield S , the new field is
constructed as polynomial extension of the subfield S with this polynomial. If it is a base
bas, in which case the elements of the list bas must be linear independently over the subfield
S , the new field is constructed as a linear vector space over the subfield S .

Note that the subfield over which a field was constructed determines over which field the
Galois group, conjugates, norm, trace, minimal polynom, and characteristic polynom are
computed (see 6.7, 6.12, 6.10, 6.11, 6.8, 6.9, and 18.13).

18.11. FROBENIUSAUTOMORPHISM 429

gap> GF(2^4);
GF(2^4)
gap> GF(GF(2^4), 2);
GF(2^8)/GF(2^4)

18.11 FrobeniusAutomorphism

FrobeniusAutomorphism(F)

FrobeniusAutomorphism returns the Frobenius automorphism of the finite field F as a field
homomorphism (see 6.13).
The Frobenius automorphism f of a finite field F of characteristic p is the function that
takes each element z of F to its p-th power. Each automorphism of F is a power of the
Frobenius automorphism. Thus the Frobenius automorphism is a generator for the Galois
group of F (and an appropriate power of it is a generator of the Galois group of F over a
subfield S) (see 6.7).

gap> f := GF(16);
GF(2^4)
gap> x := FrobeniusAutomorphism(f);
FrobeniusAutomorphism(GF(2^4))
gap> Z(16) ^ x;
Z(2^4)^2

The image of an element z under the i -th power of the Frobenius automorphism f of a finite
field F of characteristic p is simply computed by computing the p^i -th power of z . The
product of the i -th power and the j -th power of f is the k -th power of f , where k is i*j mod
(Size(F)-1). The zeroth power of f is printed as IdentityMapping(F).

18.12 Set Functions for Finite Fields

Finite fields are of course domains. Thus all set theoretic functions are applicable to finite
fields (see chapter 4). This section gives further comments on the definitions and implemen-
tations of those functions for finite fields. All set theoretic functions not mentioned here are
not treated specially for finite fields.
Elements

The elements of a finite field are computed using the fact that the finite field is a vector
space over its prime field.
in

The membership test is of course very simple, we just have to test whether the element is a
finite field element with IsFFE, whether it has the correct characteristic with CharFFE, and
whether its degree divides the degree of the finite field with DegreeFFE (see 18.4, 18.5, and
18.6).
Random

A random element of GF (pn) is computed by computing a random integer i from [0..pn−1]
and returning 0 ∗ Z(p) if i = 0 and Z(pn)i−1 otherwise.
Intersection

The intersection of GF (pn) and GF (pm) is the finite field GF (pGcd(n,m)), and is returned
as finite field record.

430 CHAPTER 18. FINITE FIELDS

18.13 Field Functions for Finite Fields

Finite fields are, as the name already implies, fields. Thus all field functions are applicable
to finite fields and their elements (see chapter 6). This section gives further comments on
the definitions and implementations of those functions for finite fields. All domain functions
not mentioned here are not treated specially for finite fields.

Field and DefaultField

Both Field and DefaultField return the smallest finite field containing the arguments as
an extension of the prime field.

GaloisGroup

The Galois group of a finite field F of size pm over a subfield S of size q = pn is a cyclic
group of size m/n. It is generated by the Frobenius automorphism that takes every
element of F to its q-th power. This automorphism of F leaves exactly the subfield S fixed.

Conjugates

According to the above theorem about the Galois group, each element of F has m/n con-
jugates, z, zq, zq

2
, ..., zq

m/n−1
.

Norm

The norm is the product of the conjugates, i.e., zp
m−1/pn−1. Because we have Z(pn) =

Z(pm)p
m−1/pn−1, it follows that Norm(GF (pm)/GF (pn), Z(pm)i) = Z(pn)i.

Chapter 19

Polynomials

Let R be a commutative ring-with-one. A (univariate) Laurent polynomial over R is a
sequence (..., c−1, c0, c1, ...) of elements of R such that only finitely many are non-zero. For
a ring element r of R and polynomials f = (..., f−1, f0, f1, ...) and g = (..., g−1, g0, g1, ...)
we define f + g = (..., f−1 + g−1, f0 + g0, f1 + g1, ...) , r · f = (..., rf−1, rf0, rf1, ...), and
f ∗ g = (..., s−1, s0, s1, ...), where sk = ...+ figk−i + Note that sk is well-defined as only
finitely many fi and gi are non-zero. We call the largest integers d(f), such that fd(f) is
non-zero, the degree of f , fi the i.th coefficient of f , and fd(f) the leading coefficient of
f . If the smallest integer v(f), such that fv(f) is non-zero, is negative, we say that f has a
pole of order v at 0, otherwise we say that f has a root of order v at 0. We call R the base
(or coefficient) ring of f . If f = (..., 0, 0, 0, ...) we set d(f) = −1 and v(f) = 0.

The set of all Laurent polynomials L(R) over a ring R together with above definitions of +
and ∗ is again a ring, the Laurent polynomial ring over R, and R is called the base ring
of L(R). The subset of all polynomials f with non-negative v(f) forms a subring P (R) of
L(R), the polynomial ring over R. If R is indeed a field then both rings L(R) and P (R)
are Euclidean. Note that L(R) and P (R) have different Euclidean degree functions. If f is
an element of P (R) then the Euclidean degree of f is simply the degree of f . If f is viewed
as an element of L(R) then the Euclidean degree is the difference between d(f) and v(f).
The units of P (R) are just the units of R, while the units of L(R) are the polynomials f
such that v(f) = d(f) and fd(f) is a unit in R.

GAP uses the above definition of polynomials. This definition has some advantages and
some drawbacks. First of all, the polynomial (..., x0 = 0, x1 = 1, x2 = 0, ...) is commonly
denoted by x and is called an indeterminate over R, (..., c−1, c0, c1, ...) is written as ... +
c−1x

−1+c0+c1x+c2x2+..., and P (R) as R[x] (note that the way GAP outputs a polynomial
resembles this definition). But if we introduce a second indeterminate y it is not obvious
whether the product xy lies in (R[x])[y], the polynomial ring in y over the polynomial ring
in x, in (R[y])[x], in R[x, y], the polynomial ring in two indeterminates, or in R[y, x] (which
should be equal to R[x, y]). Using the first definition we would define y as indeterminate
over R[x] and we know then that xy lies in (R[x])[y].

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> Rx := LaurentPolynomialRing(Rationals);;
gap> y := Indeterminate(Rx);; y.name := "y";;

431

432 CHAPTER 19. POLYNOMIALS

gap> y^2 + x;
y^2 + (x)
gap> last^2;
y^4 + (2*x)*y^2 + (x^2)
gap> last + x;
y^4 + (2*x)*y^2 + (x^2 + x)
gap> (x^2 + x + 1) * y^2 + y + 1;
(x^2 + x + 1)*y^2 + y + (x^0)
gap> x * y;
(x)*y
gap> y * x;
(x)*y
gap> 2 * x;
2*x
gap> x * 2;
2*x

Note that GAP does not embed the base ring of a polynomial into the polynomial ring. The
trivial polynomial and the zero of the base ring are always different.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> Rx := LaurentPolynomialRing(Rationals);;
gap> y := Indeterminate(Rx);; y.name := "y";;
gap> 0 = 0*x;
false
gap> nx := 0*x; # a polynomial over the rationals
0*x^0
gap> ny := 0*y; # a polynomial over a polynomial ring
0*y^0
gap> nx = ny; # different base rings
false

The result 0*x 6= 0*y is probably not what you expect or want. In order to compute with
two indeterminates over R you must embed x into R[x][y].

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> Rx := LaurentPolynomialRing(Rationals);;
gap> y := Indeterminate(Rx);; y.name := "y";;
gap> x := x * y^0;
x*y^0
gap> 0*x = 0*y;
true

The other point which might be startling is that we require the supply of a base ring for a
polynomial. But this guarantees that Factor gives a predictable result.

gap> f5 := GF(5);; f5.name := "f5";;
gap> f25 := GF(25);; f25.name := "f25";;
gap> Polynomial(f5, [3,2,1]*Z(5)^0);
Z(5)^0*(X(f5)^2 + 2*X(f5) + 3)
gap> Factors(last);
[Z(5)^0*(X(f5)^2 + 2*X(f5) + 3)]

19.1. MULTIVARIATE POLYNOMIALS 433

gap> Polynomial(f25, [3,2,1]*Z(5)^0);
X(f25)^2 + Z(5)*X(f25) + Z(5)^3
gap> Factors(last);
[X(f25) + Z(5^2)^7, X(f25) + Z(5^2)^11]

The first sections describe how polynomials are constructed (see 19.2, 19.3, and 19.4).

The next sections describe the operations applicable to polynomials (see 19.5 and 19.6).

The next sections describe the functions for polynomials (see 19.7, 19.10 and 19.9).

The next sections describe functions that construct certain polynomials (see 19.12, 19.13).

The next sections describe the functions for constructing the Laurent polynomial ring L(R)
and the polynomial ring P (R) (see 19.14 and 19.16).

The next sections describe the ring functions applicable to Laurent polynomial rings. (see
19.18 and 19.19).

19.1 Multivariate Polynomials

As explained above, each ring R has exactly one indeterminate associated with R. In order
to construct a polynomial ring with two indeterminates over R you must first construct the
polynomial ring P (R) and then the polynomial ring over P (R).

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> Rx := PolynomialRing(Integers);;
gap> y := Indeterminate(Rx);; y.name := "y";;
gap> x := y^0 * x;
x*y^0
gap> f := x^2*y^2 + 3*x*y + x + 4*y;
(x^2)*y^2 + (3*x + 4)*y + (x)
gap> Value(f, 4);
16*x^2 + 13*x + 16
gap> Value(last, -2);
54
gap> (-2)^2 * 4^2 + 3*(-2)*4 + (-2) + 4*4;
54

We plan to add support for (proper) multivariate polynomials in one of the next releases of
GAP.

19.2 Indeterminate

Indeterminate(R)
X(R)

Indeterminate returns the polynomial (..., x0 = 0, x1 = 1, x2 = 0, ...) over R, which must
be a commutative ring-with-one or a field.

Note that you can assign a name to the indeterminate, in which case all polynomials over
R are printed using this name. Keep in mind that for each ring there is exactly one inde-
terminate.

gap> x := Indeterminate(Integers);; x.name := "x";;

434 CHAPTER 19. POLYNOMIALS

gap> f := x^10 + 3*x - x^-1;
x^10 + 3*x - x^(-1)
gap> y := Indeterminate(Integers);; # this is x
gap> y.name := "y";;
gap> f; # so f is also printed differently from now on
y^10 + 3*y - y^(-1)

19.3 Polynomial

Polynomial(R, l)
Polynomial(R, l, v)

l must be a list of coefficients of the polynomial f to be constructed, namely (..., fv =
l [1], fv+1 = l [2], ...) over R, which must be a commutative ring-with-one or a field. The
default for v is 0. Polynomial returns this polynomial f .

For interactive calculation it might by easier to construct the indeterminate over R and
construct the polynomial using ^, + and *.

gap> x := Indeterminate(Integers);;
gap> x.name := "x";;
gap> f := Polynomial(Integers, [1,2,0,0,4]);
4*x^4 + 2*x + 1
gap> g := 4*x^4 + 2*x + 1;
4*x^4 + 2*x + 1

19.4 IsPolynomial

IsPolynomial(obj)

IsPolynomial returns true if obj , which can be an object of arbitrary type, is a polynomial
and false otherwise. The function will signal an error if obj is an unbound variable.

gap> IsPolynomial(1);
false
gap> IsPolynomial(Indeterminate(Integers));
true

19.5 Comparisons of Polynomials

f = g
f <> g

The equality operator = evaluates to true if the polynomials f and g are equal, and to
false otherwise. The inequality operator <> evaluates to true if the polynomials f and g
are not equal, and to false otherwise.

Note that polynomials are equal if and only if their coefficients and their base rings are
equal. Polynomials can also be compared with objects of other types. Of course they are
never equal.

gap> f := Polynomial(GF(5^3), [1,2,3]*Z(5)^0);
Z(5)^3*X(GF(5^3))^2 + Z(5)*X(GF(5^3)) + Z(5)^0

19.6. OPERATIONS FOR POLYNOMIALS 435

gap> x := Indeterminate(GF(25));;
gap> g := 3*x^2 + 2*x + 1;
Z(5)^3*X(GF(5^2))^2 + Z(5)*X(GF(5^2)) + Z(5)^0
gap> f = g;
false
gap> x^0 = Z(25)^0;
false

f < g
f <= g
f > g
f >= g

The operators <, <=, >, and >= evaluate to true if the polynomial f is less than, less than or
equal to, greater than, or greater than or equal to the polynomial g , and to false otherwise.

A polynomial f is less than g if v(f) is less than v(g), or if v(f) and v(g) are equal and d(f)
is less than d(g). If v(f) is equal to v(g) and d(f) is equal to d(g) the coefficient lists of f
and g are compared.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> (1 + x^2 + x^3)*x^3 < (2 + x^2 + x^3);
false
gap> (1 + x^2 + x^4) < (2 + x^2 + x^3);
false
gap> (1 + x^2 + x^3) < (2 + x^2 + x^3);
true

19.6 Operations for Polynomials

The following operations are always available for polynomials. The operands must have a
common base ring, no implicit conversions are performed.

f + g

The operator + evaluates to the sum of the polynomials f and g , which must be polynomials
over a common base ring.

gap> f := Polynomial(GF(2), [Z(2), Z(2)]);
Z(2)^0*(X(GF(2)) + 1)
gap> f + f;
0*X(GF(2))^0
gap> g := Polynomial(GF(4), [Z(2), Z(2)]);
X(GF(2^2)) + Z(2)^0
gap> f + g;
Error, polynomials must have the same ring

f + scl
scl + f

The operator + evaluates to the sum of the polynomial f and the scalar scl , which must lie
in the base ring of f .

gap> x := Indeterminate(Integers);; x.name := "x";;

436 CHAPTER 19. POLYNOMIALS

gap> h := Polynomial(Integers, [1,2,3,4]);
4*x^3 + 3*x^2 + 2*x + 1
gap> h + 1;
4*x^3 + 3*x^2 + 2*x + 2
gap> 1/2 + h;
Error, <l> must lie in the base ring of <r>

f - g

The operator - evaluates to the difference of the polynomials f and g , which must be
polynomials over a common base ring.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> h := Polynomial(Integers, [1,2,3,4]);
4*x^3 + 3*x^2 + 2*x + 1
gap> h - 2*h;
-4*x^3 - 3*x^2 - 2*x - 1

f - scl
scl - f

The operator - evaluates to the difference of the polynomial f and the scalar scl , which
must lie in the base ring of f .

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> h := Polynomial(Integers, [1,2,3,4]);
4*x^3 + 3*x^2 + 2*x + 1
gap> h - 1;
4*x^3 + 3*x^2 + 2*x
gap> 1 - h;
-4*x^3 - 3*x^2 - 2*x

f * g

The operator * evaluates to the product of the two polynomials f and g , which must be
polynomial over a common base ring.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> h := 4*x^3 + 3*x^2 + 2*x + 1;
4*x^3 + 3*x^2 + 2*x + 1
gap> h * h;
16*x^6 + 24*x^5 + 25*x^4 + 20*x^3 + 10*x^2 + 4*x + 1

f * scl
scl * f

The operator * evaluates to the product of the polynomial f and the scalar scl , which must
lie in the base ring of f .

gap> f := Polynomial(GF(2), [Z(2), Z(2)]);
Z(2)^0*(X(GF(2)) + 1)
gap> f - Z(2);
X(GF(2))
gap> Z(4) - f;
Error, <l> must lie in the base ring of <r>

f ^ n

19.7. DEGREE 437

The operator ^ evaluates the the n-th power of the polynomial f . If n is negative ^ will try
to invert f in the Laurent polynomial ring ring.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> k := x - 1 + x^-1;
x - 1 + x^(-1)
gap> k ^ 3;
x^3 - 3*x^2 + 6*x - 7 + 6*x^(-1) - 3*x^(-2) + x^(-3)
gap> k^-1;
Error, cannot invert <l> in the laurent polynomial ring

f / scl

The operator / evaluates to the product of the polynomial f and the inverse of the scalar
scl , which must be invertable in its default ring.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> h := 4*x^3 + 3*x^2 + 2*x + 1;
4*x^3 + 3*x^2 + 2*x + 1
gap> h / 3;
(4/3)*x^3 + x^2 + (2/3)*x + (1/3)

scl / f

The operator / evaluates to the product of the scalar scl and the inverse of the polynomial
f , which must be invertable in its Laurent ring.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> 30 / x;
30*x^(-1)
gap> 3 / (1+x);
Error, cannot invert <l> in the laurent polynomial ring

f / g

The operator / evaluates to the quotient of the two polynomials f and g , if such quotient
exists in the Laurent polynomial ring. Otherwise / signals an error.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> f := (1+x+x^2) * (3-x-2*x^2);
-2*x^4 - 3*x^3 + 2*x + 3
gap> f / (1+x+x^2);
-2*x^2 - x + 3
gap> f / (1+x);
Error, cannot divide <l> by <r>

19.7 Degree

Degree(f)

Degree returns the degree df of f (see 19).

Note that this is only equal to the Euclidean degree in the polynomial ring P (R). It is not
equal in the Laurent polynomial ring L(R).

gap> x := Indeterminate(Rationals);; x.name := "x";;

438 CHAPTER 19. POLYNOMIALS

gap> Degree(x^10 + x^2 + 1);
10
gap> EuclideanDegree(x^10 + x^2 + 1);
10 # the default ring is the polynomial ring
gap> Degree(x^-10 + x^-11);
-10
gap> EuclideanDegree(x^-10 + x^-11);
1 # the default ring is the Laurent polynomial ring

19.8 LeadingCoefficient

LeadingCoefficient(f)

LeadingCoefficient returns the last non-zero coefficient of f (see 19).

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> LeadingCoefficient(3*x^2 + 2*x + 1);
3

19.9 Value

Value(f , w)

Let f be a Laurent polynomial (..., f−1, f0, f1, ...). Then Value returns the finite sum ... +
f−1w−1 + f0w0 + f1w +

Note that x need not be contained in the base ring of f .

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> k := -x + 1;
-x + 1
gap> Value(k, 2);
-1
gap> Value(k, [[1,1],[0,1]]);
[[0, -1], [0, 0]]

19.10 Derivative

Derivative(f)

Let f be a Laurent polynomial (..., f−1, f0, f1, ...). Then Derivative returns the polynomial
g = (..., gi−1 = i ∗ fi, ...).

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> Derivative(x^10 + x^-11);
10*x^9 - 11*x^(-12)
gap> y := Indeterminate(GF(5));; y.name := "y";;
gap> Derivative(y^10 + y^-11);
Z(5)^2*y^(-12)

19.11. INTERPOLATEDPOLYNOMIAL 439

19.11 InterpolatedPolynomial

InterpolatedPolynomial(R, x, y)

InterpolatedPolynomial returns the unique polynomial of degree less than n which has
value y[i] at x[i] for all i = 1, ..., n, where x and y must be lists of elements of the ring or
field R, if such a polynomial exists. Note that the elements in x must be distinct.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> p := InterpolatedPolynomial(Rationals, [1,2,3,4], [3,2,4,1]);
(-4/3)*x^3 + (19/2)*x^2 + (-121/6)*x + 15
gap> List([1,2,3,4], x -> Value(p,x));
[3, 2, 4, 1]
gap> Unbind(x.name);

19.12 ConwayPolynomial

ConwayPolynomial(p, n)

returns the Conway polynomial of the finite field GF (pn) as polynomial over the Rationals.
The Conway polynomial Φn,p of GF (pn) is defined by the following properties.
First define an ordering of polynomials of degree n over GF (p) as follows.
f =

∑n
i=0(−1)ifixi is smaller than g =

∑n
i=0(−1)igixi if and only if there is an index

m ≤ n such that fi = gi for all i > m, and f̃m < g̃m, where c̃ denotes the integer value in
{0, 1, . . . , p− 1} that is mapped to c ∈ GF (p) under the canonical epimorphism that maps
the integers onto GF (p).
Φn,p is primitive over GF (p), that is, it is irreducible, monic, and is the minimal polynomial
of a primitive element of GF (pn) over GF (p).

For all divisors d of n the compatibility condition Φd,p(x
pn−1
pm−1) ≡ 0 (mod Φn,p(x)) holds.

With respect to the ordering defined above, Φn,p shall be minimal.
gap> ConwayPolynomial(7, 3);
X(Rationals)^3 + 6*X(Rationals)^2 + 4
gap> ConwayPolynomial(41, 3);
X(Rationals)^3 + X(Rationals) + 35

The global list CONWAYPOLYNOMIALS contains Conway polynomials for small values of p and
n. Note that the computation of Conway polynomials may be very expensive, especially if
n is not a prime.

19.13 CyclotomicPolynomial

CyclotomicPolynomial(R, n)

returns the n-th cyclotomic polynomial over the field R.
gap> CyclotomicPolynomial(GF(2), 6);
Z(2)^0*(X(GF(2))^2 + X(GF(2)) + 1)
gap> CyclotomicPolynomial(Rationals, 5);
X(Rationals)^4 + X(Rationals)^3 + X(Rationals)^2 + X(Rationals) + 1

In every GAP session the computed cyclotomic polynomials are stored in the global list
CYCLOTOMICPOLYNOMIALS.

440 CHAPTER 19. POLYNOMIALS

19.14 PolynomialRing

PolynomialRing(R)

PolynomialRing returns the ring of all polynomials over a field R or ring-with-one R.

gap> f2 := GF(2);;
gap> R := PolynomialRing(f2);
PolynomialRing(GF(2))
gap> Z(2) in R;
false
gap> Polynomial(f2, [Z(2),Z(2)]) in R;
true
gap> Polynomial(GF(4), [Z(2),Z(2)]) in R;
false
gap> R := PolynomialRing(GF(2));
PolynomialRing(GF(2))

19.15 IsPolynomialRing

IsPolynomialRing(domain)

IsPolynomialRing returns true if the object domain is a ring record, representing a poly-
nomial ring (see 19.14), and false otherwise.

gap> IsPolynomialRing(Integers);
false
gap> IsPolynomialRing(PolynomialRing(Integers));
true
gap> IsPolynomialRing(LaurentPolynomialRing(Integers));
false

19.16 LaurentPolynomialRing

LaurentPolynomialRing(R)

LaurentPolynomialRing returns the ring of all Laurent polynomials over a field R or ring-
with-one R.

gap> f2 := GF(2);;
gap> R := LaurentPolynomialRing(f2);
LaurentPolynomialRing(GF(2))
gap> Z(2) in R;
false
gap> Polynomial(f2, [Z(2),Z(2)]) in R;
true
gap> Polynomial(GF(4), [Z(2),Z(2)]) in R;
false
gap> Indeterminate(f2)^-1 in R;
true

19.17. ISLAURENTPOLYNOMIALRING 441

19.17 IsLaurentPolynomialRing

IsLaurentPolynomialRing(domain)

IsLaurentPolynomialRing returns true if the object domain is a ring record, representing
a Laurent polynomial ring (see 19.16), and false otherwise.

gap> IsPolynomialRing(Integers);
false
gap> IsLaurentPolynomialRing(PolynomialRing(Integers));
false
gap> IsLaurentPolynomialRing(LaurentPolynomialRing(Integers));
true

19.18 Ring Functions for Polynomial Rings

As was already noted in the introduction to this chapter polynomial rings are rings, so all
ring functions (see chapter 5) are applicable to polynomial rings. This section comments on
the implementation of those functions.

Let R be a commutative ring-with-one or a field and let P be the polynomial ring over R.

EuclideanDegree(P, f)

P is an Euclidean ring if and only if R is field. In this case the Euclidean degree of f is
simply the degree of f . If R is not a field then the function signals an error.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> EuclideanDegree(x^10 + x^2 + 1);
10
gap> EuclideanDegree(x^0);
0

EuclideanRemainder(P, f , g)

P is an Euclidean ring if and only if R is field. In this case it is possible to divide f by g
with remainder.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> EuclideanRemainder((x+1)*(x+2)+5, x+1);
5*x^0

EuclideanQuotient(P, f , g)

P is an Euclidean ring if and only if R is field. In this case it is possible to divide f by g
with remainder.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> EuclideanQuotient((x+1)*(x+2)+5, x+1);
x + 2

QuotientRemainder(P, f , g)

442 CHAPTER 19. POLYNOMIALS

P is an Euclidean ring if and only if R is field. In this case it is possible to divide f by g
with remainder.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> QuotientRemainder((x+1)*(x+2)+5, x+1);
[x + 2, 5*x^0]

Gcd(P, f , g)

P is an Euclidean ring if and only if R is field. In this case you can compute the greatest
common divisor of f and g using Gcd.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> g := x^2 + 2*x + 1;;
gap> h := x^2 - 1;;
gap> Gcd(g, h);
x + 1
gap> GcdRepresentation(g, h);
[1/2*x^0, -1/2*x^0]
gap> g * (1/2) * x^0 - h * (1/2) * x^0;
x + 1

Factors(P, f)

This method is implemented for polynomial rings P over a domain R, where R is either
a finite field, the rational numbers, or an algebraic extension of either one. If char R is a
prime, f is factored using a Cantor-Zassenhaus algorithm.

gap> f5 := GF(5);; f5.name := "f5";;
gap> x := Indeterminate(f5);; x.name := "x";;
gap> g := x^20 + x^8 + 1;
Z(5)^0*(x^20 + x^8 + 1)
gap> Factors(g);
[Z(5)^0*(x^8 + 4*x^4 + 2), Z(5)^0*(x^12 + x^8 + 4*x^4 + 3)]

If char R is 0, a quadratic Hensel lift is used.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> f:=x^105-1;
x^105 - 1
gap> Factors(f);
[x - 1, x^2 + x + 1, x^4 + x^3 + x^2 + x + 1,

x^6 + x^5 + x^4 + x^3 + x^2 + x + 1,
x^8 - x^7 + x^5 - x^4 + x^3 - x + 1,
x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1,
x^24 - x^23 + x^19 - x^18 + x^17 - x^16 + x^14 - x^13 + x^12 - x^
11 + x^10 - x^8 + x^7 - x^6 + x^5 - x + 1,

x^48 + x^47 + x^46 - x^43 - x^42 - 2*x^41 - x^40 - x^39 + x^36 + x^
35 + x^34 + x^33 + x^32 + x^31 - x^28 - x^26 - x^24 - x^22 - x^
20 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 - x^9 - x^8 - 2*x^
7 - x^6 - x^5 + x^2 + x + 1]

19.19. RING FUNCTIONS FOR LAURENT POLYNOMIAL RINGS 443

As f is an element of P if and only if the base ring of f is R you must embed the polynomial
into the polynomial ring P if it is written as polynomial over a subring.

gap> f25 := GF(25);; Indeterminate(f25).name := "y";;
gap> l := Factors(EmbeddedPolynomial(PolynomialRing(f25), g));
[y^4 + Z(5^2)^13, y^4 + Z(5^2)^17, y^6 + Z(5)^3*y^2 + Z(5^2)^3,

y^6 + Z(5)^3*y^2 + Z(5^2)^15]
gap> l[1] * l[2];
y^8 + Z(5)^2*y^4 + Z(5)
gap> l[3] * l[4];
y^12 + y^8 + Z(5)^2*y^4 + Z(5)^3

StandardAssociate(P, f)

For a ring R the standard associate a of f is a multiple of f such that the leading coefficient
of a is the standard associate in R. For a field R the standard associate a of f is a multiple
of f such that the leading coefficient of a is 1.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> StandardAssociate(-2 * x^3 - x);
2*x^3 + x

19.19 Ring Functions for Laurent Polynomial Rings

As was already noted in the introduction to this chapter Laurent polynomial rings are
rings, so all ring functions (see chapter 5) are applicable to polynomial rings. This section
comments on the implementation of those functions.
Let R be a commutative ring-with-one or a field and let P be the polynomial ring over R.

EuclideanDegree(P, f)

P is an Euclidean ring if and only if R is field. In this case the Euclidean degree of f is the
difference of d(f) and v(f) (see 19). If R is not a field then the function signals an error.

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> LR := LaurentPolynomialRing(Rationals);;
gap> EuclideanDegree(LR, x^10 + x^2);
8
gap> EuclideanDegree(LR, x^7);
0
gap> EuclideanDegree(x^7);
7
gap> EuclideanDegree(LR, x^2 + x^-2);
4
gap> EuclideanDegree(x^2 + x^-2);
4

Gcd(P, f , g)

P is an Euclidean ring if and only if R is field. In this case you can compute the greatest
common divisor of f and g using Gcd.

444 CHAPTER 19. POLYNOMIALS

gap> x := Indeterminate(Rationals);; x.name := "x";;
gap> LR := LaurentPolynomialRing(Rationals);;
gap> g := x^3 + 2*x^2 + x;;
gap> h := x^3 - x;;
gap> Gcd(g, h);
x^2 + x
gap> Gcd(LR, g, h);
x + 1 # x is a unit in LR
gap> GcdRepresentation(LR, g, h);
[(1/2)*x^(-1), (-1/2)*x^(-1)]

Factors(P, f)

This method is only implemented for a Laurent polynomial ring P over a finite field R. In
this case f is factored using a Cantor-Zassenhaus algorithm. As f is an element of P if and
only if the base ring of f is R you must embed the polynomial into the polynomial ring P
if it is written as polynomial over a subring.

gap> f5 := GF(5);; f5.name := "f5";;
gap> x := Indeterminate(f5);; x.name := "x";;
gap> g := x^10 + x^-2 + x^-10;
Z(5)^0*(x^10 + x^(-2) + x^(-10))
gap> Factors(g);
[Z(5)^0*(x^(-2) + 4*x^(-6) + 2*x^(-10)),

Z(5)^0*(x^12 + x^8 + 4*x^4 + 3)]
gap> f25 := GF(25);; Indeterminate(f25).name := "y";;
gap> gg := EmbeddedPolynomial(LaurentPolynomialRing(f25), g);
y^10 + y^(-2) + y^(-10)
gap> l := Factors(gg);
[y^(-6) + Z(5^2)^13*y^(-10), y^4 + Z(5^2)^17,

y^6 + Z(5)^3*y^2 + Z(5^2)^3, y^6 + Z(5)^3*y^2 + Z(5^2)^15]
gap> l[1] * l[2];
y^(-2) + Z(5)^2*y^(-6) + Z(5)*y^(-10)
gap> l[3]*[4];
[Z(5)^2*y^6 + Z(5)*y^2 + Z(5^2)^15]

StandardAssociate(P, f)

For a ring R the standard associate a of f is a multiple of f such that the leading coefficient
of a is the standard associate in R and v(a) is zero. For a field R the standard associate a
of f is a multiple of f such that the leading coefficient of a is 1 and v(a) is zero.

gap> x := Indeterminate(Integers);; x.name := "x";;
gap> LR := LaurentPolynomialRing(Integers);;
gap> StandardAssociate(LR, -2 * x^3 - x);
2*x^2 + 1

Chapter 20

Permutations

GAP is a system especially designed for the computations in groups. Permutation groups
are a very important class of groups and GAP offers a data type permutation to describe
the elements of permutation groups.

Permutations in GAP operate on positive integers. Whenever group elements operate on
a domain we call the elements of this domain points. Thus in this chapter we often call
positive integers points, if we want to emphasize that a permutation operates on them. An
integer i is said to be moved by a permutation p if the image ip of i under p is not i. The
largest integer moved by any permutation may not be larger than 228 − 1.

Note that permutations do not belong to a specific group. That means that you can work
with permutations without defining a permutation group that contains them. This is just
like it is with integers, with which you can compute without caring about the domain
Integers that contains them. It also means that you can multiply any two permutations.

Permutations are entered and displayed in cycle notation.

gap> (1,2,3);
(1,2,3)
gap> (1,2,3) * (2,3,4);
(1,3)(2,4)

The first sections in this chapter describe the operations that are available for permutations
(see 20.1 and 20.2). The next section describes the function that tests whether an object is
a permutation (see 20.3). The next sections describe the functions that find the largest and
smallest point moved by a permutation (see 20.4 and 20.5). The next section describes the
function that computes the sign of a permutation (see 20.6). The next section describes the
function that computes the smallest permutation that generates the same cyclic subgroup
as a given permutation (see 20.7). The final sections describe the functions that convert
between lists and permutations (see 20.8, 20.9, 20.10, and 20.11).

Permutations are elements of groups operating on positive integers in a natural way, thus
see chapter 7 and chapter 2.10 for more functions.

The external functions are in the file LIBNAME/"permutat.g".

445

446 CHAPTER 20. PERMUTATIONS

20.1 Comparisons of Permutations

p1 = p2
p1 <> p2

The equality operator = evaluates to true if the two permutations p1 and p2 are equal, and
to false otherwise. The inequality operator <> evaluates to true if the two permutations
p1 and p2 are not equal, and to false otherwise. You can also compare permutations with
objects of other types, of course they are never equal.

Two permutations are considered equal if and only if they move the same points and if the
images of the moved points are the same under the operation of both permutations.

gap> (1,2,3) = (2,3,1);
true
gap> (1,2,3) * (2,3,4) = (1,3)(2,4);
true

p1 <p2
p1 <= p2
p1 > p2
p1 >= p2

The operators <, <=, >, and >= evaluate to true if the permutation p1 is less than, less than
or equal to, greater than, or greater than or equal to the permutation p2 , and to false
otherwise.

Let p1 and p2 be two permutations that are not equal. Then there exists at least one point
i such that ip1 <> ip2 . Let k be the smallest such point. Then p1 is considered smaller
than p2 if and only if kp1 < kp2 . Note that this implies that the identity permutation is
the smallest permutation.

You can also compare permutations with objects of other types. Integers, rationals, cyclo-
tomics, unknowns, and finite field elements are smaller than permutations. Everything else
is larger.

gap> (1,2,3) < (1,3,2);
true # 1(1,2,3) = 2 < 3 = 1(1,3,2)

gap> (1,3,2,4) < (1,3,4,2);
false # 2(1,3,2,4) = 4 > 1 = 2(1,3,4,2)

20.2 Operations for Permutations

p1 * p2

The operator * evaluates to the product of the two permutations p1 and p2 .

p1 / p2

The operator / evaluates to the quotient p1 ∗ p2−1 of the two permutations p1 and p2 .

LeftQuotient(p1, p2)

LeftQuotient returns the left quotient p1−1 ∗p2 of the two permutations p1 and p2 . (This
can also be written p1 mod p2 .)

p ^ i

20.3. ISPERM 447

The operator ^ evaluates to the i -th power of the permutation p.

p1 ^ p2

The operator ^ evaluates to the conjugate p2−1 ∗ p1 ∗ p2 of the permutation p1 by the
permutation p2 .

Comm(p1, p2)

Comm returns the commutator p1−1 ∗ p2−1 ∗ p1 ∗ p2 of the two permutations p1 and p2 .

i ^ p

The operator ^ evaluates to the image ip of the positive integer i under the permutation p.

i / p

The operator / evaluates to the preimage ip
−1

of the integer i under the permutation p.

list * p
p * list

The operator * evaluates to the list of products of the permutations in list with the per-
mutation p. That means that the value is a new list new such that new[i] = list[i] * p
respectively new[i] = p * list[i].

list / p

The operator / evaluates to the list of quotients of the permutations in list with the per-
mutation p. That means that the value is a new list new such that new[i] = list[i] /
p.

For the precedence of the operators see 2.10.

20.3 IsPerm

IsPerm(obj)

IsPerm returns true if obj , which may be an object of arbitrary type, is a permutation and
false otherwise. It will signal an error if obj is an unbound variable.

gap> IsPerm((1,2));
true
gap> IsPerm(1);
false

20.4 LargestMovedPointPerm

LargestMovedPointPerm(perm)

LargestMoverPointPerm returns the largest point moved by the permutation perm, i.e.,
the largest positive integer i such that i^perm <> i . It will signal an error if perm is trivial
(see also 20.5).

gap> LargestMovedPointPerm((2,3,1));
3
gap> LargestMovedPointPerm((1,2)(1000,1001));
1001

448 CHAPTER 20. PERMUTATIONS

20.5 SmallestMovedPointPerm

SmallestMovedPointPerm(perm)

SmallestMovedPointPerm returns the smallest point moved by the permutation perm, i.e.,
the smallest positive integer i such that i^perm <> i . It will signal an error if perm is
trivial (see also 20.4).

gap> SmallestMovedPointPerm((4,7,5));
4

20.6 SignPerm

SignPerm(perm)

SignPerm returns the sign of the permutation perm.

The sign s of a permutation p is defined by s =
∏
i<j (ip − jp)/

∏
i<j (i− j), where n is the

largest point moved by p and i, j range over 1...n.

One can easily show that sign is equivalent to the determinant of the permutation
matrix of perm. Thus it is obvious that the function sign is a homomorphism.

gap> SignPerm((1,2,3)(5,6));
-1

20.7 SmallestGeneratorPerm

SmallestGeneratorPerm(perm)

SmallestGeneratorPerm returns the smallest permutation that generates the same cyclic
group as the permutation perm.

gap> SmallestGeneratorPerm((1,4,3,2));
(1,2,3,4)

Note that SmallestGeneratorPerm is very efficient, even when perm has huge order.

20.8 ListPerm

ListPerm(perm)

ListPerm returns a list list that contains the images of the positive integers under the
permutation perm. That means that list[i] = i^perm, where i lies between 1 and the
largest point moved by perm (see 20.4).

gap> ListPerm((1,2,3,4));
[2, 3, 4, 1]
gap> ListPerm(());
[]

PermList (see 20.9) performs the inverse operation.

20.9. PERMLIST 449

20.9 PermList

PermList(list)

PermList returns the permutation perm that moves points as describes by the list list . That
means that i^perm = list[i] if i lies between 1 and the length of list , and i^perm = i if
i is larger than the length of the list list . It will signal an error if list does not define a
permutation, i.e., if list is not a list of integers without holes, or if list contains an integer
twice, or if list contains an integer not in the range [1..Length(list)].

gap> PermList([6,2,4,1,5,3]);
(1,6,3,4)
gap> PermList([]);
()

ListPerm (see 20.8) performs the inverse operation.

20.10 RestrictedPerm

RestrictedPerm(perm, list)

RestrictedPerm returns the new permutation new that operates on the points in the list
list in the same way as the permutation perm, and that fixes those points that are not in
list . list must be a list of positive integers such that for each i in list the image i^perm is
also in list , i.e., it must be the union of cycles of perm.

gap> RestrictedPerm((1,2,3)(4,5), [4,5]);
(4,5)

20.11 MappingPermListList

MappingPermListList(list1, list2)

MappingPermListList returns a permutation perm such that list1[i] ^ perm = list2[i].
perm fixes all points larger then the maximum of the entries in list1 and list2 . If there are
several such permutations, it is not specified which MappingPermListList returns. list1
and list2 must be lists of positive integers of the same length, and neither may contain an
element twice.

gap> MappingPermListList([3,4], [6,9]);
(3,6,4,9,8,7,5)
gap> MappingPermListList([], []);
()

450 CHAPTER 20. PERMUTATIONS

Chapter 21

Permutation Groups

A permutation group is a group of permutations on a set Ω of positive integers (see chapters
7 and 20).
Our standard example in this chapter will be the symmetric group of degree 4, which is
defined by the following GAP statements.

gap> s4 := Group((1,2), (1,2,3,4));
Group((1,2), (1,2,3,4))

This introduction is followed by a section that describes the function that tests whether
an object is a permutation group or not (see section 21.1). The next sections describe the
functions that are related to the set of points moved by a permutation group (see 21.2, 21.3,
21.4, and 21.5). The following section describes the concept of stabilizer chains, which are
used by most functions for permutation groups (see 21.6). The following sections describe
the functions that compute or change a stabilizer chain (see 21.7, 21.9, 21.10, 21.11). The
next sections describe the functions that extract information from stabilizer chains (see
21.12, 21.15, 21.13, and 21.14). The next two sections describe the functions that find
elements or subgroups of a permutation group with a property (see 21.16 and 21.17).
If the permutation groups become bigger, computations become slower. In many cases it is
preferable then, to use random methods for computation. This is explained in section 21.24.
Because each permutation group is a domain all set theoretic functions can be applied to
it (see chapter 4 and 21.20). Also because each permutation group is after all a group all
group functions can be applied to it (see chapter 7 and 21.21). Finally each permutation
group operates naturally on the positive integers, so all operations functions can be applied
(see chapter 8 and 21.22). The last section in this chapter describes the representation of
permutation groups (see 21.25).
The external functions are in the file LIBNAME/"permgrp.g".

21.1 IsPermGroup

IsPermGroup(obj)

IsPermGroup returns true if the object obj , which may be an object of an arbitrary type,
is a permutation group, and false otherwise. It will signal an error if obj is an unbound
variable.

451

452 CHAPTER 21. PERMUTATION GROUPS

gap> s4 := Group((1,2), (1,2,3,4));; s4.name := "s4";;
gap> IsPermGroup(s4);
true
gap> f := FactorGroup(s4, Subgroup(s4, [(1,2)(3,4),(1,3)(2,4)]));
(s4 / Subgroup(s4, [(1,2)(3,4), (1,3)(2,4)]))
gap> IsPermGroup(f);
false # see section 7.33
gap> IsPermGroup([1, 2]);
false

21.2 PermGroupOps.MovedPoints

PermGroupOps.MovedPoints(G)

PermGroupOps.MovedPoints returns the set of moved points of the permutation group G ,
i.e., points which are moved by at least one element of G (also see 21.5).

gap> s4 := Group((1,3,5,7), (1,3));;
gap> PermGroupOps.MovedPoints(s4);
[1, 3, 5, 7]
gap> PermGroupOps.MovedPoints(Group(()));
[]

21.3 PermGroupOps.SmallestMovedPoint

PermGroupOps.SmallestMovedPoint(G)

PermGroupOps.SmallestMovedPoint returns the smallest positive integer which is moved
by the permutation group G (see also 21.4). This function signals an error if G is trivial.

gap> s3b := Group((2,3), (2,3,4));;
gap> PermGroupOps.SmallestMovedPoint(s3b);
2

21.4 PermGroupOps.LargestMovedPoint

PermGroupOps.LargestMovedPoint(G)

PermGroupOps.LargestMovedPoint returns the largest positive integer which is moved by
the permutation group G (see also 21.3). This function signals an error if G is trivial.

gap> s4 := Group((1,2,3,4), (1,2));;
gap> PermGroupOps.LargestMovedPoint(s4);
4

21.5 PermGroupOps.NrMovedPoints

PermGroupOps.NrMovedPoints(G)

PermGroupOps.NrMovedPoints returns the number of moved points of the permutation
group G , i.e., points which are moved by at least one element of G (also see 21.2).

gap> s4 := Group((1,3,5,7), (1,3));;

21.6. STABILIZER CHAINS 453

gap> PermGroupOps.NrMovedPoints(s4);
4
gap> PermGroupOps.NrMovedPoints(Group(()));
0

21.6 Stabilizer Chains

Most of the algorithms for permutation groups need a stabilizer chain of the group. The
concept of stabilizer chains was introduced by Charles Sims in [Sim70].

If [b1, . . . , bn] is a list of points, G(1) = G and G(i+1) = StabG(i)(bi) such that G(n+1) = {()}.
The list [b1, . . . , bn] is called a base of G, the points bi are called basepoints. A set S of
generators for G satisfying the condition < S ∩ G(i) > = G(i) for each 1 ≤ i ≤ n, is called
a strong generating set (SGS) of G. More precisely we ought to say that a set S that
satisfies the conditions above is a SGS of G relative to B. The chain of subgroups of G
itself is called the stabilizer chain of G relative to B.

Since [b1, . . . , bn], where n is the degree of G and bi are the moved points of G, certainly is a
base for G there exists a base for each permutation group. The number of points in a base
is called the length of the base. A base B is called reduced if no stabilizer in the chain
relative to B is trivial, i.e., there exists no i such that G(i) = G(i+1). Note that different
reduced bases for one group G may have different length. For example, the Chevalley Group
G2(4) possesses reduced bases of length 5 and 7.

Let R(i) be a right transversal of G(i+1) in G(i), i.e., a set of right coset representatives of
the cosets of G(i+1) in G(i). Then each element g of G has a unique representation of the
following form g = rn . . . r1 with ri ∈ R(i). Thus with the knowledge of the transversals
R(i) we know each element of G, in principle. This is one reason why stabilizer chains are
one of the most useful tools for permutation groups. Furthermore basic group theory tells
us that we can identify the cosets of G(i+1) in G(i) with the points in O(i) := bG

(i)

i . So
we could represent a transversal as a list T such that T [p] is a representative of the coset
corresponding to the point p ∈ O(i), i.e., an element of G(i) that takes bi to p.

For permutation groups of small degree this might be possible, but for permutation groups of
large degree it is still not good enough. Our goal then is to store as few different permutations
as possible such that we can still reconstruct each representative in R(i), and from them the
elements in G. A factorized inverse transversal T is a list where T [p] is a generator of
G(i) such that pT [p] is a point that lies earlier in O(i) than p (note that we consider O(i) as
a list not as a set). If we assume inductively that we know an element r ∈ G(i) that takes
bi to pT [p], then rT [p]−1 is an element in G(i) that takes bi to p.

A stabilizer chain (see 21.7, 21.25) is stored recursively in GAP. The group record of a
permutation group G with a stabilizer chain has the following additional components.

orbit
List of orbitpoints of orbit[1] (which is the basepoint) under the action of the
generators.

transversal
Factorized inverse transversal as defined above.

stabilizer
Record for the stabilizer of the point orbit[1] in the group generated by generators.

454 CHAPTER 21. PERMUTATION GROUPS

The components of this record are again generators, orbit, transversal, identity
and stabilizer. The last stabilizer in the stabilizer chain only contains the compo-
nents generators, which is an empty list, and identity.

stabChain
A record, that contains all information about the stabilizer chain. Functions acessing
the stabilizer chain should do it using this record, as it is planned to remove the
above three components from the group record in the future. The components of the
stabChain record are described in section 21.25.

Note that the values of these components are changed by functions that change, extend, or
reduce a base (see 21.7, 21.9, and 21.10).

Note that the records that represent the stabilizers are not group records (see 7.117). Thus
you cannot take such a stabilizer and apply group functions to it. The last stabilizer in
the stabilizer chain is a record whose component generators is empty.

Below you find an example for a stabilizer chain for the symmetric group of degree 4.

rec(
identity := (),
generators := [(1,2), (1,2,3,4)],
orbit := [1, 2, 4, 3],
transversal := [(), (1,2), (1,2,3,4), (1,2,3,4)],
stabilizer := rec(

identity := (),
generators := [(3,4), (2,4)],
orbit := [2, 4, 3],
transversal := [, (), (3,4), (2,4)],
stabilizer := rec(

identity := (),
generators := [(3,4)],
orbit := [3, 4],
transversal := [,, (), (3,4)],
stabilizer := rec(

identity := (),
generators := []

)
)

)
)

21.7 StabChain

StabChain(G)
StabChain(G, opt)

StabChain computes and returns a stabilizer chain for G . The option record opt can be given
and may contain information that will be used when computing the stabilizer chain. Giving
this information might speed up computations. When using random methods (see 21.24),
StabChain also guarantees, that the computed stabilizer chain confirms to the information
given. For example giving the size ensures correctness of the stabilizer chain.

21.8. MAKESTABCHAIN 455

If information of this kind can also be gotten from the parent group, StabChain does so.
The following components of the option record are currectly supported:
size

The group size.
limit

An upper limit for the group size.
base

A list of points. If given, StabChain computes a reduced base starting with the points
in base.

knownBase
A list of points, representing a known base.

random
A value to supersede global or parent group setting of StabChainOptions.random
(see 21.24).

21.8 MakeStabChain

MakeStabChain(G)
MakeStabChain(G, lst)

MakeStabChain computes a reduced stabilizer chain for the permutation group G .
If no stabilizer chain for G is already known and no argument lst is given, it computes a
reduced stabilizer chain for the lexicographically smallest reduced base of G .
If no stabilizer chain for G is already known and an argument lst is given, it computes a
reduced stabilizer chain with a base that starts with the points in lst . Note that points in
lst that would lead to trivial stabilizers will be skipped (see 21.9).
Deterministically, the stabilizer chain is computed using the Schreier-Sims-Algorithm,
which is described in [Leo80]. The time used is in practice proportional to the third power
of the degree of the group.
If a stabilizer chain for G is already known and no argument lst is given, it reduces the
known stabilizer chain.
If a stabilizer chain for G is already known and an argument lst is given, it changes the
stabilizer chain such that the result is a reduced stabilizer chain with a base that starts
with the points in lst (see 21.9). Note that points in lst that would lead to trivial stabilizers
will be skipped.
The algorithm used in this case is called basechange, which is described in [But82]. The
worst cases for the basechange algorithm are groups of large degree which have a long base.

gap> s4 := Group((1,2), (1,2,3,4));
Group((1,2), (1,2,3,4))
gap> MakeStabChain(s4); # compute a stabilizer chain
gap> Base(s4);
[1, 2, 3]
gap> MakeStabChain(s4, [4,3,2,1]); # perform a basechange
gap> Base(s4);
[4, 3, 2]

MakeStabChain mainly works by calling StabChain with appropriate parameters.

456 CHAPTER 21. PERMUTATION GROUPS

21.9 ExtendStabChain

ExtendStabChain(G, lst)

ExtendStabChain inserts trivial stabilizers into the known stabilizer chain of the permuta-
tion group G such that lst becomes the base of G . The stabilizer chain which belongs to
the base lst must reduce to the old stabilizer chain (see 21.10).

This function is useful if two different (sub-)groups have to have exactly the same base.

gap> s4 := Group((1,2), (1,2,3,4));;
gap> MakeStabChain(s4, [3,2,1]); Base(s4);
[3, 2, 1]
gap> h := Subgroup(Parent(s4), [(1,2,3,4), (2,4)]);
Subgroup(Group((1,2), (1,2,3,4)), [(1,2,3,4), (2,4)])
gap> Base(h);
[1, 2]
gap> MakeStabChain(h, Base(s4)); Base(h);
[3, 2]
gap> ExtendStabChain(h, Base(s4)); Base(h);
[3, 2, 1]

21.10 ReduceStabChain

ReduceStabChain(G)

ReduceStabChain removes trivial stabilizers from a known stabilizer chain of the permuta-
tion group G . The result is a reduced stabilizer chain (also see 21.9).

gap> s4 := Group((1,2), (1,2,3,4));;
gap> Base(s4);
[1, 2, 3]
gap> ExtendStabChain(s4, [1, 2, 3, 4]); Base(s4);
[1, 2, 3, 4]
gap> PermGroupOps.Indices(s4);
[4, 3, 2, 1]
gap> ReduceStabChain(s4); Base(s4);
[1, 2, 3]

21.11 MakeStabChainStrongGenerators

MakeStabChainStrongGenerators(G, base, stronggens)

MakeStabChainStrongGenerators computes a reduced stabilizer chain for the permuta-
tion group G with the base base and the strong generating set stronggens. stronggens
must be a strong generating set for G relative to the base base; note that this is not
tested. Since the generators for G are not changed the strong generating set of G got by
PermGroupOps.StrongGenerators is not exactly stronggens afterwards. This function is
mostly used to reconstruct a stabilizer chain for a group G and works considerably faster
than MakeStabChain (see 21.8).

gap> G := Group((1,2), (1,2,3), (4,5));;

21.12. BASE FOR PERMUTATION GROUPS 457

gap> Base(G);
[1, 2, 4]
gap> ExtendStabChain(G, [1,2,3,4]);
gap> PermGroupOps.Indices(G); base := Base(G);
[3, 2, 1, 2] # note that the stabilizer chain is not reduced
[1, 2, 3, 4]
gap> stronggens := PermGroupOps.StrongGenerators(G);
[(4,5), (2,3), (1,2), (1,2,3)]
gap> H := Group((1,2), (1,3), (4,5));
Group((1,2), (1,3), (4,5)) # of course G = H
gap> MakeStabChainStrongGenerators(H, base, stronggens);
gap> PermGroupOps.Indices(H); Base(H);
[3, 2, 2] # note that the stabilizer chain is reduced
[1, 2, 4]
gap> PermGroupOps.StrongGenerators(H);
[(4,5), (2,3), (1,2), (1,3)]
note that this is different from stronggens

21.12 Base for Permutation Groups

Base(G)

Base returns a base for the permutation group G . If a stabilizer chain for G is already
known, Base returns the base for this stabilizer chain. Otherwise a stabilizer chain for the
lexicographically smallest reduced base is computed and its base is returned (see 21.6).

gap> s4 := Group((1,2,3,4), (1,2));;
gap> Base(s4);
[1, 2, 3]

21.13 PermGroupOps.Indices

PermGroupOps.Indices(G)

PermGroupOps.Indices returns a list l of indices of the permutation group G with respect to
a stabilizer chain of G , i.e., l[i] is the index of G(i+1) in G(i). Thus the size of G is the prod-
uct of all indices in l . If a stabilizer chain for G is already known, PermGroupOps.Indices
returns the indices corresponding to this stabilizer chain. Otherwise a stabilizer chain with
the lexicographically smallest reduced base is computed and the indices corresponding to
this chain are returned (see 21.6).

gap> s4 := Group((1,2,3,4), (1,2));;
gap> PermGroupOps.Indices(s4);
[4, 3, 2] # note that for s4 the indices are

actually independent of the base

21.14 PermGroupOps.StrongGenerators

PermGroupOps.StrongGenerators(G)

PermGroupOps.StrongGenerators returns a list of strong generators for the permutation
group G . If a stabilizer chain for G is already known, PermGroupOps.StrongGenerators

458 CHAPTER 21. PERMUTATION GROUPS

returns a strong generating set corresponding to this stabilizer chain. Otherwise a stabilizer
chain with the lexicographically smallest reduced base is computed and a strong generating
set corresponding to this chain is returned (see 21.6).

gap> s4 := Group((1,2,3,4), (1,2));;
gap> Base(s4);
[1, 2, 3]
gap> PermGroupOps.StrongGenerators(s4);
[(3,4), (2,3,4), (1,2), (1,2,3,4)]

21.15 ListStabChain

ListStabChain(G)

ListStabChain returns a list of stabilizer records of the stabilizer chain of the permutation
group G , i.e., the result is a list l such that l[i] is the i -th stabilizer G(i). The records in
that list are identical to the records of the stabilizer chain. Thus changes made in a record
l[i] are simultaneously done in the stabilizer chain (see 45.3).

21.16 PermGroupOps.ElementProperty

PermGroupOps.ElementProperty(G, prop)
PermGroupOps.ElementProperty(G, prop, K)

PermGroupOps.ElementProperty returns an element g in the permutation group G such
that prop(g) is true. prop must be a function of one argument that returns either true or
false when applied to an element of G . If G has no such element, false is returned.

gap> V4 := Group((1,2),(3,4));;
gap> PermGroupOps.ElementProperty(V4, g -> (1,2)^g = (3,4));
false

PermGroupOps.ElementProperty first computes a stabilizer chain for G , if necessary. Then
it performs a backtrack search through G for an element satisfying prop, i.e., enumerates
all elements of G as described in section 21.6, and applies prop to each until one element g
is found for which prop(g) is true. This algorithm is described in detail in [But82].

gap> S8 := Group((1,2), (1,2,3,4,5,6,7,8));; S8.name := "S8";;
gap> Size(S8);
40320
gap> V := Subgroup(S8, [(1,2),(1,2,3),(6,7),(6,7,8)]);;
gap> Size(V);
36
gap> U := V ^ (1,2,3,4)(5,6,7,8);;
gap> PermGroupOps.ElementProperty(S8, g -> U ^ g = V);
(1,4,2)(5,6) # another permutation conjugating U to V

This search will of course take quite a while if G is large, especially if no element of G
satisfies prop, and therefore all elements of G must be tried.

To speed up the computation you may pass a subgroup K of G as optional third argument.
This subgroup must preserve prop in the sense that either all elements of a left coset g*K
satisfy prop or no element of g*K does.

21.17. PERMGROUPOPS.SUBGROUPPROPERTY 459

In our example above such a subgroup is the normalizer NG(V) because h ∈ gNG(V) takes
U to V if and only if g does. Of course every subgroup of NG(V) has this property too.
Below we use the subgroup V itself. In this example this speeds up the computation by a
factor of 4.

gap> K := Subgroup(S8, V.generators);;
gap> PermGroupOps.ElementProperty(S8, g -> U ^ g = V, K);
(1,4,2)(5,6)

In the following example, we use the same subgroup, but with a larger generating system.
This speeds up the computation by another factor of 3. Something like this may happen
frequently. The reason is too complicated to be explained here.

gap> K2 := Subgroup(S8, Union(V.generators, [(2,3),(7,8)]));;
gap> K2 = K;
true
gap> PermGroupOps.ElementProperty(S8, g -> U ^ g = V, K2);
(1,4,2)(5,6)

Passing the full normalizer speeds up the computation in this example by another factor
of 2. Beware though that in other examples the computation of the normalizer alone may
take longer than calling PermGroupOps.ElementProperty with only the subgroup itself as
argument.

gap> N := Normalizer(S8, V);
Subgroup(S8, [(1,2), (1,2,3), (6,7), (6,7,8), (2,3), (7,8),
(1,6)(2,7)(3,8), (4,5)])

gap> Size(N);
144
gap> PermGroupOps.ElementProperty(S8, g -> U ^ g = V, N);
(1,4)(5,6)

21.17 PermGroupOps.SubgroupProperty

PermGroupOps.SubgroupProperty(G, prop)
PermGroupOps.SubgroupProperty(G, prop, K)

PermGroupOps.SubgroupProperty returns the subgroup U of the permutation group G of
all elements in G that satisfy prop, i.e., the subgroup of all elements g in G such that
prop(g) is true. prop must be a function of one argument that returns either true or
false when applied to an element of G . Of course the elements that satisfy prop must form
a subgroup of G . PermGroupOps.SubgroupProperty builds a stabilizer chain for U .

gap> S8 := Group((1,2), (1,2,3,4,5,6,7,8));; S8.name := "S8";;
gap> Size(S8);
40320
gap> V := Subgroup(S8, [(1,2),(1,2,3),(6,7),(6,7,8)]);;
gap> Size(V);
36
gap> PermGroupOps.SubgroupProperty(S8, g -> V ^ g = V);
Subgroup(S8, [(7,8), (6,7), (4,5), (2,3)(4,5)(6,8,7), (1,2),
(1,6,3,8)(2,7)])

460 CHAPTER 21. PERMUTATION GROUPS

the normalizer of V in S8

PermGroupOps.SubgroupProperty first computes a stabilizer chain for G , if necessary. Then
it performs a backtrack search through G for the elements satisfying prop, i.e., enumerates
all elements of G as described in section 21.6, and applies prop to each, adding elements
for which prop(g) is true to the subgroup U . Once U has become non-trivial, it is used
to eliminate whole cosets of stabilizers in the stabilizer chain of G if they cannot contain
elements with the property prop that are not already in U . This algorithm is described in
detail in [But82].

This search will of course take quite a while if G is large. To speed up the computation you
may pass a subgroup K of U as optional third argument.

Passing the subgroup V itself, speeds up the computation in this example by a factor of 2.

gap> K := Subgroup(S8, V.generators);;
gap> PermGroupOps.SubgroupProperty(S8, g -> V ^ g = V, K);
Subgroup(S8, [(1,2), (1,2,3), (6,7), (6,7,8), (2,3), (7,8), (4,5),
(1,6,3,8)(2,7)])

21.18 CentralCompositionSeriesPPermGroup

CentralCompositionSeriesPPermGroup(G)

This function calculates a central composition series for the p-group G . The method used
is known as Holt’s algorithm. If G is not a p-group, an error is signalled.

gap> D := Group((1,2,3,4), (1,3));; D.name := "d8";;
gap> CentralCompositionSeriesPPermGroup(D);
[d8, Subgroup(d8, [(2,4), (1,3)]),
Subgroup(d8, [(1,3)(2,4)]), Subgroup(d8, [])]

21.19 PermGroupOps.PgGroup

PermGroupOps.PgGroup(G)

This function converts a permutation group G of prime power order pd into an ag group P
such that the presentation corresponds to a p-step central series of G . This central compo-
sition series is constructed by calling CentralCompositionSeriesPPermGroup (see 21.18).
An isomorphism from the ag group to the permutation group is bound to P.bijection.

There is no dispatcher to this function, it must be called as PermGroupOps.PgGroup.

21.20 Set Functions for Permutation Groups

All set theoretic functions described in chapter 4 are also applicable to permutation groups.
This section describes which functions are implemented specially for permutation groups.
Functions not mentioned here are handled by the default methods described in the respective
sections.

Random(G)

21.21. GROUP FUNCTIONS FOR PERMUTATION GROUPS 461

To compute a random element in a permutation group G GAP computes a stabilizer chain
for G , takes on each level a random representative and returns the product of those. All
elements of G are chosen with equal probability by this method.

Size(G)

Size calls StabChain (see 21.7), if necessary, and returns the product of the indices of the
stabilizer chain (see 21.6).

Elements(G)

Elements calls StabChain (see 21.7), if necessary, and enumerates the elements of G as
described in 21.6. It returns the set of those elements.

Intersection(G1, G2)

Intersection first computes stabilizer chains for G1 and G2 for a common base. If either
group already has a stabilizer chain a basechange is performed (see 21.8). Intersection
enumerates the elements of G1 and G2 using a backtrack algorithm, eliminating whole
cosets of stabilizers in the stabilizer chains if possible (see 21.17). It builds a stabilizer chain
for the intersection.

21.21 Group Functions for Permutation Groups

All group functions for groups described in chapter 7.9 are also applicable to permutation
groups. This section describes which functions are implemented specially for permutation
groups. Functions not mentioned here are handled by the default methods described in the
respective sections.

G ^ p
ConjugateSubgroup(G, p)

Returns the conjugate permutation group of G with the permutation p. p must be an
element of the parent group of G . If a stabilizer chain for G is already known, it is also
conjugated.

Centralizer(G, U)
Centralizer(G, g)
Normalizer(G, U)

These functions first compute a stabilizer chain for G . If a stabilizer chain is already known
a basechange may be performed to obtain a base that is better suited for the problem. These
functions then enumerate the elements of G with a backtrack algorithm, eliminating whole
cosets of stabilizers in the stabilizer chain if possible (see 21.17). They build a stabilizer
chain for the resulting subgroup.

SylowSubgroup(G, p)

462 CHAPTER 21. PERMUTATION GROUPS

If G is not transitive, its p-Sylow subgroup is computed by starting with P:=G , and for
each transitive constituent homomorphism hom iterating
P := PreImage(SylowSubgroup(Image(hom, P), p)).

If G is transitive but not primitive, its p-Sylow subgroup is computed as
SylowSubgroup(PreImage(SylowSubgroup(Image(hom,G),p)), p).

If G is primitive, SylowSubgroup takes random elements in G , until it finds a p-element g ,
whose centralizer in G contains the whole p-Sylow subgroup. Such an element must exist,
because a p-group has a nontrivial centre. Then the p-Sylow subgroup of the centralizer is
computed and returned. Note that the centralizer must be a proper subgroup of G , because
it operates imprimitively on the cycles of g .

Coset(U , g)

Returns the coset U *g . The representative chosen is the lexicographically smallest element
of that coset. It is computed with an algorithm that is very similar to the backtrack
algorithm.

gap> s4 := Group((1,2,3,4), (1,2));; s4.name := "s4";;
gap> u := Subgroup(s4, [(1,2,3)]);;
gap> Coset(u, (1,3,2));
(Subgroup(s4, [(1,2,3)])*())
gap> Coset(u, (3,2));
(Subgroup(s4, [(1,2,3)])*(2,3))

Cosets(G, U)

Returns the cosets of U in G . Cosets first computes stabilizer chains for G and U with a
common base. If either subgroup already has a stabilizer chain, a basechange is performed
(see 21.8). A transversal is computed recursively using the fact that if S is a transversal
of U (2) = StabU (b1) in G(2) = StabG(b1), and R(1) is a transversal of G(2) in G, then a
transversal of U in G is a subset of S ∗R(1).

gap> Cosets(s4, u);
[(Subgroup(s4, [(1,2,3)])*()),
(Subgroup(s4, [(1,2,3)])*(3,4)),
(Subgroup(s4, [(1,2,3)])*(2,3)),
(Subgroup(s4, [(1,2,3)])*(2,3,4)),
(Subgroup(s4, [(1,2,3)])*(2,4,3)),
(Subgroup(s4, [(1,2,3)])*(2,4)),
(Subgroup(s4, [(1,2,3)])*(1,2,3,4)),
(Subgroup(s4, [(1,2,3)])*(1,2,4))]

PermutationCharacter(P)

Computes the character of the natural permutation representation of P , i.e. it does the
same as PermutationCharacter(P, StabP (1)) but works much faster.

gap> G := SymmetricPermGroup(5);;
gap> PermutationCharacter(G);
[5, 3, 1, 2, 0, 1, 0]

21.21. GROUP FUNCTIONS FOR PERMUTATION GROUPS 463

ElementaryAbelianSeries(G)

This function builds an elementary abelian series of G by iterated construction of normal
closures. If a partial elementary abelian series reaches up to a subgroup U of G which does
not yet contain the generator s of G then the series is extended up to the normal closure
N of U and s. If the factor N /U is not elementary abelian, i.e., if some commutator of s
with one of its conjugates under G does not lie in U , intermediate subgroups are calculated
recursively by extending U with that commutator. If G is solvable this process must come
to an end since commutators of arbitrary depth cannot exist in solvable groups.

Hence this method gives an elementary abelian series if G is solvable and gives an infinite
recursion if it is not. For permutation groups, however, there is a bound on the derived length
that depends only on the degree d of the group. According to Dixon this is (5 log3(d))/2. So
if the commutators get deeper than this bound the algorithm stops and sets G.isSolvable
to false, signalling an error. Otherwise G.isSolvable is set to true and the elementary
abelian series is returned as a list of subgroups of G .

gap> S := Group((1,2,3,4), (1,2));; S.name := "s4";;
gap> ElementaryAbelianSeries(S);
[Subgroup(s4, [(1,2), (1,3,2), (1,4)(2,3), (1,2)(3,4)]),
Subgroup(s4, [(1,3,2), (1,4)(2,3), (1,2)(3,4)]),
Subgroup(s4, [(1,4)(2,3), (1,2)(3,4)]), Subgroup(s4, [])]

gap> A := Group((1,2,3), (3,4,5));;
gap> ElementaryAbelianSeries(A);
Error, <G> must be solvable

IsSolvable(G)

Solvability of a permutation group G is tested by trying to construct an elementary abelian
series as described above. After this has been done the flag G.isSolvable is set correctly,
so its value is returned.

gap> S := Group((1,2,3,4), (1,2));;
gap> IsSolvable(S);
true
gap> A := Group((1,2,3), (3,4,5));;
gap> IsSolvable(A);
false

CompositionSeries(G)

A composition series for the solvable group G is calculated either from a given subnormal
series, which must be bound to G.subnormalSeries, in which case G.bssgs must hold
the corresponding base-strong subnormal generating system, or from an elementary abelian
series (as computed by ElementaryAbelianSeries(G) above) by inserting intermediate
subgroups (i.e. powers of the polycyclic generators or composition series along bases of
the vector spaces in the elementary abelian series). In either case, after execution of this
function, G.bssgs holds a base-strong pag system corresponding to the composition series
calculated.

gap> S := Group((1,2,3,4), (1,2));; S.name := "s4";;

464 CHAPTER 21. PERMUTATION GROUPS

gap> CompositionSeries(S);
[Subgroup(s4, [(1,2), (1,3,2), (1,4)(2,3), (1,2)(3,4)]),
Subgroup(s4, [(1,3,2), (1,4)(2,3), (1,2)(3,4)]),
Subgroup(s4, [(1,4)(2,3), (1,2)(3,4)]),
Subgroup(s4, [(1,2)(3,4)]), Subgroup(s4, [])]

If G is not solvable then a composition series cs is computed with an algorithm by A.
Seress and R. Beals. In this case the factor group of each element cs[i] in the composition
series modulo the next one cs[i+1] are represented as primitive permutation groups. One
should call cs[i].operations.FactorGroup(cs[i], cs[i+1]) directly to avoid the check
in FactorGroup that cs[i+1] is normal in cs[i]. The natural homomorphism of cs[i] onto
this factor group will be given as a GroupHomomorphismByImages (see 7.112).

gap> pyl29 := Group((1,2,3)(4,5,6)(7,8,9), (2,6,4,9,3,8,7,5),
> (4,7)(5,8)(6,9), (1,10)(4,7)(5,6)(8,9));;
gap> pyl29.name := "pyl29";;
gap> cs := CompositionSeries(pyl29);
[Subgroup(pyl29, [(1,9,5)(2,7,6)(3,8,4), (2,7,3,4)(5,8,9,6),

(1, 2,10)(4, 9, 5)(6, 8, 7), (2,6,4,9,3,8,7,5),
(4,7)(5,8)(6,9)]),

Subgroup(pyl29, [(1,9,5)(2,7,6)(3,8,4), (2,7,3,4)(5,8,9,6),
(1, 2,10)(4, 9, 5)(6, 8, 7), (2,6,4,9,3,8,7,5)]),

Subgroup(pyl29, [(1,9,5)(2,7,6)(3,8,4), (2,7,3,4)(5,8,9,6),
(1, 2,10)(4, 9, 5)(6, 8, 7)]), Subgroup(pyl29, [])]

gap> List([1..3], i->cs[i].operations.FactorGroup(cs[i],cs[i+1]));
[Group((1,2)), Group((1,2)),
Group((1,9,5)(2,7,6)(3,8,4), (2,7,3,4)(5,8,9,6), (1, 2,10)
(4, 9, 5)(6, 8, 7))]

gap> List(last, Size);
[2, 2, 360]

ExponentsPermSolvablePermGroup(G, perm [, start])

ExponentsPermSolvablePermGroup returns a list e, such that perm = G.bssgs[1]^e[1]
* G.bssgs[2]^e[2] * ... * G.bssgs[n]^e[n], where G.bssgs must be a prime-step
base-strong subnormal generating system as calculated by ElementaryAbelianSeries (see
7.39 and above). If the optional third argument start is given, the list entries exps[1],
..., exps[start-1] are left unbound and the element perm is decomposed as product of
the remaining pag generators G.bssgs[start], ..., G.bssgs[n].

gap> S := Group((1,2,3,4), (1,2));; S.name := "s4";;
gap> ElementaryAbelianSeries(S);;
gap> S.bssgs;
[(1,2), (1,3,2), (1,4)(2,3), (1,2)(3,4)]
gap> ExponentsPermSolvablePermGroup(S, (1,2,3));
[0, 2, 0, 0]

AgGroup(G)

This function converts a solvable permutation group into an ag group. It calculates an
elementary abelian series and a prime-step bssgs for G (see ElementaryAbelianSeries

21.22. OPERATIONS OF PERMUTATION GROUPS 465

above) and then finds the relators belonging to this prime-step bssgs using the function
ExponentsPermSolvablePermGroup (see above). An isomorphism from the ag group to the
permutation group is bound to AgGroup(G).bijection.

gap> G := WreathProduct(SymmetricGroup(4), CyclicGroup(3));;
gap> A := AgGroup(G);
Group(g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13)
gap> (A.1*A.3)^A.bijection;
(1, 6,10, 2, 5, 9)(3, 7,11)(4, 8,12)

DirectProduct(G, H)

If G and H are both permutation groups, DirectProduct constructs the direct product of
G and H as an intransitive permutation group. There are special routines for Centre,
Centralizer and SylowSubgroup for such groups that will work faster than the stan-
dard permutation group functions. These functions are DirectProductPermGroupCentre,
DirectProductPermGroupCentralizer and DirectProductPermGroupSylowSubgroup. You
can enforce that these routines will be always used for direct products of permutation groups
by issuing the following three commands (They are not performed by standard as the code
has not been well-tested).

gap> DirectProductPermGroupOps.Centre:=DirectProductPermGroupCentre;;
gap> DirectProductPermGroupOps.Centralizer:=
> DirectProductPermGroupCentralizer;;
gap> DirectProductPermGroupOps.SylowSubgroup:=
> DirectProductPermGroupSylowSubgroup;;

21.22 Operations of Permutation Groups

All functions that deal with operations of groups are applicable to permutation groups
(see 8). This section describes which functions are implemented specially for permutation
groups. Functions not mentioned here are handled by the default methods described in the
respective sections.

IsSemiRegular(G, D, opr)

IsSemiRegular returns true if G operates semiregularly on the domain D and false oth-
erwise.

If D is a list of integers and opr is OnPoints, IsSemiRegular uses the lemma that says
that such an operation is semiregular if all orbits of G on D have the same length, and if
for an arbitrary point p of D and for each generator g of G there is a permutation zg (not
necessarily in G) such that pzg = pg and which commutes with all elements of G, and if
there is a permutation z (again not necessarily in G) that permutes the orbits of G on D
setwise and commutes with all elements of G. This can be tested in time proportional to
on2 + dn, where o is the size of a single orbit, n is the number of generators of G, and d is
the size of D.

RepresentativeOperation(G, d, e, opr)

466 CHAPTER 21. PERMUTATION GROUPS

RepresentativeOperation returns a permutation perm in G that maps d to e in respect
to the given operation opr if such a permutation exists, and false otherwise.

If the operation is OnPoints, OnPairs, OnTuples, or OnSets and d and e are positive
integers or lists of integers, a basechange is performed and the representative is computed
from the factorized inverse transversal (see 21.6 and 21.7).

If the operation is OnPoints, OnPairs, OnTuples or OnSets and d and e are permutations
or lists of permutations, a backtrack search is performed (see 21.16).

Stabilizer(G, D, opr)

Stabilizer returns the stabilizer of D in G using the operation opr on the D . If D is a
positive integer (respectively a list of positive integers) and the operation opr is OnPoints
(respectively OnPairs or OnTuples) a basechange of G is performed (see 21.8). If D is a set
of positive integers and the operation opr is OnSets a backtrack algorithm for set-stabilizers
of permutation groups is performed.

Blocks(G, D [, seed] [, operation])

Returns a partition of D being a minimal block system of G in respect to the operation
opreration on the objects of D . If the argument seed is given the objects of seed are contained
in the same block. If D is a list of positive integers an Atkinson algorithm is performed.

Theoretically the algorithm lies in O(n3m) but in practice it is mostly in O(n2m) with m
the number of generators and n the cardinality of D.

21.23 Homomorphisms for Permutation Groups

This section describes the various homomorphisms that are treated specially for permutation
groups.

GroupHomomorphisByImages(P, H , gens, imgs)

The group homomorphism of a permutation group P into another group H is handled
especially by GroupHomomorphisByImages. Below we describe how the various mapping
functions are implemented for such a group homomorphism ghom. The mapping functions
not mentioned below are implemented by the default functions described in 7.112.

To work with ghom, a stabilizer chain for the source of ghom is computed and stored
as ghom.orbit, ghom.transversal, ghom.stabilizer. For every stabilizer stab in the
stabilizer chain there is a list parallel to stab.generators, which is called stab.genimages,
and contains images of the generators. The stabilizer chain is computed with a random
Schreier Sims algorithm, using the size of the source to know when to stop.

IsMapping(ghom)

To test if ghom is a (single valued) mapping, all Schreier generatores are computed. Each
Schreier generator is then reduced along the stabilizer chain. Because the chain is complete,
each one must reduce to the identity. Parallel the images of the strong generators are

21.23. HOMOMORPHISMS FOR PERMUTATION GROUPS 467

multiplied. If they also reduce to the identity (in the range), ghom is a function, otherwise
the remainders form a normal generating set for the subgroup of images of the identity of
the source.

Image(ghom, elm)

The image of an element elm can be computed by reducing the element along the stabilizer
chain, and at each step multiplying the corresponding images of the strong generators.

CompositionMapping(hom, ghom)

The composition of an arbitrary group homomorphism hom and ghom the stabilizer chain of
ghom is copied. On each level the images of the generators in stab.genimages are replaced
by their images under hom.

OperationHomomorphism(P, Operation(P, list))

The operation of a permutation group P on a list list of integers is handled especially by
OperationHomomorphism. (Note that list must be a union of orbits of P for Operation
to work.) We call the resulting homomorphism a transitive constituent homomorphism.
Below we describe how the various mapping functions are implemented for a transitive
constituent homomorphism tchom. The mapping functions not mentioned below are imple-
mented by the default functions described in 8.19.

Image(tchom, elm)

The image of an element is computed by restricting elm to list (see 20.10) and conjugat-
ing the restricted permutation with tchom.conperm, which maps it to a permutation that
operates on [1..Length(list)] instead of list .

Image(tchom, H)

The image of a subgroup H is computed as follows. First a stabilizer chain for H is computed.
This stabilizer chain is such that the base starts with points in list . Then the images of the
strong generators of sub form a strong generating set of the image.

PreImages(tchom, H)

The preimage of a subgroup H is computed as follows. First a stabilizer chain for the source
of tchom is computed. This stabilizer chain is such that the base starts with the point in
list . Then the kernel of tchom is a stabilizer in this stabilizer chain. The preimages of the
strong generators for H together with the strong generators for the kernel form a strong
generating set of the preimage subgroup.

OperationHomomorphism(P, Operation(P, blocks, OnSets))

The operation of a permutation group P on a block system blocks (see 8.20) is handled
especially by OperationHomomorphism. We call the resulting homomorphism a blocks ho-
momorphism. Below we describe how the various mapping functions are implemented for a

468 CHAPTER 21. PERMUTATION GROUPS

blocks homomorphism bhom. The mapping functions not mentioned below are implemented
by the default functions described in 8.19.

Image(bhom, elm)

To compute the image of an element elm under bhom, the record for bhom contains a list
bhom.reps, which contains for each point in the union of the blocks the position of this
block in blocks. Then the image of an element can simply be computed by applying the
element to a representative of each block and using bhom.reps to find in which block the
image lies.

Image(bhom, H)
PreImage(bhom, elm)
PreImage(bhom, H)
Kernel(bhom)

The image of a subgroup, the preimage of an element, and the preimage of a subgroup
are computed by rather complicated algorithms. For a description of these algorithms see
[But85].

21.24 Random Methods for Permutation Groups

When permutation groups become larger, computations become slower. This increase might
make it impossible to compute with these groups. The reason is mainly the creation of
stabilizer chains (see 21.7): During this process a lot of schreier generators are produced for
the next point stabilizer in the chain, and these generators must be processed. In actual
examples, it is observed, however, that much fewer generators are needed. This observation
can be justified theoretically and the random methods exploit it by using a method of the
Schreier-Sims algorithm which gives the correct result with an user-given error probability.

Advantage
Computations become much faster. In fact, large problems may be handled only by
using random methods.

Disadvantages
Computations might produce wrong results. However, you can set an error margin,
which is guaranteed. The practical performance is even better than our guarantee.
You should also keep in mind, that it is impossible, to eliminate system, user or
programming errors.

However, there are many situations, when theory offers methods to check correctness of
the results. As an example, consider the following situation. You want to compute some
maximal subgroups of large sporadic groups. The ATLAS of finite groups then tells you the
sizes of the groups as well as the sizes of the subgroups. The error of the random methods
is one-sided in the sense that they never create strong generators which are not elements
of the group. Hence if the resulting group sizes are correct, you have indeed obtained the
correct result. You might also give this information to StabChain, and computation will
not only be much faster, but also corresponding to the information, i.e. if you give the size,
the stabilizer chain is computed correctly.

The stabilizer chain is computed using methods from [BCFS91].

21.24. RANDOM METHODS FOR PERMUTATION GROUPS 469

How to use the random methods

GAP provides the global variable StabChainOptions. This record might contain a com-
ponent random. If it is set to a number i between 1 and 1000 at the beginning, random
methods with guaranteed correctness i

10 percent are used (though practically the probability
for correctness is much higher). This means that at all applicable places random methods
will be used automatically by the same function calls. If the component is not set or set to
1000, all computations are deterministic. By standard, this component is not set, so unless
you explicitely allow random computations none are used.

If the group acts on not more than a hundered points, the use of random methods has no
advantage. For these groups always the deterministic methods are used.

gap> g:=SL(4,7);
SL(4,7)
gap> o:=Orbit(g,[1,0,0,0]*Z(7)^0,OnLines);;Length(o);
400
gap> op:=Operation(g,o,OnLines);;

We create a large permutation group on 400 points. First we compute deterministic.

gap> g:=Group(op.generators,());;
gap> StabChain(g);;time;
164736
gap> Size(g);
2317591180800

Now random methods will be used. We allow that the result is guaranteed correct only with
10 percent probability. The group is created anew.

gap> StabChainOptions.random:=100;
100
gap> g:=Group(op.generators,());;
gap> StabChain(g);;time;
10350
gap> Size(g);
2317591180800

The result is still correct, though it took only less than one tenth of the time (your mileage
may vary). If you give the algorithm a chance to check its results, things become even faster.

gap> g:=Group(op.generators,());;
gap> StabChain(g,rec(size:=2317591180800));;time;
5054

More about random methods

When stabilizer chains are created, while random methods are allowed, it is noted in the
respective groups, by setting of a record component G.stabChainOptions, which is itself
a record, containg the component random. This component has the value indicated by
StabChainOptions at the time the group was created. Values set in this component override
the global setting of StabChainOptions. Whenever stabilizer chains are created for a group
not posessing the .stabChainOptions.random entry, it is created anew from the global
value StabChainOptions.

470 CHAPTER 21. PERMUTATION GROUPS

If a subgroup has no own record stabChainOptions, the one of the parent group is used
instead.

As errors induced by the random functions might propagate, any (applicable) object created
from the group inherits the component .stabChainOptions from the group. This applies
for example to Operations and Homomorphisms.

21.25 Permutation Group Records

All groups are represented by a record that contains information about the group. A per-
mutation group record contains the following components in addition to those described in
section 7.117.

isPermGroup
always true.

isFinite
always true as permutation groups are always of finite order.

A stabilizer chain (see 21.6) is stored recursively in GAP. The group record of a permutation
group G with a stabilizer chain has the following additional components.

orbit
List of orbitpoints of orbit[1] (which is the basepoint) under the action of the
generators.

transversal
Factorized inverse transversal as defined in 21.6.

stabilizer
Record for the stabilizer of the point orbit[1] in the group generated by generators.
The components of this record are again generators, orbit, transversal and
stabilizer. The last stabilizer in the stabilizer chain only contains the component
generators, which is an empty list.

stabChainOptions
A record, that contains information about creation of the stabilizer chain. For exam-
ple, whether it has been computed using random methods (see 21.24). Some functions
also use this record for passing local information about basechanges.

stabChain
A record, that contains all information about the stabilizer chain. Functions acessing
the stabilizer chain should do it using this record, as it is planned to remove the
above three components from the group record in the future. The components of the
stabChain record are described below.

The components of the stabChain record for a group G are

identity
Contains G.identity.

generators
Contains a copy of the generators of G , created by ShallowCopy(G.generators).

orbit
is the same as G.orbit.

21.25. PERMUTATION GROUP RECORDS 471

transversal
is the same as G.transversal.

stabilizer
is the same as G.stabilizer.

Note that the values of all these components are changed by functions that change, extend,
or reduce a base (see 21.8, 21.9, and 21.10).

Note that the records that represent the stabilizers are not themselves group records (see
7.117). Thus you cannot take such a stabilizer and apply group functions to it. The last
stabilizer in the stabilizer chain is a record whose component generators is empty.

472 CHAPTER 21. PERMUTATION GROUPS

Chapter 22

Words in Abstract Generators

Words in abstract generators are a type of group elements in GAP. In the following we
will abbreviate their full name to abstract words or just to words.

A word is just a sequence of letters, where each letter is an abstract generator or its inverse.
Words are multiplied by concatenating them and removing adjacent pairs of a generator
and its inverse. Abstract generators are created by the function AbstractGenerator (see
22.1).

Note that words do not belong to a certain group. Any two words can be multiplied. In
effect we compute with words in a free group of potentially infinite rank (potentially infinite
because we can always create new abstract generators with AbstractGenerator).

Words are entered as expressions in abstract generators and are displayed as product of
abstract generators (and powers thereof). The trivial word can be entered and is displayed
as IdWord.

gap> a := AbstractGenerator("a");
a
gap> b := AbstractGenerator("b");
b
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> a^0;
IdWord

The first sections in this chapter describe the functions that create abstract generators (see
22.1 and 22.2). The next sections define the operations for words (see 22.3 and 22.4). The
next section describes the function that tests whether an object is a word (see 22.5). The
next sections describe the functions that compute the number of letters of a word (see 22.6
and 22.7). The next sections describe the functions that extract or find a subword (see 22.8
and 22.9). The final sections describe the functions that modify words (see 22.10, 22.11,
and 22.12).

Note that words in abstract generators are different from words in finite polycyclic groups
(see 24).

473

474 CHAPTER 22. WORDS IN ABSTRACT GENERATORS

22.1 AbstractGenerator

AbstractGenerator(string)

AbstractGenerator returns a new abstract generator. This abstract generator is printed
using the string string passed as argument to AbstractGenerator.

gap> a := AbstractGenerator("a");
a
gap> a^5;
a^5

Note that the string is only used to print the abstract generator and to order abstract
generators (see 22.3). It is possible for two different abstract generators to use the same
string and still be different.

gap> b := AbstractGenerator("a");
a
gap> a = b;
false

Also when you define abstract generators interactively it is a good idea to use the identifier
of the variable as the name of the abstract generator, because then what GAP will output
for a word is equal to what you can input to obtain this word. The following is an example
of what you should probably not do.

gap> c := AbstractGenerator("d");
d
gap> d := AbstractGenerator("c");
c
gap> (c*d)^3;
d*c*d*c*d*c
gap> d*c*d*c*d*c;
c*d*c*d*c*d

22.2 AbstractGenerators

AbstractGenerators(string, n)

AbstractGenerators returns a list of n new abstract generators. These new generators are
printed using string1, string2, ..., stringn.

gap> AbstractGenerators("a", 3);
[a1, a2, a3]

AbstractGenerators could be defined as follows (see 22.1).

AbstractGenerators := function (string, n)
local gens, i;
gens := [];
for i in [1..n] do

Add(gens,
AbstractGenerator(

ConcatenationString(string, String(i))));

22.3. COMPARISONS OF WORDS 475

od;
return gens;

end;

22.3 Comparisons of Words

w1 = w2
w1 <> w2

The equality operator = evaluates to true if the two words w1 and w2 are equal and to
false otherwise. The inequality operator <> evaluates to true if the two words w1 and w2
are not equal and to false otherwise.

You can compare words with objects of other types, but they are never equal of course.

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;
gap> a = b;
false
gap> (a^2*b)^5*b^-1 = a^2*b*a^2*b*a^2*b*a^2*b*a^2;
true

w1 < w2
w1 <= w2
w1 > w2
w1 >= w2

The operators <, <=, >, and => evaluate to true if the word w1 is less than, less than or
equal to, greater than, and greater than or equal to the word w2 .

Words are ordered as follows. One word w1 is considered smaller than another word w2 it
it is shorted, or, if they have the same length, if it is first in the lexicographical ordering
implied by the ordering of the abstract generators. The ordering of abstract generators is
as follows. The abstract generators are ordered with respect to the strings that were passed
to AbstractGenerator when creating these abstract generators. Each abstract generator g
is also smaller than its inverse, but this inverse is smaller than any abstract generator that
is larger than g .

Words can also be compared with objects of other types. Integers, rationals, cyclotomics,
finite field elements, and permutations are smaller than words, everything else is larger.

gap> IdWord<a; a<a^-1; a^-1<b; b<b^-1; b^-1<a^2; a^2<a*b;
true
true
true
true
true
true

22.4 Operations for Words

w1 * w2

476 CHAPTER 22. WORDS IN ABSTRACT GENERATORS

The operator * evaluates to the product of the two words w1 and w2 . Note that words
do not belong to a specific group, thus any two words can be multiplied. Multiplication
of words is done by concatenating the words and removing adjacent pairs of an abstract
generator and its inverse.

w1 / w2

The operator / evaluates to the quotient w1 ∗w2−1 of the two words w1 and w2 . Inversion
of a word is done by reversing the order of its letters and replacing each abstract generator
with its inverse.

w1 ^ w2

The operator ^ evaluates to the conjugate w2−1 ∗ w1 ∗ w2 of the word w1 under the word
w2 .

w1 ^ i

The powering operator ^ returns the i -th power of the word w1 , where i must be an integer.
If i is zero, the value is IdWord.

list * w1
w1 * list

In this form the operator * returns a new list where each entry is the product of w1 and
the corresponding entry of list . Of course multiplication must be defined between w1 and
each entry of list .

list / w1

In this form the operator / returns a new list where each entry is the quotient of w1 and
the corresponding entry of list . Of course division must be defined between w1 and each
entry of list .

Comm(w1, w2)

Comm returns the commutator w1−1 ∗ w2−1 ∗ w1 ∗ w2 of two words w1 and w2 .

LeftQuotient(w1, w2)

LeftQuotient returns the left quotient w1−1 ∗ w2 of two words w1 and w2 .

22.5 IsWord

IsWord(obj)

IsWord returns true if the object obj , which may be an object of arbitrary type, is a word
and false otherwise. Signals an error if obj is an unbound variable.

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;

22.6. LENGTHWORD 477

gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> IsWord(w);
true
gap> a := (1,2,3);;
gap> IsWord(a^2);
false

22.6 LengthWord

LengthWord(w)

LengthWord returns the length of the word w , i.e., the number of letters in the word.

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> LengthWord(w);
14
gap> LengthWord(a^13);
13
gap> LengthWord(IdWord);
0

22.7 ExponentSumWord

ExponentSumWord(w, gen)

ExponentSumWord returns the number of times the generator gen appears in the word w
minus the number of times its inverse appears in w . If gen and its inverse do no occur in
w , 0 is returned. gen may also be the inverse of a generator of course.

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> ExponentSumWord(w, a);
10
gap> ExponentSumWord(w, b);
4
gap> ExponentSumWord((a*b*a^-1)^3, a);
0
gap> ExponentSumWord((a*b*a^-1)^3, b^-1);
-3

22.8 Subword

Subword(w, from, to)

Subword returns the subword of the word w that begins at position from and ends at position
to. from and to must be positive integers. Indexing is done with origin 1.

478 CHAPTER 22. WORDS IN ABSTRACT GENERATORS

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> Subword(w, 5, 8);
a*b*a^2

22.9 PositionWord

PositionWord(w, sub, from)

PositionWord returns the position of the first occurrence of the word sub in the word w
starting at position from. If there is no such occurrence, false is returned. from must be
a positive integer. Indexing is done with origin 1.

In other words, PositionWord(w,sub,from) returns the smallest integer i larger than or
equal to from such that Subword(w, i, i+LengthWord(sub)-1) = sub (see 22.8).

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> PositionWord(w, a^2*b, 2);
4
gap> PositionWord(w, a*b^2, 2);
false

22.10 SubstitutedWord

SubstitutedWord(w, from, to, by)

SubstitutedWord returns a new word where the subword of the word w that begins at
position from and ends at position to is replaced by the word by . from and to must be
positive integers. Indexing is done with origin 1.

In other words SubstitutedWord(w,from,to,by) is the word Subword(w,1,from-1) * by
* Subword(w,to+1,LengthWord(w) (see 22.8).

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> SubstitutedWord(w,5,8,b^-1);
a^2*b*a^3*b*a^2

22.11 EliminatedWord

EliminatedWord(word, gen, by)

EliminatedWord returns a new word where each occurrence of the generator gen is replaced
by the word by .

gap> a := AbstractGenerator("a");;

22.12. MAPPEDWORD 479

gap> b := AbstractGenerator("b");;
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> EliminatedWord(w, b, b^2);
a^2*b^2*a^2*b^2*a^2*b^2*a^2*b^2*a^2

22.12 MappedWord

MappedWord(w, gens, imgs)

MappedWord returns the new group element that is obtained by replacing each occurrence
of a generator gen in the list of generators gens by the corresponding group element img
in the list of group elements imgs. The lists gens and imgs must of course have the same
length.

gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;
gap> w := (a^2*b)^5*b^-1;
a^2*b*a^2*b*a^2*b*a^2*b*a^2
gap> MappedWord(w, [a,b], [(1,2,3),(1,2)]);
(1,3,2)

If the images in imgs are all words, and some of them are equal to the corresponding
generators in gens, then those may be omitted.

gap> MappedWord(w, [a], [a^2]);
a^4*b*a^4*b*a^4*b*a^4*b*a^4

Note that the special case that the list gens and imgs have only length 1 is handled more
efficiently by EliminatedWord (see 22.11).

480 CHAPTER 22. WORDS IN ABSTRACT GENERATORS

Chapter 23

Finitely Presented Groups

A finitely presented group is a group generated by a set of abstract generators subject
to a set of relations that these generators satisfy. Each group can be represented as finitely
presented group.

A finitely presented group is constructed as follows. First create an appropriate free group
(see 23.1). Then create the finitely presented group as a factor of this free group by the
relators.

gap> F2 := FreeGroup("a", "b");
Group(a, b)
gap> A5 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^5];
Group(a, b)
gap> Size(A5);
60
gap> a := A5.1;; b := A5.2;;
gap> Index(A5, Subgroup(A5, [a*b]));
12

Note that, even though the generators print with the names given to FreeGroup, no vari-
ables of that name are defined. That means that the generators must be entered as free-
group.number and fp-group.number .

Note that the generators of the free group are different from the generators of the finitely
presented group (even though they print with the same name). That means that words in
the generators of the free group are not elements of the finitely presented group.

Note that the relations are entered as relators, i.e., as words in the generators of the free
group. To enter an equation use the quotient operator, i.e., for the relation ab = ab you
have to enter a^b/(a*b).

You must not change the relators of a finitely presented group at all.

The elements of a finitely presented group are words. There is one fundamental problem with
this. Different words can correspond to the same element in a finitely presented group. For
example in the group A5 defined above, a and a^3 are actually the same element. However,
a is not equal to a^3 (in the sense that a = a^3 is false). This leads to the following
anomaly: a^3 in A5 is true, but a^3 in Elements(A5) is false. Some set and group

481

482 CHAPTER 23. FINITELY PRESENTED GROUPS

functions will not work correctly because of this problem. You should therefore
only use the functions mentioned in 23.2 and 23.3.

The first section in this chapter describes the function FreeGroup that creates a free group
(see 23.1). The next sections describe which set theoretic and group functions are imple-
mented specially for finitely presented groups and how they work (see 23.2 and 23.3). The
next section describes the basic function CosetTableFpGroup that is used by most other
functions for finitely presented groups (see 23.4). The next section describes how you can
compute a permutation group that is a homomorphic image of a finitely presented group
(see 23.5). The final section describes the function that finds all subgroups of a finitely
presented group of small index (see 23.7).

23.1 FreeGroup

FreeGroup(n)
FreeGroup(n, string)
FreeGroup(name1, name2..)

FreeGroup returns the free group on n generators. The generators are displayed as string.1,
string.2, ..., string.n. If string is missing it defaults to "f". If string is the name of the
variable that you use to refer to the group returned by FreeGroup you can also enter the
generators as string.i .

gap> F2 := FreeGroup(2, "A5");;
gap> A5 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^5];
Group(A5.1, A5.2)
gap> Size(A5);
60
gap> F2 := FreeGroup("a", "b");;
gap> D8 := F2 / [F2.1^4, F2.2^2, F2.1^F2.2 / F2.1];
Group(a, b)
gap> a := D8.1;; b := D8.2;;
gap> Index(D8, Subgroup(D8, [a]));
2

23.2 Set Functions for Finitely Presented Groups

Finitely presented groups are domains, thus in principle all set theoretic functions are ap-
plicable to them (see chapter 4). However because words that are not equal may denote
the same element of a finitely presented group many of them will not work correctly. This
sections describes which set theoretic functions are implemented specially for finitely pre-
sented groups and how they work. You should not use the set theoretic functions that are
not mentioned in this section.

The general information that enables GAP to work with a finitely presented group G is a
coset table (see 23.4). Basically a coset table is the permutation representation of the
finitely presented group on the cosets of a subgroup (which need not be faithful if the
subgroup has a nontrivial core). Most of the functions below use the regular representation
of G , i.e., the coset table of G over the trivial subgroup. Such a coset table is computed by
a method called coset enumeration.

23.3. GROUP FUNCTIONS FOR FINITELY PRESENTED GROUPS 483

Size(G)

The size is simply the degree of the regular representation of G .

w in G

A word w lies in a parent group G if all its letters are among the generators of G .

w in H

To test whether a word w lies in a subgroup H of a finitely presented group G , GAP computes
the coset table of G over H . Then it tests whether the permutation one gets by replacing
each generator of G in w with the corresponding permutation is trivial.

Elements(G)

The elements of a finitely presented group are computed by computing the regular repre-
sentation of G . Then for each point p GAP adds the smallest word w that, when viewed as
a permutation, takes 1 to p to the set of elements. Note that this implies that each word in
the set returned is the smallest word that denotes an element of G .

Elements(H)

The elements of a subgroup H of a finitely presented group G are computed by computing
the elements of G and returning those that lie in H .

Intersection(H1, H2)

The intersection of two subgroups H1 and H2 of a finitely presented group G is computed
as follows. First GAP computes the coset tables of G over H1 and H2 . Then it computes
the tensor product of those two permutation representations. The coset table of the inter-
section is the transitive constituent of 1 in this tensored permutation representation. Finally
GAP computes a set of Schreier generators for the intersection by performing another coset
enumeration using the already complete coset table. The intersection is returned as the
subgroup generated by those Schreier generators.

23.3 Group Functions for Finitely Presented Groups

Finitely presented groups are after all groups, thus in principle all group functions are
applicable to them (see chapter 7). However because words that are not equal may denote
the same element of a finitely presented group many of them will not work correctly. This
sections describes which group functions are implemented specially for finitely presented
groups and how they work. You should not use the group functions that are not mentioned
in this section.

The general information that enables GAP to work with a finitely presented group G is a
coset table (see 23.4). Basically a coset table is the permutation representation of the
finitely presented group on the cosets of a subgroup (which need not be faithful if the
subgroup has a nontrivial core). Most of the functions below use the regular representation

484 CHAPTER 23. FINITELY PRESENTED GROUPS

of G , i.e., the coset table of G over the trivial subgroup. Such a coset table is computed by
a method called coset enumeration.

Order(G, g)

The order of an element g is computed by translating the element into the regular permu-
tation representation and computing the order of this permutation (which is the length of
the cycle of 1).

Index(G, H)

The index of a subgroup H in a finitely presented group G is simply the degree of the
permutation representation of the group G on the cosets of H .

Normalizer(G, H)

The normalizer of a subgroup H of a finitely presented group G is the union of those cosets
of H in G that are fixed by all the generators of H when viewed as permutations in the
permutation representation of G on the cosets of H . The normalizer is returned as the
subgroup generated by the generators of H and representatives of such cosets.

CommutatorFactorGroup(G)

The commutator factor group of a finitely presented group G is returned as a new finitely
presented group. The relations of this group are the relations of G plus the commutator of
all the pairs of generators of G .

AbelianInvariants(G)

The abelian invariants of a abelian finitely presented group (e.g., a commutator factor group
of an arbitrary finitely presented group) are computed by building the relation matrix of G
and transforming this matrix to diagonal form with ElementaryDivisorsMat (see 34.17).

AbelianInvariantsSubgroupFpGroup(G, H)
AbelianInvariantsSubgroupFpGroup(G, cosettable)

This function is equivalent to AbelianInvariantsSubgroupFpGroupRrs below, but note
that there is an alternative function, AbelianInvariantsSubgroupFpGroupMtc.

AbelianInvariantsSubgroupFpGroupRrs(G, H)
AbelianInvariantsSubgroupFpGroupRrs(G, cosettable)

AbelianInvariantsSubgroupFpGroupRrs returns the invariants of the commutator factor
group H/H’ of a subgroup H of a finitely presented group G . They are computed by
first applying an abelianized Reduced Reidemeister-Schreier procedure (see 23.11) to con-
struct a relation matrix of H/H’ and then transforming this matrix to diagonal form with
ElementaryDivisorsMat (see 34.17).

As second argument, you may provide either the subgroup H itself or its coset table in G .

23.3. GROUP FUNCTIONS FOR FINITELY PRESENTED GROUPS 485

AbelianInvariantsSubgroupFpGroupMtc(G, H)

AbelianInvariantsSubgroupFpGroupMtc returns the invariants of the commutator factor
group H/H’ of a subgroup H of a finitely presented group G . They are computed by applying
an abelianized Modified Todd-Coxeter procedure (see 23.11) to construct a relation matrix
of H/H’ and then transforming this matrix to diagonal form with ElementaryDivisorsMat
(see 34.17).

AbelianInvariantsNormalClosureFpGroup(G, H)

This function is equivalent to AbelianInvariantsNormalClosureFpGroupRrs below.

AbelianInvariantsNormalClosureFpGroupRrs(G, H)

AbelianInvariantsNormalClosureFpGroupRrs returns the invariants of the commutator
factor group N/N’ of the normal closure N a subgroup H of a finitely presented group G .
They are computed by first applying an abelianized Reduced Reidemeister-Schreier proce-
dure (see 23.11) to construct a relation matrix of N/N’ and then transforming this matrix
to diagonal form with ElementaryDivisorsMat (see 34.17).

gap> # Define the Coxeter group E1.
gap> F5 := FreeGroup("x1", "x2", "x3", "x4", "x5");;
gap> E1 := F5 / [F5.1^2, F5.2^2, F5.3^2, F5.4^2, F5.5^2,
> (F5.1 * F5.3)^2, (F5.2 * F5.4)^2, (F5.1 * F5.2)^3,
> (F5.2 * F5.3)^3, (F5.3 * F5.4)^3, (F5.4 * F5.1)^3,
> (F5.1 * F5.5)^3, (F5.2 * F5.5)^2, (F5.3 * F5.5)^3,
> (F5.4 * F5.5)^2,
> (F5.1 * F5.2 * F5.3 * F5.4 * F5.3 * F5.2)^2];;
gap> x1:=E1.1;; x2:=E1.2;; x3:=E1.3;; x4:=E1.4;; x5:=E1.5;;
gap> # Get normal subgroup generators for B1.
gap> H := Subgroup(E1, [x5 * x2^-1, x5 * x4^-1]);;
gap> # Compute the abelian invariants of B1/B1’.
gap> A := AbelianInvariantsNormalClosureFpGroup(E1, H);
[2, 2, 2, 2, 2, 2, 2, 2]
gap> # Compute a presentation for B1.
gap> P := PresentationNormalClosure(E1, H);
<< presentation with 18 gens and 46 rels of total length 132 >>
gap> SimplifyPresentation(P);
#I there are 8 generators and 30 relators of total length 148
gap> B1 := FpGroupPresentation(P);
Group(_x1, _x2, _x3, _x4, _x6, _x7, _x8, _x11)
gap> # Compute normal subgroup generators for B1’.
gap> gens := B1.generators;;
gap> numgens := Length(gens);;
gap> comms := [];;
gap> for i in [1 .. numgens - 1] do
> for j in [i+1 .. numgens] do
> Add(comms, Comm(gens[i], gens[j]));
> od;

486 CHAPTER 23. FINITELY PRESENTED GROUPS

> od;
gap> # Compute the abelian invariants of B1’/B1".
gap> K := Subgroup(B1, comms);;
gap> A := AbelianInvariantsNormalClosureFpGroup(B1, K);
[0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2]

The prededing calculation for B1 and a similar one for B0 have been used to prove that
B′1/B

′′
1
∼= Z9

2 × Z3 and B′0/B
′′
0
∼= Z91

2 × Z27 as stated in Proposition 5 in [FJNT95].

The following functions are not implemented specially for finitely presented groups, but they
work nevertheless. However, you probably should not use them for larger finitely presented
groups.

Core(G, U)
SylowSubgroup(G, p)
FittingSubgroup(G)

23.4 CosetTableFpGroup

CosetTableFpGroup(G, H)

CosetTableFpGroup returns the coset table of the finitely presented group G on the cosets
of the subgroup H .

Basically a coset table is the permutation representation of the finitely presented group on
the cosets of a subgroup (which need not be faithful if the subgroup has a nontrivial core).
Most of the set theoretic and group functions use the regular representation of G , i.e., the
coset table of G over the trivial subgroup.

The coset table is returned as a list of lists. For each generator of G and its inverse the table
contains a generator list. A generator list is simply a list of integers. If l is the generator
list for the generator g and l[i] = j then generator g takes the coset i to the coset j by
multiplication from the right. Thus the permutation representation of G on the cosets of
H is obtained by applying PermList to each generator list (see 20.9). The coset table is
standardized, i.e., the cosets are sorted with respect to the smallest word that lies in each
coset.

gap> F2 := FreeGroup("a", "b");
Group(a, b)
gap> A5 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^5];
Group(a, b)
gap> CosetTableFpGroup(A5,
> Subgroup(A5, [A5.1, A5.2*A5.1*A5.2*A5.1*A5.2^-1]));
[[1, 3, 2, 5, 4],

[1, 3, 2, 5, 4], # inverse of above, A5.1 is an involution
[2, 4, 3, 1, 5],
[4, 1, 3, 2, 5]] # inverse of above

gap> List(last, PermList);
[(2,3)(4,5), (2,3)(4,5), (1,2,4), (1,4,2)]

The coset table is computed by a method called coset enumeration. A Felsch strategy
is used to decide how to define new cosets.

23.5. OPERATIONCOSETSFPGROUP 487

The variable CosetTableFpGroupDefaultLimit determines for how many cosets the table
has initially room. CosetTableFpGroup will automatically extend this table if need arises,
but this is an expensive operation. Thus you should set CosetTableFpGroupDefaultLimit
to the number of cosets that you expect will be needed at most. However you should not
set it too high, otherwise too much space will be used by the coset table.
The variable CosetTableFpGroupDefaultMaxLimit determines the maximal size of the coset
table. If a coset enumeration reaches this limit it signals an error and enters the breakloop.
You can either continue or quit the computation from there. Setting the limit to 0 allows
arbitrary large coset tables.

23.5 OperationCosetsFpGroup

OperationCosetsFpGroup(G, H)

OperationCosetsFpGroup returns the permutation representation of the finitely presented
group G on the cosets of the subgroup H as a permutation group. Note that this permutation
representation is faithful if and only if H has a trivial core in G .

gap> F2 := FreeGroup("a", "b");
Group(a, b)
gap> A5 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^5];
Group(a, b)
gap> OperationCosetsFpGroup(A5,
> Subgroup(A5, [A5.1, A5.2*A5.1*A5.2*A5.1*A5.2^-1]));
Group((2,3)(4,5), (1,2,4))
gap> Size(last);
60

OperationCosetsFpGroup simply calls CosetTableFpGroup, applies PermList to each row
of the table, and returns the group generated by those permutations (see 23.4, 20.9).

23.6 IsIdenticalPresentationFpGroup

IsIdenticalPresentationFpGroup(G, H)

IsIdenticalPresentationFpGroup returns true if the presentations of the parent groups
G and H are identical and false otherwise.
Two presentations are considered identical if the have the same number of generators, i.e.,
G is generated by g1 ... gn and H by h1 ... hn, and if the set of relators of G stored in
G.relators is equal to the set of relators of H stored in H .relators after replacing hi
by gi in these words.

gap> F2 := FreeGroup(2);
Group(f.1, f.2)
gap> g := F2 / [F2.1^2 / F2.2];
Group(f.1, f.2)
gap> h := F2 / [F2.1^2 / F2.2];
Group(f.1, f.2)
gap> g = h;
false
gap> IsIdenticalPresentationFpGroup(g, h);
true

488 CHAPTER 23. FINITELY PRESENTED GROUPS

23.7 LowIndexSubgroupsFpGroup

LowIndexSubgroupsFpGroup(G, H , index)
LowIndexSubgroupsFpGroup(G, H , index, excluded)

LowIndexSubgroupsFpGroup returns a list of representatives of the conjugacy classes of
subgroups of the finitely presented group G that contain the subgroup H of H and that
have index less than or equal to index .

The function provides some intermediate output if InfoFpGroup2 has been set to Print (its
default value is Ignore).

If the optional argument excluded has been specified, then it is expected to be a list of words
in the generators of G , and LowIndexSubgroupsFpGroup returns only those subgroups of
index at most index that contain H , but do not contain any conjugate of any of the group
elements defined by these words.

gap> F2 := FreeGroup("a", "b");
Group(a, b)
gap> A5 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^5];
Group(a, b)
gap> A5.name := "A5";;
gap> S := LowIndexSubgroupsFpGroup(A5, TrivialSubgroup(A5), 12);
[A5, Subgroup(A5, [a, b*a*b^-1]),

Subgroup(A5, [a, b*a*b*a^-1*b^-1]),
Subgroup(A5, [a, b*a*b*a*b^-1*a^-1*b^-1]),
Subgroup(A5, [b*a^-1])]

gap> List(S, H -> Index(A5, H));
[1, 6, 5, 10, 12] # the indices of the subgroups
gap> List(S, H -> Index(A5, Normalizer(A5, H)));
[1, 6, 5, 10, 6] # the lengths of the conjugacy classes

As an example for an application of the optional parameter excluded , we compute all con-
jugacy classes of torsion free subgroups of index at most 24 in the group G = 〈x, y, z |
x2, y4, z3, (xy)3, (yz)2, (xz)3〉. It is know from theory that each torsion element of this group
is conjugate to a power of x, y, z, xy, xz, or yz.

gap> G := FreeGroup("x", "y", "z");
Group(x, y, z)
gap> x := G.1;; y := G.2;; z := G.3;;
gap> G.relators := [x^2, y^4, z^3, (x*y)^3, (y*z)^2, (x*z)^3];;
gap> torsion := [x, y, y^2, z, x*y, x*z, y*z];;
gap> InfoFpGroup2 := Print;;
gap> lis :=
> LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 24, torsion);;
#I class 1 of index 24 and length 8
#I class 2 of index 24 and length 24
#I class 3 of index 24 and length 24
#I class 4 of index 24 and length 24
#I class 5 of index 24 and length 24
gap> InfoFpGroup2 := Ignore;;
gap> lis;

23.8. PRESENTATION RECORDS 489

[Subgroup(Group(x, y, z),
[x*y*z^-1, z*x*z^-1*y^-1, x*z*x*y^-1*z^-1, y*x*z*y^-1*z^-1]),

Subgroup(Group(x, y, z),
[x*y*z^-1, z^2*x^-1*y^-1, x*z*y*x^-1*z^-1]),

Subgroup(Group(x, y, z),
[x*y*z^-1, x*z^2*x^-1*y^-1, y^2*x*y^-1*z^-1*x^-1]),

Subgroup(Group(x, y, z), [x*y*z^-1, y^3*x^-1*z^-1*x^-1,
y^2*z*x^-1*y^-1]),

Subgroup(Group(x, y, z), [y*x*z^-1, x*y*z*y^-1*z^-1,
y^2*z*x^-1*z^-1*x^-1])]

The function LowIndexSubgroupsFpGroup finds the requested subgroups by systematically
running through a tree of all potential coset tables of G of length at most index (where
it skips all branches of that tree for which it knows in advance that they cannot provide
new classes of such subgroups). The time required to do this depends, of course, on the
presentation of G , but in general it will grow exponentially with the value of index . So you
should be careful with the choice of index .

23.8 Presentation Records

In GAP, finitely presented groups are distinguished from group presentations which
are GAP objects of their own and which are stored in presentation records. The reason is
that very often presentations have to be changed (e.g. simplified) by Tietze transformations,
but since in these new generators and relators are introduced, all words in the generators of a
finitely presented group would also have to be changed if such a Tietze transformation were
applied to the presentation of a finitely presented group. Therefore, in GAP the presentation
defining a finitely presented group is never changed; changes are only allowed for group
presentations which are not considered to define a particular group.

GAP offers a bundle of commands to perform Tietze transformations on finite group presen-
tations (see 23.12, 23.13). In order to speed up the respective routines, the relators in such
a presentation record are not represented by ordinary (abstract) GAP words, but by lists of
positive or negative generator numbers which we call Tietze words.

The term “Tietze record” will sometimes be used as an alias for “presentation record”.
It occurs, in particular, in certain error messages.

The following two commands can be used to create a presentation record from a finitely
presented group or, vice versa, to create a finitely presented group from a presentation.

PresentationFpGroup(G)
PresentationFpGroup(G, printlevel)

PresentationFpGroup returns a presentation record containing a copy of the presentation
of the given finitely presented group G on the same set of generators.

The optional printlevel parameter can be used to restrict or to extend the amount of output
provided by Tietze transformation commands when being applied to the created presentation
record. The default value 1 is designed for interactive use and implies explicit messages to be
displayed by most of these commands. A printlevel value of 0 will suppress these messages,
whereas a printlevel value of 2 will enforce some additional output.

490 CHAPTER 23. FINITELY PRESENTED GROUPS

FpGroupPresentation(P)

FpGroupPresentation returns a finitely presented group defined by the presentation in the
given presentation record P .

If some presentation record P , say, contains a large presentation, then it would be nasty
to wait for the end of an unintentionally started printout of all of its components (or,
more precisely, of its component P.tietze which contains the essential lists). Therefore,
whenever you use the standard print facilities to display a presentation record, GAP will
provide just one line of text containing the number of generators, the number of relators,
and the total length of all relators. Of course, you may use the RecFields and PrintRec
commands to display all components of P .

In addition, you may use the following commands to extract and print different amounts of
information from a presentation record.

TzPrintStatus(P)

TzPrintStatus prints the current state of a presentation record P , i.e., the number of
generators, the number of relators, and the total length of all relators.

If you are working interactively, you can get the same information by just typing P;

TzPrintGenerators(P)
TzPrintGenerators(P, list)

TzPrintGenerators prints the current list of generators of a presentation record P , provid-
ing for each generator its name, the total number of its occurrences in the relators, and, if
that generator is known to be an involution, an appropriate message.

If a list list has been specified as second argument, then it is expected to be a list of the
position numbers of the generators to be printed. list need not be sorted and may contain
duplicate elements. The generators are printed in the order in which and as often as their
numbers occur in list . Position numbers out of range (with respect to the list of generators)
will be ignored.

TzPrintRelators(P)
TzPrintRelators(P, list)

TzPrintRelators prints the current list of relators of a presentation record P .

If a list list has been specified as second argument, then it is expected to be a list of the
position numbers of the relators to be printed. list need not be sorted and may contain
duplicate elements. The relators are printed as Tietze words in the order in which (and as
often as) their numbers occur in list . Position numbers out of range (with respect to the
list of relators) will be ignored.

TzPrintPresentation(P)

TzPrintPresentation prints the current lists of generators and relators and the current
state of a presentation record P . In fact, the command

TzPrintPresentation(P)

23.8. PRESENTATION RECORDS 491

is an abbreviation of the command sequence

Print("generators:\n"); TzPrintGenerators(P);
Print("relators:\n"); TzPrintRelators(P);
TzPrintStatus(P);

TzPrint(P)
TzPrint(P, list)

TzPrint provides a kind of fast print out for a presentation record P .

Remember that in order to speed up the Tietze transformation routines, each relator in a
presentation record P is internally represented by a list of positive or negative generator
numbers, i.e., each factor of the proper GAP word is represented by the position number
of the corresponding generator with respect to the current list of generators, or by the
respective negative number, if the factor is the inverse of a generator which is not known to be
an involution. In contrast to the commands TzPrintRelators and TzPrintPresentation
described above, TzPrint does not convert these lists back to the corresponding GAP words.

TzPrint prints the current list of generators, and then for each relator its length and its
internal representation as a list of positive or negative generator numbers.

If a list list has been specified as second argument, then it is expected to be a list of the
position numbers of the relators to be printed. list need not be sorted and may contain
duplicate elements. The relators are printed in the order in which and as often as their
numbers occur in list . Position numbers out of range (with respect to the list of relators)
will be ignored.

There are four more print commands for presentation records which are convenient in the
context of the interactive Tietze transformation commands:

TzPrintGeneratorImages(P)

See 23.13.

TzPrintLengths(P)

See 23.13.

TzPrintPairs(P)
TzPrintPairs(P, n)

See 23.13.

TzPrintOptions(P)

See 23.13.

Moreover, there are two functions which allow to convert abstract words to Tietze words or
Tietze words to abstract words.

TietzeWordAbstractWord(word, generators)

492 CHAPTER 23. FINITELY PRESENTED GROUPS

Let generators be a list of abstract generators and word an abstract word in these generators.
The function TietzeWordAbstractWord returns the corresponding (reduced) Tietze word.

gap> F := FreeGroup("a", "b", "c");
Group(a, b, c)
gap> tzword := TietzeWordAbstractWord(
> Comm(F.1,F.2) * (F.3^2 * F.2)^-1, F.generators);
[-1, -2, 1, -3, -3]

AbstractWordTietzeWord(word, generators)

Let generators be a list of abstract generators and word a Tietze word in these generators.
The function AbstractWordTietzeWord returns the corresponding abstract word.

gap> AbstractWordTietzeWord(tzword, F.generators);
a^-1*b^-1*a*c^-2

Save(file, P, name)

The function Save allows to save a presentation and to recover it in a later GAP session.

Let P be a presentation, and let file and name be strings denoting a file name and a variable
name, respectively. The function Save generates a new file file and writes P and name to
that file in such a way that a copy of P can be reestablished by just reading the file with
the function Read. This copy of P will be assigned to a variable called name.

Warning: It is not guaranteed that the functions Save and Read work properly if the pre-
sentation record P contains additional, user defined components. For instance, components
involving abstract words cannot be read in again as soon as the associated generators are
not available any more.

Example.

gap> F2 := FreeGroup("a", "b");;
gap> G := F2 / [F2.1^2, F2.2^7, Comm(F2.1,F2.1^F2.2),
> Comm(F2.1,F2.1^(F2.2^2))*(F2.1^F2.2)^-1];
Group(a, b)
gap> a := G.1;; b := G.2;;
gap> P := PresentationFpGroup(G);
<< presentation with 2 gens and 4 rels of total length 30 >>
gap> TzPrintGenerators(P);
#I 1. a 11 occurrences involution
#I 2. b 19 occurrences
gap> TzPrintRelators(P);
#I 1. a^2
#I 2. b^7
#I 3. a*b^-1*a*b*a*b^-1*a*b
#I 4. a*b^-2*a*b^2*a*b^-2*a*b*a*b
gap> TzPrint(P);
#I generators: [a, b]
#I relators:
#I 1. 2 [1, 1]

23.9. CHANGING PRESENTATIONS 493

#I 2. 7 [2, 2, 2, 2, 2, 2, 2]
#I 3. 8 [1, -2, 1, 2, 1, -2, 1, 2]
#I 4. 13 [1, -2, -2, 1, 2, 2, 1, -2, -2, 1, 2, 1, 2]
gap> TzPrintStatus(P);
#I there are 2 generators and 4 relators of total length 30
gap> Save("checkpoint", P, "P0");
gap> Read("checkpoint");
#I presentation record P0 read from file
gap> P0;
<< presentation with 2 gens and 4 rels of total length 30 >>

23.9 Changing Presentations

The commands described in this section can be used to change the presentation in a pre-
sentation record. Note that, in general, they will change the isomorphism type of the group
defined by the presentation. Hence, though they sometimes are called as subroutines by
Tietze transformations commands like TzSubstitute (see 23.13), they do not perform Ti-
etze transformations themselves.

AddGenerator(P)
AddGenerator(P, generator)

AddGenerator adds a new generator to the list of generators.

If you don’t specify a second argument, then AddGenerator will define a new abstract
generator xi and save it in a new component P.i of the given presentation record where
i is the least positive integer which has not yet been used as a generator number. Though
this new generator will be printed as xi , you will have to use the external variable P.i if
you want to access it.

If you specify a second argument, then generator must be an abstract generator which does
not yet occur in the presentation. AddGenerator will add it to the presentation and save it
in a new component P.i in the same way as described for xi above.

AddRelator(P, word)

AddRelator adds the word word to the list of relators. word must be a word in the generators
of the given presentation.

RemoveRelator(P, n)

RemoveRelator removes the nth relator and then resorts the list of relators in the given
presentation record P .

23.10 Group Presentations

In section 23.8 we have described the funtion PresentationFpGroup which supplies a presen-
tation record for a finitely presented group. The following function can be used to compute
a presentation record for a concrete (e. g. permutation or matrix) group.

494 CHAPTER 23. FINITELY PRESENTED GROUPS

PresentationViaCosetTable(G)
PresentationViaCosetTable(G, F, words)

PresentationViaCosetTable constructs a presentation record for the given group G . The
method being used is John Cannon’s relations finding algorithm which has been described
in [Can73] or in [Neu82].

In its first form, if only the group G has been specified, it applies Cannon’s single stage
algorithm which, by plain element multiplication, computes a coset table of G with respect
to its trivial subgroup and then uses coset enumeration methods to find a defining set of
relators for G .

gap> G := GeneralLinearGroup(2, 7);
GL(2,7)
gap> G.generators;
[[[Z(7), 0*Z(7)], [0*Z(7), Z(7)^0]],
[[Z(7)^3, Z(7)^0], [Z(7)^3, 0*Z(7)]]]

gap> Size(G);
2016
gap> P := PresentationViaCosetTable(G);
<< presentation with 2 gens and 5 rels of total length 46 >>
gap> TzPrintRelators(P);
#I 1. f.2^3
#I 2. f.1^6
#I 3. f.1*f.2*f.1*f.2*f.1*f.2*f.1*f.2*f.1*f.2*f.1*f.2
#I 4. f.1*f.2*f.1^-1*f.2*f.1*f.2^-1*f.1^-1*f.2*f.1*f.2*f.1^-1*f.2^-1
#I 5. f.1^2*f.2*f.1*f.2*f.1*f.2^-1*f.1^-1*f.2^-1*f.1^3*f.2^-1

The second form allows to call Cannon’s two stage algorithm which first applies the single
stage algorithm to an appropriate subgroup H of G and then uses the resulting relators of
H and a coset table of G with respect to H to find relators of G . In this case the second
argument, F , is assumed to be a free group with the same number of generators as G , and
words is expected to be a list of words in the generators of F which, when being evaluated
in the corresponding generators of G , provide subgroup generators for H .

gap> M12 := MathieuGroup(12);;
gap> M12.generators;
[(1, 2, 3, 4, 5, 6, 7, 8, 9,10,11), (3, 7,11, 8)(4,10, 5, 6),
(1,12)(2,11)(3, 6)(4, 8)(5, 9)(7,10)]

gap> F := FreeGroup("a", "b", "c");
Group(a, b, c)
gap> words := [F.1, F.2];
[a, b]
gap> P := PresentationViaCosetTable(M12, F, words);
<< presentation with 3 gens and 10 rels of total length 97 >>
gap> G := FpGroupPresentation(P);
Group(a, b, c)
gap> G.relators;
[c^2, b^4, a*c*a*c*a*c, a*b^-2*a*b^-2*a*b^-2, a^11,
a^2*b*a^-2*b^-2*a*b^-1*a^2*b^-1,
a*b*a^-1*b*a^-1*b^-1*a*b*a^-1*b*a^-1*b^-1,

23.11. SUBGROUP PRESENTATIONS 495

a^2*b*a^2*b^-2*a^-1*b*a^-1*b^-1*a^-1*b^-1,
a^2*b^-1*a^-1*b^-1*a*c*b*c*a*b*a*b, a^3*b*a^2*b*a^-2*c*a*b*a^-1*c*a

]

Before it is returned, the resulting presentation is being simplified by appropriate calls
of the function SimplifyPresentation (see 23.13), but without allowing it to eliminate
any generators. This restriction guarantees that we get a bijection between the list of
generators of G and the list of generators in the presentation. Hence, if the generators of
G are redundant and if you don’t care for the bijection, it may be convenient to apply the
function SimplifyPresentation again.

gap> H := Group(
> [(2,5,3), (2,7,5), (1,8,4), (1,8,6), (4,8,6), (3,5,7)], ());;
gap> P := PresentationViaCosetTable(H);
<< presentation with 6 gens and 12 rels of total length 42 >>
gap> SimplifyPresentation(P);
#I there are 4 generators and 10 relators of total length 36

23.11 Subgroup Presentations

PresentationSubgroupRrs(G, H)
PresentationSubgroupRrs(G, H , string)
PresentationSubgroupRrs(G, cosettable)
PresentationSubgroupRrs(G, cosettable, string)

PresentationSubgroupRrs returns a presentation record (see 23.8) containing a presenta-
tion for the subgroup H of the finitely presented group G . It uses the Reduced Reidemeister-
Schreier method to construct this presentation.

As second argument, you may provide either the subgroup H itself or its coset table in G .

The generators in the resulting presentation will be named by string1, string2, ..., the
default string is " x".

The Reduced Reidemeister-Schreier algorithm is a modification of the Reidemeister-Schreier
algorithm of George Havas [Hav74]. It was proposed by Joachim Neubüser and first imple-
mented in 1986 by Andrea Lucchini and Volkmar Felsch in the SPAS system [Leh89b]. Like
George Havas’ Reidemeister-Schreier algorithm, it needs only the presentation of G and a
coset table of H in G to construct a presentation of H .

Whenever you call the PresentationSubgroupRrs command, it checks first whether a coset
table of H in G has already been computed and saved in the subgroup record of H by a
preceding call of some appropriate command like CosetTableFpGroup (see 23.4), Index (see
7.51), or LowIndexSubgroupsFpGroup (see 23.7). Only if the coset table is not yet available,
it is now constructed by PresentationSubgroupRrs which calls CosetTableFpGroup for this
purpose. In this case, of course, a set of generators of H is required, but they will not be
used any more in the subsequent steps.

Next, a set of generators of H is determined by reconstructing the coset table and introducing
in that process as many Schreier generators of H in G as are needed to do a Felsch strategy
coset enumeration without any coincidences. (In general, though containing redundant
generators, this set will be much smaller than the set of all Schreier generators. That’s why
we call the method the Reduced Reidemeister-Schreier.)

496 CHAPTER 23. FINITELY PRESENTED GROUPS

After having constructed this set of primary subgroup generators , say, the coset table is
extended to an augmented coset table which describes the action of the group generators
on coset representatives, i.e., on elements instead of cosets. For this purpose, suitable words
in the (primary) subgroup generators have to be associated to the coset table entries. In
order to keep the lengths of these words short, additional secondary subgroup generators
are introduced as abbreviations of subwords. Their number may be large.

Finally, a Reidemeister rewriting process is used to get defining relators for H from the
relators of G . As the resulting presentation of H is a presentation on primary and secondary
generators, in general you will have to simplify it by appropriate Tietze transformations (see
23.13) or by the DecodeTree command (see 23.14) before you can use it. Therefore it is
returned in the form of a presentation record, P say.

Compared with the Modified Todd-Coxeter method described below, the Reduced Reide-
meister-Schreier method (as well as Havas’ original Reidemeister-Schreier program) has the
advantage that it does not require generators of H to be given if a coset table of H in G
is known. This provides a possibility to compute a presentation of the normal closure of a
given subgroup (see the PresentationNormalClosureRrs command below).

As you may be interested not only to get the resulting presentation, but also to know
what the involved subgroup generators are, the function PresentationSubgroupRrs will
also return a list of the primary generators of H as words in the generators of G . It is
provided in form of an additional component P.primaryGeneratorWords of the resulting
presentation record P .

Note however: As stated in the description of the function Save (see 23.8), the function Read
cannot properly recover a component involving abstract generators different from the current
generators when it reads a presentation which has been written to a file by the function Save.
Therefore the function Save will ignore the component P.primaryGeneratorWords if you
call it to write the presentation P to a file. Hence this component will be lost if you read the
presentation back from that file, and it will be left to your own responsibility to remember
what the primary generators have been.

A few examples are given in section 23.13.

PresentationSubgroupMtc(G, H)
PresentationSubgroupMtc(G, H , string)
PresentationSubgroupMtc(G, H , printlevel)
PresentationSubgroupMtc(G, H , string, printlevel)

PresentationSubgroupMtc returns a presentation record (see 23.8) containing a presenta-
tion for the subgroup H of the finitely presented group G . It uses a Modified Todd-Coxeter
method to construct this presentation.

The generators in the resulting presentation will be named by string1, string2, ..., the
default string is " x".

The optional printlevel parameter can be used to restrict or to extend the amount of output
provided by the PresentationSubgroupMtc command. In particular, by specifying the
printlevel parameter to be 0, you can suppress the output of the DecodeTree command
which is called by the PresentationSubgroupMtc command (see below). The default value
of printlevel is 1.

23.11. SUBGROUP PRESENTATIONS 497

The so called Modified Todd-Coxeter method was proposed, in slightly different forms, by
Nathan S. Mendelsohn and William O. J. Moser in 1966. Moser’s method was proved by
Michael J. Beetham and Colin M. Campbell (see [BC76]). Another proof for a special version
was given by D. H. McLain (see [McL77]). It was generalized to cover a broad spectrum
of different versions (see the survey [Neu82]). Moser’s method was implemented by Harvey
A. Campbell (see [Cam71]. Later, a Modified Todd-Coxeter program was implemented in
St. Andrews by David G. Arrell, Sanjiv Manrai, and Michael F. Worboys (see [AMW82])
and further developed by David G. Arrel and Edmund F. Robertson (see [AR84]) and by
Volkmar Felsch in the SPAS system [Leh89b].

The Modified Todd-Coxeter method performs an enumeration of coset representatives.
It proceeds like an ordinary coset enumeration (see CosetTableFpGroup 23.4), but as the
product of a coset representative by a group generator or its inverse need not be a coset
representative itself, the Modified Todd-Coxeter has to store a kind of correction element
for each coset table entry. Hence it builds up a so called augmented coset table of H in
G consisting of the ordinary coset table and a second table in parallel which contains the
associated subgroup elements.

Theoretically, these subgroup elements could be expressed as words in the given generators
of H , but in general these words tend to become unmanageable because of their enormous
lengths. Therefore, a highly redundant list of subgroup generators is built up starting from
the given (“primary”) generators of H and adding additional (“secondary”) generators
which are defined as abbreviations of suitable words of length two in the preceding generators
such that each of the subgroup elements in the augmented coset table can be expressed as a
word of length at most one in the resulting (primary and secondary) subgroup generators.

Then a rewriting process (which is essentially a kind of Reidemeister rewriting process) is
used to get relators for H from the defining relators of G .

The resulting presentation involves all the primary, but not all the secondary generators
of H . In fact, it contains only those secondary generators which explicitly occur in the
augmented coset table. If we extended this presentation by those secondary generators
which are not yet contained in it as additional generators, and by the definitions of all
secondary generators as additional relators, we would get a presentation of H , but, in
general, we would end up with a large number of generators and relators.

On the other hand, if we avoid this extension, the current presentation will not necessar-
ily define H although we have used the same rewriting process which in the case of the
SubgroupPresentationRrs command computes a defining set of relators for H from an
augmented coset table and defining relators of G . The different behaviour here is caused by
the fact that coincidences may have occurred in the Modified Todd-Coxeter coset enumer-
ation.

To overcome this problem without extending the presentation by all secondary generators,
the SubgroupPresentationMtc command applies the so called tree decoding algorithm
which provides a more economical approach. The reader is strongly recommended to care-
fully read section 23.14 where this algorithm is described in more detail. Here we will
only mention that this procedure adds many fewer additional generators and relators in a
process which in fact eliminates all secondary generators from the presentation and hence
finally provides a presentation of H on the primary, i.e., the originally given, generators of
H . This is a remarkable advantage of the SubgroupPresentationMtc command compared
to the SubgroupPresentationRrs command. But note that, for some particular subgroup

498 CHAPTER 23. FINITELY PRESENTED GROUPS

H , the Reduced Reidemeister-Schreier method might quite well produce a more concise
presentation.

The resulting presentation is returned in the form of a presentation record, P say.

As the function PresentationSubgroupRrs desribed above (see there for details), the func-
tion PresentationSubgroupMtc returns a list of the primary subgroup generators of H in
form of a component P.primaryGeneratorWords. In fact, this list is not very exciting here
because it is just a copy of the list H .generators, however it is needed to guarantee a
certain consistency between the results of the different functions for computing subgroup
presentations.

Though the tree decoding routine already involves a lot of Tietze transformations, we rec-
ommend that you try to further simplify the resulting presentation by appropriate Tietze
transformations (see 23.13).

An example is given in section 23.14.

PresentationSubgroup(G, H)
PresentationSubgroup(G, H , string)
PresentationSubgroup(G, cosettable)
PresentationSubgroup(G, cosettable, string)

PresentationSubgroup returns a presentation record (see 23.8) containing a presentation
for the subgroup H of the finitely presented group G .

As second argument, you may provide either the subgroup H itself or its coset table in G .

In the case of providing the subgroup H itself as argument, the current GAP implemen-
tation offers a choice between two different methods for constructing subgroup presenta-
tions, namely the Reduced Reidemeister-Schreier and the Modified Todd-Coxeter proce-
dure. You can specify either of them by calling the commands PresentationSubgroupRrs
or PresentationSubgroupMtc, respectively. Further methods may be added in a later GAP
version. If, in some concrete application, you don’t care for the method to be selected, you
may use the PresentationSubgroup command as a kind of default command. In the present
installation, it will call the Reduced Reidemeister-Schreier method, i.e., it is identical with
the PresentationSubgroupRrs command.

A few examples are given in section 23.13.

PresentationNormalClosureRrs(G, H)
PresentationNormalClosureRrs(G, H , string)

PresentationNormalClosureRrs returns a presentation record (see 23.8), P say, containing
a presentation for the normal closure of the subgroup H of the finitely presented group G .
It uses the Reduced Reidemeister-Schreier method to construct this presentation. This
provides a possibility to compute a presentation for a normal subgroup for which only
“normal subgroup generators”, but not necessarily a full set of generators are known.

The generators in the resulting presentation will be named by string1, string2, ..., the
default string is " x".

PresentationNormalClosureRrs first establishes an intermediate group record for the fac-
tor group of G by the normal closure N , say, of H in G . Then it performs a coset enumeration

23.12. SIMPLIFIEDFPGROUP 499

of the trivial subgroup in that factor group. The resulting coset table can be considered as
coset table of N in G , hence a presentation for N can be constructed using the Reduced
Reidemeister-Schreier algorithm as described for the PresentationSubgroupRrs command.
As the function PresentationSubgroupRrs desribed above (see there for details), the func-
tion PresentationNormalClosureRrs returns a list of the primary subgroup generators of
N in form of a component P.primaryGeneratorWords.

PresentationNormalClosure(G, H)
PresentationNormalClosure(G, H , string)

PresentationNormalClosure returns a presentation record (see 23.8) containing a presen-
tation for the normal closure of the subgroup H of the finitely presented group G . This
provides a possibility to compute a presentation for a normal subgroup for which only “nor-
mal subgroup generators”, but not necessarily a full set of generators are known.
If, in a later release, GAP offers different methods for the construction of normal closure
presentations, then PresentationNormalClosure will call one of these procedures as a
kind of default method. At present, however, the Reduced Reidemeister-Schreier algorithm
is the only one implemented so far. Therefore, at present the PresentationNormalClosure
command is identical with the PresentationNormalClosureRrs command described above.

23.12 SimplifiedFpGroup

SimplifiedFpGroup(G)

SimplifiedFpGroup applies Tietze transformations to a copy of the presentation of the given
finitely presented group G in order to reduce it with respect to the number of generators,
the number of relators, and the relator lengths.
SimplifiedFpGroup returns the resulting finitely presented group (which is isomorphic to
G).

gap> F6 := FreeGroup(6, "G");;
gap> G := F6 / [F6.1^2, F6.2^2, F6.4*F6.6^-1, F6.5^2, F6.6^2,
> F6.1*F6.2^-1*F6.3, F6.1*F6.5*F6.3^-1, F6.2*F6.4^-1*F6.3,
> F6.3*F6.4*F6.5^-1, F6.1*F6.6*F6.3^-2, F6.3^4];;
gap> H := SimplifiedFpGroup(G);
Group(G.1, G.3)
gap> H.relators;
[G.1^2, G.1*G.3^-1*G.1*G.3^-1, G.3^4]

In fact, the command
H := SimplifiedFpGroup(G);

is an abbreviation of the command sequence
P := PresentationFpGroup(G, 0);;
SimplifyPresentation(P);
H := FpGroupPresentation(P);

which applies a rather simple-minded strategy of Tietze transformations to the intermediate
presentation record P (see 23.8). If for some concrete group the resulting presentation is
unsatisfying, then you should try a more sophisticated, interactive use of the available Tietze
transformation commands (see 23.13).

500 CHAPTER 23. FINITELY PRESENTED GROUPS

23.13 Tietze Transformations

The GAP commands being described in this section can be used to modify a group presen-
tation in a presentation record by Tietze transformations.
In general, the aim of such modifications will be to simplify the given presentation, i.e., to
reduce the number of generators and the number of relators without increasing too much
the sum of all relator lengths which we will call the total length of the presentation.
Depending on the concrete presentation under investigation one may end up with a nice,
short presentation or with a very huge one.
Unfortunately there is no algorithm which could be applied to find the shortest presentation
which can be obtained by Tietze transformations from a given one. Therefore, what GAP
offers are some lower-level Tietze transformation commands and, in addition, some higher-
level commands which apply the lower-level ones in a kind of default strategy which of
course cannot be the optimal choice for all presentations.
The design of these commands follows closely the concept of the ANU Tietze transformation
program designed by George Havas [Hav69] which has been available from Canberra since
1977 in a stand-alone version implemented by Peter Kenne and James Richardson and later
on revised by Edmund F. Robertson (see [HKRR84], [Rob88]).

In this section, we first describe the higher-level commands SimplifyPresentation, TzGo,
and TzGoGo (the first two of these commands are identical).
Then we describe the lower-level commands TzEliminate, TzSearch, TzSearchEqual, and
TzFindCyclicJoins. They are the bricks of which the preceding higher-level commands
have been composed. You may use them to try alternative strategies, but if you are satisfied
by the performance of TzGo and TzGoGo, then you don’t need them.
Some of the Tietze transformation commands listed so far may eliminate generators and
hence change the given presentation to a presentation on a subset of the given set of gener-
ators, but they all do not introduce new generators. However, sometimes you will need to
substitute certain words as new generators in order to improve your presentation. There-
fore GAP offers the two commands TzSubstitute and TzSubstituteCyclicJoins which
introduce new generators. These commands will be described next.
Then we continue the section with a description of the commands TzInitGeneratorImages
and TzPrintGeneratorImages which can be used to determine and to display the images
or preimages of the involved generators under the isomorphism which is defined by the
sequence of Tietze transformations which are applied to a presentation.
Subsequently we describe some further print commands, TzPrintLengths, TzPrintPairs,
and TzPrintOptions, which are useful if you run the Tietze transformations interactively.
At the end of the section we list the Tietze options and give their default values. These are
parameters which essentially influence the performance of the commands mentioned above.
However, they are not specified as arguments of function calls. Instead, they are associated
to the presentation records: Each presentation record keeps its own set of Tietze option
values in the form of ordinary record components.

SimplifyPresentation(P)
TzGo(P)

23.13. TIETZE TRANSFORMATIONS 501

SimplifyPresentation performs Tietze transformations on a presentation P . It is perhaps
the most convenient of the interactive Tietze transformation commands. It offers a kind of
default strategy which, in general, saves you from explicitly calling the lower-level commands
it involves.
Roughly speaking, SimplifyPresentation consists of a loop over a procedure which in-
volves two phases: In the search phase it calls TzSearch and TzSearchEqual described
below which try to reduce the relator lengths by substituting common subwords of relators,
in the elimination phase it calls the command TzEliminate described below (or, more
precisely, a subroutine of TzEliminate in order to save some administrative overhead) which
tries to eliminate generators that can be expressed as words in the remaining generators.
If SimplifyPresentation succeeds in reducing the number of generators, the number of
relators, or the total length of all relators, then it displays the new status before returning
(provided that you did not set the print level to zero). However, it does not provide any out-
put if all these three values have remained unchanged, even if the TzSearchEqual command
involved has changed the presentation such that another call of SimplifyPresentation
might provide further progress. Hence, in such a case it makes sense to repeat the call
of the command for several times (or to call instead the TzGoGo command which we will
describe next).
As an example we compute a presentation of a subgroup of index 408 in PSL(2, 17).

gap> F2 := FreeGroup("a", "b");;
gap> G := F2 / [F2.1^9, F2.2^2, (F2.1*F2.2)^4, (F2.1^2*F2.2)^3];;
gap> a := G.1;; b := G.2;;
gap> H := Subgroup(G, [(a*b)^2, (a^-1*b)^2]);;
gap> Index(G, H);
408
gap> P := PresentationSubgroup(G, H);
<< presentation with 8 gens and 36 rels of total length 111 >>
gap> P.primaryGeneratorWords;
[b, a*b*a]
gap> P.protected := 2;;
gap> P.printLevel := 2;;
gap> SimplifyPresentation(P);
#I eliminating _x7 = _x5
#I eliminating _x5 = _x4
#I eliminating _x18 = _x3
#I eliminating _x8 = _x3
#I there are 4 generators and 8 relators of total length 21
#I there are 4 generators and 7 relators of total length 18
#I eliminating _x4 = _x3^-1*_x2^-1
#I eliminating _x3 = _x2*_x1^-1
#I there are 2 generators and 4 relators of total length 14
#I there are 2 generators and 4 relators of total length 13
#I there are 2 generators and 3 relators of total length 9
gap> TzPrintRelators(P);
#I 1. _x1^2
#I 2. _x2^3
#I 3. _x2*_x1*_x2*_x1

502 CHAPTER 23. FINITELY PRESENTED GROUPS

Note that the number of loops over the two phases as well as the number of subword searches
or generator eliminations in each phase are determined by a set of option parameters which
may heavily influence the resulting presentation and the computing time (see Tietze options
below).

TzGo is just another name for the SimplifyPresentation command. It has been introduced
for the convenience of those GAP users who are used to that name from the go option of
the ANU Tietze transformation stand-alone program or from the go command in SPAS.

TzGoGo(P)

TzGoGo performs Tietze transformations on a presentation P . It repeatedly calls the TzGo
command until neither the number of generators nor the number of relators nor the total
length of all relators have changed during five consecutive calls of TzGo.

This may remarkably save you time and effort if you handle small presentations, however it
may lead to annoyingly long and fruitless waiting times in case of large presentations.

TzEliminate(P)
TzEliminate(P, gen)
TzEliminate(P, n)

TzEliminate tries to eliminate a generator from a presentation P via Tietze transformations.

Any relator which contains some generator just once can be used to substitute that gen-
erator by a word in the remaining generators. If such generators and relators exist, then
TzEliminate chooses a generator for which the product of its number of occurrences and
the length of the substituting word is minimal, and then it eliminates this generator from
the presentation, provided that the resulting total length of the relators does not exceed the
associated Tietze option parameter P.spaceLimit. The default value of P.spaceLimit is
infinity, but you may alter it appropriately (see Tietze options below).

If you specify a generator gen as second argument, then TzEliminate only tries to eliminate
that generator.

If you specify an integer n as second argument, then TzEliminate tries to eliminate up
to n generators. Note that the calls TzEliminate(P) and TzEliminate(P, 1) are
equivalent.

TzSearch(P)

TzSearch performs Tietze transformations on a presentation P . It tries to reduce the relator
lengths by substituting common subwords of relators by shorter words.

The idea is to find pairs of relators r1 and r2 of length l1 and l2, respectively, such that
l1 ≤ l2 and r1 and r2 coincide (possibly after inverting or conjugating one of them) in some
maximal subword w, say, of length greater than l1/2, and then to substitute each copy of
w in r2 by the inverse complement of w in r1.

Two of the Tietze option parameters which are listed at the end of this section may strongly
influence the performance and the results of the TzSearch command. These are the pa-
rameters P.saveLimit and P.searchSimultaneous. The first of them has the following
effect.

23.13. TIETZE TRANSFORMATIONS 503

When TzSearch has finished its main loop over all relators, then, in general, there are
relators which have changed and hence should be handled again in another run through the
whole procedure. However, experience shows that it really does not pay to continue this
way until no more relators change. Therefore, TzSearch starts a new loop only if the loop
just finished has reduced the total length of the relators by at least P.saveLimit per cent.

The default value of P.saveLimit is 10.

To understand the effect of the parameter P.searchSimultaneous, we have to look in more
detail at how TzSearch proceeds.

First, it sorts the list of relators by increasing lengths. Then it performs a loop over this list.
In each step of this loop, the current relator is treated as short relator r1, and a subroutine
is called which loops over the succeeding relators, treating them as long relators r2 and
performing the respective comparisons and substitutions.

As this subroutine performs a very expensive process, it has been implemented as a C routine
in the GAP kernel. For the given relator r1 of length l1, say, it first determines the minimal
match length l which is l1/2 + 1, if l1 is even, or (l1 + 1)/2, otherwise. Then it builds up
a hash list for all subwords of length l occurring in the conjugates of r1 or r−1

1 , and finally
it loops over all long relators r2 and compares the hash values of their subwords of length l
against this list. A comparison of subwords which is much more expensive is only done if a
hash match has been found.

To improve the efficiency of this process we allow the subroutine to handle several short
relators simultaneously provided that they have the same minimal match length. If, for
example, it handles n short relators simultaneously, then you save n − 1 loops over the
long relators r2, but you pay for it by additional fruitless subword comparisons. In general,
you will not get the best performance by always choosing the maximal possible number
of short relators to be handled simultaneously. In fact, the optimal choice of the number
will depend on the concrete presentation under investigation. You can use the parameter
P.searchSimultaneous to prescribe an upper bound for the number of short relators to
be handled simultaneously.

The default value of P.searchSimultaneous is 20.

TzSearchEqual(P)

TzSearchEqual performs Tietze transformations on a presentation P . It tries to alter relators
by substituting common subwords of relators by subwords of equal length.

The idea is to find pairs of relators r1 and r2 of length l1 and l2, respectively, such that l1
is even, l1 ≤ l2, and r1 and r2 coincide (possibly after inverting or conjugating one of them)
in some maximal subword w, say, of length at least l1/2. Let l be the length of w. Then, if
l > l1/2, the pair is handled as in TzSearch. Otherwise, if l = l1/2, then TzSearchEqual
substitutes each copy of w in r2 by the inverse complement of w in r1.

The Tietze option parameter P.searchSimultaneous is used by TzSearchEqual in the
same way as described for TzSearch.

However, TzSearchEqual does not use the parameter P.saveLimit: The loop over the
relators is executed exactly once.

TzFindCyclicJoins(P)

504 CHAPTER 23. FINITELY PRESENTED GROUPS

TzFindCyclicJoins performs Tietze transformations on a presentation P . It searches for
pairs of generators which generate the same cyclic subgroup and eliminates one of the two
generators of each such pair it finds.

More precisely: TzFindCyclicJoins searches for pairs of generators a and b such that
(possibly after inverting or conjugating some relators) the set of relators contains the com-
mutator [a, b], a power an, and a product of the form asbt with s prime to n. For each such
pair, TzFindCyclicJoins uses the Euclidian algorithm to express a as a power of b, and
then it eliminates a.

TzSubstitute(P, word)
TzSubstitute(P, word, string)

There are two forms of the command TzSubstitute. This is the first one. It expects P to
be a presentation and word to be either an abstract word or a Tietze word in the generators
of P . It substitutes the given word as a new generator of P . This is done as follows.

First, TzSubstitute creates a new abstract generator, g say, and adds it to the presentation
P , then it adds a new relator g−1 ·word to P . If a string string has been specified as third
argument, the new generator g will be named by string , otherwise it will get a default name
xi as described with the function AddGenerator (see 23.9).

More precisely: If, for instance, word is an abstract word, a call

TzSubstitute(P, word);

is more or less equivalent to

AddGenerator(P);
g := P.generators[Length(P.generators)];
AddRelator(P, g^-1 * word);

whereas a call

TzSubstitute(P, word, string);

is more or less equivalent to

g := AbstractGenerator(string);
AddGenerator(P, g);
AddRelator(P, g^-1 * word);

The essential difference is, that TzSubstitute, as a Tietze transformation of P , saves and
updates the lists of generator images and preimages if they are being traced under the Tietze
transformations applied to P (see the function TzInitGeneratorImages below), whereas
a call of the function AddGenerator (which does not perform Tietze transformations) will
delete these lists and hence terminate the tracing.

Example.

gap> G := PerfectGroup(960, 1);
PerfectGroup(960,1)
gap> P := PresentationFpGroup(G);
<< presentation with 6 gens and 21 rels of total length 84 >>
gap> P.generators;
[a, b, s, t, u, v]

23.13. TIETZE TRANSFORMATIONS 505

gap> TzGoGo(P);
#I there are 3 generators and 10 relators of total length 81
#I there are 3 generators and 10 relators of total length 80
gap> TzPrintGenerators(P);
#I 1. a 31 occurrences involution
#I 2. b 26 occurrences
#I 3. t 23 occurrences involution
gap> a := P.generators[1];;
gap> b := P.generators[2];;
gap> TzSubstitute(P, a*b, "ab");
#I substituting new generator ab defined by a*b
#I there are 4 generators and 11 relators of total length 83
gap> TzGo(P);
#I there are 3 generators and 10 relators of total length 74
gap> TzPrintGenerators(P);
#I 1. a 23 occurrences involution
#I 2. t 23 occurrences involution
#I 3. ab 28 occurrences

TzSubstitute(P)
TzSubstitute(P, n)
TzSubstitute(P, n, eliminate)

This is the second form of the command TzSubstitute. It performs Tietze transformations
on the presentation P . Basically, it substitutes a squarefree word of length 2 as a new
generator and then eliminates a generator from the extended generator list. We will describe
this process in more detail.
The parameters n and eliminate are optional. If you specify arguments for them, then n is
expected to be a positive integer, and eliminate is expected to be 0, 1, or 2. The default
values are n = 1 and eliminate = 0.
TzSubstitute first determines the n most frequently occurring squarefree relator subwords
of length 2 and sorts them by decreasing numbers of occurrences. Let ab be the nth word
in that list, and let i be the smallest positive integer which has not yet been used as a
generator number. Then TzSubstitute defines a new generator P.i (see AddGenerator for
details), adds it to the presentation together with a new relator P.i−1ab, and replaces all
occurrences of ab in the given relators by P.i .
Finally, it eliminates some generator from the extended presentation. The choice of that
generator depends on the actual value of the eliminate parameter:
If eliminate is zero, then the generator to be eliminated is chosen as by the TzEliminate
command. This means that in this case it may well happen that it is the generator P.i just
introduced which is now deleted again so that you do not get any remarkable progress in
transforming your presentation. On the other hand, this procedure guaranties that the total
length of the relators will not be increased by a call of TzSubstitute with eliminate = 0.
Otherwise, if eliminate is 1 or 2, then TzSubstitute eliminates the respective factor of the
substituted word ab, i.e., a for eliminate = 1 or b for eliminate = 2. In this case, it may well
happen that the total length of the relators increases, but sometimes such an intermediate
extension is the only way to finally reduce a given presentation.

506 CHAPTER 23. FINITELY PRESENTED GROUPS

In order to decide which arguments might be appropriate for the next call of TzSubstitute,
often it is helpful to print out a list of the most frequently occurring squarefree relator
subwords of length 2. You may use the TzPrintPairs command described below to do this.

As an example we handle a subgroup of index 266 in the Janko group J1.

gap> F2 := FreeGroup("a", "b");;
gap> J1 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^7,
> Comm(F2.1,F2.2)^10, Comm(F2.1,F2.2^-1*(F2.1*F2.2)^2)^6];;
gap> a := J1.1;; b := J1.2;;
gap> H := Subgroup (J1, [a, b^(a*b*(a*b^-1)^2)]);;
gap> P := PresentationSubgroup(J1, H);
<< presentation with 23 gens and 82 rels of total length 530 >>
gap> TzGoGo(P);
#I there are 3 generators and 47 relators of total length 1368
#I there are 2 generators and 46 relators of total length 3773
#I there are 2 generators and 46 relators of total length 2570
gap> TzGoGo(P);
#I there are 2 generators and 46 relators of total length 2568
gap> TzGoGo(P);
gap> # We do not get any more progress without substituting a new
gap> # generator
gap> TzSubstitute(P);
#I substituting new generator _x28 defined by _x6*_x23^-1
#I eliminating _x28 = _x6*_x23^-1
gap> # GAP cannot substitute a new generator without extending the
gap> # total length, so we have to explicitly ask for it
gap> TzPrintPairs(P);
#I 1. 504 occurrences of _x6 * _x23^-1
#I 2. 504 occurrences of _x6^-1 * _x23
#I 3. 448 occurrences of _x6 * _x23
#I 4. 448 occurrences of _x6^-1 * _x23^-1
gap> TzSubstitute(P, 2, 1);
#I substituting new generator _x29 defined by _x6^-1*_x23
#I eliminating _x6 = _x23*_x29^-1
#I there are 2 generators and 46 relators of total length 2867
gap> TzGoGo(P);
#I there are 2 generators and 45 relators of total length 2417
#I there are 2 generators and 45 relators of total length 2122
gap> TzSubstitute(P, 1, 2);
#I substituting new generator _x30 defined by _x23*_x29^-1
#I eliminating _x29 = _x30^-1*_x23
#I there are 2 generators and 45 relators of total length 2192
gap> TzGoGo(P);
#I there are 2 generators and 42 relators of total length 1637
#I there are 2 generators and 40 relators of total length 1286
#I there are 2 generators and 36 relators of total length 807
#I there are 2 generators and 32 relators of total length 625
#I there are 2 generators and 22 relators of total length 369

23.13. TIETZE TRANSFORMATIONS 507

#I there are 2 generators and 18 relators of total length 213
#I there are 2 generators and 13 relators of total length 141
#I there are 2 generators and 12 relators of total length 121
#I there are 2 generators and 10 relators of total length 101
gap> TzPrintPairs(P);
#I 1. 19 occurrences of _x23 * _x30^-1
#I 2. 19 occurrences of _x23^-1 * _x30
#I 3. 14 occurrences of _x23 * _x30
#I 4. 14 occurrences of _x23^-1 * _x30^-1
gap> # If we save a copy of the current presentation, then later we
gap> # will be able to restart the computation from the current state
gap> P1 := Copy(P);;
gap> # Just for demonstration, let’s make an inconvenient choice
gap> TzSubstitute(P, 3, 1);
#I substituting new generator _x31 defined by _x23*_x30
#I eliminating _x23 = _x31*_x30^-1
#I there are 2 generators and 10 relators of total length 122
gap> TzGoGo(P);
#I there are 2 generators and 9 relators of total length 105
gap> # The presentation is worse than the one we have saved, so let’s
gap> # restart from that one again
gap> P := Copy(P1);
<< presentation with 2 gens and 10 rels of total length 101 >>
gap> TzSubstitute(P, 2, 1);
#I substituting new generator _x31 defined by _x23^-1*_x30
#I eliminating _x23 = _x30*_x31^-1
#I there are 2 generators and 10 relators of total length 107
gap> TzGoGo(P);
#I there are 2 generators and 9 relators of total length 84
#I there are 2 generators and 8 relators of total length 75
gap> TzSubstitute(P, 2, 1);
#I substituting new generator _x32 defined by _x30^-1*_x31
#I eliminating _x30 = _x31*_x32^-1
#I there are 2 generators and 8 relators of total length 71
gap> TzGoGo(P);
#I there are 2 generators and 7 relators of total length 56
#I there are 2 generators and 5 relators of total length 36
gap> TzPrintRelators(P);
#I 1. _x32^5
#I 2. _x31^5
#I 3. _x31^-1*_x32^-1*_x31^-1*_x32^-1*_x31^-1*_x32^-1
#I 4. _x31*_x32*_x31^-1*_x32*_x31^-1*_x32*_x31*_x32^-2
#I 5. _x31^-1*_x32^2*_x31*_x32^-1*_x31^2*_x32^-1*_x31*_x32^2

As shown in the preceding example, you can use the Copy command to save a copy of a
presentation record and to restart from it again if you want to try an alternative strategy.
However, this copy will be lost as soon as you finish your current GAP session. If you use
the Save command (see 23.8) instead, then you get a permanent copy on a file which you

508 CHAPTER 23. FINITELY PRESENTED GROUPS

can read in again in a later session.

TzSubstituteCyclicJoins(P)

TzSubstituteCyclicJoins performs Tietze transformations on a presentation P . It tries to
find pairs of generators a and b, say, for which among the relators (possibly after inverting
or conjugating some of them) there are the commutator [a, b] and powers am and bn with
mutually prime exponents m and n. For each such pair, it substitutes the product ab as a
new generator, and then it eliminates the generators a and b.

TzInitGeneratorImages(P)

Any sequence of Tietze transformations applied to a presentation record P , starting from an
“old” presentation P1 and ending up with a “new” presentation P2, defines an isomorphism,
ϕ say, between the groups defined by P1 and P2, respectively. Sometimes it is desirable
to know the images of the old generators or the preimages of the new generators under
ϕ. The GAP Tietze transformations functions are able to trace these images. This is not
automatically done because the involved words may grow to tremendous length, but it will
be done if you explicitly request for it by calling the function TzInitGeneratorImages.

TzInitGeneratorImages initializes three components of P :

P.oldGenerators
This is the list of the old generators. It is initialized by a copy of the current list of
generators, P.generators.

P.imagesOldGens
This will be the list of the images of the old generators as Tietze words in the new
generators. For each generator gi, the i-th entry of the list is initialized by the Tietze
word [i].

P.preImagesNewGens
This will be the list of the preimages of the new generators as Tietze words in the
old generators. For each generator gi, the i-th entry of the list is initialized by the
Tietze word [i].

This means, that P1 is defined to be the current presentation and ϕ to be the identity on
P1. From now on, the existence of the component P.imagesOldGens will cause the Tietze
transformations functions to update the lists of images and preimages whenever they are
called.

You can reinitialize the tracing of the generator images at any later state by just calling
the function TzInitGeneratorImages again. For, if the above components do already exist
when TzInitGeneratorImages is being called, they will first be deleted and then initialized
again.

There are a few restrictions concerning the tracing of generator images:

In general, the functions AddGenerator, AddRelator, and RemoveRelator described in
section 23.9 do not perform Tietze transformations as they may change the isomorphism
type of the presentation. Therefore, if any of them is called for a presentation in which
generator images and preimages are being traced, it will delete these lists.

23.13. TIETZE TRANSFORMATIONS 509

If the function DecodeTree is called for a presentation in which generator images and preim-
ages are being traced, it will not continue to trace them. Instead, it will delete the corre-
sponding lists, then decode the tree, and finally reinitialize the tracing for the resulting
presentation.

As stated in the description of the function Save (see 23.8), the function Read cannot prop-
erly recover a component involving abstract generators different from the current generators
when it reads a presentation which has been written to a file by the function Save. There-
fore the function Save will ignore the component P.oldGenerators if you call it to write
the presentation P to a file. Hence this component will be lost if you read the presentation
back from that file, and it will be left to your own responsibility to remember what the old
generators have been.

TzPrintGeneratorImages(P)

If P is a presentation in which generator images and preimages are being traced through
all Tietze transformations applied to P , TzPrintGeneratorImages prints the preimages
of the current generators as Tietze words in the old generators and the images of the old
generators as Tietze words in the current generators.

gap> G := PerfectGroup(960, 1);
PerfectGroup(960,1)
gap> P := PresentationFpGroup(G);
<< presentation with 6 gens and 21 rels of total length 84 >>
gap> TzInitGeneratorImages(P);
gap> TzGo(P);
#I there are 3 generators and 11 relators of total length 96
#I there are 3 generators and 10 relators of total length 81
gap> TzPrintGeneratorImages(P);
#I preimages of current generators as Tietze words in the old ones:
#I 1. [1]
#I 2. [2]
#I 3. [4]
#I images of old generators as Tietze words in the current ones:
#I 1. [1]
#I 2. [2]
#I 3. [1, -2, 1, 3, 1, 2, 1]
#I 4. [3]
#I 5. [-2, 1, 3, 1, 2]
#I 6. [1, 3, 1]
gap> # Print the old generators as words in the new generators.
gap> gens := P.generators;
[a, b, t]
gap> oldgens := P.oldGenerators;
[a, b, s, t, u, v]
gap> for i in [1 .. Length(oldgens)] do
> Print(oldgens[i], " = ",
> AbstractWordTietzeWord(P.imagesOldGens[i], gens), "\n");
> od;

510 CHAPTER 23. FINITELY PRESENTED GROUPS

a = a
b = b
s = a*b^-1*a*t*a*b*a
t = t
u = b^-1*a*t*a*b
v = a*t*a

TzPrintLengths(P)

TzPrintLengths prints the list of the lengths of all relators of the given presentation P .

TzPrintPairs(P)
TzPrintPairs(P, n)

TzPrintPairs determines in the given presentation P the n most frequently occurring
squarefree relator subwords of length 2 and prints them together with their numbers of
occurrences. The default value of n is 10. A value n = 0 is interpreted as infinity.

This list is a useful piece of information in the context of using the TzSubstitute command
described above.

TzPrintOptions(P)

Several of the Tietze transformation commands described above are controlled by certain
parameters, the Tietze options, which often have a tremendous influence on their perfor-
mance and results. However, in each application of the commands, an appropriate choice
of these option parameters will depend on the concrete presentation under investigation.
Therefore we have implemented the Tietze options in such a way that they are associated
to the presentation records: Each presentation record keeps its own set of Tietze option
parameters in the form of ordinary record components. In particular, you may alter the
value of any of these Tietze options by just assigning a new value to the respective record
component.

TzPrintOptions prints the Tietze option components of the specified presentation P .

The Tietze options have the following meaning.

protected
The first P.protected generators in a presentation P are protected from being elim-
inated by the Tietze transformations functions. There are only two exceptions:
The option P.protected is ignored by the functions TzEliminate(P,gen) and
TzSubstitute(P,n,eliminate) because they explicitly specify the generator to be
eliminated. The default value of protected is 0.

eliminationsLimit
Whenever the elimination phase of the TzGo command is entered for a presentation P ,
then it will eliminate at most P.eliminationsLimit generators (except for further
ones which have turned out to be trivial). Hence you may use the eliminationsLimit
parameter as a break criterion for the TzGo command. Note, however, that it is
ignored by the TzEliminate command. The default value of eliminationsLimit is
100.

23.13. TIETZE TRANSFORMATIONS 511

expandLimit
Whenever the routine for eliminating more than 1 generators is called for a pre-
sentation P by the TzEliminate command or the elimination phase of the TzGo
command, then it saves the given total length of the relators, and subsequently it
checks the current total length against its value before each elimination. If the total
length has increased to more than P.expandLimit per cent of its original value, then
the routine returns instead of eliminating another generator. Hence you may use the
expandLimit parameter as a break criterion for the TzGo command. The default
value of expandLimit is 150.

generatorsLimit
Whenever the elimination phase of the TzGo command is entered for a presentation
P with n generators, then it will eliminate at most n−P.generatorsLimit gener-
ators (except for generators which turn out to be trivial). Hence you may use the
generatorsLimit parameter as a break criterion for the TzGo command. The default
value of generatorsLimit is 0.

lengthLimit
The Tietze transformation commands will never eliminate a generator of a presenta-
tion P , if they cannot exclude the possibility that the resulting total length of the
relators exceeds the value of P.lengthLimit. The default value of lengthLimit is
infinity.

loopLimit
Whenever the TzGo command is called for a presentation P , then it will loop over at
most P.loopLimit of its basic steps. Hence you may use the loopLimit parameter as
a break criterion for the TzGo command. The default value of loopLimit is infinity.

printLevel
Whenever Tietze transformation commands are called for a presentation P with
P.printLevel = 0, they will not provide any output except for error messages. If
P.printLevel = 1, they will display some reasonable amount of output which allows
you to watch the progress of the computation and to decide about your next com-
mands. In the case P.printLevel = 2, you will get a much more generous amount
of output. Finally, if P.printLevel = 3, various messages on internal details will be
added. The default value of printLevel is 1.

saveLimit
Whenever the TzSearch command has finished its main loop over all relators of a
presentation P , then it checks whether during this loop the total length of the relators
has been reduced by at least P.saveLimit per cent. If this is the case, then TzSearch
repeats its procedure instead of returning. Hence you may use the saveLimit pa-
rameter as a break criterion for the TzSearch command and, in particular, for the
search phase of the TzGo command. The default value of saveLimit is 10.

searchSimultaneous
Whenever the TzSearch or the TzSearchEqual command is called for a presentation
P , then it is allowed to handle up to P.searchSimultaneously short relators simul-
taneously (see for the description of the TzSearch command for more details). The
choice of this parameter may heavily influence the performance as well as the result of
the TzSearch and the TzSearchEqual commands and hence also of the search phase
of the TzGo command. The default value of searchSimultaneous is 20.

512 CHAPTER 23. FINITELY PRESENTED GROUPS

As soon as a presentation record has been defined, you may alter any of its Tietze option
parameters at any time by just assigning a new value to the respective component.
To demonstrate the effect of the eliminationsLimit parameter, we will give an example in
which we handle a subgroup of index 240 in a group of order 40320 given by a presentation
due to B. H. Neumann. First we construct a presentation of the subgroup, and then we
apply to it the TzGoGo command for different values of the eliminationsLimit parameter
(including the default value 100). In fact, we also alter the printLevel parameter, but this
is only done in order to suppress most of the output. In all cases the resulting presentations
cannot be improved any more by applying the TzGoGo command again, i.e., they are the
best results which we can get without substituting new generators.

gap> F3 := FreeGroup("a", "b", "c");;
gap> G := F3 / [F3.1^3, F3.2^3, F3.3^3, (F3.1*F3.2)^5,
> (F3.1^-1*F3.2)^5, (F3.1*F3.3)^4, (F3.1*F3.3^-1)^4,
> F3.1*F3.2^-1*F3.1*F3.2*F3.3^-1*F3.1*F3.3*F3.1*F3.3^-1,
> (F3.2*F3.3)^3, (F3.2^-1*F3.3)^4];;
gap> a := G.1;; b := G.2;; c := G.3;;
gap> H := Subgroup(G, [a, c]);;
gap> P := PresentationSubgroup(G, H);
<< presentation with 224 gens and 593 rels of total length 2769 >>
gap> for i in [28, 29, 30, 94, 100] do
> Pi := Copy(P);
> Pi.eliminationsLimit := i;
> Print("#I eliminationsLimit set to ", i, "\n");
> Pi.printLevel := 0;
> TzGoGo(Pi);
> TzPrintStatus(Pi);
> od;
#I eliminationsLimit set to 28
#I there are 2 generators and 95 relators of total length 10817
#I eliminationsLimit set to 29
#I there are 2 generators and 5 relators of total length 35
#I eliminationsLimit set to 30
#I there are 3 generators and 98 relators of total length 2928
#I eliminationsLimit set to 94
#I there are 4 generators and 78 relators of total length 1667
#I eliminationsLimit set to 100
#I there are 3 generators and 90 relators of total length 3289

Similarly, we demonstrate the influence of the saveLimit parameter by just continuing
the preceding example for some different values of the saveLimit parameter (including its
default value 10), but without changing the eliminationsLimit parameter which keeps its
default value 100.

gap> for i in [9, 10, 11, 12, 15] do
> Pi := Copy(P);
> Pi.saveLimit := i;
> Print("#I saveLimit set to ", i, "\n");
> Pi.printLevel := 0;
> TzGoGo(Pi);

23.14. DECODETREE 513

> TzPrintStatus(Pi);
> od;
#I saveLimit set to 9
#I there are 3 generators and 97 relators of total length 5545
#I saveLimit set to 10
#I there are 3 generators and 90 relators of total length 3289
#I saveLimit set to 11
#I there are 3 generators and 103 relators of total length 3936
#I saveLimit set to 12
#I there are 2 generators and 4 relators of total length 21
#I saveLimit set to 15
#I there are 3 generators and 143 relators of total length 18326

23.14 DecodeTree

DecodeTree(P)

DecodeTree eliminates the secondary generators from a presentation P constructed by
the Modified Todd-Coxeter (see PresentationSubgroupMtc) or the Reduced Reidemeister-
Schreier procedure (see PresentationSubgroupRrs, PresentationNormalClosureRrs). It
is called automatically by the PresentationSubgroupMtc command where it reduces P to
a presentation on the given subgroup generators.

In order to explain the effect of this command we need to insert a few remarks on the
subgroup presentation commands described in section 23.11. All these commands have the
common property that in the process of constructing a presentation for a given subgroup
H of a finitely presented group G they first build up a highly redundant list of generators
of H which consists of an (in general small) list of “primary” generators, followed by an
(in general large) list of “secondary” generators, and then construct a presentation P0, say,
on a sublist of these generators by rewriting the defining relators of G . This sublist
contains all primary, but, at least in general, by far not all secondary generators.

The role of the primary generators depends on the concrete choice of the subgroup pre-
sentation command. If the Modified Todd-Coxeter method is used, they are just the given
generators of H , whereas in the case of the Reduced Reidemeister-Schreier algorithm they
are constructed by the program.

Each of the secondary generators is defined by a word of length two in the preceding gen-
erators and their inverses. By historical reasons, the list of these definitions is called the
subgroup generators tree though in fact it is not a tree but rather a kind of bush.

Now we have to distinguish two cases. If P0 has been constructed by the Reduced Reide-
meister-Schreier routines, it is a presentation of H . However, if the Modified Todd-Coxeter
routines have been used instead, then the relators in P0 are valid relators of H , but they do
not necessarily define H . We handle these cases in turn, starting with the latter one.

Also in the case of the Modified Todd-Coxeter method, we could easily extend P0 to a
presentation of H by adding to it all the secondary generators which are not yet contained
in it and all the definitions from the generators tree as additional generators and relators.
Then we could recursively eliminate all secondary generators by Tietze transformations
using the new relators. However, this procedure turns out to be too inefficient to be of
interest.

514 CHAPTER 23. FINITELY PRESENTED GROUPS

Instead, we use the so called tree decoding procedure which has been developed in St. An-
drews by David G. Arrell, Sanjiv Manrai, Edmund F. Robertson, and Michael F. Worboys
(see [AMW82], [AR84]). It proceeds as follows.

Starting from P = P0, it runs through a number of steps in each of which it eliminates the
current “last” generator (with respect to the list of all primary and secondary generators).
If the last generator g , say, is a primary generator, then the procedure finishes. Otherwise it
checks whether there is a relator in the current presentation which can be used to substitute g
by a Tietze transformation. If so, this is done. Otherwise, and only then, the tree definition
of g is added to P as a new relator, and the generators involved are added as new generators
if they have not yet been contained in P . Subsequently, g is eliminated.

Note that the extension of P by one or two new generators is not a Tietze transformation.
In general, it will change the isomorphism type of the group defined by P . However, it
is a remarkable property of this procedure, that at the end, i.e., as soon as all secondary
generators have been eliminated, it provides a presentation P = P1, say, which defines a
group isomorphic to H . In fact, it is this presentation which is returned by the DecodeTree
command and hence by the PresentationSubgroupMtc command.

If, in the other case, the presentation P0 has been constructed by the Reduced Reidemeister-
Schreier algorithm, then P0 itself is a presentation of H , and the corresponding subgroup
presentation command (PresentationSubgroupRrs or PresentationNormalClosureRrs)
just returns P0.

As mentioned in section 23.11, we recommend further simplifying this presentation before
using it. The standard way to do this is to start from P0 and to apply suitable Tietze
transformations, e.g., by calling the TzGo or TzGoGo commands. This is probably the most
efficient approach, but you will end up with a presentation on some unpredictable set of
generators. As an alternative, GAP offers you the DecodeTree command which you can use
to eliminate all secondary generators (provided that there are no space or time problems).
For this purpose, the subgroup presentation commands do not only return the resulting
presentation, but also the tree (together with some associated lists) as a kind of side result
in a component P.tree of the resulting presentation record P .

Note, however, that the tree decoding routines will not work correctly any more on a pre-
sentation from which generators have already been eliminated by Tietze transformations.
Therefore, to prevent you from getting wrong results by calling the DecodeTree command
in such a situation, GAP will automatically remove the subgroup generators tree from a pre-
sentation record as soon as one of the generators is substituted by a Tietze transformation.

Nevertheless, a certain misuse of the command is still possible, and we want to explicitly
warn you from this. The reason is that the Tietze option parameters described in section
23.13 apply to the DecodeTree command as well. Hence, in case of inadequate values of
these parameters, it may happen that the DecodeTree routine stops before all the secondary
generators have vanished. In this case GAP will display an appropriate warning. Then you
should change the respective parameters and continue the process by calling the DecodeTree
command again. Otherwise, if you would apply Tietze transformations, it might happen
because of the convention described above that the tree is removed and that you end up
with a wrong presentation.

After a successful run of the DecodeTree command it is convenient to further simplify the
resulting presentation by suitable Tietze transformations.

23.14. DECODETREE 515

As an example of an explicit call of the DecodeTree command we compute two presenta-
tions of a subgroup of order 384 in a group of order 6912. In both cases we use the Reduced
Reidemeister-Schreier algorithm, but in the first run we just apply the Tietze transforma-
tions offered by the TzGoGo command with its default parameters, whereas in the second
run we call the DecodeTree command before.

gap> F2 := FreeGroup("a", "b");;
gap> G := F2 / [F2.1*F2.2^2*F2.1^-1*F2.2^-1*F2.1^3*F2.2^-1,
> F2.2*F2.1^2*F2.2^-1*F2.1^-1*F2.2^3*F2.1^-1];;
gap> a := G.1;; b := G.2;;
gap> H := Subgroup(G, [Comm(a^-1,b^-1), Comm(a^-1,b), Comm(a,b)]);;
gap> #
gap> # We use the Reduced Reidemeister Schreier method and default
gap> # Tietze transformations to get a presentation for H.
gap> P := PresentationSubgroupRrs(G, H);
<< presentation with 18 gens and 35 rels of total length 169 >>
gap> TzGoGo(P);
#I there are 3 generators and 20 relators of total length 488
#I there are 3 generators and 20 relators of total length 466
gap> # We end up with 20 relators of total length 466.
gap> #
gap> # Now we repeat the procedure, but we call the tree decoding
gap> # algorithm before doing the Tietze transformations.
gap> P := PresentationSubgroupRrs(G, H);
<< presentation with 18 gens and 35 rels of total length 169 >>
gap> DecodeTree(P);
#I there are 9 generators and 26 relators of total length 185
#I there are 6 generators and 23 relators of total length 213
#I there are 3 generators and 20 relators of total length 252
#I there are 3 generators and 20 relators of total length 244
gap> TzGoGo(P);
#I there are 3 generators and 19 relators of total length 168
#I there are 3 generators and 17 relators of total length 138
#I there are 3 generators and 15 relators of total length 114
#I there are 3 generators and 13 relators of total length 96
#I there are 3 generators and 12 relators of total length 84
gap> # This time we end up with a shorter presentation.

As an example of an implicit call of the command via the PresentationSubgroupMtc com-
mand we handle a subgroup of index 240 in a group of order 40320 given by a presentation
due to B. H. Neumann.

gap> F3 := FreeGroup("a", "b", "c");;
gap> a := F3.1;; b := F3.2;; c := F3.3;;
gap> G := F3 / [a^3, b^3, c^3, (a*b)^5, (a^-1*b)^5, (a*c)^4,
> (a*c^-1)^4, a*b^-1*a*b*c^-1*a*c*a*c^-1, (b*c)^3, (b^-1*c)^4];;
gap> a := G.1;; b := G.2;; c := G.3;;
gap> H := Subgroup(G, [a, c]);;
gap> InfoFpGroup1 := Print;;
gap> P := PresentationSubgroupMtc(G, H);;

516 CHAPTER 23. FINITELY PRESENTED GROUPS

#I index = 240 total = 4737 max = 4507
#I MTC defined 2 primary and 4446 secondary subgroup generators
#I there are 246 generators and 617 relators of total length 2893
#I calling DecodeTree
#I there are 115 generators and 382 relators of total length 1837
#I there are 69 generators and 298 relators of total length 1785
#I there are 44 generators and 238 relators of total length 1767
#I there are 35 generators and 201 relators of total length 2030
#I there are 26 generators and 177 relators of total length 2084
#I there are 23 generators and 167 relators of total length 2665
#I there are 20 generators and 158 relators of total length 2848
#I there are 20 generators and 148 relators of total length 3609
#I there are 21 generators and 148 relators of total length 5170
#I there are 24 generators and 148 relators of total length 7545
#I there are 27 generators and 146 relators of total length 11477
#I there are 32 generators and 146 relators of total length 18567
#I there are 36 generators and 146 relators of total length 25440
#I there are 39 generators and 146 relators of total length 38070
#I there are 43 generators and 146 relators of total length 54000
#I there are 41 generators and 143 relators of total length 64970
#I there are 8 generators and 129 relators of total length 20031
#I there are 7 generators and 125 relators of total length 27614
#I there are 4 generators and 113 relators of total length 36647
#I there are 3 generators and 108 relators of total length 44128
#I there are 2 generators and 103 relators of total length 35394
#I there are 2 generators and 102 relators of total length 34380
gap> TzGoGo(P);
#I there are 2 generators and 101 relators of total length 19076
#I there are 2 generators and 84 relators of total length 6552
#I there are 2 generators and 38 relators of total length 1344
#I there are 2 generators and 9 relators of total length 94
#I there are 2 generators and 8 relators of total length 86
gap> TzPrintGenerators(P);
#I 1. _x1 43 occurrences
#I 2. _x2 43 occurrences

Chapter 24

Words in Finite Polycyclic
Groups

Ag words are the GAP datatype for elements of finite polycyclic groups. Unlike permuta-
tions, which are all considered to be elements of one large symmetric group, each ag word
belongs to a specified group. Only ag words of the same finite polycyclic group can be
multiplied.

The following sections describe ag words and their parent groups (see 24.1), how ag words
are compared (see 24.2), functions for ag words and some low level functions for ag words
(starting at 24.3 and 24.9).

For operations and functions defined for group elements in general see 7.2, 7.3.

24.1 More about Ag Words

Let G be a group and G = G0 > G1 > ... > Gn = 1 be a subnormal series of G 6= 1
with finite cyclic factors, i.e., Gi � Gi−1 for all i = 1, ..., n and Gi−1 = 〈Gi, gi〉. Then G
will be called an ag group with AG generating sequence or, for short, AG system
(g1, ..., gn). Let oi be the order of Gi−1/Gi. If all o1, ..., on are primes the system (g1, ..., gn)
is called a PAG system . With respect to a given AG system the group G has a so called
power-commutator presentation

gi
oi = wii(gi+1, ..., gn) for 1 ≤ i ≤ n,

[gi, gj] = wij(gj+1, ..., gn) for 1 ≤ j < i ≤ n

and a so called power-conjugate presentation

gi
oi = wii(gi+1, ..., gn) for 1 ≤ i ≤ n,

g
gj
i = w′ij(gj+1, ..., gn) for 1 ≤ j < i ≤ n.

For both kinds of presentations we shall use the term AG presentation. Each element g
of G can be expressed uniquely in the form

g = gν1
1 ∗ ... ∗ gνnn for 0 ≤ νi < oi.

517

518 CHAPTER 24. WORDS IN FINITE POLYCYCLIC GROUPS

We call the composition series G0 > G1 > ... > Gn the AG series of G and define
νi(g) := νi. If νi = 0 for i = 1, ..., k − 1 and νk 6= 0, we call νk the leading exponent and
k the depth of g and denote them by νk =: λ(g) and k =: δ(g). We call ok the relative
order of g.

Each element g of G is called ag word and we say that G is the parent group of g. A parent
group is constructed in GAP using AgGroup (see 25.25) or AgGroupFpGroup (see 25.27).

Our standard example in the following sections is the symmetric group of degree 4, defined
by the following sequence of GAP statements. You should enter them before running any
example. For details on AbstractGenerators see 22.1.

gap> a := AbstractGenerator("a");; # (1,2)
gap> b := AbstractGenerator("b");; # (1,2,3)
gap> c := AbstractGenerator("c");; # (1,3)(2,4)
gap> d := AbstractGenerator("d");; # (1,2)(3,4)
gap> s4 := AgGroupFpGroup(rec(
> generators := [a, b, c, d],
> relators := [a^2, b^3, c^2, d^2, Comm(b, a) / b,
> Comm(c, a) / d, Comm(d, a),
> Comm(c, b) / (c*d), Comm(d, b) / c,
> Comm(d, c)]));
Group(a, b, c, d)
gap> s4.name := "s4";;
gap> a := s4.generators[1];; b := s4.generators[2];;
gap> c := s4.generators[3];; d := s4.generators[4];;

24.2 Ag Word Comparisons

g < h
g <= h
g >= h
g > h

The operators <, >, <= and >= return true if g is strictly less, strictly greater, not greater,
not less, respectively, than h. Otherwise they return false.

If g and h have a common parent group they are compared with respect to the AG series
of this group. If two ag words have different depths, the one with the higher depth is less
than the other one. If two ag words have the same depth but different leading exponents,
the one with the smaller leading exponent is less than the other one. Otherwise the leading
generator is removed in both ag words and the remaining ag words are compared.

If g and h do not have a common parent group, then the composition lengths of the parent
groups are compared.

You can compare ag words with objects of other types. Field elements, unkowns, permuta-
tions and abstract words are smaller than ag words. Objects of other types, i.e., functions,
lists and records are larger.

gap> 123/47 < a;
true

24.3. CENTRALWEIGHT 519

gap> (1,2,3,4) < a;
true
gap> [1,2,3,4] < a;
false
gap> true < a;
false
gap> rec() < a;
false
gap> c < a;
true
gap> a*b < a*b^2;
true

24.3 CentralWeight

CentralWeight(g)

CentralWeight returns the central weight of an ag word g , with respect to the central series
used in the combinatorial collector, as integer.

This presumes that g belongs to a parent group for which the combinatorial collector is
used. See 25.33 for details.

If g is the identity, 0 is returned.

Note that CentralWeight allows records that mimic ag words as arguments.

gap> d8 := AgGroup(Subgroup(s4, [a, c, d]));
Group(g1, g2, g3)
gap> ChangeCollector(d8, "combinatorial");
gap> List(d8.generators, CentralWeight);
[1, 1, 2]

24.4 CompositionLength

CompositionLength(g)

Let G be the parent group of the ag word g . Then CompositionLength returns the length
of the AG series of G as integer.

Note that CompositionLength allows records that mimic ag words as arguments.

gap> CompositionLength(c);
5

24.5 Depth

Depth(g)

Depth returns the depth of an ag word g with respect to the AG series of its parent group
as integer.

Let G be the parent group of g and G = G0 > ... > Gn = {1} the AG series of G. Let δ be
the maximal positive integer such that g is an element of Gδ−1. Then δ is the depth of g .

520 CHAPTER 24. WORDS IN FINITE POLYCYCLIC GROUPS

Note that Depth allows record that mimic ag words as arguments.

gap> Depth(a);
1
gap> Depth(d);
4
gap> Depth(a^0);
5

24.6 IsAgWord

IsAgWord(obj)

IsAgWord returns true if obj , which can be an arbitrary object, is an ag word and false
otherwise.

gap> IsAgWord(5);
false
gap> IsAgWord(a);
true

24.7 LeadingExponent

LeadingExponent(g)

LeadingExponent returns the leading exponent of an ag word g as integer.

Let G be the parent group of g and (g1, ..., gn) the AG system of G and let oi be the relative
order of gi. Then the element g can be expressed uniquely in the form gν1

1 ∗ ... ∗ gνnn for
integers νi such that 0 ≤ νi < oi. The leading exponent of g is the first nonzero νi.

If g is the identity 0 is returned.

Although ExponentAgWord(g, Depth(g)) returns the leading exponent of g , too, this
function is faster and is able to handle the identity.

Note that LeadingExponent allows records that mimic ag words as arguments.

gap> LeadingExponent(a * b^2 * c^2 * d);
1
gap> LeadingExponent(b^2 * c^2 * d);
2

24.8 RelativeOrder

RelativeOrder(g)

RelativeOrder returns the relative order of an ag word g as integer.

Let G be the parent group of g and G = G0 > ... > Gn = {1} the AG series of G. Let δ be
the maximal positive integer such that g is an element of Gδ−1. The relative order of g
is the index of Gδ+1 in Gδ, that is the order of the factor group Gδ/Gδ+1.

If g is the identity 1 is returned.

Note that RelativeOrder allows records that mimic agwords as arguments.

24.9. CANONICALAGWORD 521

gap> RelativeOrder(a);
2
gap> RelativeOrder(b);
3
gap> RelativeOrder(b^2 * c * d);
3

24.9 CanonicalAgWord

CanonicalAgWord(U , g)

Let U be an ag group with parent group G, let g be an element of G. Let (u1, ..., um) be
an induced generating system of U and (g1, ..., gn) be a canonical generating system of G.
Then CanonicalAgWord returns a word x = g ∗ u = ge1i1 ∗ ... ∗ g

ek
ik

such that u ∈ U and no
ij is equal to the depth of any generator ul.

gap> v4 := MergedCgs(s4, [a*b^2, c*d]);
Subgroup(s4, [a*b^2, c*d])
gap> CanonicalAgWord(v4, a*c);
b^2*d
gap> CanonicalAgWord(v4, a*b*c*d);
b
gap> (a*b*c*d) * (a*b^2);
b*c*d
gap> last * (c*d);
b

24.10 DifferenceAgWord

DifferenceAgWord(u, v)

DifferenceAgWord returns an ag word s representing the difference of the exponent vectors
of u and v .
Let G be the parent group of u and v . Let (g1, ..., gn) be the AG system of G and oi be
the relative order or gi. Then u can be expressed uniquely as gu1

1 ∗ ... ∗ gunn for integers ui
between 0 and oi−1 and v can be expressed uniquely as gv1

1 ∗ ...∗gvnn for integers vi between
0 and oi − 1. The function DifferenceAgWord returns an ag word s = gs11 ∗ ... ∗ gsnn with
integer si such that 0 ≤ si < oi and si ≡ ui − vi mod oi.

gap> DifferenceAgWord(a * b, a);
b
gap> DifferenceAgWord(a, b);
a*b^2
gap> z27 := CyclicGroup(AgWords, 27);
Group(c27_1, c27_2, c27_3)
gap> x := z27.1 * z27.2;
c27_1*c27_2
gap> x * x;
c27_1^2*c27_2^2
gap> DifferenceAgWord(x, x);
IdAgWord

522 CHAPTER 24. WORDS IN FINITE POLYCYCLIC GROUPS

24.11 ReducedAgWord

ReducedAgWord(b, x)

Let b and x be ag words of the same depth, then ReducedAgWord returns an ag word a such
that a is an element of the coset Ub, where U is the cyclic group generated by x , and a has
a higher depth than b and x .

Note that the relative order of b and x must be a prime.

Let p be the relative order of b and x . Let β and ξ be the leading exponent of b and
x respectively. Then there exits an integer i such that ξ ∗ i = β modulo p. We can set
a = x−ib.

Typically this function is used when b and x occur in a generating set of a subgroup W .
Then b can be replaced by a in the generating set of W , but a and x have different depth.

gap> ReducedAgWord(a*b^2*c, a);
b^2*c
gap> ReducedAgWord(last, b);
c

24.12 SiftedAgWord

SiftedAgWord(U , g)

SiftedAgWord tries to sift an ag word g , which must be an element of the parent group
of an ag group U , through an induced generating system of U . SiftedAgWord returns the
remainder of this shifting process.

The identity is returned if and only if g is an element of U .

Let u1, ..., um be an induced generating system of U . If there exists an ui such that ui and
g have the same depth, then g is reduced with ui using ReducedAgWord (see 24.11). The
process is repeated until no ui can be found or the g is reduced to the identity.

SiftedAgWord allows factor group arguments. See 25.57 for details.

Note that SiftedAgGroup adds a record component U .shiftInfo to the ag group record
of U . This entry is used by subsequent calls with the same ag group in order to speed up
computation. If you ever change the component U .igs by hand, not using Normalize,
you must unbind U .shiftInfo, otherwise all following results of SiftedAgWord will be
corrupted.

gap> s3 := Subgroup(s4, [a, b]);
Subgroup(s4, [a, b])
gap> SiftedAgWord(s3, a * b^2 * c);
c

24.13 SumAgWord

SumAgWord(u, v)

SumAgWord returns an ag word s representing the sum of the exponent vectors of u and v .

Let G be the parent group of u and v . Let (g1, ..., gn) be the AG system of G and oi be
the relative order or gi. Then u can be expressed uniquely as gu1

1 ∗ ... ∗ gunn for integers ui

24.14. EXPONENTAGWORD 523

between 0 and oi−1 and v can be expressed uniquely as gv1
1 ∗ ...∗gvnn for integers vi between

0 and oi − 1. Then SumAgWord returns an ag word s = gs11 ∗ ... ∗ gsnn with integer si such
that 0 ≤ si < oi and si ≡ ui + vi mod oi.

gap> SumAgWord(b, a);
a*b
gap> SumAgWord(a*b, a);
b
gap> RelativeOrderAgWord(a);
2
gap> z27 := CyclicGroup(AgWords, 27);
Group(c27_1, c27_2, c27_3)
gap> x := z27.1 * z27.2;
c27_1*c27_2
gap> y := x ^ 2;
c27_1^2*c27_2^2
gap> x * y;
c27_2*c27_3
gap> SumAgWord(x, y);
IdAgWord

24.14 ExponentAgWord

ExponentAgWord(g, k)

ExponentAgWord returns the exponent of the k .th generator in an ag word g as integer,
where k refers to the numbering of generators of the parent group of g .

Let G be the parent group of g and (g1, ..., gn) the AG system of G and let oi be the relative
order of gi. Then the element g can be expressed uniquely in the form gν1

1 ∗ ... ∗ gνnn for
integers νi between 0 and oi − 1. The exponent of the k .th generator is νk .

See also 24.15 and 25.73.

gap> ExponentAgWord(a * b^2 * c^2 * d, 2);
2
gap> ExponentAgWord(a * b^2 * c^2 * d, 4);
1
gap> ExponentAgWord(a * b^2 * c^2 * d, 3);
0
gap> a * b^2 * c^2 * d;
a*b^2*d

24.15 ExponentsAgWord

ExponentsAgWord(g)
ExponentsAgWord(g, s, e)
ExponentsAgWord(g, s, e, root)

In its first form ExponentsAgWord returns the exponent vector of an ag word g , with re-
spect to the AG system of the supergroup of g , as list of integers. In the second form
ExponentsAgWord returns the sublist of the exponent vector of g starting at position s and

524 CHAPTER 24. WORDS IN FINITE POLYCYCLIC GROUPS

ending at position e as list of integers. In the third form the vector is returned as list of
finite field elements over the same finite field as root .

Let G be the parent group of g and (g1, ..., gn) the AG system of G and let oi be the relative
order of gi. Then the element g can be expressed uniquely in the form gν1

1 ∗ ... ∗ gνnn for
integers νi between 0 and oi − 1. The exponent vector of g is the list [ν1, ..., νn].

Note that you must use Exponents if you want to get the exponent list of g with respect not
to the parent group of g but to a given subgroup, which contains g . See 25.73 for details.

gap> ExponentsAgWord(a * b^2 * c^2 * d);
[1, 2, 0, 1]
gap> a * b^2 * c^2 * d;
a*b^2*d

Chapter 25

Finite Polycyclic Groups

Ag groups (see 24) are a subcategory of finitely generated groups (see 7).

The following sections describe how subgroups of ag groups are represented (see 25.1),
additional operators and record components of ag groups (see 25.3 and 25.4) and functions
which work only with ag groups (see 25.24 and 25.61). Some additional information about
generating systems of subgroups and factor groups are given in 25.48 and 25.57.

25.85 describes how to compute the groups of one coboundaries and one cocycles for given
ag groups. 25.88 gives informations how to obtain complements and conjugacy classes of
complements for given ag groups.

25.1 More about Ag Groups

Let G be a finite polycyclic group with PAG system (g1, ..., gn) as described in 24. Let U be
a subgroup of G. A generating system (u1, ..., ur) of U is called the canonical generating
system, CGS for short, of U with respect to (g1, ..., gn) if and only if

(i) (u1, ..., ur) is a PAG system for U ,
(ii) δ(ui) > δ(uj) for i > j,
(iii) λ(ui) = 1 for i = 1, ..., r,
(iv) νδ(ui)(uj) = 0 for i 6= j.

If a generating system (u1, ..., ur) fulfills only conditions (i) and (ii) this system is called an
induced generating system, IGS for short, of U . With respect to the PAG system of G
a CGS but not an IGS of U is unique.

If a power-commutator or power-conjugate presentation of G is known, a finite polycyclic
group with collector can be initialized in GAP using AgGroupFpGroup (see 25.27). AgGroup
(see 25.25) converts other types of finite solvable groups, for instance solvable permutation
groups, into an ag group. The collector can be changed by ChangeCollector (see 25.33).
The elements of these group are called ag words.

A canonical generating system of a subgroup U of G is returned by Cgs (see 25.50) if a
generating set of ag words for U is known. See 25.48 for details.

525

526 CHAPTER 25. FINITE POLYCYCLIC GROUPS

We call G a parent, that is a ag group with collector and U a subgroup, that is a group
which is obtained as subgroup of a parent group. An ag group is either a parent group
with PAG system or a subgroup of such a parent group.

Although parent groups need only an AG system, only AgGroupFpGroup (see 25.27) and
RefinedAgSeries (see 25.32) work correctly with a parent group represented by an AG
system which is not a PAG system, because subgroups are identified by canonical generating
systems with respect to the PAG system of the parent group. Inconsistent power-conjugate
or power-commutator presentations are not allowed (see 25.28). Some functions support
factor group arguments. See 25.57 and 25.60 for details.

Our standard example in the following sections is the symmetric group of degree 4, defined
by the following sequence of GAP statements. You should enter them before running any
example. For details on AbstractGenerators see 22.1.

gap> a := AbstractGenerator("a");; # (1,2)
gap> b := AbstractGenerator("b");; # (1,2,3)
gap> c := AbstractGenerator("c");; # (1,3)(2,4)
gap> d := AbstractGenerator("d");; # (1,2)(3,4)
gap> s4 := AgGroupFpGroup(rec(
> generators := [a, b, c, d],
> relators := [a^2, b^3, c^2, d^2, Comm(b, a) / b,
> Comm(c, a) / d, Comm(d, a),
> Comm(c, b) / (c*d), Comm(d, b) / c,
> Comm(d, c)]));;
gap> s4.name := "s4";;
gap> a := s4.generators[1];; b := s4.generators[2];;
gap> c := s4.generators[3];; d := s4.generators[4];;

25.2 Construction of Ag Groups

The most fundamental way to construct a new finite polycyclic group is AgGroupFpGroup
(see 25.27) together with RefinedAgSeries (see 25.32), if a presentation for an AG system
of a finite polycyclic group is known.

But usually new finite polycyclic groups are constructed from already existing finite poly-
cyclic groups. The direct product of known ag groups can be formed by DirectProduct
(see 7.98); also, if for instance a permutation representation P of a finite polycyclic group
G is known, WreathProduct (see 7.103) returns the P -wreath product of G with a second
ag group. If a homomorphism of a finite polycyclic group G into the automorphism group
of another finite polycyclic group H is known, SemidirectProduct returns the semi direct
product of G with H.

Fundamental finite polycyclic groups, such as elementary abelian, arbitrary finite abelian
groups, and cyclic groups, are constructed by the appropriate functions (see 37.1).

25.3 Ag Group Operations

In addition to the operators described in 7.116 the following operator can be used for ag
groups.

25.4. AG GROUP RECORDS 527

G mod H

mod returns a record representing an factor group argument, which can be used as argument
for some functions (see 25.73). See 25.57 and 25.60 for details.

25.4 Ag Group Records

In addition to the record components described in 7.117 the following components may be
present in the group record of an ag group G.

isAgGroup
is always true.

isConsistent
is true if G has a consistent presentation (see 25.28).

compositionSeries
contains a composition series of G (see 7.38).

cgs
contains a canonical generating system for G. If G is a parent group, it is always
present. See 25.48 for details.

igs
contains an induced generating system for G. See 25.48 for details.

elementaryAbelianFactors
see 7.39.

sylowSystem
contains a Sylow system (see 25.67).

25.5 Set Functions for Ag Groups

As already mentioned in the introduction of the chapter, ag groups are domains. Thus all
set theoretic functions, for example Intersection and Size, can be applied to ag groups.
This and the following sections give further comments on the definition and implementations
of those functions for ag groups. All set theoretic functions not mentioned here not treated
special for ag groups.

Elements(G)

The elements of a group G are constructed using a canonical generating system. See 25.6.

g in G

Membership is tested using SiftedAgWord (see 24.12), if g lies in the parent group of G .
Otherwise false is returned.

IsSubset(G, H)

If G and H are groups then IsSubset tests if the generators of H are elements of G .
Otherwise DomainOps.IsSubset is used.

528 CHAPTER 25. FINITE POLYCYCLIC GROUPS

Intersection(G, H)

The intersection of ag groups G and H is computed using Glasby’s algorithm. See 25.7.

Size(G)

The size of G is computed using a canonical generating system of G . See 25.8.

25.6 Elements for Ag Groups

AgGroupOps.Elements(G)

Let G be an ag group with canonical generating system (g1, ..., gn) where the relative order
of gi is oi. Then {ge11 ...g

en
n ; 0 ≤ ei < oi} is the set of elements of G .

25.7 Intersection for Ag Groups

AgGroupOps.Intersection(U , V)

If either V or U is not an ag group then GroupOps.Intersection is used in order to
compute the intersection of U and V . If U and V have different parent groups then the
empty list is returned.

Let U and V be two ag group with common parent group G. If one subgroup if known
to be normal in G the NormalIntersection (see 7.26) is used in order to compute the
intersection.

If the size of U or V is smaller than GS SIZE then the intersection is computed using
GroupOps.Intersection. By default GS SIZE is 20.

If an elementary abelian ag series of G is known, Glasby’s generalized covering algorithm is
used (see [GS90]). Otherwise a warning is given and GroupOps.Intersection is used, but
this may be too slow.

gap> d8_1 := Subgroup(s4, [a, c, d]);
Subgroup(s4, [a, c, d])
gap> d8_2 := Subgroup(s4, [a*b, c, d]);
Subgroup(s4, [a*b, c, d])
gap> Intersection(d8_1, d8_2);
Subgroup(s4, [c, d])
gap> Intersection(d8_1^b, d8_2^b);
Subgroup(s4, [c*d, d])

25.8 Size for Ag Groups

AgGroupOps.Size(G)

Let G be an ag group with induced generating system (g1, ..., gn) where the relative order
of gi is oi. Then the size of G is o1 ∗ ... ∗ on.

AgGroupOps.Size allows a factor argument (see 25.60) for G . It uses Index (see 7.51) in
such a case.

25.9. GROUP FUNCTIONS FOR AG GROUPS 529

25.9 Group Functions for Ag Groups

As ag groups are groups, all group functions, for example IsAbelian and Normalizer, can
be applied to ag groups. This and the following sections give further comments on the
definition and implementations of those functions for ag groups. All group functions not
mentioned here are not treated in a special way.

Group(U)

See 25.11.

CompositionSeries(G)

Let (g1, ..., gn) be an induced generating system of G with respect to the parent group of
G . Then for i ∈ {1, ..., n} the i.th composition subgroup Si of the AG system is generated
by (gi, ..., gn). The n + 1.th composition subgroup Sn+1 is the trivial subgroup of G . The
AG series of G is the series {S1, ..., Sn+1}.

Centralizer(U)

The centralizer of an ag group U in its parent group is computed using linear methods while
stepping down an elementary abelian series of its parent group.

Centralizer(U , H)

This function call computes the centralizer of H in U using linear methods. H and U must
have a common parent.

Centralizer(U , g)

The centralizer of a single element g in an ag group U may be computed whenever g lies in
the parent group of U . In that case the same algorithm as for the centralizer of subgroups
is used.

ConjugateSubgroup(U , g)

If g is an element of U then U is returned. Otherwise the remainder of the shifting
of g through U is used to conjugate an induced generating system of U . In that case
the information bound to U .isNilpotent, U .isAbelian, U .isElementaryAbelian and
U .isCyclic, if known, is copied to the conjugate subgroup.

Core(S, U)

AgGroupOps.Core computes successively the core of U stepping up a composition series of
S . See [Thi87].

CommutatorSubgroup(G, H)

See 25.12 for details.

530 CHAPTER 25. FINITE POLYCYCLIC GROUPS

ElementaryAbelianSeries(G)

AgGroupOps.ElementaryAbelianSeries returns a series of normal subgroups of G with
elementary abelian factors.

gap> ElementaryAbelianSeries(s4);
[s4, Subgroup(s4, [b, c, d]), Subgroup(s4, [c, d]),

Subgroup(s4, [])]
gap> d8 := Subgroup(s4, [a*b^2, c, d]);
Subgroup(s4, [a*b^2, c, d])
gap> ElementaryAbelianSeries(d8);
[Subgroup(s4, [a*b^2, c, d]), Subgroup(s4, [c, d]),

Subgroup(s4, [])]

If G is no parent group then AgGroupOps.ElementaryAbelianSeries will compute a ele-
mentary abelian series for the parent group and intersect this series with G . If G is a parent
group then IsElementaryAbelianAgSeries (see 25.29) is used in order to check if such a
series exists. Otherwise an elementary abelian is computed refining the derived series (see
[LNS84, Gla87]).

ElementaryAbelianSeries(L)

L must be a list of ag groups S1 = H, ..., Sm = {1} with a common parent group such that
Si is a subgroup of Si−1 and Si is normal in G for all i ∈ {2, ...,m}. Then the function
returns a series of normal subgroups of G with elementary abelian factors refining the series
L.

NormalIntersection(V , W)

If V is an element of the AG series of G, then AgGroupOps.NormalIntersection uses
the depth of V in order to compute the intersection. Otherwise it uses the Zassenhaus
sum-intersection algorithm (see [GS90]).

Normalizer(G, U)

See 25.13.

SylowSubgroup(G, p)

AgGroupOps.SylowSubgroup uses HallSubgroup (see 25.63) in order to compute the sylow
subgroup of G .

DerivedSeries(G)

AgGroupOps.DerivedSeries uses DerivedSubgroup (see 7.22) in order to compute the de-
rived series of G . It checks if G is normal in its parent group H. If it is normal all the
derived subgroups are also normal in H. G is always the first element of this list and the
trivial group always the last one since G is soluble.

LowerCentralSeries(G)

25.9. GROUP FUNCTIONS FOR AG GROUPS 531

AgGroupOps.LowerCentralSeries uses CommutatorSubgroup (see 7.19) in order to com-
pute the lower central series of G . It checks if G is normal in its parent group H. If it is
normal all subgroups of the lower central series are also normal in H.

Random(U)

Let (u1, ..., ur) be a induced generating system of U . Let e1, ..., er be the relative order of
u1, ..., ur. Then for r random integers νi between 0 and ei − 1 the word uν1

1 ∗ ... ∗ uνrr is
returned.

IsCyclic(G)

See 25.14.

IsFinite(G)

As G is a finite solvable group AgGroupOps.IsFinite returns true.

IsNilpotent(U)

AgGroupOps.IsNilpotent uses Glasby’s nilpotency test for ag groups (see [Gla87]).

IsNormal(G, U)

See 25.15.

IsPerfect(G)

As G is a finite solvable group it is perfect if and only if G is trivial.

IsSubgroup(G, U)

See 25.16.

ConjugacyClasses(H)

The conjugacy classes of elements are computed using linear methods. The algorithm de-
pends on the ag series of the parent group of H being a refinement of an elementary abelian
series. Thus if this is not true or if H is not a member of the elementary abelian series, an
isomorphic group, in which the computation can be done, is created.

The algorithm that is used steps down an elementary abelian series of the parent group of
H , basically using affine operation to construct the conjugacy classes of H step by step from
its factorgroups.

Orbit(U , pt, op)

AgGroupOps.Orbit returns the orbit of pt under U using the operation op. The function
calls AgOrbitStabilizer in order to compute the orbit, so please refer to 25.78 for details.

532 CHAPTER 25. FINITE POLYCYCLIC GROUPS

Stabilizer(U , pt, op)

See 25.17.

AsGroup(D)

See 25.10.

FpGroup(U)

See 25.23.

RightCoset(U , g)

See 25.22.

AbelianGroup(D, L)

Let L be the list [o1, ..., on] of nonnegative integers oi > 1. Then AgWordsOps.AbelianGroup
returns the direct product of the cyclic groups of order oi using the domain description D .
The generators of these cyclic groups are named beginning with “a”, “b”, “c”, ... followed
by a number if oi is a composite integer.

CyclicGroup(D, n)

See 25.18.

ElementaryAbelianGroup(D, n)

See 25.19.

DirectProduct(L)

See 25.20.

WreathProduct(G, H , α)

See 25.21.

25.10 AsGroup for Ag Groups

AgGroupOps.AsGroup(G)

AgGroupOps.AsGroup returns a copy H of G . It does not change the parent status. If G is
a subgroup so is H.

AgWordsOps.AsGroup(L)

Let L be a list of ag words. Then AgWordsOps.AsGroup uses MergedCgs (see 25.55) in order
to compute a canonical generating system for the subgroup generated by L in the parent
group of the elements of L.

25.11. GROUP FOR AG GROUPS 533

25.11 Group for Ag Groups

AgGroupOps.Group(G)

AgGroupOps.Group returns an isomorphic group H such that H is a parent group and
H.bijection is bond to an isomorphism between H and G .

AgWordsOps.Group(D, gens, id)

Constructs the group G generated by gens with identity id . If these generators do not
generate a parent group, a new parent group H is construct. In that case new generators
are used and H.bijection is bound to isomorphism between H and G.

25.12 CommutatorSubgroup for Ag Groups

AgGroupOps.CommutatorSubgroup(G, H)

Let g1, ..., gn be an canonical generating system for G and h1, ..., hm be an canonical gener-
ating system for H . The normal closure of the subgroup S generated by Comm(gi, hj) for
1 ≤ i ≤ n and 1 ≤ j ≤ m under G and H is the commutator subgroup of G and H .

But if G or H is known to be normal in the common parent of G amd H then the subgroup
S is returned because if G normalizes H or vice versa then S is already the commutator
subgroup (see [Gla87]).

If G = H the commutator subgroup is generated by Comm(gi, gj) for 1 ≤ i < j ≤ n
(see [LNS84]). Note that AgGroupOps.CommutatorSubgroup checks G.derivedSubgroup
in that case.

25.13 Normalizer for Ag Groups

AgGroupOps.Normalizer(S, U)

Note that the AG series of G should be the refinement of an elementary abelian series,
see 25.29. Otherwise the calculation of the normalizer is done using an orbit algorithm,
which is generally too slow or space extensive. You can construct a new polycyclic pre-
sentation for G such that AG series is a refinement of an elementary abelian series with
ElementaryAbelianSeries (see 7.39) and IsomorphismAgGroup.

For details on the implementation see [GS90, CNW90].

25.14 IsCyclic for Ag Groups

AgGroupOps.IsCyclic(G)

AgGroupOps.IsCyclic returns false if G is no abelian group. Otherwise G is finite of
order pe11 ...p

en
n where the pi are distinct primes then G is cyclic if and only if each Gpi has

index pi in G .

AgGroupOps.IsCyclic computes the groups Gp
i using the fact that the map x 7→ xpi is a

homomorphism of G , so that the pi.th powers of an induced generating system of G are a
homomorphic image of an igs (see [Cel92]).

534 CHAPTER 25. FINITE POLYCYCLIC GROUPS

25.15 IsNormal for Ag Groups

AgGroupOps.IsNormal(G, U)

Let G be a parent group. Then AgGroupOps.IsNormal checks if the conjugate of each
generator of U under each induced generator of G which has a depth not contained in U is
an element of U . Otherwise AgGroupOps.IsNormal checks if the conjugate of each generator
of U under each generator of G is an element of U .

25.16 IsSubgroup for Ag Groups

AgGroupOps.IsSubgroup(G, U)

If G is a parent group of U , then AgGroupOps.IsSubgroup returns true. If the CGS of U
is longer than that of G , U cannot be a subgroup of G . Otherwise AgGroupOps.IsSubgroup
shifts each generator of U through G (see 24.12) in order to check if U is a subgroup of G .

25.17 Stabilizer for Ag Groups

AgGroupOps.Stabilizer(U , pt, op)

Let U be an ag group acting on a set Ω by op. Let pt be an element of Ω. Then
AgGroupOps.Stabilizer returns the stabilizer of pt in U .

op must be a function taking two arguments such that op(p, u) is the image of a point p ∈ Ω
under the action of an element u of U . If conjugation should be used op must be OnPoints.

The stabilizer is computed by stepping up the composition series of U . The whole orbit ptU

is not stored during the computation (see [LNS84]). Of course this saving of space is bought
at the cost of time. If you need a faster function, which may use more memory, you can use
AgOrbitStabilizer (see 25.78) instead.

25.18 CyclicGroup for Ag Groups

AgWordsOps.CyclicGroup(D, n)
AgWordsOps.CyclicGroup(D, n, str)

Let n be a nonnegative integer. AgWordsOps.CyclicGroup returns the cyclic group of order
n.

Let n be a composite number with r prime factors. If no str is given, the names of the
r generators are cn 1, ..., cn r. Otherwise, the names of the r generators are str1, ..., strr,
where str must be a string of letters, digits and the special symbol “ ”.

If the order n is a prime, the name of the generator is either cn or str .

gap> CyclicGroup(AgWords, 31);
Group(c31)
gap> AgWordsOps.CyclicGroup(AgWords, 5 * 5, "e");
Group(e1, e2)

25.19. ELEMENTARYABELIANGROUP FOR AG GROUPS 535

25.19 ElementaryAbelianGroup for Ag Groups

AgWordsOps.ElementaryAbelianGroup(D, n)
AgWordsOps.ElementaryAbelianGroup(D, n, str)

AgWordsOps.ElementaryAbelianGroup returns the elementary abelian group of order n,
which must be a prime power.

Let n be a prime power pr. If no str is given the names of the r generators aremn 1, ...,mn r.
Otherwise the names of the r generators are str1, ..., strr, where str must be a string of
letters, digits and the special symbol “ ”.

If the order n is a prime, the name of the generator is either mn or str .

gap> ElementaryAbelianGroup(AgWords, 31);
Group(m31)
gap> ElementaryAbelianGroup(AgWords, 31^2);
Group(m961_1, m961_2)
gap> AgWordsOps.ElementaryAbelianGroup(AgWords, 31^2, "e");
Group(e1, e2)

25.20 DirectProduct for Ag Groups

AgGroupOps.DirectProduct(L)

L must be list of groups or pairs of group and name as described below. If not all groups
are ag groups GroupOps.DirectProduct (see 7.98) is used in order to construct the direct
product.

Let L be a list of ag groups L = [U1, ..., Un]. AgGroupOps.DirectProduct returns the direct
product of all Ui as new ag group with collector.

If L is a pair [Ui, S] instead of a group Ui the generators of the direct product corre-
sponding to Ui are named Sj for integers j starting with 1 up to the number of induced
generators for Ui. If the group is cyclic of prime order the name is just S .

AgGroupOps.DirectProduct computes for each Ui its natural power-commutator presenta-
tion for an induced generating system of Ui.

Note that the arguments need no common parent group.

gap> z3 := CyclicGroup(AgWords, 3);;
gap> g := AgGroupOps.DirectProduct([[z3, "a"], [z3, "b"]]);
Group(a, b)

25.21 WreathProduct for Ag Groups

AgGroupOps.WreathProduct(G, H , α)

If H and G are not both ag group GroupOps.WreathProduct (see 7.103) is used.

Let H and G be two ag group with possible different parent group and let α be a homo-
morphism H into a permutation group of degree d.

Let (g1, ..., gr) be an IGS of G , (h1, ..., hn) an IGS of H . The wreath product has a PAG
system (b1, ..., bn, a11, ..., a1r, ad1, ..., adr) such that b1, ..., bn generate a subgroup isomorph

536 CHAPTER 25. FINITE POLYCYCLIC GROUPS

to H and ai1, ..., air generate a subgroup isomorph to G for each i in {1, ..., r}. The names
of b1, ..., bn are h1, ..., hn, the names of ai1, ..., air are ni 1, ..., ni r.

AgGroupOps.WreathProduct uses the natural power-commutator presentations of H and G
for induced generating system of H and G (see [Thi87]).

gap> s3 := Subgroup(s4, [a, b]);
Subgroup(s4, [a, b])
gap> c2 := Subgroup(s4, [a]);
Subgroup(s4, [a])
gap> r := RightCosets(s3, c2);;
gap> S3 := Operation(s3, r, OnRight);
Group((2,3), (1,2,3))
gap> f := GroupHomomorphismByImages(s3,S3,[a,b],[(2,3),(1,2,3)]);
GroupHomomorphismByImages(Subgroup(s4, [a, b]), Group((2,3),
(1,2,3)), [a, b], [(2,3), (1,2,3)])
gap> WreathProduct(c2, s3, f);
Group(h1, h2, n1_1, n2_1, n3_1)

25.22 RightCoset for Ag Groups

AgGroupOps.Coset(G)

A coset C = G∗x is represented as record with the following components.

representative
contains the representative x.

group
contains the group G .

isDomain
is true.

isRightCoset
is true.

isFinite
is true.

operations
contains the operations record RightCosetAgGroupOps.

RightCosetAgGroupOps.<(C1, C2)

If C1 and C2 do not have a common group or if one argument is no coset then the functions
uses DomainOps.< in order to compare C1 and C2 . Note that this will compute the set of
elements of C1 and C2 .

If C1 and C2 have a common group then AgGroupCosetOps.< will use SiftedAgWord (see
24.12) and ConjugateSubgroup (see 7.20) in order to compare C1 and C2 . It does not
compute the set of elements of C1 and C2 .

25.23. FPGROUP FOR AG GROUPS 537

25.23 FpGroup for Ag Groups

AgGroupOps.FpGroup(U)
AgGroupOps.FpGroup(U , str)

AgGroupOps.FpGroup returns a finite presentation of an ag group U .

If no str is given, the abstract group generators have the same names as the generators of
the ag group U . Otherwise they have names of the form str i for integers i from 1 to the
number of induced generators.

AgGroupOps.FpGroup computes the natural power-commutator presentation of an induced
generating system of the finite polycyclic group U .

25.24 Ag Group Functions

The following functions either construct new parent ag group (see 25.25 and 25.27), test
properties of parent ag groups (see 25.28 and 25.29) or change the collector (see 25.33) but
they do not compute subgroups. These functions are either described in general in chapter
7 or in 25.61 for specialized functions.

25.25 AgGroup

AgGroup(D)

AgGroup converts a finite polycyclic group D into an ag group G. G.bijection is bound
to isomorphism between G and D .

gap> S4p := Group((1,2,3,4), (1,2));
Group((1,2,3,4), (1,2))
gap> S4p.name := "S4_PERM";;
gap> S4a := AgGroup(S4p);
Group(g1, g2, g3, g4)
gap> S4a.name := "S4_AG";;
gap> L := CompositionSeries(S4a);
[S4_AG, Subgroup(S4_AG, [g2, g3, g4]),

Subgroup(S4_AG, [g3, g4]), Subgroup(S4_AG, [g4]),
Subgroup(S4_AG, [])]

gap> List(L, x -> Image(S4a.bijection, x));
[Subgroup(S4_PERM, [(1,2), (1,3,2), (1,4)(2,3), (1,2)(3,4)]),

Subgroup(S4_PERM, [(1,3,2), (1,4)(2,3), (1,2)(3,4)]),
Subgroup(S4_PERM, [(1,4)(2,3), (1,2)(3,4)]),
Subgroup(S4_PERM, [(1,2)(3,4)]), Subgroup(S4_PERM, [])]

Note that the function will not work for finitely presented groups, see 25.27 for details.

25.26 IsAgGroup

IsAgGroup(obj)

IsAgGroup returns true if obj , which can be an arbitrary object, is an ag group and false
otherwise.

538 CHAPTER 25. FINITE POLYCYCLIC GROUPS

gap> IsAgGroup(s4);
true
gap> IsAgGroup(a);
false

25.27 AgGroupFpGroup

AgGroupFpGroup(F)

AgGroupFpGroup returns an ag group isomorphic to a finitely presented finite polycyclic
group F .

A finitely presented finite polycyclic group F must be a record with components generators
and relators, such that generators is a list of abstract generators and relators a list of
words in these generators describing a power-commutator or power-conjugate presentation.

Let g1, ..., gn be the generators of F . Then the words of relators must be the power relators
gekk ∗ w

−1
kk and commutator relator Comm(gi, gj) ∗ w−1

ij or conjugate relators ggji ∗ w
−1
ij for

all 1 ≤ k ≤ n and 1 ≤ j < i ≤ n, such that wkk are words in gk+1, ..., gn and wij are words
in gj+1, ..., gn. It is possible to omit some of the commutator or conjugate relators. Pairs of
generators without commutator or conjugate relator are assumed to commute.

The relative order ei of gi need not to be primes, but as all functions for ag groups need a
PAG system, not only an AG system, you must refine the AG series using RefinedAgSeries
(see 25.32) in case some ei are composite numbers.

Note that it is not checked if the AG presentation is consistent. You can use IsConsistent
(see 25.28) to test the consistency of a presentation. Inconsistent presentations may cause
other ag group functions to return incorrect results.

Initially a collector from the left following the algorithm described in [LGS90] is used in
order to collect elements of the ag group. This could be changed using ChangeCollector
(see 25.33).

Note that AgGroup will not work with finitely presented groups, you must use the func-
tion AgGroupFpGroup instead. As no checks are done you can construct an ag group with
inconsistent presentation using AgGroupFpGroup.

25.28 IsConsistent

IsConsistent(G)
IsConsistent(G, all)

IsConsistent returns true if the finite polycyclic presentation of a parent group G is
consistent and false otherwise.

If all is true then G.inconsistencies contains a list for pairs [w1, w2] such that the words
w1 and w2 are equal in G but have different normal forms.

Note that IsConsistent check and sets G.isConsistent.

gap> InfoAgGroup2 := Print;;
gap> x := AbstractGenerator("x");;
gap> y := AbstractGenerator("y");;
gap> z := AbstractGenerator("z");;

25.29. ISELEMENTARYABELIANAGSERIES 539

gap> G := AgGroupFpGroup(rec(
> generators := [x, y, z],
> relators := [x^2 / y, y^2 / z, z^2,
> Comm(y, x) / (y * z),
> Comm(z, x) / (y * z)]));
Group(x, y, z)
gap> IsConsistent(G);
#I IsConsistent: y * (y * x) <> (y * y) * x
false
gap> IsConsistent(G, true);
#I IsConsistent: y * (y * x) <> (y * y) * x
#I IsConsistent: z * (z * x) <> (z * z) * x
#I IsConsistent: y * (x * x) <> (y * x) * x
#I IsConsistent: z * (x * x) <> (z * x) * x
#I IsConsistent: x * (x * x) <> (x * x) * x
false
gap> G.inconsistencies;
[[x, x*y], [x*z, x], [z, y], [y*z, y], [x*y, x]]
gap> InfoAgGroup2 := Ignore;;

25.29 IsElementaryAbelianAgSeries

IsElementaryAbelianAgSeries(G)

Let G be a parent group. IsElementaryAbelianAgSeries returns true if and only if the
AG series of G is the refinement of an elementary abelian series of G .

The function sets G.elementaryAbelianSeries G in case of a true result. This component
is described in 7.39.

gap> IsElementaryAbelianAgSeries(s4);
true
gap> ElementaryAbelianSeries(s4);
[s4, Subgroup(s4, [b, c, d]), Subgroup(s4, [c, d]),
Subgroup(s4, [])]

gap> CompositionSeries(s4);
[s4, Subgroup(s4, [b, c, d]), Subgroup(s4, [c, d]),
Subgroup(s4, [d]), Subgroup(s4, [])]

25.30 MatGroupAgGroup

MatGroupAgGroup(U , M)

Let U and M be two ag groups with a common parent group and let M be a elementary
abelian group normalized by U . Then MatGroupAgGroup returns the matrix representation
of U acting on M .

See also 25.79.

gap> v4 := AgSubgroup(s4, [c, d], true);
Subgroup(s4, [c, d])
gap> a4 := AgSubgroup(s4, [b, c, d], true);

540 CHAPTER 25. FINITE POLYCYCLIC GROUPS

Subgroup(s4, [b, c, d])
gap> MatGroupAgGroup(s4, v4);
Group([[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]],
[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]])

25.31 PermGroupAgGroup

PermGroupAgGroup(G, U)

Let U be a subgroup of a ag group G . Then PermGroupAgGroup returns the permutation
representation of G acting on the cosets of U .

gap> v4 := AgSubgroup(s4, [s4.1, s4.4], true);
Subgroup(s4, [a, d])
gap> PermGroupAgGroup(s4, v4);
Group((3,5)(4,6), (1,3,5)(2,4,6), (1,2)(3,4), (3,4)(5,6))

25.32 RefinedAgSeries

RefinedAgSeries(G)

RefinedAgSeries returns a new parent group isomorphic to a parent group G with a PAG
series, if the ag group G has only an AG series.

Note that in the case that G has a PAG series, G is returned without any further action.

The names of the new generators are constructed as follows. Let (g1, ..., gn) be the AG
system of the ag group G and n(gi) the name of gi. If the relative order of gi is a prime,
then n(gi) is the name of a new generator. If the relative order is a composite number with
r prime factors, then there exist r new generators with names n(gi) 1, ..., n(gi) r.

gap> c12 := AbstractGenerator("c12");;
gap> F := rec(generators := [c12],
> relators := [c12 ^ (2 * 2 * 3)]);
rec(
generators := [c12],
relators := [c12^12])

gap> G := AgGroupFpGroup(F);
#W AgGroupFpGroup: composite index, use ’RefinedAgSeries’
Group(c12)
gap> RefinedAgSeries(G);
Group(c121, c122, c123)

25.33 ChangeCollector

ChangeCollector(G, name)
ChangeCollector(G, name, n)

ChangeCollector changes the collector of a parent group G and all its subgroups. name is
the name of the new collector. The following collectors are supported.

“single” initializes a collector from the left following the algorithm described in [LGS90].

25.34. THE PRIME QUOTIENT ALGORITHM 541

“triple” initializes a collector from the left collecting with triples giˆgrj for j < i and r =
1, ...,n (see [Bis89]).

“quadruple” initializes a collector from the left collecting with quadruples gsi ˆg
r
j for j < i,

r = 1, ...,n and s = 1, ...,n. Note that r and s have the same upper bound (see [Bis89]).

“combinatorial” initializes a combinatorial collector from the left for a p-group G . In that
case the commutator or conjugate relations of the G must be of the form g

gj
i = wij or

Comm(gi, gj) = wij for 1 ≤ j < i ≤ n, such that wij are words in gi+1, ..., gn fulfilling
the central weight condition (see [HN80, VL84]). If these conditions are not fulfilled, the
collector could not be initialized, a warning will be printed and collection will be done with
the old collector.

For collectors which collect with tuples a maximal bound of those tuples is n, set to 5 by
default.

25.34 The Prime Quotient Algorithm

The following sections describe the np-quotient functions. PQuotient allows to compute
quotient of prime power order of finitely presented groups. For further references see [HN80]
and [VL84].

There is a C standalone version of the p-quotient algorithm, the ANU p-Quotient Program,
which can be called from GAP. For further information see chapter 57.

25.35 PQuotient

PQuotient(G, p, cl)
PrimeQuotient(G, p, cl)

PQuotient computes quotients of prime power order of finitely presented groups. G must
be a group given by generators and relations. PQuotient expects G to be a record with
the record fields generators and relators. The record field generators must be a list
of abstract generators created by the function AbstractGenerator (see 22.1). The record
field relators must be a list of words in the generators which are the relators of the group.
p must be a prime. cl has to be an integer, which specifies that the quotient of prime power
order computed by PQuotient is the largest p-quotient of G of class at most cl . PQuotient
returns a record Q, the PQp record, which has, among others, the following record fields
describing the p-quotient Q.

generators
A list of abstract generators which generate Q.

pcp
The internal power-commutator presentation for Q.

dimensions
A list, where dimensions[i] is the dimension of the i-th factor in the lower exponent-
p central series calculated by the p-quotient algorithm.

prime
The integer p, which is a prime.

definedby
A list which contains the definition of the k-th generator in the k-th place. There are

542 CHAPTER 25. FINITE POLYCYCLIC GROUPS

three different types of entries, namely lists, positive and negative integers.
[j, i]
the generator is defined to be the commutator of the j-th and the i-th element in
generators.
i
the generator is defined as the p-th power of the i-th element in generators.
-i
the generator is defined as an image of the i-th generator in the finite presentation
for G , consequently it must be a generator of weight 1.

epimorphism
A list containing an image in Q of each generator of G . The image is either an integer
i if it is the i-th element of generators of Q or an abstract word w if it is the abstract
word w in the generators of Q.

An example of the computation of the largest quotient of class 4 of the group given by the
finite presentation {x, y | x25/(x · y)5, [x, y]5, (xy)25}.

Define the group
gap> x := AbstractGenerator("x");;
gap> y := AbstractGenerator("y");;
gap> G := rec(generators := [x,y],
> relators := [x^25/(x*y)^5, Comm(x,y)^5, (x^y)^25]);
rec(
generators := [x, y],
relators :=
[x^25*y^-1*x^-1*y^-1*x^-1*y^-1*x^-1*y^-1*x^-1*y^-1*x^-1,

x^-1*y^-1*x*y*x^-1*y^-1*x*y*x^-1*y^-1*x*y*x^-1*y^-1*x*y*x^-1*y^-\
1*x*y, y^-1*x^25*y])

Call pQuotient
gap> P := PQuotient(G, 5, 4);
#I PQuotient: class 1 : 2
#I PQuotient: Runtime : 0
#I PQuotient: class 2 : 2
#I PQuotient: Runtime : 27
#I PQuotient: class 3 : 2
#I PQuotient: Runtime : 1437
#I PQuotient: class 4 : 3
#I PQuotient: Runtime : 1515
PQp(rec(

generators := [g1, g2, a3, a4, a6, a7, a11, a12, a14],
definedby := [-1, -2, [2, 1], 1, [3, 1], [3, 2],
[5, 1], [5, 2], [6, 2]],
prime := 5,
dimensions := [2, 2, 2, 3],
epimorphism := [1, 2],
powerRelators := [g1^5/(a4), g2^5/(a4^4), a3^5, a4^5, a6^5, a7^

5, a11^5, a12^5, a14^5],
commutatorRelators := [Comm(g2,g1)/(a3), Comm(a3,g1)/(a6), Comm(a3\

25.36. SAVE 543

,g2)/(a7), Comm(a6,g1)/(a11), Comm(a6,g2)/(a12), Comm(a7,g1)/(a12), Co\
mm(a7,g2)/(a14)],

definingCommutators := [[2, 1], [3, 1], [3, 2], [5, 1],
[5, 2], [6, 1], [6, 2]]))

The p-quotient algorithm returns a PQp record for the exponent-5 class 4 quotient. Note
that instead of printing the PQp record P an equivalent representation is printed which can
be read in to GAP. See 25.37 for details.

The quotient defined by P has nine generators, g1, g2, a3, a4, a6, a7,a11, a12, a14,
stored in the list P.generators. From powerRelators we can read off that g1^5 =:
a4 and g2^5 = a4^4 and all other generators have trivial 5-th powers. From the list
commutatorRelators we can read off the non-trivial commutator relations Comm(g2,g1)
=: a3, Comm(a3,g1) =: a6, Comm(a3,g2) =: a7, Comm(a6,g1) =: a11,Comm(a6,g2) =:
a12, Comm(a7,g1) = a12 and Comm(a7,g2) =: a14. In this list =: denotes that the gen-
erator on the right hand side is defined as the left hand side. This information is given
by the list definedby. The list dimensions shows that P is a class-4 quotient of order
52 · 52 · 52 · 53 = 59. The epimorphism of G onto the quotient P is given by the map x 7→ g1
and y 7→ g2.

25.36 Save

Save(file, Q, N)

Save saves the PQp record Q to the file file in such a way that the file can be read by GAP.
The name of the record in the file will be N . This differs from printing Q to a file in that
the required abstract generators are also created in file.

gap> x := AbstractGenerator("x");;
gap> y := AbstractGenerator("y");;
gap> G := rec(generators := [x,y],
> relators := [x^25/(x*y)^5, Comm(x,y)^5, (x^y)^25]);;
gap> P := PQuotient(G, 5, 4);;
#I PQuotient: class 1 : 2
#I PQuotient: Runtime : 0
#I PQuotient: class 2 : 2
#I PQuotient: Runtime : 27
#I PQuotient: class 3 : 2
#I PQuotient: Runtime : 78
#I PQuotient: class 4 : 3
#I PQuotient: Runtime : 156
gap> Save("Quo54", P, "Q");
gap> # The Unix command ’cat’ in the next statement should be
gap> # replaced appropriately if you are working under a different
gap> # operating system.
gap> Exec("cat Quo54");
g1 := AbstractGenerator("g1");
g2 := AbstractGenerator("g2");
a3 := AbstractGenerator("a3");
a4 := AbstractGenerator("a4");
a6 := AbstractGenerator("a6");

544 CHAPTER 25. FINITE POLYCYCLIC GROUPS

a7 := AbstractGenerator("a7");
a11 := AbstractGenerator("a11");
a12 := AbstractGenerator("a12");
a14 := AbstractGenerator("a14");
Q := PQp(rec(

generators := [g1, g2, a3, a4, a6, a7, a11, a12, a14],
definedby := [-1, -2, [2, 1], 1, [3, 1], [3, 2],
[5, 1], [5, 2], [6, 2]],
prime := 5,
dimensions := [2, 2, 2, 3],
epimorphism := [1, 2],
powerRelators := [g1^5/(a4), g2^5/(a4^4), a3^5, a4^5, a6^5, a7^

5, a11^5, a12^5, a14^5],
commutatorRelators := [Comm(g2,g1)/(a3), Comm(a3,g1)/(a6), Comm(a3\

,g2)/(a7), Comm(a6,g1)/(a11), Comm(a6,g2)/(a12), Comm(a7,g1)/(a12), Co\
mm(a7,g2)/(a14)],

definingCommutators := [[2, 1], [3, 1], [3, 2], [5, 1],
[5, 2], [6, 1], [6, 2]]));

25.37 PQp

PQp(r)

PQp takes as argument a record r containing all information necessary to restore a PQp
record Q. A PQp record Q is printed as function call to PQp with an argument describing Q.
This is necessary because the internal power-commutator representation cannot be printed.
Therefore all information about Q is encoded in a record r and Q is printed as PQp(<r>
).

25.38 InitPQp

InitPQp(n, p)

InitPQp creates a PQp record for an elementary abelian group of rank n and of order pn

for a prime p.

25.39 FirstClassPQp

FirstClassPQp(G, p)

FirstClassPQp returns a PQp record for the exponent-p class 1 quotient of G .

25.40 NextClassPQp

NextClassPQp(G, P)

Let P be the PQp record for the exponent-p class c quotient of G . NextClassPQp returns
a PQp record for the class c + 1 quotient of G , if such a quotient exists, and P otherwise.
In latter case there exists a maximal p-quotient of G which has class c and this is indicated
by a comment if InfoPQ1 is set the Print.

25.41. WEIGHT 545

25.41 Weight

Weight(P, w)

Let P be a PQp record and w a word in the generators of P . The function Weight returns
the weight of w with respect to the lower exponent-p central series defined by P .

25.42 Factorization for PQp

Factorization(P, w)

Let P be a PQp record and w a word in the generators of P . The function Factorization
returns a word in the weight 1 generators of P expressing w .

25.43 The Solvable Quotient Algorithm

The following sections describe the solvable quotient functions (or sq functions for short).
SolvableQuotient allows to compute finite solvable quotients of finitely presented groups.

The solvable quotient algorithm tries to find solvable quotients of a given finitely presented
group G. First it computes the commutator factor group Q, which must be finite. It then
chooses a prime p and repeats the following three steps:(1) compute all irreducible modules
of Q over GF (p), (2) for each module M compute (up to equivalence) all extensions of Q
by M , (3) for each extension E check whether E is isomorphic to a factor group of G. As
soon as a non-trivial extension of Q is found which is still isomorphic to a factor group of
G the process is repeated.

25.44 SolvableQuotient

SolvableQuotient(G, primes)

Let G be a finitely presented group and primes a list of primes. SolvableQuotient tries
to compute the largest finite solvable quotient Q of G , such that the prime decomposition
of the order the derived subgroup Q′ of Q only involves primes occuring in the list primes.
The quotient Q is returned as finitely presented group. You can use AgGroupFpGroup (see
25.27) to convert the finitely presented group into a polycyclic one.

Note that the commutator factor group of G must be finite.

gap> f := FreeGroup("a", "b", "c", "d");;
gap> f4 := f / [f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
> f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
> f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
> f.2^-1*f.4^-1*f.2*f.4];
Group(a, b, c, d)
gap> InfoSQ1 := Ignore;;
gap> g := SolvableQuotient(f4, [3]);
Group(e1, e2, m3, m4)
gap> Size(AgGroupFpGroup(g));
36
gap> g := SolvableQuotient(f4, [2]);
Group(e1, e2)

546 CHAPTER 25. FINITE POLYCYCLIC GROUPS

gap> Size(AgGroupFpGroup(g));
4
gap> g := SolvableQuotient(f4, [2,3]);
Group(e1, e2, m3, m4, m5, m6, m7, m8, m9)
gap> Size(AgGroupFpGroup(g));
1152

Note that the order in which the primes occur in primes is important. If primes is the list
[2, 3] then in each step SolvableQuotient first tries a module over GF(2) and only if this
fails a module over GF(3). Whereas if primes is the list [3, 2] the function first tries to find
a downward extension by a module over GF(3) before considering modules over GF(2).

SolvableQuotient(G, n)

Let G be a finitely presented group. SolvableQuotient attempts to compute a finite
solvable quotient of G of order n.

Note that n must be divisible by the order of the commutator factor group of G , otherwise
the function terminates with an error message telling you the order of the commutator factor
group.

Note that a warning is printed if there does not exist a solvable quotient of order n. In this
case the largest solvable quotient whose order divides n is returned.

Providing the order n or a multiple of the order makes the algorithm run much faster than
providing only the primes which should be tested, because it can restrict the dimensions of
modules it has to investigate. Thus if the order or a small enough multiple of it is known,
SolvableQuotient should be called in this way to obtain a power conjugate presentation
for the group.

gap> f := FreeGroup("a", "b", "c", "d");;
gap> f4 := f / [f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
> f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
> f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
> f.2^-1*f.4^-1*f.2*f.4];;
gap> g := SolvableQuotient(f4, 12);
Group(e1, e2, m3)
gap> Size(AgGroupFpGroup(g));
12
gap> g := SolvableQuotient(f4, 24);
#W largest quotient has order 2^2*3
Group(e1, e2, m3)
gap> g := SolvableQuotient(f4, 2);
Error, commutator factor group is of size 2^2

SolvableQuotient(G, l)

If something is already known about the structure of the finite soluble quotient to be con-
structed then SolvableQuotient can be aided in its construction.

l must be a list of lists each of which is a list of integers occurring in pairs p, n.

SolvableQuotient first constructs the commutator factor group of G , it then tries to extend
this group by modules over GF (p) of dimension at most n where p is a prime occurring in the
first list of l . If n is zero no bound on the dimension of the module is imposed. For example,

25.45. INITSQ 547

if l is [[2, 0, 3, 4], [5, 0, 2, 0]] then SolvableQuotient will try to extend the commutator factor
group by a module over GF(2). If no such module exists all modules over GF(3) of dimension
at most 4 are tested. If neither a GF(2) nor a GF(3) module extend SolvableQuotient
terminates. Otherwise the algorithm tries to extend this new factor group with a GF(5)
and then a GF(2) module.
Note that it is possible to influence the construction even more precisely by using the
functions InitSQ, ModulesSQ, and NextModuleSQ. These functions allow you to interactively
select the modules. See 25.45, 25.46, and 25.47 for details.
Note that the ordering inside the lists of l is important. If l is the list [[2, 0, 3, 0]] then
SolvableQuotient will first try a module over GF(2) and attempt to construct an extension
by a module over GF(3) only if the GF(2) extension fails, whereas in the case that l is the
list [[3, 0, 2, 0]] the function first attempts to extend with modules over GF(3) and then with
modules over GF(2).

gap> f := FreeGroup("a", "b", "c", "d");;
gap> f4 := f / [f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
> f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
> f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
> f.2^-1*f.4^-1*f.2*f.4];;
gap> g := SolvableQuotient(f4, [[5,0],[2,0,3,0]]);
Group(e1, e2)
gap> Size(AgGroupFpGroup(g));
4
gap> g := SolvableQuotient(f4, [[3,0],[2,0]]);
Group(e1, e2, m3, m4, m5, m6, m7, m8, m9)
gap> Size(AgGroupFpGroup(g));
1152

25.45 InitSQ

InitSQ(G)

Let G be a finitely presented group. InitSQ computes an SQ record for the commutator
factor group of G . This record can be used to investigate finite solvable quotients of G .
Note that the commutator factor group of G must be finite otherwise an error message is
printed.
See also 25.46 and 25.47.

gap> f := FreeGroup("a", "b", "c", "d");;
gap> f4 := f / [f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
> f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
> f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
> f.2^-1*f.4^-1*f.2*f.4];;
gap> s := InitSQ(f4);
<< solvable quotient of size 2^2 >>

25.46 ModulesSQ

ModulesSQ(S, F)
ModulesSQ(S, F, d)

548 CHAPTER 25. FINITE POLYCYCLIC GROUPS

Let S be an SQ record describing a finite solvable quotient Q of a finitely presented group G.
ModulesSQ computes all irreducible representations of Q over the prime field F of dimension
at most d . If d is zero or missing no restriction on the dimension is enforced.

gap> f := FreeGroup("a", "b", "c", "d");;
gap> f4 := f / [f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
> f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
> f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
> f.2^-1*f.4^-1*f.2*f.4];;
gap> s := InitSQ(f4);
<< solvable quotient of size 2^2 >>
gap> ModulesSQ(s, GF(2));;

25.47 NextModuleSQ

NextModuleSQ(s, M)

Let S be an SQ record describing a finite solvable quotient Q of a finitely presented group
G. NextModuleSQ tries to extend Q by the module M such that the extension is still a
quotient of G

gap> f := FreeGroup("a", "b", "c", "d");;
gap> f4 := f / [f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
> f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
> f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
> f.2^-1*f.4^-1*f.2*f.4];;
gap> s := InitSQ(f4);
<< solvable quotient of size 2^2 >>
gap> m := ModulesSQ(s, GF(3));;
gap> NextModuleSQ(s, m[1]);
<< solvable quotient of size 2^2 >>
gap> NextModuleSQ(s, m[2]);
<< solvable quotient of size 2^2*3 >>
gap> NextModuleSQ(s, m[3]);
<< solvable quotient of size 2^2 >>
gap> NextModuleSQ(s, m[4]);
<< solvable quotient of size 2^2*3 >>

25.48 Generating Systems of Ag Groups

For an ag group G there exists three different types of generating systems. The generating
system in G.generators is a list of ag words generating the group G with the only condition
that none of the ag words is the identity of G. If an induced generating system for G is
known it is bound to G.igs, while an canonical generating system is bound to G.cgs. But
as every canonical generating system is also an induced one, G.cgs and G.igs may contain
the same system.

The functions Cgs, Igs, Normalize, Normalized and IsNormalized change or manipulate
these systems. The following overview shows when to use this functions. For details see
25.50, 25.51, 25.53, 25.54 and 25.52.

25.49. AGSUBGROUP 549

Igs returns an induced generating system for G. If neither G.igs nor G.cgs are present,
it uses MergedIgs (see 25.56) in order to construct an induced generating system from
G.generators. In that case the induced generating system is bound to G.igs. If G.cgs
but not G.igs is present, this is returned, as every canonical generating system is also an
induced one. If G.igs is present this is returned.

Cgs returns a canonical generating system for G. If neither G.igs nor G.cgs are present,
it uses MergedCgs (see 25.55) in order to construct a canonical generating system from
G.generators. In that case the canonical generating system is bound to G.cgs. If G.igs
but not G.cgs is present, this is normalized and bound to G.cgs, but G.igs is left un-
changed. If G.cgs is present this is returned.

Normalize computes a canonical generating system, binds it to G.cgs and unbinds an
induced generating bound to G.igs. Normalized normalizes a copy without changing the
original ag group. This function should be preferred.

IsNormalized checks if an induced generating system is a canonical one and, if being canon-
ical, binds it to G.cgs and unbinds G.igs. If G.igs is unbound IsNormalized computes
a canonical generating system, binds it to G.cgs and returns true.

Most functions need an induced or canonical generating system, all function descriptions
state clearly what is used, if this is relevant, see 25.73 for example.

25.49 AgSubgroup

AgSubgroup(U , gens, flag)

Let U be an ag group with ag group G, gens be an induct or canonical generating system
for a subgroup S of U and flag a boolean. Then AgSubgroup returns the record of an ag
group representing this finite polycyclic group S as subgroup of G.

If flag is true, gens must be a canonical generating with respect to G. If flag is false gens
must be a an induced generating with respect to G.

gens will be bound to S.generators. If flag is true, it is also bound to S.cgs, if it is
false, gens is also bound to S.igs. Note that AgSubgroup does not copy gens.

Note that it is not check whether gens are an induced or canonical system. If gens fails to
be one, all following computations with this group are most probably wrong.

gap> v4 := AgSubgroup(s4, [c, d], true);
Subgroup(s4, [c, d])

25.50 Cgs

Cgs(U)

Cgs returns a canonical generating system of U with respect to the parent group of U as
list of ag words (see 25.1).

If U .cgs is bound, this is returned without any further action. If U .igs is bound, a copy of
this component is normalized, bound to U .cgs and returned. If neither U .igs nor U .cgs
are bound, a canonical generating system for U is computed using MergedCgs (see 25.55)
and bound to U .cgs.

550 CHAPTER 25. FINITE POLYCYCLIC GROUPS

25.51 Igs

Igs(U)

Igs returns an induced generating system of U with respect to the parent group of U as
list of ag words (see 25.1).

If U .igs is bound, this is returned without any further action. If U .cgs but not U .igs
is bound, this is returned. If neither U .igs nor U .cgs are bound, an induced generating
system for U is computed using MergedIgs (see 25.56) and bound to U .igs.

25.52 IsNormalized

IsNormalized(U)

IsNormalized returns true if no induced generating system but an canonical generating
system for U is known.

If U .cgs but not U .igs is bound, true is returned. If neither U .cgs nor U .igs are
bound, a canonical generating system is computed, bound to U .cgs and true is retuned.
If U .igs is present, it is check, if U .igs is a canonical generating. If so, the canonical
generating system is bound to U .cgs and U .igs is unbound.

25.53 Normalize

Normalize(U)

Normalize converts an induced generating system of an ag group U into a canonical one.

If U .cgs and not U .igs is bound, U is returned without any further action. If U contains
both components U .cgs and U .igs, U .igs is unbound. If only U .igs but not U .cgs
is bound the generators in U .igs are converted into a canonical generating and bound
to U .cgs, while U .igs is unbound. If neither U .igs nor U .cgs are bound a canonical
generating system is computed using Cgs (see 25.50).

25.54 Normalized

Normalized(U)

Normalized returns a normalized copy of an ag group U . For details see 25.53.

Note that this function does not alter the record of U and always returns a copy of U , even
if U is already normalized.

25.55 MergedCgs

MergedCgs(U , objs)

Let U be an ag group with parent group G and objs be a list of elements and subgroups of
U . Then MergedCgs returns the subgroup S of G generated by the elements and subgroups
in the list objs. The subgroup S contains a canonical generating system bound to S.cgs.

As objs contains only elements and subgroups of U , the subgroup S is not only a subgroup
of G but also of U . Its parent group is nevertheless G and MergedCgs computes a canonical
generating system of S with respect to G.

25.56. MERGEDIGS 551

If subgroups of S are known at least the largest should be an element of objs, because
MergedCgs is much faster in such cases.

Note that this function may return a wrong subgroup, if the elements of objs do not belong
to U . See also 25.48 for differences between canonical and induced generating systems.

gap> d8 := MergedCgs(s4, [a*c, c]);
Subgroup(s4, [a, c, d])
gap> MergedCgs(s4, [a*b*c*d, d8]);
s4
gap> v4 := MergedCgs(d8, [c*d, c]);
Subgroup(s4, [c, d])

25.56 MergedIgs

MergedIgs(U , S, gens, normalize)

Let U and S be ag groups with a common parent group G such that S is a subgroup of U .
Let gens be a list of elements of U . Then MergedIgs returns the subgroup K of G generated
by S and gens.

As gens contains only elements of U , the subgroup K is not only a subgroup of G but also
of U . Its parent group is nevertheless G and MergedIgs computes a induced generating
system of S with respect to G.

If normalize is true, a canonical generating system for K is computed and bound to K.cgs.
If normalize is false only an induced generating system is computed and bound to K.igs
or K.cgs. If no subgroup S is known, rec() can be given instead.

Note that U must be an ag group which contains S and gens.

25.57 Factor Groups of Ag Groups

It is possible to deal with factor groups of ag groups in three different ways. If an ag group
G and a normal subgroup N of G is given, you can construct a new polycyclic presentation
for F = G/N using FactorGroup. You can apply all functions for ag groups to that new
parent group F and even switch between G and F using the homomorphisms returned by
NaturalHomomorphism. See 7.33 for more information on that kind of factor groups.

But if you are only interested in an easy way to test a property or an easy way to calculate
a subgroup of a factor group, the first approach might be too slow, as it involves the con-
struction of a new polycyclic presentation for the factor group together with the creation of
a new collector for that factor group. In that case you can use CollectorlessFactorGroup
in order to construct a new ag group without initializing a new collector but using records
faking ag words instead. But now multiplication is still done in G and the words must be
canonicalized with respect to N , so that multiplication in this group is rather slow. How-
ever if you for instance want to check if a chief factor, which is not part of the AG series,
is central this may be faster then constructing a new collector. But generally FactorGroup
should be used.

The third possibility works only for Exponents (see 25.73) and SiftedAgWord (see 24.12).
If you want to compute the action of G on a factor M/N then you can pass M/N as factor
group argument using M mod N or FactorArg (see 25.60).

552 CHAPTER 25. FINITE POLYCYCLIC GROUPS

25.58 FactorGroup for AgGroups

AgGroupOps.FactorGroup(U , N)

Let N and U be ag groups with a common parent group, such that N is a normal subgroup
of U . Let H be the factor group U /N . FactorGroup returns the finite polycyclic group H
as new parent group.

If the ag group U is not a parent group or if N is not an element of the AG series of U
(see 25.70), then FactorGroup constructs a new polycyclic presentation and collector for the
factor group using both FpGroup (see 25.23) and AgGroupFpGroup (see 25.27). Otherwise
FactorGroup copies the old collector of U and cuts of the tails which lie in N .

Note that N must be a normal subgroup of U . You should keep in mind, that although the
new generators and the old ones may have the same names, they cannot be multiplitied as
they are elements of different groups. The only way to transfer information back and forth
is to use the homomorphisms returned by NaturalHomomorphism (see 7.33).

gap> c2 := Subgroup(s4, [d]);
Subgroup(s4, [d])
gap> d8 := Subgroup(s4, [a, c, d]);
Subgroup(s4, [a, c, d])
gap> v4 := FactorGroup(d8, c2);
Group(g1, g2)
gap> v4.2 ^ v4.1;
g2
gap> d8 := Subgroup(s4, [a, c, d]);
Subgroup(s4, [a, c, d])
gap> d8.2^d8.1;
c*d

25.59 CollectorlessFactorGroup

CollectorlessFactorgroup(G, N)

CollectorlessFactorgroup constructs the factorgroup F = G/N without initializing a
new collector. The elements of F are records faking ag words.

Each element f of F contains the following components.

representative
a canonical representative d in G for f .

isFactorGroupElement contains true.

info
a record containing information about the factor group.

operations
the operations record FactorGroupAgWordsOps.

25.60 FactorArg

FactorArg(U , N)

25.61. SUBGROUPS AND PROPERTIES OF AG GROUPS 553

Let N be a normal subgroup of an ag group U . Then FactorArg returns a record with the
following components with can be used as argument for Exponents.

isFactorArg
is true.

factorNum
contains U .

factorDen
contains N .

identity
contains the identity of U .

generators
contains a list of those induced generators ui of U of depth di such that no induced
generator in N has depth di.

operations
contains the operations record FactorArgOps.

Note that FactorArg is bound to AgGroupOps.mod.

gap> d8 := Subgroup(s4, [a, c, d]);
Subgroup(s4, [a, c, d])
gap> c2 := Subgroup(s4, [d]);
Subgroup(s4, [d])
gap> M := d8 mod c2;;
gap> d8.1 * d8.2 * d8.3;
a*c*d
gap> Exponents(M, last);
[1, 1]
gap> d8 := AgSubgroup(s4, [a*c, c, d], false);
Subgroup(s4, [a*c, c, d])
gap> M := d8 mod c2;;
gap> Exponents(M, a*c*d);
[1, 0]

25.61 Subgroups and Properties of Ag Groups

The subgroup functions compute subgroups or series of subgroups from given ag groups,
e.g. PRump (see 25.64) or ElementaryAbelianSeries (see 7.39). They return group records
described in 7.117 and 25.4 for the computed subgroups.

All the following functions only work for ag groups. Subgroup functions which work for
various types of groups are described in 7.14. Properties and property tests which work for
various types of groups are described in 7.45.

25.62 CompositionSubgroup

CompositionSubgroup(G, i)

CompositionSubgroup returns the i .th subgroup of the AG series of an ag group G .

554 CHAPTER 25. FINITE POLYCYCLIC GROUPS

Let (g1, ..., gn) be an induced generating system of G with respect to the parent group of
G . Then the i .th composition subgroup S of the AG series is generated by (gi, ..., gn).

gap> CompositionSubgroup(s4, 2);
Subgroup(s4, [b, c, d])
gap> CompositionSubgroup(s4, 4);
Subgroup(s4, [d])
gap> CompositionSubgroup(s4, 5);
Subgroup(s4, [])

25.63 HallSubgroup

HallSubgroup(G, n)
HallSubgroup(G, L)

Let G be an ag group. Then HallSubgroup returns a π-Hall-subgroup of G for the set π of
all prime divisors of the integer n or the join π of all prime divisors of the integers of L.

The Hall-subgroup is constructed using Glasby’s algorithm (see [Gla87]), which descends
along an elementary abelian series for G and constructs complements in the coprime case
(see 25.91). If no such series is known for G the function uses ElementaryAbelianSeries
(see 7.39) in order to construct such a series for G .

gap> HallSubgroup(s4, 2);
Subgroup(s4, [a, c, d])
gap> HallSubgroup(s4, [3]);
Subgroup(s4, [b])
gap> z5 := CyclicGroup(AgWords, 5);
Group(c5)
gap> DirectProduct(s4, z5);
Group(a1, a2, a3, a4, b)
gap> HallSubgroup(last, [5, 3]);
Subgroup(Group(a1, a2, a3, a4, b), [a2, b])

25.64 PRump

PRump(G, p)

PRump returns the p-rump of an ag group G for a prime p.

The p-rump of a group G is the normal closure under G of the subgroup generated by the
commutators and p.th powers of the generators of G .

gap> PRump(s4, 2);
Subgroup(s4, [b, c, d])
gap> PRump(s4, 3);
s4

25.65 RefinedSubnormalSeries

RefinedSubnormalSeries(L)

25.66. SYLOWCOMPLEMENTS 555

Let L be a list of ag groups G1, ..., Gn, such that Gi+1 is a normal subgroup of Gi. Then
the function computes a composition series H1 = G1, ...,Hm = Gn which refines the given
subnormal series L and has cyclic factors of prime order (see also 7.43).

gap> v4 := Subgroup(s4, [c, d]);
Subgroup(s4, [c, d])
gap> T := TrivialSubgroup(s4);
Subgroup(s4, [])
gap> RefinedSubnormalSeries([s4, v4, T]);
[s4, Subgroup(s4, [b, c, d]), Subgroup(s4, [c, d]),
Subgroup(s4, [d]), Subgroup(s4, [])]

25.66 SylowComplements

SylowComplements(U)

SylowComplements returns a Sylow complement system of U . This system S is represented
as a record with at least the components S.primes and S.sylowComplements, additionally
there may be a component S.sylowSubgroups (see 25.67).

primes
A list of all prime divisors of the group order of U .

sylowComplements
contains a list of Sylow complements for all primes in S.primes, so that if the i.th
element of S.primes is p, then the i.th element of sylowComplements is a Sylow-p-
complement of U .

sylowSubgroups
contains a list of Sylow subgroups for all primes in S.primes, such that if the i.th
element of S.primes is p, then the i.th element of S.sylowSubgroups is a Sylow-p-
subgroup of U .

SylowComplements uses HallSubgroup (see 25.63) in order to compute the various Sylow
complements of U , if no Sylow system is known for U . If a Sylow system {S1, ..., Sn} is
known, SylowComplements computes the various Hall subgroups Hi using the fact that Hi

is the product of all Sj except Si.

SylowComplements sets and checks U.sylowSystem.

gap> SylowComplements(s4);
rec(
primes := [2, 3],
sylowComplements :=
[Subgroup(s4, [b]), Subgroup(s4, [a, c, d])])

25.67 SylowSystem

SylowSystem(U)

SylowSystem returns a Sylow system {S1, ..., Sn} of an ag group U . The system S is repre-
sented as a record with at least the components S.primes and S.sylowSubgroups, addi-
tionally there may be a component S.sylowComplements, see 25.66 for information about
this addtional component.

556 CHAPTER 25. FINITE POLYCYCLIC GROUPS

primes
A list of all prime divisors of the group order of U .

sylowComplements
contains a list of Sylow complements for all primes in S.primes, so that if the i.th
element of S.primes is p, then the i.th element of sylowComplements is a Sylow-p-
complement of U .

sylowSubgroups
contains a list of Sylow subgroups for all primes in S.primes, such that if the i.th
element of S.primes is p, then the i.th element of S.sylowSubgroups is a Sylow-p-
subgroup of U .

A Sylow system of a group U is a system of Sylow subgroups Si for each prime divisor of
the group order of U such that Si ∗ Sj = Sj ∗ Si is fulfilled for each pair i, j.

SylowSystem uses SylowComplements (see 25.67) in order to compute the various Sylow
complements Hi of U . Then the Sylow system is constructed using the fact that the inter-
section Si of all Sylow complements Hj except Hi is a Sylow subgroup and that all these
subgroups Si form a Sylow system of U . See [Gla87].

SylowSystem sets and checks S.sylowSystem.

gap> z5 := CyclicGroup(AgWords, 5);
Group(c5)
gap> D := DirectProduct(z5, s4);
Group(a, b1, b2, b3, b4)
gap> D.name := "z5Xs4";;
gap> SylowSystem(D);
rec(
primes := [2, 3, 5],
sylowComplements :=
[Subgroup(z5Xs4, [a, b2]), Subgroup(z5Xs4, [a, b1, b3, b4

]), Subgroup(z5Xs4, [b1, b2, b3, b4])],
sylowSubgroups :=
[Subgroup(z5Xs4, [b1, b3, b4]), Subgroup(z5Xs4, [b2]),

Subgroup(z5Xs4, [a])])

25.68 SystemNormalizer

SystemNormalizer(G)

SystemNormalizer returns the system normalizer of a Sylow system of the group G .

The system normalizer of a Sylow system is the intersection of all normalizers of subgroups
in the Sylow system in G.

gap> SystemNormalizer(s4);
Subgroup(s4, [a])
gap> SystemNormalizer(D);
Subgroup(z5Xs4, [a, b1])

25.69. MINIMALGENERATINGSET 557

25.69 MinimalGeneratingSet

MinimalGeneratingSet(G)

Let G be an ag group. Then MinimalGeneratingSet returns a subset L of G of minimal
cardinality with the property that L generates G .

gap> l := MinimalGeneratingSet(s4);
[b, a*c*d]
gap> s4 = Subgroup(s4, l);
true

25.70 IsElementAgSeries

IsElementAgSeries(U)

IsElementAgSeries returns true if the ag group U is part of the AG series of the parent
group G of U and false otherwise.

25.71 IsPNilpotent

IsPNilpotent(U , p)

IsPNilpotent returns true, if the ag group U is p-nilpotent for the prime p, and false
otherwise.

IsPNilpotent uses Glasby’s p-nilpotency test (see [Gla87]).

gap> IsPNilpotent(s4, 2);
false
gap> s3 := Subgroup(s4, [a, b]);
Subgroup(s4, [a, b])
gap> IsPNilpotent(s3, 2);
true
gap> IsPNilpotent(s3, 3);
false

25.72 NumberConjugacyClasses

NumberConjugacyClasses(H)

This functions computes the number of conjugacy classes of elements of a group H .

The function uses an algorithm that steps down an elementary abelian series of the par-
ent group of H and computes the number of conjugacy classes using the same method as
AgGroupOps.ConjugacyClasses does, up to the last factor group. In the last step the
Cauchy-Frobenius-Burnside lemma is used.

This algorithm is especially designed to supply at least the number of conjugacy classes of
H , whenever ConjugacyClasses fails because of storage reasons. So one would rather use
this function if the last normal subgroup of the elementary abelian series is too big to be
dealt with ConjugacyClasses.

NumberConjugacyClasses(U , H)

558 CHAPTER 25. FINITE POLYCYCLIC GROUPS

This version of the call to NumberConjugacyClasses computes the number of conjugacy
classes of H under the operation of U . Thus for the operation to be well defined, U must
be a subgroup of the normalizer of H in their common parent group.

gap> a4 := DerivedSubgroup(s4);;
gap> NumberConjugacyClasses(s4);
5
gap> NumberConjugacyClasses(a4, s4);
6
gap> NumberConjugacyClasses(a4);
4
gap> NumberConjugacyClasses(s4, a4);
3

25.73 Exponents

Exponents(U , u)
Exponents(U , u, F)

Exponents returns the exponent vector of an ag word u with respect to an induced gen-
erating system of U as list of integers if no field F is given. Otherwise the product of the
exponent vector and F.one is returned. Note that u must be an element of U .

Let (u1, ..., ur) be an induced generating system of U . Then u can be uniquely written as
uν1

1 ∗ ... ∗ uνrr for integer νi. The exponent vector of u is [ν1, ..., νr].

Exponents allows factor group arguments. See 25.57 for details.

Note that Exponents adds a record component U .shiftInfo. This entry is used by sub-
sequent calls with the same ag group in order to speed up computation. If you ever change
the component U .igs by hand, not using Normalize, you must unbind the component
U .shiftInfo, otherwise all following results of Exponents will be corrupted. In case U
is a parent group you can use ExponentsAgWord (see 24.15), which is slightly faster but
requires a parent group U .

Note that you you may get a weird error message if u is no element of U . So it is strictly
required that u is an element of U .

Note that Exponents uses ExponentsAgWord but not ExponentAgWord, so for records that
mimic agwords Exponents may be used in ExponentAgWord.

gap> v4 := AgSubgroup(s4, [c, d], true);
Subgroup(s4, [c, d])
gap> Exponents(v4, c * d);
[1, 1]
gap> Exponents(s4 mod v4, a * b^2 * c * d);
[1, 2]

25.74 FactorsAgGroup

FactorsAgGroup(U)

FactorsAgGroup returns the factorization of the group order of an ag group U as list of
positive integers.

25.75. MAXIMALELEMENT 559

Note that it is faster to use FactorsAgGroup than to use Factors and Size.

gap> v4 := Subgroup(s4, [c, d]);;
gap> FactorsAgGroup(s4);
[2, 2, 2, 3]
gap> Factors(Size(s4));
[2, 2, 2, 3]

25.75 MaximalElement

MaximalElement(U)

MaximalElement returns the ag word in U with maximal exponent vector.

Let G be the parent group of U with canonical generating system (g1, ..., gn) and let
(u1, ..., um) be the canonical generating system of U , di is the depth of ui with respect
to G. Then an ag word u = gν1

1 ∗ ... ∗ gνnn ∈ U is returned such that
∑m
i=1 νdi is maximal.

25.76 Orbitalgorithms of Ag Groups

The functions Orbit (see 8.14) and Stabilizer (see 8.22 and 25.17) compute the orbit and
stabilizer of an ag group acting on a domain.

AgOrbitStabilizer (see 25.78) computes the orbit and stabilizer in case that a compatible
homomorphism into a group H exists, such that the action of H on the domain is more
efficient than the operation of the ag group; for example, if an ag group acts linearly on a
vector space, the operation can by described using matrices.

The functions AffineOperation (see 25.77) and LinearOperation (see 25.79) compute
matrix groups describing the affine or linear action of an ag group on a vector space.

25.77 AffineOperation

AffineOperation(U , V , ϕ, τ)

Let U be an ag group with an induced generating system u1, ..., um and let V be a vector
space with base (o1, ..., on). Further U should act affinely on V . So if v is an element of V
and u is an element of U , then vu = vu + xu, such that the function which maps v to vu is
linear and xu is an element of V . These actions are given by the functions ϕ and τ as follows.
ϕ(v, u) must return the representation of vu with respect to the base (o1, ..., on) as sequence
of finite field elements. τ(u) must return the representation of xu in the base (o1, ..., on) as
sequence of finite field elements. If these conditions are fulfilled, AffineOperation returns
a matrix group M describing this action.

Note that M.images contains a list of matrices mi, such that mi describes the action of ui
and mi is of the form (

Lui 0
xui 1

)
,

where Lu is the matrix which describes the linear operation v ∈ V 7→ vu.

gap> v4 := AgSubgroup(s4, [c, d], true);

560 CHAPTER 25. FINITE POLYCYCLIC GROUPS

Subgroup(s4, [c, d])
gap> v4.field := GF(2);
GF(2)
gap> phi := function(v, g)
> return Exponents(v4, v^g, v4.field);
> end;
function (v, g) ... end
gap> tau := g -> Exponents(v4, v4.identity, v4.field);
function (g) ... end
gap> V := rec(base := [c, d], isDomain := true);
rec(
base := [c, d],
isDomain := true)

gap> AffineOperation(s4, V, phi, tau);
Group([[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0]],

[[0*Z(2), Z(2)^0, 0*Z(2)], [Z(2)^0, Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0]])

25.78 AgOrbitStabilizer

AgOrbitStabilizer(U , gens, ω)
AgOrbitStabilizer(U , gens, ω, f)

Let U be an ag group acting on a set Ω. Let ω be an element of Ω. Then AgOrbitStabilizer
returns the point-stabilizer of ω in the group U and the orbit of ω under this group. The
stabilizer and orbit are returned as record R with components R.stabilizer and R.orbit.
R.stabilizer is the point-stabilizer of ω. R.orbit is the list of the elements of ωU .

Let (u1, ..., un) be an induced generating system of U and gens be a list h1, ..., hn of gen-
erators of a group H, such that the map ui 7→ hi extends to an homomorphism α from U
to H, which is compatible with the action of G and H on Ω, such that g ∈ StabU (ω) if
and only if gα ∈ StabH(ω). If f is missing OnRight is assumed, a typical application of this
function being the linear action of U on an vector space. If f is OnPoints then ^ is used as
operation of H on Ω. Otherwise f must be a function, which takes two arguments, the first
one must be a point p of Ω and the second an element h of H and which returns ph.

gap> AgOrbitStabilizer(s4, [a,b,c,d], d, OnPoints);
rec(
stabilizer := Subgroup(s4, [a, c, d]),
orbit := [d, c*d, c])

25.79 LinearOperation

LinearOperation(U , V , ϕ)

Let U be an ag group with an induced generating system u1, ..., um and V a vector space
with base (o1, ..., on). U must act linearly on V . Let v be an element of V , u be an element
of U . The action of U on V should be given as follows. If vu = a1 ∗ o1 + ...+ an ∗ on, then
the function ϕ(v, u) must return (a1, ..., an) as list of finite field elements. If these condition
are fulfilled, LinearOperation returns a matrix group M describing this action.

25.80. INTERSECTIONS OF AG GROUPS 561

Note that M.images is bound to a list of matrices mi, such that mi describes the action
of ui.

gap> v4 := AgSubgroup(s4, [c, d], true);
Subgroup(s4, [c, d])
gap> v4.field := GF(2);
GF(2)
gap> V := rec(base := [c, d], isDomain := true);
rec(
base := [c, d],
isDomain := true)

gap> phi := function(v, g)
> return Exponents(v4, v^g, v4.field);
> end;
function (v, g) ... end
gap> LinearOperation(s4, V, phi);
Group([[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]],
[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]])

25.80 Intersections of Ag Groups

There are two kind of intersection algorithms. Whenever the product of two subgroups
is a subgroup, a generalized Zassenhaus algorithm can be used in order to compute the
intersection and sum (see [GS90]). In case one subgroup is a normalized by the other, an
element of the sum can easyly be decomposed. The functions IntersectionSumAgGroup (see
25.82), NormalIntersection (see 7.26), SumFactorizationFunctionAgGroup (see 25.84)
and SumAgGroup (see 25.83) should be used in such cases.

These functions are faster than the general function Intersection (see 4.12 and 25.7),
which can compute the intersection of two subgroups even if their product is no subgroup.

25.81 ExtendedIntersectionSumAgGroup

ExtendedIntersectionSumAgGroup(V , W)

Let V and W be ag groups with a common parent group, such that W ≤ N(V). Then
V ∗W is a subgroup and ExtendedIntersectionSumAgGroup returns the intersection and
the sum of V and W . The information about these groups is returned as a record with the
components intersection, sum and the additional information leftSide and rightSide.

intersection
is bound to the intersection W ∩V .

sum
is bound to the sum V ∗W .

leftSide
is lists of ag words, see below.

rightSide
is lists of agwords, see below.

The function uses the Zassenhaus sum-intersection algorithm. Let V be generated by
v1, ..., va, W be generated by w1, ..., wb. Then the matrix

562 CHAPTER 25. FINITE POLYCYCLIC GROUPS

v1 1
...

...
va 1
w1 w1

...
...

wb wb

is echelonized by using the sifting algorithm to produce the following matrix

l1 k1

...
...

lc kc
1 kc+1

...
...

1 ka+b

.

Then l1, ..., lc is a generating sequence for the sum, while the sequence kc+1, ..., ka+b is is
a generating sequence for the intersection. leftSide is bound to a list, such that the i.th
list element is lj , if there exists a j, such that lj has depth i, and IdAgWord otherwise.
rightSide is bound to a list, such that the i.th list element is kj , if there exists a j less
than c+ 1, such that kj has depth i, and IdAgWord otherwise. See also 25.84.

Note that this functions returns an incorrect result if W 6≤ N(V).

gap> v4_1 := AgSubgroup(s4, [a*b, c], true);
Subgroup(s4, [a*b, c])
gap> v4_2 := AgSubgroup(s4, [c, d], true);
Subgroup(s4, [c, d])
gap> ExtendedIntersectionSumAgGroup(v4_1, v4_2);
rec(
leftSide := [a*b, IdAgWord, c, d],
rightSide := [IdAgWord, IdAgWord, c, d],
sum := Subgroup(s4, [a*b, c, d]),
intersection := Subgroup(s4, [c]))

25.82 IntersectionSumAgGroup

IntersectionSumAgGroup(V , W)

Let V and W be ag groups with a common parent group, such that W ≤ N(V). Then
V ∗W is a subgroup and IntersectionSumAgGroup returns the intersection and the sum
of V and W as record R with components R.intersection and R.sum.

The function uses the Zassenhaus sum-intersection algorithm. See also 7.26 and 25.83. For
more information about the Zassenhaus algorithm see 25.81 and 25.84.

Note that this functions returns an incorrect result if W 6≤ N(V).

25.83. SUMAGGROUP 563

gap> d8_1 := AgSubgroup(s4, [a, c, d], true);
Subgroup(s4, [a, c, d])
gap> d8_2 := AgSubgroup(s4, [a*b, c, d], true);
Subgroup(s4, [a*b, c, d])
gap> IntersectionSumAgGroup(d8_1, d8_2);
rec(
sum := Group(a*b, b^2, c, d),
intersection := Subgroup(s4, [c, d]))

25.83 SumAgGroup

SumAgGroup(V , W)

Let V and W be ag groups with a common parent group, such that W ≤ N(V). Then
V ∗W is a subgroup and SumAgGroup returns V ∗W .

The function uses the Zassenhaus sum-intersection algorithm (see [GS90]).

Note that this functions returns an incorrect result if W 6≤ N(V).

gap> d8_1 := Subgroup(s4, [a, c, d]);
Subgroup(s4, [a, c, d])
gap> d8_2 := Subgroup(s4, [a*b, c, d]);
Subgroup(s4, [a*b, c, d])
gap> SumAgGroup(d8_1, d8_2);
Group(a*b, b^2, c, d)

25.84 SumFactorizationFunctionAgGroup

SumFactorizationFunctionAgGroup(U , N)

Let U and N be ag group with a common parent group such that U normalizes N . Then
the function returns a record R with the following components.

intersection
is bound to the intersection U ∩N .

sum
is bound to the sum U ∗N .

factorization
is bound to function, which takes an element g of U ∗N and returns the factorization
of g in an element u of U and n of N , such that g = u∗n. This factorization is
returned as record r with components r.u and r.n, where r.u is bound to the ag
word u, r.n to the ag word n.

Note that N must be a normal subgroup of U ∗N , it is not sufficient that U ∗N = N ∗U .

gap> v4 := AgSubgroup(s4, [a*b, c], true);
Subgroup(s4, [a*b, c])
gap> a4 := AgSubgroup(s4, [b, c, d], true);
Subgroup(s4, [b, c, d])
gap> sd := SumFactorizationFunctionAgGroup;
function (U, N) ... end

564 CHAPTER 25. FINITE POLYCYCLIC GROUPS

gap> sd := SumFactorizationFunctionAgGroup(v4, a4);
rec(
sum := Group(a*b, b, c, d),
intersection := Subgroup(s4, [c]),
factorization := function (un) ... end)

gap> sd.factorization(a*b*c*d);
rec(
u := a*b*c,
n := d)

gap> sd.factorization(a*b^2*c*d);
rec(
u := a*b*c,
n := b*c)

25.85 One Cohomology Group

Let G be a finite group, M a normal p-elementary abelian subgroup of G. Then the group
of one coboundaries B1(G/M,M) is defined as

B1(G/M,M) = {γ : G/M →M ; ∃m ∈M∀g ∈ G : γ(gM) = (m−1)g ·m}

and is a Zp-vector space. The group of cocycles Z1(G/M,M) is defined as

Z1(G/M,M) = {γ : G/M →M ; ∀g1, g2 ∈ G : γ(g1M · g2M) = γ(g1M)g2 · γ(g2M)}

and is also a Zp-vector space.

Let α be the isomorphism of M into a row vector spaceW and (g1, ..., gl) representatives for
a generating set of G/M . Then there exists a monomorphism β of Z1(G/M,M) in the l-fold
direct sum of W, such that β(γ) = (α(γ(g1M)), ..., α(γ(glM))) for every γ ∈ Z1(G/M,M).

OneCoboundaries (see 25.86) and OneCocycles (see 25.87) compute the group of one
coboundaries and one cocyles given a ag group G and a elementary abelian normal sub-
group M . If Info1Coh1, Info1Coh2 and Info1Coh3 are set to Print information about the
computation is given.

25.86 OneCoboundaries

OneCoboundaries(G, M)

Let M be a normal p-elementary abelian subgroup of G . Then OneCoboundaries computes
the vector space V = β(B1(G/M ,M)), which is isomorphic to the group of one cobound-
aries B1(G,M) as described in 25.85. The functions returns a record C with the following
components.

oneCoboundaries
contains the vector space V.

generators
contains representatives (g1, ..., gl) for the canonical generating system of G/M

25.87. ONECOCYCLES 565

cocycleToList
contains a functions which takes an element v of V as argument and returns a list
[n1, ..., nl], where ni is an element of M , such that ni = (β−1(v))(giM).

listToCocycles
is the inverse of cocycleToList.

OneCoboundaries(G, α, M)

In that form OneCoboundaries computes the one coboundaries in the semidirect product
of G and M where G acts on M using α (see 7.100).

gap> s4xc2 := DirectProduct(s4, CyclicGroup(AgWords, 2));
Group(a1, a2, a3, a4, b)
gap> m := CompositionSubgroup(s4xc2, 3);
Subgroup(Group(a1, a2, a3, a4, b), [a3, a4, b])
gap> oc := OneCoboundaries(s4xc2, m);
rec(
oneCoboundaries := RowSpace(GF(2),
[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]]),

generators := [a1, a2],
cocycleToList := function (c) ... end,
listToCocycle := function (L) ... end)

gap> v := Base(oc.oneCoboundaries);
[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]]

gap> oc.cocycleToList(v[1]);
[a4, a4]
gap> oc.cocycleToList(v[2]);
[IdAgWord, a3]
gap> oc.cocycleToList(v[1]+v[2]);
[a4, a3*a4]

25.87 OneCocycles

OneCocycles(G, M)

Let M be a normal p-elementary abelian subgroup of G . Then OneCocycles computes the
vector space V = β(Z1(G/M ,M)), which is isomorphic to the group of one cocyles Z1(G,M)
as described in 25.85. The function returns a record C with the following components.

oneCoboundaries
contains the vector space isomorphic to B1(G,M).

oneCocycles
contains the vector space V.

generators
contains representatives (g1, ..., gl) for the canonical generating system of G/M

isSplitExtension
If G splits over M , C.isSplitExtension is true, otherwise it is false. In case of

566 CHAPTER 25. FINITE POLYCYCLIC GROUPS

a split extension three more components C.complement, C.cocycleToComplement
and C.complementToCycles are returned.

complement
contains a subgroup of G which is a complement of M .

cocycleToList
contains a functions which takes an element v of V as argument and returns a list
[n1, ..., nl], where ni is an element of M , such that ni = (β−1(v))(giM).

listToCocycles
is the inverse of cocycleToList.

cocycleToComplement
contains a function which takes an element of V as argument and returns a comple-
ment of M .

complementToCocycle
is its inverse. This is possible, because in a split extension there is a one to one
correspondence between the elements of V and the complements of M .

OneCocycles(G, α, M)

In that form OneCocycles computes the one cocycles in the semidirect product of G and M
where G acts on M using α (see 7.100). In that case C only contains C.oneCoboundaries,
C.oneCocycles, C.generators, C.cocycleToList and C.listToCocycle.

gap> s4xc2 := DirectProduct(s4, CyclicGroup(AgWords, 2));;
gap> s4xc2.name := "s4xc2";;
gap> m := CompositionSubgroup(s4xc2, 3);
Subgroup(s4xc2, [a3, a4, b])
gap> oc := OneCocycles(s4xc2, m);;
gap> oc.oneCocycles;
RowSpace(GF(2), [[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]])

gap> v := Base(oc.oneCocycles);
[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]]

gap> oc.cocycleToList(v[1]);
[a4, a4]
gap> oc.cocycleToList(v[2]);
[b, IdAgWord]
gap> oc.cocycleToList(v[2]);
[b, IdAgWord]
gap> oc.cocycleToList(v[3]);
[IdAgWord, a3]
gap> Igs(oc.complement);
[a1, a2]
gap> Igs(oc.cocycleToComplement(v[1]+v[2]+v[3]));
[a1*a4*b, a2*a3*a4]
gap> z4 := CyclicGroup(AgWords, 4);

25.88. COMPLEMENTS 567

Group(c4_1, c4_2)
gap> m := CompositionSubgroup(z4, 2);
Subgroup(Group(c4_1, c4_2), [c4_2])
gap> OneCocycles(z4, m);
rec(
oneCoboundaries := RowSpace(GF(2), [[0*Z(2)]]),
oneCocycles := RowSpace(GF(2), [[Z(2)^0]]),
generators := [c4_1],
isSplitExtension := false)

25.88 Complements

Complement (see 25.89) tries to find one complement to a given normal subgroup, while
Complementclasses (see 25.90) finds all complements and returns representatives for the
conjugacy classes of complements in a given ag group.

If InfoAgCo1 and InfoAgCo2 are set to Print information about the computation is given.

25.89 Complement

Complement(U , N)

Let N and U be ag group such that N is a normal subgroup of U . Complement returns a
complement of N in U if the U splits over N . Otherwise false is returned.

Complement descends along an elementary abelian series of U containing N . See [CNW90]
for details.

gap> v4 := Subgroup(s4, [c, d]);
Subgroup(s4, [c, d])
gap> Complement(s4, v4);
Subgroup(s4, [a, b])
gap> z4 := CyclicGroup(AgWords, 4);
Group(c4_1, c4_2)
gap> z2 := Subgroup(z4, [z4.2]);
Subgroup(Group(c4_1, c4_2), [c4_2])
gap> Complement(z4, z2);
false
gap> m9 := ElementaryAbelianGroup(AgWords, 9);
Group(m9_1, m9_2)
gap> m3 := Subgroup(m9, [m9.2]);
Subgroup(Group(m9_1, m9_2), [m9_2])
gap> Complement(m9, m3);
Subgroup(Group(m9_1, m9_2), [m9_1])

25.90 Complementclasses

Complementclasses(U , N)

Let U and N be ag groups such that N is a normal subgroup of U . Complementclasses
returns a list of representatives for the conjugacy classes of complements of N in U .

568 CHAPTER 25. FINITE POLYCYCLIC GROUPS

Note that the empty list is returned if U does not split over N .

Complementclasses descends along an elementary abelian series of U containing N . See
[CNW90] for details.

gap> v4 := Subgroup(s4, [c, d]);
Subgroup(s4, [c, d])
gap> Complementclasses(s4, v4);
[Subgroup(s4, [a, b])]
gap> z4 := CyclicGroup(AgWords, 4);
Group(c4_1, c4_2)
gap> z2 := Subgroup(z4, [z4.2]);
Subgroup(Group(c4_1, c4_2), [c4_2])
gap> Complementclasses(z4, z2);
[]
gap> m9 := ElementaryAbelianGroup(AgWords, 9);
Group(m9_1, m9_2)
gap> m3 := Subgroup(m9, [m9.2]);
Subgroup(Group(m9_1, m9_2), [m9_2])
gap> Complementclasses(m9, m3);
[Subgroup(Group(m9_1, m9_2), [m9_1]),

Subgroup(Group(m9_1, m9_2), [m9_1*m9_2]),
Subgroup(Group(m9_1, m9_2), [m9_1*m9_2^2])]

25.91 CoprimeComplement

CoprimeComplement(U , N)

CoprimeComplement returns a complement of a normal p-elementary abelian Hall subgroup
N of U .

Note that, as N is a normal Hall-subgroup of U , the theorem of Schur guarantees the
existence of a complement.

gap> s4xc25 := DirectProduct(s4, CyclicGroup(AgWords, 25));
Group(a1, a2, a3, a4, b1, b2)
gap> s4xc25.name := "s4xc25";;
gap> a4xc25 := Subgroup(s4xc25,
> Sublist(s4xc25.generators, [2..5]));
Subgroup(s4xc25, [a2, a3, a4, b1])
gap> N := Subgroup(s4xc25, [s4xc25.3, s4xc25.4]);
Subgroup(s4xc25, [a3, a4])
gap> CoprimeComplement(a4xc25, N);
Subgroup(s4xc25, [a2, b1, b2])

25.92 ComplementConjugatingAgWord

ComplementConjugatingAgWord(N , U , V)
ComplementConjugatingAgWord(N , U , V , K)

Let N , U , V and K be ag groups with a common parent group G, such that N is p-
elementary abelian and normal in G, U ∗N = V ∗N , U ∩N = V ∩N = {1}, K is a normal

25.93. HALLCONJUGATINGWORDAGGROUP 569

subgroup of U N contained in U ∩ V and U is conjugate to V under an element n of N .
Then this function returns an element n of N such that U n = V as ag word. If K is not
given, the trivial subgroup is assumed.

In a typical application N is a normal p-elementary abelian subgroup and U , V and K are
subgroups such that U /K is a q-group with q 6= p.

Note that this function does not check any of the above conditions. So the result may either
be false or an ag word with does not conjugate U into V , if U and V are not conjugate.

gap> c3a := Subgroup(s4, [b]);
Subgroup(s4, [b])
gap> c3b := Subgroup(s4, [b*c]);
Subgroup(s4, [b*c])
gap> v4 := Subgroup(s4, [c, d]);
Subgroup(s4, [c, d])
gap> ComplementConjugatingAgWord(v4, c3a, c3b);
d
gap> c3a ^ d;
Subgroup(s4, [b*c])

25.93 HallConjugatingWordAgGroup

HallConjugatingAgWord(S, H , K)

Let H , K and S be ag group with a common parent group such that H and K are Hall-
subgroups of S , then HallConjugatingAgWord returns an element g of S as ag word, such
that H g = K .

gap> d8 := HallSubgroup(s4, 2);
Subgroup(s4, [a, c, d])
gap> d8 ^ b;
Subgroup(s4, [a*b^2, c*d, d])
gap> HallConjugatingAgWord(s4, d8, d8 ^ b);
b
gap> HallConjugatingAgWord(s4, d8 ^ b, d8);
b^2

25.94 Example, normal closure

We will now show you how to write a GAP function, which computes the normal closure of
an ag group. Such a function already exists in the library (see 7.25), but this should be an
example on how to put functions together. You should at least be familiar with the basic
definitions and functions for ag groups, so please refer to 24, 25 and 25.1 for the definitions
of finite polycyclic groups and its subgroups, see 25.48 for information about calculating
induced or canonical generating system for subgroups.

Let U and S be subgroups of a group G. Then the normal closure N of U under S is the
smallest subgroup in G, which contains U and is invariant under conjugation with elements
of S. It is clear that N is invariant under conjugating with generators of S if and only if it
is invariant under conjugating with all elements of S.

570 CHAPTER 25. FINITE POLYCYCLIC GROUPS

So in order to compute the normal closure of U , we can start with N := U , conjugate N
with a generator s of S and set N to the subgroup generated by N and Ns. Then we take
the next generator of S. The whole process is repeated until N is stable. A GAP function
doing this looks like

NormalClosure := function(S, U)

local G, # the common supergroup of S and U
N, # closure computed so far
M, # next closure under generators of S
s; # one generator of S

G := Parent(S, U);
M := U;
repeat

N := M;
for s in Igs(S) do

M := MergedCgs(G, [M ^ s, M]);
od;

until M = N;
return N;

end;

Let S = G be the wreath product of the symmetric group on four points with itself using
the natural permutation representation. Let U be a randomly chosen subgroup of order 12.
The above functions needs, say, 100 time units to compute the normal closure of U under
S, which is a subgroup N of index 2 in G.

gap> prms := [(1,2), (1,2,3), (1,3)(2,4), (1,2)(3,4)];
[(1,2), (1,2,3), (1,3)(2,4), (1,2)(3,4)]
gap> f := GroupHomomorphismByImages(s4, Group(prms, ()),
> s4.generators, prms);;
gap> G := WreathProduct(s4, s4, f);
Group(h1, h2, h3, h4, n1_1, n1_2, n1_3, n1_4, n2_1, n2_2, n2_3,
n2_4, n3_1, n3_2, n3_3, n3_4, n4_1, n4_2, n4_3, n4_4)
gap> G.name := "G";;
gap> u := Random(G);
h1*h3*h4*n1_1*n1_3*n1_4*n2_1*n2_2*n2_3*n2_4*n3_2*n3_3*n4_1*n4_3*n4_4
gap> U := MergedCgs(G, [u]);
Subgroup(G,
[h1*h3*n1_2^2*n1_3*n1_4*n2_1*n2_3*n3_1*n3_2*n3_4*n4_1*n4_3,
h4*n1_4*n2_1*n2_4*n3_1*n3_2*n4_2^2*n4_4,
n1_1*n2_1*n3_1*n3_2^2*n3_3*n3_4*n4_1*n4_4])

gap> Size(U);
8

Now we can ask to speed up things. The first observation is that computing a canonical
generating system is usablely a more time consuming task than computing a conjugate
subgroup. So we form a canonical generating system after we have computed all conjugate
subgroups, although now an additional repeat-until loop could be necessary.

25.94. EXAMPLE, NORMAL CLOSURE 571

NormalClosure := function(S, U)
local G, N, M, s, gens;

G := Parent(S, U);
M := U;
repeat

N := M;
gens := [M];
for s in Igs(S) do

Add(gens, M ^ s);
od;
M := MergedCgs(G, gens);

until M = N;
return N;

end;

If we now test this new normal closure function with the above groups, we see that the
running time has decreased to 48 time units. The canonical generating system algorithm is
faster if it knows a large subgroup of the group which should be generated but it does not
gain speed if it knows several of them. A canonical generating system for the conjugated
subgroup M^s is computed, although we only need generators for this subgroup. So we can
rewrite our algorithm.

NormalClosure := function(S, U)

local G, # the common supergroup of S and U
N, # closure computed so far
M, # next closure under generators of S
gensS, # generators of S
gens; # generators of next step

G := Parent(S, U);
M := U;
gens := Igs(S);
repeat

N := M;
gens := Concatenation([M], Concatenation(List(S, s ->

List(Igs(M), m -> m ^ s))));
M := MergedCgs(G, gens);

until M = N;
return N;

end;

Now a canonical generating system is generated only once per repeat-until loop. This reduces
the running time to 33 time units. Let m ∈ M and s ∈ S. Then 〈M,ms〉 = 〈M,m−1ms〉.
So we can substitute m^s by Comm(m, s). If m is invariant under s the new generator
would be 1 instead of m. With this modification the running times drops to 23 time units.
As next step we can try to compute induced generating systems instead of canonical ones.

572 CHAPTER 25. FINITE POLYCYCLIC GROUPS

In that case we cannot compare aggroups by =, but as N is a subgroup M it is sufficient to
compare the composition lengths.

NormalClosure := function(S, U)

local G, # the common supergroup of S and U
N, # closure computed so far
M, # next closure under generators of S
gensS, # generators of S
gens; # generators of next step

G := Parent(S, U);
M := U;
gens := Igs(S);
repeat

N := M;
gens := Concatenation(List(S, s -> List(Igs(M),

m -> Comm(m, s))));
M := MergedIgs(G, N, gens, false);

until Length(Igs(M)) = Length(Igs(M));
Normalize(N);
return N;

end;

But if we try the example above the running time has increased to 31. As the normal
closure has index 2 in G the agwords involved in a canonical generating system are of length
one or two. But agwords of induced generating system may have much large length. So we
have avoided some collections but made the collection process itself much more complicated.
Nevertheless in examples with subgroups of greater index the last function is slightly faster.

Chapter 26

Special Ag Groups

Special ag groups are a subcategory of ag groups (see 25).

Let G be an ag group with PAG system (g1, . . . , gn). Then (g1, . . . , gn) is a special ag
system if it is an ag system with some additional properties, which are described below.

In general a finite polycyclic group has several different ag systems and at least one of this
is a special ag system, but in GAP an ag group is defined by a fixed ag system and according
to this an ag group is called a special ag group if its ag system is a special ag system.

Special ag systems give more information about their corresponding group than arbitrary
ag systems do (see 26.1) and furthermore there are many algorithms, which are much more
efficient for a special ag group than for an arbitrary one. (See 26.7)

The following sections describe the special ag system (see 26.1), their construction in GAP
(see 26.2 and 26.3) and their additional record entries (see 26.4). Then follow two sections
with functions which do only work for special ag groups (see 26.5 and 26.6).

26.1 More about Special Ag Groups

Now the properties of a special ag system are described. First of all the Leedham-Green
series will be introduced.

Let G = G1 > G2 > . . . > Gm > Gm+1 = {1} be the lower nilpotent series of G, i.e., Gi
is the smallest normal subgroup of Gi−1 such that Gi−1/Gi is nilpotent.

To refine this series the lower elementary abelian series of a nilpotent group N will be
constructed. Let N = P1 · . . . ·Pl be the direct product of its Sylow-subgroups such that Ph
is a ph-group and p1 < p2 < . . . < pl holds. Let λj(Ph) be the j-th term of the ph-central
series of Ph and let kh be the length of this series (see 7.42). Define Nj,ph as the subgroup
of N with

Nj,ph = λj+1(P1) · · ·λj+1(Ph−1) · λj(Ph) · · ·λj(Pl).
With k =max{k1, . . . , kl} the series

N = N1,p1 ≥ N1,p2 ≥ . . . ≥ N1,pl ≥ N2,p1 ≥ . . . ≥ Nk,pl = {1}

is obtained. Since the p-central series may have different lengths for different primes, some
subgroups might be equal. The lower elementary abelian series is obtained, if for all pairs

573

574 CHAPTER 26. SPECIAL AG GROUPS

of equal subgroups the one with the lexicographically greater index is removed. This series
is a characteristic central series with maximal elementary abelian factors.

To get the Leedham-Green series of G, each factor of the lower nilpotent series of G is refined
by its lower elementary abelian series. The subgroups of the Leedham-Green series are
denoted by Gi,j,pi,h such that Gi,j,pi,h/Gi+1 = (Gi/Gi+1)j,pi,h for each prime pi,h dividing
the order of Gi/Gi+1. The Leedham-Green series is a characteristic series with elementary
abelian factors.

A PAG system corresponds naturally to a composition series of its group. The first additional
property of a special ag system is that the corresponding composition series refines the
Leedham-Green series.

Secondly, all the elements of a special ag system are of prime-power order, and furthermore,
if a set of primes π = {q1, . . . , qr} is given, all elements of a special ag system which are
of qh-power order for some qh in π generate a Hall-π-subgroup of G. In fact they form
a canonical generating sequence of the Hall-π-subgroup. These Hall subgroups are called
public subgroups, since a subset of the PAG system is an induced generating set for the
subgroup. Note that the set of all public Sylow subgroups forms a Sylow system of G.

The last property of the special ag systems is the existence of public local head comple-
ments. For a nilpotent group N , the group

λ2(N) = λ2(P1) · · ·λ2(Pl)

is the Frattini subgroup of N . The local heads of the group G are the factors

(Gi/Gi+1)/λ2(Gi/Gi+1) = Gi/Gi,2,pi,1

for each i. A local head complement is a subgroup Ki of G such that Ki/Gi,2,pi,1 is a
complement of Gi/Gi,2,pi1 . Now a special ag system has a public local head complement
for each local head. This complement is generated by the elements of the special ag system
which do not lie in Gi\Gi,2,pi,1 . Note that all complements of a local head are conjugate.
The factors

λ2(Gi/Gi+1) = Gi,2,pi,1/Gi+1

are called the tails of the group G.

To handle the special ag system the weights are introduced. Let (g1, . . . , gn) be a special ag
system. The triple (w1, w2, w3) is called the weight of the generator gi if gi lies in Gw1,w2,w3

but not lower down in the Leedham-Green series. That means w1 corresponds to the sub-
group in the lower nilpotent series and w2 to the subgroup in the elementary-abelian series
of this factor, and w3 is the prime dividing the order of gi. Then weight(gi) = (w1, w2, w3)
and weightj(gi) = wj for j = 1, 2, 3 is set. With this definition {gi|weight3(gi) ∈ π} is a
Hall-π-subgroup of G and {gi|weight(gi) 6= (j, 1, p) for some p} is a local head complement.

Now some advantages of a special ag system are summarized.

1. You have a characteristic series with elementary abelian factors of G explicitly given
in the ag system. This series is refined by the composition series corresponding to the
ag system.

2. You can see whether G is nilpotent or even a p-group, and if it is, you have a central
series explicitly given by the Leedham-Green series. Analogously you can see whether
the group is even elementary abelian.

26.2. CONSTRUCTION OF SPECIAL AG GROUPS 575

3. You can easily calculate Hall-π-subgroups of G. Furthermore the set of public Sylow
subgroups forms a Sylow system.

4. You get a smaller generating set of the group by taking only the elements which
correspond to local heads of the group.

5. The collection with a special ag system may be faster than the collection with an arbi-
trary ag system, since in the calculation of the public subgroups of G the commutators
of the ag generators are shortened.

6. Many algorithms are faster for special ag groups than for arbitrary ag groups.

26.2 Construction of Special Ag Groups

SpecialAgGroup(G)

The function SpecialAgGroup takes an ag group G as input and calculates a special ag
group H, which is isomorphic to G.

To obtain the additional information of a special ag system see 26.4.

26.3 Restricted Special Ag Groups

If one is only interested in some of the information of special ag systems then it is possible
to suppress the calculation of one or all types of the public subgroups by calling the function
SpecialAgGroup(G, flag), where flag is ”noHall”, ”noHead”or ”noPublic”. With this
options the algorithm takes less time. It calculates an ag group H, which is isomorphic to
G. But be careful, because the output H is not handled as a special ag group by GAP but
as an arbitrary ag group. Exspecially none of the functions listet in 26.7 use the algorithms
for special ag groups.

SpecialAgGroup(G, "noPublic")

calculates an ag group H, which is isomorphic to G and whose ag system is corresponding
to the Leedham-Green series.

SpecialAgGroup(G, "noHall")

calculates an ag group H, which is isomorphic to G and whose ag system is corresponding
to the Leedham-Green series and has public local head complements.

SpecialAgGroup(G, "noHead")

calculates an ag group H, which is isomorphic to G and whose ag system is corresponding
to the Leedham-Green series and has public Hall subgroups.

To obtain the additional information of a special ag system see 26.4.

576 CHAPTER 26. SPECIAL AG GROUPS

26.4 Special Ag Group Records

In addition to the record components of ag groups (see 25) the following components are
present in the group record of a special ag group H.

weights
This is a list of weights such that the i-th entry gives the weight of the element
hi, i.e., the triple (w1, w2, w3) when hi lies in Gw1,w2,w3 but not lower down in the
Leedham-Green series (see 26.1).

The entries layers, first, head and tail only depend on the weights. These entries are
useful in many of the programs using the special ag system.

layers
This is a list of integers. Assume that the subgroups of the Leedham-Green series are
numbered beginning at G and ending at the trivial group. Then the i-th entry gives
the number of the subgroup in the Leedham-Green series to which hi corresponds as
described in weights.

first
This is a list of integers, and first[j] = i if hi is the first element of the j-th layer.
Additionally the last entry of the list first is always n+ 1.

head
This is a list of integers, and head[j] = i if hi is the first element of the j-th local
head. Additionally the last entry of the list head is always n+ 1 (see 26.1).

tail
This is a list of integers, and tail[j] = i if hi−1 is the last element of the j-th local
head. In other words hi is either the first element of the tail of the j-th layer in
the lower nilpotent series, or in case this tail is trivial, then hi is the first element of
the j + 1-st layer in the lower nilpotent series. If the tail of the smallest nontrivial
subgroup of the lower nilpotent series is trivial, then the last entry of the list tail is
n+ 1 (see 26.1).

bijection
This is the isomorphism from H to G given through the images of the generators of
H.

The next four entries indicate if any flag and which one is used in the calculation of the
special ag system (see 26.2 and 26.3).

isHallSystem
This entry is a Boolean. It is true if public Hall subgroups have been calculated, and
false otherwise.

isHeadSystem
This entry is a Boolean. It is true if public local head complements have been calcu-
lated, and false otherwise.

isSagGroup
This entry is a Boolean. It is true if public Hall subgroups and public local head
complements have been calculated, and false otherwise.

Note that in GAP an ag group is called a special ag group if and only if the record entry
isSagGroup is true.

26.5. MATGROUPSAGGROUP 577

construct a wreath product of a4 with s3 where s3 operates on 3 points.
gap> s3 := SymmetricGroup(AgWords, 3);;
gap> a4 := AlternatingGroup(AgWords, 4);;
gap> a4wrs3 := WreathProduct(a4, s3, s3.bijection);
Group(h1, h2, n1_1, n1_2, n1_3, n2_1, n2_2, n2_3, n3_1, n3_2, n3_3)

now calculate the special ag group
gap> S := SpecialAgGroup(a4wrs3);
Group(h1, n3_1, h2, n2_1, n1_1, n1_2, n1_3, n2_2, n2_3, n3_2, n3_3)
gap> S.weights;
[[1, 1, 2], [1, 1, 3], [2, 1, 3], [2, 1, 3], [2, 2, 3],
[3, 1, 2], [3, 1, 2], [3, 1, 2], [3, 1, 2], [3, 1, 2],
[3, 1, 2]]

gap> S.layers;
[1, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5]
gap> S.first;
[1, 2, 3, 5, 6, 12]
gap> S.head;
[1, 3, 6, 12]
gap> S.tail;
[3, 5, 12]
gap> S.bijection;
GroupHomomorphismByImages(Group(h1, n3_1, h2, n2_1, n1_1, n1_2,
n1_3, n2_2, n2_3, n3_2, n3_3), Group(h1, h2, n1_1, n1_2, n1_3,
n2_1, n2_2, n2_3, n3_1, n3_2, n3_3),
[h1, n3_1, h2, n2_1, n1_1, n1_2, n1_3, n2_2, n2_3, n3_2, n3_3],
[h1, n3_1, h2, n2_1*n3_1^2, n1_1*n2_1*n3_1, n1_2, n1_3, n2_2, n2_3,
n3_2, n3_3])

gap> S.isHallSystem;
true
gap> S.isHeadSystem;
true
gap> S.isSagGroup;
true

In the next sections the functions which only apply to special ag groups are described.

26.5 MatGroupSagGroup

MatGroupSagGroup(H , i)

MatGroupSagGroup calculates the matrix representation of H on the i-th layer of the Leed-
ham-Green series of H (see 26.1).

See also MatGroupAgGroup.

gap> S := SpecialAgGroup(a4wrs3);;
gap> S.weights;
[[1, 1, 2], [1, 1, 3], [2, 1, 3], [2, 1, 3], [2, 2, 3],
[3, 1, 2], [3, 1, 2], [3, 1, 2], [3, 1, 2], [3, 1, 2],
[3, 1, 2]]

578 CHAPTER 26. SPECIAL AG GROUPS

gap> MatGroupSagGroup(S,3);
Group([[Z(3), 0*Z(3)], [0*Z(3), Z(3)]],
[[Z(3)^0, Z(3)^0], [0*Z(3), Z(3)^0]])

26.6 DualMatGroupSagGroup

DualMatGroupSagGroup(H , i)

DualMatGroupSagGroup calculates the dual matrix representation of H on the i-th layer of
the Leedham-Green series of H (see 26.1).

Let V be an FH-module for a field F . Then the dual module to V is defined by V ∗ := {f :
V → F |f is linear }. This module is also an FH-module and the dual matrix representation
is the representation on the dual module.

gap> S := SpecialAgGroup(a4wrs3);;
gap> DualMatGroupSagGroup(S,3);
Group([[Z(3), 0*Z(3)], [0*Z(3), Z(3)]],
[[Z(3)^0, 0*Z(3)], [Z(3)^0, Z(3)^0]])

26.7 Ag Group Functions for Special Ag Groups

Since special ag groups are ag groups all functions for ag groups are applicable to special
ag groups. However certain of these functions use special implementations to treat special
ag groups, i.e. there exists functions like SagGroupOps.FunctionName, which are called
by the corresponding general function in case a special ag group given. If you call one of
these general functions with an arbitrary ag group, the general function will not calculate
the special ag group but use the function for ag groups. For the special implementations to
treat special ag groups note the following.

Centre(H)
MinimalGeneratingSet(H)
Intersection(U , L)
EulerianFunction(H) MaximalSubgroups(H)
ConjugacyClassesMaximalSubgroups(H)
PrefrattiniSubgroup(H)
FrattiniSubgroup(H)
IsNilpotent(H)
These functions are often faster and often use less space for special ag groups.

ElementaryAbelianSeries(H)
This function returns the Leedham-Green series (see 26.1).

IsElementaryAbelianSeries(H)
Returns true.

HallSubgroup(H , primes)
SylowSubgroup(H , p)

26.7. AG GROUP FUNCTIONS FOR SPECIAL AG GROUPS 579

SylowSystem(H)
These functions return the corresponding public subgroups (see 26.1).

Subgroup(H , gens)
AgSubgroup(H , gens, bool)
These functions return an ag group which is not special, except if the group itself is returned.

All domain functions not mentioned here use no special treatments for special ag groups.

Note also that there exists a package to compute formation theoretic subgroups of special
ag groups. This may be used to compute the system normalizer of the public Sylow system,
which is the F -normalizer for the formation of nilpotent groups F . It is also possible to
compute F -normalizers as well as F -covering subgroups and F -residuals of special ag groups
for a number of saturated formations F which are given within the package or for self-defined
saturated formations F .

580 CHAPTER 26. SPECIAL AG GROUPS

Chapter 27

Lists

Lists are the most important way to collect objects and treat them together. A list is
a collection of elements. A list also implies a partial mapping from the integers to the
elements. I.e., there is a first element of a list, a second, a third, and so on.

List constants are written by writing down the elements in order between square brackets
[,], and separating them with commas ,. An empty list, i.e., a list with no elements, is
written as [].

gap> [1, 2, 3];
[1, 2, 3] # a list with three elements
gap> [[], [1], [1, 2]];
[[], [1], [1, 2]] # a list may contain other lists

Usually a list has no holes, i.e., contain an element at every position. However, it is absolutely
legal to have lists with holes. They are created by leaving the entry between the commas
empty. Lists with holes are sometimes convenient when the list represents a mapping from
a finite, but not consecutive, subset of the positive integers. We say that a list that has no
holes is dense.

gap> l := [, 4, 9,, 25,, 49,,,, 121];;
gap> l[3];
9
gap> l[4];
Error, List Element: <list>[4] must have a value

It is most common that a list contains only elements of one type. This is not a must though.
It is absolutely possible to have lists whose elements are of different types. We say that a
list whose elements are all of the same type is homogeneous.

gap> l := [1, E(2), Z(3), (1,2,3), [1,2,3], "What a mess"];;
gap> l[1]; l[3]; l[5][2];
1
Z(3)
2

The first sections describe the functions that test if an object is a list and convert an object
to a list (see 27.1 and 27.2).

581

582 CHAPTER 27. LISTS

The next section describes how one can access elements of a list (see 27.4 and 27.5).

The next sections describe how one can change lists (see 27.6, 27.7, 27.8, 27.9, 27.11).

The next sections describe the operations applicable to lists (see 27.12 and 27.13).

The next sections describe how one can find elements in a list (see 27.14, 27.15, 27.16, 27.18).

The next sections describe the functions that construct new lists, e.g., sublists (see 27.19,
27.20, 27.21, 27.22, 27.23).

The next sections describe the functions deal with the subset of elements of a list that have
a certain property (see 27.24, 27.25, 27.26, 27.27, 27.28, 27.29).

The next sections describe the functions that sort lists (see 27.30, 27.31, 27.32, 27.35).

The next sections describe the functions to compute the product, sum, maximum, and
minimum of the elements in a list (see 27.36, 27.37, 27.38, 27.39, 27.40).

The final section describes the function that takes a random element from a list (see 27.41).

Lists are also used to represent sets, subsets, vectors, and ranges (see 28, 29, 32, and 31).

27.1 IsList

IsList(obj)

IsList returns true if the argument obj , which can be an arbitrary object, is a list and
false otherwise. Will signal an error if obj is an unbound variable.

gap> IsList([1, 3, 5, 7]);
true
gap> IsList(1);
false

27.2 List

List(obj)
List(list, func)

In its first form List returns the argument obj , which must be a list, a permutation, a string
or a word, converted into a list. If obj is a list, it is simply returned. If obj is a permutation,
List returns a list where the i -th element is the image of i under the permutation obj . If
obj is a word, List returns a list where the i -th element is the i -th generator of the word,
as a word of length 1.

gap> List([1,2,3]);
[1, 2, 3]
gap> List((1,2)(3,4,5));
[2, 1, 4, 5, 3]

In its second form List returns a new list, where each element is the result of applying the
function func, which must take exactly one argument and handle the elements of list , to the
corresponding element of the list list . The list list must not contain holes.

gap> List([1,2,3], x->x^2);
[1, 4, 9]
gap> List([1..10], IsPrime);

27.3. APPLYFUNC 583

[false, true, true, false, true, false, true, false, false, false]

Note that this function is called map in Lisp and many other similar programming languages.
This name violates the GAP rule that verbs are used for functions that change their argu-
ments. According to this rule map would change list , replacing every element with the result
of the application func to this argument.

27.3 ApplyFunc

ApplyFunc(func, arglist)

ApplyFunc invokes the function func as if it had been called with the elements of arglist as
its arguments and returns the value, if any, returned by that invocation.

gap> foo := function(arg1, arg2)
> Print("first ",arg1," second ",arg2,"\n"); end;
function (arg1, arg2) ... end
gap> foo(1,2);
first 1 second 2
gap> ApplyFunc(foo,[1,2]);
first 1 second 2
gap> ApplyFunc(Position,[[1,2,3],2]);
2

27.4 List Elements

list[pos]

The above construct evaluates to the pos-th element of the list list . pos must be a positive
integer. List indexing is done with origin 1, i.e., the first element of the list is the element
at position 1.

gap> l := [2, 3, 5, 7, 11, 13];;
gap> l[1];
2
gap> l[2];
3
gap> l[6];
13

If list does not evaluate to a list, or pos does not evaluate to a positive integer, or list[pos]
is unbound an error is signalled. As usual you can leave the break loop (see 3.2) with quit;.
On the other hand you can return a result to be used in place of the list element by return
expr;.

list{ poss }
The above construct evaluates to a new list new whose first element is list[poss[1]], whose
second element is list[poss[2]], and so on. poss must be a dense list of positive integers, it
need, however, not be sorted and may contain duplicate elements. If for any i , list[poss[i]
] is unbound, an error is signalled.

gap> l := [2, 3, 5, 7, 11, 13, 17, 19];;
gap> l{[4..6]};

584 CHAPTER 27. LISTS

[7, 11, 13]
gap> l{[1,7,1,8]};
[2, 17, 2, 19]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the left operand (see 27.9).

It is possible to nest such sublist extractions, as can be seen in the following example.

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12]];;
gap> m{[1,2,3]}{[3,2]};
[[3, 2], [6, 5], [9, 8]]
gap> l := m{[1,2,3]};; l{[3,2]};
[[7, 8, 9], [4, 5, 6]]

Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from
m and then extracts the elements 3 and 2 from this list. The former extracts elements 1, 2,
and 3 from m and then extracts the elements 3 and 2 from each of those element lists.

To be precise. With each selector [pos] or {poss} we associate a level that is defined as
the number of selectors of the form {poss} to its left in the same expression. For example

l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level 0 0 1 1 1 2

Then a selector list[pos] of level level is computed as ListElement(list,pos,level), where
ListElement is defined as follows

ListElement := function (list, pos, level)
if level = 0 then

return list[pos];
else

return List(list, elm -> ListElement(elm,pos,level-1));
fi;

end;

and a selector list{poss} of level level is computed as ListElements(list,poss,level), where
ListElements is defined as follows

ListElements := function (list, poss, level)
if level = 0 then

return list{poss};
else

return List(list, elm -> ListElements(elm,poss,level-1));
fi;

end;

27.5 Length

Length(list)

Length returns the length of the list list . The length is defined as 0 for the empty list,
and as the largest positive integer index such that list[index] has an assigned value for
nonempty lists. Note that the length of a list may change if new elements are added to it
or assigned to previously unassigned positions.

27.6. LIST ASSIGNMENT 585

gap> Length([]);
0
gap> Length([2, 3, 5, 7, 11, 13, 17, 19]);
8
gap> Length([1, 2,,, 5]);
5

For lists that contain no holes Length, Number (see 27.24), and Size (see 4.10) return the
same value. For lists with holes Length returns the largest index of a bound entry, Number
returns the number of bound entries, and Size signals an error.

27.6 List Assignment

list[pos] := object;

The list assignment assigns the object object , which can be of any type, to the list entry at
the position pos, which must be a positive integer, in the list list . That means that accessing
the pos-th element of the list list will return object after this assignment.

gap> l := [1, 2, 3];;
gap> l[1] := 3;; l; # assign a new object
[3, 2, 3]
gap> l[2] := [4, 5, 6];; l; # object may be of any type
[3, [4, 5, 6], 3]
gap> l[l[1]] := 10;; l; # index may be an expression
[3, [4, 5, 6], 10]

If the index pos is larger than the length of the list list (see 27.5), the list is automatically
enlarged to make room for the new element. Note that it is possible to generate lists with
holes that way.

gap> l[4] := "another entry";; l; # list is enlarged
[3, [4, 5, 6], 10, "another entry"]
gap> l[10] := 1;; l; # now list has a hole
[3, [4, 5, 6], 10, "another entry",,,,,, 1]

The function Add (see 27.7) should be used if you want to add an element to the end of the
list.

Note that assigning to a list changes the list. The ability to change an object is only available
for lists and records (see 27.9).

If list does not evaluate to a list, pos does not evaluate to a positive integer or object is a
call to a function which does not return a value, for example Print (see 3.14), an error is
signalled As usual you can leave the break loop (see 3.2) with quit;. On the other hand
you can continue the assignment by returning a list, an index or an object using return
expr;.

list{ poss } := objects;

The list assignment assigns the object objects[1], which can be of any type, to the list list
at the position poss[1], the object objects[2] to list[poss[2]], and so on. poss must be
a dense list of positive integers, it need, however, not be sorted and may contain duplicate
elements. objects must be a dense list and must have the same length as poss.

586 CHAPTER 27. LISTS

gap> l := [2, 3, 5, 7, 11, 13, 17, 19];;
gap> l{[1..4]} := [10..13];; l;
[10, 11, 12, 13, 11, 13, 17, 19]
gap> l{[1,7,1,10]} := [1, 2, 3, 4];; l;
[3, 11, 12, 13, 11, 13, 2, 19,, 4]

It is possible to nest such sublist assignments, as can be seen in the following example.

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12]];;
gap> m{[1,2,3]}{[3,2]} := [[11,12], [13,14], [15,16]];; m;
[[1, 12, 11], [4, 14, 13], [7, 16, 15], [10, 11, 12]]

The exact behaviour is defined in the same way as for list extractions (see 27.4). Namely
with each selector [pos] or {poss} we associate a level that is defined as the number of
selectors of the form {poss} to its left in the same expression. For example

l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level 0 0 1 1 1 2

Then a list assignment list[pos] := vals; of level level is computed as ListAssignment(
list, pos, vals, level), where ListAssignment is defined as follows

ListAssignment := function (list, pos, vals, level)
local i;
if level = 0 then

list[pos] := vals;
else

for i in [1..Length(list)] do
ListAssignment(list[i], pos, vals[i], level-1);

od;
fi;

end;

and a list assignment list{poss} := vals of level level is computed as ListAssignments(
list, poss, vals, level), where ListAssignments is defined as follows

ListAssignments := function (list, poss, vals, level)
local i;
if level = 0 then

list{poss} := vals;
else

for i in [1..Length(list)] do
ListAssignments(list[i], poss, vals[i], level-1);

od;
fi;

end;

27.7 Add

Add(list, elm)

Add adds the element elm to the end of the list list , i.e., it is equivalent to the assignment
list[Length(list) + 1] := elm. The list is automatically enlarged to make room for the
new element. Add returns nothing, it is called only for its side effect.

27.8. APPEND 587

Note that adding to a list changes the list. The ability to change an object is only available
for lists and records (see 27.9).

To add more than one element to a list use Append (see 27.8).

gap> l := [2, 3, 5];; Add(l, 7); l;
[2, 3, 5, 7]

27.8 Append

Append(list1, list2)

Append adds (see 27.7) the elements of the list list2 to the end of the list list1 . list2 may
contain holes, in which case the corresponding entries in list1 will be left unbound. Append
returns nothing, it is called only for its side effect.

gap> l := [2, 3, 5];; Append(l, [7, 11, 13]); l;
[2, 3, 5, 7, 11, 13]
gap> Append(l, [17,, 23]); l;
[2, 3, 5, 7, 11, 13, 17,, 23]

Note that appending to a list changes the list. The ability to change an object is only
available for lists and records (see 27.9).

Note that Append changes the first argument, while Concatenation (see 27.19) creates
a new list and leaves its arguments unchanged. As usual the name of the function that
work destructively is a verb, but the name of the function that creates a new object is a
substantive.

27.9 Identical Lists

With the list assignment (see 27.6, 27.7, 27.8) it is possible to change a list. The ability to
change an object is only available for lists and records. This section describes the semantic
consequences of this fact.

You may think that in the following example the second assignment changes the integer,
and that therefore the above sentence, which claimed that only lists and records can be
changed is wrong

i := 3;
i := i + 1;

But in this example not the integer 3 is changed by adding one to it. Instead the variable
i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing
happens in the following example

l := [1, 2];
l := [1, 2, 3];

The second assignment does not change the first list, instead it assigns a new list to the
variable l. On the other hand, in the following example the list is changed by the second
assignment.

l := [1, 2];
l[3] := 3;

588 CHAPTER 27. LISTS

To understand the difference first think of a variable as a name for an object. The important
point is that a list can have several names at the same time. An assignment var := list;
means in this interpretation that var is a name for the object list . At the end of the following
example l2 still has the value [1, 2] as this list has not been changed and nothing else
has been assigned to it.

l1 := [1, 2];
l2 := l1;
l1 := [1, 2, 3];

But after the following example the list for which l2 is a name has been changed and thus
the value of l2 is now [1, 2, 3].

l1 := [1, 2];
l2 := l1;
l1[3] := 3;

We shall say that two lists are identical if changing one of them by a list assignment also
changes the other one. This is slightly incorrect, because if two lists are identical, there are
actually only two names for one list. However, the correct usage would be very awkward
and would only add to the confusion. Note that two identical lists must be equal, because
there is only one list with two different names. Thus identity is an equivalence relation that
is a refinement of equality.

Let us now consider under which circumstances two lists are identical.

If you enter a list literal than the list denoted by this literal is a new list that is not identical
to any other list. Thus in the following example l1 and l2 are not identical, though they
are equal of course.

l1 := [1, 2];
l2 := [1, 2];

Also in the following example, no lists in the list l are identical.

l := [];
for i in [1..10] do l[i] := [1, 2]; od;

If you assign a list to a variable no new list is created. Thus the list value of the variable
on the left hand side and the list on the right hand side of the assignment are identical. So
in the following example l1 and l2 are identical lists.

l1 := [1, 2];
l2 := l1;

If you pass a list as argument, the old list and the argument of the function are identical.
Also if you return a list from a function, the old list and the value of the function call are
identical. So in the following example l1 and l2 are identical list

l1 := [1, 2];
f := function (l) return l; end;
l2 := f(l1);

The functions Copy and ShallowCopy (see 45.11 and 45.12) accept a list and return a new list
that is equal to the old list but that is not identical to the old list. The difference between
Copy and ShallowCopy is that in the case of ShallowCopy the corresponding elements of

27.10. ISIDENTICAL 589

the new and the old lists will be identical, whereas in the case of Copy they will only be
equal. So in the following example l1 and l2 are not identical lists.

l1 := [1, 2];
l2 := Copy(l1);

If you change a list it keeps its identity. Thus if two lists are identical and you change one
of them, you also change the other, and they are still identical afterwards. On the other
hand, two lists that are not identical will never become identical if you change one of them.
So in the following example both l1 and l2 are changed, and are still identical.

l1 := [1, 2];
l2 := l1;
l1[1] := 2;

27.10 IsIdentical

IsIdentical(l, r)

IsIdentical returns true if the objects l and r are identical. Unchangeable objects are
considered identical if the are equal. Changeable objects, i.e., lists and records, are identical
if changing one of them by an assignment also changes the other one, as described in 27.9.

gap> IsIdentical(1, 1);
true
gap> IsIdentical(1, ());
false
gap> l := [’h’, ’a’, ’l’, ’l’, ’o’];;
gap> l = "hallo";
true
gap> IsIdentical(l, "hallo");
false

27.11 Enlarging Lists

The previous section (see 27.6) told you (among other things), that it is possible to assign
beyond the logical end of a list, automatically enlarging the list. This section tells you how
this is done.

It would be extremly wasteful to make all lists large enough so that there is room for all
assignments, because some lists may have more than 100000 elements, while most lists have
less than 10 elements.

On the other hand suppose every assignment beyond the end of a list would be done by
allocating new space for the list and copying all entries to the new space. Then creating a
list of 1000 elements by assigning them in order, would take half a million copy operations
and also create a lot of garbage that the garbage collector would have to reclaim.

So the following strategy is used. If a list is created it is created with exactly the correct
size. If a list is enlarged, because of an assignment beyond the end of the list, it is enlarged
by at least length/8 + 4 entries. Therefore the next assignments beyond the end of the list
do not need to enlarge the list. For example creating a list of 1000 elements by assigning
them in order, would now take only 32 enlargements.

590 CHAPTER 27. LISTS

The result of this is of course that the physical length, which is also called the size, of
a list may be different from the logical length, which is usually called simply the length
of the list. Aside from the implications for the performance you need not be aware of the
physical length. In fact all you can ever observe, for example by calling Length is the logical
length.

Suppose that Length would have to take the physical length and then test how many entries
at the end of a list are unassigned, to compute the logical length of the list. That would
take too much time. In order to make Length, and other functions that need to know the
logical length, more efficient, the length of a list is stored along with the list.

A note aside. In the previous version 2.4 of GAP a list was indeed enlarged every time an
assignment beyond the end of the list was performed. To deal with the above inefficiency
the following hacks where used. Instead of creating lists in order they were usually created
in reverse order. In situations where this was not possible a dummy assignment to the last
position was performed, for example

l := [];
l[1000] := "dummy";
l[1] := first_value();
for i from 2 to 1000 do l[i] := next_value(l[i-1]); od;

27.12 Comparisons of Lists

list1 = list2
list1 <> list2

The equality operator = evaluates to true if the two lists list1 and list2 are equal and
false otherwise. The inequality operator <> evaluates to true if the two lists are not equal
and false otherwise. Two lists list1 and list2 are equal if and only if for every index i ,
either both entries list1[i] and list2[i] are unbound, or both are bound and are equal, i.e.,
list1[i] = list2[i] is true.

gap> [1, 2, 3] = [1, 2, 3];
true
gap> [, 2, 3] = [1, 2,];
false
gap> [1, 2, 3] = [3, 2, 1];
false

list1 < list2 , list1 <= list2 list1 > list2 , list1 >= list2

The operators <, <=, > and >= evaluate to true if the list list1 is less than, less than or equal
to, greater than, or greater than or equal to the list list2 and to false otherwise. Lists
are ordered lexicographically, with unbound entries comparing very small. That means the
following. Let i be the smallest positive integer i , such that neither both entries list1[i]
and list2[i] are unbound, nor both are bound and equal. Then list1 is less than list2 if
either list1[i] is unbound (and list2[i] is not) or both are bound and list1[i] < list2[i]
is true.

gap> [1, 2, 3, 4] < [1, 2, 4, 8];
true # list1[3] < list2[3]
gap> [1, 2, 3] < [1, 2, 3, 4];

27.13. OPERATIONS FOR LISTS 591

true # list1[4] is unbound and therefore very small
gap> [1, , 3, 4] < [1, 2, 3];
true # list1[2] is unbound and therefore very small

You can also compare objects of other types, for example integers or permutations with
lists. Of course those objects are never equal to a list. Records (see 45) are greater than
lists, objects of every other type are smaller than lists.

gap> 123 < [1, 2, 3];
true
gap> [1, 2, 3] < rec(a := 123);
true

27.13 Operations for Lists

list * obj
obj * list

The operator * evaluates to the product of list list by an object obj . The product is a new
list that at each position contains the product of the corresponding element of list by obj .
list may contain holes, in which case the result will contain holes at the same positions.

The elements of list and obj must be objects of the following types; integers (see 10),
rationals (see 12), cyclotomics (see 13), elements of a finite field (see 18), permutations (see
20), matrices (see 34), words in abstract generators (see 22), or words in solvable groups
(see 24).

gap> [1, 2, 3] * 2;
[2, 4, 6]
gap> 2 * [2, 3,, 5,, 7];
[4, 6,, 10,, 14]
gap> [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)] * (1,4);
[(1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4)]

Many more operators are available for vectors and matrices, which are also represented by
lists (see 32.1, 34.1).

27.14 In

elm in list

The in operator evaluates to true if the object elm is an element of the list list and to
false otherwise. elm is an element of list if there is a positive integer index such that
list[index]=elm is true. elm may be an object of an arbitrary type and list may be a list
containing elements of any type.

It is much faster to test for membership for sets, because for sets, which are always sorted
(see 28), in can use a binary search, instead of the linear search used for ordinary lists. So
if you have a list for which you want to perform a large number of membership tests you
may consider converting it to a set with the function Set (see 28.2).

gap> 1 in [2, 2, 1, 3];
true
gap> 1 in [4, -1, 0, 3];

592 CHAPTER 27. LISTS

false
gap> s := Set([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;
gap> 17 in s;
false # uses binary search and only 4 comparisons
gap> 1 in ["This", "is", "a", "list", "of", "strings"];
false
gap> [1,2] in [[0,6], [0,4], [1,3], [1,5], [1,2], [3,4]];
true

Position (see 27.15) and PositionSorted (see 27.16) allow you to find the position of an
element in a list.

27.15 Position

Position(list, elm) Position(list, elm, after)

Position returns the position of the element elm, which may be an object of any type, in
the list list . If the element is not in the list the result is false. If the element appears
several times, the first position is returned.

The three argument form begins the search at position after+1, and returns the position of
the next occurence of elm. If there are no more, it returns false.

It is much faster to search for an element in a set, because for sets, which are always sorted
(see 28), Position can use a binary search, instead of the linear search used for ordinary
lists. So if you have a list for which you want to perform a large number of searches you
may consider converting it to a set with the function Set (see 28.2).

gap> Position([2, 2, 1, 3], 1);
3
gap> Position([2, 1, 1, 3], 1);
2
gap> Position([2, 1, 1, 3], 1, 2);
3
gap> Position([2, 1, 1, 3], 1, 3);
false
gap> Position([4, -1, 0, 3], 1);
false
gap> s := Set([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;
gap> Position(s, 17);
false # uses binary search and only 4 comparisons
gap> Position(["This", "is", "a", "list", "of", "strings"], 1);
false
gap> Position([[0,6], [0,4], [1,3], [1,5], [1,2], [3,4]], [1,2]);
5

The in operator (see 27.14) can be used if you are only interested to know whether the
element is in the list or not. PositionSorted (see 27.16) can be used if the list is sorted.
PositionProperty (see 27.18) allows you to find the position of an element that satisfies a
certain property in a list.

27.16. POSITIONSORTED 593

27.16 PositionSorted

PositionSorted(list, elm)
PositionSorted(list, elm, func)

In the first form PositionSorted returns the position of the element elm, which may be an
object of any type, with respect to the sorted list list .

In the second form PositionSorted returns the position of the element elm, which may
be an object of any type with respect to the list list , which must be sorted with respect to
func. func must be a function of two arguments that returns true if the first argument is
less than the second argument and false otherwise.

PositionSorted returns pos such that list[pos-1] <elm and elm <= list[pos]. That
means, if elm appears once in list , its position is returned. If elm appears several times in
list , the position of the first occurrence is returned. If elm is not an element of list , the
index where elm must be inserted to keep the list sorted is returned.

gap> PositionSorted([1,4,5,5,6,7], 0);
1
gap> PositionSorted([1,4,5,5,6,7], 2);
2
gap> PositionSorted([1,4,5,5,6,7], 4);
2
gap> PositionSorted([1,4,5,5,6,7], 5);
3
gap> PositionSorted([1,4,5,5,6,7], 8);
7

Position (see 27.15) is another function that returns the position of an element in a list.
Position accepts unsorted lists, uses linear instead of binary search and returns false if
elm is not in list .

27.17 PositionSet

PositionSet(list, elm)
PositionSet(list, elm, func)

In the first form PositionSet returns the position of the element elm, which may be an
object of any type, with respect to the sorted list list .

In the second form PositionSet returns the position of the element elm, which may be an
object of any type with respect to the list list , which must be sorted with respect to func.
func must be a function of two arguments that returns true if the first argument is less
than the second argument and false otherwise.

PositionSet returns pos such that list[pos-1] <elm and elm = list[pos]. That means, if
elm appears once in list , its position is returned. If elm appears several times in list , the
position of the first occurrence is returned. If elm is not an element of list , then false is
returned.

gap> PositionSet([1,4,5,5,6,7], 0);
false
gap> PositionSet([1,4,5,5,6,7], 2);

594 CHAPTER 27. LISTS

false
gap> PositionSet([1,4,5,5,6,7], 4);
2
gap> PositionSet([1,4,5,5,6,7], 5);
3
gap> PositionSet([1,4,5,5,6,7], 8);
false

PositionSet is very similar to PositionSorted (see 27.16) but returns false when elm is
not an element of list .

27.18 PositionProperty

PositionProperty(list, func)

PositionProperty returns the position of the first element in the list list for which the
unary function func returns true. list must not contain holes. If func returns false for
all elements of list false is returned. func must return true or false for every element of
list , otherwise an error is signalled.

gap> PositionProperty([10^7..10^8], IsPrime);
20
gap> PositionProperty([10^5..10^6],
> n -> not IsPrime(n) and IsPrimePowerInt(n));
490

First (see 27.29) allows you to extract the first element of a list that satisfies a certain
property.

27.19 Concatenation

Concatenation(list1, list2..)
Concatenation(list)

In the first form Concatenation returns the concatenation of the lists list1 , list2 , etc. The
concatenation is the list that begins with the elements of list1 , followed by the elements
of list2 and so on. Each list may also contain holes, in which case the concatenation also
contains holes at the corresponding positions.

gap> Concatenation([1, 2, 3], [4, 5]);
[1, 2, 3, 4, 5]
gap> Concatenation([2,3,,5,,7], [11,,13,,,,17,,19]);
[2, 3,, 5,, 7, 11,, 13,,,, 17,, 19]

In the second form list must be a list of lists list1 , list2 , etc, and Concatenation returns
the concatenation of those lists.

gap> Concatenation([[1,2,3], [2,3,4], [3,4,5]]);
[1, 2, 3, 2, 3, 4, 3, 4, 5]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument lists (see 27.9).

Note that Concatenation creates a new list and leaves it arguments unchanged, while
Append (see 27.8) changes its first argument. As usual the name of the function that

27.20. FLAT 595

works destructively is a verb, but the name of the function that creates a new object is a
substantive.

Set(Concatenation(set1,set2..)) (see 28.2) is a way to compute the union of sets, how-
ever, Union (see 4.13) is more efficient.

27.20 Flat

Flat(list)

Flat returns the list of all elements that are contained in the list list or its sublists. That
is, Flat first makes a new empty list new . Then it loops over the elements elm of list . If
elm is not a list it is added to new , otherwise Flat appends Flat(elm) to new .

gap> Flat([1, [2, 3], [[1, 2], 3]]);
[1, 2, 3, 1, 2, 3]
gap> Flat([]);
[]

27.21 Reversed

Reversed(list)

Reversed returns a new list that contains the elements of the list list , which must not
contain holes, in reverse order. The argument list is unchanged.

gap> Reversed([1, 4, 5, 5, 6, 7]);
[7, 6, 5, 5, 4, 1]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument list (see 27.9).

27.22 Sublist

Sublist(list, inds)

Sublist returns a new list in which the i -th element is the element list[inds[i]], of
the list list . inds must be a list of positive integers without holes, it need, however, not be
sorted and may contains duplicate elements. If list[inds[i]] is unbound for an i , an
error is signalled.

gap> Sublist([2, 3, 5, 7, 11, 13, 17, 19], [4..6]);
[7, 11, 13]
gap> Sublist([2, 3, 5, 7, 11, 13, 17, 19], [1,7,1,8]);
[2, 17, 2, 19]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument list (see 27.9).

Filtered (see 27.26) allows you to extract elements from a list according to a predicate.

Sublist has been made obsolete by the introduction of the construct list{ inds } (see 27.4).

596 CHAPTER 27. LISTS

27.23 Cartesian

Cartesian(list1, list2..)
Cartesian(list)

In the first form Cartesian returns the cartesian product of the lists list1 , list2 , etc.

In the second form list must be a list of lists list1 , list2 , etc., and Cartesian returns the
cartesian product of those lists.

The cartesian product is a list cart of lists tup, such that the first element of tup is an
element of list1 , the second element of tup is an element of list2 , and so on. The total
number of elements in cart is the product of the lengths of the argument lists. In particular
cart is empty if and only if at least one of the argument lists is empty. Also cart contains
duplicates if and only if no argument list is empty and at least one contains duplicates.

The last index runs fastest. That means that the first element tup1 of cart contains the first
element from list1 , from list2 and so on. The second element tup2 of cart contains the first
element from list1 , the first from list2 , an so on, but the last element of tup2 is the second
element of the last argument list. This implies that cart is a set if and only if all argument
lists are sets.

gap> Cartesian([1,2], [3,4], [5,6]);
[[1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5],

[2, 3, 6], [2, 4, 5], [2, 4, 6]]
gap> Cartesian([1,2,2], [1,1,2]);
[[1, 1], [1, 1], [1, 2], [2, 1], [2, 1], [2, 2],

[2, 1], [2, 1], [2, 2]]

The function Tuples (see 46.9) computes the k -fold cartesian product of a list.

27.24 Number

Number(list)
Number(list, func)

In the first form Number returns the number of bound entries in the list list .

For lists that contain no holes Number, Length (see 27.5), and Size (see 4.10) return the
same value. For lists with holes Number returns the number of bound entries, Length returns
the largest index of a bound entry, and Size signals an error.

Number returns the number of elements of the list list for which the unary function func
returns true. If an element for which func returns true appears several times in list it will
also be counted several times. func must return either true or false for every element of
list , otherwise an error is signalled.

gap> Number([2, 3, 5, 7]);
4
gap> Number([, 2, 3,, 5,, 7,,,, 11]);
5
gap> Number([1..20], IsPrime);
8
gap> Number([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);

27.25. COLLECTED 597

4
gap> Number([1, 3, 4, -4, 4, 7, 10, 6],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0);
2

Filtered (see 27.26) allows you to extract the elements of a list that have a certain property.

27.25 Collected

Collected(list)

Collected returns a new list new that contains for each different element elm of list a list
of two elements, the first element is elm itself, and the second element is the number of
times elm appears in list . The order of those pairs in new corresponds to the ordering of
the elements elm, so that the result is sorted.

gap> Factors(Factorial(10));
[2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 7]
gap> Collected(last);
[[2, 8], [3, 4], [5, 2], [7, 1]]
gap> Collected(last);
[[[2, 8], 1], [[3, 4], 1], [[5, 2], 1], [[7, 1], 1]]

27.26 Filtered

Filtered(list, func)

Filtered returns a new list that contains those elements of the list list for which the unary
function func returns true. The order of the elements in the result is the same as the order
of the corresponding elements of list . If an element, for which func returns true appears
several times in list it will also appear the same number of times in the result. list may
contain holes, they are ignored by Filtered. func must return either true or false for
every element of list , otherwise an error is signalled.

gap> Filtered([1..20], IsPrime);
[2, 3, 5, 7, 11, 13, 17, 19]
gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);
[3, 4, 4, 7]
gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0);
[3, 7]

The result is a new list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of the argument list (see 27.9).

Sublist (see 27.22) allows you to extract elements of a list according to indices given in
another list.

27.27 ForAll

ForAll(list, func)

598 CHAPTER 27. LISTS

ForAll returns true if the unary function func returns true for all elements of the list list
and false otherwise. list may contain holes. func must return either true or false for
every element of list , otherwise an error is signalled.

gap> ForAll([1..20], IsPrime);
false
gap> ForAll([2,3,4,5,8,9], IsPrimePowerInt);
true
gap> ForAll([2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0);
true

ForAny (see 27.28) allows you to test if any element of a list satisfies a certain property.

27.28 ForAny

ForAny(list, func)

ForAny returns true if the unary function func returns true for at least one element of the
list list and false otherwise. list may contain holes. func must return either true or false
for every element of list , otherwise ForAny signals an error.

gap> ForAny([1..20], IsPrime);
true
gap> ForAny([2,3,4,5,8,9], IsPrimePowerInt);
true
gap> ForAny([2..14],
> n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n));
false

ForAll (see 27.27) allows you to test if all elements of a list satisfies a certain propertie.

27.29 First

First(list, func)

First returns the first element of the list list for which the unary function func returns
true. list may contain holes. func must return either true or false for every element of
list , otherwise an error is signalled. If func returns false for every element of list an error
is signalled.

gap> First([10^7..10^8], IsPrime);
10000019
gap> First([10^5..10^6],
> n -> not IsPrime(n) and IsPrimePowerInt(n));
100489

PositionProperty (see 27.18) allows you to find the position of the first element in a list
that satisfies a certain property.

27.30 Sort

Sort(list)
Sort(list, func)

27.31. SORTPARALLEL 599

Sort sorts the list list in increasing order, using shellsort. In the first form Sort uses the
operator < to compare the elements. In the second form Sort uses the function func to
compare elements. This function must be a function taking two arguments that returns
true if the first is strictly smaller than the second and false otherwise.

Sort does not return anything, since it changes the argument list . Use ShallowCopy (see
45.12) if you want to keep list . Use Reversed (see 27.21) if you want to get a new list sorted
in decreasing order.

It is possible to sort lists that contain multiple elements which compare equal. It is not
guaranteed that those elements keep their relative order, i.e., Sort is not stable.

gap> list := [5, 4, 6, 1, 7, 5];; Sort(list); list;
[1, 4, 5, 5, 6, 7]
gap> list := [[0,6], [1,2], [1,3], [1,5], [0,4], [3,4]];;
gap> Sort(list, function(v,w) return v*v < w*w; end); list;
[[1, 2], [1, 3], [0, 4], [3, 4], [1, 5], [0, 6]]
sorted according to the Euclidian distance from [0,0]
gap> list := [[0,6], [1,3], [3,4], [1,5], [1,2], [0,4],];;
gap> Sort(list, function(v,w) return v[1] < w[1]; end); list;
[[0, 6], [0, 4], [1, 3], [1, 5], [1, 2], [3, 4]]
note the random order of the elements with equal first component

SortParallel (see 27.31) allows you to sort a list and apply the exchanges that are necessary
to another list in parallel. Sortex (see 27.32) sorts a list and returns the sorting permutation.

27.31 SortParallel

SortParallel(list1, list2)
SortParallel(list1, list2, func)

SortParallel sorts the list list1 in increasing order just as Sort (see 27.30) does. In parallel
it applies the same exchanges that are necessary to sort list1 to the list list2 , which must
of course have at least as many elements as list1 does.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := [2, 3, 5, 7, 8, 9];;
gap> SortParallel(list1, list2);
gap> list1;
[1, 4, 5, 5, 6, 7]
gap> list2;
[7, 3, 2, 9, 5, 8] # [7, 3, 9, 2, 5, 8] is also possible

Sortex (see 27.32) sorts a list and returns the sorting permutation.

27.32 Sortex

Sortex(list)

Sortex sorts the list list and returns the permutation that must be applied to list to obtain
the sorted list.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := Copy(list1);;

600 CHAPTER 27. LISTS

gap> perm := Sortex(list1);
(1,3,5,6,4)
gap> list1;
[1, 4, 5, 5, 6, 7]
gap> Permuted(list2, perm);
[1, 4, 5, 5, 6, 7]

Permuted (see 27.35) allows you to rearrange a list according to a given permutation.

27.33 SortingPerm

SortingPerm(list)

SortingPerm returns the permutation that must be applied to list to sort it into ascending
order.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := Copy(list1);;
gap> perm := SortingPerm(list1);
(1,3,5,6,4)
gap> list1;
[5, 4, 6, 1, 7, 5]
gap> Permuted(list2, perm);
[1, 4, 5, 5, 6, 7]

Sortex(list) (see 27.32) returns the same permutation as SortingPerm(list), and also
applies it to list (in place).

27.34 PermListList

PermListList(list1, list2)

PermListList returns a permutation that may be applied to list1 to obtain list2 , if there
is one. Otherwise it returns false.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := [4, 1, 7, 5, 5, 6];;
gap> perm := PermListList(list1, list2);
(1,2,4)(3,5,6)
gap> Permuted(list2, perm);
[5, 4, 6, 1, 7, 5]

27.35 Permuted

Permuted(list, perm)

Permuted returns a new list new that contains the elements of the list list permuted ac-
cording to the permutation perm. That is new[i^perm] = list[i].

gap> Permuted([5, 4, 6, 1, 7, 5], (1,3,5,6,4));
[1, 4, 5, 5, 6, 7]

Sortex (see 27.32) allows you to compute the permutation that must be applied to a list to
get the sorted list.

27.36. PRODUCT 601

27.36 Product

Product(list)
Product(list, func)

In the first form Product returns the product of the elements of the list list , which must
have no holes. If list is empty, the integer 1 is returned.

In the second form Product applies the function func to each element of the list list , which
must have no holes, and multiplies the results. If the list is empty, the integer 1 is returned.

gap> Product([2, 3, 5, 7, 11, 13, 17, 19]);
9699690
gap> Product([1..10], x->x^2);
13168189440000
gap> Product([(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)]);
(1,4)(2,3)

Sum (see 27.37) computes the sum of the elements of a list.

27.37 Sum

Sum(list)
Sum(list, func)

In the first form Sum returns the sum of the elements of the list list , which must have no
holes. If list is empty 0 is returned.

In the second form Sum applies the function func to each element of the list list , which must
have no holes, and sums the results. If the list is empty 0 is returned.

gap> Sum([2, 3, 5, 7, 11, 13, 17, 19]);
77
gap> Sum([1..10], x->x^2);
385
gap> Sum([[1,2], [3,4], [5,6]]);
[9, 12]

Product (see 27.36) computes the product of the elements of a list.

27.38 Maximum

Maximum(obj1, obj2..)
Maximum(list)

Maximum returns the maximum of its arguments, i.e., that argument obji for which objk <=
obji for all k. In its second form Maximum takes a list list and returns the maximum of the
elements of this list.

Typically the arguments or elements of the list respectively will be integers, but actually they
can be objects of an arbitrary type. This works because any two objects can be compared
using the < operator.

gap> Maximum(-123, 700, 123, 0, -1000);
700

602 CHAPTER 27. LISTS

gap> Maximum([-123, 700, 123, 0, -1000]);
700
gap> Maximum([1, 2], [0, 15], [1, 5], [2, -11]);
[2, -11] # lists are compared elementwise

27.39 Minimum

Minimum(obj1, obj2..)
Minimum(list)

Minimum returns the minimum of its arguments, i.e., that argument obji for which obji <=
objk for all k. In its second form Minimum takes a list list and returns the minimum of the
elements of this list.
Typically the arguments or elements of the list respectively will be integers, but actually they
can be objects of an arbitrary type. This works because any two objects can be compared
using the < operator.

gap> Minimum(-123, 700, 123, 0, -1000);
-1000
gap> Minimum([-123, 700, 123, 0, -1000]);
-1000
gap> Minimum([1, 2], [0, 15], [1, 5], [2, -11]);
[0, 15] # lists are compared elementwise

27.40 Iterated

Iterated(list, f)

Iterated returns the result of the iterated application of the function f , which must take
two arguments, to the elements of list . More precisely Iterated returns the result of the
following application, f (..f (f (list[1], list[2]), list[3]),..,list[n]).

gap> Iterated([126, 66, 105], Gcd);
3

27.41 RandomList

RandomList(list)

RandomList returns a random element of the list list . The results are equally distributed,
i.e., all elements are equally likely to be selected.

gap> RandomList([1..200]);
192
gap> RandomList([1..200]);
152
gap> RandomList([[1, 2], 3, [4, 5], 6]);
[4, 5]

RandomSeed(n)

RandomSeed seeds the pseudo random number generator RandomList. Thus to reproduce a
computation exactly you can call RandomSeed each time before you start the computation.
When GAP is started the pseudo random number generator is seeded with 1.

27.41. RANDOMLIST 603

gap> RandomSeed(1); RandomList([1..100]); RandomList([1..100]);
96
76
gap> RandomSeed(1); RandomList([1..100]); RandomList([1..100]);
96
76

RandomList is called by all random functions for domains (see 4.16).

604 CHAPTER 27. LISTS

Chapter 28

Sets

A very important mathematical concept, maybe the most important of all, are sets. Math-
ematically a set is an abstract object such that each object is either an element of the set
or it is not. So a set is a collection like a list, and in fact GAP uses lists to represent sets.
Note that this of course implies that GAP only deals with finite sets.

Unlike a list a set must not contain an element several times. It simply makes no sense to
say that an object is twice an element of a set, because an object is either an element of a
set, or it is not. Therefore the list that is used to represent a set has no duplicates, that is,
no two elements of such a list are equal.

Also unlike a list a set does not impose any ordering on the elements. Again it simply makes
no sense to say that an object is the first or second etc. element of a set, because, again, an
object is either an element of a set, or it is not. Since ordering is not defined for a set we can
put the elements in any order into the list used to represent the set. We put the elements
sorted into the list, because this ordering is very practical. For example if we convert a list
into a set we have to remove duplicates, which is very easy to do after we have sorted the
list, since then equal elements will be next to each other.

In short sets are represented by sorted lists without holes and duplicates in GAP. Such a list
is in this document called a proper set. Note that we guarantee this representation, so you
may make use of the fact that a set is represented by a sorted list in your functions.

In some contexts (for example see 46), we also want to talk about multisets. A multiset is
like a set, except that an element may appear several times in a multiset. Such multisets
are represented by sorted lists with holes that may have duplicates.

The first section in this chapter describes the functions to test if an object is a set and to
convert objects to sets (see 28.1 and 28.2).

The next section describes the function that tests if two sets are equal (see 28.3).

The next sections describe the destructive functions that compute the standard set opera-
tions for sets (see 28.4, 28.5, 28.6, 28.7, and 28.8).

The last section tells you more about sets and their internal representation (see 28.10).

All set theoretic functions, especially Intersection and Union, also accept sets as argu-
ments. Thus all functions described in chapter 4 are applicable to sets (see 28.9).

605

606 CHAPTER 28. SETS

Since sets are just a special case of lists, all the operations and functions for lists, especially
the membership test (see 27.14), can be used for sets just as well (see 27).

28.1 IsSet

IsSet(obj)

IsSet returns true if the object obj is a set and false otherwise. An object is a set if it
is a sorted lists without holes or duplicates. Will cause an error if evaluation of obj is an
unbound variable.

gap> IsSet([]);
true
gap> IsSet([2, 3, 5, 7, 11]);
true
gap> IsSet([, 2, 3,, 5,, 7,,,, 11]);
false # this list contains holes
gap> IsSet([11, 7, 5, 3, 2]);
false # this list is not sorted
gap> IsSet([2, 2, 3, 5, 5, 7, 11, 11]);
false # this list contains duplicates
gap> IsSet(235711);
false # this argument is not even a list

28.2 Set

Set(list)

Set returns a new proper set, which is represented as a sorted list without holes or duplicates,
containing the elements of the list list .

Set returns a new list even if the list list is already a proper set, in this case it is equivalent
to ShallowCopy (see 45.12). Thus the result is a new list that is not identical to any other
list. The elements of the result are however identical to elements of list . If list contains
equal elements, it is not specified to which of those the element of the result is identical (see
27.9).

gap> Set([3,2,11,7,2,,5]);
[2, 3, 5, 7, 11]
gap> Set([]);
[]

28.3 IsEqualSet

IsEqualSet(list1, list2)

IsEqualSet returns true if the two lists list1 and list2 are equal when viewed as sets,
and false otherwise. list1 and list2 are equal if every element of list1 is also an element of
list2 and if every element of list2 is also an element of list1 .

If both lists are proper sets then they are of course equal if and only if they are also equal as
lists. Thus IsEqualSet(list1, list2) is equivalent to Set(list1) = Set(list2) (see
28.2), but the former is more efficient.

28.4. ADDSET 607

gap> IsEqualSet([2,3,5,7,11], [11,7,5,3,2]);
true
gap> IsEqualSet([2,3,5,7,11], [2,3,5,7,11,13]);
false

28.4 AddSet

AddSet(set, elm)

AddSet adds elm, which may be an elment of an arbitrary type, to the set set , which must
be a proper set, otherwise an error will be signalled. If elm is already an element of the set
set , the set is not changed. Otherwise elm is inserted at the correct position such that set
is again a set afterwards.

gap> s := [2,3,7,11];;
gap> AddSet(s, 5); s;
[2, 3, 5, 7, 11]
gap> AddSet(s, 13); s;
[2, 3, 5, 7, 11, 13]
gap> AddSet(s, 3); s;
[2, 3, 5, 7, 11, 13]

RemoveSet (see 28.5) is the counterpart of AddSet.

28.5 RemoveSet

RemoveSet(set, elm)

RemoveSet removes the element elm, which may be an object of arbitrary type, from the
set set , which must be a set, otherwise an error will be signalled. If elm is not an element
of set nothing happens. If elm is an element it is removed and all the following elements in
the list are moved one position forward.

gap> s := [2, 3, 4, 5, 6, 7];;
gap> RemoveSet(s, 6);
gap> s;
[2, 3, 4, 5, 7]
gap> RemoveSet(s, 10);
gap> s;
[2, 3, 4, 5, 7]

AddSet (see 28.4) is the counterpart of RemoveSet.

28.6 UniteSet

UniteSet(set1, set2)

UniteSet unites the set set1 with the set set2 . This is equivalent to adding all the elements
in set2 to set1 (see 28.4). set1 must be a proper set, otherwise an error is signalled. set2
may also be list that is not a proper set, in which case UniteSet silently applies Set to it
first (see 28.2). UniteSet returns nothing, it is only called to change set1 .

gap> set := [2, 3, 5, 7, 11];;

608 CHAPTER 28. SETS

gap> UniteSet(set, [4, 8, 9]); set;
[2, 3, 4, 5, 7, 8, 9, 11]
gap> UniteSet(set, [16, 9, 25, 13, 16]); set;
[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25]

The function UnionSet (see 28.9) is the nondestructive counterpart to the destructive pro-
cedure UniteSet.

28.7 IntersectSet

IntersectSet(set1, set2)

IntersectSet intersects the set set1 with the set set2 . This is equivalent to removing all
the elements that are not in set2 from set1 (see 28.5). set1 must be a set, otherwise an
error is signalled. set2 may be a list that is not a proper set, in which case IntersectSet
silently applies Set to it first (see 28.2). IntersectSet returns nothing, it is only called to
change set1 .

gap> set := [2, 3, 4, 5, 7, 8, 9, 11, 13, 16];;
gap> IntersectSet(set, [3, 5, 7, 9, 11, 13, 15, 17]); set;
[3, 5, 7, 9, 11, 13]
gap> IntersectSet(set, [9, 4, 6, 8]); set;
[9]

The function IntersectionSet (see 28.9) is the nondestructive counterpart to the destruc-
tive procedure IntersectSet.

28.8 SubtractSet

SubtractSet(set1, set2)

SubtractSet subtracts the set set2 from the set set1 . This is equivalent to removing all
the elements in set2 from set1 (see 28.5). set1 must be a proper set, otherwise an error is
signalled. set2 may be a list that is not a proper set, in which case SubtractSet applies
Set to it first (see 28.2). SubtractSet returns nothing, it is only called to change set1 .

gap> set := [2, 3, 4, 5, 6, 7, 8, 9, 10, 11];;
gap> SubtractSet(set, [6, 10]); set;
[2, 3, 4, 5, 7, 8, 9, 11]
gap> SubtractSet(set, [9, 4, 6, 8]); set;
[2, 3, 5, 7, 11]

The function Difference (see 4.14) is the nondestructive counterpart to destructive the
procedure SubtractSet.

28.9 Set Functions for Sets

As was already mentioned in the introduction to this chapter all domain functions also accept
sets as arguments. Thus all functions described in the chapter 4 are applicable to sets. This
section describes those functions where it might be helpful to know the implementation of
those functions for sets.

IsSubset(set1, set2)

28.10. MORE ABOUT SETS 609

This is implemented by IsSubsetSet, which you can call directly to save a little bit of time.
Either argument to IsSubsetSet may also be a list that is not a proper set, in which case
IsSubset silently applies Set (see 28.2) to it first.

Union(set1, set2)

This is implemented by UnionSet, which you can call directly to save a little bit of time.
Note that UnionSet only accepts two sets, unlike Union, which accepts several sets or a list
of sets. The result of UnionSet is a new set, represented as a sorted list without holes or
duplicates. Each argument to UnionSet may also be a list that is not a proper set, in which
case UnionSet silently applies Set (see 28.2) to this argument. UnionSet is implemented in
terms of its destructive counterpart UniteSet (see 28.6).

Intersection(set1, set2)

This is implemented by IntersectionSet, which you can call directly to save a little bit
of time. Note that IntersectionSet only accepts two sets, unlike Intersection, which
accepts several sets or a list of sets. The result of IntersectionSet is a new set, represented
as a sorted list without holes or duplicates. Each argument to IntersectionSet may also be
a list that is not a proper set, in which case IntersectionSet silently applies Set (see 28.2)
to this argument. IntersectionSet is implemented in terms of its destructive counterpart
IntersectSet (see 28.7).

The result of IntersectionSet and UnionSet is always a new list, that is not identical to
any other list. The elements of that list however are identical to the corresponding elements
of set1 . If set1 is not a proper list it is not specified to which of a number of equal elements
in set1 the element in the result is identical (see 27.9).

28.10 More about Sets

In the previous section we defined a proper set as a sorted list without holes or duplicates.
This representation is not only nice to use, it is also a good internal representation supporting
efficient algorithms. For example the in operator can use binary instead of a linear search
since a set is sorted. For another example Union only has to merge the sets.

However, all those set functions also allow lists that are not proper sets, silently making a
copy of it and converting this copy to a set. Suppose all the functions would have to test
their arguments every time, comparing each element with its successor, to see if they are
proper sets. This would chew up most of the performance advantage again. For example
suppose in would have to run over the whole list, to see if it is a proper set, so it could use
the binary search. That would be ridiculous.

To avoid this a list that is a proper set may, but need not, have an internal flag set that
tells those functions that this list is indeed a proper set. Those functions do not have to
check this argument then, and can use the more efficient algorithms. This section tells you
when a proper set obtains this flag, so you can write your functions in such a way that you
make best use of the algorithms.

The results of Set, Difference, Intersection and Union are known to be sets by con-
struction, and thus have the flag set upon creation.

If an argument to IsSet, IsEqualSet, IsSubset, Set, Difference, Intersection or Union
is a proper set, that does not yet have the flag set, those functions will notice that and set
the flag for this set. Note that in will use linear search if the right operand does not have

610 CHAPTER 28. SETS

the flag set, will therefore not detect if it is a proper set and will, unlike the functions above,
never set the flag.

If you change a proper set, that does have this flag set, by assignment, Add or Append the
set will generally lose it flag, even if the change is such that the resulting list is still a proper
set. However if the set has more than 100 elements and the value assigned or added is not
a list and not a record and the resulting list is still a proper set than it will keep the flag.
Note that changing a list that is not a proper set will never set the flag, even if the resulting
list is a proper set. Such a set will obtain the flag only if it is passed to a set function.

Suppose you have built a proper set in such a way that it does not have the flag set, and that
you now want to perform lots of membership tests. Then you should call IsSet with that
set as an argument. If it is indeed a proper set IsSet will set the flag, and the subsequent
in operations will use the more efficient binary search. You can think of the call to IsSet
as a hint to GAP that this list is a proper set.

There is no way you can set the flag for an ordinary list without going through the checking
in IsSet. The internal functions depend so much on the fact that a list with this flag set
is indeed sorted and without holes and duplicates that the risk would be too high to allow
setting the flag without such a check.

Chapter 29

Boolean Lists

This chapter describes boolean lists. A boolean list is a list that has no holes and contains
only boolean values, i.e., true and false. In function names we call boolean lists blist for
brevity.

Boolean lists can be used in various ways, but maybe the most important application is
their use for the description of subsets of finite sets. Suppose set is a finite set, represented
as a list. Then a subset sub of set is represented by a boolean list blist of the same length
as set such that blist[i] is true if set[i] is in sub and false otherwise.

This package contains functions to switch between the representations of subsets of a finite
set either as sets or as boolean lists (see 29.1, 29.2), to test if a list is a boolean list (see
29.3), and to count the number of true entries in a boolean list (see 29.4).

Next there are functions for the standard set operations for the subsets represented by
boolean lists (see 29.5, 29.6, 29.7, and 29.8). There are also the corresponding destructive
procedures that change their first argument (see 29.9, 29.10, and 29.11). Note that there
is no function to add or delete a single element to a subset represented by a boolean list,
because this can be achieved by assigning true or false to the corresponding position in
the boolean list (see 27.6).

Since boolean lists are just a special case of lists, all the operations and functions for lists,
can be used for boolean lists just as well (see 27). For example Position (see 27.15) can
be used to find the true entries in a boolean list, allowing you to loop over the elements of
the subset represented by the boolean list.

There is also a section about internal details (see 29.12).

29.1 BlistList

BlistList(list, sub)

BlistList returns a new boolean list that describes the list sub as a sublist of the list list ,
which must have no holes. That is BlistList returns a boolean list blist of the same length
as list such that blist[i] is true if list[i] is in sub and false otherwise.

list need not be a proper set (see 28), even though in this case BlistList is most efficient.
In particular list may contain duplicates. sub need not be a proper sublist of list , i.e., sub

611

612 CHAPTER 29. BOOLEAN LISTS

may contain elements that are not in list . Those elements of course have no influence on
the result of BlistList.

gap> BlistList([1..10], [2,3,5,7]);
[false, true, true, false, true, false, true, false, false, false]
gap> BlistList([1,2,3,4,5,2,8,6,4,10], [4,8,9,16]);
[false, false, false, true, false, false, true, false, true, false]

ListBlist (see 29.2) is the inverse function to BlistList.

29.2 ListBlist

ListBlist(list, blist)

ListBlist returns the sublist sub of the list list , which must have no holes, represented by
the boolean list blist , which must have the same length as list . sub contains the element
list[i] if blist[i] is true and does not contain the element if blist[i] is false. The order
of the elements in sub is the same as the order of the corresponding elements in list .

gap> ListBlist([1..8],[false,true,true,true,true,false,true,true]);
[2, 3, 4, 5, 7, 8]
gap> ListBlist([1,2,3,4,5,2,8,6,4,10],
> [false,false,false,true,false,false,true,false,true,false]);
[4, 8, 4]

BlistList (see 29.1) is the inverse function to ListBlist.

29.3 IsBlist

IsBlist(obj)

IsBlist returns true if obj , which may be an object of arbitrary type, is a boolean list
and false otherwise. A boolean list is a list that has no holes and contains only true and
false.

gap> IsBlist([true, true, false, false]);
true
gap> IsBlist([]);
true
gap> IsBlist([false,,true]);
false # has holes
gap> IsBlist([1,1,0,0]);
false # contains not only boolean values
gap> IsBlist(17);
false # is not even a list

29.4 SizeBlist

SizeBlist(blist)

SizeBlist returns the number of entries of the boolean list blist that are true. This is the
size of the subset represented by the boolean list blist .

gap> SizeBlist([true, true, false, false]);
2

29.5. ISSUBSETBLIST 613

29.5 IsSubsetBlist

IsSubsetBlist(blist1, blist2)

IsSubsetBlist returns true if the boolean list blist2 is a subset of the boolean list list1 ,
which must have equal length, and false otherwise. blist2 is a subset if blist1 if blist1[i]
= blist1[i] or blist2[i] for all i .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IsSubsetBlist(blist1, blist2);
false
gap> blist2 := [true, false, false, false];;
gap> IsSubsetBlist(blist1, blist2);
true

29.6 UnionBlist

UnionBlist(blist1, blist2..)
UnionBlist(list)

In the first form UnionBlist returns the union of the boolean lists blist1 , blist2 , etc., which
must have equal length. The union is a new boolean list such that union[i] = blist1[i]
or blist2[i] or ...

In the second form list must be a list of boolean lists blist1 , blist2 , etc., which must have
equal length, and Union returns the union of those boolean list.

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> UnionBlist(blist1, blist2);
[true, true, true, false]

Note that UnionBlist is implemented in terms of the procedure UniteBlist (see 29.9).

29.7 IntersectionBlist

IntersectionBlist(blist1, blist2..)
IntersectionBlist(list)

In the first form IntersectionBlist returns the intersection of the boolean lists blist1 ,
blist2 , etc., which must have equal length. The intersection is a new boolean list such
that inter[i] = blist1[i] and blist2[i] and ...

In the second form list must be a list of boolean lists blist1 , blist2 , etc., which must have
equal length, and IntersectionBlist returns the intersection of those boolean lists.

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IntersectionBlist(blist1, blist2);
[true, false, false, false]

Note that IntersectionBlist is implemented in terms of the procedure IntersectBlist
(see 29.10).

614 CHAPTER 29. BOOLEAN LISTS

29.8 DifferenceBlist

DifferenceBlist(blist1, blist2)

DifferenceBlist returns the asymmetric set difference of the two boolean lists blist1 and
blist2 , which must have equal length. The asymmetric set difference is a new boolean
list such that union[i] = blist1[i] and not blist2[i].

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> DifferenceBlist(blist1, blist2);
[false, true, false, false]

Note that DifferenceBlist is implemented in terms of the procedure SubtractBlist (see
29.11).

29.9 UniteBlist

UniteBlist(blist1, blist2)

UniteBlist unites the boolean list blist1 with the boolean list blist2 , which must have the
same length. This is equivalent to assigning blist1[i] := blist1[i] or blist2[i] for all i .
UniteBlist returns nothing, it is only called to change blist1 .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> UniteBlist(blist1, blist2);
gap> blist1;
[true, true, true, false]

The function UnionBlist (see 29.6) is the nondestructive counterpart to the procedure
UniteBlist.

29.10 IntersectBlist

IntersectBlist(blist1, blist2)

IntersectBlist intersects the boolean list blist1 with the boolean list blist2 , which must
have the same length. This is equivalent to assigning blist1[i]:= blist1[i] and blist2[i]
for all i . IntersectBlist returns nothing, it is only called to change blist1 .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IntersectBlist(blist1, blist2);
gap> blist1;
[true, false, false, false]

The function IntersectionBlist (see 29.7) is the nondestructive counterpart to the pro-
cedure IntersectBlist.

29.11 SubtractBlist

SubtractBlist(blist1, blist2)

29.12. MORE ABOUT BOOLEAN LISTS 615

SubtractBlist subtracts the boolean list blist2 from the boolean list blist1 , which must
have equal length. This is equivalent to assigning blist1[i] := blist1[i] and not blist2[i]
for all i . SubtractBlist returns nothing, it is only called to change blist1 .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> SubtractBlist(blist1, blist2);
gap> blist1;
[false, true, false, false]

The function DifferenceBlist (see 29.8) is the nondestructive counterpart to the procedure
SubtractBlist.

29.12 More about Boolean Lists

In the previous section (see 29) we defined a boolean list as a list that has no holes and
contains only true and false. There is a special internal representation for boolean lists
that needs only 1 bit for every entry. This bit is set if the entry is true and reset if the
entry is false. This representation is of course much more compact than the ordinary
representation of lists, which needs 32 bits per entry.

Not every boolean list is represented in this compact representation. It would be too much
work to test every time a list is changed, whether this list has become a boolean list. This
section tells you under which circumstances a boolean list is represented in the compact
representation, so you can write your functions in such a way that you make best use of the
compact representation.

The results of BlistList, UnionBlist, IntersectionBlist and DifferenceBlist are
known to be boolean lists by construction, and thus are represented in the compact repre-
sentation upon creation.

If an argument of IsBlist, IsSubsetBlist, ListBlist, UnionBlist, IntersectionBlist,
DifferenceBlist, UniteBlist, IntersectBlist and SubtractBlist is a list represented
in the ordinary representation, it is tested to see if it is in fact a boolean list. If it is not,
IsBlist returns false and the other functions signal an error. If it is, the representation
of the list is changed to the compact representation.

If you change a boolean list that is represented in the compact representation by assignment
(see 27.6) or Add (see 27.7) in such a way that the list remains a boolean list it will remain
represented in the compact representation. Note that changing a list that is not represented
in the compact representation, whether it is a boolean list or not, in such a way that the
resulting list becomes a boolean list, will never change the representation of the list.

616 CHAPTER 29. BOOLEAN LISTS

Chapter 30

Strings and Characters

A character is simply an object in GAP that represents an arbitrary character from the
character set of the operating system. Character literals can be entered in GAP by enclosing
the character in singlequotes ’.

gap> ’a’;
’a’
gap> ’*’;
’*’

A string is simply a dense list of characters. Strings are used mainly in filenames and
error messages. A string literal can either be entered simply as the list of characters or by
writing the characters between doublequotes ". GAP will always output strings in the
latter format.

gap> s1 := [’H’,’a’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’,’.’];
"Hallo world."
gap> s2 := "Hallo world.";
"Hallo world."
gap> s1 = s2;
true
gap> s3 := "";
"" # the empty string
gap> s3 = [];
true

Note that a string is just a special case of a list. So everything that is possible for lists
(see 27) is also possible for strings. Thus you can access the characters in such a string (see
27.4), test for membership (see 27.14), etc. You can even assign to such a string (see 27.6).
Of course unless you assign a character in such a way that the list stays dense, the resulting
list will no longer be a string.

gap> Length(s2);
12
gap> s2[2];
’a’

617

618 CHAPTER 30. STRINGS AND CHARACTERS

gap> ’e’ in s2;
false
gap> s2[2] := ’e’;; s2;
"Hello world."

If a string is displayed as result of an evaluation (see 3.1), it is displayed with enclosing
doublequotes. However, if a string is displayed by Print, PrintTo, or AppendTo (see 3.14,
3.15, 3.16) the enclosing doublequotes are dropped.

gap> s2;
"Hello world."
gap> Print(s2);
Hello world.gap>

There are a number of special character sequences that can be used between the single
quote of a character literal or between the doublequotes of a string literal to specify char-
acters, which may otherwise be inaccessible. They consist of two characters. The first is a
backslash \. The second may be any character. The meaning is given in the following list

n newline character. This is the character that, at least on UNIX systems, separates
lines in a text file. Printing of this character in a string has the effect of moving the
cursor down one line and back to the beginning of the line.

" doublequote character. Inside a string a doublequote must be escaped by the
backslash, because it is otherwise interpreted as end of the string.

’ singlequote character. Inside a character a singlequote must escaped by the
backslash, because it is otherwise interpreted as end of the character.

\ backslash character. Inside a string a backslash must be escaped by another
backslash, because it is otherwise interpreted as first character of an escape sequence.

b backspace character. Printing this character should have the effect of moving
the cursor back one character. Whether it works or not is system dependent and
should not be relied upon.

r carriage return character. Printing this character should have the effect of
moving the cursor back to the beginning of the same line. Whether this works or not
is again system dependent.

c flush character. This character is not printed. Its purpose is to flush the output
queue. Usually GAP waits until it sees a newline before it prints a string. If you want
to display a string that does not include this character use \c.

other For any other character the backslash is simply ignored.

Again, if the line is displayed as result of an evaluation, those escape sequences are displayed
in the same way that they are input. They are displayed in their special way only by Print,
PrintTo, or AppendTo.

gap> "This is one line.\nThis is another line.\n";
"This is one line.\nThis is another line.\n"
gap> Print(last);
This is one line.
This is another line.

It is not allowed to enclose a newline inside the string. You can use the special character
sequence \n to write strings that include newline characters. If, however, a string is too

30.1. STRING 619

long to fit on a single line it is possible to continue it over several lines. In this case the last
character of each line, except the last must be a backslash. Both backslash and newline are
thrown away. Note that the same continuation mechanism is available for identifiers and
integers.

gap> "This is a very long string that does not fit on a line \
gap> and is therefore continued on the next line.";
"This is a very long string that does not fit on a line and is therefo\
re continued on the next line."
note that the output is also continued, but at a different place

This chapter contains sections describing the function that creates the printable represen-
tation of a string (see 30.1), the functions that create new strings (see 30.2, 30.3), the
functions that tests if an object is a string (see 30.5), the string comparisons (see 30.4), and
the function that returns the length of a string (see 30.6).

30.1 String

String(obj)
String(obj, length)

String returns a representation of the obj , which may be an object of arbitrary type, as a
string. This string should approximate as closely as possible the character sequence you see
if you print obj .

If length is given it must be an integer. The absolute value gives the minimal length of the
result. If the string representation of obj takes less than that many characters it is filled
with blanks. If length is positive it is filled on the left, if length is negative it is filled on the
right.

gap> String(123);
"123"
gap> String([1,2,3]);
"[1, 2, 3]"
gap> String(123, 10);
" 123"
gap> String(123, -10);
"123 "
gap> String(123, 2);
"123"

30.2 ConcatenationString

ConcatenationString(string1, string2)

ConcatenationString returns the concatenation of the two strings string1 and string2 .
This is a new string that starts with the characters of string1 and ends with the characters
of string2 .

gap> ConcatenationString("Hello ", "world.\n");
"Hello world.\n"

Because strings are now lists, Concatenation (see 27.19) does exactly the right thing, and
the function ConcatenationString is obsolete.

620 CHAPTER 30. STRINGS AND CHARACTERS

30.3 SubString

SubString(string, from, to)

SubString returns the substring of the string string that begins at position from and con-
tinues to position to. The characters at these two positions are included. Indexing is done
with origin 1, i.e., the first character is at position 1. from and to must be integers and are
both silently forced into the range 1..LengthString(string) (see 30.6). If to is less than
from the substring is empty.

gap> SubString("Hello world.\n", 1, 5);
"Hello"
gap> SubString("Hello world.\n", 5, 1);
""

Because strings are now lists, substrings can also be extracted with string{[from..to]} (see
27.4). SubString forces from and to into the range 1..Length(string), which the above
does not, but apart from that SubString is obsolete.

30.4 Comparisons of Strings

string1 = string2 , string1 <> string2

The equality operator = evaluates to true if the two strings string1 and string2 are equal
and false otherwise. The inequality operator <> returns true if the two strings string1
and string2 are not equal and false otherwise.

gap> "Hello world.\n" = "Hello world.\n";
true
gap> "Hello World.\n" = "Hello world.\n";
false # string comparison is case sensitive
gap> "Hello world." = "Hello world.\n";
false # the first string has no newline
gap> "Goodbye world.\n" = "Hello world.\n";
false
gap> [’a’, ’b’] = "ab";
true

string1 < string2 , string1 <= string2 , string1 > string2 , string1 => string2

The operators <, <=, >, and => evaluate to true if the string string1 is less than, less than
or equal to, greater than, greater than or equal to the string string2 respectively. The
ordering of strings is lexicographically according to the order implied by the underlying,
system dependent, character set.

You can also compare objects of other types, for example integers or permutations with
strings. As strings are dense character lists they compare with other objects as lists do, i.e.,
they are never equal to those objects, records (see 45) are greater than strings, and objects
of every other type are smaller than strings.

gap> "Hello world.\n" < "Hello world.\n";
false # the strings are equal
gap> "Hello World.\n" < "Hello world.\n";
true # in ASCII uppercase letters come before lowercase letters

30.5. ISSTRING 621

gap> "Hello world." < "Hello world.\n";
true # prefixes are always smaller
gap> "Goodbye world.\n" < "Hello world.\n";
true # G comes before H, in ASCII at least

30.5 IsString

IsString(obj)

IsString returns true if the object obj , which may be an object of arbitrary type, is a
string and false otherwise. Will cause an error if obj is an unbound variable.

gap> IsString("Hello world.\n");
true
gap> IsString("123");
true
gap> IsString(123);
false
gap> IsString([’1’, ’2’, ’3’]);
true
gap> IsString([’1’, ’2’, , ’4’]);
false # strings must be dense
gap> IsString([’1’, ’2’, 3]);
false # strings must only contain characters

30.6 LengthString

LengthString(string)

LengthString returns the length of the string string . The length of a string is the number
of characters in the string. Escape sequences (see 30) are just a two character representation
for a single character, and are thus counted as single character by LengthString.

gap> LengthString("");
0
gap> LengthString("Hello");
5
gap> LengthString("Hello world.\n");
13

Because strings are now lists, Length (see 27.5) does exactly the right thing, and the function
LengthString is obsolete.

622 CHAPTER 30. STRINGS AND CHARACTERS

Chapter 31

Ranges

A range is a dense list of integers, such that the difference between consecutive elements is
a nonzero constant. Ranges can be abbreviated with the syntactic construct [first, second
.. last] or, if the difference between consecutive elements is 1, as [first .. last].

If first > last , [first,second..last] is the empty list, which by definition is also a range. If
first = last , [first,second..last] is a singleton list, which is a range too. Note that last -
first must be divisible by the increment second - first , otherwise an error is signalled.

Note that a range is just a special case of a list. So everything that is possible for lists (see
27) is also possible for ranges. Thus you can access elements in such a range (see 27.4), test
for membership (see 27.14), etc. You can even assign to such a range (see 27.6). Of course,
unless you assign last + second-first to the entry range[Length(range)+1], the resulting
list will no longer be a range.

Most often ranges are used in connection with the for-loop (see 2.17). Here the construct
for var in [first..last] do statements od replaces the
for var from first to last do statements od, which is more usual in other programming
languages.

Note that a range is at the same time also a set (see 28), because it contains no holes or
duplicates and is sorted, and also a vector (see 32), because it contains no holes and all
elements are integers.

gap> r := [10..20];
[10 .. 20]
gap> Length(r);
11
gap> r[3];
12
gap> 17 in r;
true
gap> r[12] := 25;; r;
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25]
gap> r := [1,3..17];
[1, 3 .. 17]

623

624 CHAPTER 31. RANGES

gap> Length(r);
9
gap> r[4];
7
gap> r := [0,-1..-9];
[0, -1 .. -9]
gap> r[5];
-4
gap> r := [1, 4 .. 32];
Error, Range: <high>-<low> must be divisible by <inc>
gap> s := [];; for i in [10..20] do Add(s, i^2); od; s;
[100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

The first section in this chapter describes the function that tests if a list is a range (see
31.1).
The other section tells you more about the internal representation of ranges (see 31.2).

31.1 IsRange

IsRange(obj)

IsRange returns true if obj , which may be an object of any type, is a range and false
otherwise. A range is a list without holes such that the elements are integers with a constant
increment. Will cause an error if obj is an unassigned variable.

gap> IsRange([1,2,3]);
true # this list is a range
gap> IsRange([7,5,3,1]);
true # this list is a range
gap> IsRange([1,2,4,5]);
false # this list is a set and a vector, but not a range
gap> IsRange([1,,3,,5,,7]);
false # this list contains holes
gap> IsRange(1);
false # is not even a list
gap> IsRange([]);
true # the empty list is a range by definition
gap> IsRange([1]);
true # singleton lists are a range by definition too

31.2 More about Ranges

For some lists the kernel knows that they are in fact ranges. Those lists are represented
internally in a compact way instead of the ordinary way. This is important since this
representation needs only 12 bytes for the entire list while the ordinary representation needs
4length bytes.
Note that a list that is represented in the ordinary way might still be a range. It is just
that GAP does not know this. This section tells you under which circumstances a range
is represented in the compact way, so you can write your program in such a way that you
make best use of this compact representation for ranges.

31.2. MORE ABOUT RANGES 625

Lists created by the syntactic construct [first, second .. last] are of course known to
be ranges and are represented in the compact way.

If you call IsRange for a list represented the ordinary way that is indeed a range, IsRange
will note this, change the representation from the ordinary to the compact representation,
and then return true;

If you change a range that is represented in the compact way, by assignment, Add or Append,
the range will be converted to the ordinary representation, even if the change is such that
the resulting list is still a proper range.

Suppose you have built a proper range in such a way that it is represented in the ordinary
way and that you now want to convert it to the compact representation to save space.
Then you should call IsRange with that list as an argument. If it is indeed a proper range,
IsRange will convert it to the compact representation. You can think of the call to IsRange
as a hint to GAP that this list is a proper range.

626 CHAPTER 31. RANGES

Chapter 32

Vectors

A important concept in algebra is the vector space over a field F . A vector space V is a
set of vectors, for which an addition u + v and a multiplication by scalars, i.e., elements
from F , sv must be defined. A base of V is a list of vectors, such that every vector in V
can be uniquely written as linear combination of the base vectors. If the base if finite, its
size is called the dimension of V . Using a base it can be shown that V is isomorphic to
the set n-tuples of elements with the componentwise addition and multiplication.

This comment suggests the representation that is actually used in GAP. A GAP vector is a
list without holes whose elements all come from a common field. We call the length of the
list the dimension of the vector. This is a little bit lax, because the dimension is a property
of the vector space, not of the vector, but should seldom cause confusion.

The first possibility for this field are the rationals (see 12). We call a list without holes
whose elements are all rationals a rational vector, which is a bit lax too, but should again
cause no confusion. For example [1/2, 0, -1/3, 2] is a rational vector of dimension 4.

The second possibility are cyclotomics (see 13). Note that the rationals are the prime field of
cyclotomic fields and therefore rational vectors are just a special case of cyclotomic vectors.
An example of a cyclotomic vector is [E(3)+E(3)^2, 1, E(15)].

Third the common field may be a finite field (see 18). Note that it is not enough that
all elements are finite field elements of the same characteristic, the common finite field
containing all elements must be representable in GAP, i.e., must have at most 216 elements.
An example of such a vector over the finite field GF (34) with 81 elements is [Z(3^4)^3,
Z(3^2)^5, Z(3^4)^11].

Finally a list all of whose elements are records is also considered a vector. In that case the
records should all have an operations record with the necessary functions +, -, *, ^. This
allows for vectors over library and/or user defined fields (or rings) such as a polynomial ring
(see 19).

The first section in this chapter describes the operations applicable to vectors (see 32.1).

The next section describes the function that tests if an object is a vector (see 32.2).

The next section describes the function that returns a canonical multiple of a vector (see
32.3).

627

628 CHAPTER 32. VECTORS

The last section tells you more about the internal representation of vectors (see 32.4).

Because vectors are just a special case of lists, all the operations and functions for lists are
applicable to vectors also (see chapter 27). This especially includes accessing elements of
a vector (see 27.4), changing elements of a vector (see 27.6), and comparing vectors (see
27.12).

Vectorspaces are a special category of domains and are described by vectorspace records
(see chapter 9).

Vectors play an important role for matrices (see chapter 34), which are implemented as lists
of vectors.

32.1 Operations for Vectors

vec1 + vec2

In this form the addition operator + evaluates to the sum of the two vectors vec1 and vec2 ,
which must have the same dimension and lie in a common field. The sum is a new vector
where each entry is the sum of the corresponding entries of the vectors. As an exception it
is also possible to add an integer vector to a finite field vector, in which case the integers
are interpreted as scalar * GF.one.

scalar + vec
vec + scalar

In this form + evaluates to the sum of the scalar scalar and the vector vec, which must lie
in a common field. The sum is a new vector where each entry is the sum of the scalar and
the corresponding entry of the vector. As an exception it is also possible to add an integer
scalar to a finite field vector, in which case the integer is interpreted as scalar * GF.one.

gap> [1, 2, 3] + [1/2, 1/3, 1/4];
[3/2, 7/3, 13/4]
gap> [1/2, 3/2, 1/2] + 1/2;
[1, 2, 1]

vec1 - vec2
scalar - vec
vec - scalar

The difference operator - returns the componentwise difference of its two operands and is
defined subject to the same restrictions as +.

gap> [1, 2, 3] - [1/2, 1/3, 1/4];
[1/2, 5/3, 11/4]
gap> [1/2, 3/2, 1/2] - 1/2;
[0, 1, 0]

vec1 * vec2

In this form the multiplication operator * evaluates to the product of the two vectors vec1
and vec2 , which must have the same dimension and lie in a common field. The product is
the sum of the products of the corresponding entries of the vectors. As an exception it is
also possible to multiply an integer vector to a finite field vector, in which case the integers
are interpreted as scalar * GF.one.

32.2. ISVECTOR 629

scalar * vec
vec * scalar

In this form * evaluates to the product of the scalar scalar and the vector vec, which must
lie in a common field. The product is a new vector where each entry is the product of
the scalar and the corresponding entry of the vector. As an exception it is also possible to
multiply an integer scalar to a finite field vector, in which case the integer is interpreted as
scalar *GF.one.

gap> [1, 2, 3] * [1/2, 1/3, 1/4];
23/12
gap> [1/2, 3/2, 1/2] * 2;
[1, 3, 1]

Further operations with vectors as operands are defined by the matrix operations (see 34.1).

32.2 IsVector

IsVector(obj)

IsVector returns true if obj , which may be an object of arbitrary type, is a vector and
false else. A vector is a list without holes, whose elements all come from a common field.

gap> IsVector([0, -3, -2, 0, 6]);
true
gap> IsVector([Z(3^4)^3, Z(3^2)^5, Z(3^4)^13]);
true
gap> IsVector([0, Z(2^3)^3, Z(2^3)]);
false # integers are not finite field elements
gap> IsVector([, 2, 3,, 5,, 7]);
false # list that have holes are not vectors
gap> IsVector(0);
false # not even a list

32.3 NormedVector

NormedVector(vec)

NormedVector returns the scalar multiple of vec such that the first nonzero entry of vec is
the one from the field over which the vector is defined. If vec contains only zeroes a copy of
it is returned.

gap> NormedVector([0, -3, -2, 0, 6]);
[0, 1, 2/3, 0, -2]
gap> NormedVector([0, 0]);
[0, 0]
gap> NormedVector([Z(3^4)^3, Z(3^2)^5, Z(3^4)^13]);
[Z(3)^0, Z(3^4)^47, Z(3^2)]

32.4 More about Vectors

In the first section of this chapter we defined a vector as a list without holes whose elements
all come from a common field. This representation is quite nice to use. However, suppose

630 CHAPTER 32. VECTORS

that GAP would have to check that a list is a vector every time this vector appears as
operand in a addition or multiplication. This would be quite wasteful.

To avoid this a list that is a vector may, but need not, have an internal flag set that tells
the operations that this list is indeed a vector. Then this operations do not have to check
this operand and can perform the operation right away. This section tells you when a vector
obtains this flag, so you can write your functions in such a way that you make best use of
this feature.

The results of vector operations, i.e., binary operations that involve vectors, are known by
construction to be vectors, and thus have the flag set upon creation.

If the operand of one of the binary operation is a list that does not yet have the flag set,
those operations will check that this operand is indeed a vector and set the flag if it is. If it
is not a vector and not a matrix an error is signalled.

If the argument to IsVector is a list that does not yet have this flag set, IsVector will
test if all elements come from a common field. If they do, IsVector will set the flag. Thus
on the one hand IsVector is a test whether the argument is a vector. On the other hand
IsVector can be used as a hint to GAP that a certain list is indeed a vector.

If you change a vector, that does have this flag set, by assignment, Add, or Append, the
vectors will loose its flag, even if the change is such that the resulting list is still a vector.
However if the vector is a vector over a finite field and you assign an element from the same
finite field the vector will keep its flag. Note that changing a list that is not a vector will
never set the flag, even if the resulting list is a vector. Such a vector will obtain the flag
only if it appears as operand in a binary operation, or is passed to IsVector.

Vectors over finite fields have one additional feature. If they are known to be vectors, not
only do they have the flag set, but also are they represented differently. This representation
is much more compact. Instead of storing every element separately and storing for every
element separately in which field it lies, the field is only stored once. This representation
takes up to 10 times less memory.

Chapter 33

Row Spaces

This chapter consists essentially of four parts, according to the four different types of data
structures that are described, after the usual brief discussion of the objects (see 33.1, 33.2,
33.3, 33.4, 33.5).

The first part introduces row spaces, and their operations and functions (see 33.6, 33.7, 33.8,
33.9, 33.10, 33.11, 33.12, 33.13).

The second part introduces bases for row spaces, and their operations and functions (see
33.14, 33.15, 33.16, 33.17, 33.18, 33.19, 33.20, 33.21).

The third part introduces row space cosets, and their operations and functions (see 33.22,
33.23, 33.24).

The fourth part introduces quotient spaces of row spaces, and their operations and functions
(see 33.25, 33.26).

The obligatory last sections describe the details of the implementation of the data structures
(see 33.27, 33.28, 33.29, 33.30).

Note: The current implementation of row spaces provides no homomorphisms of row spaces
(linear maps), and also quotient spaces of quotient spaces are not supported.

33.1 More about Row Spaces

A row space is a vector space (see chapter 9), whose elements are row vectors, that is, lists
of elements in a common field.

Note that for a row space V over the field F necessarily the characteristic of F is the same
as the characteristic of the vectors in V . Furthermore at the moment the field F must
contain the field spanned by all the elements in vectors of V , since in many computations
vectors are normed, that is, divided by their first nonzero entry.

The implementation of functions for these spaces and their elements uses the well-known
linear algebra methods, such as Gaussian elimination, and many functions delegate the
work to functions for matrices, e.g., a basis of a row space can be computed by performing
Gaussian elimination to the matrix formed by the list of generators. Thus in a sense, a row
space in GAP is nothing but a GAP object that knows about the interpretation of a matrix
as a generating set, and that knows about the functions that do the work.

631

632 CHAPTER 33. ROW SPACES

Row spaces are constructed using 33.6 RowSpace, full row spaces can also be constructed by
F ^ n, for a field F and a positive integer n.

The zero element of a row space V in GAP is not necessarily stored in the row space
record. If necessary, it can be computed using Zero(V).

The generators component may contain zero vectors, so no function should expect a gen-
erator to be nonzero.

For the usual concept of substructures and parent structures see 33.5.

See 33.7 and 33.8 for an overview of applicable operators and functions, and 33.27 for details
of the implementation.

33.2 Row Space Bases

Many computations with row spaces require the computation of a basis (which will always
mean a vector space basis in GAP), such as the computation of the dimension, or efficient
membership test for the row space.

Most of these computations do not rely on special properties of the chosen basis. The
computation of coefficients lists, however, is basis dependent. A natural way to distinguish
these two situations is the following.

For basis independent questions the row space is allowed to compute a suitable basis, and
may store bases. For example the dimension of the space V can be computed this way using
Dimension(V). In such situations the component V .basis is used. The value of this
component depends on how it was constructed, so no function that accesses this component
should assume special properties of this basis.

On the other hand, the computation of coefficients of a vector v with respect to a basis B of V
depends on this basis, so you have to call Coefficients(B, v), and not Coefficients(
V , v).

It should be mentioned that there are two types of row space bases. A basis of the first
type is semi-echelonized (see 33.18 for the definition and examples), its structure allows
to perform efficient calculations of membership test and coefficients.

A basis of the second type is arbitrary, that is, it has no special properties. There are two
ways to construct such a (user-defined) basis that is not necessarily semi-echelonized. The
first is to call RowSpace with the optional argument "basis"; this means that the generators
are known to be linearly independent (see 33.6). The second way is to call Basis with two
arguments (see 33.16). The computation of coefficients with respect to an arbitrary basis
is performed by computing a semi-echelonized basis, delegating the task to this basis, and
then performing the base change.

The functions that are available for row space bases are Coefficients (see 33.14) and
SiftedVector (see 33.15).

The several available row space bases are described in 33.16, 33.17, and 33.18. For details
of the implementation see 33.28.

33.3 Row Space Cosets

Let V be a vector space, and U a subspace of V . The set v + U = {v + u;u ∈ U} is called
a coset of U in V .

33.4. QUOTIENT SPACES 633

In GAP, cosets are of course domains that can be formed using the ’+’ operator, see 33.22
and 33.23 for an overview of applicable operators and functions, and 33.29 for details of the
implementation.

A coset C = v+U is described by any representative v and the space U . Equal cosets may
have different representatives. A canonical representative of the coset C can be computed
using CanonicalRepresentative(C), it does only depend on C, especially not on the
basis of U .

Row spaces cosets can be regarded as elements of quotient spaces (see 33.4).

33.4 Quotient Spaces

Let V be a vector space, and U a subspace of V . The set {v + U ; v ∈ V } is again a vector
space, the quotient space (or factor space) of V modulo U .

By definition of row spaces, a quotient space is not a row space. (One reason to describe
quotient spaces here is that for general vector spaces at the moment no factor structures
are supported.)

Quotient spaces in GAP are formed from two spaces using the / operator. See the sections
33.25 and 33.26 for an overview of applicable operators and functions, and 33.30 for details
of the implementation.

Bases for Quotient Spaces of Row Spaces

A basis B of a quotient V/U for row spaces V and U is best described by bases of V and U .
If B is a basis without special properties then it will delegate the work to a semi-echelonized
basis. The concept of semi-echelonized bases makes sense also for quotient spaces of row
spaces since for any semi-echelonized basis of U the set S of pivot columns is a subset of the
set of pivot columns of a semi-echelonized basis of V . So the cosets v + U for basis vectors
v with pivot column not in S form a semi-echelonized basis of V/U . The canonical basis
of V/U is the semi-echelonized basis derived in that way from the canonical basis of V (see
33.17).

See 33.26 for details about the bases.

33.5 Subspaces and Parent Spaces

The concept described in this section is essentially the same as the concept of parent groups
and subgroups (see 7.6).

(The section should be moved to chapter 9, but for general vector spaces the concept does
not yet apply.)

Every row space U is either constructed as subspace of an existing space V , for example
using 33.10 Subspace, or it is not.

In the latter case the space is called a parent space, in the former case V is called the
parent of U .

One can only form sums of subspaces of the same parent space, form quotient spaces only
for spaces with same parent, and cosets v+U only for representatives v in the parent of U .

634 CHAPTER 33. ROW SPACES

Parent(V)
returns the parent space of the row space V ,

IsParent(V)
returns true if the row space V is a parent space, and false otherwise.

See 33.11, 33.12 for conversion functions.

33.6 RowSpace

RowSpace(F, generators)

returns the row space that is generated by the vectors generators over the field F . The
elements in generators must be GAP vectors.

RowSpace(F, generators, zero)

Whenever the list generators is empty, this call of RowSpace has to be used, with zero the
zero vector of the space.

RowSpace(F, generators, "basis")

also returns the F -space generated by generators. When the space is constructed in this
way, the vectors generators are assumed to form a basis, and this is used for example when
Dimension is called for the space.

It is not checked that the vectors are really linearly independent.

RowSpace(F, dimension)
F ^ n

return the full row space of dimension n over the field F . The elements of this row space
are all the vectors of length n with entries in F .

gap> v1:= RowSpace(GF(2), [[1, 1], [0, 1]] * Z(2));
RowSpace(GF(2), [[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]])
gap> v2:= RowSpace(GF(2), [], [0, 0] * Z(2));
RowSpace(GF(2), [[0*Z(2), 0*Z(2)]])
gap> v3:= RowSpace(GF(2), [[1, 1], [0, 1]] * Z(2), "basis");
RowSpace(GF(2), [[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]])
gap> v4:= RowSpace(GF(2), 2);
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> v5:= GF(2) ^ 2 ;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> v3 = v4;
true

Note that the list of generators may contain zero vectors.

33.7 Operations for Row Spaces

Comparisons of Row Spaces

33.8. FUNCTIONS FOR ROW SPACES 635

V = W
returns true if the two row spaces V , W are equal as sets, and false otherwise.

V < W
returns true if the row space V is smaller than the row space W , and false otherwise.
The first criteria of this ordering are the comparison of the fields and the dimensions,
row spaces over the same field and of same dimension are compared by comparison
of the reversed canonical bases (see 33.17).

Arithmetic Operations for Row Spaces

V + W
returns the sum of the row spaces V and W , that is, the row space generated by V
and W . This is computed using the Zassenhaus algorithm.

V / U
returns the quotient space of V modulo its subspace U (see 33.4).

gap> v:= GF(2)^2; v.name:= "v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> s:= Subspace(v, [[1, 1] * Z(2)]);
Subspace(v, [[Z(2)^0, Z(2)^0]])
gap> t:= Subspace(v, [[0, 1] * Z(2)]);
Subspace(v, [[0*Z(2), Z(2)^0]])
gap> s = t;
false
gap> s < t;
false
gap> t < s;
true
gap> u:= s+t;
Subspace(v, [[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]])
gap> u = v;
true
gap> f:= u / s;
Subspace(v, [[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]]) /
[[Z(2)^0, Z(2)^0]]

33.8 Functions for Row Spaces

The following functions are overlaid in the operations record of row spaces.

The set theoretic functions

Closure, Elements, Intersection, Random, Size.

Intersection(V , W)
returns the intersection of the two row spaces V and W that is computed using the
Zassenhaus algorithm.

The vector space specific functions

Base(V)
returns the list of vectors of the canonical basis of the row space V (see 33.17).

636 CHAPTER 33. ROW SPACES

Cosets(V , U)
returns the list of cosets of the subspace U in V , as does Elements(V / U).

Dimension(V)
returns the dimension of the row space. For this, a basis of the space is computed if
not yet known.

Zero(V)
returns the zero element of the row space V (see 33.1).

33.9 IsRowSpace

IsRowSpace(obj)

returns true if obj , which can be an object of arbitrary type, is a row space and false
otherwise.

gap> v:= GF(2) ^ 2;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> IsRowSpace(v);
true
gap> IsRowSpace(v / [v.generators[1]]);
false

33.10 Subspace

Subspace(V , gens)

returns the subspace of the row space V that is generated by the vectors in the list gens.

gap> v:= GF(3)^2; v.name:= "v";;
RowSpace(GF(3), [[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]])
gap> s:= Subspace(v, [[1, -1] *Z(3)^0]);
Subspace(v, [[Z(3)^0, Z(3)]])

33.11 AsSubspace

AsSubspace(V ,U)

returns the row space U , viewed as a subspace of the rows space V . For that, V must be a
parent space.

gap> v:= GF(2)^2; v.name:="v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> u:= RowSpace(GF(2), [[1, 1] * Z(2)]);
RowSpace(GF(2), [[Z(2)^0, Z(2)^0]])
gap> w:= AsSubspace(v, u);
Subspace(v, [[Z(2)^0, Z(2)^0]])
gap> w = u;
true

33.12. ASSPACE 637

33.12 AsSpace

AsSpace(U)

returns the subspace U as a parent space.

gap> v:= GF(2)^2; v.name:="v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> u:= Subspace(v, [[1, 1] * Z(2)]);
Subspace(v, [[Z(2)^0, Z(2)^0]])
gap> w:= AsSpace(u);
RowSpace(GF(2), [[Z(2)^0, Z(2)^0]])
gap> w = u;
true

33.13 NormedVectors

NormedVectors(V)

returns the set of those vectors in the row space V for that the first nonzero entry is the
identity of the underlying field.

gap> v:= GF(3)^2;
RowSpace(GF(3), [[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]])
gap> NormedVectors(v);
[[0*Z(3), Z(3)^0], [Z(3)^0, 0*Z(3)], [Z(3)^0, Z(3)^0],
[Z(3)^0, Z(3)]]

33.14 Coefficients for Row Space Bases

Coefficients(B, v)

returns the coefficients vector of the vector v with respect to the basis B (see 33.2) of the
vector space V , if v is an element of V . Otherwise false is returned.

gap> v:= GF(3)^2; v.name:= "v";;
RowSpace(GF(3), [[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]])
gap> b:= Basis(v);
Basis(v, [[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]])
gap> Coefficients(b, [Z(3), Z(3)]);
[Z(3), Z(3)]
gap> Coefficients(b, [Z(3), Z(3)^2]);
[Z(3), Z(3)^0]

33.15 SiftedVector

SiftedVector(B, v)

returns the residuum of the vector v with respect to the basis B of the vector space V . The
exact meaning of this depends on the special properties of B .

But in general this residuum is obtained on subtracting appropriate multiples of basis vec-
tors, and v is contained in V if and only if SiftedVector(B, v) is the zero vector of
V .

638 CHAPTER 33. ROW SPACES

gap> v:= GF(3)^2; v.name:= "v";;
RowSpace(GF(3), [[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]])
gap> s:= Subspace(v, [[1, -1] *Z(3)^0]); s.name:= "s";;
Subspace(v, [[Z(3)^0, Z(3)]])
gap> b:= Basis(s);
SemiEchelonBasis(s, [[Z(3)^0, Z(3)]])
gap> SiftedVector(b, [Z(3), 0*Z(3)]);
[0*Z(3), Z(3)]

33.16 Basis

Basis(V)
Basis(V , vectors)

Basis(V) returns a basis of the row space V . If the component V .canonicalBasis or
V .semiEchelonBasis was bound before the first call to Basis for V then one of these
bases is returned. Otherwise a semi-echelonized basis (see 33.2) is computed. The basis is
stored in V .basis.

Basis(V , vectors) returns the basis of V that consists of the vectors in the list vectors.
In the case that V .basis was not bound before the call the basis is stored in this component.

Note that it is not necessarily checked whether vectors is really linearly independent.

gap> v:= GF(2)^2; v.name:= "v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> b:= Basis(v, [[1, 1], [1, 0]] * Z(2));
Basis(v, [[Z(2)^0, Z(2)^0], [Z(2)^0, 0*Z(2)]])
gap> Coefficients(b, [0, 1] * Z(2));
[Z(2)^0, Z(2)^0]
gap> IsSemiEchelonBasis(b);
false

33.17 CanonicalBasis

CanonicalBasis(V)

returns the canonical basis of the row space V . This is a special semi-echelonized basis
(see 33.18), with the additional properties that for j > i the position of the pivot of row j
is bigger than that of the pivot of row i, and that the pivot columns contain exactly one
nonzero entry.

gap> v:= GF(2)^2; v.name:= "v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> cb:= CanonicalBasis(v);
CanonicalBasis(v)
gap> cb.vectors;
[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]

The canonical basis is obtained on applying a full Gaussian elimination to the generators of
V , using 34.13 BaseMat. If the component V .semiEchelonBasis is bound then this basis
is used to compute the canonical basis, otherwise TriangulizeMat is called.

33.18. SEMIECHELONBASIS 639

33.18 SemiEchelonBasis

SemiEchelonBasis(V)
SemiEchelonBasis(V , vectors)

returns a semi-echelonized basis of the row space V . A basis is called semi-echelonized if
the first non-zero element in every row is one, and all entries exactly below these elements
are zero.

If a second argument vectors is given, these vectors are taken as basis vectors. Note that if
the rows of vectors do not form a semi-echelonized basis then an error is signalled.

gap> v:= GF(2)^2; v.name:= "v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> SemiEchelonBasis(v);
SemiEchelonBasis(v, [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> b:= Basis(v, [[1, 1], [0, 1]] * Z(2));
Basis(v, [[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]])
gap> IsSemiEchelonBasis(b);
true
gap> b;
SemiEchelonBasis(v, [[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]])
gap> Coefficients(b, [0, 1] * Z(2));
[0*Z(2), Z(2)^0]
gap> Coefficients(b, [1, 0] * Z(2));
[Z(2)^0, Z(2)^0]

33.19 IsSemiEchelonBasis

IsSemiEchelonBasis(B)

returns true if B is a semi-echelonized basis (see 33.18), and false otherwise. If B is
semi-echelonized, and this was not yet stored before, after the call the operations record of
B will be SemiEchelonBasisRowSpaceOps.

gap> v:= GF(2)^2; v.name:= "v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> b1:= Basis(v, [[0, 1], [1, 0]] * Z(2));
Basis(v, [[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]])
gap> IsSemiEchelonBasis(b1);
true
gap> b1;
SemiEchelonBasis(v, [[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]])
gap> b2:= Basis(v, [[0, 1], [1, 1]] * Z(2));
Basis(v, [[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]])
gap> IsSemiEchelonBasis(b2);
false
gap> b2;
Basis(v, [[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]])

640 CHAPTER 33. ROW SPACES

33.20 NumberVector

NumberVector(B, v)

Let v =
∑n
i=1 λibi where B = (b1, b2, . . . , bn) is a basis of the vector space V over the finite

field F with |F | = q, and the λi are elements of F . Let λ be the integer corresponding to λ
as defined by 38.29 FFList.

Then NumberVector(B, v) returns
∑n
i=1 λiq

i−1.

gap> v:= GF(3)^3;; v.name:= "v";;
gap> b:= CanonicalBasis(v);;
gap> l:= List([0 .. 6], x -> ElementRowSpace(b, x));
[[0*Z(3), 0*Z(3), 0*Z(3)], [Z(3)^0, 0*Z(3), 0*Z(3)],
[Z(3), 0*Z(3), 0*Z(3)], [0*Z(3), Z(3)^0, 0*Z(3)],
[Z(3)^0, Z(3)^0, 0*Z(3)], [Z(3), Z(3)^0, 0*Z(3)],
[0*Z(3), Z(3), 0*Z(3)]]

33.21 ElementRowSpace

ElementRowSpace(B, n)

returns the n-th element of the row space with basis B , with respect to the ordering defined
in 33.20 NumberVector.

gap> v:= GF(3)^3;; v.name:= "v";;
gap> b:= CanonicalBasis(v);;
gap> l:= List([0 .. 6], x -> ElementRowSpace(b, x));;
gap> List(l, x -> NumberVector(b, x));
[0, 1, 2, 3, 4, 5, 6]

33.22 Operations for Row Space Cosets

Comparison of Row Space Cosets

C1 = C2
returns true if the two row space cosets C1 , C2 are equal, and false otherwise.
Note that equal cosets need not have equal representatives (see 33.3).

C1 < C2
returns true if the row space coset C1 is smaller than the row space coset C2 , and
false otherwise. This ordering is defined by comparison of canonical representatives.

Arithmetic Operations for Row Space Cosets

C1 + C2
If C1 and C2 are row space cosets that belong to the same quotient space, the result
is the row space coset that is the sum resp. the difference of these vectors. Otherwise
an error is signalled.

s * C
returns the row space coset that is the product of the scalar s and the row space coset

33.23. FUNCTIONS FOR ROW SPACE COSETS 641

C , where s must be an element of the ground field of the vector space that defines
C .

Membership Test for Row Space Cosets

v in C
returns true if the vector v is an element of the row space coset C , and false otherwise.

gap> v:= GF(2)^2; v.name:= "v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> u:= Subspace(v, [[1, 1] * Z(2)]); u.name:="u";;
Subspace(v, [[Z(2)^0, Z(2)^0]])
gap> f:= v / u;
v / [[Z(2)^0, Z(2)^0]]
gap> elms:= Elements(f);
[([0*Z(2), 0*Z(2)]+u), ([0*Z(2), Z(2)^0]+u)]
gap> 2 * elms[2];
([0*Z(2), 0*Z(2)]+u)
gap> elms[2] + elms[1];
([0*Z(2), Z(2)^0]+u)
gap> [1, 0] * Z(2) in elms[2];
true
gap> elms[1] = elms[2];
false

33.23 Functions for Row Space Cosets

Since row space cosets are domains, all set theoretic functions are applicable to them.

Representative returns the value of the representative component. Note that equal
cosets may have different representatives. Canonical representatives can be computed using
CanonicalRepresentative.

CanonicalRepresentative(C)
returns the canonical representative of the row space coset C , which is defined as the
result of SiftedVector(B, v) where C = v + U , and B is the canonical basis
of U .

33.24 IsSpaceCoset

IsSpaceCoset(obj)

returns true if obj , which may be an arbitrary object, is a row space coset, and false
otherwise.

gap> v:= GF(2)^2; v.name:= "v";;
RowSpace(GF(2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> u:= Subspace(v, [[1, 1] * Z(2)]);
Subspace(v, [[Z(2)^0, Z(2)^0]])
gap> f:= v / u;
v / [[Z(2)^0, Z(2)^0]]

642 CHAPTER 33. ROW SPACES

gap> IsSpaceCoset(u);
false
gap> IsSpaceCoset(Random(f));
true

33.25 Operations for Quotient Spaces

W1 = W2
returns true if for the two quotient spaces W1 = V1 / U1 and W2 = V2 / U2
the equalities V1 = V2 and U1 = U2 hold, and false otherwise.

W1 < W2
returns true if for the two quotient spaces W1 = V1 / U1 and W2 = V2 / U2
either U1 < U2 or U1 = U2 and V1 < V2 hold, and false otherwise.

33.26 Functions for Quotient Spaces

Computations in quotient spaces usually delegate the work to computations in numerator
and denominator.

The following functions are overlaid in the operations record for quotient spaces.

The set theoretic functions

Closure, Elements, IsSubset, Intersection,

and the vector space functions

Base(V)
returns the vectors of the canonical basis of V ,

Generators(V)
returns a list of cosets that generate V ,

CanonicalBasis(V)
returns the canonical basis of V = W/U , this is derived from the canonical basis of
W .

SemiEchelonBasis(V)
SemiEchelonBasis(V , vectors)
return a semi-echelonized basis of the quotient space V . vectors can be a list of
elements of V , or of representatives.

Basis(V)
Basis(V , vectors)
return a basis of the quotient space V . vectors can be a list of elements of V , or of
representatives.

33.27 Row Space Records

In addition to the record components described in 9.3 the following components must be
present in a row space record.

isRowSpace
is always true,

33.28. ROW SPACE BASIS RECORDS 643

operations
the record RowSpaceOps.

Depending on the calculations in that the row space was involved, it may have lots of
optional components, such as basis, dimension, size.

33.28 Row Space Basis Records

A vector space basis is a record with at least the following components.

isBasis
always true,

vectors
the list of basis vectors,

structure
the underlying vector space,

operations
a record that contains the functions for the basis, at least Coefficients, Print, and
SiftedVector. Of course these functions depend on the special properties of the
basis, so different basis types have different operations record.

Depending on the type of the basis, the basis record additionally contains some components
that are assumed and used by the functions in the operations record.

For arbitrary bases these are semiEchelonBasis and basechange, for semi-echelonized bases
these are the lists heads and ishead. Furthermore, the booleans isSemiEchelonBasis and
isCanonicalBasis may be present.

The operations records for the supported bases are

BasisRowSpaceOps
for arbitrary bases,

CanonicalBasisRowSpaceOps
for the canonical basis of a space,

SemiEchelonBasisRowSpaceOps
for semi-echelonized bases.

33.29 Row Space Coset Records

A row space coset v + U is a record with at least the following components.

isDomain
always true,

isRowSpaceCoset
always true,

isSpaceCoset
always true,

factorDen
the row space U if the coset is an element of V/U for a space V ,

644 CHAPTER 33. ROW SPACES

representative
one element of the coset, note that equal cosets need not have equal representatives
(see 33.3),

operations
the record SpaceCosetRowSpaceOps.

33.30 Quotient Space Records

A quotient space V/U is a record with at least the following components.

isDomain
always true,

isRowSpace
always true,

isFactorSpace
always true,

field
the coefficients field,

factorNum
the row space V (the numerator),

factorDen
the row space U (the denominator),

operations
the record FactorRowSpaceOps.

Chapter 34

Matrices

Matrices are an important tool in algebra. A matrix nicely represents a homomorphism
between two vector spaces with respect to a choice of bases for the vector spaces. Also
matrices represent systems of linear equations.
In GAP matrices are represented by list of vectors (see 32). The vectors must all have the
same length, and their elements must lie in a common field. The field may be the field of
rationals (see 12), a cyclotomic field (see 13), a finite field (see 18), or a library and/or user
defined field (or ring) such as a polynomial ring (see 19).
The first section in this chapter describes the operations applicable to matrices (see 34.1).
The next sections describes the function that tests whether an object is a matrix (see 34.2).
The next sections describe the functions that create certain matrices (see 34.3, 34.4, 34.5,
and 34.6). The next sections describe functions that compute certain characteristic values
of matrices (see 34.7, 34.8, 34.9, 34.10, and 34.11). The next sections describe the functions
that are related to the interpretation of a matrix as a system of linear equations (see 34.12,
34.13, 34.14, and 34.15). The last two sections describe the functions that diagonalize an
integer matrix (see 34.16 and 34.17).
Because matrices are just a special case of lists, all operations and functions for lists are
applicable to matrices also (see chapter 27). This especially includes accessing elements of
a matrix (see 27.4), changing elements of a matrix (see 27.6), and comparing matrices (see
27.12).

34.1 Operations for Matrices

mat + scalar
scalar + mat
This forms evaluates to the sum of the matrix mat and the scalar scalar . The elements of
mat and scalar must lie in a common field. The sum is a new matrix where each entry is
the sum of the corresponding entry of mat and scalar .
mat1 + mat2
This form evaluates to the sum of the two matrices mat1 and mat2 , which must have the
same dimensions and whose elements must lie in a common field. The sum is a new matrix
where each entry is the sum of the corresponding entries of mat1 and mat2 .

645

646 CHAPTER 34. MATRICES

mat - scalar
scalar - mat
mat1 - mat2

The definition for the - operator are similar to the above definitions for the + operator,
except that - subtracts of course.

mat * scalar
scalar * mat

This forms evaluate to the product of the matrix mat and the scalar scalar . The elements
of mat and scalar must lie in a common field. The product is a new matrix where each
entry is the product of the corresponding entries of mat and scalar .

vec * mat

This form evaluates to the product of the vector vec and the matrix mat . The length of
vec and the number of rows of mat must be equal. The elements of vec and mat must lie
in a common field. If vec is a vector of length n and mat is a matrix with n rows and m
columns, the product is a new vector of length m. The element at position i is the sum of
vec[l] * mat[l][i] with l running from 1 to n.

mat * vec

This form evaluates to the product of the matrix mat and the vector vec. The number of
columns of mat and the length of vec must be equal. The elements of mat and vec must lie
in a common field. If mat is a matrix with m rows and n columns and vec is a vector of
length n, the product is a new vector of length m. The element at position i is the sum of
mat[i][l] * vec[l] with l running from 1 to n.

mat1 * mat2

This form evaluates to the product of the two matrices mat1 and mat2 . The number of
columns of mat1 and the number of rows of mat2 must be equal. The elements of mat1
and mat2 must lie in a common field. If mat1 is a matrix with m rows and n columns and
mat2 is a matrix with n rows and o columns, the result is a new matrix with m rows and
o columns. The element in row i at position k of the product is the sum of mat1[i][l] *
mat2[l][k] with l running from 1 to n.

mat1 / mat2
scalar / mat
mat / scalar
vec / mat

In general left / right is defined as left * right^-1. Thus in the above forms the right
operand must always be invertable.

mat ^ int

This form evaluates to the int-th power of the matrix mat . mat must be a square matrix,
int must be an integer. If int is negative, mat must be invertible. If int is 0, the result is
the identity matrix, even if mat is not invertible.

mat1 ^ mat2

This form evaluates to the conjugation of the matrix mat1 by the matrix mat2 , i.e., to
mat2^-1 * mat1 * mat2 . mat2 must be invertible and mat1 must be such that these
product can be computed.

34.2. ISMAT 647

vec ^ mat

This is in every respect equivalent to vec * mat . This operations reflects the fact that
matrices operate on the vector space by multiplication from the right.

scalar + matlist
matlist + scalar
scalar - matlist
matlist - scalar
scalar * matlist
matlist * scalar
matlist / scalar

A scalar scalar may also be added, subtracted, multiplied with, or divide into a whole list
of matrices matlist . The result is a new list of matrices where each matrix is the result of
performing the operation with the corresponding matrix in matlist .

mat * matlist
matlist * mat

A matrix mat may also be multiplied with a whole list of matrices matlist . The result is a
new list of matrices, where each matrix is the product of mat and the corresponding matrix
in matlist .

matlist / mat

This form evaluates to matlist * mat^-1. mat must of course be invertable.

vec * matlist

This form evaluates to the product of the vector vec and the list of matrices mat . The length
l of vec and matlist must be equal. All matrices in matlist must have the same dimensions.
The elements of vec and the elements of the matrices in matlist must lie in a common field.
The product is the sum of vec[i] * matlist[i] with i running from 1 to l .

Comm(mat1, mat2)

Comm returns the commutator of the matrices mat1 and mat2 , i.e., mat1^-1 * mat2^-1
* mat1 * mat2 . mat1 and mat2 must be invertable and such that these product can be
computed.

There is one exception to the rule that the operands or their elements must lie in common
field. It is allowed that one operand is a finite field element, a finite field vector, a finite field
matrix, or a list of finite field matrices, and the other operand is an integer, an integer vector,
an integer matrix, or a list of integer matrices. In this case the integers are interpreted as
int * GF.one, where GF is the finite field (see 18.3).

For all the above operations the result is new, i.e., not identical to any other list (see 27.9).
This is the case even if the result is equal to one of the operands, e.g., if you add zero to a
matrix.

34.2 IsMat

IsMat(obj)

IsMat return true if obj , which can be an object of arbitrary type, is a matrix and false
otherwise. Will cause an error if obj is an unbound variable.

648 CHAPTER 34. MATRICES

gap> IsMat([[1, 0], [0, 1]]);
true # a matrix is a list of vectors
gap> IsMat([[1, 2, 3, 4, 5]]);
true
gap> IsMat([[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]);
true
gap> IsMat([[Z(2)^0, 0], [0, Z(2)^0]]);
false # Z(2)^0 and 0 do not lie in a common field
gap> IsMat([1, 0]);
false # a vector is not a matrix
gap> IsMat(1);
false # neither is a scalar

34.3 IdentityMat

IdentityMat(n)
IdentityMat(n, F)

IdentityMat returns the identity matrix with n rows and n columns over the field F . If no
field is given, IdentityMat returns the identity matrix over the field of rationals. Each call
to IdentityMat returns a new matrix, so it is safe to modify the result.

gap> IdentityMat(3);
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> PrintArray(last);
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]

gap> PrintArray(IdentityMat(3, GF(2)));
[[Z(2)^0, 0*Z(2), 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0]]

34.4 NullMat

NullMat(m, n)
NullMat(m, n, F)

NullMat returns the null matrix with m rows and n columns over the field F . If no field
is given, NullMat returns the null matrix over the field of rationals. Each call to NullMat
returns a new matrix, so it is safe to modify the result.

gap> PrintArray(NullMat(2, 3));
[[0, 0, 0],

[0, 0, 0]]
gap> PrintArray(NullMat(2, 2, GF(2)));
[[0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2)]]

34.5 TransposedMat

TransposedMat(mat)

34.6. KRONECKERPRODUCT 649

TransposedMat returns the transposed of the matrix mat . The transposed matrix is a new
matrix trn, such that trn[i][k] is mat[k][i].

gap> TransposedMat([[1, 2], [3, 4]]);
[[1, 3], [2, 4]]
gap> TransposedMat([[1..5]]);
[[1], [2], [3], [4], [5]]

34.6 KroneckerProduct

KroneckerProduct(mat1, mat2)

KroneckerProduct returns the Kronecker product of the two matrices mat1 and mat2 .
If mat1 is a m by n matrix and mat2 is a o by p matrix, the Kronecker product is a
m*o by n*p matrix, such that the entry in row (i1-1)*o+i2 at position (k1-1)*p+k2 is
mat1[i1][k1] * mat2[i2][k2].

gap> mat1 := [[0, -1, 1], [-2, 0, -2]];;
gap> mat2 := [[1, 1], [0, 1]];;
gap> PrintArray(KroneckerProduct(mat1, mat2));
[[0, 0, -1, -1, 1, 1],

[0, 0, 0, -1, 0, 1],
[-2, -2, 0, 0, -2, -2],
[0, -2, 0, 0, 0, -2]]

34.7 DimensionsMat

DimensionsMat(mat)

DimensionsMat returns the dimensions of the matrix mat as a list of two integers. The first
entry is the number of rows of mat , the second entry is the number of columns.

gap> DimensionsMat([[1, 2, 3], [4, 5, 6]]);
[2, 3]
gap> DimensionsMat([[1 .. 5]]);
[1, 5]

34.8 TraceMat

TraceMat(mat)

TraceMat returns the trace of the square matrix mat . The trace is the sum of all entries on
the diagonal of mat .

gap> TraceMat([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);
15
gap> TraceMat(IdentityMat(4, GF(2)));
0*Z(2)

34.9 DeterminantMat

DeterminantMat(mat)

650 CHAPTER 34. MATRICES

DeterminantMat returns the determinant of the square matrix mat . The determinant is
defined by∑
p∈Symm(n) sign(p)

∏n
i=1mat[i][i

p].

gap> DeterminantMat([[1, 2], [3, 4]]);
-2
gap> DeterminantMat([[0*Z(3), Z(3)^0], [Z(3)^0, Z(3)]]);
Z(3)

Note that DeterminantMat does not use the above definition to compute the result. Instead
it performs a Gaussian elimination. For large rational matrices this may take very long,
because the entries may become very large, even if the final result is a small integer.

34.10 RankMat

RankMat(mat)

RankMat returns the rank of the matrix mat . The rank is defined as the dimension of the
vector space spanned by the rows of mat . It follows that a n by n matrix is invertible
exactly if its rank is n.

gap> RankMat([[4, 1, 2], [3, -1, 4], [-1, -2, 2]]);
2

Note that RankMat performs a Gaussian elimination. For large rational matrices this may
take very long, because the entries may become very large.

34.11 OrderMat

OrderMat(mat)

OrderMat returns the order of the invertible square matrix mat . The order ord is the
smallest positive integer such that mat^ord is the identity.

gap> OrderMat([[0*Z(2), 0*Z(2), Z(2)^0],
> [Z(2)^0, Z(2)^0, 0*Z(2)],
> [Z(2)^0, 0*Z(2), 0*Z(2)]]);
4

OrderMat first computes ord1 such that the first standard basis vector is mapped by
mat^ord1 onto itself. It does this by applying mat repeatedly to the first standard ba-
sis vector. Then it computes mat1 as mat1^ord1 . Then it computes ord2 such that the
second standard basis vector is mapped by mat1^ord2 onto itself. This process is repeated
until all basis vectors are mapped onto themselves. OrderMat warns you that the order may
be infinite, when it finds that the order must be larger than 1000.

34.12 TriangulizeMat

TriangulizeMat(mat)

TriangulizeMat brings the matrix mat into upper triangular form. Note that mat is
changed and that nothing is returned. A matrix is in upper triangular form when the first
nonzero entry in each row is one and lies further to the right than the first nonzero entry
in the previous row. Furthermore, above the first nonzero entry in each row all entries are

34.13. BASEMAT 651

zero. Note that the matrix will have trailing zero rows if the rank of mat is not maximal.
The rows of the resulting matrix span the same vectorspace than the rows of the original
matrix mat .

gap> m := [[0, -3, -1], [-3, 0, -1], [2, -2, 0]];;
gap> TriangulizeMat(m); m;
[[1, 0, 1/3], [0, 1, 1/3], [0, 0, 0]]

Note that for large rational matrices TriangulizeMat may take very long, because the
entries may become very large during the Gaussian elimination, even if the final result
contains only small integers.

34.13 BaseMat

BaseMat(mat)

BaseMat returns a standard base for the vector space spanned by the rows of the matrix
mat . The standard base is in upper triangular form. That means that the first nonzero
vector in each row is one and lies further to the right than the first nonzero entry in the
previous row. Furthermore, above the first nonzero entry in each row all entries are zero.

gap> BaseMat([[0, -3, -1], [-3, 0, -1], [2, -2, 0]]);
[[1, 0, 1/3], [0, 1, 1/3]]

Note that for large rational matrices BaseMat may take very long, because the entries may
become very large during the Gaussian elimination, even if the final result contains only
small integers.

34.14 NullspaceMat

NullspaceMat(mat)

NullspaceMat returns a base for the nullspace of the matrix mat . The nullspace is the set
of vectors vec such that vec * mat is the zero vector. The returned base is the standard
base for the nullspace (see 34.13).

gap> NullspaceMat([[2, -4, 1], [0, 0, -4], [1, -2, -1]]);
[[1, 3/4, -2]]

Note that for large rational matrices NullspaceMat may take very long, because the entries
may become very large during the Gaussian elimination, even if the final result only contains
small integers.

34.15 SolutionMat

SolutionMat(mat, vec)

SolutionMat returns one solution of the equation x * mat = vec or false if no such
solution exists.

gap> SolutionMat([[2, -4, 1], [0, 0, -4], [1, -2, -1]],
> [10, -20, -10]);
[5, 15/4, 0]
gap> SolutionMat([[2, -4, 1], [0, 0, -4], [1, -2, -1]],

652 CHAPTER 34. MATRICES

> [10, 20, -10]);
false

Note that for large rational matrices SolutionMat may take very long, because the entries
may become very large during the Gaussian elimination, even if the final result only contains
small integers.

34.16 DiagonalizeMat

DiagonalizeMat(mat)

DiagonalizeMat transforms the integer matrix mat by multiplication with unimodular (i.e.,
determinant +1 or -1) integer matrices from the left and from the right into diagonal form
(i.e., only diagonal entries are nonzero). Note that DiagonalizeMat changes mat and returns
nothing. If there are several diagonal matrices to which mat is equivalent, it is not specified
which one is computed, except that all zero entries on the diagonal are collected at the lower
right end (see 34.17).

gap> m := [[0, -1, 1], [-2, 0, -2], [2, -2, 4]];;
gap> DiagonalizeMat(m); m;
[[1, 0, 0], [0, 2, 0], [0, 0, 0]]

Note that for large integer matrices DiagonalizeMat may take very long, because the entries
may become very large during the computation, even if the final result only contains small
integers.

34.17 ElementaryDivisorsMat

ElementaryDivisorsMat(mat)

ElementaryDivisors returns a list of the elementary divisors, i.e., the unique d with d[i]
divides d[i+1] and mat is equivalent to a diagonal matrix with the elements d[i] on the
diagonal (see 34.16).

gap> m := [[0, -1, 1], [-2, 0, -2], [2, -2, 4]];;
gap> ElementaryDivisorsMat(m);
[1, 2, 0]

34.18 PrintArray

PrintArray(mat)

PrintArray displays the matrix mat in a pretty way.

gap> m := [[1,2,3,4],[5,6,7,8],[9,10,11,12]];
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
gap> PrintArray(m);
[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]

Chapter 35

Matrix Rings

A matrix ring is a ring of square matrices (see chapter 34). In GAP you can define matrix
rings of matrices over each of the fields that GAP supports, i.e., the rationals, cyclotomic
extensions of the rationals, and finite fields (see chapters 12, 13, and 18).

You define a matrix ring in GAP by calling Ring (see 5.2) passing the generating matrices
as arguments.

gap> m1 := [[Z(3)^0, Z(3)^0, Z(3)],
> [Z(3), 0*Z(3), Z(3)],
> [0*Z(3), Z(3), 0*Z(3)]];;
gap> m2 := [[Z(3), Z(3), Z(3)^0],
> [Z(3), 0*Z(3), Z(3)],
> [Z(3)^0, 0*Z(3), Z(3)]];;
gap> m := Ring(m1, m2);
Ring([[Z(3)^0, Z(3)^0, Z(3)], [Z(3), 0*Z(3), Z(3)],
[0*Z(3), Z(3), 0*Z(3)]],

[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],
[Z(3)^0, 0*Z(3), Z(3)]])

gap> Size(m);
2187

However, currently GAP can only compute with finite matrix rings with a multiplicative
neutral element (a one). Also computations with large matrix rings are not done very
efficiently. We hope to improve this situation in the future, but currently you should be
careful not to try too large matrix rings.

Because matrix rings are just a special case of domains all the set theoretic functions such
as Size and Intersection are applicable to matrix rings (see chapter 4 and 35.1).

Also matrix rings are of course rings, so all ring functions such as Units and IsIntegralRing
are applicable to matrix rings (see chapter 5 and 35.2).

35.1 Set Functions for Matrix Rings

All set theoretic functions described in chapter 4 use their default function for matrix rings
currently. This means, for example, that the size of a matrix ring is computed by computing

653

654 CHAPTER 35. MATRIX RINGS

the set of all elements of the matrix ring with an orbit-like algorithm. Thus you should not
try to work with too large matrix rings.

35.2 Ring Functions for Matrix Rings

As already mentioned in the introduction of this chapter matrix rings are after all rings.
All ring functions such as Units and IsIntegralRing are thus applicable to matrix rings.
This section describes how these functions are implemented for matrix rings. Functions not
mentioned here inherit the default group methods described in the respective sections.

IsUnit(R, m)

A matrix is a unit in a matrix ring if its rank is maximal (see 34.10).

Chapter 36

Matrix Groups

A matrix group is a group of invertable square matrices (see chapter 34). In GAP you
can define matrix groups of matrices over each of the fields that GAP supports, i.e., the
rationals, cyclotomic extensions of the rationals, and finite fields (see chapters 12, 13, and
18).

You define a matrix group in GAP by calling Group (see 7.9) passing the generating matrices
as arguments.

gap> m1 := [[Z(3)^0, Z(3)^0, Z(3)],
> [Z(3), 0*Z(3), Z(3)],
> [0*Z(3), Z(3), 0*Z(3)]];;
gap> m2 := [[Z(3), Z(3), Z(3)^0],
> [Z(3), 0*Z(3), Z(3)],
> [Z(3)^0, 0*Z(3), Z(3)]];;
gap> m := Group(m1, m2);
Group([[Z(3)^0, Z(3)^0, Z(3)], [Z(3), 0*Z(3), Z(3)],
[0*Z(3), Z(3), 0*Z(3)]],

[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)],
[Z(3)^0, 0*Z(3), Z(3)]])

However, currently GAP can only compute with finite matrix groups. Also computations
with large matrix groups are not done very efficiently. We hope to improve this situation in
the future, but currently you should be careful not to try too large matrix groups.

Because matrix groups are just a special case of domains all the set theoretic functions such
as Size and Intersection are applicable to matrix groups (see chapter 4 and 36.1).

Also matrix groups are of course groups, so all the group functions such as Centralizer
and DerivedSeries are applicable to matrix groups (see chapter 7 and 36.2).

36.1 Set Functions for Matrix Groups

As already mentioned in the introduction of this chapter matrix groups are domains. All set
theoretic functions such as Size and Intersections are thus applicable to matrix groups.
This section describes how these functions are implemented for matrix groups. Functions

655

656 CHAPTER 36. MATRIX GROUPS

not mentioned here either inherit the default group methods described in 7.113 or the default
method mentioned in the respective sections.

To compute with a matrix group m, GAP computes the operation of the matrix group on
the underlying vector space (more precisely the union of the orbits of the parent of m on the
standard basis vectors). Then it works with the thus defined permutation group p, which
is of course isomorphic to m, and finally translates the results back into the matrix group.

obj in m

To test if an object obj lies in a matrix group m, GAP first tests whether obj is a invertable
square matrix of the same dimensions as the matrices of m. If it is, GAP tests whether obj
permutes the vectors in the union of the orbits of m on the standard basis vectors. If it
does, GAP takes this permutation and tests whether it lies in p.

Size(m)

To compute the size of the matrix group m, GAP computes the size of the isomorphic
permutation group p.

Intersection(m1, m2)

To compute the intersection of two subgroups m1 and m2 with a common parent matrix
group m, GAP intersects the images of the corresponding permutation subgroups p1 and
p2 of p. Then it translates the generators of the intersection of the permutation subgroups
back to matrices. The intersection of m1 and m2 is the subgroup of m generated by those
matrices. If m1 and m2 do not have a common parent group, or if only one of them is a
matrix group and the other is a set of matrices, the default method is used (see 4.12).

36.2 Group Functions for Matrix Groups

As already mentioned in the introduction of this chapter matrix groups are after all group.
All group functions such as Centralizer and DerivedSeries are thus applicable to matrix
groups. This section describes how these functions are implemented for matrix groups.
Functions not mentioned here either inherit the default group methods described in the
respective sections.

To compute with a matrix group m, GAP computes the operation of the matrix group on the
underlying vector space (more precisely, if the vector space is small enough, it enumerates
the space and acts on the whole space. Otherwise it takes the union of the orbits of the
parent of m on the standard basis vectors). Then it works with the thus defined permutation
group p, which is of course isomorphic to m, and finally translates the results back into the
matrix group.

Centralizer(m, u)
Normalizer(m, u)
SylowSubgroup(m, p)
ConjugacyClasses(m)

36.3. MATRIX GROUP RECORDS 657

This functions all work by solving the problem in the permutation group p and translating
the result back.

PermGroup(m)

This function simply returns the permutation group defined above.

Stabilizer(m, v)

The stabilizer of a vector v that lies in the union of the orbits of the parent of m on the
standard basis vectors is computed by finding the stabilizer of the corresponding point in
the permutation group p and translating this back. Other stabilizers are computed with the
default method (see 8.22).

RepresentativeOperation(m, v1, v2)

If v1 and v2 are vectors that both lie in the union of the orbits of the parent group of m on
the standard basis vectors, RepresentativeOperation finds a permutation in p that takes
the point corresponding to v1 to the point corresponding to v2 . If no such permutation
exists, it returns false. Otherwise it translates the permutation back to a matrix.

RepresentativeOperation(m, m1, m2)

If m1 and m2 are matrices in m, RepresentativeOperation finds a permutation in p that
conjugates the permutation corresponding to m1 to the permutation corresponding to m2 .
If no such permutation exists, it returns false. Otherwise it translates the permutation
back to a matrix.

36.3 Matrix Group Records

A group is represented by a record that contains information about the group. A matrix
group record contains the following components in addition to those described in section
7.117.

isMatGroup
always true.

If a permutation representation for a matrix group m is known it is stored in the following
components.

permGroupP
contains the permutation group representation of m.

permDomain
contains the union of the orbits of the parent of m on the standard basis vectors.

658 CHAPTER 36. MATRIX GROUPS

Chapter 37

Group Libraries

When you start GAP it already knows several groups. Currently GAP initially knows the
following groups:
• some basic groups, such as cyclic groups or symmetric groups (see 37.1),

• the primitive permutation groups of degree at most 50 (see 37.5),

• the transitive permutation groups of degree at most 15 (see 37.6),

• the solvable groups of size at most 100 (see 37.7),

• the 2-groups of size at most 256 (see 37.8),

• the 3-groups of size at most 729 (see 37.9),

• the irreducible solvable subgroups of GL(n, p) for n > 1 and pn < 256 (see 37.10),

• the finite perfect groups of size at most 106 (excluding 11 sizes) (see 37.11),

• the irreducible maximal finite integral matrix groups of dimension at most 24 (see
37.12),

• the crystallographic groups of dimension at most 4 (see 37.13).

• the groups of order at most 1000 except for 512 and 768 (see 37.14).

Each of the set of groups above is called a library. The whole set of groups that GAP
knows initially is called the GAP collection of group libraries. There is usually no
relation between the groups in the different libraries.
Several of the libraries are accessed in a uniform manner. For each of these libraries there
is a so called selection function that allows you to select the list of groups that satisfy
given criterias from a library. The example function allows you to select one group that
satisfies given criteria from the library. The low-level extraction function allows you to
extract a single group from a library, using a simple indexing scheme. These functions are
described in the sections 37.2, 37.3, and 37.4.
Note that a system administrator may choose to install all, or only a few, or even none
of the libraries. So some of the libraries mentioned below may not be available on your
installation.

659

660 CHAPTER 37. GROUP LIBRARIES

37.1 The Basic Groups Library

CyclicGroup(n)
CyclicGroup(D, n)

In the first form CyclicGroup returns the cyclic group of size n as a permutation group. In
the second form D must be a domain of group elements, e.g., Permutations or AgWords,
and CyclicGroup returns the cyclic group of size n as a group of elements of that type.

gap> c12 := CyclicGroup(12);
Group((1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12))
gap> c105 := CyclicGroup(AgWords, 5*3*7);
Group(c105_1, c105_2, c105_3)
gap> Order(c105,c105.1); Order(c105,c105.2); Order(c105,c105.3);
105
35
7

AbelianGroup(sizes)
AbelianGroup(D, sizes)

In the first form AbelianGroup returns the abelian group Csizes[1] ∗ Csizes[2] ∗ ...∗ Csizes[n],
where sizes must be a list of positive integers, as a permutation group. In the second form
D must be a domain of group elements, e.g., Permutations or AgWords, and AbelianGroup
returns the abelian group as a group of elements of this type.

gap> g := AbelianGroup(AgWords, [2, 3, 7]);
Group(a, b, c)
gap> Size(g);
42
gap> IsAbelian(g);
true

The default function GroupElementsOps.AbelianGroup uses the functions CyclicGroup
and DirectProduct (see 7.98) to construct the abelian group.

ElementaryAbelianGroup(n)
ElementaryAbelianGroup(D, n)

In the first form ElementaryAbelianGroup returns the elementary abelian group of size
n as a permutation group. n must be a positive prime power of course. In the sec-
ond form D must be a domain of group elements, e.g., Permutations or AgWords, and
ElementaryAbelianGroup returns the elementary abelian group as a group of elements of
this type.

gap> ElementaryAbelianGroup(16);
Group((1,2), (3,4), (5,6), (7,8))
gap> ElementaryAbelianGroup(AgWords, 3 ^ 10);
Group(m59049_1, m59049_2, m59049_3, m59049_4, m59049_5, m59049_6,
m59049_7, m59049_8, m59049_9, m59049_10)

The default function GroupElementsOps.ElementaryAbelianGroup uses CyclicGroup and
DirectProduct (see 7.98 to construct the elementary abelian group.

37.1. THE BASIC GROUPS LIBRARY 661

DihedralGroup(n)
DihedralGroup(D, n)

In the first form DihedralGroup returns the dihedral group of size n as a permutation
group. n must be a positive even integer. In the second form D must be a domain of group
elements, e.g., Permutations or AgWords, and DihedralGroup returns the dihedral group
as a group of elements of this type.

gap> DihedralGroup(12);
Group((1,2,3,4,5,6), (2,6)(3,5))

PolyhedralGroup(p, q)
PolyhedralGroup(D, p, q)

In the first form PolyhedralGroup returns the polyhedral group of size p * q as a permu-
tation group. p and q must be positive integers and there must exist a nontrivial p-th root
of unity modulo every prime factor of q . In the second form D must be a domain of group
elements, e.g., Permutations or Words, and PolyhedralGroup returns the polyhedral group
as a group of elements of this type.

gap> PolyhedralGroup(3, 13);
Group((1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13), (2, 4,10)(3, 7, 6)
(5,13,11)(8, 9,12))
gap> Size(last);
39

SymmetricGroup(d)
SymmetricGroup(D, d)

In the first form SymmetricGroup returns the symmetric group of degree d as a permutation
group. d must be a positive integer. In the second form D must be a domain of group
elements, e.g., Permutations or Words, and SymmetricGroup returns the symmetric group
as a group of elements of this type.

gap> SymmetricGroup(8);
Group((1,8), (2,8), (3,8), (4,8), (5,8), (6,8), (7,8))
gap> Size(last);
40320

AlternatingGroup(d)
AlternatingGroup(D, d)

In the first form AlternatingGroup returns the alternating group of degree d as a permu-
tation group. d must be a positive integer. In the second form D must be a domain of
group elements, e.g., Permutations or Words, and AlternatingGroup returns the alternat-
ing group as a group of elements of this type.

gap> AlternatingGroup(8);
Group((1,2,8), (2,3,8), (3,4,8), (4,5,8), (5,6,8), (6,7,8))
gap> Size(last);
20160

662 CHAPTER 37. GROUP LIBRARIES

GeneralLinearGroup(n, q)
GeneralLinearGroup(D, n, q)

In the first form GeneralLinearGroup returns the general linear group GL(n, q) as a matrix
group. In the second form D must be a domain of group elements, e.g., Permutations or
AgWords, and GeneralLinearGroup returns GL(n, q) as a group of elements of that type.

gap> g := GeneralLinearGroup(2, 4); Size(g);
GL(2,4)
180

SpecialLinearGroup(n, q)
SpecialLinearGroup(D, n, q)

In the first form SpecialLinearGroup returns the special linear group SL(n, q) as a matrix
group. In the second form D must be a domain of group elements, e.g., Permutations or
AgWords, and SpecialLinearGroup returns SL(n, q) as a group of elements of that type.

gap> g := SpecialLinearGroup(3, 4); Size(g);
SL(3,4)
60480

SymplecticGroup(n, q)
SymplecticGroup(D, n, q)

In the first form SymplecticGroup returns the symplectic group SP (n, q) as a matrix group.
In the second form D must be a domain of group elements, e.g., Permutations or AgWords,
and SymplecticGroup returns SP (n, q) as a group of elements of that type.

gap> g := SymplecticGroup(4, 2); Size(g);
SP(4,2)
720

GeneralUnitaryGroup(n, q)
GeneralUnitaryGroup(D, n, q)

In the first form GeneralUnitaryGroup returns the general unitary group GU(n, q) as a
matrix group. In the second form D must be a domain of group elements, e.g., Permutations
or AgWords, and GeneralUnitaryGroup returns GU(n, q) as a group of elements of that
type.

gap> g := GeneralUnitaryGroup(3, 3); Size(g);
GU(3,3)
24192

SpecialUnitaryGroup(n, q)
SpecialUnitaryGroup(D, n, q)

In the first form SpecialUnitaryGroup returns the special unitary group SU(n, q) as a
matrix group. In the second form D must be a domain of group elements, e.g., Permutations
or AgWords, and SpecialUnitaryGroup returns SU(n, q) as a group of elements of that type.

37.2. SELECTION FUNCTIONS 663

gap> g := SpecialUnitaryGroup(3, 3); Size(g);
SU(3,3)
6048

MathieuGroup(d)

MathieuGroup returns the Mathieu group of degree d as a permutation group. d is expected
to be 11, 12, 22, 23, or 24.

gap> g := MathieuGroup(12); Size(g);
Group((1, 2, 3, 4, 5, 6, 7, 8, 9,10,11), (3, 7,11, 8)
(4,10, 5, 6), (1,12)(2,11)(3, 6)(4, 8)(5, 9)(7,10))
95040

37.2 Selection Functions

AllLibraryGroups(fun1, val1, fun2, val2, ...)

For each group library there is a selection function. This function allows you to select all
groups from the library that have a given set of properties.

The name of the selection functions always begins with All and always ends with Groups.
Inbetween is a name that hints at the nature of the group library. For example, the selection
function for the library of all primitive groups of degree at most 50 (see 37.5) is called
AllPrimitiveGroups, and the selection function for the library of all 2-groups of size at
most 256 (see 37.8) is called AllTwoGroups.

These functions take an arbitrary number of pairs of arguments. The first argument in
such a pair is a function that can be applied to the groups in the library, and the second
argument is either a single value that this function must return in order to have this group
included in the selection, or a list of such values.

For example

AllPrimitiveGroups(DegreeOperation, [10..15],
Size, [1..100],
IsAbelian, false);

should return a list of all primitive groups with degree between 10 and 15 and size less than
100 that are not abelian.

Thus the AllPrimitiveGroups behaves as if it was implemented by a function similar to
the one defined below, where PrimitiveGroupsList is a list of all primitive groups. Note,
in the definition below we assume for simplicity that AllPrimitiveGroups accepts exactly
4 arguments. It is of course obvious how to change this definition so that the function would
accept a variable number of arguments.

AllPrimitiveGroups := function (fun1, val1, fun2, val2)
local groups, g, i;
groups := [];
for i in [1 .. Length(PrimitiveGroupsList)] do

g := PrimitiveGroupsList[i];
if fun1(g) = val1 or IsList(val1) and fun1(g) in val1

and fun2(g) = val2 or IsList(val2) and fun2(g) in val2

664 CHAPTER 37. GROUP LIBRARIES

then
Add(groups, g);

fi;
od;
return groups;

end;

Note that the real selection functions are considerably more difficult, to improve the ef-
ficiency. Most important, each recognizes a certain set of functions and handles those
properties using an index (see 1.26).

37.3 Example Functions

OneLibraryGroup(fun1, val1, fun2, val2, ...)

For each group library there is a example function. This function allows you to find one
group from the library that has a given set of properties.

The name of the example functions always begins with One and always ends with Group.
Inbetween is a name that hints at the nature of the group library. For example, the example
function for the library of all primitive groups of degree at most 50 (see 37.5) is called
OnePrimitiveGroup, and the example function for the library of all 2-groups of size at most
256 (see 37.8) is called OneTwoGroup.

These functions take an arbitrary number of pairs of arguments. The first argument in
such a pair is a function that can be applied to the groups in the library, and the second
argument is either a single value that this function must return in order to have this group
returned by the example function, or a list of such values.

For example

OnePrimitiveGroup(DegreeOperation, [10..15],
Size, [1..100],
IsAbelian, false);

should return one primitive group with degree between 10 and 15 and size size less than 100
that is not abelian.

Thus the OnePrimitiveGroup behaves as if it was implemented by a function similar to the
one defined below, where PrimitiveGroupsList is a list of all primitive groups. Note, in
the definition below we assume for simplicity that OnePrimitiveGroup accepts exactly 4
arguments. It is of course obvious how to change this definition so that the function would
accept a variable number of arguments.

OnePrimitiveGroup := function (fun1, val1, fun2, val2)
local g, i;
for i in [1 .. Length(PrimitiveGroupsList)] do

g := PrimitiveGroupsList[i];
if fun1(g) = val1 or IsList(val1) and fun1(g) in val1

and fun2(g) = val2 or IsList(val2) and fun2(g) in val2
then

return g;
fi;

od;

37.4. EXTRACTION FUNCTIONS 665

return false;
end;

Note that the real example functions are considerably more difficult, to improve the ef-
ficiency. Most important, each recognizes a certain set of functions and handles those
properties using an index (see 1.26).

37.4 Extraction Functions

For each group library there is an extraction function. This function allows you to extract
single groups from the library.

The name of the extraction function always ends with Group and begins with a name that
hints at the nature of the library. For example the extraction function for the library of
primitive groups (see 37.5) is called PrimitiveGroup, and the extraction function for the
library of all 2-groups of size at most 256 (see 37.8) is called TwoGroup.

What arguments the extraction function accepts, and how they are interpreted is described
in the sections that describe the individual group libraries.

For example

PrimitiveGroup(10, 4);

returns the 4-th primitive group of degree 10.

The reason for the extraction function is as follows. A group library is usually not stored as
a list of groups. Instead a more compact representation for the groups is used. For example
the groups in the library of 2-groups are represented by 4 integers. The extraction function
hides this representation from you, and allows you to access the group library as if it was a
table of groups (two dimensional in the above example).

666 CHAPTER 37. GROUP LIBRARIES

37.5 The Primitive Groups Library

This group library contains all primitive permutation groups of degree at most 50. There are
a total of 406 such groups. Actually to be a little bit more precise, there are 406 inequivalent
primitive operations on at most 50 points. Quite a few of the 406 groups are isomorphic.

AllPrimitiveGroups(fun1, val1, fun2, val2, ...)

AllPrimitiveGroups returns a list containing all primitive groups that have the properties
given as arguments. Each property is specified by passing a pair of arguments, the first
being a function, which will be applied to all groups in the library, and the second being a
value or a list of values, that this function must return in order to have this group included
in the list returned by AllPrimitiveGroups.

The first argument must be DegreeOperation and the second argument either a degree or
a list of degrees, otherwise AllPrimitiveGroups will print a warning to the effect that the
library contains only groups with degrees between 1 and 50.

gap> l := AllPrimitiveGroups(Size, 120, IsSimple, false);
#W AllPrimitiveGroups: degree automatically restricted to [1..50]
[S(5), PGL(2,5), S(5)]
gap> List(l, g -> g.generators);
[[(1,2,3,4,5), (1,2)], [(1,2,3,4,5), (2,3,5,4), (1,6)(3,4)],

[(1, 8)(2, 5, 6, 3)(4, 9, 7,10), (1, 5, 7)(2, 9, 4)(3, 8,10)
]]

OnePrimitiveGroup(fun1, val1, fun2, val2, ...)

OnePrimitiveGroup returns one primitive group that has the properties given as argument.
Each property is specified by passing a pair of arguments, the first being a function, which
will be applied to all groups in the library, and the second being a value or a list of values,
that this function must return in order to have this group returned by OnePrimitiveGroup.
If no such group exists, false is returned.

The first argument must be DegreeOperation and the second argument either a degree or
a list of degrees, otherwise OnePrimitiveGroup will print a warning to the effect that the
library contains only groups with degrees between 1 and 50.

gap> g := OnePrimitiveGroup(DegreeOperation,5, IsSolvable,false);
A(5)
gap> Size(g);
60

AllPrimitiveGroups and OnePrimitiveGroup recognize the following functions and handle
them usually quite efficient. DegreeOperation, Size, Transitivity, and IsSimple. You
should pass those functions first, e.g., it is more efficient to say AllPrimitiveGroups(
Size,120 , IsAbelian,false) than to say AllPrimitiveGroups(IsAbelian,false,
Size,120) (see 1.26).

PrimitiveGroup(deg, nr)

37.5. THE PRIMITIVE GROUPS LIBRARY 667

PrimitiveGroup returns the nr -th primitive group of degree deg . Both deg and nr must
be positive integers. The primitive groups of equal degree are sorted with respect to their
size, so for example PrimitiveGroup(deg, 1) is the smallest primitive group of degree
deg , e.g, the cyclic group of size deg , if deg is a prime. Primitive groups of equal degree and
size are in no particular order.

gap> g := PrimitiveGroup(8, 1);
AGL(1,8)
gap> g.generators;
[(1,2,3,4,5,6,7), (1,8)(2,4)(3,7)(5,6)]

Apart from the usual components described in 7.117, the group records returned by the
above functions have the following components.

transitivity
degree of transitivity of G .

isSharpTransitive
true if G is sharply G.transitivity-fold transitive and false otherwise.

isKPrimitive
true if G is k -fold primitive, and false otherwise.

isOdd
false if G is a subgroup of the alternating group of degree G.degree and true
otherwise.

isFrobeniusGroup
true if G is a Frobenius group and false otherwise.

This library was computed by Charles Sims. The list of primitive permutation groups of
degree at most 20 was published in [Sim70]. The library was brought into GAP format by
Martin Schönert. He assumes the responsibility for all mistakes.

668 CHAPTER 37. GROUP LIBRARIES

37.6 The Transitive Groups Library

The transitive groups library contains representatives for all transitive permutation groups
of degree at most 22. Two permutations groups of the same degree are considered to be
equivalent, if there is a renumbering of points, which maps one group into the other one.
In other words, if they lie in the save conjugacy class under operation of the full symmetric
group by conjugation.

There are a total of 4945 such groups up to degree 22.

AllTransitiveGroups(fun1, val1, fun2, val2, ...)

AllTransitiveGroups returns a list containing all transitive groups that have the properties
given as arguments. Each property is specified by passing a pair of arguments, the first
being a function, and the second being a value or a list of values. AllTransitiveGroups
will return all groups from the transitive groups library, for which all specified functions
have the specified values.

If the degree is not restricted to 22 at most, AllTransitiveGroups will print a warning.

OneTransitiveGroup(fun1, val1, fun2, val2, ...)

OneTransitiveGroup returns one transitive group that has the properties given as argu-
ment. Each property is specified by passing a pair of arguments, the first being a function,
and the second being a value or a list of values. OneTransitiveGroup will return one groups
from the transitive groups library, for which all specified functions have the specified values.
If no such group exists, false is returned.

If the degree is not restricted to 22 at most, OneTransitiveGroup will print a warning.

AllTransitiveGroups and OneTransitiveGroup recognize the following functions and get
the corresponding properties from a precomputed list to speed up processing:
DegreeOperation, Size, Transitivity, and IsPrimitive. You do not need to pass those
functions first, as the selection function picks the these properties first.

TransitiveGroup(deg, nr)

TransitiveGroup returns the nr -th transitive group of degree deg . Both deg and nr must be
positive integers. The transitive groups of equal degree are sorted with respect to their size,
so for example TransitiveGroup(deg, 1) is the smallest transitive group of degree deg ,
e.g, the cyclic group of size deg , if deg is a prime. The ordering of the groups corresponds
to the list in Butler/McKay [BM83].

This library was computed by Gregory Butler, John McKay, Gordon Royle and Alexander
Hulpke. The list of transitive groups up to degree 11 was published in [BM83], the list of
degree 12 was published in [Roy87], degree 14 and 15 were published in [But93].

The library was brought into GAP format by Alexander Hulpke, who is responsible for all
mistakes.

gap> TransitiveGroup(10,22);
S(5)[x]2
gap> l:=AllTransitiveGroups(DegreeOperation,12,Size,1440,

37.6. THE TRANSITIVE GROUPS LIBRARY 669

> IsSolvable,false);
[S(6)[x]2, M_10.2(12) = A_6.E_4(12) = [S_6[1/720]{M_10}S_6]2]
gap> List(l,IsSolvable);
[false, false]

TransitiveIdentification(G)

Let G be a permutation group, acting transitively on a set of up to 22 points. Then
TransitiveIdentification will return the position of this group in the transitive groups
library. This means, if G operates on m points and TransitiveIdentification returns n,
then G is permutation isomorphic to the group TransitiveGroup(m,n).

gap> TransitiveIdentification(Group((1,2),(1,2,3)));
2

670 CHAPTER 37. GROUP LIBRARIES

37.7 The Solvable Groups Library

GAP has a library of the 1045 solvable groups of size between 2 and 100. The groups are
from lists computed by M. Hall and J. K. Senior (size 64, see [HS64]), R. Laue (size 96, see
[Lau82]) and J. Neubüser (other sizes, see [Neu67]).

AllSolvableGroups(fun1, val1, fun2, val2, ...)

AllSolvableGroups returns a list containing all solvable groups that have the properties
given as arguments. Each property is specified by passing a pair of arguments, the first
being a function, which will be applied to all the groups in the library, and the second being
a value or a list of values, that this function must return in order to have this group included
in the list returned by AllSolvableGroups.

gap> AllSolvableGroups(Size,24,IsNontrivialDirectProduct,false);
[12.2, grp_24_11, D24, Q8+S3, Sl(2,3), S4]

OneSolvableGroup(fun1, val1, fun2, val2, ...)

OneSolvableGroup returns a solvable group with the specified properties. Each property is
specified by passing a pair of arguments, the first being a function, which will be applied
to all the groups in the library, and the second being a value or a list of values, that this
function must return in order to have this group returned by OneSolvableGroup. If no such
group exists, false is returned.

gap> OneSolvableGroup(Size,100,x->Size(DerivedSubgroup(x)),10);
false
gap> OneSolvableGroup(Size,24,IsNilpotent,false);
S3x2^2

AllSolvableGroups and OneSolvableGroup recognize the following functions and handle
them usually very efficiently:Size, IsAbelian, IsNilpotent, and IsNonTrivialDirectProduct.

SolvableGroup(size, nr)

SolvableGroup returns the nr -th group of size size in the library. SolvableGroup will
signal an error if size is not between 2 and 100, or if nr is larger than the number of solvable
groups of size size. The group is returned as finite polycyclic group (see 25).

gap> SolvableGroup(32 , 15);
Q8x4

37.8. THE 2-GROUPS LIBRARY 671

37.8 The 2-Groups Library

The library of 2-groups contains all the 2-groups of size dividing 256. There are a total of
58760 such groups, 1 of size 2, 2 of size 4, 5 of size 8, 14 of size 16, 51 of size 32, 267 of size
64, 2328 of size 128, and 56092 of size 256.

AllTwoGroups(fun1, val1, fun2, val2, ...)

AllTwoGroups returns the list of all the 2-groups that have the properties given as argu-
ments. Each property is specified by passing a pair of arguments, the first is a function that
can be applied to each group, the second is either a single value or a list of values that the
function must return in order to select that group.

gap> l := AllTwoGroups(Size, 256, Rank, 3, pClass, 2);
[Group(a1, a2, a3, a4, a5, a6, a7, a8),
Group(a1, a2, a3, a4, a5, a6, a7, a8),
Group(a1, a2, a3, a4, a5, a6, a7, a8),
Group(a1, a2, a3, a4, a5, a6, a7, a8)]

gap> List(l, g -> Length(ConjugacyClasses(g)));
[112, 88, 88, 88]

OneTwoGroup(fun1, val1, fun2, val2, ...)

OneTwoGroup returns a single 2-group that has the properties given as arguments. Each
property is specified by passing a pair of arguments, the first is a function that can be
applied to each group, the second is either a single value or a list of values that the function
must return in order to select that group.

gap> g := OneTwoGroup(Size, [64..128], Rank, [2..3], pClass, 5);
#I size restricted to [64, 128]
Group(a1, a2, a3, a4, a5, a6)
gap> Size(g);
64
gap> Rank(g);
2

AllTwoGroups and OneTwoGroup recognize the following functions and handle them usually
very efficiently. Size, Rank for the rank of the Frattini quotient of the group, and pClass
for the exponent-p class of the group. Note that Rank and pClass are dummy functions
that can be used only in this context, i.e., they can not be applied to arbitrary groups.

TwoGroup(size, nr)

TwoGroup returns the nr -th group of size size. The group is returned as a finite polycyclic
group (see 25). TwoGroup will signal an error if size is not a power of 2 between 2 and 256,
or nr is larger than the number of groups of size size.

Within each size the following criteria have been used, in turn, to determine the index
position of a group in the list

1 increasing generator number;

672 CHAPTER 37. GROUP LIBRARIES

2 increasing exponent-2 class;

3 the position of its parent in the list of groups of appropriate size;

4 the list in which the Newman and O’Brien implementation of the p-group generation
algorithm outputs the immediate descendants of a group.

gap> g := TwoGroup(32, 45);
Group(a1, a2, a3, a4, a5)
gap> Rank(g);
4
gap> pClass(g);
2
gap> g.abstractRelators;
[a1^2*a5^-1, a2^2, a2^-1*a1^-1*a2*a1, a3^2, a3^-1*a1^-1*a3*a1,

a3^-1*a2^-1*a3*a2, a4^2, a4^-1*a1^-1*a4*a1, a4^-1*a2^-1*a4*a2,
a4^-1*a3^-1*a4*a3, a5^2, a5^-1*a1^-1*a5*a1, a5^-1*a2^-1*a5*a2,
a5^-1*a3^-1*a5*a3, a5^-1*a4^-1*a5*a4]

Apart from the usual components described in 7.117, the group records returned by the
above functions have the following components.

rank
rank of Frattini quotient of G .

pclass
exponent-p class of G .

abstractGenerators
a list of abstract generators of G (see 22.1).

abstractRelators
a list of relators of G stored as words in the abstract generators.

Descriptions of the algorithms used in constructing the library data may be found in
[O´Br90, O´Br91]. Using these techniques, a library was first prepared in 1987 by M.F. New-
man and E.A. O’Brien; a partial description may be found in [NO89].

The library was brought into the GAP format by Werner Nickel, Alice Niemeyer, and
E.A. O’Brien.

37.9. THE 3-GROUPS LIBRARY 673

37.9 The 3-Groups Library

The library of 3-groups contains all the 3-groups of size dividing 729. There are a total of
594 such groups, 1 of size 3, 2 of size 9, 5 of size 27, 15 of size 81, 67 of size 243, and 504 of
size 729.

AllThreeGroups(fun1, val1, fun2, val2, ...)

AllThreeGroups returns the list of all the 3-groups that have the properties given as argu-
ments. Each property is specified by passing a pair of arguments, the first is a function that
can be applied to each group, the second is either a single value or a list of values that the
function must return in order to select that group.

gap> l := AllThreeGroups(Size, 243, Rank, [2..4], pClass, 3);;
gap> Length (l);
33
gap> List(l, g -> Length(ConjugacyClasses(g)));
[35, 35, 35, 35, 35, 35, 35, 243, 99, 99, 51, 51, 51, 51, 51, 51,
51, 51, 99, 35, 243, 99, 99, 51, 51, 51, 51, 51, 35, 35, 35, 35, 35

]

OneThreeGroup(fun1, val1, fun2, val2, ...)

OneThreeGroup returns a single 3-group that has the properties given as arguments. Each
property is specified by passing a pair of arguments, the first is a function that can be
applied to each group, the second is either a single value or a list of values that the function
must return in order to select that group.

gap> g := OneThreeGroup(Size, 729, Rank, 4, pClass, [3..5]);
Group(a1, a2, a3, a4, a5, a6)
gap> IsAbelian(g);
true

AllThreeGroups and OneThreeGroup recognize the following functions and handle them
usually very efficiently. Size, Rank for the rank of the Frattini quotient of the group, and
pClass for the exponent-p class of the group. Note that Rank and pClass are dummy
functions that can be used only in this context, i.e., they cannot be applied to arbitrary
groups.

ThreeGroup(size, nr)

ThreeGroup returns the nr -th group of size size. The group is returned as a finite polycyclic
group (see 25). ThreeGroup will signal an error if size is not a power of 3 between 3 and
729, or nr is larger than the number of groups of size size.

Within each size the following criteria have been used, in turn, to determine the index
position of a group in the list

1 increasing generator number;

2 increasing exponent-3 class;

3 the position of its parent in the list of groups of appropriate size;

674 CHAPTER 37. GROUP LIBRARIES

4 the list in which the Newman and O’Brien implementation of the p-group generation
algorithm outputs the immediate descendants of a group.

gap> g := ThreeGroup(243, 56);
Group(a1, a2, a3, a4, a5)
gap> pClass(g);
3
gap> g.abstractRelators;
[a1^3, a2^3, a2^-1*a1^-1*a2*a1*a4^-1, a3^3, a3^-1*a1^-1*a3*a1,

a3^-1*a2^-1*a3*a2*a5^-1, a4^3, a4^-1*a1^-1*a4*a1*a5^-1,
a4^-1*a2^-1*a4*a2, a4^-1*a3^-1*a4*a3, a5^3, a5^-1*a1^-1*a5*a1,
a5^-1*a2^-1*a5*a2, a5^-1*a3^-1*a5*a3, a5^-1*a4^-1*a5*a4]

Apart from the usual components described in 7.117, the group records returned by the
above functions have the following components.

rank
rank of Frattini quotient of G .

pclass
exponent-p class of G .

abstractGenerators
a list of abstract generators of G (see 22.1).

abstractRelators
a list of relators of G stored as words in the abstract generators.

Descriptions of the algorithms used in constructing the library data may be found in
[O´Br90, O´Br91].

The library was generated and brought into GAP format by E.A. O’Brien and Colin Rhodes.
David Baldwin, M.F. Newman, and Maris Ozols have contributed in various ways to this
project and to correctly determining these groups. The library design is modelled on and
borrows extensively from the 2-groups library, which was brought into GAP format by
Werner Nickel, Alice Niemeyer, and E.A. O’Brien.

37.10. THE IRREDUCIBLE SOLVABLE LINEAR GROUPS LIBRARY 675

37.10 The Irreducible Solvable Linear Groups Library

The IrredSol group library provides access to the irreducible solvable subgroups ofGL(n, p),
where n > 1, p is prime and pn < 256. The library contains exactly one member from each
of the 370 conjugacy classes of such subgroups.

By well known theory, this library also doubles as a library of primitive solvable permutation
groups of non-prime degree less than 256. To access the data in this form, you must first
build the matrix group(s) of interest and then call the function
PrimitivePermGroupIrreducibleMatGroup(matgrp)
This function returns a permutation group isomorphic to the semidirect product of an
irreducible matrix group (over a finite field) and its underlying vector space.

AllIrreducibleSolvableGroups(fun1, val1, fun2, val2, ...)

AllIrreducibleSolvableGroups returns a list containing all irreducible solvable linear
groups that have the properties given as arguments. Each property is specified by pass-
ing a pair of arguments, the first being a function which will be applied to all groups in the
library, and the second being a value or a list of values that this function must return in
order to have this group included in the list returned by AllIrreducibleSolvableGroups.

gap> AllIrreducibleSolvableGroups(Dimension, 2,
> CharFFE, 3,
> Size, 8);
[Group([[0*Z(3), Z(3)^0], [Z(3)^0, 0*Z(3)]],

[[Z(3), 0*Z(3)], [0*Z(3), Z(3)^0]],
[[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)]]),

Group([[0*Z(3), Z(3)^0], [Z(3), 0*Z(3)]],
[[Z(3)^0, Z(3)], [Z(3), Z(3)]]),

Group([[0*Z(3), Z(3)^0], [Z(3)^0, Z(3)]])]

OneIrreducibleSolvableGroup(fun1, val1, fun2, val2, ...)

OneIrreducibleSolvableGroup returns one irreducible solvable linear group that has the
properties given as arguments. Each property is specified by passing a pair of arguments,
the first being a function which will be applied to all groups in the library, and the second
being a value or a list of values that this function must return in order to have this group
returned by OneIrreducibleSolvableGroup. If no such group exists, false is returned.

gap> OneIrreducibleSolvableGroup(Dimension, 4,
> IsLinearlyPrimitive, false);
Group([[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]],

[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]],

[[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],

676 CHAPTER 37. GROUP LIBRARIES

[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0]])

AllIrreducibleSolvableGroups and OneIrreducibleSolvableGroup recognize the fol-
lowing functions and handle them very efficiently (because the information is stored with
the groups and so no computations are needed):Dimension for the linear degree, CharFFE for
the field characteristic, Size, IsLinearlyPrimitive, and MinimalBlockDimension. Note
that the last two are dummy functions that can be used only in this context. Their meaning
is explained at the end of this section.

IrreducibleSolvableGroup(n, p, i)

IrreducibleSolvableGroup returns the i -th irreducible solvable subgroup of GL(n, p
). The irreducible solvable subgroups of GL(n, p) are ordered with respect to the
following criteria

1. increasing size;

2. increasing guardian number.

If two groups have the same size and guardian, they are in no particular order. (See the
library documentation or [Sho92] for the meaning of guardian.)

gap> g := IrreducibleSolvableGroup(3, 5, 12);
Group([[0*Z(5), Z(5)^2, 0*Z(5)], [Z(5)^2, 0*Z(5), 0*Z(5)],

[0*Z(5), 0*Z(5), Z(5)^2]],
[[0*Z(5), Z(5)^0, 0*Z(5)], [0*Z(5), 0*Z(5), Z(5)^0],

[Z(5)^0, 0*Z(5), 0*Z(5)]],
[[Z(5)^2, 0*Z(5), 0*Z(5)], [0*Z(5), Z(5)^0, 0*Z(5)],

[0*Z(5), 0*Z(5), Z(5)^2]],
[[Z(5)^0, 0*Z(5), 0*Z(5)], [0*Z(5), Z(5)^2, 0*Z(5)],

[0*Z(5), 0*Z(5), Z(5)^2]],
[[Z(5), 0*Z(5), 0*Z(5)], [0*Z(5), Z(5), 0*Z(5)],

[0*Z(5), 0*Z(5), Z(5)]])

Apart from the usual components described in 7.117, the group records returned by the
above functions have the following components.

size
size of G .

isLinearlyPrimitive
false if G preserves a direct sum decomposition of the underlying vector space, and
true otherwise.

minimalBlockDimension
not bound if G is linearly primitive; otherwise equals the dimension of the blocks in
an unrefinable system of imprimitivity for G .

This library was computed and brought into GAP format by Mark Short. Descriptions of
the algorithms used in computing the library data can be found in [Sho92].

37.11. THE LIBRARY OF FINITE PERFECT GROUPS 677

37.11 The Library of Finite Perfect Groups

The GAP library of finite perfect groups provides, up to isomorphism, a list of all perfect
groups whose sizes are less than 106 excluding the following:

• For n = 61440, 122880, 172032, 245760, 344064, 491520, 688128, or 983040, the perfect
groups of size n have not completely been determined yet. The library neither provides
the number of these groups nor the groups themselves.

• For n = 86016, 368640, or 737280, the library does not yet contain the perfect groups
of size n, it only provides their their numbers which are 52, 46, or 54, respectively.

Except for these eleven sizes, the list of altogether 1096 perfect groups in the library is com-
plete. It relies on results of Derek F. Holt and Wilhelm Plesken which are published in their
book Perfect Groups [HP89]. Moreover, they have supplied to us files with presentations
of 488 of the groups. In terms of these, the remaining 607 nontrivial groups in the library
can be described as 276 direct products, 107 central products, and 224 subdirect products.
They are computed automatically by suitable GAP functions whenever they are needed.

We are grateful to Derek Holt and Wilhelm Plesken for making their groups available to the
GAP community by contributing their files. It should be noted that their book contains a
lot of further information for many of the library groups. So we would like to recommend
it to any GAP user who is interested in the groups.

The library has been brought into GAP format by Volkmar Felsch.

Like most of the other GAP libraries, the library of finite perfect groups provides an extrac-
tion function, PerfectGroup. It returns the specified group in form of a finitely presented
group which, in its group record, bears some additional information that allows you to easily
construct an isomorphic permutation group of some appropriate degree by just calling the
PermGroup function.

Further, there is a function NumberPerfectGroups which returns the number of perfect
groups of a given size.

The library does not provide a selection or an example function. There is, however, a
function DisplayInformationPerfectGroups which allows the display of some information
about arbitrary library groups without actually loading the large files with their presenta-
tions, and without constructing the groups themselves.

Moereover, there are two functions which allow you to formulate loops over selected library
groups. The first one is the NumberPerfectLibraryGroups function which, for any given
size, returns the number of groups in the library which are of that size.

The second one is the SizeNumbersPerfectGroups function. It allows you to ask for
all library groups which contain certain composition factors. The answer is provided in
form of a list of pairs [size,n] where each such pair characterizes the nth library group
of size size. We will call such a pair [size,n] the size number of the respective perfect
group. As the size numbers are accepted as input arguments by the PerfectGroup and the
DisplayInformationPerfectGroups function, you may use their list to formulate a loop
over the associated groups.

Now we shall give an individual description of each library function.

NumberPerfectGroups(size)

678 CHAPTER 37. GROUP LIBRARIES

NumberPerfectGroups returns the number of non-isomorphic perfect groups of size size for
each positive integer size up to 106 except for the eight sizes listed at the beginning of this
section for which the number is not yet known. For these values as well as for any argument
out of range it returns the value −1.

NumberPerfectLibraryGroups(size)

NumberPerfectLibraryGroups returns the number of perfect groups of size size which are
available in the library of finite perfect groups.

The purpose of the function is to provide a simple way to formulate a loop over all library
groups of a given size.

SizeNumbersPerfectGroups(factor1, factor2 ...)

SizeNumbersPerfectGroups returns a list of the size numbers (see above) of all library
groups that contain the specified factors among their composition factors. Each argument
must either be the name of a simple group or an integer expression which is the product
of the sizes of one or more cyclic factors. The function ignores the order in which the
argmuments are given and, in fact, replaces any list of more than one integer expression
among the arguments by their product.

The following text strings are accepted as simple group names.

"A5", "A6", "A7", "A8", "A9" or "A(5)", "A(6)", "A(7)", "A(8)", "A(9)" for the
alternating groups An, 5 ≤ n ≤ 9,

"L2(q)" or "L(2,q)" for PSL(2, q), where q is any prime power with 4 ≤ q ≤ 125,

"L3(q)" or "L(3,q)" for PSL(3, q) with 2 ≤ q ≤ 5,

"U3(q)" or "U(3,q)" for PSU(2, q) with 3 ≤ q ≤ 5,

"U4(2) or "U(4,2)" for PSU(4, 2),

"Sp4(4)" or "S(4,4)" for the symplectic group S(4, 4),

"Sz(8)" for the Suzuki group Sz(8),

"M11", "M12", "M22" or "M(11)", "M(12)", "M(22)" for the Matthieu groups M11,
M12, and M22, and

"J1", "J2" or "J(1)", "J(2)" for the Janko groups J1 and J2.

Note that, for most of the groups, the preceding list offers two different names in order to
be consistent with the notation used in [HP89] as well as with the notation used in the
DisplayCompositionSeries command of GAP. However, as the names are compared as
text strings, you are restricted to the above choice. Even expressions like "L2(32)" or
"L2(2^5)" are not accepted.

As the use of the term PSU(n, q) is not unique in the literature, we state that here it denotes
the factor group of SU(n, q) by its centre, where SU(n, q) is the group of all n× n unitary
matrices with entries in GF (q2) and determinant 1.

The purpose of the function is to provide a simple way to formulate a loop over all library
groups which contain certain composition factors.

37.11. THE LIBRARY OF FINITE PERFECT GROUPS 679

DisplayInformationPerfectGroups(size)
DisplayInformationPerfectGroups(size, n)
DisplayInformationPerfectGroups([size, n])

DisplayInformationPerfectGroups displays some information about the library group G,
say, which is specified by the size number [size,n] or by the two arguments size and n. If,
in the second case, n is omitted, the function will loop over all library groups of size size.

The information provided for G includes the following items:

• a headline containing the size number [size, n] of G in the form size.n (the suffix .n
will be suppressed if, up to isomorphism, G is the only perfect group of size size),
• a message if G is simple or quasisimple, i. e., if the factor group of G by its centre is

simple,
• the “description” of the structure of G as it is given by Holt and Plesken in [HP89]

(see below),
• the size of the centre of G (suppressed, if G is simple),
• the prime decomposition of the size of G,
• orbit sizes for a faithful permutation representation of G which is provided by the

library (see below),
• a reference to each occurrence of G in the tables of section 5.3 of [HP89]. Each of

these references consists of a class number and an internal number (i, j) under which
G is listed in that class. For some groups, there is more than one reference because
these groups belong to more than one of the classes in the book.

Example:

gap> DisplayInformationPerfectGroups(30720, 3);
#I Perfect group 30720.3: A5 (2^4 E N 2^1 E 2^4) A
#I centre = 1 size = 2^11*3*5 orbit size = 240
#I Holt-Plesken class 1 (9,3)
gap> DisplayInformationPerfectGroups(30720, 6);
#I Perfect group 30720.6: A5 (2^4 x 2^4) C N 2^1
#I centre = 2 size = 2^11*3*5 orbit size = 384
#I Holt-Plesken class 1 (9,6)
gap> DisplayInformationPerfectGroups(Factorial(8) / 2);
#I Perfect group 20160.1: A5 x L3(2) 2^1
#I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 5 + 16
#I Holt-Plesken class 31 (1,1) (occurs also in class 32)
#I Perfect group 20160.2: A5 2^1 x L3(2)
#I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 7 + 24
#I Holt-Plesken class 31 (1,2) (occurs also in class 32)
#I Perfect group 20160.3: (A5 x L3(2)) 2^1
#I centre = 2 size = 2^6*3^2*5*7 orbit size = 192
#I Holt-Plesken class 31 (1,3)
#I Perfect group 20160.4: simple group A8
#I size = 2^6*3^2*5*7 orbit size = 8
#I Holt-Plesken class 26 (0,1)
#I Perfect group 20160.5: simple group L3(4)
#I size = 2^6*3^2*5*7 orbit size = 21

680 CHAPTER 37. GROUP LIBRARIES

#I Holt-Plesken class 27 (0,1)

For any library group G, the library files do not only provide a presentation, but, in addition,
a list of one or more subgroups S1, . . . , Sr of G such that there is a faithful permutation rep-
resentation of G of degree

∑r
i=1G :Si on the set {Sig | 1 ≤ i ≤ r, g ∈ G} of the cosets of the

Si. The respective permutation group is available via the PermGroup function described be-
low. The DisplayInformationPerfectGroups function displays only the available degree.
The message

orbit size = 8

in the above example means that the available permutation representation is transitive and
of degree 8, whereas the message

orbit sizes = 7 + 24

means that a nontransitive permutation representation is available which acts on two orbits
of size 7 and 24 respectively.

The notation used in the “description” of a group is explained in section 5.1.2 of [HP89].
We quote the respective page from there:

‘Within a class Q# p, an isomorphism type of groups will be denoted by an ordered pair
of integers (r, n), where r ≥ 0 and n > 0. More precisely, the isomorphism types in Q # p
of order pr |Q| will be denoted by (r, 1), (r, 2), (r, 3), Thus Q will always get the size
number (0, 1).

In addition to the symbol (r, n), the groups in Q# p will also be given a more descriptive
name. The purpose of this is to provide a very rough idea of the structure of the group.
The names are derived in the following manner. First of all, the isomorphism classes of
irreducible FpQ-modules M with |Q||M| ≤ 106, where Fp is the field of order p, are assigned
symbols. These will either be simply px, where x is the dimension of the module, or, if there
is more than one isomorphism class of irreducible modules having the same dimension, they
will be denoted by px, px

′
, etc. The one-dimensional module with trivial Q-action will

therefore be denoted by p1. These symbols will be listed under the description of Q. The
group name consists essentially of a list of the composition factors working from the top of
the group downwards; hence it always starts with the name of Q itself. (This convention
is the most convenient in our context, but it is different from that adopted in the ATLAS
(Conway et al. 1985), for example, where composition factors are listed in the reverse order.
For example, we denote a group isomorphic to SL(2, 5) by A521 rather than 2 ·A5.)

Some other symbols are used in the name, in order to give some idea of the relationship be-
tween these composition factors, and splitting properties. We shall now list these additional
symbols.

× between two factors denotes a direct product of FpQ-modules or groups.

C (for ‘commutator’) between two factors means that the second lies in the commutator
subgroup of the first. Similarly, a segment of the form (f1×f2)Cf3 would mean that
the factors f1 and f2 commute modulo f3 and f3 lies in [f1, f2].

A (for ‘abelian’) between two factors indicates that the second is in the pth power (but
not the commutator subgroup) of the first. ‘A’ may also follow the factors, if bracketed.

E (for ‘elementary abelian’) between two factors indicates that together they generate
an elementary abelian group (modulo subsequent factors), but that the resulting FpQ-
module extension does not split.

37.11. THE LIBRARY OF FINITE PERFECT GROUPS 681

N (for ‘nonsplit’) before a factor indicates that Q (or possibly its covering group) splits
down as far at this factor but not over the factor itself. So ‘Qf1Nf2’ means that the
normal subgroup f1f2 of the group has no complement but, modulo f2, f1, does have
a complement.

Brackets have their obvious meaning. Summarizing, we have
× = dirext product;

C = commutator subgroup;

A = abelian;

E = elementary abelian; and

N = nonsplit.

Here are some examples.

(i) A5(24E21E24)A means that the pairs 24E21 and 21E24 are both elementary abelian
of exponent 4.

(ii) A5(24E21A)C21 means that O2(G) is of symplectic type 21+5, with Frattini factor
group of type 24E21. The ‘A’ after the 21 indicates that G has a central cyclic
subgroup 21A21 of order 4.

(iii) L3(2)((21E)×(N23E23′A)C)23′ means that the 23′ factor at the bottom lies in the
commutator subgroup of the pair 23E23′ in the middle, but the lower pair 23′A23′

is abelian of exponent 4. There is also a submodule 21E23′ , and the covering group
L3(2)21 of L3(2) does not split over the 23 factor. (Since G is perfect, it goes without
saying that the extension L3(2)21 cannot split itself.)

We must stress that this notation does not always succeed in being precise or even unam-
biguous, and the reader is free to ignore it if it does not seem helpful.’

If such a group description has been given in the book for G (and, in fact, this is the case
for most of the library groups), it is displayed by the DisplayInformationPerfectGroups
function. Otherwise the function provides a less explicit description of the (in these cases
unique) Holt-Plesken class to which G belongs, together with a serial number if this is
necessary to make it unique.

PerfectGroup(size)
PerfectGroup(size, n)
PerfectGroup([size, n])

PerfectGroup is the essential extraction function of the library. It returns a finitely pre-
sented group, G say, which is isomorphic to the library group specified by the size number
[size,n] or by the two separate arguments size and n. In the second case, you may omit the
parameter n. Then the default value is n = 1.

gap> G := PerfectGroup(6048);
PerfectGroup(6048)
gap> G.generators;
[a, b]
gap> G.relators;
[a^2, b^6, a*b*a*b*a*b*a*b*a*b*a*b*a*b,
a*b^2*a*b^2*a*b^2*a*b^-2*a*b^-2*a*b^-2,

682 CHAPTER 37. GROUP LIBRARIES

a*b*a*b^-2*a*b*a*b^-2*a*b*a*b^-2*a*b*a*b^-1*a*b^-1]
gap> G.size;
6048
gap> G.description;
"U3(3)"
gap> G.subgroups;
[Subgroup(PerfectGroup(6048), [a, b*a*b*a*b*a*b^3])]

The generators and relators of G coincide with those given in [HP89].

Note that, besides the components that are usually initialized for any finitely presented
group, the group record of G contains the following components:

size
the size of G ,

isPerfect
always true,

description
the description of G as described with the DisplayInformationPerfectGroups func-
tion above,

source
some internal information used by the library functions,

subgroups
a list of subgroups S1, . . . , Sr of G such that G acts faithfully on on the union of the
sets of all cosets of the Si.

The last of these components exists only if G is one of the 488 nontrivial library groups
which are given directly by a presentation on file, i. e., which are not constructed from other
library groups in form of a direct, central, or subdirect product. It will be required by the
following function.

PermGroup(G)

PermGroup returns a permutation group, P say, which is isomorphic to the given group G
which is assumed to be a finitely presented perfect group that has been extracted from the
library of finite perfect groups via the PerfectGroup function.

Let S1, . . . , Sr be the subgroups listed in the component G.subgroups of the group record
of G . Then the resulting group P is the permutation group of degree

∑r
i=1G :Si which is

induced by G on the set {Sig | 1 ≤ i ≤ r, g ∈ G} of all cosets of the Si.

Example (continued):

gap> P := PermGroup(G);
PermGroup(PerfectGroup(6048))
gap> P.size;
6048
gap> P.degree;
28

Note that some of the library groups do not have a faithful permutation representation of
small degree. Computations in these groups may be rather time consuming.

37.11. THE LIBRARY OF FINITE PERFECT GROUPS 683

Example:

gap> P := PermGroup(PerfectGroup(129024, 2));
PermGroup(PerfectGroup(129024,2))
gap> P.degree;
14336

684 CHAPTER 37. GROUP LIBRARIES

37.12 Irreducible Maximal Finite Integral Matrix Groups

A library of irreducible maximal finite integral matrix groups is provided with GAP. It
contains Q′ -class representatives for all of these groups of dimension at most 24, and ZZ-class
representatives for those of dimension at most 11 or of dimension 13, 17, 19, or 23.
The groups provided in this library have been determined by Wilhelm Plesken, partially as
joint work with Michael Pohst, or by members of his institute (Lehrstuhl B für Mathematik,
RWTH Aachen). In particular, the data for the groups of dimensions 2 to 9 have been
taken from the output of computer calculations which they performed in 1979 (see [PP77],
[PP80]). The ZZ-class representatives of the groups of dimension 10 have been determined
and computed by Bernd Souvignier ([Sou94]), and those of dimensions 11, 13, and 17 have
been recomputed for this library from the circulant Gram matrices given in [Ple85], using
the stand-alone programs for the computation of short vectors and Bravais groups which
have been developed in Plesken’s institute. The ZZ-class representatives of the groups of
dimensions 19 and 23 had already been determined in [Ple85]. Gabriele Nebe has recomputed
them for us. Her main contribution to this library, however, is that she has determined and
computed the Q′ -class representatives of the groups of non-prime dimensions between 12 and
24 (see [PN95], [NP95b], [Neb95]).
The library has been brought into GAP format by Volkmar Felsch. He has applied several
GAP routines to check certain consistency of the data. However, the credit and responsibility
for the lists remain with the authors. We are grateful to Wilhelm Plesken, Gabriele Nebe,
and Bernd Souvignier for supplying their results to GAP.
In the preceding acknowledgement, we used some notations that will also be needed in the
sequel. We first define these.
Any integral matrix group G of dimension n is a subgroup of GLn(ZZ) as well as of GLn(Q′)
and hence lies in some conjugacy class of integral matrix groups under GLn(ZZ) and also
in some conjugacy class of rational matrix groups under GLn(Q′). As usual, we call these
classes the ZZ-class and the Q′ -class of G, respectively. Note that any conjugacy class of
subgroups of GLn(Q′) contains at least one ZZ-class of subgroups of GLn(ZZ) and hence can
be considered as the Q′ -class of some integral matrix group.
In the context of this library we are only concerned with ZZ-classes and Q′ -classes of sub-
groups of GLn(ZZ) which are irreducible and maximal finite in GLn(ZZ) (we will call them
i. m. f. subgroups of GLn(ZZ)). We can distinguish two types of these groups:
First, there are those i. m. f. subgroups of GLn(ZZ) which are also maximal finite subgroups
of GLn(Q′). Let us denote the set of their Q′ -classes by Q1(n). It is clear from the above
remark that Q1(n) just consists of the Q-classes of i. m. f. subgroups of GLn(Q′).
Secondly, there is the set Q2(n) of the Q′ -classes of the remaining i. m. f. subgroups of
GLn(ZZ), i. e., of those which are not maximal finite subgroups of GLn(Q′). For any such
group G, say, there is at least one class C ∈ Q1(n) such that G is conjugate under Q′ to
a proper subgroup of some group H ∈ C. In fact, the class C is uniquely determined for
any group G occurring in the library (though there seems to be no reason to assume that
this property should hold in general). Hence we may call C the rational i. m. f. class of
G. Finally, we will denote the number of classes in Q1(n) and Q2(n) by q1(n) and q2(n),
respectively.
As an example, let us consider the case n = 4. There are 6 ZZ-classes of i. m. f. subgroups
of GL4(ZZ) with representative subgroups G1, . . . , G6 of isomorphsim types G1

∼= W (F4),

37.12. IRREDUCIBLE MAXIMAL FINITE INTEGRAL MATRIX GROUPS 685

G2
∼= D12 o C2, G3

∼= G4
∼= C2 × S5, G5

∼= W (B4), and G6
∼= (D12YD12) :C2. The corre-

sponding Q′ -classes, R1, . . . , R6, say, are pairwise different except that R3 coincides with
R4. The groups G1, G2, and G3 are i. m. f. subgroups of GL4(Q′), but G5 and G6 are not
because they are conjugate under GL4(Q′) to proper subgroups of G1 and G2, respectively.
So we have Q1(4) = {R1, R2, R3}, Q2(4) = {R5, R6}, q1(4) = 3, and q2(4) = 2.

The q1(n) Q′ -classes of i. m. f. subgroups of GLn(Q′) have been determined for each dimension
n ≤ 24. The current GAP library provides integral representative groups for all these classes.
Moreover, all ZZ-classes of i. m. f. subgroups of GLn(ZZ) are known for n ≤ 11 and for
n ∈ {13, 17, 19, 23}. For these dimensions, the library offers integral representative groups
for all Q′ -classes in Q1(n) and Q2(n) as well as for all ZZ-classes of i. m. f. subgroups of
GLn(ZZ).

Any group G of dimension n given in the library is represented as the automorphism group
G = Aut(F,L) = {g ∈ GLn(ZZ) | Lg = L and gFgtr = F} of a positive definite symmetric
n×n matrix F ∈ ZZn×n on an n-dimensional lattice L ∼= ZZ1×n (for details see e. g. [PN95]).
GAP provides for G a list of matrix generators and the Gram matrix F .

The positive definite quadratic form defined by F defines a norm vFvtr for each vector v ∈ L,
and there is only a finite set of vectors of minimal norm. These vectors are often simply
called the “short vectors”. Their set splits into orbits under G, and G being irreducible acts
faithfully on each of these orbits by multiplication from the right. GAP provides for each of
these orbits the orbit size and a representative vector.

Like most of the other GAP libraries, the library of i. m. f. integral matrix groups supplies
an extraction function, ImfMatGroup. However, as the library involves only 423 different
groups, there is no need for a selection or an example function. Instead, there are two func-
tions, ImfInvariants and DisplayImfInvariants, which provide some ZZ-class invariants
that can be extracted from the library without actually constructing the representative
groups themselves. The difference between these two functions is that the latter one dis-
plays the resulting data in some easily readable format, whereas the first one returns them
as record components so that you can properly access them.

We shall give an individual description of each of the library functions, but first we would
like to insert a short remark concerning their names: Any self-explaining name of a function
handling irreducible maximal finite integral matrix groups would have to include this term
in full length and hence would grow extremely long. Therefore we have decided to use the
abbreviation Imf instead in order to restrict the names to some reasonable length.

The first three functions can be used to formulate loops over the classes.

ImfNumberQQClasses(dim)
ImfNumberQClasses(dim)
ImfNumberZClasses(dim, q)

ImfNumberQQClasses returns the number q1(dim) of Q′ -classes of i. m. f. rational matrix
groups of dimension dim. Valid values of dim are all positive integers up to 24.

Note: In order to enable you to loop just over the classes belonging to Q1(dim), we have
arranged the list of Q′ -classes of dimension dim for any dimension dim in the library such
that, whenever the classes of Q2(dim) are known, too, i. e., in the cases dim ≤ 11 or
dim ∈ {13, 17, 19, 23}, the classes of Q1(dim) precede those of Q2(dim) and hence are
numbered from 1 to q1(dim).

686 CHAPTER 37. GROUP LIBRARIES

ImfNumberQClasses returns the number of Q′ -classes of groups of dimension dim which
are available in the library. If dim ≤ 11 or dim ∈ {13, 17, 19, 23}, this is the number
q1(dim) + q2(dim) of Q′ -classes of i. m. f. subgroups of GLdim(ZZ). Otherwise, it is just the
number q1(dim) of Q′ -classes of i. m. f. subgroups of GLdim(Q′). Valid values of dim are all
positive integers up to 24.

ImfNumberZClasses returns the number of ZZ-classes in the qth Q′ -class of i. m. f. integral
matrix groups of dimension dim. Valid values of dim are all positive integers up to 11 and
all primes up to 23.

DisplayImfInvariants(dim, q)
DisplayImfInvariants(dim, q, z)

DisplayImfInvariants displays the following ZZ-class invariants of the groups in the z th

ZZ-class in the qth Q′ -class of i. m. f. integral matrix groups of dimension dim:

• its ZZ-class number in the form dim.q .z , if dim is at most 11 or a prime, or its Q′ -class
number in the form dim.q , else,
• a message if the group is solvable,
• the size of the group,
• the isomorphism type of the group,
• the elementary divisors of the associated quadratic form,
• the sizes of the orbits of short vectors (these sizes are the degrees of the faith-

ful permutation representations which you may construct using the PermGroup or
PermGroupImfGroup commands below),
• the norm of the associated short vectors,
• only in case that the group is not an i. m. f. group in GLn(Q′): an appropriate message,

including the Q′ -class number of the corresponding rational i. m. f. class.

If you specify the value 0 for any of the parameters dim, q , or z , the command will loop
over all available dimensions, Q′ -classes of given dimension, or ZZ-classes within the given
Q′ -class, respectively. Otherwise, the values of the arguments must be in range. A value
z 6= 1 must not be specified if the ZZ-classes are not known for the given dimension, i. e.,
if dim > 11 and dim 6∈ {13, 17, 19, 23}. The default value of z is 1. This value of z will
be accepted even if the ZZ-classes are not known. Then it specifies the only representative
group which is available for the qth Q′ -class. The greatest legal value of dim is 24.

gap> DisplayImfInvariants(3, 1, 0);
#I Z-class 3.1.1: Solvable, size = 2^4*3
#I isomorphism type = C2 wr S3 = C2 x S4 = W(B3)
#I elementary divisors = 1^3
#I orbit size = 6, minimal norm = 1
#I Z-class 3.1.2: Solvable, size = 2^4*3
#I isomorphism type = C2 wr S3 = C2 x S4 = C2 x W(A3)
#I elementary divisors = 1*4^2
#I orbit size = 8, minimal norm = 3
#I Z-class 3.1.3: Solvable, size = 2^4*3
#I isomorphism type = C2 wr S3 = C2 x S4 = C2 x W(A3)
#I elementary divisors = 1^2*4

37.12. IRREDUCIBLE MAXIMAL FINITE INTEGRAL MATRIX GROUPS 687

#I orbit size = 12, minimal norm = 2
gap> DisplayImfInvariants(8, 15, 1);
#I Z-class 8.15.1: Solvable, size = 2^5*3^4
#I isomorphism type = C2 x (S3 wr S3)
#I elementary divisors = 1*3^3*9^3*27
#I orbit size = 54, minimal norm = 8
#I not maximal finite in GL(8,Q), rational imf class is 8.5
gap> DisplayImfInvariants(20, 23);
#I Q-class 20.23: Size = 2^5*3^2*5*11
#I isomorphism type = (PSL(2,11) x D12).C2
#I elementary divisors = 1^18*11^2
#I orbit size = 3*660 + 2*1980 + 2640 + 3960, minimal norm = 4

Note that the DisplayImfInvariants function uses a kind of shorthand to display the
elementary divisors. E. g., the expression 1*3^3*9^3*27 in the preceding example stands
for the elementary divisors 1, 3, 3, 3, 9, 9, 9, 27. (See also the next example which shows that
the ImfInvariants function provides the elementary divisors in form of an ordinary GAP
list.)

In the description of the isomorphism types the following notations are used:

A xB denotes a direct product of a group A by a group B,
A subdB denotes a subdirect product of A by B,
AYB denotes a central product of A by B,
AwrB denotes a wreath product of A by B,
A : B denotes a split extension of A by B,
A .B denotes just an extension of A by B (split or nonsplit).

The groups involved are

• the cyclic groups Cn, dihedral groups Dn, and generalized quaternion groups Qn of
order n, denoted by Cn, Dn, and Qn, respectively,

• the alternating groups An and symmetric groups Sn of degree n, denoted by An and
Sn, respectively,

• the linear groups GLn(q), PGLn(q), SLn(q), and PSLn(q), denoted by GL(n,q),
PGL(n,q), SL(n,q), and PSL(n,q), respectively,

• the unitary groups SUn(q) and PSUn(q), denoted by SU(n,q) and PSU(n,q), respec-
tively,

• the symplectic groups Sp(n, q), denoted by Sp(n,q),

• the orthogonal group O+
8 (2), denoted by O+(8,2),

• the extraspecial groups 2 1+8
+ , 3 1+2

+ , 3 1+4
+ , and 5 1+2

+ , denoted by 2+^(1+8), 3+^(1+2),
3+^(1+4), and 5+^(1+2), respectively,

• the Chevalley group G2(3), denoted by G(2,3),

• the Weyl groups W (An), W (Bn), W (Dn), W (En), and W (F4), denoted by W(An),
W(Bn), W(Dn), W(En), and W(F4), respectively,

• the sporadic simple groups Co1, Co2, Co3, HS, J2, M12, M22, M23, M24, and Mc,
denoted by Co1, Co2, Co3, HS, J2, M12, M22, M23, M24, and Mc, respectively,

• a point stabilizer of index 11 in M11, denoted by M10.

688 CHAPTER 37. GROUP LIBRARIES

As mentioned above, the data assembled by the DisplayImfInvariants command are
“cheap data” in the sense that they can be provided by the library without loading any
of its large matrix files or performing any matrix calculations. The following function allows
you to get proper access to these cheap data instead of just displaying them.

ImfInvariants(dim, q)
ImfInvariants(dim, q, z)

ImfInvariants returns a record which provides some ZZ-class invariants of the groups in
the z th ZZ-class in the qth Q′ -class of i. m. f. integral matrix groups of dimension dim. A
value z 6= 1 must not be specified if the ZZ-classes are not known for the given dimension,
i. e., if dim > 11 and dim 6∈ {13, 17, 19, 23}. The default value of z is 1. This value of z will
be accepted even if the ZZ-classes are not known. Then it specifies the only representative
group which is available for the qth Q′ -class. The greatest legal value of dim is 24.

The resulting record contains six or seven components:

size
the size of any representative group G ,

isSolvable
is true if G is solvable,

isomorphismType
a text string describing the isomorphism type of G (in the same notation as used by
the DisplayImfInvariants command above),

elementaryDivisors
the elementary divisors of the associated Gram matrix F (in the same format as the
result of the ElementaryDivisorsMat function, see 34.17),

minimalNorm
the norm of the associated short vectors,

sizesOrbitsShortVectors
the sizes of the orbits of short vectors under F ,

maximalQClass
the Q′ -class number of an i. m. f. group in GLn(Q′) that contains G as a subgroup
(only in case that not G itself is an i. m. f. subgroup of GLn(Q′)).

Note that four of these data, namely the group size, the solvability, the isomorphism type,
and the corresponding rational i. m. f. class, are not only ZZ-class invariants, but also Q′ -class
invariants.

Note further that, though the isomorphism type is a Q′ -class invariant, you will sometimes
get different descriptions for different ZZ-classes of the same Q′ -class (as, e. g., for the classes
3.1.1 and 3.1.2 in the last example above). The purpose of this behaviour is to provide some
more information about the underlying lattices.

gap> ImfInvariants(8, 15, 1);
rec(

size := 2592,
isSolvable := true,
isomorphismType := "C2 x (S3 wr S3)",

37.12. IRREDUCIBLE MAXIMAL FINITE INTEGRAL MATRIX GROUPS 689

elementaryDivisors := [1, 3, 3, 3, 9, 9, 9, 27],
minimalNorm := 8,
sizesOrbitsShortVectors := [54],
maximalQClass := 5)

gap> ImfInvariants(24, 1).size;
10409396852733332453861621760000
gap> ImfInvariants(23, 5, 2).sizesOrbitsShortVectors;
[552, 53130]
gap> for i in [1 .. ImfNumberQClasses(22)] do
> Print(ImfInvariants(22, i).isomorphismType, "\n"); od;
C2 wr S22 = W(B22)
(C2 x PSU(6,2)).S3
(C2 x S3) wr S11 = (C2 x W(A2)) wr S11
(C2 x S12) wr C2 = (C2 x W(A11)) wr C2
C2 x S3 x S12 = C2 x W(A2) x W(A11)
(C2 x HS).C2
(C2 x Mc).C2
C2 x S23 = C2 x W(A22)
C2 x PSL(2,23)
C2 x PSL(2,23)
C2 x PGL(2,23)
C2 x PGL(2,23)

ImfMatGroup(dim, q)
ImfMatGroup(dim, q, z)

ImfMatGroup is the essential extraction function of this library. It returns a representative
group, G say, of the z th ZZ-class in the qth Q′ -class of i. m. f. integral matrix groups of
dimension dim. A value z 6= 1 must not be specified if the ZZ-classes are not known for the
given dimension, i. e., if dim > 11 and dim 6∈ {13, 17, 19, 23}. The default value of z is 1.
This value of z will be accepted even if the ZZ-classes are not known. Then it specifies the
only representative group which is available for the qth Q′ -class. The greatest legal value of
dim is 24.

gap> G := ImfMatGroup(5, 1, 3);
ImfMatGroup(5,1,3)
gap> for m in G.generators do PrintArray(m); od;
[[-1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 1, 0],
[-1, -1, -1, -1, 2],
[-1, 0, 0, 0, 1]]

[[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[1, 0, 0, 0, 0],
[0, 0, 0, 0, 1]]

The group record of G contains the usual components of a matrix group record. In addition,
it includes the same six or seven records as the resulting record of the ImfInvariants

690 CHAPTER 37. GROUP LIBRARIES

function described above, namely the components size, isSolvable, isomorphismType,
elementaryDivisors, minimalNorm, and sizesOrbitsShortVectors and, if G is not a
rational i. m. f. group, maximalQClass. Moreover, there are the two components

form
the associated Gram matrix F ,

repsOrbitsShortVectors
representatives of the orbits of short vectors under F .

The last of these components will be required by the PermGroup function below.

Example:

gap> G.size;
3840
gap> G.isomorphismType;
"C2 wr S5 = C2 x W(D5)"
gap> PrintArray(G.form);
[[4, 0, 0, 0, 2],

[0, 4, 0, 0, 2],
[0, 0, 4, 0, 2],
[0, 0, 0, 4, 2],
[2, 2, 2, 2, 5]]

gap> G.elementaryDivisors;
[1, 4, 4, 4, 4]
gap> G.minimalNorm;
4

If you want to perform calculations in such a matrix group G you should be aware of the
fact that GAP offers much more efficient permutation group routines than matrix group
routines. Hence we recommend that you do your computations, whenever it is possible, in
the isomorphic permutation group that is induced by the action of G on one of the orbits
of the associated short vectors. You may call one of the following functions to get such a
permutation group.

PermGroup(G)

PermGroup returns the permutation group which is induced by the given i. m. f. integral
matrix group G on an orbit of minimal size of G on the set of short vectors (see also
PermGroupImfGroup below).

The permutation representation is computed by first constructing the specified orbit, S
say, of short vectors and then computing the permutations which are induced on S by the
generators of G . We would like to warn you that in case of a large orbit this procedure may
be space and time consuming. Fortunately, there are only five Q′ -classes in the library for
which the smallest orbit of short vectors is of size greater than 20000, the worst case being
the orbit of size 196560 for the Leech lattice (dim = 24, q = 3).

As mentioned above, PermGroup constructs the required permutation group, P say, as the
image of G under the isomorphism between the matrices in G and their action on S.
Moreover, it constructs the inverse isomorphism from P to G , ϕ say, and returns it in the
group record component P .bijection of P . In fact, ϕ is constructed by determining a Q′ -
base B ⊂ S of Q′ 1×dim in S and, in addition, the associated base change matrix M which

37.12. IRREDUCIBLE MAXIMAL FINITE INTEGRAL MATRIX GROUPS 691

transforms B into the standard base of ZZ1×dim. Then the image ϕ(p) of any permutation
p ∈ P can be easily computed: If, for 1 ≤ i ≤ dim, bi is the position number in S of the ith

base vector in B, it suffices to look up the vector whose position number in S is the image
of bi under p and to multiply this vector by M to get the ith row of ϕ(p).

You may use ϕ at any time to compute the images in G of permutations in P or to compute
the preimages in P of matrices in G .

The record of P contains, in addition to the usual components of permutation group records,
some special components. The most important of those are:

isomorphismType
a text string describing the isomorphism type of P (in the same notation as used by
the DisplayImfInvariants command above),

matGroup
the associated matrix group G ,

bijection
the isomorphism ϕ from P to G ,

orbitShortVectors
the orbit S of short vectors (needed for ϕ),

baseVectorPositions
the position numbers of the base vectors in B with respect to S (needed for ϕ),

baseChangeMatrix
the base change matrix M (needed for ϕ).

As an example, let us compute a set R of matrix generators for the solvable residuum of the
group G that we have constructed in the preceding example.

gap> # Perform the computations in an isomorphic permutation group.
gap> P := PermGroup(G);
PermGroup(ImfMatGroup(5,1,3))
gap> P.generators;
[(1, 7, 6)(2, 9)(4, 5,10), (2, 3, 4, 5)(6, 9, 8, 7)]
gap> D := DerivedSubgroup(P);
Subgroup(PermGroup(ImfMatGroup(5,1,3)),
[(1, 2,10, 9)(3, 8)(4, 5)(6, 7),
(1, 6)(2, 7, 9, 4)(3, 8)(5,10), (1, 5,10, 6)(2, 8, 9, 3)])

gap> Size(D);
960
gap> IsPerfect(D);
true
gap> # Now move the results back to the matrix group.
gap> phi := P.bijection;;
gap> R := List(D.generators, p -> Image(phi, p));;
gap> for m in R do PrintArray(m); od;
[[-1, -1, -1, -1, 2],
[0, -1, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 0, 0],

692 CHAPTER 37. GROUP LIBRARIES

[-1, -1, 0, 0, 1]]
[[0, 0, -1, 0, 0],
[0, -1, 0, 0, 0],
[1, 0, 0, 0, 0],
[-1, -1, -1, -1, 2],
[0, -1, -1, 0, 1]]

[[0, -1, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[-1, -1, -1, -1, 2],
[0, -1, 0, -1, 1]]

gap> # The PreImage function allows us to use the inverse of phi.
gap> PreImage(phi, R[1]) = D.generators[1];
true

PermGroupImfGroup(G, n)

PermGroupImfGroup returns the permutation group which is induced by the given i. m. f. in-
tegral matrix group G on its nth orbit of short vectors. The only difference to the above
PermGroup function is that you can specify the orbit to be used. In fact, as the orbits of short
vectors are sorted by increasing sizes, the function PermGroup(G) has been implemented
such that it is equivalent to PermGroupImfGroup(G, 1).

gap> ImfInvariants(12, 9).sizesOrbitsShortVectors;
[120, 300]
gap> G := ImfMatGroup(12, 9);
ImfMatGroup(12,9)
gap> P1 := PermGroupImfGroup(G, 1);
PermGroup(ImfMatGroup(12,9))
gap> P1.degree;
120
gap> P2 := PermGroupImfGroup(G, 2);
PermGroupImfGroup(ImfMatGroup(12,9),2)
gap> P2.degree;
300

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 693

37.13 The Crystallographic Groups Library

GAP provides a library of crystallographic groups of dimensions 2, 3, and 4 which cov-
ers many of the data that have been listed in the book “Crystallographic groups of four-
dimensional space” [BBN+78]. It has been brought into GAP format by Volkmar Felsch.

How to access the data of the book

Among others, the library offers functions which provide access to the data listed in the
Tables 1, 5, and 6 of [BBN+78]:

• The information on the crystal families listed in Table 1 can be reproduced using the
DisplayCrystalFamily function.

• Similarly, the DisplayCrystalSystem function can be used to reproduce the informa-
tion on the crystal systems provided in Table 1.

• The information given in the Q′ -class headlines of Table 1 can be displayed by the
DisplayQClass function, whereas the FpGroupQClass function can be used to repro-
duce the presentations that are listed in Table 1 for the Q′ -class representatives.

• The information given in the ZZ-class headlines of Table 1 will be covered by the
results of the DisplayZClass function, and the matrix generators of the ZZ-class
representatives can be constructed by calling the MatGroupZClass function.

• The DisplaySpaceGroupType and the DisplaySpaceGroupGenerators functions can
be used to reproduce all of the information on the space-group types that is provided
in Table 1.

• The normalizers listed in Table 5 can be reproduced by calling the NormalizerZClass
function.

• Finally, the CharTableQClass function will compute the character tables listed in
Table 6, whereas the isomorphism types given in Table 6 may be obtained by calling
the DisplayQClass function.

The display functions mentioned in the above list print their output with different inden-
tation. So, calling them in a suitably nested loop, you may produce a listing in which the
information about the objects of different type will be properly indented as has been done
in Table 1 of [BBN+78].

Representation of space groups in GAP

Probably the most important function in the library is the SpaceGroup function which
provides representatives of the affine classes of space groups. A space group of dimension n
is represented by an (n+ 1)-dimensional rational matrix group as follows.

If S is an n-dimensional space group, then each element α ∈ S is an affine mapping α : V → V
of an n-dimensional IR-vector space V onto itself. Hence α can be written as the sum of
an appropriate invertible linear mapping ϕ : V → V and a translation by some translation
vector t ∈ V such that, if we write mappings from the left, we have α(v) = ϕ(v) + t for all
v ∈ V .

694 CHAPTER 37. GROUP LIBRARIES

If we fix a basis of V and then replace each v ∈ V by the column vector of its coefficients
with respect to that basis (and hence V by the isomorphic column vector space IRn×1), we
can describe the linear mapping ϕ involved in α by an n× n matrix Mϕ ∈ GLn(IR) which
acts by multiplication from the left on the column vectors in IRn×1. Hence, if we identify
V with IRn×1, we have α(v) = Mϕ · v + t for all v ∈ IRn×1.

Moreover, if we extend each column vector v ∈ IRn×1 to a column
[
v
1

]
of length n + 1

by adding an entry 1 in the last position and if we define an (n + 1) × (n + 1) matrix

Mα =
[
Mϕ t
0 1

]
, we have

[
α(v)

1

]
= Mα ·

[
v
1

]
for all v ∈ IRn×1. This means that we

can represent the space group S by the isomorphic group M(S) = {Mα | α ∈ S}. The
submatrices Mϕ occurring in the elements of M(S) form an n× n matrix group P (S), the
“point group” of M(S). In fact, we can choose the basis of IRn×1 such that Mϕ ∈ GLn(ZZ)
and t ∈ Q′ n×1 for all Mα ∈ M(S). In particular, the space group representatives that are
normally used by the crystallographers are of this form, and the book [BBN+78] uses the
same convention.

Before we describe all available library functions in detail, we have to add three remarks.

Remark 1

The concepts used in this section are defined in chapter 1 (Basic definitions) of [BBN+78].
However, note that the definition of the concept of a crystal system given on page 16 of that
book relies on the following statement about Q′ -classes:

For a Q′ -class C there is a unique holohedry H such that each f. u. group in C is a
subgroup of some f. u. group in H, but is not a subgroup of any f. u. group belonging
to a holohedry of smaller order.

This statement is correct for dimensions 1, 2, 3, and 4, and hence the definition of “crystal
system” given on page 16 of [BBN+78] is known to be unambiguous for these dimensions.
However, there is a counterexample to this statement in seven-dimensional space so that
the definition breaks down for some higher dimensions.

Therefore, the authors of the book have since proposed to replace this definition of “crystal
system” by the following much simpler one, which has been discussed in more detail in
[NPW81]. To formulate it, we use the intersections of Q′ -classes and Bravais flocks as
introduced on page 17 of [BBN+78], and we define the classification of the set of all ZZ-
classes into crystal systems as follows:

Definition: A crystal system (introduced as an equivalence class of ZZ-classes) consists
of full geometric crystal classes. The ZZ-classes of two (geometric) crystal classes
belong to the same crystal system if and only if these geometric crystal classes intersect
the same set of Bravais flocks of ZZ-classes.

¿From this definition of a crystal system of ZZ-classes one then obtains crystal systems of
f. u. groups, of space-group types, and of space groups in the same manner as with the
preceding definitions in the book.

The new definition is unambiguous for all dimensions. Moreover, it can be checked from the
tables in the book that it defines the same classification as the old one for dimensions 1, 2,
3, and 4.

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 695

It should be noted that the concept of crystal family is well-defined independently of the
dimension if one uses the “more natural” second definition of it at the end of page 17.
Moreover, the first definition of crystal family on page 17 defines the same concept as the
second one if the now proposed definition of crystal system is used.

Remark 2

The second remark just concerns a different terminology in the tables of [BBN+78] and in
the current library. In group theory, the number of elements of a finite group usually is
called the “order” of the group. This notation has been used throughout in the book. Here,
however, we will follow the GAP conventions and use the term “size” instead.

Remark 3

The third remark concerns a problem in the use of the space groups that should be well
understood.

There is an alternative to the representation of the space group elements by matrices of

the form
[
Mϕ t
0 1

]
as described above. Instead of considering the coefficient vectors as

columns we may consider them as rows. Then we can associate to each affine mapping α ∈ S

an (n + 1) × (n + 1) matrix Mα =
[
Mϕ 0
t 1

]
with Mϕ ∈ GLn(IR) and t ∈ IR1×n such

that [α(v), 1] = [v, 1] ·Mα for all v ∈ IR1×n, and we may represent S by the matrix group
M(S) = {Mα | α ∈ S}. Again, we can choose the basis of IR1×n such that Mϕ ∈ GLn(ZZ)
and t ∈ Q′ 1×n for all Mα ∈M(S).

¿From the mathematical point of view, both approaches are equivalent. In particular,
M(S) and M(S) are isomorphic, for instance via the isomorphism τ mapping Mα ∈ M(S)
to (M tr

α)−1. Unfortunately, however, neither of the two is a good choice for our GAP library.

The first convention, using matrices which act on column vectors from the left, is not
consistent with the fact that actions in GAP are usually from the right.

On the other hand, if we choose the second convention, we run into a problem with the
names of the space groups as introduced in [BBN+78]. Any such name does not just describe
the abstract isomorphism type of the respective space group S, but reflects properties of
the matrix group M(S). In particular, it contains as a leading part the name of the ZZ-
class of the associated point group P (S). Since the classification of space groups by affine
equivalence is tantamount to their classification by abstract isomorphism, M(S) lies in the
same affine class as M(S) and hence should get the same name as M(S). But the point
group P (S) that occurs in that name is not always ZZ-equivalent to the point group P (S)
of M(S). For example, the isomorphism τ: M(S)→M(S) defined above maps the ZZ-class
representative with the parameters [3, 7, 3, 2] (in the notation described below) to the ZZ-
class representative with the parameters [3, 7, 3, 3]. In other words: The space group names
introduced for the groups M(S) in [BBN+78] lead to confusing inconsistencies if assigned
to the groups M(S).

In order to avoid this confusion we decided that the first convention is the lesser evil. So
the GAP library follows the book, and if you call the SpaceGroup function you will get the
same space group representatives as given there. This does not cause any problems as long

696 CHAPTER 37. GROUP LIBRARIES

as you do calculations within these groups treating them just as matrix groups of certain
isomorphism types. However, if it is necesary to consider the action of a space group as
affine mappings on the natural lattice, you need to use the transposed representation of
the space group. For this purpose the library offers the TransposedSpaceGroup function
which not only transposes the matrices, but also adapts appropriately the associated group
presentation.

Both these functions are described in detail in the following.

The library functions

NrCrystalFamilies(dim)

NrCrystalFamilies returns the number of crystal families in case of dimension dim. It can
be used to formulate loops over the crystal families.

There are 4, 6, and 23 crystal families of dimension 2, 3, and 4, respectively.

gap> n := NrCrystalFamilies(4);
23

DisplayCrystalFamily(dim, family)

DisplayCrystalFamily displays for the specified crystal family essentially the same infor-
mation as is provided for that family in Table 1 of [BBN+78], namely

• the family name,
• the number of parameters,
• the common rational decomposition pattern,
• the common real decomposition pattern,
• the number of crystal systems in the family, and
• the number of Bravais flocks in the family.

For details see [BBN+78].

gap> DisplayCrystalFamily(4, 17);
#I Family XVII: cubic orthogonal; 2 free parameters;
#I Q-decomposition pattern 1+3; R-decomposition pattern 1+3;
#I 2 crystal systems; 6 Bravais flocks
gap> DisplayCrystalFamily(4, 18);
#I Family XVIII: octagonal; 2 free parameters;
#I Q-irreducible; R-decomposition pattern 2+2;
#I 1 crystal system; 1 Bravais flock
gap> DisplayCrystalFamily(4, 21);
#I Family XXI: di-isohexagonal orthogonal; 1 free parameter;
#I R-irreducible; 2 crystal systems; 2 Bravais flocks

NrCrystalSystems(dim)

NrCrystalSystems returns the number of crystal systems in case of dimension dim. It can
be used to formulate loops over the crystal systems.

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 697

There are 4, 7, and 33 crystal systems of dimension 2, 3, and 4, respectively.
gap> n := NrCrystalSystems(2);
4

The following two functions are functions of crystal systems.
Each crystal system is characterized by a pair (dim, system) where dim is the associated
dimension, and system is the number of the crystal system.

DisplayCrystalSystem(dim, system)

DisplayCrystalSystem displays for the specified crystal system essentially the same infor-
mation as is provided for that system in Table 1 of [BBN+78], namely
• the number of Q′ -classes in the crystal system and
• the identification number, i. e., the tripel (dim, system, q-class) described below, of

the Q′ -class that is the holohedry of the crystal system.
For details see [BBN+78].

gap> for sys in [1 .. 4] do DisplayCrystalSystem(2, sys); od;
#I Crystal system 1: 2 Q-classes; holohedry (2,1,2)
#I Crystal system 2: 2 Q-classes; holohedry (2,2,2)
#I Crystal system 3: 2 Q-classes; holohedry (2,3,2)
#I Crystal system 4: 4 Q-classes; holohedry (2,4,4)

NrQClassesCrystalSystem(dim, system)

NrQClassesCrystalSystem returns the number of Q′ -classes within the given crystal system.
It can be used to formulate loops over the Q′ -classes.

The following five functions are functions of Q′ -classes.
In general, the parameters characterizing a Q′ -class will form a triple (dim, system, q-class)
where dim is the associated dimension, system is the number of the associated crystal
system, and q-class is the number of the Q′ -class within the crystal system. However, in
case of dimensions 2 or 3, a Q′ -class may also be characterized by a pair (dim, IT-number)
where IT-number is the number in the International Tables for Crystallography [Hah83] of
any space-group type lying in (a ZZ-class of) that Q′ -class, or just by the Hermann-Mauguin
symbol of any space-group type lying in (a ZZ-class of) that Q′ -class.
The Hermann-Mauguin symbols which we use in GAP are the short Hermann-Mauguin
symbols defined in the 1983 edition of the International Tables [Hah83], but any occur-
ring indices are expressed by ordinary integers, and bars are replaced by minus signs. For
example, the Hermann-Mauguin symbol P421m will be represented by the string "P-421m".

DisplayQClass(dim, system, q-class)
DisplayQClass(dim, IT-number)
DisplayQClass(Hermann-Mauguin-symbol)

DisplayQClass displays for the specified Q′ -class essentially the same information as is
provided for that Q′ -class in Table 1 of [BBN+78] (except for the defining relations given
there), namely

698 CHAPTER 37. GROUP LIBRARIES

• the size of the groups in the Q′ -class,
• the isomorphism type of the groups in the Q′ -class,
• the Hurley pattern,
• the rational constituents,
• the number of ZZ-classes in the Q′ -class, and
• the number of space-group types in the Q′ -class.

For details see [BBN+78].

gap> DisplayQClass("p2");
#I Q-class H (2,1,2): size 2; isomorphism type 2.1 = C2;
#I Q-constituents 2*(2,1,2); cc; 1 Z-class; 1 space group
gap> DisplayQClass("R-3");
#I Q-class (3,5,2): size 6; isomorphism type 6.1 = C6;
#I Q-constituents (3,1,2)+(3,4,3); ncc; 2 Z-classes; 2 space grps
gap> DisplayQClass(3, 195);
#I Q-class (3,7,1): size 12; isomorphism type 12.5 = A4;
#I C-irreducible; 3 Z-classes; 5 space grps
gap> DisplayQClass(4, 27, 4);
#I Q-class H (4,27,4): size 20; isomorphism type 20.3 = D10xC2;
#I Q-irreducible; 1 Z-class; 1 space group
gap> DisplayQClass(4, 29, 1);
#I *Q-class (4,29,1): size 18; isomorphism type 18.3 = D6xC3;
#I R-irreducible; 3 Z-classes; 5 space grps

Note in the preceding examples that, as pointed out above, the term “size” denotes the
order of a representative group of the specified Q′ -class and, of course, not the (infinite)
class length.

FpGroupQClass(dim, system, q-class)
FpGroupQClass(dim, IT-number)
FpGroupQClass(Hermann-Mauguin-symbol)

FpGroupQClass returns a finitely presented group F , say, which is isomorphic to the groups
in the specified Q′ -class.

The presentation of that group is the same as the corresponding presentation given in Table
1 of [BBN+78] except for the fact that its generators are listed in reverse order. The
reason for this change is that, whenever the group in question is solvable, the resulting
generators form an AG system (as defined in GAP) if they are numbered “from the top
to the bottom”, and the presentation is a polycyclic power commutator presentation. The
AgGroupQClass function described next will make use of this fact in order to construct an
ag group isomorphic to F .

Note that, for any ZZ-class in the specified Q′ -class, the matrix group returned by the
MatGroupZClass function (see below) not only is isomorphic to F , but also its generators
satisfy the defining relators of F .

Besides of the usual components, the group record of F will have an additional component
F.crQClass which saves a list of the parameters that specify the given Q′ -class.

gap> F := FpGroupQClass(4, 20, 3);

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 699

FpGroupQClass(4, 20, 3)
gap> F.generators;
[f.1, f.2]
gap> F.relators;
[f.1^2*f.2^-3, f.2^6, f.2^-1*f.1^-1*f.2*f.1*f.2^-4]
gap> F.size;
12
gap> F.crQClass;
[4, 20, 3]

AgGroupQClass(dim, system, q-class)
AgGroupQClass(dim, IT-number)
AgGroupQClass(Hermann-Mauguin-symbol)

AgGroupQClass returns an ag group A, say, isomorphic to the groups in the specified Q′ -
class, if these groups are solvable, or the value false (together with an appropriate warning),
otherwise.

A is constructed by first establishing a finitely presented group (as it would be returned by
the FpGroupQClass function described above) and then constructing from it an isomorphic
ag group. If the underlying AG system is not yet a PAG system (see sections 24.1 and 25.1),
it will be refined appropriately (and a warning will be displayed).

Besides of the usual components, the group record of A will have an additional component
A.crQClass which saves a list of the parameters that specify the given Q′ -class.

gap> A := AgGroupQClass(4, 31, 3);
#I Warning: a non-solvable group can’t be represented as an ag group
false
gap> A := AgGroupQClass(4, 20, 3);
#I Warning: the presentation has been extended to get a PAG system
AgGroupQClass(4, 20, 3)
gap> A.generators;
[f.1, f.21, f.22]
gap> A.size;
12
gap> A.crQClass;
[4, 20, 3]

CharTableQClass(dim, system, q-class)
CharTableQClass(dim, IT-number)
CharTableQClass(Hermann-Mauguin-symbol)

CharTableQClass returns the character table T , say, of a representative group of (a ZZ-class
of) the specified Q′ -class.

Although the set of characters can be considered as an invariant of the specified Q′ -class,
the resulting table will depend on the order in which GAP sorts the conjugacy classes of
elements and the irreducible characters and hence, in general, will not coincide with the
corresponding table presented in [BBN+78].

700 CHAPTER 37. GROUP LIBRARIES

CharTableQClass proceeds as follows. If the groups in the given Q′ -class are solvable, then
it first calls the AgGroupQClass and RefinedAgSeries functions to get an isomorphic ag
group with a PAG system, and then it calls the CharTable function to compute the character
table of that ag group. In the case of one of the five Q′ -classes of dimension 4 whose groups
are not solvable, it first calls the FpGroupQClass function to get an isomorphic finitely
presented group, then it constructs a specially chosen faithful permutation representation
of low degree for that group, and finally it determines the character table of the resulting
permutation group again by calling the CharTable function.

In general, the above strategy will be much more efficient than the alternative possibilities of
calling the CharTable function for a finitely presented group provided by the FpGroupQClass
function or for a matrix group provided by the MatGroupZClass function.

gap> T := CharTableQClass(4, 20, 3);;
gap> DisplayCharTable(T);
CharTableQClass(4, 20, 3)

2 2 1 1 2 2 2
3 1 1 1 1 . .

1a 3a 6a 2a 4a 4b
2P 1a 3a 3a 1a 2a 2a
3P 1a 1a 2a 2a 4b 4a
5P 1a 3a 6a 2a 4a 4b

X.1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1
X.3 1 1 -1 -1 A -A
X.4 1 1 -1 -1 -A A
X.5 2 -1 1 -2 . .
X.6 2 -1 -1 2 . .

A = E(4)
= ER(-1) = i

NrZClassesQClass(dim, system, q-class)
NrZClassesQClass(dim, IT-number)
NrZClassesQClass(Hermann-Mauguin-symbol)

NrZClassesQClass returns the number of ZZ-classes within the given Q′ -class. It can be
used to formulate loops over the ZZ-classes.

The following functions are functions of ZZ-classes.

In general, the parameters characterizing a ZZ-class will form a quadruple (dim, system,
q-class, z-class) where dim is the associated dimension, system is the number of the as-
sociated crystal system, q-class is the number of the associated Q′ -class within the crystal
system, and z-class is the number of the ZZ-class within the Q′ -class. However, in case of
dimensions 2 or 3, a ZZ-class may also be characterized by a pair (dim, IT-number) where

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 701

IT-number is the number in the International Tables [Hah83] of any space-group type lying
in that ZZ-class, or just by the Hermann-Mauguin symbol of any space-group type lying in
that ZZ-class.

DisplayZClass(dim, system, q-class, z-class)
DisplayZClass(dim, IT-number)
DisplayZClass(Hermann-Mauguin-symbol)

DisplayZClass displays for the specified ZZ-class essentially the same information as is
provided for that ZZ-class in Table 1 of [BBN+78] (except for the generating matrices of a
class representative group given there), namely

• for dimensions 2 and 3, the Hermann-Mauguin symbol of a representative space-group
type which belongs to that ZZ-class,
• the Bravais type,
• some decomposability information,
• the number of space-group types belonging to the ZZ-class,
• the size of the associated cohomology group.

For details see [BBN+78].

gap> DisplayZClass(2, 3);
#I Z-class (2,2,1,1) = Z(pm): Bravais type II/I; fully Z-reducible;
#I 2 space groups; cohomology group size 2
gap> DisplayZClass("F-43m");
#I Z-class (3,7,4,2) = Z(F-43m): Bravais type VI/II; Z-irreducible;
#I 2 space groups; cohomology group size 2
gap> DisplayZClass(4, 2, 3, 2);
#I Z-class B (4,2,3,2): Bravais type II/II; Z-decomposable;
#I 2 space groups; cohomology group size 4
gap> DisplayZClass(4, 21, 3, 1);
#I *Z-class (4,21,3,1): Bravais type XVI/I; Z-reducible;
#I 1 space group; cohomology group size 1

MatGroupZClass(dim, system, q-class, z-class)
MatGroupZClass(dim, IT-number)
MatGroupZClass(Hermann-Mauguin-symbol)

MatGroupZClass returns a dim×dim matrix group M , say, which is a representative of the
specified ZZ-class. Its generators satisfy the defining relators of the finitely presented group
which may be computed by calling the FpGroupQClass function (see above) for the Q′ -class
which contains the given ZZ-class.

The generators of M are the same matrices as those given in Table 1 of [BBN+78]. Note,
however, that they will be listed in reverse order to keep them in parallel to the abstract
generators provided by the FpGroupQClass function (see above).

Besides of the usual components, the group record of M will have an additional component
M.crZClass which saves a list of the parameters that specify the given ZZ-class. (In
fact, in order to make the resulting group record consistent with those returned by the

702 CHAPTER 37. GROUP LIBRARIES

NormalizerZClass or ZClassRepsDadeGroup functions described below, it also will have
an additional component M .crConjugator containing just the identity element of M .)

gap> M := MatGroupZClass(4, 20, 3, 1);
MatGroupZClass(4, 20, 3, 1)
gap> for g in M.generators do
> Print("\n"); PrintArray(g); od; Print("\n");

[[0, 1, 0, 0],
[-1, 0, 0, 0],
[0, 0, -1, -1],
[0, 0, 0, 1]]

[[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, -1],
[0, 0, 1, 0]]

gap> M.size;
12
gap> M.crZClass;
[4, 20, 3, 1]

NormalizerZClass(dim, system, q-class, z-class)
NormalizerZClass(dim, IT-number)
NormalizerZClass(Hermann-Mauguin-symbol)

NormalizerZClass returns the normalizer N , say, in GL(dim,ZZ) of the representative
dim×dim matrix group which is constructed by the MatGroupZClass function (see above).

If the size of N is finite, then N again lies in some ZZ-class. In this case, the group record
of N will contain two additional components N.crZClass and N .crConjugator which
provide the parameters of that ZZ-class and a matrix g ∈ GL(dim,ZZ), respectively, such
that N = g−1Rg, where R is the representative group of that ZZ-class.

gap> N := NormalizerZClass(4, 20, 3, 1);
NormalizerZClass(4, 20, 3, 1)
gap> for g in N.generators do
> Print("\n"); PrintArray(g); od; Print("\n");

[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, -1, -1]]

[[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, -1],
[0, 0, 1, 0]]

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 703

[[0, 1, 0, 0],
[-1, 0, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]

[[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1]]

gap> N.size;
96
gap> N.crZClass;
[4, 20, 22, 1]
gap> N.crConjugator = N.identity;
true

gap> L := NormalizerZClass(3, 42);
NormalizerZClass(3, 3, 2, 4)
gap> L.size;
16
gap> L.crZClass;
[3, 4, 7, 2]
gap> L.crConjugator;
[[0, 0, -1], [1, 0, 0], [0, -1, -1]]
gap> M := NormalizerZClass("C2/m");
Group([[-1, 0, 0], [0, -1, 0], [0, 0, -1]],
[[0, -1, 0], [-1, 0, 0], [0, 0, -1]],
[[1, 0, 1], [0, 1, 1], [0, 0, 1]],
[[-1, 0, 0], [0, -1, 0], [-1, -1, 1]],
[[0, 1, -1], [1, 0, -1], [0, 0, -1]])
gap> M.size;
"infinity"
gap> IsBound(M.crZClass);
false

NrSpaceGroupTypesZClass(dim, system, q-class, z-class)
NrSpaceGroupTypesZClass(dim, IT-number)
NrSpaceGroupTypesZClass(Hermann-Mauguin-symbol)

NrSpaceGroupTypes returns the number of space-group types within the given ZZ-class. It
can be used to formulate loops over the space-group types.

gap> N := NrSpaceGroupTypesZClass(4, 4, 1, 1);
13

Some of the ZZ-classes of dimension d, say, are “maximal” in the sense that the groups in
these classes are maximal finite subgroups of GL(d, ZZ). Generalizing a term which is being
used for dimension 4, we call the representatives of these maximal ZZ-classes the “Dade
groups” of dimension d.

704 CHAPTER 37. GROUP LIBRARIES

NrDadeGroups(dim)

NrDadeGroups returns the number of Dade groups of dimension dim. It can be used to
formulate loops over the Dade groups.

There are 2, 4, and 9 Dade groups of dimension 2, 3, and 4, respectively.

gap> NrDadeGroups(4);
9

DadeGroup(dim, n)

DadeGroup returns the nth Dade group of dimension dim.

gap> D := DadeGroup(4, 7);
MatGroupZClass(4, 31, 7, 2)

DadeGroupNumbersZClass(dim, system, q-class, z-class)
DadeGroupNumbersZClass(dim, IT-number)
DadeGroupNumbersZClass(Hermann-Mauguin-symbol)

DadeGroupNumbersZClass returns the set of all those integers ni for which the nith Dade
group of dimension dim contains a subgroup which, in GL(dim,ZZ), is conjugate to the
representative group of the given ZZ-class.

gap> dadeNums := DadeGroupNumbersZClass(4, 4, 1, 2);
[1, 5, 8]
gap> for d in dadeNums do
> D := DadeGroup(4, d);
> Print(D, " of size ", Size(D), "\n");
> od;
MatGroupZClass(4, 20, 22, 1) of size 96
MatGroupZClass(4, 30, 13, 1) of size 288
MatGroupZClass(4, 32, 21, 1) of size 384

ZClassRepsDadeGroup(dim, system, q-class, z-class, n)
ZClassRepsDadeGroup(dim, IT-number, n)
ZClassRepsDadeGroup(Hermann-Mauguin-symbol, n)

ZClassRepsDadeGroup determines in the nth Dade group of dimension dim all those conju-
gacy classes whose groups are, inGL(dim,ZZ), conjugate to the ZZ-class representative group
R, say, of the given ZZ-class. It returns a list of representative groups of these conjugacy
classes.

Let M be any group in the resulting list. Then the group record of M provides two compo-
nents M.crZClass and M.crConjugator which contain the list of ZZ-class parameters of
R and a suitable matrix g from GL(dim,ZZ), respectively, such that M equals g−1Rg.

gap> DadeGroupNumbersZClass(2, 2, 1, 2);
[1, 2]
gap> ZClassRepsDadeGroup(2, 2, 1, 2, 1);
[MatGroupZClass(2, 2, 1, 2)^[[0, 1], [-1, 0]]]
gap> ZClassRepsDadeGroup(2, 2, 1, 2, 2);

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 705

[MatGroupZClass(2, 2, 1, 2)^[[1, -1], [0, -1]],
MatGroupZClass(2, 2, 1, 2)^[[1, 0], [-1, 1]]]

gap> R := last[2];;
gap> R.crZClass;
[2, 2, 1, 2]
gap> R.crConjugator;
[[1, 0], [-1, 1]]

The following functions are functions of space-group types.

In general, the parameters characterizing a space-group type will form a quintuple (dim,
system, q-class, z-class, sg-type) where dim is the associated dimension, system is the num-
ber of the associated crystal system, q-class is the number of the associated Q′ -class within
the crystal system, z-class is the number of the ZZ-class within the Q′ -class, and sg-type is
the space-group type within the ZZ-class. However, in case of dimensions 2 or 3, you may
instead specify a ZZ-class by a pair (dim, IT-number) or by its Hermann-Mauguin sym-
bol (as described above). Then the function will handle the first space-group type within
that ZZ-class, i. e., sg-type = 1, that is, the corresponding symmorphic space group (split
extension).

DisplaySpaceGroupType(dim, system, q-class, z-class, sg-type)
DisplaySpaceGroupType(dim, IT-number)
DisplaySpaceGroupType(Hermann-Mauguin-symbol)

DisplaySpaceGroupType displays for the specified space-group type some of the information
which is provided for that space-group type in Table 1 of [BBN+78], namely

• the orbit size associated with that space-group type and,

• for dimensions 2 and 3, the IT-number and the Hermann-Mauguin symbol.

For details see [BBN+78].

gap> DisplaySpaceGroupType(2, 17);
#I Space-group type (2,4,4,1,1); IT(17) = p6mm; orbit size 1
gap> DisplaySpaceGroupType("Pm-3");
#I Space-group type (3,7,2,1,1); IT(200) = Pm-3; orbit size 1
gap> DisplaySpaceGroupType(4, 32, 10, 2, 4);
#I *Space-group type (4,32,10,2,4); orbit size 18
gap> DisplaySpaceGroupType(3, 6, 1, 1, 4);
#I *Space-group type (3,6,1,1,4); IT(169) = P61, IT(170) = P65;
#I orbit size 2; fp-free

DisplaySpaceGroupGenerators(dim, system, q-class, z-class, sg-type)
DisplaySpaceGroupGenerators(dim, IT-number)
DisplaySpaceGroupGenerators(Hermann-Mauguin-symbol)

DisplaySpaceGroupGenerators displays the non-translation generators of a representative
space group of the specified space-group type without actually constructing that matrix
group.

706 CHAPTER 37. GROUP LIBRARIES

In more details: Let n = dim be the given dimension, and let M1, . . . ,Mr be the generators
of the representative n × n matrix group of the given ZZ-class (this is the group which
you will get if you call the MatGroupZClass function (see above) for that ZZ-class). Then,
for the given space-group type, the SpaceGroup function described below will construct as
representative of that space-group type an (n+1)× (n+1) matrix group which is generated
by the n translations which are induced by the (standard) basis vectors of the n-dimensional

Euclidian space, and r additional matrices S1, . . . , Sr of the form Si =
[
Mi ti
0 1

]
, where

the n × n submatrices Mi are as defined above, and the ti are n-columns with rational
entries. The DisplaySpaceGroupGenerators function saves time by not constructing the
group, but just displaying the r matrices S1, . . . , Sr.

gap> DisplaySpaceGroupGenerators("P61");
#I The non-translation generators of SpaceGroup(3, 6, 1, 1, 4) are

[[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 1/2],
[0, 0, 0, 1]]

[[0, -1, 0, 0],
[1, -1, 0, 0],
[0, 0, 1, 1/3],
[0, 0, 0, 1]]

SpaceGroup(dim, system, q-class, z-class, sg-type)
SpaceGroup(dim, IT-number)
SpaceGroup(Hermann-Mauguin-symbol)

SpaceGroup returns a (dim+1)×(dim+1) matrix group S, say, which is a representative of
the given space-group type (see also the description of the DisplaySpaceGroupGenerators
function above).

gap> S := SpaceGroup("P61");
SpaceGroup(3, 6, 1, 1, 4)
gap> for s in S.generators do
> Print("\n"); PrintArray(s); od; Print("\n");

[[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 1/2],
[0, 0, 0, 1]]

[[0, -1, 0, 0],
[1, -1, 0, 0],
[0, 0, 1, 1/3],
[0, 0, 0, 1]]

[[1, 0, 0, 1],

37.13. THE CRYSTALLOGRAPHIC GROUPS LIBRARY 707

[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]

[[1, 0, 0, 0],
[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 0, 0, 1]]

[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 1],
[0, 0, 0, 1]]

gap> S.crSpaceGroupType;
[3, 6, 1, 1, 4]

Besides of the usual components, the resulting group record of S contains an additional
component S.crSpaceGroupType which saves a list of the parameters that specify the given
space-group type.

Moreover, it contains, in form of a finitely presented group, a presentation of S which is
satisfied by the matrix generators. If the factor group of S by its translation normal subgroup
is solvable then this presentation is chosen such that it is a polycyclic power commutator
presentation. The proper way to access this presentation is to call the following function.

FpGroup(S)

FpGroup returns a finitely presented group G , say, which is isomorphic to S , where S is
expected to be a space group. It is chosen such that there is an isomrphism from G to
S which maps each generator of G onto the corresponding generator of S . This means, in
particular, that the matrix generators of S satisfy the relators of G .

gap> G := FpGroup(S);
Group(g1, g2, g3, g4, g5)
gap> for rel in G.relators do Print(rel, "\n"); od;
g1^2*g5^-1
g2^3*g5^-1
g2^-1*g1^-1*g2*g1
g3^-1*g1^-1*g3*g1*g3^2
g3^-1*g2^-1*g3*g2*g4*g3^2
g4^-1*g1^-1*g4*g1*g4^2
g4^-1*g2^-1*g4*g2*g4*g3^-1
g4^-1*g3^-1*g4*g3
g5^-1*g1^-1*g5*g1
g5^-1*g2^-1*g5*g2
g5^-1*g3^-1*g5*g3
g5^-1*g4^-1*g5*g4
gap> # Verify that the matrix generators of S satisfy the relators of G.
gap> ForAll(G.relators,

708 CHAPTER 37. GROUP LIBRARIES

> rel -> MappedWord(rel, G.generators, S.generators) = S.identity);
true

TransposedSpaceGroup(dim, system, q-class, z-class, sg-type)
TransposedSpaceGroup(dim, IT-number)
TransposedSpaceGroup(Hermann-Mauguin-symbol)
TransposedSpaceGroup(S)

TransposedSpaceGroup returns a matrix group T , say, whose generators are just the trans-
posed generators (in the same order) of the corresponding space group S specified by the
arguments. As for S , you may get a finite presentation for T via the FpGroup function.

The purpose of this function is explicitly discussed in the introduction to this section.

gap> T := TransposedSpaceGroup(S);
TransposedSpaceGroup(3, 6, 1, 1, 4)
gap> for m in T.generators do
> Print("\n"); PrintArray(m); od; Print("\n");

[[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 0],
[0, 0, 1/2, 1]]

[[0, 1, 0, 0],
[-1, -1, 0, 0],
[0, 0, 1, 0],
[0, 0, 1/3, 1]]

[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[1, 0, 0, 1]]

[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 1, 0, 1]]

[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 1, 1]]

37.14. THE SMALL GROUPS LIBRARY 709

37.14 The Small Groups Library

This library contains all groups of order at most 1000 except for 512 and 768 up to isomor-
phism. There are a total of 174366 such groups.

SmallGroup(size, i)

The function SmallGroup(size, i) returns the ith group of order size in the catalogue.
It will return an AgGroup, if the group is soluble and a PermGroup otherwise.

NumberSmallGroups(size)

The function NumberSmallGroups(size) returns the number of groups of the order size.

AllSmallGroups(size)

The function AllSmallGroups(size) returns the list of all groups of the order size.

UnloadSmallGroups(list of sizes)

It is possible to work with the catalogue of groups of small order just using the functions
described above. However, the catalogue is rather large even though the groups are stored
in a very compact description. Thus it might be helpful for a space efficient usage of the
catalogue, to know a little bit about unloading parts of the catalogue by hand.

At the first call of one of the functions described above, the groups of order size are loaded
and stored in a compact description. GAP will not unload them itsself again. Thus if one
calls one of the above functions for a lot of different orders, then all the groups of these orders
are stored. Even though the description of the groups is space efficient, this might use a lot
of space. For example, if one uses the above functions to load the complete catalogue, then
GAP will grow to about 12 MB of workspace.

Thus it might be interesting to unload the groups of some orders again, if they are not used
anymore. This can be done by calling the function UnloadSmallGroups(list of sizes)

If the groups of order size are unloaded by hand, then GAP will of course load them again
at the next call of SmallGroup(size, i) or one of the other functions described at the
beginning of this section.

IdGroup(G)

Let G be a PermGroup or AgGroup of order at most 1000, but not of order 256, 512 or 768.
Then the function call IdGroup(G) returns a tuple [size, i] meaning that G is isomorphic
to the i-th group in the catalogue of groups of order size.

Note that this package calls and uses the ANUPQ share library of GAP in a few cases.

710 CHAPTER 37. GROUP LIBRARIES

Chapter 38

Algebras

This chapter introduces the data structures and functions for algebras in GAP. The word
algebra in this manual means always associative algebra.

At the moment GAP supports only finitely presented algebras and matrix algebras. For
details about implementation and special functions for the different types of algebras, see
38.1 and the chapters 39 and 40.

The treatment of algebras is very similar to that of groups. For example, algebras in GAP
are always finitely generated, since for many questions the generators play an important
role. If you are not familiar with the concepts that are used to handle groups in GAP it
might be useful to read the introduction and the overview sections in chapter 7.

Algebras are created using Algebra (see 38.4) or UnitalAlgebra (see 38.5), subalgebras of
a given algebra using Subalgebra (see 38.8) or UnitalSubalgebra (see 38.9). See 38.3, and
the corresponding section 7.6 in the chapter about groups for details about the distinction
between parent algebras and subalgebras.

The first sections of the chapter describe the data structures (see 38.1) and the concepts of
unital algebras (see 38.2) and parent algebras (see 38.3).

The next sections describe the functions for the construction of algebras, and the tests for
algebras (see 38.4, 38.5, 38.6, 38.7, 38.8, 38.9, 38.10, 38.11, 38.12, 38.13, 38.14).

The next sections describe the different types of functions for algebras (see 38.15, 38.16,
38.17, 38.18, 38.19, 38.20, 38.21).

The next sections describe the operation of algebras (see 38.22, 38.23).

The next sections describe algebra homomorphisms (see 38.24, 38.25).

The next sections describe algebra elements (see 38.26, 38.27).

The last section describes the implementation of the data structures (see 38.28).

At the moment there is no implementation for ideals, cosets, and factors of algebras in GAP,
and the only available algebra homomorphisms are operation homomorphisms.

Also there is no implementation of bases for general algebras, this will be available as soon
as it is for general vector spaces.

711

712 CHAPTER 38. ALGEBRAS

38.1 More about Algebras

Let F be a field. A ring A is called an F -algebra if A is an F -vector space. All algebras in
GAP are associative, that is, the multiplication is associative.

An algebra always contains a zero element that can be obtained by subtracting an arbitrary
element from itself. A discussion of identity elements of algebras (and of the consequences
for the implementation in GAP) can be found in 38.2.

Elements of the field F are not regarded as elements of A. The practical reason (besides
the obvious mathematical one) for this is that even if the identity matrix is contained in
the matrix algebra A it is not possible to write 1 + a for adding the identity matrix to
the algebra element a, since independent of the algebra A the meaning in GAP is already
defined as to add 1 to all positions of the matrix a. Thus one has to write One(A) + a
or a^0 + a instead.

The natural operation domains for algebras are modules (see 38.22, and chapter 41).

38.2 Algebras and Unital Algebras

Not all algebras contain a (left and right) multiplicative neutral identity element, but if
an algebra contains such an identity element it is unique.

If an algebra A contains a multiplicative neutral element then in general it cannot be derived
from an arbitrary element a of A by forming a/a or a0, since these operations may be not
defined for the algebra A.

More precisely, it may be possible to invert a or raise it to the zero-th power, but A is not
necessarily closed under these operations. For example, if a is a square matrix in GAP then
we can form a0 which is the identity matrix of the same size and over the same field as a.

On the other hand, an algebra may have a multiplicative neutral element that is not equal
to the zero-th power of elements (see 38.16).

In many cases, however, the zero-th power of algebra elements is well-defined, with the result
again in the algebra. This holds for example for all finitely presented algebras (see chapter
39) and all those matrix algebras whose generators are the generators of a finite group.

For practical purposes it is useful to distinguish general algebras and unital algebras.

A unital algebra in GAP is an algebra U that is known to contain zero-th powers of ele-
ments, and all functions may assume this. A not unital algebra Amay contain zero-th powers
of elements or not, and no function for A should assume existence or nonexistence of these
elements in A. So it may be possible to view A as a unital algebra using AsUnitalAlgebra(
A) (see 38.12), and of course it is always possible to view a unital algebra as algebra using
AsAlgebra(U) (see 38.11).

A can have unital subalgebras, and of course U can have subalgebras that are not unital.

The images of unital algebras under operation homomorphisms are either unital or trivial,
since the identity of the source acts trivially, so its image under the homomorphism is the
identity of the image.

The following example shows the main differences between algebras and unital algebras.

gap> a:= [[1, 0], [0, 0]];;

38.3. PARENT ALGEBRAS AND SUBALGEBRAS 713

gap> alg1:= Algebra(Rationals, [a]);
Algebra(Rationals, [[[1, 0], [0, 0]]])
gap> id:= a^0;
[[1, 0], [0, 1]]
gap> id in alg1;
false
gap> alg2:= UnitalAlgebra(Rationals, [a]);
UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]])
gap> id in alg2;
true
gap> alg3:= AsAlgebra(alg2);
Algebra(Rationals, [[[1, 0], [0, 0]], [[1, 0], [0, 1]]
])
gap> alg3 = alg2;
true
gap> AsUnitalAlgebra(alg1);
Error, <D> is not unital

We see that if we want the identity matrix to be contained in an algebra that is not known
to be unital, it might be necessary to add it to the generators. If we would not have the
possibility to define unital algebras, this would lead to the strange situations that a two-
generator algebra means an algebra generated by one nonidentity generator and the identity
matrix, or that an algebra is free on the set X but is generated as algebra by the set X plus
the identity.

38.3 Parent Algebras and Subalgebras

GAP distinguishs between parent algebras and subalgebras of parent algebras. The concept
is the same as that for groups (see 7.6), so here it is only sketched.

Each subalgebra belongs to a unique parent algebra, the so-called parent of the subalgebra.
A parent algebra is its own parent.

Parent algebras are constructed by Algebra and UnitalAlgebra, subalgebras are con-
structed by Subalgebra and UnitalSubalgebra. The parent of the first argument of
Subalgebra will be the parent of the constructed subalgebra.

Those algebra functions that take more than one algebra as argument require that the
arguments have a common parent. Take for instance Centralizer. It takes two arguments,
an algebra A and an algebra B , where either A is a parent algebra, and B is a subalgebra of
this parent algebra, or A and B are subalgebras of a common parent algebra P , and returns
the centralizer of B in A. This is represented as a subalgebra of the common parent of A
and B . Note that a subalgebra of a parent algebra need not be a proper subalgebra.

An exception to this rule is again the set theoretic function Intersection (see 4.12), which
allows to intersect algebras with different parents.

Whenever you have two subalgebras which have different parent algebras but have a common
superalgebra A you can use AsSubalgebra or AsUnitalSubalgebra (see 38.13, 38.14) in
order to construct new subalgebras which have a common parent algebra A.

Note that subalgebras of unital algebras need not be unital (see 38.2).

714 CHAPTER 38. ALGEBRAS

The following sections describe the functions related to this concept (see 38.4, 38.5, 38.6,
38.7, 38.11, 38.12, 38.8, 38.9, 38.13, 38.14, and also 7.7, 7.8).

38.4 Algebra

Algebra(U)

returns a parent algebra A which is isomorphic to the parent algebra or subalgebra U .

Algebra(F, gens)
Algebra(F, gens, zero)

returns a parent algebra over the field F and generated by the algebra elements in the list
gens. The zero element of this algebra may be entered as zero; this is necessary whenever
gens is empty.

gap> a:= [[1]];;
gap> alg:= Algebra(Rationals, [a]);
Algebra(Rationals, [[[1]]])
gap> alg.name:= "alg";;
gap> sub:= Subalgebra(alg, []);
Subalgebra(alg, [])
gap> Algebra(sub);
Algebra(Rationals, [[[0]]])
gap> Algebra(Rationals, [], 0*a);
Algebra(Rationals, [[[0]]])

The algebras returned by Algebra are not unital. For constructing unital algebras, use 38.5
UnitalAlgebra.

38.5 UnitalAlgebra

UnitalAlgebra(U)

returns a unital parent algebra A which is isomorphic to the parent algebra or subalgebra
U . If U is not unital it is checked whether the zero-th power of elements is contained in U ,
and if not an error is signalled.

UnitalAlgebra(F, gens)
UnitalAlgebra(F, gens, zero)

returns a unital parent algebra over the field F and generated by the algebra elements in
the list gens. The zero element of this algebra may be entered as zero; this is necessary
whenever gens is empty.

gap> alg1:= UnitalAlgebra(Rationals, [NullMat(2, 2)]);
UnitalAlgebra(Rationals, [[[0, 0], [0, 0]]])
gap> alg2:= UnitalAlgebra(Rationals, [], NullMat(2, 2));
UnitalAlgebra(Rationals, [[[0, 0], [0, 0]]])
gap> alg3:= Algebra(alg1);
Algebra(Rationals, [[[0, 0], [0, 0]], [[1, 0], [0, 1]]
])
gap> alg1 = alg3;
true

38.6. ISALGEBRA 715

gap> AsUnitalAlgebra(alg3);
UnitalAlgebra(Rationals,
[[[0, 0], [0, 0]], [[1, 0], [0, 1]]])

The algebras returned by UnitalAlgebra are unital. For constructing algebras that are not
unital, use 38.4 Algebra.

38.6 IsAlgebra

IsAlgebra(obj)

returns true if obj , which can be an object of arbitrary type, is a parent algebra or a
subalgebra and false otherwise. The function will signal an error if obj is an unbound
variable.

gap> IsAlgebra(FreeAlgebra(GF(2), 0));
true
gap> IsAlgebra(1/2);
false

38.7 IsUnitalAlgebra

IsUnitalAlgebra(obj)

returns true if obj , which can be an object of arbitrary type, is a unital parent algebra
or a unital subalgebra and false otherwise. The function will signal an error if obj is an
unbound variable.

gap> IsUnitalAlgebra(FreeAlgebra(GF(2), 0));
true
gap> IsUnitalAlgebra(Algebra(Rationals, [[[1]]]));
false

Note that the function does not check whether obj is an algebra that contains the zero-th
power of elements, but just checks whether obj is an algebra with flag isUnitalAlgebra.

38.8 Subalgebra

Subalgebra(A, gens)

returns the subalgebra of the algebra A generated by the elements in the list gens.

gap> a:= [[1, 0], [0, 0]];;
gap> b:= [[0, 0], [0, 1]] ;;
gap> alg:= Algebra(Rationals, [a, b]);;
gap> alg.name:= "alg";;
gap> s:= Subalgebra(alg, [a]);
Subalgebra(alg, [[[1, 0], [0, 0]]])
gap> s = alg;
false
gap> s:= UnitalSubalgebra(alg, [a]);
UnitalSubalgebra(alg, [[[1, 0], [0, 0]]])
gap> s = alg;

716 CHAPTER 38. ALGEBRAS

true

Note that Subalgebra, UnitalSubalgebra, AsSubalgebra and AsUnitalSubalgebra are
the only functions in which the name Subalgebra does not refer to the mathematical terms
subalgebra and superalgebra but to the implementation of algebras as subalgebras and
parent algebras.

38.9 UnitalSubalgebra

UnitalSubalgebra(A, gens)

returns the unital subalgebra of the algebra A generated by the elements in the list gens.
If A is not (known to be) unital then first it is checked that A really contains the zero-th
power of elements.

gap> a:= [[1, 0], [0, 0]];;
gap> b:= [[0, 0], [0, 1]] ;;
gap> alg:= Algebra(Rationals, [a, b]);;
gap> alg.name:= "alg";;
gap> s:= Subalgebra(alg, [a]);
Subalgebra(alg, [[[1, 0], [0, 0]]])
gap> s = alg;
false
gap> s:= UnitalSubalgebra(alg, [a]);
UnitalSubalgebra(alg, [[[1, 0], [0, 0]]])
gap> s = alg;
true

Note that Subalgebra, UnitalSubalgebra, AsSubalgebra and AsUnitalSubalgebra are
the only functions in which the name Subalgebra does not refer to the mathematical terms
subalgebra and superalgebra but to the implementation of algebras as subalgebras and
parent algebras.

38.10 IsSubalgebra

IsSubalgebra(A, U)

returns true if U is a subalgebra of A and false otherwise.

Note that A and U must have a common parent algebra. This function returns true if and
only if the set of elements of U is a subset of the set of elements of A.

gap> a:= [[1, 0], [0, 0]];;
gap> b:= [[0, 0], [0, 1]] ;;
gap> alg:= Algebra(Rationals, [a, b]);;
gap> alg.name:= "alg";;
gap> IsSubalgebra(alg, alg);
true
gap> s:= UnitalSubalgebra(alg, [a]);
UnitalSubalgebra(alg, [[[1, 0], [0, 0]]])
gap> IsSubalgebra(alg, s);
true

38.11. ASALGEBRA 717

38.11 AsAlgebra

AsAlgebra(D)
AsAlgebra(F, D)

Let D be a domain. AsAlgebra returns an algebra A over the field F such that the set of
elements of D is the same as the set of elements of A if this is possible. If D is an algebra
the argument F may be omitted, the coefficients field of D is taken as coefficients field of F
in this case.

If D is a list of algebra elements these elements must form a algebra. Otherwise an error is
signalled.

gap> a:= [[1, 0], [0, 0]] * Z(2);;
gap> AsAlgebra(GF(2), [a, 0*a]);
Algebra(GF(2), [[[Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2)]]])

Note that this function returns a parent algebra or a subalgebra of a parent algebra depend-
ing on D . In order to convert a subalgebra into a parent algebra you must use Algebra or
UnitalAlgebra (see 38.4, 38.5).

38.12 AsUnitalAlgebra

AsUnitalAlgebra(D)
AsUnitalAlgebra(F, D)

Let D be a domain. AsUnitalAlgebra returns a unital algebra A over the field F such that
the set of elements of D is the same as the set of elements of A if this is possible. If D is an
algebra the argument F may be omitted, the coefficients field of D is taken as coefficients
field of F in this case.

If D is a list of algebra elements these elements must form a unital algebra. Otherwise an
error is signalled.

gap> a:= [[1, 0], [0, 0]] * Z(2);;
gap> AsUnitalAlgebra(GF(2), [a, a^0, 0*a, a^0-a]);
UnitalAlgebra(GF(2), [[[0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0]],
[[Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2)]]])

Note that this function returns a parent algebra or a subalgebra of a parent algebra depend-
ing on D . In order to convert a subalgebra into a parent algebra you must use Algebra or
UnitalAlgebra (see 38.4, 38.5).

38.13 AsSubalgebra

AsSubalgebra(A, U)

Let A be a parent algebra and U be a parent algebra or a subalgebra with a possibly different
parent algebra, such that the generators of U are elements of A. AsSubalgebra returns a
new subalgebra S such that S has parent algebra A and is generated by the generators of
U .

gap> a:= [[1, 0], [0, 0]];;
gap> b:= [[0, 0], [0, 1]] ;;

718 CHAPTER 38. ALGEBRAS

gap> alg:= Algebra(Rationals, [a, b]);;
gap> alg.name:= "alg";;
gap> s:= Algebra(Rationals, [a]);
Algebra(Rationals, [[[1, 0], [0, 0]]])
gap> AsSubalgebra(alg, s);
Subalgebra(alg, [[[1, 0], [0, 0]]])

Note that Subalgebra, UnitalSubalgebra, AsSubalgebra and AsUnitalSubalgebra are
the only functions in which the name Subalgebra does not refer to the mathematical terms
subalgebra and superalgebra but to the implementation of algebras as subalgebras and
parent algebras.

38.14 AsUnitalSubalgebra

AsUnitalSubalgebra(A, U)

Let A be a parent algebra and U be a parent algebra or a subalgebra with a possibly
different parent algebra, such that the generators of U are elements of A. AsSubalgebra
returns a new unital subalgebra S such that S has parent algebra A and is generated by
the generators of U . If U or A do not contain the zero-th power of elements an error is
signalled.

gap> a:= [[1, 0], [0, 0]];;
gap> b:= [[0, 0], [0, 1]];;
gap> alg:= Algebra(Rationals, [a, b]);;
gap> alg.name:= "alg";;
gap> s:= UnitalAlgebra(Rationals, [a]);
UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]])
gap> AsSubalgebra(alg, s);
Subalgebra(alg, [[[1, 0], [0, 0]], [[1, 0], [0, 1]]])
gap> AsUnitalSubalgebra(alg, s);
UnitalSubalgebra(alg, [[[1, 0], [0, 0]]])

Note that Subalgebra, UnitalSubalgebra, AsSubalgebra and AsUnitalSubalgebra are
the only functions in which the name Subalgebra does not refer to the mathematical terms
subalgebra and superalgebra but to the implementation of algebras as subalgebras and
parent algebras.

38.15 Operations for Algebras

A ^ n

The operator ^ evaluates to the n-fold direct product of A, viewed as a free A-module.

gap> a:= FreeAlgebra(GF(2), 2);
UnitalAlgebra(GF(2), [a.1, a.2])
gap> a^2;
Module(UnitalAlgebra(GF(2), [a.1, a.2]),
[[a.one, a.zero], [a.zero, a.one]])

a in A

38.16. ZERO AND ONE FOR ALGEBRAS 719

The operator in evaluates to true if a is an element of A and false otherwise. a must be
an element of the parent algebra of A.

gap> a.1^3 + a.2 in a;
true
gap> 1 in a;
false

38.16 Zero and One for Algebras

Zero(A)
returns the additive neutral element of the algebra A.

One(A)
returns the (right and left) multiplicative neutral element of the algebra A if this
exists, and false otherwise. If A is a unital algebra then this element is obtained on
raising an arbitrary element to the zero-th power (see 38.2).

gap> a:= Algebra(Rationals, [[[1, 0], [0, 0]]]);
Algebra(Rationals, [[[1, 0], [0, 0]]])
gap> Zero(a);
[[0, 0], [0, 0]]
gap> One(a);
[[1, 0], [0, 0]]
gap> a:= UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]]);
UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]])
gap> Zero(a);
[[0, 0], [0, 0]]
gap> One(a);
[[1, 0], [0, 1]]

38.17 Set Theoretic Functions for Algebras

As already mentioned in the introduction of the chapter, algebras are domains. Thus all set
theoretic functions, for example Intersection and Size can be applied to algebras. All set
theoretic functions not mentioned here are not treated specially for algebras.

Elements(A)
computes the elements of the algebra A using a Dimino algorithm. The default
function for algebras computes a vector space basis at the same time.

Intersection(A, H)
returns the intersection of A and H either as set of elements or as an algebra record.

IsSubset(A, H)
If A and H are algebras then IsSubset tests whether the generators of H are elements
of A. Otherwise DomainOps.IsSubset is used.

Random(A)
returns a random element of the algebra A. This requires the computation of a vector
space basis.

See also 40.5, 39.6 for the set theoretic functions for the different types of algebras.

720 CHAPTER 38. ALGEBRAS

38.18 Property Tests for Algebras

The following property tests (cf. 7.45) are available for algebras.

IsAbelian(A)
returns true if the algebra A is abelian and false otherwise. An algebra A is abelian
if and only if for every a, b ∈ A the equation a ∗ b = b ∗ a holds.

IsCentral(A, U)
returns true if the algebra A centralizes the algebra U and false otherwise. An
algebra A centralizes an algebra U if and only if for all a ∈ A and for all u ∈ U the
equation a ∗ u = u ∗ a holds. Note that U need not to be a subalgebra of A but they
must have a common parent algebra.

IsFinite(A)
returns true if the algebra A is finite, and false otherwise.

IsTrivial(A)
returns true if the algebra A consists only of the zero element, and false otherwise.
If A is a unital algebra it is of course never trivial.

All tests expect a parent algebra or subalgebra and return true if the algebra has the
property and false otherwise. Some functions may not terminate if the given algebra has
an infinite set of elements. A warning may be printed in such cases.

gap> IsAbelian(FreeAlgebra(GF(2), 2));
false
gap> a:= UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]]);
UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]])
gap> a.name:= "a";;
gap> s1:= Subalgebra(a, [One(a)]);
Subalgebra(a, [[[1, 0], [0, 1]]])
gap> IsCentral(a, s1); IsFinite(s1);
true
false
gap> s2:= Subalgebra(a, []);
Subalgebra(a, [])
gap> IsFinite(s2); IsTrivial(s2);
true
true

38.19 Vector Space Functions for Algebras

A finite dimensional F -algebra A is always a finite dimensional F -vector space. Thus in
GAP, an algebra is a vector space (see 9.2), and vector space functions such as Base and
Dimension are applicable to algebras.

gap> a:= UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]]);
UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]])
gap> Dimension(a);
2
gap> Base(a);

38.20. ALGEBRA FUNCTIONS FOR ALGEBRAS 721

[[[1, 0], [0, 1]], [[0, 0], [0, 1]]]

The vector space structure is used also by the set theoretic functions.

38.20 Algebra Functions for Algebras

The functions desribed in this section compute certain subalgebras of a given algebra, e.g.,
Centre computes the centre of an algebra.
They return algebra records as described in 38.28 for the computed subalgebras. Some
functions may not terminate if the given algebra has an infinite set of elements, while other
functions may signal an error in such cases.
Here the term “subalgebra” is used in a mathematical sense. But in GAP, every algebra
is either a parent algebra or a subalgebra of a unique parent algebra. If you compute the
centre C of an algebra U with parent algebra A then C is a subalgebra of U but its parent
algebra is A (see 38.3).
Centralizer(A, x)

Centralizer(A, U)
returns the centralizer of an element x in A where x must be an element of the parent
algebra of A, resp. the centralizer of the algebra U in A where both algebras must
have a common parent.

The centralizer of an element x in A is defined as the set C of elements c of A such that
c and x commute.
The centralizer of an algebra U in A is defined as the set C of elements c of A such that
c commutes with every element of U .

gap> a:= MatAlgebra(GF(2), 2);;
gap> a.name:= "a";;
gap> m:= [[1, 1], [0, 1]] * Z(2);;
gap> Centralizer(a, m);
UnitalSubalgebra(a, [[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]],
[[0*Z(2), Z(2)^0], [0*Z(2), 0*Z(2)]]])

Centre(A)
returns the centre of A (that is, the centralizer of A in A).

gap> c:= Centre(a);
UnitalSubalgebra(a, [[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]])

Closure(U , a)
Closure(U , S)

Let U be an algebra with parent algebra A and let a be an element of A. Then Closure
returns the closure C of U and a as subalgebra of A. The closure C of U and a is the
subalgebra generated by U and a.
Let U and S be two algebras with a common parent algebra A. Then Closure returns the
subalgebra of A generated by U and S .

gap> Closure(c, m);
UnitalSubalgebra(a, [[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]],
[[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]]])

722 CHAPTER 38. ALGEBRAS

38.21 TrivialSubalgebra

TrivialSubalgebra(U)

Let U be an algebra with parent algebra A. Then TrivialSubalgebra returns the trivial
subalgebra T of U , as subalgebra of A.

gap> a:= MatAlgebra(GF(2), 2);;
gap> a.name:= "a";;
gap> TrivialSubalgebra(a);
Subalgebra(a, [])

38.22 Operation for Algebras

Operation(A, M)

Let A be an F -algebra for a field F , and M an A-module of F -dimension n. With respect
to a chosen F -basis of M , the action of an element of A on M can be described by an n×n
matrix over F . This induces an algebra homomorphism from A onto a matrix algebra AM ,
with action on its natural module equivalent to the action of A on M . The matrix algebra
AM can be computed as Operation(A, M).

Operation(A, B)

returns the operation of the algebra A on an A-module M with respect to the vector space
basis B of M .
Note that contrary to the situation for groups, the operation domains of algebras are not
lists of elements but domains.
For constructing the algebra homomorphism from A onto AM , and the module homomor-
phism from M onto the equivalent AM -module, see 38.23 and 41.17, respectively.

gap> a:= UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]]);;
gap> m:= Module(a, [[1, 0]]);;
gap> op:= Operation(a, m);
UnitalAlgebra(Rationals, [[[1]]])
gap> mat1:= PermutationMat((1,2,3), 3, GF(2));;
gap> mat2:= PermutationMat((1,2), 3, GF(2));;
gap> u:= Algebra(GF(2), [mat1, mat2]);; u.name:= "u";;
gap> nat:= NaturalModule(u);; nat.name:= "nat";;
gap> q:= nat / FixedSubmodule(nat);;
gap> op1:= Operation(u, q);
UnitalAlgebra(GF(2), [[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]],
[[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]]])

gap> b:= Basis(q, [[0, 1, 1], [0, 0, 1]] * Z(2));;
gap> op2:= Operation(u, b);
UnitalAlgebra(GF(2), [[[Z(2)^0, Z(2)^0], [Z(2)^0, 0*Z(2)]],
[[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]]])

gap> IsEquivalent(NaturalModule(op1), NaturalModule(op2));
true

If the dimension of M is zero then the elements of AM cannot be represented as GAP
matrices. The result is a null algebra, see 40.9, NullAlgebra.

38.23. OPERATIONHOMOMORPHISM FOR ALGEBRAS 723

38.23 OperationHomomorphism for Algebras

OperationHomomorphism(A, B)

returns the algebra homomorphism (see 38.24) with source A and range B , provided that
B is a matrix algebra that was constructed as operation of A on a suitable module M using
Operation(A, M), see 38.22.

gap> ophom:= OperationHomomorphism(a, op);
OperationHomomorphism(UnitalAlgebra(Rationals,
[[[1, 0], [0, 0]]]), UnitalAlgebra(Rationals,
[[[1]]]))
gap> Image(ophom, a.1);
[[1]]
gap> Image(ophom, Zero(a));
[[0]]
gap> PreImagesRepresentative(ophom, [[2]]);
[[2, 0], [0, 2]]

38.24 Algebra Homomorphisms

An algebra homomorphism φ is a mapping that maps each element of an algebra A,
called the source of φ, to an element of an algebra B, called the range of φ, such that for
each pair x, y ∈ A we have (xy)φ = xφyφ and (x+ y)φ = xφ + yφ.

An algebra homomorphism of unital algebras is unital if the zero-th power of elements in
the source is mapped to the zero-th power of elements in the range.

At the moment, only operation homomorphisms are supported in GAP (see 38.23).

38.25 Mapping Functions for Algebra Homomorphisms

This section describes how the mapping functions defined in chapter 42 are implemented
for algebra homomorphisms. Those functions not mentioned here are implemented by the
default functions described in the respective sections.

Image(hom)
Image(hom, H)
Images(hom, H)

The image of a subalgebra under a algebra homomorphism is computed by computing the
images of a set of generators of the subalgebra, and the result is the subalgebra generated
by those images.

PreImagesRepresentative(hom, elm)

gap> a:= UnitalAlgebra(Rationals, [[[1, 0], [0, 0]]]);;
gap> a.name:= "a";;
gap> m:= Module(a, [[1, 0]]);;
gap> op:= Operation(a, m);
UnitalAlgebra(Rationals, [[[1]]])

724 CHAPTER 38. ALGEBRAS

gap> ophom:= OperationHomomorphism(a, op);
OperationHomomorphism(a, UnitalAlgebra(Rationals, [[[1]]]))
gap> Image(ophom, a.1);
[[1]]
gap> Image(ophom, Zero(a));
[[0]]
gap> PreImagesRepresentative(ophom, [[2]]);
[[2, 0], [0, 2]]

38.26 Algebra Elements

This section describes the operations and functions available for algebra elements.

Note that algebra elements may exist independently of an algebra, e.g., you can write down
two matrices and compute their sum and product without ever defining an algebra that
contains them.

Comparisons of Algebra Elements

g = h
evaluates to true if the algebra elements g and h are equal and to false otherwise.

g <> h
evaluates to true if the algebra elements g and h are not equal and to false otherwise.

g < h
g <= h
g >= h
g > h

The operators <, <=, >= and > evaluate to true if the algebra element g is strictly less
than, less than or equal to, greater than or equal to and strictly greater than the algebra
element h. There is no general ordering on all algebra elements, so g and h should lie in
the same parent algebra. Note that for elements of finitely presented algebra, comparison
means comparison with respect to the underlying free algebra (see 39.9).

Arithmetic Operations for Algebra Elements

a * b
a + b
a - b

The operators *, + and - evaluate to the product, sum and difference of the two algebra
elements a and b. The operands must of course lie in a common parent algebra, otherwise
an error is signalled.

a / c

returns the quotient of the algebra element a by the nonzero element c of the base field of
the algebra.

a ^ i

38.27. ISALGEBRAELEMENT 725

returns the i -th power of an algebra element a and a positive integer i . If i is zero or
negative, perhaps the result is not defined, or not contained in the algebra generated by a.

list + a
a + list
list * a
a * list

In this form the operators + and * return a new list where each entry is the sum resp.
product of a and the corresponding entry of list . Of course addition resp. multiplication
must be defined between a and each entry of list .

38.27 IsAlgebraElement

IsAlgebraElement(obj)

returns true if obj , which may be an object of arbitrary type, is an algebra element, and
false otherwise. The function will signal an error if obj is an unbound variable.

gap> IsAlgebraElement((1,2));
false
gap> IsAlgebraElement(NullMat(2, 2));
true
gap> IsAlgebraElement(FreeAlgebra(Rationals, 1).1);
true

38.28 Algebra Records

Algebras and their subalgebras are represented by records. Once an algebra record is created
you may add record components to it but you must not alter information already present.

Algebra records must always contain the components isDomain and isAlgebra. Subalge-
bras contain an additional component parent. The components generators, zero and one
are not necessarily contained.

The contents of important record components of an algebra A is described below.

The category components are

isDomain
is true.

isAlgebra
is true.

isUnitalAlgebra
is present (and then true) if A is a unital algebra.

The identification components are

field
is the coefficient field of A.

generators
is a list of algebra generators. Duplicate generators are allowed, also the algebra

726 CHAPTER 38. ALGEBRAS

zero may be among the generators. Note that once created this entry must never be
changed, as most of the other entries depend on generators. If generators is not
bound it can be computed using Generators.

parent
if present this contains the algebra record of the parent algebra of a subalgebra A,
otherwise A itself is a parent algebra.

zero
is the additive neutral element of A, can be computed using Zero.

The component operations contains the operations record of A. This will usually be
one of AlgebraOps, UnitalAlgebraOps, or a record for more specific algebras.

38.29 FFList

FFList(F)

returns for a finite field F a list l of all elements of F in an ordering that is compatible with
the ordering of field elements in the MeatAxe share library (see chapter 68).

The element of F corresponding to the number n is l[n+1], and the canonical number
of the field element z is Position(l, z) -1.

gap> FFList(GF(8));
[0*Z(2), Z(2)^0, Z(2^3), Z(2^3)^3, Z(2^3)^2, Z(2^3)^6, Z(2^3)^4,
Z(2^3)^5]

(This program was originally written by Meinolf Geck.)

Chapter 39

Finitely Presented Algebras

This chapter contains the description of functions dealing with finitely presented algebras.
The first section informs about the data structures (see 39.1), the next sections tell how to
construct free and finitely presented algebras (see 39.2, 39.3), and what functions can be
applied to them (see 39.4, 39.6, 39.5, 39.7), and the final sections introduce functions for
elements of finitely presented algebras (see 39.8, 39.9, 39.10, 39.11).
For a detailed description of operations of finitely presented algebras on modules, see chapter
72.

39.1 More about Finitely Presented Algebras

Free Algebras

Let X be a finite set, and F a field. The free algebra A on X over F can be regarded as
the semigroup ring of the free monoid on X over F . Addition and multiplication of elements
are performed by dealing with sums of words in abstract generators, with coefficients in F .
Free algebras and also their subalgebras in GAP are always unital, that is, for an element
a in a subalgebra A of a free algebra always the element a0 lies in A (see 38.2). Thus the
free algebra on the empty set over a field F is defined to consist of all elements fe where f
is in F , and e is the multiplicative neutral element, corresponding to the empty word.
Free algebras are useful when dealing with other algebras, like matrix algebras, since they
allow to handle expressions in terms of the generators. This is just a generalization of
handling words in abstract generators and concrete group elements in parallel, as is done for
example in MappedWord (see 22.12) or functions that construct images and preimages under
homomorphisms. This mechanism is also provided for the records representing matrices in
the MeatAxe share library (see chapter 68).

Finitely Presented Algebras

A finitely presented algebra is defined as quotient A/I of a free algebra A by a two-sided
ideal I in A that is generated by a finite set S of elements in F .
Thus computations with finitely presented algebras are similar to those with finitely pre-
sented groups. For example, in general it is impossible to decide whether two elements of
the free algebra A are equal modulo I.

727

728 CHAPTER 39. FINITELY PRESENTED ALGEBRAS

For finitely presented groups a permutation representation on the cosets of a subgroup of
finite index can be computed by the Todd-Coxeter coset enumeration method. An analogue
of this method for finitely presented algebras is Steve Linton’s Vector Enumeration method
that tries to compute a matrix representation of the action on a quotient of a free module
of the algebra. This method is available in GAP as a share library (see chapter 72, and the
references there), and this makes finitely presented algebra in GAP more than an object one
can only use for the obvious arithmetics with elements of free algebras.

GAP only handles the data structures, all the work in done by the standalone program.
Thus all functions for finitely presented algebras, like Size, delegate the work to the
Vector Enumeration program.

Note that (contrary to the situation in finitely presented groups, and several places in
Vector Enumeration) relators are meant to be equal to zero, not to the identity. Two
examples for this. If x^2 - a.one is a relator in the presentation of the algebra a, with x
a generator, then x is an involution. If x^2 is a relator then x is nilpotent. If the generator
x occurs in relators of the form x * v - a.one and w * x - a.one, for v and w elements
of the free algebra, then x is known to be invertible.

The Vector Enumeration package is loaded automatically as soon as it is needed. You can
also load it explicitly using

gap> RequirePackage("ve");

Elements of Finitely Presented Algebras

The elements of finitely presented algebras in GAP are records that store lists of coefficients
and of words in abstract generators. Note that the elements of the ground field are not
regarded as elements of the algebra, especially the identity and zero element are denoted by
a.one and a.zero, respectively. Functions and operators for elements of finitely presented
algebras are listed in 39.9.

Implementation of Functions for Finitely Presented Algebras

Every question about a finitely presented algebraA that cannot be answered from the presen-
tation directly is delegated to an isomorphic matrix algebraM using the Vector Enumeration
share library. This may be impossible because the dimension of an isomorphic matrix alge-
bra is too large. But for small A it seems to be valuable.

For example, if one asks for the size of A, Vector Enumeration tries to find such a matrix
algebra M , and then GAP computes its size. M and the isomorphism between A and M are
stored in the component A.matAlgebraA, so Vector Enumeration is called only once for A.

39.2 FreeAlgebra

FreeAlgebra(F, rank)
FreeAlgebra(F, rank, name)
FreeAlgebra(F, name1, name2, ...)

return a free algebra with ground field F . In the first two forms an algebra on rank free
generators is returned, their names will be name.1, . . . , name.rank , the default for name
is the string "a".

gap> a:= FreeAlgebra(GF(2), 2);

39.3. FPALGEBRA 729

UnitalAlgebra(GF(2), [a.1, a.2])
gap> b:= FreeAlgebra(Rationals, "x", "y");
UnitalAlgebra(Rationals, [x, y])
gap> x:= b.1;
x

Finitely presented algebras are constructed from free algebras via factoring by a suitable
ideal (see 39.5).

39.3 FpAlgebra

FpAlgebra(A)

returns a finitely presented algebra isomorphic to the algebra A. At the moment this is
implemented only for matrix algebras and finitely presented algebras.

gap> a:= FreeAlgebra(GF(2), 2);
UnitalAlgebra(GF(2), [a.1, a.2])
gap> a:= a / [a.one+a.1^2, a.one+a.2^2, a.one+(a.1*a.2)^3];;
gap> a.name:= "a";; s:= Subalgebra(a, [a.2]);;
gap> f:= FpAlgebra(s);
UnitalAlgebra(GF(2), [a.1])
gap> PrintDefinitionFpAlgebra(f, "f");
f:= FreeAlgebra(GF(2), "a.1");
f:= f / [f.one+f.1^2];

FpAlgebra(F, fpgroup)

returns the group algebra of the finitely presented group fpgroup over the field F , this is
the algebra of formal linear combinations of elements of fpgroup, with coefficients in F ; in
this case the number of algebra generators is twice the number of group generators, the first
half corresponding to the group generators, the second half to their inverses.

gap> f:= FreeGroup(2);;
gap> s3:= f / [f.1^2, f.2^2, (f.1*f.2)^3];
Group(f.1, f.2)
gap> a:= FpAlgebra(GF(2), s3);
UnitalAlgebra(GF(2), [a.1, a.2, a.3, a.4])

39.4 IsFpAlgebra

IsFpAlgebra(obj)

returns true if obj is a finitely presented algebra, and false otherwise.

gap> IsFpAlgebra(FreeAlgebra(GF(2), 0));
true
gap> IsFpAlgebra(last);
false

730 CHAPTER 39. FINITELY PRESENTED ALGEBRAS

39.5 Operators for Finitely Presented Algebras

A / relators

returns a finitely presented algebra that is the quotient of the free algebra A (see 39.2) by
the two-sided ideal in A spanned by the elements in the list relators.

This is the general method to construct finitely presented algebras in GAP. For the special
case of group algebras of finitely presented groups see 39.3.

A ^ n

returns a free A-module of dimension n (see chapter 41) for the finitely presented algebra
A.

gap> f:= FreeAlgebra(Rationals, 2);
UnitalAlgebra(Rationals, [a.1, a.2])
gap> a:= f / [f.1^2 - f.one, f.2^2 - f.one, (f.1*f.2)^2 - f.one];
UnitalAlgebra(Rationals, [a.1, a.2])
gap> a = f;
false
gap> a^2;
Module(UnitalAlgebra(Rationals, [a.1, a.2]),
[[a.one, a.zero], [a.zero, a.one]])

a in A

returns true if a is an element of the finitely presented algebra A, and false otherwise.
Note that the answer may require the computation of an isomorphic matrix algebra if A is
not a parent algebra.

gap> a.1 in a;
true
gap> f.1 in a;
false
gap> 1 in a;
false

39.6 Functions for Finitely Presented Algebras

The following functions are overlaid in the operations record of finitely presented algebras.

The set theoretic functions
Elements, Intersection, IsFinite, IsSubset, Size;

the vector space functions
Base, Coefficients, and Dimension,

Note that at the moment no basis records (see 33.2) for finitely presented algebras are
supported.

and the algebra functions
Closure, IsAbelian, IsTrivial, Operation (see 38.22, 72.1, 72.3), Subalgebra, and
TrivialSubalgebra.

39.7. PRINTDEFINITIONFPALGEBRA 731

Note that these functions try to compute a faithful matrix representation of the algebra
using the Vector Enumeration share library (see chapter 72).

39.7 PrintDefinitionFpAlgebra

PrintDefinitionFpAlgebra(A, name)

prints the assignment of the finitely presented algebra A to the variable name name. Using
the call as an argument of PrintTo (see 3.15), this can be used to save A to a file.

gap> a:= FreeAlgebra(GF(2), "x", "y");
UnitalAlgebra(GF(2), [x, y])
gap> a:= a / [a.1^2-a.one, a.2^2-a.one, (a.1*a.2)^3 - a.one];
UnitalAlgebra(GF(2), [x, y])
gap> PrintDefinitionFpAlgebra(a, "b");
b:= FreeAlgebra(GF(2), "x", "y");
b:= b / [b.one+b.1^2, b.one+b.2^2, b.one+b.1*b.2*b.1*b.2*b.1*b.2];
gap> PrintTo("algebra", PrintDefinitionFpAlgebra(a, "b"));

39.8 MappedExpression

MappedExpression(expr, gens1, gens2)

For an arithmetic expression expr in terms of gens1 , MappedExpression returns the corre-
sponding expression in terms of gens2 .

gens1 may be a list of abstract generators (in this case the result is the same as the object
returned by 22.12 MappedWord), or of generators of a finitely presented algebra.

gap> a:= FreeAlgebra(Rationals, 2);;
gap> a:= a / [a.1^2 - a.one, a.2^2 - a.one, (a.1*a.2)^2 - a.one];;
gap> matgens:= [[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]],
> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]];;
gap> permgens:= [(1,4)(2,3), (1,2)(3,4)];;
gap> MappedExpression(a.1^2 + a.1, a.generators, matgens);
[[1, 0, 0, 1], [0, 1, 1, 0], [0, 1, 1, 0], [1, 0, 0, 1]]
gap> MappedExpression(a.1 * a.2, a.generators, permgens);
(1,3)(2,4)

Note that this can be done also in terms of (algebra or group) homomorphisms (see 38.24).

MappedExpression may raise elements in gens2 to the zero-th power.

39.9 Elements of Finitely Presented Algebras

Zero and One of Finitely Presented Algebras

A finitely presented algebra A contains a zero element A.zero. If the number of generators
of A is not zero, the multiplicative neutral element of A is A.one, which is the zero-th power
of any nonzero element of A.

Comparisons of Elements of Finitely Presented Algebras

732 CHAPTER 39. FINITELY PRESENTED ALGEBRAS

x = y
x < y

Elements of the same algebra can be compared in order to form sets. Note that probably it
will be necessary to compute an isomorphic matrix representation in order to decide equality
if x and y are not elements of a free algebra.

gap> a:= FreeAlgebra(Rationals, 1);;
gap> a:= a / [a.1^2 - a.one];
UnitalAlgebra(Rationals, [a.1])
gap> [a.1^3 = a.1, a.1^3 > a.1, a.1 > a.one, a.zero > a.one];
[true, false, false, false]

Arithmetic Operations for Elements of Finitely Presented Algebras

x + y
x - y
x * y
x ^ n
x / c

The usual arithmetical operations for ring elements apply to elements of finitely presented
algebras. Exponentiation ^ can be used to raise an element x to the n-th power. Division
/ is only defined for denominators in the base field of the algebra.

gap> a:= FreeAlgebra(Rationals, 2);;
gap> x:= a.1 - a.2;
a.1+-1*a.2
gap> x^2;
a.1^2+-1*a.1*a.2+-1*a.2*a.1+a.2^2
gap> y:= 4 * x - a.1;
3*a.1+-4*a.2
gap> y^2;
9*a.1^2+-12*a.1*a.2+-12*a.2*a.1+16*a.2^2

IsFpAlgebraElement(obj)

returns true if obj is an element of a finitely presented algebra, and false otherwise.

gap> IsFpAlgebraElement(a.zero);
true
gap> IsFpAlgebraElement(a.field.zero);
false

FpAlgebraElement(A, coeff , words)

Elements of finitely presented algebras normally arise from arithmetical operations. It is,
however, possible to construct directly the element of the finitely presented algebra A that
is the sum of the words in the list words, with coefficients given by the list coeff , by calling
FpAlgebraElement(A, coeff , words). Note that this function does not check whether
some of the words are equal, or whether all coefficients are nonzero. So one should probably
not use it.

39.10. ELEMENTALGEBRA 733

gap> a;
UnitalAlgebra(Rationals, [a.1, a.2])
gap> FpAlgebraElement(a, [1, 1], a.generators);
a.1+a.2
gap> FpAlgebraElement(a, [1, 1, 1], List([1..3], i -> a.1^i));
a.1+a.1^2+a.1^3

39.10 ElementAlgebra

ElementAlgebra(A, nr)

returns the nr -th element in terms of the generators of the free algebra A over the finite
field F , with respect to the following ordering.

We form the elements as linear combinations with coefficients in the base field of A, with
respect to the basis defined by the ordering of words according to length and lexicographic
order; this sequence starts as follows.

a0
1, a1, a2, . . . , an, a2

1, a1a2, a1a3, . . . , a1an, a2a1, . . . , a2an, . . . , a2
n, a3

1, a2
1a2, . . . , a2

1an,
a1a2a1, . . .

Let n be the number of generators of A, q the size of F , and nr =
∑k
i=0 aiq

i the q-adic
expression of nr . Then the ai-th element of A.field is the coefficient of the i-th base
element in the required algebra element. The ordering of field elements is the same as that
defined in the MeatAxe package, that is, FFList(F)[m+1] (see 38.29) is the m-th
element of the field F .

gap> a:= FreeAlgebra(GF(2), 2);;
gap> List([10 .. 20], x -> ElementAlgebra(a, x));
[a.1+a.1^2, a.one+a.1+a.1^2, a.2+a.1^2, a.one+a.2+a.1^2,
a.1+a.2+a.1^2, a.one+a.1+a.2+a.1^2, a.1*a.2, a.one+a.1*a.2,
a.1+a.1*a.2, a.one+a.1+a.1*a.2, a.2+a.1*a.2]

gap> ElementAlgebra(a, 0);
a.zero

The function can be applied also if A is an arbitrary finitely presented algebra or a matrix
algebra. In these cases the result is the element of the algebra obtained on replacing the
generators of the corresponding free algebra by the generators of A.

Note that the zero-th power of elements may be needed, which is not necessarily an element
of a matrix algebra.

gap> a:= UnitalAlgebra(GF(2), GL(2,2).generators);
UnitalAlgebra(GF(2), [[[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]],
[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]]])

gap> ElementAlgebra(a, 17);
[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]]

The number of an element a can be computed using 39.11.

39.11 NumberAlgebraElement

NumberAlgebraElement(a)

734 CHAPTER 39. FINITELY PRESENTED ALGEBRAS

returns the number n such that the element a of the finitely presented algebra A is the n-th
element of A in the sense of 39.10, that is, a = ElementAlgebra(A, n).

gap> a:= FreeAlgebra(GF(2), 2);;
gap> NumberAlgebraElement((a.1 + a.one)^4);
32769
gap> NumberAlgebraElement(a.zero);
0
gap> NumberAlgebraElement(a.one);
1

Note that A.field must be finite.

Chapter 40

Matrix Algebras

This chapter describes the data structures and functions for matrix algebras in GAP. See
chapter 38 for the description of all those aspects that concern general algebras.

First the objects of interest in this chapter are introduced (see 40.1, 40.2).

The next sections describe functions for matrix algebras, first those that can be applied not
only for matrix algebras (see 40.3, 40.4, 40.5, 40.6, 40.7), and then specific matrix algebra
functions (see 40.8, 40.9, 40.10, 40.11).

40.1 More about Matrix Algebras

A matrix algebra is an algebra (see 38.1) the elements of which are matrices.

There is a canonical isomorphism of a matrix algebra onto a row space (see chapter 33) that
maps a matrix to the concatenation of its rows. This makes all computations with matrix
algebras that use its vector space structure as efficient as the corresponding computation
with a row space. For example the computation of a vector space basis, of coefficients with
respect to such a basis, and of representatives under the action on a vector space by right
multiplication.

If one is interested in matrix algebras as domains themselves then one should think of this
algebra as of a row space that admits a multiplication. For example, the convention for row
spaces that the coefficients field must contain the field of the vector elements also applies to
matrix algebras. And the concept of vector space bases is the same as that for row spaces
(see 40.2).

In the chapter about modules (see chapter 41) it is stated that modules are of interest
mainly as operation domains of algebras. Here we can state that matrix algebras are of
interest mainly because they describe modules. For some of the functions it is not obvious
whether they are functions for modules or for algebras or for the matrices that generate
an algebra. For example, one usually talks about the fingerprint of an A-module M , but
this is in fact computed as the list of nullspace dimensions of generators of a certain matrix
algebra, namely the induced action of A on M as is computed using Operation(A, M)
(see 40.10, 38.22).

735

736 CHAPTER 40. MATRIX ALGEBRAS

40.2 Bases for Matrix Algebras

As stated in section 40.1, the implementation of bases for matrix algebras follows that of row
space bases, see 33.2 for the details. Consequently there are two types of bases, arbitrary
bases and semi-echelonized bases, where the latter type can be defined as follows. Let ϕ be
the vector space homomorphism that maps a matrix in the algebra A to the concatenation
of its rows, and let B = (b1, b2, . . . , bn) be a vector space basis of A, then B is called semi-
echelonized if and only if the row space basis (ϕ(b1), ϕ(b2), . . . , ϕ(bn)) is semi-echelonized,
in the sense of 33.2. The canonical basis is defined analogeously.

Due to the multiplicative structure that allows to view a matrix algebra A as an A-module
with action via multiplication from the right, there is additionally the notion of a standard
basis for A, which is essentially described in 41.13. The default way to compute a vector
space basis of a matrix algebra from a set of generating matrices is to compute this standard
basis and a semi-echelonized basis in parallel.

If the matrix algebra A is unital then every semi-echelonized basis and also the standard
basis have One(A) as first basis vector.

40.3 IsMatAlgebra

IsMatAlgebra(obj)

returns true if obj , which may be an object of arbitrary type, is a matrix algebra and false
otherwise.

gap> IsMatAlgebra(FreeAlgebra(GF(2), 0));
false
gap> IsMatAlgebra(Algebra(Rationals, [[[1]]]));
true

40.4 Zero and One for Matrix Algebras

Zero(A)
returns the square zero matrix of the same dimension and characteristic as the ele-
ments of A. This matrix is thought only for testing whether a matrix is zero, usually
all its rows will be identical in order to save space. So you should not use this zero
matrix for other purposes; use 34.4 NullMat instead.

One(A)
returns for a unital matrix algebra A the identity matrix of the same dimension
and characteristic as the elements of A; for a not unital matrix algebra A the (left
and right) multiplicative neutral element (if exists) is computed by solving a linear
equation system.

40.5 Functions for Matrix Algebras

Closure, Elements, IsFinite, and Size are the only set theoretic functions that are
overlaid in the operations records for matrix algebras and unital matrix algebras. See 38.17
for an overview of set theoretic functions for general algebras.

40.6. ALGEBRA FUNCTIONS FOR MATRIX ALGEBRAS 737

No vector space functions are overlaid in the operations records for matrix algebras and
unital matrix algebras. The functions for vector space bases are mainly the same as
those for row space bases (see 40.2).

For other functions for matrix algebras, see 40.6.

40.6 Algebra Functions for Matrix Algebras

Centralizer(A, a)
Centralizer(A, S)
returns the element or subalgebra centralizer in the matrix algebra A. Centralizers in
matrix algebras are computed by solving a linear equation system.

Centre(A)
returns the centre of the matrix algebra A, which is computed by solving a linear
equation system.

FpAlgebra(A)
returns a finitely presented algebra that is isomorphic to A. The presentation is com-
puted using the structure constants, thus a vector space basis of A has to be computed.
If A contains no multiplicative neutral element (see 40.4) an error is signalled. (At
the moment the implementation is really simpleminded.)

gap> a:= UnitalAlgebra(Rationals, [[[0,1],[0,0]]]);
UnitalAlgebra(Rationals, [[[0, 1], [0, 0]]])
gap> FpAlgebra(a);
UnitalAlgebra(Rationals, [a.1])
gap> last.relators;
[a.1^2]

40.7 RepresentativeOperation for Matrix Algebras

RepresentativeOperation(A, v1, v2)

returns the element in the matrix algebra A that maps v1 to v2 via right multiplication if
such an element exists, and false otherwise. v1 and v2 may be vectors or matrices of same
dimension.

gap> a:= MatAlgebra(GF(2), 2);
UnitalAlgebra(GF(2), [[[Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2)]],
[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]]])

gap> v1:= [1, 0] * Z(2);; v2:= [1, 1] * Z(2);;
gap> RepresentativeOperation(a, v1, v2);
[[Z(2)^0, Z(2)^0], [Z(2)^0, Z(2)^0]]
gap> t:= TrivialSubalgebra(a);;
gap> RepresentativeOperation(t, v1, v2);
false

40.8 MatAlgebra

MatAlgebra(F, n)

returns the full matrix algebra of n by n matrices over the field F .

738 CHAPTER 40. MATRIX ALGEBRAS

gap> a:= MatAlgebra(GF(2), 2);
UnitalAlgebra(GF(2), [[[Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2)]],
[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]]])

gap> Size(a);
16

40.9 NullAlgebra

NullAlgebra(F)

returns a trivial algebra (that is, it contains only the zero element) over the field F . This
occurs in a natural way whenever Operation (see 38.22) constructs a faithful representation
of the zero module.

Here we meet the strange situation that an operation algebra does not consist of matrices,
since in GAP a matrix always has a positive number of rows and columns. The element of
a NullAlgebra(F) is the object EmptyMat that acts (trivially) on empty lists via right
multiplication.

gap> a:= NullAlgebra(GF(2));
NullAlgebra(GF(2))
gap> Size(a);
1
gap> Elements(a);
[EmptyMat]
gap> [] * EmptyMat;
[]
gap> IsAlgebra(a);
true

40.10 Fingerprint

Fingerprint(A)
Fingerprint(A, list)

returns the fingerprint of the matrix algebra A, i.e., a list of nullities of six “standard” words
in A (for 2-generator algebras only) or of the words with numbers in list .

gap> m1:= PermutationMat((1,2,3,4,5), 5, GF(2));;
gap> m2:= PermutationMat((1,2) , 5, GF(2));;
gap> a:= Algebra(GF(2), [m1, m2]);;
gap> Fingerprint(a);
[1, 1, 1, 3, 0, 4]

Let a and b be the generators of a 2-generator matix algebra. The six standard words used
by Fingerprint are w1, w2, . . . , w6 where

w1 = ab+ a+ b, w2 = w1 + ab2,
w3 = a+ bw2, w4 = b+ w3,
w5 = ab+ w4, w6 = a+ w5

40.11. NATURALMODULE 739

40.11 NaturalModule

NaturalModule(A)

returns the natural module M of the matrix algebra A. If A consists of n by n matrices,
and F is the coefficients field of A then M is an n-dimensional row space over the field F ,
viewed as A-right module (see 41.4).

gap> a:= MatAlgebra(GF(2), 2);;
gap> a.name:= "a";;
gap> m:= NaturalModule(a);
Module(a, [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])

740 CHAPTER 40. MATRIX ALGEBRAS

Chapter 41

Modules

This chapter describes the data structures and functions for modules in GAP.

After the introduction of the data structures (see 41.1, 41.2, 41.3) the functions for con-
structing modules and submodules (see 41.4, 41.5, 41.6, 41.7, 41.8) and testing for modules
(see 41.9, 41.10) are described.

The next sections describe operations and functions for modules (see 41.11, 41.12, 41.13,
41.14, 41.16).

The next section describes available module homomorphisms. At the moment only operation
homomorphisms are supported (see 41.17).

The last sections describe the implementation of the data structures (see 41.18, 41.19).

Many examples in this chapter use the natural permutation module for the symmetric group
S3. If you want to run the examples you must first define this module, as is done using the
following commands.

gap> mat1:= PermutationMat((1,2,3), 3, GF(2));;
gap> mat2:= PermutationMat((1,2), 3, GF(2));;
gap> a:= UnitalAlgebra(GF(2), [mat1, mat2]);; a.name:= "a";;
gap> nat:= NaturalModule(a);;
gap> nat.name:= "nat";;

There is no possibility to compute the lattice of submodules with the implementations in
GAP. However, it is possible to use the MeatAxe share library (see chapter 68) to compute
the lattice, and then (perhaps) to carry back interesting parts to GAP format using 68.2
GapObject.

41.1 More about Modules

Let R be a ring. An R-module (or, more exactly, an R-right module) is an additive abelian
group on that R acts from the right.

A module is of interest mainly as operation domain of an algebra (see chapter 38). Thus
it is the natural place to store information about the operation of the algebra, for example

741

742 CHAPTER 41. MODULES

whether it is irreducible. But since a module is a domain it has also properties of its own,
independent of the algebra.

According to the different types of algebras in GAP, namely matrix algebras and finitely
presented algebras, at the moment two types of modules are supported in GAP, namely row
modules and their quotients for matrix algebras and free modules and their submodules
and quotients for finitely presented algebras. See 41.2 and 41.3 for more information.

For modules, the same concept of parent and substructures holds as for row spaces. That
is, a module is stored either as a submodule of a module, or it is not (see 41.5, 41.7 for the
details).

Also the concept of factor structures and cosets is the same as that for row spaces (see 33.4,
33.3), especially the questions about a factor module is mainly delegated to the numerator
and the denominator, see also 41.11.

41.2 Row Modules

A row module for a matrix algebra A is a row space over a field F on that A acts from
the right via matrix multiplication. All operations, set theoretic functions and vector space
functions for row spaces are applicable to row modules, and the conventions for row spaces
also hold for row modules (see chapter 33). For the notion of a standard basis of a module,
see 41.13.

It should be mentioned, however, that the functions and their results have to be interpreted
in the module context. For example, Generators returns a list of module generators not
vector space generators (see 41.8), and Closure or Sum for modules return a module (namely
the smallest module generated by the arguments).

Quotient modules Q = V/W of row modules are quotients of row spaces V , W that
are both (row) modules for the same matrix algebra A. All operations and functions for
quotient spaces are applicable. The element of such quotient modules are module cosets,
in addition to the operations and functions for row space cosets they can be multiplied by
elements of the acting algebra.

41.3 Free Modules

A free module of dimension n for an algebra A consists of all n-tuples of elements of A,
the action of A is defined as component-wise multiplication from the right. Submodules and
quotient modules are defined in the obvious way.

In GAP, elements of free modules are stored as lists of algebra elements. Thus there is no
difference to row modules with respect to addition of elements, and operation of the algebra.
However, the applicable functions are different.

At the moment, only free modules for finitely presented algebras are supported in GAP, and
only very few functions are available for free modules at the moment. Especially the set
theoretic and vector space functions do not work for free modules and their submodules and
quotients.

Free modules were only introduced as operation domains of finitely presented algebras.

A ^ n

41.4. MODULE 743

returns a free module of dimension n for the algebra A.

gap> a:= FreeAlgebra(Rationals, 2);; a.name:= "a";;
gap> a^2;
Module(a, [[a.one, a.zero], [a.zero, a.one]])

41.4 Module

Module(R, gens)
Module(R, gens, zero)
Module(R, gens, "basis")

returns the module for the ring R that is generated by the elements in the list gens. If gens
is empty then the zero element zero of the module must be entered.

If the third argument is the string "basis" then the generators gens are assumed to form
a vector space basis.

gap> a:= UnitalAlgebra(GF(2), GL(2,2).generators);;
gap> a.name:="a";;
gap> m1:= Module(a, [a.1[1]]);
Module(a, [[Z(2)^0, Z(2)^0]])
gap> Dimension(m1);
2
gap> Basis(m1);
SemiEchelonBasis(Module(a, [[Z(2)^0, Z(2)^0]]),
[[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]])
gap> m2:= Module(a, a.2, "basis");;
gap> Basis(m2);
Basis(Module(a, [[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]]),
[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]])
gap> a.2;
[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]]
gap> m1 = m2;
true

41.5 Submodule

Submodule(M , gens)

returns the submodule of the parent of the module M that is generated by the elements in
the list gens. If M is a factor module, gens may also consist of representatives instead of
the cosets themselves.

gap> a:= UnitalAlgebra(GF(2), [mat1, mat2]);; a.name:= "a";;
gap> nat:= NaturalModule(a);;
gap> nat.name:= "nat";;
gap> s:= Submodule(nat, [[1, 1, 1] * Z(2)]);
Submodule(nat, [[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> Dimension(s);
1

744 CHAPTER 41. MODULES

41.6 AsModule

AsModule(M)

returns a module that is isomorphic to the module or submodule M .

gap> s:= Submodule(nat, [[1, 1, 1] * Z(2)]);;
gap> s2:= AsModule(s);
Module(a, [[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> s = s2;
true

41.7 AsSubmodule

AsSubmodule(M , U)

returns a submodule of the parent of M that is isomorphic to the module U which can be
a parent module or a submodule with a different parent.

Note that the same ring must act on M and U .

gap> s2:= Module(a, [[1, 1, 1] * Z(2)]);;
gap> s:= AsSubmodule(nat, s2);
Submodule(nat, [[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> s = s2;
true

41.8 AsSpace for Modules

AsSpace(M)

returns a (quotient of a) row space that is equal to the (quotient of a) row module M .

gap> s:= Submodule(nat, [[1, 1, 0] * Z(2)]);
Submodule(nat, [[Z(2)^0, Z(2)^0, 0*Z(2)]])
gap> Dimension(s);
2
gap> AsSpace(s);
RowSpace(GF(2),
[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0]])
gap> q:= nat / s;
nat / [[Z(2)^0, Z(2)^0, 0*Z(2)]]
gap> AsSpace(q);
RowSpace(GF(2),
[[Z(2)^0, 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0]]) /

[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0]]

41.9 IsModule

IsModule(obj)

41.10. ISFREEMODULE 745

returns true if obj , which may be an object of arbitrary type, is a module, and false
otherwise.

gap> IsModule(nat);
true
gap> IsModule(AsSpace(nat));
false

41.10 IsFreeModule

IsFreeModule(obj)

returns true if obj , which may be an object of arbitrary type, is a free module, and false
otherwise.

gap> IsFreeModule(nat);
false
gap> IsFreeModule(a^2);
true

41.11 Operations for Row Modules

Here we mention only those facts about operations that have to be told in addition to those
for row spaces (see 33.7).

Comparisons of Modules

M1 = M2
M1 < M2

Equality and ordering of (quotients of) row modules are defined as equality resp. ordering
of the modules as vector spaces (see 33.7).

This means that equal modules may be inequivalent as modules, and even the acting rings
may be different. For testing equivalence of modules, see 41.14.

gap> s:= Submodule(nat, [[1, 1, 1] * Z(2)]);
Submodule(nat, [[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> s2:= Submodule(nat, [[1, 1, 0] * Z(2)]);
Submodule(nat, [[Z(2)^0, Z(2)^0, 0*Z(2)]])
gap> s = s2;
false
gap> s < s2;
true

Arithmetic Operations of Modules

M1 + M2
returns the sum of the two modules M1 and M2 , that is, the smallest module con-
taining both M1 and M2 . Note that the same ring must act on M1 and M2 .

M1 / M2
returns the factor module of the module M1 by its submodule M2 . Note that the
same ring must act on M1 and M2 .

gap> s1:= Submodule(nat, [[1, 1, 1] * Z(2)]);

746 CHAPTER 41. MODULES

Submodule(nat, [[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> q:= nat / s1;
nat / [[Z(2)^0, Z(2)^0, Z(2)^0]]
gap> s2:= Submodule(nat, [[1, 1, 0] * Z(2)]);
Submodule(nat, [[Z(2)^0, Z(2)^0, 0*Z(2)]])
gap> s3:= s1 + s2;
Submodule(nat,
[[Z(2)^0, Z(2)^0, Z(2)^0], [0*Z(2), 0*Z(2), Z(2)^0]])
gap> s3 = nat;
true

For forming the sum and quotient of row spaces, see 33.7.

41.12 Functions for Row Modules

As stated in 41.2, row modules behave like row spaces with respect to set theoretic and
vector space functions (see 33.8).

The functions in the following sections use the module structure (see 41.13, 41.14, 41.15,
41.16, 41.17).

41.13 StandardBasis for Row Modules

StandardBasis(M)
StandardBasis(M , seedvectors)

returns the standard basis of the row module M with respect to the seed vectors in the list
seedvectors. If no second argument is given the generators of M are taken.

The standard basis is defined as follows. Take the first seed vector v, apply the generators
of the ring R acting on M in turn, and if the image is linearly independent of the basis
vectors found up to this time, it is added to the basis. When the space becomes stable
under the action of R, proceed with the next seed vector, and so on.

Note that you do not get a basis of the whole module if all seed vectors lie in a proper
submodule.

gap> s:= Submodule(nat, [[1, 1, 0] * Z(2)]);
Submodule(nat, [[Z(2)^0, Z(2)^0, 0*Z(2)]])
gap> b:= StandardBasis(s);
StandardBasis(Submodule(nat, [[Z(2)^0, Z(2)^0, 0*Z(2)]]))
gap> b.vectors;
[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0]]
gap> StandardBasis(s, [[0, 1, 1] * Z(2)]);
StandardBasis(Submodule(nat, [[Z(2)^0, Z(2)^0, 0*Z(2)]]),
[[0*Z(2), Z(2)^0, Z(2)^0], [Z(2)^0, 0*Z(2), Z(2)^0]])

41.14 IsEquivalent for Row Modules

IsEquivalent(M1, M2)

Let M1 and M2 be modules acted on by rings R1 and R2, respectively, such that mapping
the generators of R1 to the generators of R2 defines a ring homomorphism. Furthermore let

41.15. ISIRREDUCIBLE FOR ROW MODULES 747

at least one of M1 , M2 be irreducible. Then IsEquivalent(M1, M2) returns true if
the actions on M1 and M2 are equivalent, and false otherwise.

gap> rand:= RandomInvertableMat(3, GF(2));;
gap> b:= UnitalAlgebra(GF(2), List(a.generators, x -> x^rand));;
gap> m:= NaturalModule(b);;
gap> IsEquivalent(nat / FixedSubmodule(nat),
> m / FixedSubmodule(m));
true

41.15 IsIrreducible for Row Modules

IsIrreducible(M)

returns true if the (quotient of a) row module M is irreducible, and false otherwise.

gap> IsIrreducible(nat);
false
gap> IsIrreducible(nat / FixedSubmodule(nat));
true

41.16 FixedSubmodule

FixedSubmodule(M)

returns the submodule of fixed points in the module M under the action of the generators
of M .ring.

gap> fix:= FixedSubmodule(nat);
Submodule(nat, [[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> Dimension(fix);
1

41.17 Module Homomorphisms

Let M1 and M2 be modules acted on by the rings R1 and R2 (via exponentiation), and ϕ
a ring homomorphism from R1 to R2. Any linear map ψ = ψϕ from M1 to M2 with the
property that (mr)ψ = (mψ)(rϕ) is called a module homomorphism.

At the moment only the following type of module homomorphism is available in GAP.
Suppose you have the module M1 for the algebra R1. Then you can construct the op-
eration algebra R2:= Operation(R1,M1), and the module for R2 isomorphic to M1 as
M2:= OperationModule(R2).

Then OperationHomomorphism(M1,M2) can be used to construct the module homomor-
phism from M1 to M2.

gap> s:= Submodule(nat, [[1, 1, 0] *Z(2)]);; s.name:= "s";;
gap> op:= Operation(a, s); op.name:="op";;
UnitalAlgebra(GF(2), [[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2)^0]],
[[Z(2)^0, 0*Z(2)], [Z(2)^0, Z(2)^0]]])

gap> opmod:= OperationModule(op); opmod.name:= "opmod";;
Module(op, [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])

748 CHAPTER 41. MODULES

gap> modhom:= OperationHomomorphism(s, opmod);
OperationHomomorphism(s, opmod)
gap> b:= Basis(s);
SemiEchelonBasis(s,
[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0]])

Images and preimages of elements under module homomorphisms are computed using Image
and PreImagesRepresentative, respectively. If M1 is a row module this is done by using
the knowledge of images of a basis, if M1 is a (quotient of a) free module then the algebra
homomorphism and images of the generators of M1 are used. The computation of preimages
requires in both cases the knowledge of representatives of preimages of a basis of M2.

gap> im:= List(b.vectors, x -> Image(modhom, x));
[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]
gap> List(im, x -> PreImagesRepresentative(modhom, x));
[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0]]

41.18 Row Module Records

Module records contain at least the components
isDomain

always true,
isModule

always true,
isVectorSpace

always true, since modules are vector spaces,
ring

the ring acting on the module,
field

the coefficients field, is the same as R.field where R is the ring component of the
module,

operations
the operations record of the module.

The following components are optional, but if they are not present then the corresponding
function in the operations record must know how to compute them.
generators

a list of module generators (not necessarily of vector space generators),
zero

the zero element of the module.
basis

a vector space basis of the module (see also 33.2),

Factors of row modules have the same components as quotients of row spaces (see 33.30),
except that of course they have an appropriate operations record.
Additionally factors of row modules have the components isModule, isFactorModule (both
always true). Parent modules also have the ring component, which is the same ring as the
ring component of numerator and denominator.

41.19. MODULE HOMOMORPHISM RECORDS 749

41.19 Module Homomorphism Records

Module homomorphism records have at least the following components.

isGeneralMapping
true,

isMapping
true,

isHomomorphism
true,

domain
Mappings,

source
the source of the homomorphism, a module M1,

range
the range of the homomorphism, a module M2,

preImage
the module M1,

basisImage
a vector space basis of the image of M1,

preimagesBasis
a list of preimages of the basis vectors in basisImage

operations
the operations record of the homomorphism.

If the source is a (factor of a) free module then there are also the components

genimages
a list of images of the generators of the source,

alghom
the underlying algebra homomorphism from the ring acting on M1 to the ring acting
on M2.

If the source is a (factor of a) row module then there are also the components

basisSource
a vector space basis of M1,

imagesBasis
a list of images of the basis vectors in basisSource.

750 CHAPTER 41. MODULES

Chapter 42

Mappings

A mapping is an object that maps each element of its source to a value in its range.

Precisely, a mapping is a triple. The source is a set of objects. The range is another
set of objects. The relation is a subset S of the cartesian product of the source with the
range, such that for each element elm of the source there is exactly one element img of the
range, so that the pair (elm, img) lies in S. This img is called the image of elm under the
mapping, and we say that the mapping maps elm to img.

A multi valued mapping is an object that maps each element of its source to a set of
values in its range.

Precisely, a multi valued mapping is a triple. The source is a set of objects. The range
is another set of objects. The relation is a subset S of the cartesian product of the source
with the range. For each element elm of the source the set img such that the pair (elm, img)
lies in S is called the set of images of elm under the mapping, and we say that the mapping
maps elm to this set.

Thus a mapping is a special case of a multi valued mapping where the set of images of each
element of the source contains exactly one element, which is then called the image of the
element under the mapping.

Mappings are created by mapping constructors such as MappingByFunction (see 42.18)
or NaturalHomomorphism (see 7.109).

This chapter contains sections that describe the functions that test whether an object is a
mapping (see 42.1), whether a mapping is single valued (see 42.2), and the various functions
that test if such a mapping has a certain property (see 42.3, 42.4, 42.5, 43.1, 43.2, 43.3,
43.4, 43.3, and 43.6).

Next this chapter contains functions that describe how mappings are compared (see 42.6)
and the operations that are applicable to mappings (see 42.7).

Next this chapter contains sections that describe the functions that deal with the images
and preimages of elements under mappings (see 42.8, 42.9, 42.10, 42.11, 42.12, and 42.13).

Next this chapter contains sections that describe the functions that compute the composition
of two mappings, the power of a mapping, the inverse of a mapping, and the identity mapping
on a certain domain (see 42.14, 42.15, 42.16, and 42.17).

751

752 CHAPTER 42. MAPPINGS

Finally this chapter also contains a section that describes how mappings are represented
internally (see 42.19).
The functions described in this chapter are in the file libname/"mapping.g".

42.1 IsGeneralMapping

IsGeneralMapping(obj)

IsGeneralMapping returns true if the object obj is a mapping (possibly multi valued) and
false otherwise.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsGeneralMapping(p4);
true
gap> IsGeneralMapping(InverseMapping(p4));
true # note that the inverse mapping is multi valued
gap> IsGeneralMapping(x -> x^4);
false # a function is not a mapping

See 42.18 for the definition of MappingByFunction and 42.16 for InverseMapping.

42.2 IsMapping

IsMapping(map)

IsMapping returns true if the general mapping map is single valued and false otherwise.
Signals an error if map is not a general mapping.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsMapping(p4);
true
gap> IsMapping(InverseMapping(p4));
false # note that the inverse mapping is multi valued
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsMapping(p5);
true
gap> IsMapping(InverseMapping(p5));
true # p5 is a bijection

IsMapping first tests if the flag map.isMapping is bound. If the flag is bound, it returns its
value. Otherwise it calls map.operations.IsMapping(map), remembers the returned
value in map.isMapping, and returns it.

42.3. ISINJECTIVE 753

The default function called this way is MappingOps.IsMapping, which computes the sets of
images of all the elements in the source of map, provided this is finite, and returns true if
all those sets have size one. Look in the index under IsMapping to see for which mappings
this function is overlaid.

42.3 IsInjective

IsInjective(map)

IsInjective returns true if the mapping map is injective and false otherwise. Signals an
error if map is a multi valued mapping.

A mapping map is injective if for each element img of the range there is at most one
element elm of the source that map maps to img.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsInjective(p4);
false
gap> IsInjective(InverseMapping(p4));
Error, <map> must be a single valued mapping
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsInjective(p5);
true
gap> IsInjective(InverseMapping(p5));
true # p5 is a bijection

IsInjective first tests if the flag map.isInjective is bound. If the flag is bound, it
returns this value. Otherwise it calls map.operations.isInjective(map), remembers
the returned value in map.isInjective, and returns it.

The default function called this way is MappingOps.IsInjective, which compares the sizes
of the source and image of map, and returns true if they are equal (see 42.8). Look in the
index under IsInjective to see for which mappings this function is overlaid.

42.4 IsSurjective

IsSurjective(map)

IsSurjective returns true if the mapping map is surjective and false otherwise. Signals
an error if map is a multi valued mapping.

A mapping map is surjective if for each element img of the range there is at least one
element elm of the source that map maps to img.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);

754 CHAPTER 42. MAPPINGS

MappingByFunction(g, g, function (x)
return x ^ 4;

end)
gap> IsSurjective(p4);
false
gap> IsSurjective(InverseMapping(p4));
Error, <map> must be a single valued mapping
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsSurjective(p5);
true
gap> IsSurjective(InverseMapping(p5));
true # p5 is a bijection

IsSurjective first tests if the flag map.isSurjective is bound. If the flag is bound, it
returns this value. Otherwise it calls map.operations.IsSurjective(map), remembers
the returned value in map.isSurjective, and returns it.

The default function called this way is MappingOps.IsSurjective, which compares the
sizes of the range and image of map, and returns true if they are equal (see 42.8). Look in
the index under IsSurjective to see for which mappings this function is overlaid.

42.5 IsBijection

IsBijection(map)

IsBijection returns true if the mapping map is a bijection and false otherwise. Signals
an error if map is a multi valued mapping.

A mapping map is a bijection if for each element img of the range there is exactly one
element elm of the source that map maps to img. We also say that map is bijective.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsBijection(p4);
false
gap> IsBijection(InverseMapping(p4));
Error, <map> must be a single valued mapping
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsBijection(p5);
true
gap> IsBijection(InverseMapping(p5));
true # p5 is a bijection

42.6. COMPARISONS OF MAPPINGS 755

IsBijection first tests if the flag map.isBijection is bound. If the flag is bound, it
returns its value. Otherwise it calls map.operations.IsBijection(map), remembers
the returned value in map.isBijection, and returns it.

The default function called this way is MappingOps.IsBijection, which calls IsInjective
and IsSurjective, and returns the logical and of the results. This function is seldom
overlaid, because all the interesting work is done by IsInjective and IsSurjective.

42.6 Comparisons of Mappings

map1 = map2
map1 <> map2

The equality operator = applied to two mappings map1 and map2 evaluates to true if the
two mappings are equal and to false otherwise. The unequality operator <> applied to
two mappings map1 and map2 evaluates to true if the two mappings are not equal and
to false otherwise. A mapping can also be compared with another object that is not a
mapping, of course they are never equal.

Two mappings are considered equal if and only if their sources are equal, their ranges are
equal, and for each elment elm of the source Images(map1, elm) is equal to Images(
map2, elm) (see 42.9).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> p13 := MappingByFunction(g, g, x -> x^13);
MappingByFunction(g, g, function (x)

return x ^ 13;
end)
gap> p4 = p13;
false
gap> p13 = IdentityMapping(g);
true

map1 < map2
map1 <= map2
map1 > map2
map1 >= map2

The operators <, <=, >, and >= applied to two mappings evaluates to true if map1 is less
than, less than or equal to, greater than, or greater than or equal to map2 and false
otherwise. A mapping can also be compared with another object that is not a mapping,
everything except booleans, lists, and records is smaller than a mapping.

If the source of map1 is less than the source of map2 , then map1 is considered to be less
than map2 . If the sources are equal and the range of map1 is less than the range of map2 ,
then map1 is considered to be less than map2 . If the sources and the ranges are equal the
mappings are compared lexicographically with respect to the sets of images of the elements
of the source under the mappings.

756 CHAPTER 42. MAPPINGS

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> p4 < p5;
true # since (5,6,7) is the smallest nontrivial element of g

and the image of (5,6,7) under p4 is smaller
than the image of (5,6,7) under p5

The operator = calls map2.operations.=(map1, map2) and returns this value. The
operator <> also calls map2.operations.=(map1, map2) and returns the logical not
of this value.

The default function called this way is MappingOps.=, which first compares the sources of
map1 and map2 , then, if they are equal, compares the ranges of map1 and map2 , and then,
if both are equal and the source is finite, compares the images of all elements of the source
under map1 and map2 . Look in the index under equality to see for which mappings this
function is overlaid.

The operator < calls map2.operations.<(map1, map2) and returns this value. The
operator <= calls map2.operations.<(map2, map1) and returns the logical not of this
value. The operator > calls map2.operations.<(map2, map1) and returns this value.
The operator >= calls map2.operations.<(map1, map2) and returns the logical not
of this value.

The default function called this way is MappingOps.<, which first compares the sources of
map1 and map2 , then, if they are equal, compares the ranges of map1 and map2 , and then,
if both are equal and the source is finite, compares the images of all elements of the source
under map1 and map2 . Look in the index under ordering to see for which mappings this
function is overlaid.

42.7 Operations for Mappings

map1 * map2

The product operator * applied to two mappings map1 and map2 evaluates to the product
of the two mappings, i.e., the mapping map that maps each element elm of the source of
map1 to the value (elm ^ map1) ^ map2 . Note that the range of map1 must be a subset
of the source of map2 . If map1 and map2 are homomorphisms then so is the result. This
can also be expressed as CompositionMapping(map2, map1) (see 42.14). Note that the
arguments of CompositionMapping are reversed.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)

42.7. OPERATIONS FOR MAPPINGS 757

gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> p20 := p4 * p5;
CompositionMapping(MappingByFunction(g, g, function (x)

return x ^ 5;
end), MappingByFunction(g, g, function (x)

return x ^ 4;
end))

list * map
map * list

As with every other type of group elements a mapping map can also be multiplied with a
list of mappings list . The result is a new list, such that each entry is the product of the
corresponding entry of list with map (see 27.13).

elm ^ map

The power operator ^ applied to an element elm and a mapping map evaluates to the image
of elm under map, i.e., the element of the range to which map maps elm. Note that map
must be a single valued mapping, a multi valued mapping is not allowed (see 42.9). This
can also be expressed as Image(map, elm) (see 42.8).

gap> (1,2,3,4) ^ p4;
()
gap> (2,4)(5,6,7) ^ p20;
(5,7,6)

map ^ 0

The power operator ^ applied to a mapping map, for which the range must be a subset of
the source, and the integer 0 evaluates to the identity mapping on the source of map, i.e.,
the mapping that maps each element of the source to itself. If map is a homomorphism
then so is the result. This can also be expressed as IdentityMapping(map.source) (see
42.17).

gap> p20 ^ 0;
IdentityMapping(g)

map ^ n

The power operator ^ applied to a mapping map, for which the range must be a subset of
the source, and an positive integer n evaluates to the n-fold composition of map. If map is
a homomorphism then so is the result. This can also be expressed as PowerMapping(map,
n) (see 42.15).

gap> p16 := p4 ^ 2;
CompositionMapping(CompositionMapping(IdentityMapping(g), MappingB\
yFunction(g, g, function (x)

return x ^ 4;
end)), CompositionMapping(IdentityMapping(g), MappingByFunction(\
g, g, function (x)

return x ^ 4;

758 CHAPTER 42. MAPPINGS

end)))
gap> p16 = MappingByFunction(g, g, x -> x^16);
true

bij ^ -1

The power operator ^ applied to a bijection bij and the integer -1 evaluates to the inverse
mapping of bij , i.e., the mapping that maps each element img of the range of bij to the uniq
element elm of the source of bij that maps to img . Note that bij must be a bijection, a map-
ping that is not a bijection is not allowed. This can also be expressed as InverseMapping(
bij) (see 42.16).

gap> p5 ^ -1;
InverseMapping(MappingByFunction(g, g, function (x)

return x ^ 5;
end))
gap> p4 ^ -1;
Error, <lft> must be a bijection

bij ^ z

The power operator ^ applied to a bijection bij , for which the source and the range must be
equal, and an integer z returns the z -fold composition of bij . If z is 0 or positive see above,
if z is negative, this is equivalent to (bij ^ -1) ^ -z . If bij is an automorphism then so is
the result.

aut1 ^ aut2

The power operator ^ applied to two automorphisms aut1 and aut2 , which must have equal
sources (and thus ranges) returns the conjugate of aut1 by aut2 , i.e., aut2 ^ -1 * aut1 *
aut2 . The result if of course again an automorphism.

The operator * calls map2.operations.*(map1, map2) and returns this value.

The default function called this way is MappingOps.* which calls CompositionMapping to
do the work. This function is seldom overlaid, since CompositionMapping does all the
interesting work.

The operator ^ calls map.operations.^(map1, map2) and returns this value.

The default function called this way is MappingOps.^, which calls Image, IdentityMapping,
InverseMapping, or PowerMapping to do the work. This function is seldom overlaid, since
Image, IdentityMapping, InverseMapping, and PowerMapping do all the interesting work.

42.8 Image

Image(map, elm)

In this form Image returns the image of the element elm of the source of the mapping map
under map, i.e., the element of the range to which map maps elm. Note that map must be
a single valued mapping, a multi valued mapping is not allowed (see 42.9). This can also be
expressed as elm ^ map (see 42.7).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

42.8. IMAGE 759

return x ^ 4;
end)
gap> Image(p4, (2,4)(5,6,7));
(5,6,7)
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> Image(p5, (2,4)(5,6,7));
(2,4)(5,7,6)

Image(map, elms)

In this form Image returns the image of the set of elements elms of the source of the mapping
map under map, i.e., set of images of the elements in elms. elms may be a proper set (see
28) or a domain (see 4). The result will be a subset of the range of map, either as a proper
set or as a domain. Again map must be a single valued mapping, a multi valued mapping
is not allowed (see 42.9).

gap> Image(p4, Subgroup(g, [(2,4), (5,6,7)]));
[(), (5,6,7), (5,7,6)]
gap> Image(p5, [(5,6,7), (2,4)]);
[(5,7,6), (2,4)]

Note that in the first example, the result is returned as a proper set, even though it is
mathematically a subgroup. This is because p4 is not known to be a homomorphism, even
though it is one.
Image(map)

In this form Image returns the image of the mapping map, i.e., the subset of element of the
range of map that are actually values of map. Note that in this case the argument may also
be a multi valued mapping.

gap> Image(p4);
[(), (5,6,7), (5,7,6)]
gap> Image(p5) = g;
true

Image firsts checks in which form it is called.
In the first case it calls map.operations.ImageElm(map, elm) and returns this value.
The default function called this way is MappingOps.ImageElm, which checks that map is
indeed a single valued mapping, calls Images(map, elm), and returns the single element
of the set returned by Images. Look in the index under Image to see for which mappings
this function is overlaid.
In the second case it calls map.operations.ImageSet(map, elms) and returns this
value.
The default function called this way is MappingOps.ImageSet, which checks that map is
indeed a single valued mapping, calls Images(map, elms), and returns this value. Look
in the index under Image to see for which mappings this function is overlaid.
In the third case it tests if the field map.image is bound. If this field is bound, it simply
returns this value. Otherwise it calls map.operations.ImageSource(map), remembers
the returned value in map.image, and returns it.

760 CHAPTER 42. MAPPINGS

The default function called this way is MappingOps.ImageSource, which calls Images(
map, map.source), and returns this value. This function is seldom overlaid, since all the
work is done by map.operations.ImagesSet.

42.9 Images

Images(map, elm)

In this form Images returns the set of images of the element elm in the source of the mapping
map under map. map may be a multi valued mapping.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> i4 := InverseMapping(p4);
InverseMapping(MappingByFunction(g, g, function (x)

return x ^ 4;
end))
gap> IsMapping(i4);
false # i4 is multi valued
gap> Images(i4, ());
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2),
(1,4)(2,3)]

gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> i5 := InverseMapping(p5);
InverseMapping(MappingByFunction(g, g, function (x)

return x ^ 5;
end))
gap> Images(i5, ());
[()]

Images(map, elms)

In this form Images returns the set of images of the set of elements elms in the source of
map under map. map may be a multi valued mapping. In any case Images returns a set of
elements of the range of map, either as a proper set (see 28) or as a domain (see 4).

gap> Images(i4, [(), (5,6,7)]);
[(), (5,6,7), (2,4), (2,4)(5,6,7), (1,2)(3,4), (1,2)(3,4)(5,6,7),
(1,2,3,4), (1,2,3,4)(5,6,7), (1,3), (1,3)(5,6,7), (1,3)(2,4),
(1,3)(2,4)(5,6,7), (1,4,3,2), (1,4,3,2)(5,6,7), (1,4)(2,3),
(1,4)(2,3)(5,6,7)]

gap> Images(i5, [(), (5,6,7)]);
[(), (5,7,6)]

Images first checks in which form it is called.

In the first case it calls map.operations.ImagesElm(map, elm) and returns this value.

42.10. IMAGESREPRESENTATIVE 761

The default function called this way is MappingOps.ImagesElm, which just raises an error,
since their is no default way to compute the images of an element under a mapping about
which nothing is known. Look in the index under Images to see how images are computed
for the various mappings.

In the second case it calls map.operations.ImagesSet(map, elms) and returns this
value.

The default function called this way is MappingOps.ImagesSet, which returns the union of
the images of all the elements in the set elms. Look in the index under Images to see for
which mappings this function is overlaid.

42.10 ImagesRepresentative

ImagesRepresentative(map, elm)

ImagesRepresentative returns a representative of the set of images of elm under map, i.e.,
a single element img , such that img in Images(map, elm) (see 42.9). map may be a
multi valued mapping.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> i4 := InverseMapping(p4);
InverseMapping(MappingByFunction(g, g, function (x)

return x ^ 4;
end))
gap> IsMapping(i4);
false # i4 is multi valued
gap> ImagesRepresentative(i4, ());
()

ImagesRepresentative calls
map.operations.ImagesRepresentative(map, elm) and returns this value.

The default function called this way is MappingOps.ImagesRepresentative, which calls
Images(map, elm) and returns the first element in this set. Look in the index under
ImagesRepresentative to see for which mappings this function is overlaid.

42.11 PreImage

PreImage(bij, img)

In this form PreImage returns the preimage of the element img of the range of the bijection
bij under bij . The preimage is the unique element of the source of bij that is mapped by bij
to img . Note that bij must be a bijection, a mapping that is not a bijection is not allowed
(see 42.12).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

762 CHAPTER 42. MAPPINGS

return x ^ 4;
end)
gap> PreImage(p4, (5,6,7));
Error, <bij> must be a bijection, not an arbitrary mapping
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> PreImage(p5, (2,4)(5,6,7));
(2,4)(5,7,6)

PreImage(bij, imgs)

In this form PreImage returns the preimage of the elements imgs of the range of the bijection
bij under bij . The primage of imgs is the set of all preimages of the elements in imgs. imgs
may be a proper set (see 28.2) or a domain (see 4). The result will be a subset of the source
of bij , either as a proper set or as a domain. Again bij must be a bijection, a mapping that
is not a bijection is not allowed (see 42.12).

gap> PreImage(p4, [(), (5,6,7)]);
[(), (5,6,7), (2,4), (2,4)(5,6,7), (1,2)(3,4), (1,2)(3,4)(5,6,7),

(1,2,3,4), (1,2,3,4)(5,6,7), (1,3), (1,3)(5,6,7), (1,3)(2,4),
(1,3)(2,4)(5,6,7), (1,4,3,2), (1,4,3,2)(5,6,7), (1,4)(2,3),
(1,4)(2,3)(5,6,7)]

gap> PreImage(p5, Subgroup(g, [(5,7,6), (2,4)]));
[(), (5,6,7), (5,7,6), (2,4), (2,4)(5,6,7), (2,4)(5,7,6)]

PreImage(map)

In this form PreImage returns the preimage of the mapping map. The preimage is the set
of elements elm of the source of map that are actually mapped to at least one element, i.e.,
for which PreImages(map, elm) is nonempty. Note that in this case the argument may
be an arbitrary mapping (especially a multi valued one).

gap> PreImage(p4) = g;
true

PreImage firsts checks in which form it is called.

In the first case it calls bij.operations.PreImageElm(bij, elm) and returns this value.

The default function called this way is MappingOps.PreImageElm, which checks that bij is
indeed a bijection, calls PreImages(bij, elm), and returns the single element of the set
returned by PreImages. Look in the index under PreImage to see for which mappings this
function is overlaid.

In the second case it calls bij.operations.PreImageSet(bij, elms) and returns this
value.

The default function called this way is MappingOps.PreImageSet, which checks that map
is indeed a bijection, calls PreImages(bij, elms), and returns this value. Look in the
index under PreImage to see for which mappings this is overlaid.

In the third case it tests if the field map.preImage is bound. If this field is bound, it
simply returns this value. Otherwise it calls map.operations.PreImageRange(map),
remembers the returned value in map.preImage, and returns it.

42.12. PREIMAGES 763

The default function called this way is MappingOps.PreImageRange, which calls PreImages(
map, map.source), and returns this value. This function is seldom overlaid, since all the
work is done by map.operations.PreImagesSet.

42.12 PreImages

PreImages(map, img)

In the first form PreImages returns the set of elements from the source of the mapping map
that are mapped by map to the element img in the range of map, i.e., the set of elements elm
such that img in Images(map, elm) (see 42.9). map may be a multi valued mapping.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> PreImages(p4, (5,6,7));
[(5,6,7), (2,4)(5,6,7), (1,2)(3,4)(5,6,7), (1,2,3,4)(5,6,7),
(1,3)(5,6,7), (1,3)(2,4)(5,6,7), (1,4,3,2)(5,6,7),
(1,4)(2,3)(5,6,7)]

gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> PreImages(p5, (2,4)(5,6,7));
[(2,4)(5,7,6)]

PreImages(map, imgs)

In the second form PreImages returns the set of all preimages of the elements in the set of
elements imgs, i.e., the union of the preimages of the single elements of imgs. map may be
a multi valued mapping.

gap> PreImages(p4, [(), (5,6,7)]);
[(), (5,6,7), (2,4), (2,4)(5,6,7), (1,2)(3,4), (1,2)(3,4)(5,6,7),
(1,2,3,4), (1,2,3,4)(5,6,7), (1,3), (1,3)(5,6,7), (1,3)(2,4),
(1,3)(2,4)(5,6,7), (1,4,3,2), (1,4,3,2)(5,6,7), (1,4)(2,3),
(1,4)(2,3)(5,6,7)]

gap> PreImages(p5, [(), (5,6,7)]);
[(), (5,7,6)]

PreImages first checks in which form it is called.

In the first case it calls map.operations.PreImagesElm(map, img) and returns this
value.

The default function called this way is MappingOps.PreImagesElm, which runs through all
elements of the source of map, if it is finite, and returns the set of those that have img in
their images. Look in the index under PreImages to see for which mappings this function
is overlaid.

In the second case if calls map.operations.PreImagesSet(map, imgs) and returns this
value.

764 CHAPTER 42. MAPPINGS

The default function called this way is MappingOps.PreImagesSet, which returns the union
of the preimages of all the elements of the set imgs. Look in the index under PreImages
to see for which mappings this function is overlaid.

42.13 PreImagesRepresentative

PreImagesRepresentative(map, img)

PreImagesRepresentative returns an representative of the set of preimages of img under
map, i.e., a single element elm, such that img in Images(map, elm) (see 42.9).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> PreImagesRepresentative(p4, (5,6,7));
(5,6,7)
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> PreImagesRepresentative(p5, (2,4)(5,6,7));
(2,4)(5,7,6)

PreImagesRepresentative calls
map.operations.PreImagesRepresentative(map, img) and returns this value.

The default function called this way is MappingOps.PreImagesRepresentative, which calls
PreImages(map, img) and returns the first element in this set. Look in the index under
PreImagesRepresentative to see for which mappings this function is overlaid.

42.14 CompositionMapping

CompositionMapping(map1..)

CompositionMapping returns the composition of the mappings map1 , map2 , etc. where
the range of each mapping must be a subset of the source of the previous mapping. The
mappings need not be single valued mappings, i.e., multi valued mappings are allowed.

The composition of map1 and map2 is the mapping map that maps each element elm of
the source of map2 to Images(map1, Images(map2, elm)). If map1 and map2 are
single valued mappings this can also be expressed as map2 * map1 (see 42.7). Note the
reversed operands.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

42.15. POWERMAPPING 765

return x ^ 5;
end)
gap> p20 := CompositionMapping(p4, p5);
CompositionMapping(MappingByFunction(g, g, function (x)

return x ^ 4;
end), MappingByFunction(g, g, function (x)

return x ^ 5;
end))
gap> (2,4)(5,6,7) ^ p20;
(5,7,6)

CompositionMapping calls
map2.operations.CompositionMapping(map1, map2) and returns this value.

The default function called this way is MappingOps.CompositionMapping, which constructs
a new mapping com. This new mapping remembers map1 and map2 as its factors in
com.map1 and com.map2 and delegates everything to them. For example to compute
Images(com, elm), com.operations.ImagesElm calls Images(com.map1, Images(
com.map2, elm)). Look in the index under CompositionMapping to see for which
mappings this function is overlaid.

42.15 PowerMapping

PowerMapping(map, n)

PowerMapping returns the n-th power of the mapping map. map must be a mapping whose
range is a subset of its source. n must be a nonnegative integer. map may be a multi valued
mapping.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> p16 := p4 ^ 2;
CompositionMapping(CompositionMapping(IdentityMapping(g), MappingB\
yFunction(g, g, function (x)

return x ^ 4;
end)), CompositionMapping(IdentityMapping(g), MappingByFunction(\
g, g, function (x)

return x ^ 4;
end)))
gap> p16 = MappingByFunction(g, g, x -> x^16);
true

PowerMapping calls map.operations.PowerMapping(map, n) and returns this value.

The default function called this way is MappingOps.PowerMapping, which computes the
power using a binary powering algorithm, IdentityMapping, and CompositionMapping.
This function is seldom overlaid, because CompositionMapping does the interesting work.

766 CHAPTER 42. MAPPINGS

42.16 InverseMapping

InverseMapping(map)

InverseMapping returns the inverse mapping of the mapping map. The inverse mapping
inv is a mapping with source map.range, range map.source, such that each element elm
of its source is mapped to the set PreImages(map, elm) (see 42.12). map may be a
multi valued mapping.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> i4 := InverseMapping(p4);
InverseMapping(MappingByFunction(g, g, function (x)

return x ^ 4;
end))
gap> Images(i4, ());
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2),

(1,4)(2,3)]

InverseMapping first tests if the field map.inverseMapping is bound. If the field is bound,
it returns its value. Otherwise it calls map.operations.InverseMapping(map), remem-
bers the returned value in map.inverseMapping, and returns it.

The default function called this way is MappingOps.InverseMapping, which constructs
a new mapping inv . This new mapping remembers map as its own inverse mapping in
inv.inverseMapping and delegates everything to it. For example to compute Image(
inv, elm), inv.operations.ImageElm calls PreImage(inv.inverseMapping,elm). Spe-
cial types of mappings will overlay this default function with more efficient functions.

42.17 IdentityMapping

IdentityMapping(D)

IdentityMapping returns the identity mapping on the domain D .

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> i := IdentityMapping(g);
IdentityMapping(g)
gap> (1,2,3,4) ^ i;
(1,2,3,4)
gap> IsBijection(i);
true

IdentityMapping calls D.operations.IdentityMapping(D) and returns this value.

The functions usually called this way are GroupOps.IdentityMapping if the domain D is a
group and FieldOps.IdentityMapping if the domain D is a field.

42.18. MAPPINGBYFUNCTION 767

42.18 MappingByFunction

MappingByFunction(D, E, fun)

MappingByFunction returns a mapping map with source D and range E such that each
element d of D is mapped to the element fun(d), where fun is a GAP function.

gap> g := Group((1,2,3,4), (1,2));; g.name := "g";;
gap> m := MappingByFunction(g, g, x -> x^2);
MappingByFunction(g, g, function (x)

return x ^ 2;
end)
gap> (1,2,3) ^ m;
(1,3,2)
gap> IsHomomorphism(m);
false

MappingByFunction constructs the mapping in the obvious way. For example the image of
an element under map is simply computed by applying fun to the element.

42.19 Mapping Records

A mapping map is represented by a record with the following components

isGeneralMapping
always true, indicating that this is a general mapping.

source
the source of the mapping, i.e., the set of elements to which the mapping can be
applied.

range
the range of the mapping, i.e., a set in which all value of the mapping lie.

The following entries are optional. The functions with the corresponding names will gener-
ally test if they are present. If they are then their value is simply returned. Otherwise the
functions will perform the computation and add those fields to those record for the next
time.

isMapping
true if map is a single valued mapping and false otherwise.

isInjective
isSurjective
isBijection
isHomomorphism
isMonomorphism
isEpimorphism
isIsomorphism
isEndomorphism
isAutomorphism
true if map has the corresponding property and false otherwise.

768 CHAPTER 42. MAPPINGS

preImage
the subset of map.source of elements pre that are actually mapped to at least one
element, i.e., for which Images(map, pre) is nonempty.

image
the subset of map.range of the elements img that are actually values of the mapping,
i.e., for which PreImages(map, img) is nonempty.

inverseMapping
the inverse mapping of map. This is a mapping from map.range to map.source
that maps each element img to the set PreImages(map, img).

The following entry is optional. It must be bound only if the inverse of map is indeed a
single valued mapping.

inverseFunction
the inverse function of map.

The following entry is optional. It must be bound only if map is a homomorphism.

kernel
the elements of map.source that are mapped to the identity element of map.range.

Chapter 43

Homomorphisms

An important special class of mappings are homomorphisms.

A mapping map is a homomorphism if the source and the range are domains of the same
category, and map respects their structure. For example, if both source and range are groups
and for each x, y in the source (xy)map = xmapymap, then map is a group homomorphism.

GAP currently supports field and group homomorphisms (see 6.13, 7.105).

Homomorphism are created by homomorphism constructors, which are ordinary GAP
functions that return homomorphisms, such as FrobeniusAutomorphism (see 18.11) or
NaturalHomomorphism (see 7.109).

The first section in this chapter describes the function that tests whether a mapping is a
homomorphism (see 43.1). The next sections describe the functions that test whether a
homomorphism has certain properties (see 43.2, 43.3, 43.4, 43.5, and 43.6). The last section
describes the function that computes the kernel of a homomorphism (see 43.7).

Because homomorphisms are just a special case of mappings all operations and functions
described in chapter 42 are applicable to homomorphisms. For example, the image of an
element elm under a homomorphism hom can be computed by elm ^ hom (see 42.7).

43.1 IsHomomorphism

IsHomomorphism(map)

IsHomomorphism returns true if the mapping map is a homomorphism and false otherwise.
Signals an error if map is a multi valued mapping.

A mapping map is a homomorphism if the source and the range are sources of the same
category, and map respects the structure. For example, if both source and range are groups
and for each x, y in the source (xy)map = xmapymap, then map is a homomorphism.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)

769

770 CHAPTER 43. HOMOMORPHISMS

gap> IsHomomorphism(p4);
true
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsHomomorphism(p5);
true
gap> p6 := MappingByFunction(g, g, x -> x^6);
MappingByFunction(g, g, function (x)

return x ^ 6;
end)
gap> IsHomomorphism(p6);
false

IsHomomorphism first tests if the flag map.isHomomorphism is bound. If the flag is bound,
it returns its value. Otherwise it calls map.source.operations.IsHomomorphism(map
), remembers the returned value in map.isHomomorphism, and returns it.

The functions usually called this way are IsGroupHomomorphism if the source of map is a
group and IsFieldHomomorphism if the source of map is a field (see 7.106, 6.14).

43.2 IsMonomorphism

IsMonomorphism(map)

IsMonomorphism returns true if the mapping map is a monomorphism and false otherwise.
Signals an error if map is a multi valued mapping.

A mapping is a monomorphism if it is an injective homomorphism (see 42.3, 43.1).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsMonomorphism(p4);
false
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsMonomorphism(p5);
true

IsMonomorphism first test if the flag map.isMonomorphism is bound. If the flag is bound, it
returns this value. Otherwise it calls map.operations.IsMonomorphism(map), remem-
bers the returned value in map.isMonomorphism, and returns it.

The default function called this way is MappingOps.IsMonomorphism, which calls the func-
tions IsInjective and IsHomomorphism, and returns the logical and of the results. This
function is seldom overlaid, because all the interesting work is done in IsInjective and
IsHomomorphism.

43.3. ISEPIMORPHISM 771

43.3 IsEpimorphism

IsEpimorphism(map)

IsEpimorphism returns true if the mapping map is an epimorphism and false otherwise.
Signals an error if map is a multi valued mapping.

A mapping is an epimorphism if it is an surjective homomorphism (see 42.4, 43.1).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsEpimorphism(p4);
false
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsEpimorphism(p5);
true

IsEpimorphism first test if the flag map.isEpimorphism is bound. If the flag is bound, it re-
turns this value. Otherwise it calls map.operations.IsEpimorphism(map), remembers
the returned value in map.isEpimorphism, and returns it.

The default function called this way is MappingOps.IsEpimorphism, which calls the func-
tions IsSurjective and IsHomomorphism, and returns the logical and of the results. This
function is seldom overlaid, because all the interesting work is done in IsSurjective and
IsHomomorphism.

43.4 IsIsomorphism

IsIsomorphism(map)

IsIsomorphism returns true if the mapping map is an isomorphism and false otherwise.
Signals an error if map is a multi valued mapping.

A mapping is an isomorphism if it is a bijective homomorphism (see 42.5, 43.1).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsIsomorphism(p4);
false
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsIsomorphism(p5);

772 CHAPTER 43. HOMOMORPHISMS

true

IsIsomorphism first test if the flag map.isIsomorphism is bound. If the flag is bound, it re-
turns this value. Otherwise it calls map.operations.IsIsomorphism(map), remembers
the returned value in map.isIsomorphism, and returns it.

The default function called this way is MappingOps.IsIsomorphism, which calls the func-
tions IsInjective, IsSurjective, and IsHomomorphism, and returns the logical and of
the results. This function is seldom overlaid, because all the interesting work is done in
IsInjective, IsSurjective, and IsHomomorphism.

43.5 IsEndomorphism

IsEndomorphism(map)

IsEndomorphism returns true if the mapping map is a endomorphism and false otherwise.
Signals an error if map is a multi valued mapping.

A mapping is an endomorphism if it is a homomorphism (see 43.1) and the range is a
subset of the source.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsEndomorphism(p4);
true
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsEndomorphism(p5);
true

IsEndomorphism first test if the flag map.isEndomorphism is bound. If the flag is bound, it
returns this value. Otherwise it calls map.operations.IsEndomorphism(map), remem-
bers the returned value in map.isEndomorphism, and returns it.

The default function called this way is MappingOps.IsEndomorphism, which tests if the
range is a subset of the source, calls IsHomomorphism, and returns the logical and of the
results. This function is seldom overlaid, because all the interesting work is done in IsSubset
and IsHomomorphism.

43.6 IsAutomorphism

IsAutomorphism(map)

IsAutomorphism returns true if the mapping map is an automorphism and false otherwise.
Signals an error if map is a multi valued mapping.

A mapping is an automorphism if it is an isomorphism where the source and the range
are equal (see 43.4, 43.5).

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;

43.7. KERNEL 773

gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> IsAutomorphism(p4);
false
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> IsAutomorphism(p5);
true

IsAutomorphism first test if the flag map.isAutomorphism is bound. If the flag is bound, it
returns this value. Otherwise it calls map.operations.IsAutomorphism(map), remem-
bers the returned value in map.isAutomorphism, and returns it.

The default function called this way is MappingOps.IsAutomorphism, which calls the func-
tions IsEndomorphism and IsBijection, and returns the logical and of the results. This
function is seldom overlaid, because all the interesting work is done in IsEndomorphism and
IsBijection.

43.7 Kernel

Kernel(hom)

Kernel returns the kernel of the homomorphism hom. The kernel is usually returned as a
source, though in some cases it might be returned as a proper set.

The kernel is the set of elements that are mapped hom to the identity element of hom.range,
i.e., to hom.range.identity if hom is a group homomorphism, and to hom.range.zero
if hom is a ring or field homomorphism. The kernel is a substructure of hom.source.

gap> g := Group((1,2,3,4), (2,4), (5,6,7));; g.name := "g";;
gap> p4 := MappingByFunction(g, g, x -> x^4);
MappingByFunction(g, g, function (x)

return x ^ 4;
end)
gap> Kernel(p4);
Subgroup(g, [(1,2,3,4), (1,4)(2,3)])
gap> p5 := MappingByFunction(g, g, x -> x^5);
MappingByFunction(g, g, function (x)

return x ^ 5;
end)
gap> Kernel(p5);
Subgroup(g, [])

Kernel first tests if the field hom.kernel is bound. If the field is bound it returns its
value. Otherwise it calls hom.source.operations.Kernel(hom), remembers the re-
turned value in hom.kernel, and returns it.

The functions usually called this way from the dispatcher are KernelGroupHomomorphism
and KernelFieldHomomorphism (see 7.107, 6.15).

774 CHAPTER 43. HOMOMORPHISMS

Chapter 44

Booleans

The two boolean values are true and false. They stand for the logical values of the same
name. They appear mainly as values of the conditions in if-statements and while-loops.

This chapter contains sections describing the operations that are available for the boolean
values (see 44.1, 44.2).

Further this chapter contains a section about the function IsBool (see 44.3). Note that it is
a convention that the name of a function that tests a property, and returns true and false
according to the outcome, starts with Is, as in IsBool.

44.1 Comparisons of Booleans

bool1 = bool2 , bool1 <> bool2

The equality operator = evaluates to true if the two boolean values bool1 and bool2 are
equal, i.e., both are true or both are false, and false otherwise. The inequality operator
<> evaluates to true if the two boolean values bool1 and bool2 are different and false
otherwise. This operation is also called the exclusive or, because its value is true if
exactly one of bool1 or bool2 is true.

You can compare boolean values with objects of other types. Of course they are never equal.

gap> true = false;
false
gap> false = (true = false);
true
gap> true <> 17;
true

bool1 < bool2 , bool1 <= bool2 ,
bool1 > bool2 , bool1 >= bool2

The operators <, <=, >, and => evaluate to true if the boolean value bool1 is less than, less
than or equal to, greater than, and greater than or equal to the boolean value bool2 . The
ordering of boolean values is defined by true < false.

775

776 CHAPTER 44. BOOLEANS

You can compare boolean values with objects of other types. Integers, rationals, cyclotomics,
permutations, and words are smaller than boolean values. Objects of the other types, i.e.,
functions, lists, and records are larger.

gap> true < false;
true
gap> false >= true;
true
gap> 17 < true;
true
gap> true < [17];
true

44.2 Operations for Booleans

bool1 or bool2

The logical operator or evaluates to true if at least one of the two boolean operands bool1
and bool2 is true and to false otherwise.

or first evaluates bool1 . If the value is neither true nor false an error is signalled. If
the value is true, then or returns true without evaluating bool2 . If the value is false,
then or evaluates bool2 . Again, if the value is neither true nor false an error is signalled.
Otherwise or returns the value of bool2 . This short-circuited evaluation is important if
the value of bool1 is true and evaluation of bool2 would take much time or cause an error.

or is associative, i.e., it is allowed to write b1 or b2 or b3 , which is interpreted as (b1
or b2) or b3 . or has the lowest precedence of the logical operators. All logical operators
have lower precedence than the comparison operators =, <, in, etc.

gap> true or false;
true
gap> false or false;
false
gap> i := -1;; l := [1,2,3];;
gap> if i <= 0 or l[i] = false then Print("aha\n"); fi;
aha # no error, because l[i] is not evaluated

bool1 and bool2

The logical operator and evaluates to true if both boolean operands bool1 and bool2 are
true and to false otherwise.

and first evaluates bool1 . If the value is neither true nor false an error is signalled. If
the value is false, then and returns false without evaluating bool2 . If the value is true,
then and evaluates bool2 . Again, if the value is neither true nor false an error is signalled.
Otherwise and returns the value of bool2 . This short-circuited evaluation is important if
the value of bool1 is false and evaluation of bool2 would take much time or cause an error.

and is associative, i.e., it is allowed to write b1 and b2 and b3 , which is interpreted as
(b1 and b2) and b3 . and has higher precedence than the logical or operator, but lower
than the unary logical not operator. All logical operators have lower precedence than the
comparison operators =, <, in, etc.

gap> true and false;

44.3. ISBOOL 777

false
gap> true and true;
true
gap> false and 17;
false # is no error, because 17 is never looked at

not bool

The logical operator not returns true if the boolean value bool is false and true otherwise.
An error is signalled if bool does not evaluate to true or false.

not has higher precedence than the other logical operators, or and and. All logical operators
have lower precedence than the comparison operators =, <, in, etc.

gap> not true;
false
gap> not false;
true

44.3 IsBool

IsBool(obj)

IsBool returns true if obj , which may be an object of an arbitrary type, is a boolean value
and false otherwise. IsBool will signal an error if obj is an unbound variable.

gap> IsBool(true);
true
gap> IsBool(false);
true
gap> IsBool(17);
false

778 CHAPTER 44. BOOLEANS

Chapter 45

Records

Records are next to lists the most important way to collect objects together. A record is
a collection of components. Each component has a unique name, which is an identifier
that distinguishes this component, and a value, which is an object of arbitrary type. We
often abbreviate value of a component to element. We also say that a record contains
its elements. You can access and change the elements of a record using its name.
Record literals are written by writing down the components in order between rec(and),
and separating them by commas ,. Each component consists of the name, the assignment
operator :=, and the value. The empty record, i.e., the record with no components, is
written as rec().

gap> rec(a := 1, b := "2"); # a record with two components
rec(
a := 1,
b := "2")

gap> rec(a := 1, b := rec(c := 2)); # record may contain records
rec(
a := 1,
b := rec(

c := 2))

Records usually contain elements of various types, i.e., they are usually not homogeneous
like lists.
The first section in this chapter tells you how you can access the elements of a record (see
45.1).
The next sections tell you how you can change the elements of a record (see 45.2 and 45.3).
The next sections describe the operations that are available for records (see 45.4, 45.5, 45.6,
and 45.7).
The next section describes the function that tests if an object is a record (see 45.8).
The next sections describe the functions that test whether a record has a component with
a given name, and delete such a component (see 45.9 and 45.10). Those functions are also
applicable to lists (see chapter 27).
The final sections describe the functions that create a copy of a record (see 45.11 and 45.12).
Again those functions are also applicable to lists (see chapter 27).

779

780 CHAPTER 45. RECORDS

45.1 Accessing Record Elements

rec.name

The above construct evaluates to the value of the record component with the name name
in the record rec. Note that the name is not evaluated, i.e., it is taken literal.

gap> r := rec(a := 1, b := 2);;
gap> r.a;
1
gap> r.b;
2

rec.(name)

This construct is similar to the above construct. The difference is that the second operand
name is evaluated. It must evaluate to a string or an integer otherwise an error is signalled.
The construct then evaluates to the element of the record rec whose name is, as a string,
equal to name.

gap> old := rec(a := 1, b := 2);;
gap> new := rec();
rec(

)
gap> for i in RecFields(old) do
> new.(i) := old.(i);
> od;
gap> new;
rec(

a := 1,
b := 2)

If rec does not evaluate to a record, or if name does not evaluate to a string, or if rec.name
is unbound, an error is signalled. As usual you can leave the break loop (see 3.2) with
quit;. On the other hand you can return a result to be used in place of the record element
by return expr;.

45.2 Record Assignment

rec.name := obj;

The record assignment assigns the object obj , which may be an object of arbitrary type, to
the record component with the name name, which must be an identifier, of the record rec.
That means that accessing the element with name name of the record rec will return obj
after this assignment. If the record rec has no component with the name name, the record
is automatically extended to make room for the new component.

gap> r := rec(a := 1, b := 2);;
gap> r.a := 10;; r;
rec(

a := 10,
b := 2)

gap> r.c := 3;; r;

45.3. IDENTICAL RECORDS 781

rec(
a := 10,
b := 2,
c := 3)

The function IsBound (see 45.9) can be used to test if a record has a component with a
certain name, the function Unbind (see 45.10) can be used to remove a component with a
certain name again.

Note that assigning to a record changes the record. The ability to change an object is only
available for lists and records (see 45.3).

rec.(name) = obj;

This construct is similar to the above construct. The difference is that the second operand
name is evaluated. It must evaluate to a string or an integer otherwise an error is signalled.
The construct then assigns obj to the record component of the record rec whose name is,
as a string, equal to name.

If rec does not evaluate to a record, name does not evaluate to a string, or obj is a call to a
function that does not return a value, e.g., Print (see 3.14), an error is signalled. As usual
you can leave the break loop (see 3.2) with quit;. On the other hand you can continue the
assignment by returning a record in the first case, a string in the second, or an object to be
assigned in the third, using return expr;.

45.3 Identical Records

With the record assignment (see 45.2) it is possible to change a record. The ability to
change an object is only available for lists and records. This section describes the semantic
consequences of this fact.

You may think that in the following example the second assignment changes the integer,
and that therefore the above sentence, which claimed that only records and lists can be
changed, is wrong.

i := 3;
i := i + 1;

But in this example not the integer 3 is changed by adding one to it. Instead the variable
i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing
happens in the following example

r := rec(a := 1);
r := rec(a := 1, b := 2);

The second assignment does not change the first record, instead it assigns a new record to
the variable r. On the other hand, in the following example the record is changed by the
second assignment.

r := rec(a := 1);
r.b := 2;

To understand the difference first think of a variable as a name for an object. The important
point is that a record can have several names at the same time. An assignment var :=
record; means in this interpretation that var is a name for the object record . At the end

782 CHAPTER 45. RECORDS

of the following example r2 still has the value rec(a := 1) as this record has not been
changed and nothing else has been assigned to r2.

r1 := rec(a := 1);
r2 := r1;
r1 := rec(a := 1, b := 2);

But after the following example the record for which r2 is a name has been changed and
thus the value of r2 is now rec(a := 1, b := 2).

r1 := rec(a := 1);
r2 := r1;
r1.b := 2;

We shall say that two records are identical if changing one of them by a record assignment
also changes the other one. This is slightly incorrect, because if two records are identical,
there are actually only two names for one record. However, the correct usage would be
very awkward and would only add to the confusion. Note that two identical records must
be equal, because there is only one records with two different names. Thus identity is an
equivalence relation that is a refinement of equality.

Let us now consider under which circumstances two records are identical.

If you enter a record literal then the record denoted by this literal is a new record that is not
identical to any other record. Thus in the following example r1 and r2 are not identical,
though they are equal of course.

r1 := rec(a := 1);
r2 := rec(a := 1);

Also in the following example, no records in the list l are identical.

l := [];
for i in [1..10] do

l[i] := rec(a := 1);
od;

If you assign a record to a variable no new record is created. Thus the record value of the
variable on the left hand side and the record on the right hand side of the assignment are
identical. So in the following example r1 and r2 are identical records.

r1 := rec(a := 1);
r2 := r1;

If you pass a record as argument, the old record and the argument of the function are
identical. Also if you return a record from a function, the old record and the value of the
function call are identical. So in the following example r1 and r2 are identical record

r1 := rec(a := 1);
f := function (r) return r; end;
r2 := f(r1);

The functions Copy and ShallowCopy (see 45.11 and 45.12) accept a record and return
a new record that is equal to the old record but that is not identical to the old record.
The difference between Copy and ShallowCopy is that in the case of ShallowCopy the
corresponding elements of the new and the old records will be identical, whereas in the case

45.4. COMPARISONS OF RECORDS 783

of Copy they will only be equal. So in the following example r1 and r2 are not identical
records.

r1 := rec(a := 1);
r2 := Copy(r1);

If you change a record it keeps its identity. Thus if two records are identical and you change
one of them, you also change the other, and they are still identical afterwards. On the other
hand, two records that are not identical will never become identical if you change one of
them. So in the following example both r1 and r2 are changed, and are still identical.

r1 := rec(a := 1);
r2 := r1;
r1.b := 2;

45.4 Comparisons of Records

rec1 = rec2
rec1 <> rec2

The equality operator = returns true if the record rec1 is equal to the record rec2 and
false otherwise. The inequality operator <> returns true if the record rec1 is not equal to
rec2 and false otherwise.

Usually two records are considered equal, if for each component of one record the other
record has a component of the same name with an equal value and vice versa. You can
also compare records with other objects, they are of course different, unless the record has
a special comparison function (see below) that says otherwise.

gap> rec(a := 1, b := 2) = rec(b := 2, a := 1);
true
gap> rec(a := 1, b := 2) = rec(a := 2, b := 1);
false
gap> rec(a := 1) = rec(a := 1, b := 2);
false
gap> rec(a := 1) = 1;
false

However a record may contain a special operations record that contains a function that is
called when this record is an operand of a comparison. The precise mechanism is as follows.
If the operand of the equality operator = is a record, and if this record has an element with
the name operations that is a record, and if this record has an element with the name =
that is a function, then this function is called with the operands of = as arguments, and
the value of the operation is the result returned by this function. In this case a record may
also be equal to an object of another type if this function says so. It is probably not a
good idea to define a comparison function in such a way that the resulting relation is not
an equivalence relation, i.e., not reflexive, symmetric, and transitive. Note that there is no
corresponding <> function, because left <> right is implemented as not left = right .

The following example shows one piece of the definition of residue classes, using record
operations. Of course this is far from a complete implementation (see 1.30). Note that the
= must be quoted, so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec();;

784 CHAPTER 45. RECORDS

gap> ResidueClassOps.\= := function (l, r)
> return (l.modulus = r.modulus)
> and (l.representative-r.representative) mod l.modulus = 0;
> end;;
gap> ResidueClass := function (representative, modulus)
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps);
> end;;
gap> l := ResidueClass(13, 23);;
gap> r := ResidueClass(-10, 23);;
gap> l = r;
true
gap> l = ResidueClass(10, 23);
false

rec1 <rec2
rec1 <= rec2
rec1 > rec2
rec1 >= rec2

The operators <, <=, >, and >= evaluate to true if the record rec1 is less than, less than or
equal to, greater than, and greater than or equal to the record rec2 , and to false otherwise.

To compare records we imagine that the components of both records are sorted according to
their names. Then the records are compared lexicographically with unbound elements con-
sidered smaller than anything else. Precisely one record rec1 is considered less than another
record rec2 if rec2 has a component with name name2 and either rec1 has no component
with this name or rec1.name2 <rec2.name2 and for each component of rec1 with name
name1 <name2 rec2 has a component with this name and rec1.name1 = rec2.name1 .
Records may also be compared with objects of other types, they are greater than anything
else, unless the record has a special comparison function (see below) that says otherwise.

gap> rec(a := 1, b := 2) < rec(b := 2, a := 1);
false # they are equal
gap> rec(a := 1, b := 2) < rec(a := 2, b := 0);
true # the a elements are compared first and 1 is less than 2
gap> rec(a := 1) < rec(a := 1, b := 2);
true # unbound is less than 2
gap> rec(a := 1) < rec(a := 0, b := 2);
false # the a elements are compared first and 0 is less than 1
gap> rec(b := 1) < rec(b := 0, a := 2);
true # the a-s are compared first and unbound is less than 2
gap> rec(a := 1) < 1;
false # other objects are less than records

However a record may contain a special operations record that contains a function that is
called when this record is an operand of a comparison. The precise mechanism is as follows.
If the operand of the equality operator < is a record, and if this record has an element with
the name operations that is a record, and if this record has an element with the name <

45.5. OPERATIONS FOR RECORDS 785

that is a function, then this function is called with the operands of < as arguments, and
the value of the operation is the result returned by this function. In this case a record may
also be smaller than an object of another type if this function says so. It is probably not
a good idea to define a comparison function in such a way that the resulting relation is
not an ordering relation, i.e., not antisymmetric, and transitive. Note that there are no
corresponding <=, >, and >= functions, since those operations are implemented as not right
<left , right <left , and not left <right respectively.

The following example shows one piece of the definition of residue classes, using record
operations. Of course this is far from a complete implementation (see 1.30). Note that the
< must be quoted, so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec();;
gap> ResidueClassOps.\< := function (l, r)
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> return l.representative mod l.modulus
> < r.representative mod r.modulus;
> end;;
gap> ResidueClass := function (representative, modulus)
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps);
> end;;
gap> l := ResidueClass(13, 23);;
gap> r := ResidueClass(-1, 23);;
gap> l < r;
true # 13 is less than 22
gap> l < ResidueClass(10, 23);
false # 10 is less than 13

45.5 Operations for Records

Usually no operations are defined for record. However a record may contain a special
operations record that contains functions that are called when this record is an operand
of a binary operation. This mechanism is detailed below for the addition.

obj + rec, rec + obj

If either operand is a record, and if this record contains an element with name operations
that is a record, and if this record in turn contains an element with the name + that is a
function, then this function is called with the two operands as arguments, and the value of
the addition is the value returned by that function. If both operands are records with such
a function rec.operations.+, then the function of the right operand is called. If either
operand is a record, but neither operand has such a function rec.operations.+, an error is
signalled.

obj - rec, rec - obj
obj * rec, rec * obj

786 CHAPTER 45. RECORDS

obj / rec, rec / obj
obj mod rec, rec mod obj
obj ^ rec, rec ^ obj

This is evaluated similar, but the functions must obviously be called -, *, /, mod, ^ respec-
tively.

The following example shows one piece of the definition of a residue classes, using record
operations. Of course this is far from a complete implementation (see 1.30). Note that the
* must be quoted, so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec();;
gap> ResidueClassOps.* := function (l, r)
> if l.modulus <> r.modulus then
> Error("<l> and <r> must have the same modulus");
> fi;
> return rec(
> representative := (l.representative * r.representative)
> mod l.modulus,
> modulus := l.modulus,
> operations := ResidueClassOps);
> end;;
gap> ResidueClass := function (representative, modulus)
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps);
> end;;
gap> l := ResidueClass(13, 23);;
gap> r := ResidueClass(-1, 23);;
gap> s := l * r;
rec(

representative := 10,
modulus := 23,
operations := rec(

* := function (l, r) ... end))

45.6 In for Records

element in rec

Usually the membership test is only defined for lists. However a record may contain a
special operations record, that contains a function that is called when this record is the
right operand of the in operator. The precise mechanism is as follows.

If the right operand of the in operator is a record, and if this record contains an element
with the name operations that is a record, and if this record in turn contains an element
with the name in that is a function, then this function is called with the two operands as
arguments, and the value of the membership test is the value returned by that function.
The function should of course return true or false.

45.7. PRINTING OF RECORDS 787

The following example shows one piece of the definition of residue classes, using record
operations. Of course this is far from a complete implementation (see 1.30). Note that the
in must be quoted, so that it is taken as an identifier (see 2.5).

gap> ResidueClassOps := rec();;
gap> ResidueClassOps.\in := function (l, r)
> if IsInt(l) then
> return (l - r.representative) mod r.modulus = 0;
> else
> return false;
> fi;
> end;;
gap> ResidueClass := function (representative, modulus)
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps);
> end;;
gap> l := ResidueClass(13, 23);;
gap> -10 in l;
true
gap> 10 in l;
false

45.7 Printing of Records

Print(rec)

If a record is printed by Print (see 3.14, 3.15, and 3.16) or by the main loop (see 3.1), it is
usually printed as record literal, i.e., as a sequence of components, each in the format name
:= value, separated by commas and enclosed in rec(and).

gap> r := rec();; r.a := 1;; r.b := 2;;
gap> r;
rec(
a := 1,
b := 2)

But if the record has an element with the name operations that is a record, and if this
record has an element with the name Print that is a function, then this function is called
with the record as argument. This function must print whatever the printed representation
of the record should look like.

The following example shows one piece of the definition of residue classes, using record
operations. Of course this is far from a complete implementation (see 1.30). Note that
it is typical for records that mimic group elements to print as a function call that, when
evaluated, will create this group element record.

gap> ResidueClassOps := rec();;
gap> ResidueClassOps.Print := function (r)
> Print("ResidueClass(",
> r.representative mod r.modulus, ", ",

788 CHAPTER 45. RECORDS

> r.modulus, ")");
> end;;
gap> ResidueClass := function (representative, modulus)
> return rec(
> representative := representative,
> modulus := modulus,
> operations := ResidueClassOps);
> end;;
gap> l := ResidueClass(33, 23);
ResidueClass(10, 23)

45.8 IsRec

IsRec(obj)

IsRec returns true if the object obj , which may be an object of arbitrary type, is a record,
and false otherwise. Will signal an error if obj is a variable with no assigned value.

gap> IsRec(rec(a := 1, b := 2));
true
gap> IsRec(IsRec);
false

45.9 IsBound

IsBound(rec.name)
IsBound(list[n])

In the first form IsBound returns true if the record rec has a component with the name
name, which must be an ident and false otherwise. rec must evaluate to a record, otherwise
an error is signalled.

In the second form IsBound returns true if the list list has a element at the position n, and
false otherwise. list must evaluate to a list, otherwise an error is signalled.

gap> r := rec(a := 1, b := 2);;
gap> IsBound(r.a);
true
gap> IsBound(r.c);
false
gap> l := [, 2, 3, , 5, , 7, , , , 11];;
gap> IsBound(l[7]);
true
gap> IsBound(l[4]);
false
gap> IsBound(l[101]);
false

Note that IsBound is special in that it does not evaluate its argument, otherwise it would
always signal an error when it is supposed to return false.

45.10. UNBIND 789

45.10 Unbind

Unbind(rec.name)
Unbind(list[n])

In the first form Unbind deletes the component with the name name in the record rec. That
is, after execution of Unbind, rec no longer has a record component with this name. Note
that it is not an error to unbind a nonexisting record component. rec must evaluate to a
record, otherwise an error is signalled.

In the second form Unbind deletes the element at the position n in the list list . That is,
after execution of Unbind, list no longer has an assigned value at the position n. Note that
it is not an error to unbind a nonexisting list element. list must evaluate to a list, otherwise
an error is signalled.

gap> r := rec(a := 1, b := 2);;
gap> Unbind(r.a); r;
rec(
b := 2)

gap> Unbind(r.c); r;
rec(
b := 2)

gap> l := [, 2, 3, 5, , 7, , , , 11];;
gap> Unbind(l[3]); l;
[, 2,, 5,, 7,,,, 11]
gap> Unbind(l[4]); l;
[, 2,,,, 7,,,, 11]

Note that Unbind does not evaluate its argument, otherwise there would be no way for
Unbind to tell which component to remove in which record, because it would only receive
the value of this component.

45.11 Copy

Copy(obj)

Copy returns a copy new of the object obj . You may apply Copy to objects of any type, but
for objects that are not lists or records Copy simply returns the object itself.

For lists and records the result is a new list or record that is not identical to any other
list or record (see 27.9 and 45.3). This means that you may modify this copy new by
assignments (see 27.6 and 45.2) or by adding elements to it (see 27.7 and 27.8), without
modifying the original object obj .

gap> list1 := [1, 2, 3];;
gap> list2 := Copy(list1);
[1, 2, 3]
gap> list2[1] := 0;; list2;
[0, 2, 3]
gap> list1;
[1, 2, 3]

790 CHAPTER 45. RECORDS

That Copy returns the object itself if it is not a list or a record is consistent with this
definition, since there is no way to change the original object obj by modifying new , because
in fact there is no way to change the object new .

Copy basically executes the following code for lists, and similar code for records.

new := [];
for i in [1..Length(obj)] do

if IsBound(obj[i]) then
new[i] := Copy(obj[i]);

fi;
od;

Note that Copy recursively copies all elements of the object obj . If you only want to copy
the top level use ShallowCopy (see 45.12).

gap> list1 := [[1, 2], [3, 4]];;
gap> list2 := Copy(list1);
[[1, 2], [3, 4]]
gap> list2[1][1] := 0;; list2;
[[0, 2], [3, 4]]
gap> list1;
[[1, 2], [3, 4]]

The above code is not entirely correct. If the object obj contains a list or record twice this
list or record is not copied twice, as would happen with the above definition, but only once.
This means that the copy new and the object obj have exactly the same structure when
view as a general graph.

gap> sub := [1, 2];; list1 := [sub, sub];;
gap> list2 := Copy(list1);
[[1, 2], [1, 2]]
gap> list2[1][1] := 0;; list2;
[[0, 2], [0, 2]]
gap> list1;
[[1, 2], [1, 2]]

45.12 ShallowCopy

ShallowCopy(obj)

ShallowCopy returns a copy of the object obj . You may apply ShallowCopy to objects of
any type, but for objects that are not lists or records ShallowCopy simply returns the object
itself.

For lists and records the result is a new list or record that is not identical to any other
list or record (see 27.9 and 45.3). This means that you may modify this copy new by
assignments (see 27.6 and 45.2) or by adding elements to it (see 27.7 and 27.8), without
modifying the original object obj .

gap> list1 := [1, 2, 3];;
gap> list2 := ShallowCopy(list1);
[1, 2, 3]
gap> list2[1] := 0;; list2;

45.13. RECFIELDS 791

[0, 2, 3]
gap> list1;
[1, 2, 3]

That ShallowCopy returns the object itself if it is not a list or a record is consistent with
this definition, since there is no way to change the original object obj by modifying new ,
because in fact there is no way to change the object new .

ShallowCopy basically executes the following code for lists, and similar code for records.

new := [];
for i in [1..Length(obj)] do

if IsBound(obj[i]) then
new[i] := obj[i];

fi;
od;

Note that ShallowCopy only copies the top level. The subobjects of the new object new are
identical to the corresponding subobjects of the object obj . If you want to copy recursively
use Copy (see 45.11).

45.13 RecFields

RecFields(rec)

RecFields returns a list of strings corresponding to the names of the record components of
the record rec.

gap> r := rec(a := 1, b := 2);;
gap> RecFields(r);
["a", "b"]

Note that you cannot use the string result in the ordinary way to access or change a record
component. You must use the rec.(name) construct (see 45.1 and 45.2).

792 CHAPTER 45. RECORDS

Chapter 46

Combinatorics

This chapter describes the functions that deal with combinatorics. We mainly concentrate
on two areas. One is about selections, that is the ways one can select elements from a set.
The other is about partitions, that is the ways one can partition a set into the union of
pairwise disjoint subsets.

First this package contains various functions that are related to the number of selections
from a set (see 46.1, 46.2) or to the number of partitions of a set (see 46.3, 46.4, 46.5). Those
numbers satisfy literally thousands of identities, which we do no mention in this document,
for a thorough treatment see [GKP90].

Then this package contains functions to compute the selections from a set (see 46.6), ordered
selections, i.e., selections where the order in which you select the elements is important (see
46.7), selections with repetitions, i.e., you are allowed to select the same element more than
once (see 46.8) and ordered selections with repetitions (see 46.9).

As special cases of ordered combinations there are functions to compute all permutations
(see 46.10), all fixpointfree permutations (see 46.11) of a list.

This package also contains functions to compute partitions of a set (see 46.12), partitions
of an integer into the sum of positive integers (see 46.13, 46.15) and ordered partitions of
an integer into the sum of positive integers (see 46.14).

Moreover, it provides three functions to compute Fibonacci numbers (see 46.20), Lucas
sequences (see 46.21), or Bernoulli numbers (see 46.22).

Finally, there is a function to compute the number of permutations that fit a given 1-0
matrix (see 46.23).

All these functions are in the file "LIBNAME/combinat.g".

46.1 Factorial

Factorial(n)

Factorial returns the factorial n! of the positive integer n, which is defined as the product
1 ∗ 2 ∗ 3 ∗ .. ∗ n.

n! is the number of permutations of a set of n elements. 1/n! is the coefficient of xn in the
formal series ex, which is the generating function for factorial.

793

794 CHAPTER 46. COMBINATORICS

gap> List([0..10], Factorial);
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
gap> Factorial(30);
265252859812191058636308480000000

PermutationsList (see 46.10) computes the set of all permutations of a list.

46.2 Binomial

Binomial(n, k)

Binomial returns the binomial coefficient
(
n
k

)
of integers n and k , which is defined as

n!/(k!(n − k)!) (see 46.1). We define
(

0
0

)
= 1,

(
n
k

)
= 0 if k < 0 or n < k, and

(
n
k

)
=

(−1)k
(−n+k−1

k

)
if n < 0, which is consistent with

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.(

n
k

)
is the number of combinations with k elements, i.e., the number of subsets with k

elements, of a set with n elements.
(
n
k

)
is the coefficient of the term xk of the polynomial

(x+ 1)n, which is the generating function for
(
n
∗
)
, hence the name.

gap> List([0..4], k->Binomial(4, k));
[1, 4, 6, 4, 1] # Knuth calls this the trademark of Binomial
gap> List([0..6], n->List([0..6], k->Binomial(n, k)));;
gap> PrintArray(last);
[[1, 0, 0, 0, 0, 0, 0], # the lower triangle is
[1, 1, 0, 0, 0, 0, 0], # called Pascal’s triangle
[1, 2, 1, 0, 0, 0, 0],
[1, 3, 3, 1, 0, 0, 0],
[1, 4, 6, 4, 1, 0, 0],
[1, 5, 10, 10, 5, 1, 0],
[1, 6, 15, 20, 15, 6, 1]]

gap> Binomial(50, 10);
10272278170

NrCombinations (see 46.6) is the generalization of Binomial for multisets. Combinations
(see 46.6) computes the set of all combinations of a multiset.

46.3 Bell

Bell(n)

Bell returns the Bell number B(n). The Bell numbers are defined by B(0) = 1 and the
recurrence B(n+ 1) =

∑n
k=0

(
n
k

)
B(k).

B(n) is the number of ways to partition a set of n elements into pairwise disjoint nonempty
subsets (see 46.12). This implies of course that B(n) =

∑n
k=0 S2(n, k) (see 46.5). B(n)/n!

is the coefficient of xn in the formal series ee
x−1, which is the generating function for B(n).

gap> List([0..6], n -> Bell(n));
[1, 1, 2, 5, 15, 52, 203]
gap> Bell(14);
190899322

46.4. STIRLING1 795

46.4 Stirling1

Stirling1(n, k)

Stirling1 returns the Stirling number of the first kind S1(n, k) of the integers n and
k . Stirling numbers of the first kind are defined by S1(0, 0) = 1, S1(n, 0) = S1(0, k) = 0 if
n, k <> 0 and the recurrence S1(n, k) = (n− 1)S1(n− 1, k) + S1(n− 1, k − 1).

S1(n, k) is the number of permutations of n points with k cycles. Stirling numbers of
the first kind appear as coefficients in the series n!

(
x
n

)
=
∑n
k=0 S1(n, k)xk which is the

generating function for Stirling numbers of the first kind. Note the similarity to xn =∑n
k=0 S2(n, k)k!

(
x
k

)
(see 46.5). Also the definition of S1 implies S1(n, k) = S2(−k,−n) if

n, k < 0. There are many formulae relating Stirling numbers of the first kind to Stirling
numbers of the second kind, Bell numbers, and Binomial numbers.

gap> List([0..4], k->Stirling1(4, k));
[0, 6, 11, 6, 1] # Knuth calls this the trademark of S1

gap> List([0..6], n->List([0..6], k->Stirling1(n, k)));;
gap> PrintArray(last);
[[1, 0, 0, 0, 0, 0, 0], # Note the similarity
[0, 1, 0, 0, 0, 0, 0], # with Pascal’s
[0, 1, 1, 0, 0, 0, 0], # triangle for the
[0, 2, 3, 1, 0, 0, 0], # Binomial numbers
[0, 6, 11, 6, 1, 0, 0],
[0, 24, 50, 35, 10, 1, 0],
[0, 120, 274, 225, 85, 15, 1]]

gap> Stirling1(50,10);
101623020926367490059043797119309944043405505380503665627365376

46.5 Stirling2

Stirling2(n, k)

Stirling2 returns the Stirling number of the second kind S2(n, k) of the integers n and
k . Stirling numbers of the second kind are defined by S2(0, 0) = 1, S2(n, 0) = S2(0, k) = 0
if n, k <> 0 and the recurrence S2(n, k) = kS2(n− 1, k) + S2(n− 1, k − 1).

S2(n, k) is the number of ways to partition a set of n elements into k pairwise disjoint
nonempty subsets (see 46.12). Stirling numbers of the second kind appear as coefficients in
the expansion of xn =

∑n
k=0 S2(n, k)k!

(
x
k

)
. Note the similarity to n!

(
x
n

)
=
∑n
k=0 S1(n, k)xk

(see 46.4). Also the definition of S2 implies S2(n, k) = S1(−k,−n) if n, k < 0. There are
many formulae relating Stirling numbers of the second kind to Stirling numbers of the first
kind, Bell numbers, and Binomial numbers.

gap> List([0..4], k->Stirling2(4, k));
[0, 1, 7, 6, 1] # Knuth calls this the trademark of S2

gap> List([0..6], n->List([0..6], k->Stirling2(n, k)));;
gap> PrintArray(last);
[[1, 0, 0, 0, 0, 0, 0], # Note the similarity with
[0, 1, 0, 0, 0, 0, 0], # Pascal’s triangle for
[0, 1, 1, 0, 0, 0, 0], # the Binomial numbers
[0, 1, 3, 1, 0, 0, 0],

796 CHAPTER 46. COMBINATORICS

[0, 1, 7, 6, 1, 0, 0],
[0, 1, 15, 25, 10, 1, 0],
[0, 1, 31, 90, 65, 15, 1]]

gap> Stirling2(50, 10);
26154716515862881292012777396577993781727011

46.6 Combinations

Combinations(mset)
Combinations(mset, k)

NrCombinations(mset)
NrCombinations(mset, k)

In the first form Combinations returns the set of all combinations of the multiset mset . In
the second form Combinations returns the set of all combinations of the multiset mset with
k elements.
In the first form NrCombinations returns the number of combinations of the multiset mset .
In the second form NrCombinations returns the number of combinations of the multiset
mset with k elements.
A combination of mset is an unordered selection without repetitions and is represented by
a sorted sublist of mset . If mset is a proper set, there are

(|mset|
k

)
(see 46.2) combinations

with k elements, and the set of all combinations is just the powerset of mset , which contains
all subsets of mset and has cardinality 2|mset|.

gap> Combinations([1,2,2,3]);
[[], [1], [1, 2], [1, 2, 2], [1, 2, 2, 3], [1, 2, 3],
[1, 3], [2], [2, 2], [2, 2, 3], [2, 3], [3]]

gap> NrCombinations([1..52], 5);
2598960 # number of different hands in a game of poker

The function Arrangements (see 46.7) computes ordered selections without repetitions,
UnorderedTuples (see 46.8) computes unordered selections with repetitions and Tuples
(see 46.9) computes ordered selections with repetitions.

46.7 Arrangements

Arrangements(mset)
Arrangements(mset, k)

NrArrangements(mset)
NrArrangements(mset, k)

In the first form Arrangements returns the set of arrangements of the multiset mset . In
the second form Arrangements returns the set of all arrangements with k elements of the
multiset mset .
In the first form NrArrangements returns the number of arrangements of the multiset mset .
In the second form NrArrangements returns the number of arrangements with k elements
of the multiset mset .
An arrangement of mset is an ordered selection without repetitions and is represented by
a list that contains only elements from mset , but maybe in a different order. If mset is a
proper set there are |mset|!/(|mset| − k)! (see 46.1) arrangements with k elements.

46.8. UNORDEREDTUPLES 797

As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have
the six characters of the word settle and you have to make a four letter word. Then the
possibilities are given by

gap> Arrangements(["s","e","t","t","l","e"], 4);
[["e", "e", "l", "s"], ["e", "e", "l", "t"],
["e", "e", "s", "l"], ["e", "e", "s", "t"],
96 more possibilities
["t", "t", "s", "e"], ["t", "t", "s", "l"]]

Can you find the five proper English words, where lets does not count? Note that the
fact that the list returned by Arrangements is a proper set means in this example that the
possibilities are listed in the same order as they appear in the dictionary.

gap> NrArrangements(["s","e","t","t","l","e"]);
523

The function Combinations (see 46.6) computes unordered selections without repetitions,
UnorderedTuples (see 46.8) computes unordered selections with repetitions and Tuples
(see 46.9) computes ordered selections with repetitions.

46.8 UnorderedTuples

UnorderedTuples(set, k)

NrUnorderedTuples(set, k)

UnorderedTuples returns the set of all unordered tuples of length k of the set set .
NrUnorderedTuples returns the number of unordered tuples of length k of the set set .
An unordered tuple of length k of set is a unordered selection with repetitions of set and
is represented by a sorted list of length k containing elements from set . There are

(|set|+k−1
k

)
(see 46.2) such unordered tuples.
Note that the fact that UnOrderedTuples returns a set implies that the last index runs
fastest. That means the first tuple contains the smallest element from set k times, the
second tuple contains the smallest element of set at all positions except at the last positions,
where it contains the second smallest element from set and so on.
As an example for unordered tuples think of a poker-like game played with 5 dice. Then
each possible hand corresponds to an unordered five-tuple from the set [1..6]

gap> NrUnorderedTuples([1..6], 5);
252
gap> UnorderedTuples([1..6], 5);
[[1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 1, 3],
[1, 1, 1, 1, 4], [1, 1, 1, 1, 5], [1, 1, 1, 1, 6],
99 more tuples
[1, 3, 4, 5, 6], [1, 3, 4, 6, 6], [1, 3, 5, 5, 5],
99 more tuples
[3, 3, 4, 4, 5], [3, 3, 4, 4, 6], [3, 3, 4, 5, 5],
39 more tuples
[5, 5, 6, 6, 6], [5, 6, 6, 6, 6], [6, 6, 6, 6, 6]]

The function Combinations (see 46.6) computes unordered selections without repetitions,
Arrangements (see 46.7) computes ordered selections without repetitions and Tuples (see
46.9) computes ordered selections with repetitions.

798 CHAPTER 46. COMBINATORICS

46.9 Tuples

Tuples(set, k)

NrTuples(set, k)

Tuples returns the set of all ordered tuples of length k of the set set .

NrTuples returns the number of all ordered tuples of length k of the set set .

An ordered tuple of length k of set is an ordered selection with repetition and is represented
by a list of length k containing elements of set . There are |set|k such ordered tuples.

Note that the fact that Tuples returns a set implies that the last index runs fastest. That
means the first tuple contains the smallest element from set k times, the second tuple
contains the smallest element of set at all positions except at the last positions, where it
contains the second smallest element from set and so on.

gap> Tuples([1,2,3], 2);
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3],
[3, 1], [3, 2], [3, 3]]

gap> NrTuples([1..10], 5);
100000

Tuples(set,k) can also be viewed as the k -fold cartesian product of set (see 27.23).

The function Combinations (see 46.6) computes unordered selections without repetitions,
Arrangements (see 46.7) computes ordered selections without repetitions, and finally the
function UnorderedTuples (see 46.8) computes unordered selections with repetitions.

46.10 PermutationsList

PermutationsList(mset)

NrPermutationsList(mset)

PermutationsList returns the set of permutations of the multiset mset .

NrPermutationsList returns the number of permutations of the multiset mset .

A permutation is represented by a list that contains exactly the same elements as mset ,
but possibly in different order. If mset is a proper set there are |mset|! (see 46.1) such
permutations. Otherwise if the first elements appears k1 times, the second element appears
k2 times and so on, the number of permutations is |mset|!/(k1!k2!..), which is sometimes
called multinomial coefficient.

gap> PermutationsList([1,2,3]);
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2],

[3, 2, 1]]
gap> PermutationsList([1,1,2,2]);
[[1, 1, 2, 2], [1, 2, 1, 2], [1, 2, 2, 1], [2, 1, 1, 2],

[2, 1, 2, 1], [2, 2, 1, 1]]
gap> NrPermutationsList([1,2,2,3,3,3,4,4,4,4]);
12600

The function Arrangements (see 46.7) is the generalization of PermutationsList that allows
you to specify the size of the permutations. Derangements (see 46.11) computes permuta-
tions that have no fixpoints.

46.11. DERANGEMENTS 799

46.11 Derangements

Derangements(list)

NrDerangements(list)

Derangements returns the set of all derangements of the list list .

NrDerangements returns the number of derangements of the list list .

A derangement is a fixpointfree permutation of list and is represented by a list that
contains exactly the same elements as list , but in such an order that the derangement has
at no position the same element as list . If the list list contains no element twice there are
exactly |list|!(1/2!− 1/3! + 1/4!− ..(−1)n/n!) derangements.

Note that the ratio NrPermutationsList([1..n])/NrDerangements([1..n]), which is
n!/(n!(1/2! − 1/3! + 1/4! − ..(−1)n/n!)) is an approximation for the base of the natural
logarithm e = 2.7182818285, which is correct to about n digits.

As an example of derangements suppose that you have to send four different letters to four
different people. Then a derangement corresponds to a way to send those letters such that
no letter reaches the intended person.

gap> Derangements([1,2,3,4]);
[[2, 1, 4, 3], [2, 3, 4, 1], [2, 4, 1, 3], [3, 1, 4, 2],
[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 3, 1, 2],
[4, 3, 2, 1]]

gap> NrDerangements([1..10]);
1334961
gap> Int(10^7*NrPermutationsList([1..10])/last);
27182816
gap> Derangements([1,1,2,2,3,3]);
[[2, 2, 3, 3, 1, 1], [2, 3, 1, 3, 1, 2], [2, 3, 1, 3, 2, 1],
[2, 3, 3, 1, 1, 2], [2, 3, 3, 1, 2, 1], [3, 2, 1, 3, 1, 2],
[3, 2, 1, 3, 2, 1], [3, 2, 3, 1, 1, 2], [3, 2, 3, 1, 2, 1],
[3, 3, 1, 1, 2, 2]]

gap> NrDerangements([1,2,2,3,3,3,4,4,4,4]);
338

The function PermutationsList (see 46.10) computes all permutations of a list.

46.12 PartitionsSet

PartitionsSet(set)
PartitionsSet(set, k)

NrPartitionsSet(set)
NrPartitionsSet(set, k)

In the first form PartitionsSet returns the set of all unordered partitions of the set set .
In the second form PartitionsSet returns the set of all unordered partitions of the set set
into k pairwise disjoint nonempty sets.

In the first form NrPartitionsSet returns the number of unordered partitions of the set
set . In the second form NrPartitionsSet returns the number of unordered partitions of
the set set into k pairwise disjoint nonempty sets.

800 CHAPTER 46. COMBINATORICS

An unordered partition of set is a set of pairwise disjoint nonempty sets with union set
and is represented by a sorted list of such sets. There are B(|set|) (see 46.3) partitions of
the set set and S2(|set|, k) (see 46.5) partitions with k elements.

gap> PartitionsSet([1,2,3]);
[[[1], [2], [3]], [[1], [2, 3]], [[1, 2], [3]],
[[1, 2, 3]], [[1, 3], [2]]]

gap> PartitionsSet([1,2,3,4], 2);
[[[1], [2, 3, 4]], [[1, 2], [3, 4]],
[[1, 2, 3], [4]], [[1, 2, 4], [3]],
[[1, 3], [2, 4]], [[1, 3, 4], [2]],
[[1, 4], [2, 3]]]

gap> NrPartitionsSet([1..6]);
203
gap> NrPartitionsSet([1..10], 3);
9330

Note that PartitionsSet does currently not support multisets and that there is currently
no ordered counterpart.

46.13 Partitions

Partitions(n)
Partitions(n, k)

NrPartitions(n)
NrPartitions(n, k)

In the first form Partitions returns the set of all (unordered) partitions of the positive
integer n. In the second form Partitions returns the set of all (unordered) partitions of
the positive integer n into sums with k summands.

In the first form NrPartitions returns the number of (unordered) partitions of the positive
integer n. In the second form NrPartitions returns the number of (unordered) partitions
of the positive integer n into sums with k summands.

An unordered partition is an unordered sum n = p1+p2+..+pk of positive integers and is
represented by the list p = [p1, p2, .., pk], in nonincreasing order, i.e., p1 >= p2 >= .. >= pk.
We write p ` n. There are approximately Eπ

√
2/3n/4

√
3n such partitions.

It is possible to associate with every partition of the integer n a conjugacy class of permuta-
tions in the symmetric group on n points and vice versa. Therefore p(n) := NrPartitions(n)
is the number of conjugacy classes of the symmetric group on n points.

Ramanujan found the identities p(5i+4) = 0 mod 5, p(7i+5) = 0 mod 7 and p(11i+6) = 0
mod 11 and many other fascinating things about the number of partitions.

Do not call Partitions with an n much larger than 40, in which case there are 37338
partitions, since the list will simply become too large.

gap> Partitions(7);
[[1, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1], [2, 2, 1, 1, 1],
[2, 2, 2, 1], [3, 1, 1, 1, 1], [3, 2, 1, 1], [3, 2, 2],
[3, 3, 1], [4, 1, 1, 1], [4, 2, 1], [4, 3], [5, 1, 1],

46.14. ORDEREDPARTITIONS 801

[5, 2], [6, 1], [7]]
gap> Partitions(8, 3);
[[3, 3, 2], [4, 2, 2], [4, 3, 1], [5, 2, 1], [6, 1, 1]]
gap> NrPartitions(7);
15
gap> NrPartitions(100);
190569292

The function OrderedPartitions (see 46.14) is the ordered counterpart of Partitions.

46.14 OrderedPartitions

OrderedPartitions(n)
OrderedPartitions(n, k)

NrOrderedPartitions(n)
NrOrderedPartitions(n, k)

In the first form OrderedPartitions returns the set of all ordered partitions of the positive
integer n. In the second form OrderedPartitions returns the set of all ordered partitions
of the positive integer n into sums with k summands.

In the first form NrOrderedPartitions returns the number of ordered partitions of the
positive integer n. In the second form NrOrderedPartitions returns the number of ordered
partitions of the positive integer n into sums with k summands.

An ordered partition is an ordered sum n = p1 + p2 + .. + pk of positive integers and is
represented by the list [p1, p2, .., pk]. There are totally 2n−1 ordered partitions and

(
n−1
k−1

)
(see 46.2) partitions with k summands.

Do not call OrderedPartitions with an n larger than 15, the list will simply become too
large.

gap> OrderedPartitions(5);
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 1], [1, 1, 3],
[1, 2, 1, 1], [1, 2, 2], [1, 3, 1], [1, 4], [2, 1, 1, 1],
[2, 1, 2], [2, 2, 1], [2, 3], [3, 1, 1], [3, 2],
[4, 1], [5]]

gap> OrderedPartitions(6, 3);
[[1, 1, 4], [1, 2, 3], [1, 3, 2], [1, 4, 1], [2, 1, 3],
[2, 2, 2], [2, 3, 1], [3, 1, 2], [3, 2, 1], [4, 1, 1]]

gap> NrOrderedPartitions(20);
524288

The function Partitions (see 46.13) is the unordered counterpart of OrderedPartitions.

46.15 RestrictedPartitions

RestrictedPartitions(n, set)
RestrictedPartitions(n, set, k)

NrRestrictedPartitions(n, set)
NrRestrictedPartitions(n, set, k)

802 CHAPTER 46. COMBINATORICS

In the first form RestrictedPartitions returns the set of all restricted partitions of the
positive integer n with the summands of the partition coming from the set set . In the second
form RestrictedPartitions returns the set of all partitions of the positive integer n into
sums with k summands with the summands of the partition coming from the set set .

In the first form NrRestrictedPartitions returns the number of restricted partitions of
the positive integer n with the summands coming from the set set . In the second form
NrRestrictedPartitions returns the number of restricted partitions of the positive integer
n into sums with k summands with the summands of the partition coming from the set set .

A restricted partition is like an ordinary partition (see 46.13) an unordered sum n =
p1 + p2 + .. + pk of positive integers and is represented by the list p = [p1, p2, .., pk], in
nonincreasing order. The difference is that here the pi must be elements from the set set ,
while for ordinary partitions they may be elements from [1..n].

gap> RestrictedPartitions(8, [1,3,5,7]);
[[1, 1, 1, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1], [3, 3, 1, 1],
[5, 1, 1, 1], [5, 3], [7, 1]]

gap> NrRestrictedPartitions(50, [1,5,10,25,50]);
50

The last example tells us that there are 50 ways to return 50 cent change using 1, 5, 10 cent
coins, quarters and halfdollars.

46.16 SignPartition

SignPartition(pi)

returns the sign of a permutation with cycle structure pi .

gap> SignPartition([6,5,4,3,2,1]);
-1

This function actually describes a homomorphism of the symmetric group Sn into the cyclic
group of order 2, whose kernel is exactly the alternating group An (see 20.6). Partitions of
sign 1 are called even partitions while partitions of sign −1 are called odd.

46.17 AssociatedPartition

AssociatedPartition(pi)

returns the associated partition of the partition pi .

gap> AssociatedPartition([4,2,1]);
[3, 2, 1, 1]
gap> AssociatedPartition([6]);
[1, 1, 1, 1, 1, 1]

The associated partition of a partition pi is defined to be the partition belonging to the
transposed of the Young diagram of pi .

46.18 PowerPartition

PowerPartition(pi, k)

46.19. PARTITIONTUPLES 803

returns the partition corresponding to the k -th power of a permutation with cycle structure
pi .

gap> PowerPartition([6,5,4,3,2,1], 3);
[5, 4, 2, 2, 2, 2, 1, 1, 1, 1]

Each part l of pi is replaced by d = gcd(l, k) parts l/d. So if pi is a partition of n then pik

also is a partition of n. PowerPartition describes the powermap of symmetric groups.

46.19 PartitionTuples

PartitionTuples(n, r)

returns the list of all r–tuples of partitions that together partition n.

gap> PartitionTuples(3, 2);
[[[1, 1, 1], []], [[1, 1], [1]], [[1], [1, 1]],
[[], [1, 1, 1]], [[2, 1], []], [[1], [2]],
[[2], [1]], [[], [2, 1]], [[3], []],
[[], [3]]]

r–tuples of partitions describe the classes and the characters of wreath products of groups
with r conjugacy classes with the symmetric group Sn.

46.20 Fibonacci

Fibonacci(n)

Fibonacci returns the nth number of the Fibonacci sequence. The Fibonacci sequence
Fn is defined by the initial conditions F1 = F2 = 1 and the recurrence relation Fn+2 =
Fn+1 + Fn. For negative n we define Fn = (−1)n+1F−n, which is consistent with the
recurrence relation.

Using generating functions one can prove that Fn = φn − 1/φn, where φ is (
√

5 + 1)/2, i.e.,
one root of x2−x− 1 = 0. Fibonacci numbers have the property Gcd(Fm, Fn) = FGcd(m,n).
But a pair of Fibonacci numbers requires more division steps in Euclid’s algorithm (see
5.26) than any other pair of integers of the same size. Fibonnaci(k) is the special case
Lucas(1,-1,k)[1] (see 46.21).

gap> Fibonacci(10);
55
gap> Fibonacci(35);
9227465
gap> Fibonacci(-10);
-55

46.21 Lucas

Lucas(P, Q, k)

Lucas returns the k -th values of the Lucas sequence with parameters P and Q , which
must be integers, as a list of three integers.

Let α, β be the two roots of x2 − Px+Q then we define
Lucas(P,Q, k)[1] = Uk = (αk − βk)/(α− β) and

804 CHAPTER 46. COMBINATORICS

Lucas(P,Q, k)[2] = Vk = (αk + βk) and as a convenience
Lucas(P,Q, k)[3] = Qk.

The following recurrence relations are easily derived from the definition
U0 = 0, U1 = 1, Uk = PUk−1 −QUk−2 and
V0 = 2, V1 = P, Vk = PVk−1 −QVk−2.
Those relations are actually used to define Lucas if α = β.

Also the more complex relations used in Lucas can be easily derived
U2k = UkVk, U2k+1 = (PU2k + V2k)/2 and
V2k = V 2

k − 2Qk, V2k+1 = ((P 2 − 4Q)U2k + PV2k)/2.

Fibonnaci(k) (see 46.20) is simply Lucas(1,-1,k)[1]. In an abuse of notation, the se-
quence Lucas(1,-1,k)[2] is sometimes called the Lucas sequence.

gap> List([0..10], i->Lucas(1,-2,i)[1]);
[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341] # 2k − (−1)k)/3
gap> List([0..10], i->Lucas(1,-2,i)[2]);
[2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025] # 2k + (−1)k

gap> List([0..10], i->Lucas(1,-1,i)[1]);
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] # Fibonacci sequence
gap> List([0..10], i->Lucas(2,1,i)[1]);
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # the roots are equal

46.22 Bernoulli

Bernoulli(n)

Bernoulli returns the n-th Bernoulli number Bn, which is defined by B0 = 1 and
Bn = −

∑n−1
k=0

(
n+1
k

)
Bk/(n+ 1).

Bn/n! is the coefficient of xn in the power series of x/ex − 1. Except for B1 = −1/2 the
Bernoulli numbers for odd indices m are zero.

gap> Bernoulli(4);
-1/30
gap> Bernoulli(10);
5/66
gap> Bernoulli(12);
-691/2730 # there is no simple pattern in Bernoulli numbers
gap> Bernoulli(50);
495057205241079648212477525/66 # and they grow fairly fast

46.23 Permanent

Permanent(mat)

Permanent returns the permanent of the matrix mat . The permanent is defined by∑
p∈Symm(n)

∏n
i=1mat[i][i

p].

Note the similarity of the definition of the permanent to the definition of the determinant.
In fact the only difference is the missing sign of the permutation. However the permanent is
quite unlike the determinant, for example it is not multilinear or alternating. It has however
important combinatorical properties.

46.23. PERMANENT 805

gap> Permanent([[0,1,1,1],
> [1,0,1,1],
> [1,1,0,1],
> [1,1,1,0]]);
9 # inefficient way to compute NrDerangements([1..4])
gap> Permanent([[1,1,0,1,0,0,0],
> [0,1,1,0,1,0,0],
> [0,0,1,1,0,1,0],
> [0,0,0,1,1,0,1],
> [1,0,0,0,1,1,0],
> [0,1,0,0,0,1,1],
> [1,0,1,0,0,0,1]]);
24 # 24 permutations fit the projective plane of order 2

806 CHAPTER 46. COMBINATORICS

Chapter 47

Tables of Marks

The concept of a table of marks was introduced by W. Burnside in his book Theory of
Groups of Finite Order [Bur55]. Therefore a table of marks is sometimes called a Burnside
matrix.
The table of marks of a finite group G is a matrix whose rows and columns are labelled by
the conjugacy classes of subgroups of G and where for two subgroups A and B the (A,B)–
entry is the number of fixed points of B in the transitive action of G on the cosets of A in
G. So the table of marks characterizes all permutation representations of G.
Moreover, the table of marks gives a compact description of the subgroup lattice of G, since
from the numbers of fixed points the numbers of conjugates of a subgroup B contained in
a subgroup A can be derived.
This chapter describes a function (see 47.4) which restores a table of marks from the GAP
library of tables of marks (see 47.3) or which computes the table of marks for a given group
from the subgroup lattice of that group. Moreover this package contains a function to
display a table of marks (see 47.12), a function to check the consistency of a table of marks
(see 47.11), functions which switch between several forms of representation (see 47.5, 47.6,
47.8, and 47.9), functions which derive information about the group from the table of marks
(see 47.10, 47.13, 47.14, 47.15, 47.16, 47.17, 47.18, 47.19, 47.20, 47.21, and 47.22), and some
functions for the generic construction of a table of marks (see 47.23, 47.24, and 47.25).
The functions described in this chapter are implemented in the file LIBNAME/"tom.g".

47.1 More about Tables of Marks

Let G be a finite group with n conjugacy classes of subgroups C1, . . . , Cn and representatives
Hi ∈ Ci, i = 1, . . . , n. The table of marks of G is defined to be the n×n matrix M = (mij)
where mij is the number of fixed points of the subgroup Hj in the action of G on the cosets
of Hi in G.
Since Hj can only have fixed points if it is contained in a one point stablizer the matrix M
is lower triangular if the classes Ci are sorted according to the following condition; if Hi is
contained in a conjugate of Hj then i ≤ j.
Moreover, the diagonal entries mii are nonzero since mii equals the index of Hi in its
normalizer in G. Hence M is invertible. Since any transitive action of G is equivalent to

807

808 CHAPTER 47. TABLES OF MARKS

an action on the cosets of a subgroup of G, one sees that the table of marks completely
characterizes permutation representations of G.

The entries mij have further meanings. If H1 is the trivial subgroup of G then each mark
mi1 in the first column of M is equal to the index of Hi in G since the trivial subgroup fixes
all cosets of Hi. If Hn = G then each mnj in the last row of M is equal to 1 since there
is only one coset of G in G. In general, mij equals the number of conjugates of Hi which
contain Hj , multiplied by the index of Hi in its normalizer in G. Moreover, the number cij
of conjugates of Hj which are contained in Hi can be derived from the marks mij via the
formula

cij =
mijmj1

mi1mjj
.

Both the marks mij and the numbers of subgroups cij are needed for the functions described
in this chapter.

47.2 Table of Marks Records

A table of marks is represented by a record. This record has at least a component subs
which is a list where for each conjugacy class of subgroups the class numbers of its subgroups
are stored. These are exactly the positions in the corresponding row of the table of marks
which have nonzero entries.

The marks themselves can be stored in the component marks which is a list that contains
for each entry in the component subs the corresponding nonzero value of the table of marks.

The same information is, however, given by the three components nrSubs, length, and
order, where nrSubs is a list which contains for each entry in the component subs the
corresponding number of conjugates which are contained in a subgroup, length is a list
which contains for each class of subgroups its length, and order is a list which contains for
each class of subgroups their order.

So a table of marks consists either of the components subs and marks or of the components
subs, nrSubs, length, and order. The functions Marks (see 47.5) and NrSubs (see 47.6)
will derive one representation from the other when needed.

Additional information about a table of marks is needed by some functions. The class
numbers of normalizers are stored in the component normalizer. The number of the derived
subgroup of the whole group is stored in the component derivedSubgroup.

47.3 The Library of Tables of Marks

This package of functions comes together with a library of tables of marks. The library files
are stored in a directory TOMNAME. The file TOMNAME/"tmprimar.tom" is the primary file of
the library of tables of marks. It contains the information where to find a table and the
function TomLibrary which restores a table from the library.

The secondary files are

tmaltern.tom tmmath24.tom tmsuzuki.tom tmunitar.tom
tmlinear.tom tmmisc.tom tmsporad.tom tmsymple.tom

47.4. TABLEOFMARKS 809

The list TOMLIST contains for each table an entry with its name and the name of the file
where it is stored.

A table of marks which is restored from the library will be stored as a component of the
record TOM.

47.4 TableOfMarks

TableOfMarks(str)

If the argument str given to TableOfMarks is a string then TableOfMarks will search the
library of tables of marks (see 47.3) for a table with name str . If such a table is found then
TableOfMarks will return a copy of that table. Otherwise TableOfMarks will return false.

gap> a5 := TableOfMarks("A5");
rec(
derivedSubgroup := 9,
normalizer := [9, 4, 6, 8, 7, 6, 7, 8, 9],
nrSubs := [[1], [1, 1], [1, 1], [1, 3, 1], [1, 1],

[1, 3, 1, 1], [1, 5, 1, 1], [1, 3, 4, 1, 1],
[1, 15, 10, 5, 6, 10, 6, 5, 1]],

order := [1, 2, 3, 4, 5, 6, 10, 12, 60],
subs := [[1], [1, 2], [1, 3], [1, 2, 4], [1, 5],

[1, 2, 3, 6], [1, 2, 5, 7], [1, 2, 3, 4, 8],
[1, 2, 3, 4, 5, 6, 7, 8, 9]],

length := [1, 15, 10, 5, 6, 10, 6, 5, 1])
gap> TableOfMarks("A10");
#W TableOfMarks: no table of marks A10 found.
false

TableOfMarks(grp)

If TableOfMarks is called with a group grp as its argument then the table of marks of that
group will be computed and returned in the compressed format. The computation of the
table of marks requires the knowledge of the complete subgroup lattice of the group grp. If
the lattice is not yet known then it will be constructed (see 7.74). This may take a while if
the group grp is large.

Moreover, as the Lattice command is involved the applicability of TableOfMarks underlies
the same restrictions with respect to the soluble residuum of grp as described in section
7.74. The result of TableOfMarks is assigned to the component tableOfMarks of the group
record grp, so that the next call to TableOfMarks with the same argument can just return
this component tableOfMarks.

Warning: Note that TableOfMarks has changed with the release GAP 3.2. It now returns
the table of marks in compressed form. However, you can apply the MatTom command (see
47.8) to convert it into the square matrix which was returned by TableOfMarks in GAP
version 3.1.

gap> alt5 := AlternatingPermGroup(5);;
gap> TableOfMarks(alt5);
rec(
subs := [[1], [1, 2], [1, 3], [1, 2, 4], [1, 5],

810 CHAPTER 47. TABLES OF MARKS

[1, 2, 3, 6], [1, 2, 5, 7], [1, 2, 3, 4, 8],
[1, 2, 3, 4, 5, 6, 7, 8, 9]],

marks := [[60], [30, 2], [20, 2], [15, 3, 3], [12, 2],
[10, 2, 1, 1], [6, 2, 1, 1], [5, 1, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1]])

gap> last = alt5.tableOfMarks;
true

For a pretty print display of a table of marks see 47.12.

47.5 Marks

Marks(tom)

Marks returns the list of lists of marks of the table of marks tom. If these are not yet stored
in the component marks of tom then they will be computed and assigned to the component
marks.

gap> Marks(a5);
[[60], [30, 2], [20, 2], [15, 3, 3], [12, 2],

[10, 2, 1, 1], [6, 2, 1, 1], [5, 1, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1]]

47.6 NrSubs

NrSubs(tom)

NrSubs returns the list of lists of numbers of subgroups of the table of marks tom. If these
are not yet stored in the component nrSubs of tom then they will be computed and assigned
to the component nrSubs.

NrSubs also has to compute the orders and lengths from the marks.

gap> NrSubs(a5);
[[1], [1, 1], [1, 1], [1, 3, 1], [1, 1], [1, 3, 1, 1],

[1, 5, 1, 1], [1, 3, 4, 1, 1], [1, 15, 10, 5, 6, 10, 6, 5, 1]
]

47.7 WeightsTom

WeightsTom(tom)

WeightsTom extracts the weights from a table of marks tom, i.e., the diagonal entries,
indicating the index of a subgroup in its normalizer.

gap> wt := WeightsTom(a5);
[60, 2, 2, 3, 2, 1, 1, 1, 1]

This information may be used to obtain the numbers of conjugate supergroups from the
marks.

gap> marks := Marks(a5);;
gap> List([1 .. 9], x -> marks[x] / wt[x]);
[[1], [15, 1], [10, 1], [5, 1, 1], [6, 1], [10, 2, 1, 1],

[6, 2, 1, 1], [5, 1, 2, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]]

47.8. MATTOM 811

47.8 MatTom

MatTom(tom)

MatTom produces a square matrix corresponding to the table of marks tom in compressed
form. For large tables this may need a lot of space.

gap> MatTom(a5);
[[60, 0, 0, 0, 0, 0, 0, 0, 0], [30, 2, 0, 0, 0, 0, 0, 0, 0],
[20, 0, 2, 0, 0, 0, 0, 0, 0], [15, 3, 0, 3, 0, 0, 0, 0, 0],
[12, 0, 0, 0, 2, 0, 0, 0, 0], [10, 2, 1, 0, 0, 1, 0, 0, 0],
[6, 2, 0, 0, 1, 0, 1, 0, 0], [5, 1, 2, 1, 0, 0, 0, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1]]

47.9 TomMat

TomMat(mat)

Given a matrix mat which contains the marks of a group as its entries, TomMat will produce
the corresponding table of marks record.

gap> mat:=
> [[60, 0, 0, 0, 0, 0, 0, 0, 0], [30, 2, 0, 0, 0, 0, 0, 0, 0],
> [20, 0, 2, 0, 0, 0, 0, 0, 0], [15, 3, 0, 3, 0, 0, 0, 0, 0],
> [12, 0, 0, 0, 2, 0, 0, 0, 0], [10, 2, 1, 0, 0, 1, 0, 0, 0],
> [6, 2, 0, 0, 1, 0, 1, 0, 0], [5, 1, 2, 1, 0, 0, 0, 1, 0],
> [1, 1, 1, 1, 1, 1, 1, 1, 1]];;
gap> TomMat(mat);
rec(
subs := [[1], [1, 2], [1, 3], [1, 2, 4], [1, 5],

[1, 2, 3, 6], [1, 2, 5, 7], [1, 2, 3, 4, 8],
[1, 2, 3, 4, 5, 6, 7, 8, 9]],

marks := [[60], [30, 2], [20, 2], [15, 3, 3], [12, 2],
[10, 2, 1, 1], [6, 2, 1, 1], [5, 1, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1]])

gap> TomMat(IdentityMat(7));
rec(
subs := [[1], [2], [3], [4], [5], [6], [7]],
marks := [[1], [1], [1], [1], [1], [1], [1]])

47.10 DecomposedFixedPointVector

DecomposedFixedPointVector(tom, fix)

Let the group with table of marks tom act as a permutation group on its conjugacy classes
of subgroups, then fix is assumed to be a vector of fixed point numbers, i.e., a vector
which contains for each class of subgroups the number of fixed points under that action.
DecomposedFixedPointVector returns the decomposition of fix into rows of the table of
marks. This decomposition corresponds to a decomposition of the action into transitive
constituents. Trailing zeros in fix may be omitted.

gap> DecomposedFixedPointVector(a5, [16, 4, 1, 0, 1, 1, 1]);

812 CHAPTER 47. TABLES OF MARKS

[,,,,, 1, 1]

The vector fix may be any vector of integers. The resulting decomposition, however, will
not be integral, in general.

gap> DecomposedFixedPointVector(a5, [0, 0, 0, 0, 1, 1]);
[2/5, -1, -1/2,, 1/2, 1]

47.11 TestTom

TestTom(tom)

TestTom decomposes all tensor products of rows of the table of marks tom. It returns true
if all decomposition numbers are nonnegative integers and false otherwise. This provides
a strong consistency check for a table of marks.

gap> TestTom(a5);
true

47.12 DisplayTom

DisplayTom(tom)

DisplayTom produces a formatted output for the table of marks tom. Each line of output
begins with the number of the corresponding class of subgroups. This number is repeated
if the output spreads over several pages.

gap> DisplayTom(a5);
1: 60
2: 30 2
3: 20 . 2
4: 15 3 . 3
5: 12 . . . 2
6: 10 2 1 . . 1
7: 6 2 . . 1 . 1
8: 5 1 2 1 . . . 1
9: 1 1 1 1 1 1 1 1 1

DisplayTom(tom, arec)

In this form DisplayTom takes a record arec as an additional parameter. If this record has a
component classes which contains a list of class numbers then only the rows and columns
of the matrix corresponding to this list are printed.

gap> DisplayTom(a5, rec(classes := [1, 2, 3, 4, 8]));
1: 60
2: 30 2
3: 20 . 2
4: 15 3 . 3
8: 5 1 2 1 1

The record arec may also have a component form which enables the printing of tables of num-
bers of subgroups. If arec.form has the value "subgroups" then at position (i, j) the number
of conjugates of Hj contained in Hi will be printed. If it has the value "supergroups" then
at position (i, j) the number of conjugates of Hi which contain Hj will be printed.

47.13. NORMALIZERTOM 813

gap> DisplayTom(a5, rec(form := "subgroups"));
1: 1
2: 1 1
3: 1 . 1
4: 1 3 . 1
5: 1 . . . 1
6: 1 3 1 . . 1
7: 1 5 . . 1 . 1
8: 1 3 4 1 . . . 1
9: 1 15 10 5 6 10 6 5 1

gap> DisplayTom(a5, rec(form := "supergroups"));
1: 1
2: 15 1
3: 10 . 1
4: 5 1 . 1
5: 6 . . . 1
6: 10 2 1 . . 1
7: 6 2 . . 1 . 1
8: 5 1 2 1 . . . 1
9: 1 1 1 1 1 1 1 1 1

47.13 NormalizerTom

NormalizerTom(tom, u)

NormalizerTom tries to find conjugacy class of the normalizer of a subgroup with class
number u. It will return the list of class numbers of those subgroups which have the
right size and contain the subgroup and all subgroups which clearly contain it as a normal
subgroup. If the normalizer is uniquely determined by these conditions then only its class
number will be returned. NormalizerTom should never return an empty list.

gap> NormalizerTom(a5, 4);
8

The example shows that a subgroup with class number 4 in A5 (which is a Kleinan four
group) is normalized by a subgroup in class 8. This class contains the subgroups of A5

which are isomorphic to A4.

47.14 IntersectionsTom

IntersectionsTom(tom, a, b)

The intersections of the two conjugacy classes of subgroups with class numbers a and b,
respectively, are determined by the decomposition of the tensor product of their rows of
marks. IntersectionsTom returns this decomposition.

gap> IntersectionsTom(a5, 8, 8);
[,, 1,,,,, 1]

Any two subgroups of class number 8 (A4) of A5 are either equal and their intersection has
again class number 8, or their intersection has class number 3, and is a cyclic subgroup of
order 3.

814 CHAPTER 47. TABLES OF MARKS

47.15 IsCyclicTom

IsCyclicTom(tom, n)

A subgroup is cyclic if and only if the sum over the corresponding row of the inverse table of
marks is nonzero (see [Ker91], page 125). Thus we only have to decompose the corresponding
idempotent.

gap> for i in [1 .. 6] do
> Print(i, ": ", IsCyclicTom(a5, i), " ");
> od; Print("\n");
1: true 2: true 3: true 4: false 5: true 6: false

47.16 FusionCharTableTom

FusionCharTableTom(tbl, tom)

FusionCharTableTom determines the fusion of the classes of elements from the character
table tbl into classes of cyclic subgroups on the table of marks tom.

gap> a5c := CharTable("A5");;
gap> fus := FusionCharTableTom(a5c, a5);
[1, 2, 3, 5, 5]

47.17 PermCharsTom

PermCharsTom(tom, fus)

PermCharsTom reads the list of permutation characters from the table of marks tom. It
therefore has to know the fusion map fus which sends each conjugacy class of elements of
the group to the conjugacy class of subgroups they generate.

gap> PermCharsTom(a5, fus);
[[60, 0, 0, 0, 0], [30, 2, 0, 0, 0], [20, 0, 2, 0, 0],

[15, 3, 0, 0, 0], [12, 0, 0, 2, 2], [10, 2, 1, 0, 0],
[6, 2, 0, 1, 1], [5, 1, 2, 0, 0], [1, 1, 1, 1, 1]]

47.18 MoebiusTom

MoebiusTom(tom)

MoebiusTom computes the Möbius values both of the subgroup lattice of the group with table
of marks tom and of the poset of conjugacy classes of subgroups. It returns a record where
the component mu contains the Möbius values of the subgroup lattice, and the component nu
contains the Möbius values of the poset. Moreover, according to a conjecture of Isaacs et al.
(see [HIÖ89], [Pah93]), the values on the poset of conjugacy classes are derived from those
of the subgroup lattice. These theoretical values are returned in the component ex. For that
computation, the derived subgroup must be known in the component derivedSubgroup of
tom. The numbers of those subgroups where the theoretical value does not coincide with
the actual value are returned in the component hyp.

gap> MoebiusTom(a5);
rec(

47.19. CYCLICEXTENSIONSTOM 815

mu := [-60, 4, 2,,, -1, -1, -1, 1],
nu := [-1, 2, 1,,, -1, -1, -1, 1],
ex := [-60, 4, 2,,, -1, -1, -1, 1],
hyp := [])

47.19 CyclicExtensionsTom

CyclicExtensionsTom(tom, p)

According to A. Dress [Dre69], two columns of the table of marks tom are equal modulo
the prime p if and only if the corresponding subgroups are connected by a chain of normal
extensions of order p. CyclicExtensionsTom returns the classes of this equivalence relation.

This information is not used by NormalizerTom although it might give additional restrictions
in the search of normalizers.

gap> CyclicExtensionsTom(a5, 2);
[[1, 2, 4], [3, 6], [5, 7], [8], [9]]

47.20 IdempotentsTom

IdempotentsTom(tom)

IdempotentsTom returns the list of idempotents of the integral Burnside ring described by
the table of marks tom. According to A. Dress [Dre69], these idempotents correspond to the
classes of perfect subgroups, and each such idempotent is the characteristic function of all
those subgroups which arise by cyclic extension from the corresponding perfect subgroup.

gap> IdempotentsTom(a5);
[1, 1, 1, 1, 1, 1, 1, 1, 9]

47.21 ClassTypesTom

ClassTypesTom(tom)

ClassTypesTom distinguishes isomorphism types of the classes of subgroups of the table
of marks tom as far as this is possible. Two subgroups are clearly not isomorphic if they
have different orders. Moreover, isomorphic subgroups must contain the same number of
subgroups of each type.

The types are represented by numbers. ClassTypesTom returns a list which contains for
each class of subgroups its corresponding number.

gap> a6 := TableOfMarks("A6");;
gap> ClassTypesTom(a6);
[1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15,
15, 16]

47.22 ClassNamesTom

ClassNamesTom(tom)

ClassNamesTom constructs generic names for the conjugacy classes of subgroups of the table
of marks tom.

816 CHAPTER 47. TABLES OF MARKS

In general, the generic name of a class of non–cyclic subgroups consists of three parts,
"(order)", " {type}", and "letter", and hence has the form "(order) {type}letter", where
order indicates the order of the subgroups, type is a number that distinguishes different
types of subgroups of the same order, and letter is a letter which distinguishes classes of
subgroups of the same type and order. The type of a subgroup is determined by the numbers
of its subgroups of other types (see 47.21). This is slightly weaker than isomorphism.

The letter is omitted if there is only one class of subgroups of that order and type, and the
type is omitted if there is only one class of that order. Moreover, the braces round the type
are omitted if the type number has only one digit.

For classes of cyclic subgoups, the parentheses round the order and the type are omitted.
Hence the most general form of their generic names is "order letter". Again, the letter is
omitted if there is only one class of cyclic subgroups of that order.

gap> ClassNamesTom(a6);
["1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b",
"(9)", "(10)", "(8)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b",
"(36)", "(60)a", "(60)b", "(360)"]

47.23 TomCyclic

TomCyclic(n)

TomCyclic constructs the table of marks of the cyclic group of order n. A cyclic group of
order n has as its subgroups for each divisor d of n a cyclic subgroup of order d. The record
which is returned has an additional component name where for each subgroup its order is
given as a string.

gap> c6 := TomCyclic(6);
rec(
name := ["1", "2", "3", "6"],
subs := [[1], [1, 2], [1, 3], [1, 2, 3, 4]],
marks := [[6], [3, 3], [2, 2], [1, 1, 1, 1]])

gap> DisplayTom(c6);
1: 6
2: 3 3
3: 2 . 2
4: 1 1 1 1

47.24 TomDihedral

TomDihedral(m)

TomDihedral constructs the table of marks of the dihedral group of order m. For each
divisor d of m, a dihedral group of order m = 2n contains subgroups of order d according to
the following rule. If d is odd and divides n then there is only one cyclic subgroup of order
d. If d is even and divides n then there are a cyclic subgroup of order d and two classes of
dihedral subgroups of order d which are cyclic, too, in the case d = 2, see example below).
Otherwise, (i.e. if d does not divide n, there is just one class of dihedral subgroups of order
d.

gap> d12 := TomDihedral(12);

47.25. TOMFROBENIUS 817

rec(
name := ["1", "2", "D_{2}a", "D_{2}b", "3", "D_{4}", "6",

"D_{6}a", "D_{6}b", "D_{12}"],
subs := [[1], [1, 2], [1, 3], [1, 4], [1, 5],

[1, 2, 3, 4, 6], [1, 2, 5, 7], [1, 3, 5, 8],
[1, 4, 5, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]],

marks := [[12], [6, 6], [6, 2], [6, 2], [4, 4],
[3, 3, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2],
[2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])

gap> DisplayTom(d12);
1: 12
2: 6 6
3: 6 . 2
4: 6 . . 2
5: 4 . . . 4
6: 3 3 1 1 . 1
7: 2 2 . . 2 . 2
8: 2 . 2 . 2 . . 2
9: 2 . . 2 2 . . . 2
10: 1 1 1 1 1 1 1 1 1 1

47.25 TomFrobenius

TomFrobenius(p, q)

TomFrobenius computes the table of marks of a Frobenius group of order pq, where p is a
prime and q divides p− 1.

gap> f20 := TomFrobenius(5, 4);
rec(

name := ["1", "2", "4", "5:1", "5:2", "5:4"],
subs := [[1], [1, 2], [1, 2, 3], [1, 4], [1, 2, 4, 5],

[1, 2, 3, 4, 5, 6]],
marks :=
[[20], [10, 2], [5, 1, 1], [4, 4], [2, 2, 2, 2],

[1, 1, 1, 1, 1, 1]])
gap> DisplayTom(f20);
1: 20
2: 10 2
3: 5 1 1
4: 4 . . 4
5: 2 2 . 2 2
6: 1 1 1 1 1 1

818 CHAPTER 47. TABLES OF MARKS

Chapter 48

Character Tables

This chapter contains

the introduction of GAP character tables (see 48.1, 48.2, 48.3, 48.4, 48.5, 48.6, 48.7, 48.8,
48.9) and some conventions for their usage (see 48.10),

the description how to construct or get character tables (see 48.11, 48.12; for the contents
of the table library, see Chapter 52), matrix representations (see 48.25).

the description of some functions which give information about the conjugacy classes of
character tables, that is, to compute classlengths (see 48.27), inverse classes (see 48.28) and
classnames (see 48.29), structure constants (see 48.30, 48.31, 48.32), the set of real classes
(see 48.33), orbits of the Galois group on the classes (see 48.34) and roots of classes (see
48.35),

the description how character tables or parts of them can be displayed (see 48.37) and sorted
(see 48.38, 48.39, 48.40).

the description of functions which compute the automorphism group of a matrix (see 48.41)
or character table (see 48.42), or which compute permutations relating permutation equiv-
alent matrices (see 48.43) or character tables (see 48.44),

the description of functions which get fusions from and store fusions on tables (see 48.45,
48.46, 48.47),

the description of the interface between GAP and the MOC3 system (see 48.48, 48.49, 48.50,
48.51, 48.52, 48.53), and of a function which converts GAP tables to CAS tables (see 48.54).

This chapter does not contain information about

functions to construct characters (see Chapter 50), or functions to construct and use maps
(see Chapter 51).

For some elaborate examples how character tables are handled in GAP, see 1.25.

48.1 Some Notes on Character Theory in GAP

It seems to be necessary to state some basic facts –and maybe warnings– at the beginning of
the character theory package. This holds for people who are familiar with character theory

819

820 CHAPTER 48. CHARACTER TABLES

because there is no global reference on computational character theory, although there are
many papers on this topic, like [NPP84] or [LP91]. It holds, however, also for people who
are familiar with GAP because the general concept of categories and domains (see 1.23 and
chapter 4) plays no important role here –we will justify this later in this section.

Intuitively, characters of the finite group G can be thought of as certain mappings defined
on G, with values in the complex number field; the set of all characters of G forms a semiring
with addition and multiplication both defined pointwise, which is embedded in the ring of
generalized (or virtual) characters in the natural way. A Z–basis of this ring, and also a
vector space base of the vector space of class functions, is given by the irreducible characters.

At this stage one could ask where there is a problem, since all these algebraic structures are
supported by GAP, as is described in chapters 4, 5, 9, 42, and others.

Now, we first should say that characters are not implemented as mappings, that there are
no GAP domains denoting character rings, and that a character table is not a domain.

For computations with characters of a finite group G with n conjugacy classes, say, we fix
an order of the classes, and then identify each class with its position according to this order.
Each character of G will be represented as list of length n where at the i–th position the
character value for elements of the i–th class is stored. Note that we do not need to know
the conjugacy classes of G physically, even our “knowledge” of the group may be implicit in
the sense that e.g. we know how many classes of involutions G has, and which length these
classes have, but we never have seen an element of G, or a presentation or representation of
G. This allows to work with the character tables of very large groups, e.g., of the so–called
monster, where GAP has no chance to work with the group.

As a consequence, also other information involving characters is given implicitly. For exam-
ple, we can talk about the kernel of a character not as a group but as a list of classes (more
exactly: a list of their positions according to the order of classes) forming this kernel; we
can deduce the group order, the contained cyclic subgroups and so on, but we do not get
the group itself.

Characters are one kind of class functions, and we also represent general class functions
as lists. Two important kinds of these functions which are not characters are power maps
and fusion maps. The k–th power map maps each class to the class of k–th powers of
its elements, the corresponding list contains at each position the position of the image. A
subgroup fusion map between the classes of a subgroup H of G and the classes of G maps
each class c of H to that class of G that contains c; if we know only the character tables of
the two groups, this means with respect to a fixed embedding of H in G.

So the data mainly consist of lists, and typical calculations with character tables are more
or less loops over these lists. For example, the known scalar product of two characters χ, ψ
of G given by

[χ, ψ] =
1
|G|

∑
g∈G

χ(g)ψ(g−1)

can be written as

Sum([1..n], i -> t.classes[i]*chi[i]*GaloisCyc(psi[i],-1));

where t.classes is the list of classlengths, and chi, psi are the lists corresponding to
χ, ψ, respectively. Characters, classlengths, element orders, power maps, fusion maps and
other information about a group is stored in a common character table record just to avoid

48.2. CHARACTER TABLE RECORDS 821

confusion, not to indicate an algebraic structure (which would mean a domain in the sense
of GAP).

A character table is not determined by something similar to generators for groups or rings
in GAP where other components (the knowledge about the domain) is stored for the sake
of efficiency. In many situations one works with incomplete tables or preliminary tables
which are, strictly speaking, no character tables but shall be handled like character tables.
Moreover, the correctness or even the consistency of a character table is hard to prove. Thus
it is not sufficient to view a character table as a black box, and to get information about it
using a few property test functions. In fact there are very few functions that return character
tables or that are property tests. Most GAP functions dealing with character tables return
class functions, or lists of them, or information about class functions. For that, GAP directly
accesses the components of the table record, and the user will have to look at the record
components, too, in order to put the pieces of the puzzle together, and to decide how to go
on.

So it is not easy to say what a character table is; it describes some properties of the
underlying group, and it describes them in a rather abstract way. Also GAP does not know
whether or not a list is a character, it will e.g. regard a list with all entries equal to 1 as
the trivial character if it is passed to a function that expects characters.

It is one of the advantages of character theory that after one has translated a problem
concerning groups into a problem concerning their character tables the calculations are
mostly simple. For example, one can often prove that a group is a Galois group over the
rationals using calculations of structure constants that can be computed from the character
table, and informations on (the character tables of) maximal subgroups.

In this kind of problems the translation back to the group is just an interpretation by the
user, it does not take place in GAP. At the moment, the only interface between handling
groups and handling character tables is the fixed order of conjugacy classes.

Note that algebraic structures are not of much interest in character theory. The main reason
for this is that we have no homomorphisms since we need not to know anything about the
group multiplication.

48.2 Character Table Records

For GAP, a character table is any record that has the components centralizers and
identifier (see 48.4).

There are three different but very similar types of character tables in GAP, namely ordinary
tables, Brauer tables and generic tables. Generic tables are described in Chapter 49. Brauer
tables are defined and stored relative to ordinary tables, so they will be described in 48.3,
and we start with ordinary tables.

You may store arbitrary information on an ordinary character table, but these are the only
fields used by GAP functions:

centralizers
the list of centralizer orders which should be positive integers

identifier
a string that identifies the table, sometimes also called he table name; it is used for

822 CHAPTER 48. CHARACTER TABLES

fusions (see below), programs for generic tables (see chapter 49) and for access to
library tables (see 48.12, 52.1)

order
the group order, a positive integer; in most cases, it is equal to centralizers[1]

classes
the lengths of conjugacy classes, a list of positive integers

orders
the list of representative orders

powermap
a list where at position p, if bound, the p-th powermap is stored; the p-th powermap
is a -possibly parametrized- map (see 51.1)

fusions
a list of records which describe the fusions into other character tables, that is sub-
group fusions and factor fusions; any record has fields name (the identifier com-
ponent of the destination table) and map (a list of images for the classes, it may be
parametrized (see 51.1)); if there are different fusions with same destination table,
the field specification is used to distinguish them; optional fields are type (a string
that is "normal" for normal subgroup fusions and "factor" for factor fusions) and
text (a string with information about the fusion)

fusionsource
a list of table names of those tables which contain a fusion into the actual table

irreducibles
a list of irreducible characters (see below)

irredinfo
a list of records with information about irreducibles, usual entries are indicator,
pblock and charparam (see 50.7, 50.6, 49); if the field irreducibles is sorted using
48.38, the irredinfo field is sorted, too. So any information about irreducibles
should be stored here.

projectives
(only for ATLAS tables, see 52.3) a list of records, each with fields name (of the table
of a covering group) and chars (a list of –in general not all– faithful irreducibles of
the covering group)

permutation
the actual permutation of the classes (see 48.10, 48.39)

classparam
a list of parameter values specifying the classes of tables constructed via specialisation
of a generic character table (see chapter 49)

classtext
a list of additional information about the conjugacy classes (e.g. representatives of
the class for matrix groups or permutation groups)

text
a string containing information about the table; these are e.g. its source (see Chapter
52), the tests it has passed (1.o.r. for the test of orthogonality, pow[p] for the

48.2. CHARACTER TABLE RECORDS 823

construction of the p-th powermap, DEC for the decomposition of ordinary characters
in Brauer characters), and choices made without loss of generality where possible

automorphisms
the permutation group of column permutations preserving the set irreducibles (see
48.41, 48.42)

classnames
a list of names for the classes, a string each (see 48.29)

classnames
for each entry clname in classnames, a field tbl .clname that has the position of
clname in classnames as value (see 48.29)

operations
a record with fields Print (see 48.37) and ScalarProduct (see 50.1); the default value
of the operations field is CharTableOps (see 48.7)

CAS
a list of records, each with fields permchars, permclasses (both permutations),
name and eventually text and classtext; application of the two permutations to
irreducibles and classes yields the original CAS library table with name name and
text text (see 52.5)

libinfo
a record with components othernames and perhaps CASnames which are all admissible
names of the table (see 48.12); using these records, the list LIBLIST.ORDINARY can
be constructed from the library using MakeLIBLIST (see 52.6)

group
the group the table belongs to; if the table was computed using CharTable (see 48.12)
then this component holds the group, with conjugacy classes sorted compatible with
the columns of the table

Note that tables in library files may have different format (see chapter 52).

This is a typical example of a character table, first the “naked” record, then the displayed
version:

gap> t:= CharTable("2.A5");; PrintCharTable(t);
rec(text := "origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5\
]", centralizers := [120, 120, 4, 6, 6, 10, 10, 10, 10
], powermap := [, [1, 1, 2, 4, 4, 8, 8, 6, 6],
[1, 2, 3, 1, 2, 8, 9, 6, 7],, [1, 2, 3, 4, 5, 1, 2, 1, 2]

], fusions := [rec(
name := "A5",
map := [1, 1, 2, 3, 3, 4, 4, 5, 5]), rec(
name := "2.A5.2",
map := [1, 2, 3, 4, 5, 6, 7, 6, 7]), rec(
name := "2.J2",
map := [1, 2, 5, 8, 9, 16, 17, 18, 19],
text := [’f’, ’u’, ’s’, ’i’, ’o’, ’n’, ’ ’, ’o’, ’f’, ’ ’,

’m’, ’a’, ’x’, ’i’, ’m’, ’a’, ’l’, ’ ’, ’2’, ’.’, ’A’, ’5’,
’ ’, ’d’, ’e’, ’t’, ’e’, ’r’, ’m’, ’i’, ’n’, ’e’, ’d’, ’ ’,

824 CHAPTER 48. CHARACTER TABLES

’b’, ’y’, ’ ’, ’t’, ’h’, ’e’, ’ ’, ’3’, ’B’, ’ ’, ’e’, ’l’,
’e’, ’m’, ’e’, ’n’, ’t’, ’s’])], irreducibles :=

[[1, 1, 1, 1, 1, 1, 1, 1, 1],
[3, 3, -1, 0, 0, -E(5)-E(5)^4, -E(5)-E(5)^4, -E(5)^2-E(5)^3,

-E(5)^2-E(5)^3],
[3, 3, -1, 0, 0, -E(5)^2-E(5)^3, -E(5)^2-E(5)^3, -E(5)-E(5)^4,

-E(5)-E(5)^4], [4, 4, 0, 1, 1, -1, -1, -1, -1],
[5, 5, 1, -1, -1, 0, 0, 0, 0],
[2, -2, 0, -1, 1, E(5)+E(5)^4, -E(5)-E(5)^4, E(5)^2+E(5)^3,

-E(5)^2-E(5)^3],
[2, -2, 0, -1, 1, E(5)^2+E(5)^3, -E(5)^2-E(5)^3, E(5)+E(5)^4,

-E(5)-E(5)^4], [4, -4, 0, 1, -1, -1, 1, -1, 1],
[6, -6, 0, 0, 0, 1, -1, 1, -1]], automorphisms := Group((6,8)

(7,9)), construction := function (tbl)
ConstructProj(tbl);

end, irredinfo := [rec(
pblock := [, 1, 1,, 1]), rec(
pblock := [, 1, 2,, 1]), rec(
pblock := [, 1, 3,, 1]), rec(
pblock := [, 2, 1,, 1]), rec(
pblock := [, 1, 1,, 2]), rec(
pblock := [, 1, 4,, 3]), rec(
pblock := [, 1, 4,, 3]), rec(
pblock := [, 2, 4,, 3]), rec(
pblock := [, 1, 5,, 3])

], identifier := "2.A5", operations := CharTableOps, fusionsource :=
["P2/G1/L1/V1/ext2", "P2/G1/L1/V1/ext3", "P2/G2/L1/V1/ext2",

"P2/G2/L1/V1/ext3", "P2/G2/L1/V2/ext2"], name := "2.A5", size :=
120, order := 120, classes := [1, 1, 30, 20, 20, 12, 12, 12, 12
], orders := [1, 2, 4, 3, 6, 5, 10, 5, 10])

gap> DisplayCharTable(t);
2.A5

2 3 3 2 1 1 1 1 1 1
3 1 1 . 1 1
5 1 1 . . . 1 1 1 1

1a 2a 4a 3a 6a 5a 10a 5b 10b
2P 1a 1a 2a 3a 3a 5b 5b 5a 5a
3P 1a 2a 4a 1a 2a 5b 10b 5a 10a
5P 1a 2a 4a 3a 6a 1a 2a 1a 2a

X.1 1 1 1 1 1 1 1 1 1
X.2 3 3 -1 . . A A *A *A
X.3 3 3 -1 . . *A *A A A
X.4 4 4 . 1 1 -1 -1 -1 -1
X.5 5 5 1 -1 -1

48.3. BRAUER TABLE RECORDS 825

X.6 2 -2 . -1 1 -A A -*A *A
X.7 2 -2 . -1 1 -*A *A -A A
X.8 4 -4 . 1 -1 -1 1 -1 1
X.9 6 -6 . . . 1 -1 1 -1

A = -E(5)-E(5)^4
= (1-ER(5))/2 = -b5

48.3 Brauer Table Records

Brauer table records are similar to the records which represent ordinary character tables.
They contain many of the well–known record components, like identifier, centralizers,
irreducibles etc.; but there are two kinds of differences:

First, the operations record is BrauerTableOps instead of CharTableOps (see 48.7). Second,
there are two extra components, namely

ordinary, which contains the ordinary character table corresponding to the Brauer table,
and

blocks, which reflects the block information; it is a list of records with components

defect
the defect of the block,

ordchars
a list of integers indexing the ordinary irreducibles in the block,

modchars
a list of integers indexing the Brauer characters in the block,

basicset
a list of integers indexing the ordinary irreducibles of a basic set; note that the indices
refer to the positions in the whole irreducibles list of the ordinary table, not to the
positions in the block,

decinv
the inverse of the restriction of the decomposition matrix of the block to the basic set
given by the basicset component, and possibly

brauertree
if exists, a list that represents the decomposition matrix which in this case is viewed
as incidence matrix of a tree (the so–called Brauer tree); the entries of the list corre-
spond to the edges of the tree, they refer to positions in the block, not in the whole
irreducibles list of the tables. Brauer trees are mainly used to store the information
in a more compact way than by decomposition matrices, planar embeddings etc. are
not (or not yet) included.

Note that Brauer tables in the library have different format (see 52.6).

We give an example:

gap> PrintCharTable(CharTable("M11") mod 11);
rec(identifier := "M11mod11", text := "origin: modular ATLAS of finit\
e groups, tests: DEC, TENS", prime := 11, size :=

826 CHAPTER 48. CHARACTER TABLES

7920, centralizers := [7920, 48, 18, 8, 5, 6, 8, 8], orders :=
[1, 2, 3, 4, 5, 6, 8, 8], classes :=
[1, 165, 440, 990, 1584, 1320, 990, 990], powermap :=
[, [1, 1, 3, 2, 5, 3, 4, 4], [1, 2, 1, 4, 5, 2, 7, 8],,
[1, 2, 3, 4, 1, 6, 8, 7],,,,,, [1, 2, 3, 4, 5, 6, 7, 8]

], fusions := [rec(
name := "M11",
map := [1, 2, 3, 4, 5, 6, 7, 8],
type := "choice")], irreducibles :=

[[1, 1, 1, 1, 1, 1, 1, 1], [9, 1, 0, 1, -1, -2, -1, -1],
[10, -2, 1, 0, 0, 1, E(8)+E(8)^3, -E(8)-E(8)^3],
[10, -2, 1, 0, 0, 1, -E(8)-E(8)^3, E(8)+E(8)^3],
[11, 3, 2, -1, 1, 0, -1, -1], [16, 0, -2, 0, 1, 0, 0, 0],
[44, 4, -1, 0, -1, 1, 0, 0], [55, -1, 1, -1, 0, -1, 1, 1]

], irredinfo := [rec(
), rec(
), rec(
), rec(
), rec(
), rec(
), rec(
), rec(
)], blocks := [rec(
defect := 1,
ordchars := [1, 2, 3, 4, 6, 7, 9],
modchars := [1, 2, 3, 4, 6],
decinv :=
[[1, 0, 0, 0, 0], [-1, 1, 0, 0, 0], [0, 0, 1, 0, 0],

[0, 0, 0, 1, 0], [0, 0, 0, 0, 1]],
basicset := [1, 2, 3, 4, 6],
brauertree :=
[[1, 2], [2, 7], [3, 7], [4, 7], [5 .. 7]]), rec(
defect := 0,
ordchars := [5],
modchars := [5],
decinv := [[1]],
basicset := [5]), rec(
defect := 0,
ordchars := [8],
modchars := [7],
decinv := [[1]],
basicset := [8]), rec(
defect := 0,
ordchars := [10],
modchars := [8],
decinv := [[1]],
basicset := [10])

], ordinary := CharTable("M11"), operations := BrauerTableOps, orde\

48.4. ISCHARTABLE 827

r := 7920, name := "M11mod11", automorphisms := Group((7,8)))

48.4 IsCharTable

IsCharTable(obj)

returns true if obj is a record with fields centralizers (a list) and identifier (a string),
otherwise it returns false.

gap> IsCharTable(rec(centralizers:= [2,2], identifier:= "C2"));
true

There is one exception: If the record does not contain an identifier component, but a name
component instead, then the function returns true. Note, however, that this exception will
disappear in forthcoming GAP versions.

48.5 PrintCharTable

PrintCharTable(tbl)

prints the information stored in the character table tbl in a format that is GAP readable.
The call can be used as argument of PrintTo in order to save the table to a file.

gap> t:= CharTable("Cyclic", 3);
CharTable("C3")
gap> PrintCharTable(t);
rec(identifier := "C3", name := "C3", size := 3, order :=
3, centralizers := [3, 3, 3], orders := [1, 3, 3], powermap :=
[,, [1, 1, 1]], irreducibles :=
[[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]
], classparam := [[1, 0], [1, 1], [1, 2]], irredinfo :=
[rec(

charparam := [1, 0]), rec(
charparam := [1, 1]), rec(
charparam := [1, 2])

], text := "computed using generic character table for cyclic groups"\
, classes := [1, 1, 1], operations := CharTableOps, fusions :=
[], fusionsource := [], projections := [], projectionsource :=
[])

48.6 TestCharTable

TestCharTable(tbl)

checks the character table tbl
if tbl.centralizers, tbl.classes, tbl.orders and the entries of tbl.powermap have
same length,
if the product of tbl.centralizers[i] with tbl.classes[i] is equal to tbl.order,
if tbl.orders[i] divides tbl.centralizers[i],
if the entries of tbl.classnames and the corresponding record fields are consistent,
if the first orthogonality relation for tbl.irreducibles is satisfied,
if the centralizers agree with the sums of squared absolute values of tbl.irreducibles

828 CHAPTER 48. CHARACTER TABLES

and
if powermaps and representative orders are consistent.

If no inconsistency occurs, true is returned, otherwise each error is signalled, and false is
returned at the end.

gap> t:= CharTable("A5");; TestCharTable(t);
true
gap> t.irreducibles[2]:= t.irreducibles[3] - t.irreducibles[1];;
gap> TestCharTable(t);
#E TestCharTable(A5): Scpr(., X[2], X[1]) = -1
#E TestCharTable(A5): Scpr(., X[2], X[2]) = 2
#E TestCharTable(A5): Scpr(., X[3], X[2]) = 1
#E TestCharTable(A5): centralizer orders inconsistent with irreducibles
false

48.7 Operations Records for Character Tables

Although a character table is not a domain (see 48.1), it needs an operations record. That for
ordinary character tables is CharTableOps, that for Brauer tables is BrauerTableOps.
The functions in these records are listed in section 48.8.

In the following two cases it may be useful to overlay these functions.

Character tables are printed using the Print component, one can for example replace the
default Print by 48.37 DisplayCharTable.

Whenever a library function calls the scalar product this is the ScalarProduct field of the
operations record, so one can replace the default function (see 50.1) by a more efficient one
for special cases.

48.8 Functions for Character Tables

The following polymorphic functions are overlaid in the operations record of character
tables. They are listed in alphabetical order.

AbelianInvariants(tbl)

Agemo(tbl, p)

Automorphisms(tbl)

Centre(tbl)

CharacterDegrees(tbl)

DerivedSubgroup(tbl)

Display(tbl)

ElementaryAbelianSeries(tbl)

Exponent(tbl)

FittingSubgroup(tbl)

FrattiniSubgroup(tbl)

FusionConjugacyClasses(tbl1, tbl2)

48.9. OPERATORS FOR CHARACTER TABLES 829

Induced

IsAbelian(tbl)

IsCyclic(tbl)

IsNilpotent(tbl)

IsSimple(tbl)

IsSolvable(tbl)

IsSupersolvable(tbl)

LowerCentralSeries(tbl)

MaximalNormalSubgroups(tbl)

NoMessageScalarProduct(tbl, chi1, chi2)

NormalClosure(tbl, classes)

NormalSubgroups(tbl)

Print(tbl)

Restricted

ScalarProduct(tbl, chi1, chi2)

Size(tbl)

SizesConjugacyClasses(tbl)

SupersolvableResiduum(tbl)

UpperCentralSeries(tbl)

48.9 Operators for Character Tables

The following operators are defined for character tables.

tbl1 * tbl2
direct product of two character tables (see 48.17),

tbl / list
table of the factor group modulo the classes in the list list (see 48.15),

tbl mod p
p–modular table corresponding to tbl (see 48.12).

48.10 Conventions for Character Tables

The following few conventions should be noted:

The identity element is expected to be in the first class.

Characters are lists of cyclotomics (see Chapter 13) or unknowns (see chapter 17); they
do not physically “belong” to a table, so when necessary, functions “regard” them as
characters of a table which is given as another parameter.

830 CHAPTER 48. CHARACTER TABLES

Conversely , most functions that take a character table as a parameter and work with
characters expect these characters as a parameter, too.

Some functions, however, expect the characters to be stored in the irreducibles
field of the table (e.g. 48.6 TestCharTable) or allow application either to a list of
characters given by a parameter or to the irreducibles field (e.g. 50.7 Indicator)
if this parameter is missing.

The trivial character need not be the first one in a list of characters.

Sort convention: Whenever 48.39 SortClassesCharTable or 48.40 SortCharTable is
used to sort the classes of a character table, the fusions into that table are not ad-
justed; only the permutation field of the sorted table will be actualized.

If one handles fusions only using 48.45 GetFusionMap and 48.46 StoreFusion, the
maps are adjusted automatically with respect to the value of the field permutation of
the destination table. So one should not change this field by hand. Fusion maps that
are entered explicitly (e.g. because they are not stored on a table) are expected to be
sorted, they will not be adjusted.

48.11 Getting Character Tables

There are in general four different ways to get a character table which GAP already “knows”:
You can either

read a file that contains the table record,
construct the table using generic formulae,
derive it from known tables or
use a presentation or representation of the group.

The first two methods are used by 48.12 CharTable. For the conception of generic character
tables, see chapter 49. Note that library files often contain something that is much different
from the tables returned by CharTable, see chapter 52. Especially see 52.2.

As for the third method, some generic ways to derive a character table are implemented:
One can obtain it as table of a factor group where the table of the group is given (see
48.15),
for given tables the table of the direct product can be constructed (see 48.17),
the restriction of a table to the p-regular classes can be formed (see 48.19),
for special cases, an isoclinic table of a given table can be constructed (see 48.20),
the splitting and fusion of classes may be viewed as a generic process (see 48.21,
48.22).

At the moment, for the last method there are algorithms dealing with arbitrary groups (see
48.12), and with finite polycyclic groups with special properties (see 48.26).

Note that whenever fusions between tables occur in these functions, they are stored on the
concerned tables, and the fusionsource fields are updated (see 48.2).

48.12. CHARTABLE 831

48.12 CharTable

CharTable(G)
CharTable(tblname)
CharTable(series, parameter1, parameter2 ...)

CharTable(G)

returns the character table of the group G . If G.name is bound, the table is baptized the
same. Otherwise it is given the identifier component "" (empty string). This is necessary
since every character table needs an identifier in GAP (see 48.4).

CharTable first computes the linear characters, using the commutator factor group. If
irreducible characters are missing afterwards, they are computed using the algorithm of
Dixon and Schneider (see [Dix67] and [Sch90]).

gap> M11 := Group((1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6));;
gap> M11.name := "M11";;
gap> PrintCharTable(CharTable(M11));
rec(size := 7920, centralizers := [7920, 11, 11, 8, 48, 8, 8, 18,
5, 6], orders := [1, 11, 11, 4, 2, 8, 8, 3, 5, 6], classes :=

[1, 720, 720, 990, 165, 990, 990, 440, 1584, 1320], irreducibles :=
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[10, -1, -1, 2, 2, 0, 0, 1, 0, -1],
[10, -1, -1, 0, -2, E(8)+E(8)^3, -E(8)-E(8)^3, 1, 0, 1],
[10, -1, -1, 0, -2, -E(8)-E(8)^3, E(8)+E(8)^3, 1, 0, 1],
[11, 0, 0, -1, 3, -1, -1, 2, 1, 0],
[16, E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10,

E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9, 0, 0, 0, 0, -2, 1, 0],
[16, E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9,

E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10, 0, 0, 0, 0, -2, 1, 0]
, [44, 0, 0, 0, 4, 0, 0, -1, -1, 1],

[45, 1, 1, 1, -3, -1, -1, 0, 0, 0],
[55, 0, 0, -1, -1, 1, 1, 1, 0, -1]

], operations := CharTableOps, identifier := "M11", order :=
7920, name := "M11", powermap :=
[, [1, 3, 2, 5, 1, 4, 4, 8, 9, 8], [1, 2, 3, 4, 5, 6, 7, 1, 9, 5]

,, [1, 2, 3, 4, 5, 7, 6, 8, 1, 10],,
[1, 3, 2, 4, 5, 7, 6, 8, 9, 10],,,,
[1, 1, 1, 4, 5, 6, 7, 8, 9, 10]], galomorphisms := Group(

(6, 7),
(2, 3)), text := "origin: Dixon’s Algorithm", group := M11)

The columns of the table will be sorted in the same order, as the classes of the group,
thus allowing a bijection between group and table. If the conjugacy classes are bound
in G.conjugacyClasses the order is not changed. Otherwise the routine itself computes
the classes. One can sort them in the canonical way, using SortClassesCharTable (see
48.39). If an entry G.charTable exists the routine uses information contained in this
table. This also provides a facility for entering known characters, but then the user assumes
responsibility for the correctness of the characters (There is little use in providing the trivial
character to the routine).

832 CHAPTER 48. CHARACTER TABLES

Note: The algorithm binds the record component galomorphisms of the character ta-
ble. This is a permutation group generated by the Galois-morphisms only. If there
is no automorphisms component in the table then this group is used by routines like
SubgroupFusion.

The computation of character tables needs to identify the classes of group elements very
often, so it can be helpful to store a class list of all group elements. Since this is obviously
limited by the group size, it is controlled by the global variable LARGEGROUPORDER, which is
set by standard to 10000. If the group is smaller, the class map is stored. Otherwise each
occuring element is identified individually.

Limitations: At the moment there is a limitation to the group size given by the following
condition: the routine computes in a prime field of size p. p is a prime number, such that
the exponent of the group divides (p− 1) and such that 2

√
|G| < p. At the moment, GAP

provides only prime fields up to size 65535.

The routine also sets up a component G.dixon. Using this component, routines that identify
classes, for example FusionConjugacyClasses, will work much faster. When interrupting
the algorithm, however, a neccessary cleanup has not taken place. Thus you should call
Unbind(G.dixon) to avoid possible further confusion. This is also a good idea because
G.dixon may become very large. When the computation by CharTable is complete, this
record is shrunk to an acceptable size, something that could not be done when interrupting.

CharTable(tblname)

If the only parameter is a string tblname and this is an admissible name of a library table,
CharTable returns this library table, otherwise false. A call of CharTable may cause to
read some library files and to construct the table from the data in the files, see chapter 52
for the details.

Admissible names for the ordinary character table tbl of the group grp are

• the ATLAS name if tbl is an ATLAS table (see 52.3), e.g., M22 for the table of the
Mathieu group M22, L2(13) for L2(13) and 12 1.U4(3).2 1 for 121.U4(3).21,

• the names that were admissible for tables of grp in CAS if the CAS table library
contained a table of grp, e.g., sl42 for the table of the alternating group A8 (but note
that the table may be different from that in CAS, see 52.5) and

• some “relative” names:

For grp the n–th maximal subgroup (in decreasing group order) of a sporadic simple
group with admissible name name, nameMn is admissible for tbl , e.g., J3M2 for the
second maximal subgroup of the Janko group J3 which has the name J3.

For grp a nontrivial Sylow normalizer of a sporadic simple group with admissible name
name, where nontrivial means that the group is not contained in p:(p − 1), nameNp
is an admissible name of tbl , e.g., J4N11 for the Sylow 11 normalizer of the Janko
group J4.

In a few cases, the table of the Sylow p subgroup of grp is accessible by nameSylp
where name is an admissible name of the table of grp, e.g., A11Syl2 for the Sylow 2
subgroup of the alternating group A11.

48.12. CHARTABLE 833

In a few cases, the table of an element centralizer of grp is accessible by nameCcl
where name is an admissible name of the table of grp, e.g., M11C2 for an involution
centralizer in the Mathieu group M11.

Admissible names for a Brauer table tbl (modulo the prime p) are all names namemodp
where name is admissible for the corresponding ordinary table, e.g., M12mod11 for the 11
modular table of M12, and L2(25).2 1mod3 for the 3 modular table of L2(25).21. Brauer
tables in the library can be got also from the underlying ordinary table using the mod
operator, as in the following example.

gap> CharTable("A5") mod 2;
CharTable("A5mod2")

Generic tables are accessible only by the name given by their identifier component (see
below).

Case is not significant for table names, e.g., suzm3 and SuzM3 are both admissible names
for the third maximal subgroup of the sporadic Suzuki group.

The admissible names reflect the structure of the libraries, see 52.1 and 52.6.

gap> CharTable("A5.2");; # returns the character table of the
symmetric group on five letters
(in ATLAS format)

gap> CharTable("Symmetric");; # returns the generic table of the
symmetric group

gap> CharTable("J5");
#E CharTableLibrary: no library table with name ’J5’
false

If CharTable is called with more than one parameter, the first must be a string specifying
a series of groups which is implemented via a generic character table (see chapter 49), e.g.
"Symmetric" for the symmetric groups; the following parameters specialise the required
member of the series:

gap> CharTable("Symmetric", 5);; # the table of the symmetric
group S5 (got by specializing
the generic table)

These are the valid calls of CharTable with parameter series:

CharTable("Alternating", n)
returns the table of the alternating group on n letters,

CharTable("Cyclic", n)
returns the table of the cyclic group of order n,

CharTable("Dihedral", 2n)
returns the table of the dihedral group of order 2n,

CharTable("GL", 2, q)
returns the table of the general linear group GL(2, q) for a prime power q ,

CharTable("GU", 3, q)
returns the table of the general unitary group GU(3, q) for a prime power q ,

834 CHAPTER 48. CHARACTER TABLES

CharTable("P:Q", [p, q])
returns the table of the extension of the cyclic group of prime order p by a cyclic
group of order q where q divides p− 1,

CharTable("PSL", 2, q)
returns the table of the projective special linear group PSL(2, q) for a prime power q ,

CharTable("SL", 2, q)
returns the table of the special linear group SL(2, q) for a prime power q ,

CharTable("SU", 3, q)
returns the table of the special unitary group SU(3, q) for a prime power q ,

CharTable("Quaternionic", 4n)
returns the table of the quaternionic (dicyclic) group of order 4n,

CharTable("Suzuki", q)
returns the table of the Suzuki group Sz(q) =2 B2(q) for q an odd power of 2,

CharTable("Symmetric", n)
returns the table of the symmetric group on n letters.

CharTable("WeylB", n)
returns the table of the Weyl group of type Bn.

CharTable("WeylD", n)
returns the table of the Weyl group of type Dn.

48.13 Advanced Methods for Dixon Schneider Calcula-
tions

The computation of character tables of very large groups may take quite some time. On
the other hand, for the expert only a few irreducible characters may be needed, since the
other ones can be computed using character theoretic methods like tensoring, induction,
and restriction. Thus GAP provides also step-by-step routines for doing the calculations,
that will allow to compute some characters, and stop before all are calculated. Note that
there is no ’safety net’, i.e., the routines, being somehow internal, do no error checking, and
assume the information given are correct.

When the global variable InfoCharTable1 if set to Print, information about the progress
of splitting is printed. The default value of InfoCharTable1 is Ignore.

DixonInit(G)

does the setup for the computation of characters: It computes conjugacy classes, power maps
and linear characters (in the case of AgGroups it also contains a call of CharTablePGroup).
DixonInit returns a special record D (see below), which stores all informations needed for
the further computations. The power maps are computed for all primes smaller than the ex-
ponent of G , thus allowing to induce the characters of all cyclic subgroups by InducedCyclic
(see 50.23). For internal purposes, the algorithm uses a permuted arrangement of the classes
and probably a different —but isomorphic— group. It is possible to obtain different informa-
tions about the progress of the splitting process as well as the partially computed character
table from the record D .

48.13. ADVANCED METHODS FOR DIXON SCHNEIDER CALCULATIONS 835

DixontinI(D)

is the reverse function: It takes a Dixon record D and returns the old group G . It also does
the cleanup of D . The returned group contains the component charTable, containing the
character table as far as known. The classes are arranged in the same way, as the classes of
G .
DixonSplit(D)

will do the main splitting task: It chooses a class and splits the character spaces using the
corresponding class matrix. Characters are computed as far as possible.
CombinatoricSplit(D)

tries to split two-dimensional character spaces by combinatoric means. It is called automat-
ically by DixonSplit. A separate call can be useful, when new characters have been found,
that reduce the size of the character spaces.
IncludeIrreducibles(D, list)

If you have found irreducible characters by other means —like tensoring etc.— you must
not include them in the character table yourself, but let them include, using this routine.
Otherwise GAP would lose control of the characters yet known. The characters given in
list must be according to the arrangement of classes in D . GAP will automatically take the
closure of list under the galoisgroup and tensor products with one-dimensional characters.
SplitCharacters(D, list)

This routine decomposes the characters, given in list according to the character spaces
found up to this point. By applying this routine to tensor products etc., it may result in
characters with smaller norm, even irreducible ones. Since the recalculation of characters is
only possible, if the degree is small enough, the splitting process is applied only to characters
of sufficiently small degree.
Some notes on the record D returned by DixonInit:
This record stores several items of mainly internal interest. There are some entries, however,
that may be useful to know about when using the advanced methods described above. The
computation need not to take place in the original group, but in an isomorphic image W .
This may be the same group as the group given, but — depending on the group — also
a new one. Additionally the initialisation process will create a new list of the conjugacy
classes with possibly different arrangement. For access to these informations, the following
record components of the “Dixon Record”D might be of interest:
group

the group W ,
oldG

the group G , of which the character table is to be computed,
conjugacyClasses

classes of W ; this list contains the same classes as W .conjugacyClasses, only the
arrangement is different,

charTable
contains the partially computed character table. The classes are arranged according
to D.conjugacyClasses,

classPermutation
permutation to apply to the classes to obtain the old arrangement.

836 CHAPTER 48. CHARACTER TABLES

48.14 An Example of Advanced Dixon Schneider Cal-
culations

First, we set

gap> InfoCharTable1 := Print;;

for printout of some internal results. We now define our group, which is isomorphic to
PSL4(3) (we use a permutation representation of PSL4(3) instead of matrices since this will
speed up the computations).

gap> g := PrimitiveGroup(40,5);
PSL(4,3)
gap> Size(g);
6065280
gap> d := DixonInit(g);;
#I 29 classes
gap> c := d.charTable;;

After the initialisation, one structure matrix is evaluated, yielding smaller spaces and several
irreducible characters.

gap> DixonSplit(d);
#I Matrix 2, Representative of Order 3, Centralizer: 5832
#I Dimensions: [1, 12, 2, 2, 4, 2, 1, 1, 1, 1, 1]
#I Two-dim space split
#I Two-dim space split
#I Two-dim space split

In this case spaces of the listed dimensions are a result of the splitting process. The three
two dimensional spaces are split successfully by combinatoric means.

We obtain several characters by tensor products and notify them to the program. The tensor
products of the nonlinear characters are reduced with the irreducible characters. The result
is split according to the spaces found, which yields characters of smaller norms, but no new
irreducibles.

gap> asp:= AntiSymmetricParts(c, c.irreducibles, 2);;
gap> ro:= ReducedOrdinary(c, c.irreducibles, asp);;
gap> Length(ro.irreducibles);
3
gap> IncludeIrreducibles(d, ro.irreducibles);
gap> nlc:= Filtered(c.irreducibles, i -> i[1] > 1);;
gap> t:= Tensored(nlc, nlc);;
gap> ro:= ReducedOrdinary(c, c.irreducibles, t);; ro.irreducibles;
[]
gap> List(ro.remainders, i -> ScalarProduct(c, i, i));
[2, 2, 4, 4, 4, 4, 13, 13, 18, 18, 19, 21, 21, 36, 36, 29, 34, 34,

42, 34, 48, 54, 62, 68, 68, 78, 84, 84, 88, 90, 159, 169, 169, 172,
172, 266, 271, 271, 268, 274, 274, 280, 328, 373, 373, 456, 532,
576, 679, 683, 683, 754, 768, 768, 890, 912, 962, 1453, 1453, 1601,
1601, 1728, 1739, 1739, 1802, 2058, 2379, 2414, 2543, 2744, 2744,

48.15. CHARTABLEFACTORGROUP 837

2920, 3078, 3078, 4275, 4275, 4494, 4760, 5112, 5115, 5115, 5414,
6080, 6318, 7100, 7369, 7369, 7798, 8644, 10392, 12373, 12922,
14122, 14122, 18948, 21886, 24641, 24641, 25056, 38942, 44950,
78778]

gap> t := SplitCharacters(d, ro.remainders);;
gap> List(t, i -> ScalarProduct(c, i, i));
[2, 2, 4, 2, 2, 4, 4, 3, 6, 5, 5, 9, 9, 4, 12, 13, 18, 18, 18, 26,
32, 32, 16, 42, 36, 84, 84, 88, 90, 159, 169, 169, 172, 172, 266,
271, 271, 268, 274, 274, 280, 328, 373, 373, 456, 532, 576, 679,
683, 683, 754, 768, 768, 890, 912, 962, 1453, 1453, 1601, 1601,
1728, 1739, 1739, 1802, 2058, 2379, 2414, 2543, 2744, 2744, 2920,
3078, 3078, 4275, 4275, 4494, 4760, 5112, 5115, 5115, 5414, 6080,
6318, 7100, 7369, 7369, 7798, 8644, 10392, 12373, 12922, 14122,
14122, 18948, 21886, 24641, 24641, 25056, 38942, 44950, 78778]

Finally we calculate the characters induced from all cyclic subgroups and obtain the missing
irreducibles by applying the LLL-algorithm to them.

gap> ic:= InducedCyclic(c, "all");;
gap> ro:= ReducedOrdinary(c, c.irreducibles, ic);;
gap> Length(ro.irreducibles);
0
gap> l:= LLL(c, ro.remainders);;
gap> Length(l.irreducibles);
13
gap> IncludeIrreducibles(d, l.irreducibles);
gap> Length(c.irreducibles);
29
gap> Length(c.classes);
29

As the last step, we return to our original group.

gap> g:= DixontinI(d);
#I Total:1 matrices, [2]
PSL(4,3)
gap> c:= g.charTable;;
gap> List(c.irreducibles, i -> i[1]);
[1, 26, 26, 39, 52, 65, 65, 90, 234, 234, 260, 260, 260, 351, 390,
416, 416, 416, 416, 468, 585, 585, 640, 640, 640, 640, 729, 780,
1040]

gap> Sum(last, i -> i^2);
6065280

48.15 CharTableFactorGroup

CharTableFactorGroup(tbl, classes of normal subgroup)

returns the table of the factor group of tbl with respect to a particular normal subgroup:
If the list of irreducibles stored in tbl.irreducibles is complete, this normal subgroup is
the normal closure of classes of normal subgroup; otherwise it is the intersection of kernels

838 CHAPTER 48. CHARACTER TABLES

of those irreducibles stored on tbl which contain classes of normal subgroups in their kernel
–that may cause strange results.

gap> s4:= CharTable("Symmetric", 4);;
gap> PrintCharTable(CharTableFactorGroup(s4, [3]));
rec(size := 6, identifier := "S4/[3]", order :=
6, name := "S4/[3]", centralizers := [6, 2, 3], powermap :=
[, [1, 1, 3], [1, 2, 1]], fusions := [], fusionsource :=
["S4"], irreducibles := [[1, -1, 1], [2, 0, -1], [1, 1, 1]
], orders := [1, 2, 3], classes :=
[1, 3, 2], operations := CharTableOps)
gap> s4.fusions;
[rec(

map := [1, 2, 1, 3, 2],
type := "factor",
name := "S4/[3]")]

48.16 CharTableNormalSubgroup

CharTableNormalSubgroup(tbl, normal subgroup)

returns the restriction of the character table tbl to the classes in the list normal subgroup.
This table is an approximation of the character table of this normal subgroup. It has compo-
nents order, identifier, centralizers, orders, classes, powermap, irreducibles (con-
tains the set of those restrictions of irreducibles of tbl which are irreducible), and fusions
(contains the fusion in tbl).

In most cases, some classes of the normal subgroup must be split, see 48.21.

gap> s5:= CharTable("A5.2");;
gap> s3:= CharTable("Symmetric", 3);;
gap> SortCharactersCharTable(s3);;
gap> s5xs3:= CharTableDirectProduct(s5, s3);;
gap> nsg:= [1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20];;
gap> sub:= CharTableNormalSubgroup(s5xs3, nsg);;
#I CharTableNormalSubgroup: classes in [8] necessarily split
gap> PrintCharTable(sub);
rec(identifier := "Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 2\
0])", size :=
360, name := "Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20])",\
order := 360, centralizers := [360, 180, 24, 12, 18, 9, 15, 15/2,
12, 4, 6], orders := [1, 3, 2, 6, 3, 3, 5, 15, 2, 4, 6

], powermap := [, [1, 2, 1, 2, 5, 6, 7, 8, 1, 3, 5],
[1, 1, 3, 3, 1, 1, 7, 7, 9, 10, 9],,
[1, 2, 3, 4, 5, 6, 1, 2, 9, 10, 11]], classes :=

[1, 2, 15, 30, 20, 40, 24, 48, 30, 90, 60
], operations := CharTableOps, irreducibles :=
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1],
[2, -1, 2, -1, 2, -1, 2, -1, 0, 0, 0],
[6, 6, -2, -2, 0, 0, 1, 1, 0, 0, 0],

48.17. CHARTABLEDIRECTPRODUCT 839

[4, 4, 0, 0, 1, 1, -1, -1, 2, 0, -1],
[4, 4, 0, 0, 1, 1, -1, -1, -2, 0, 1],
[8, -4, 0, 0, 2, -1, -2, 1, 0, 0, 0],
[5, 5, 1, 1, -1, -1, 0, 0, 1, -1, 1],
[5, 5, 1, 1, -1, -1, 0, 0, -1, 1, -1],
[10, -5, 2, -1, -2, 1, 0, 0, 0, 0, 0]], fusions := [rec(

name := [’A’, ’5’, ’.’, ’2’, ’x’, ’S’, ’3’],
map := [1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20])])

48.17 CharTableDirectProduct

CharTableDirectProduct(tbl1, tbl2)

returns the character table of the direct product of the groups given by the character tables
tbl1 and tbl2 .

The matrix of irreducibles is the Kronecker product (see 34.6) of tbl1.irreducibles with
tbl2.irreducibles.

gap> c2:= CharTable("Cyclic", 2);; s2:= CharTable("Symmetric", 2);;
gap> SortCharactersCharTable(s2);;
gap> v4:= CharTableDirectProduct(c2, s2);;
gap> PrintCharTable(v4);
rec(size := 4, identifier := "C2xS2", centralizers :=
[4, 4, 4, 4], order := 4, name := "C2xS2", classparam :=
[[[1, 0], [1, [1, 1]]], [[1, 0], [1, [2]]],
[[1, 1], [1, [1, 1]]], [[1, 1], [1, [2]]]

], orders := [1, 2, 2, 2], powermap := [, [1, 1, 1, 1]
], irreducibles := [[1, 1, 1, 1], [1, -1, 1, -1],
[1, 1, -1, -1], [1, -1, -1, 1]], irredinfo := [rec(

charparam := [[1, 0], [1, [2]]]), rec(
charparam := [[1, 0], [1, [1, 1]]]), rec(
charparam := [[1, 1], [1, [2]]]), rec(
charparam := [[1, 1], [1, [1, 1]]])], charparam :=

[], fusionsource := [[’C’, ’2’], "S2"], fusions := [rec(
name := [’C’, ’2’],
map := [1, 1, 2, 2],
type := "factor"), rec(
name := "S2",
map := [1, 2, 1, 2],
type := "factor")], classes :=

[1, 1, 1, 1], operations := CharTableOps)
gap> c2.fusions;
[rec(

map := [1, 3],
type := "normal",
name := "C2xS2")]

Note: The result will contain those p-th powermaps for primes p where both tbl1 and
tbl2 contain the p-th powermap. Additionally, if one of the tables contains it, and p does
not divide the order of the other table, and the p-th powermap is uniquely determined

840 CHAPTER 48. CHARACTER TABLES

(see 51.12), it will be computed; then the table of the direct product will contain the p-th
powermap, too.

48.18 CharTableWreathSymmetric

CharTableWreathSymmetric(tbl, n)

returns the character table of the wreath product of an arbitrary group G with the full
symmetric group Sn, where tbl is the character table of G.

gap> c3:= CharTable("Cyclic", 3);;
gap> wr:= CharTableWreathSymmetric(c3, 2);;
gap> PrintCharTable(wr);
rec(size := 18, identifier := "C3wrS2", centralizers :=
[18, 9, 9, 18, 9, 18, 6, 6, 6], classes :=
[1, 2, 2, 1, 2, 1, 3, 3, 3], orders := [1, 3, 3, 3, 3, 3, 2, 6, 6
], irredinfo := [rec(

charparam := [[1, 1], [], []]), rec(
charparam := [[1], [1], []]), rec(
charparam := [[1], [], [1]]), rec(
charparam := [[], [1, 1], []]), rec(
charparam := [[], [1], [1]]), rec(
charparam := [[], [], [1, 1]]), rec(
charparam := [[2], [], []]), rec(
charparam := [[], [2], []]), rec(
charparam := [[], [], [2]])

], name := "C3wrS2", order := 18, classparam :=
[[[1, 1], [], []], [[1], [1], []],
[[1], [], [1]], [[], [1, 1], []],
[[], [1], [1]], [[], [], [1, 1]],
[[2], [], []], [[], [2], []], [[], [], [2]]

], powermap := [, [1, 3, 2, 6, 5, 4, 1, 4, 6],
[1, 1, 1, 1, 1, 1, 7, 7, 7]], irreducibles :=

[[1, 1, 1, 1, 1, 1, -1, -1, -1],
[2, -E(3)^2, -E(3), 2*E(3), -1, 2*E(3)^2, 0, 0, 0],
[2, -E(3), -E(3)^2, 2*E(3)^2, -1, 2*E(3), 0, 0, 0],
[1, E(3), E(3)^2, E(3)^2, 1, E(3), -1, -E(3), -E(3)^2],
[2, -1, -1, 2, -1, 2, 0, 0, 0],
[1, E(3)^2, E(3), E(3), 1, E(3)^2, -1, -E(3)^2, -E(3)],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, E(3), E(3)^2, E(3)^2, 1, E(3), 1, E(3), E(3)^2],
[1, E(3)^2, E(3), E(3), 1, E(3)^2, 1, E(3)^2, E(3)]

], operations := CharTableOps)

gap> DisplayCharTable(wr);
C3wrS2

2 1 . . 1 . 1 1 1 1
3 2 2 2 2 2 2 1 1 1

48.19. CHARTABLEREGULAR 841

1a 3a 3b 3c 3d 3e 2a 6a 6b
2P 1a 3b 3a 3e 3d 3c 1a 3c 3e
3P 1a 1a 1a 1a 1a 1a 2a 2a 2a

X.1 1 1 1 1 1 1 -1 -1 -1
X.2 2 A /A B -1 /B . . .
X.3 2 /A A /B -1 B . . .
X.4 1 -/A -A -A 1 -/A -1 /A A
X.5 2 -1 -1 2 -1 2 . . .
X.6 1 -A -/A -/A 1 -A -1 A /A
X.7 1 1 1 1 1 1 1 1 1
X.8 1 -/A -A -A 1 -/A 1 -/A -A
X.9 1 -A -/A -/A 1 -A 1 -A -/A

A = -E(3)^2
= (1+ER(-3))/2 = 1+b3

B = 2*E(3)
= -1+ER(-3) = 2b3

The record component classparam contains the sequences of partitions that parametrize
the classes as well as the characters of the wreath product. Note that this parametrization
prevents the principal character from being the first one in the list irreducibles.

48.19 CharTableRegular

CharTableRegular(tbl, prime)

returns the character table consisting of the prime-regular classes of the character table tbl .

gap> a5:= CharTable("Alternating", 5);;
gap> PrintCharTable(CharTableRegular(a5, 2));
rec(identifier := "Regular(A5,2)", prime := 2, size := 60, orders :=
[1, 3, 5, 5], centralizers := [60, 3, 5, 5], powermap :=
[, [1, 2, 4, 3], [1, 1, 4, 3],, [1, 2, 1, 1]], fusions :=
[rec(

map := [1, 3, 4, 5],
type := "choice",
name := "A5")

], ordinary := CharTable("A5"), operations := CharTableOps, order :\
= 60, name := "Regular(A5,2)", classes := [1, 20, 12, 12])
gap> a5.fusionsource;
["Regular(A5,2)"]

48.20 CharTableIsoclinic

CharTableIsoclinic(tbl)
CharTableIsoclinic(tbl, classes of normal subgroup)

842 CHAPTER 48. CHARACTER TABLES

If tbl is a character table of a group with structure 2.G.2 with a unique central subgroup of
order 2 and a unique subgroup of index 2, CharTableIsoclinic(tbl) returns the table of
the isoclinic group (see [CCN+85, Chapter 6, Section 7]); if the subgroup of index 2 is not
unique, it must be specified by enumeration of its classes in classes of normal subgroup.

gap> d8:= CharTable("Dihedral", 8);;
gap> PrintCharTable(CharTableIsoclinic(d8, [1, 2, 3]));
rec(identifier := "Isoclinic(D8)", size := 8, centralizers :=
[8, 4, 8, 4, 4], classes := [1, 2, 1, 2, 2], orders :=
[1, 4, 2, 4, 4], fusions := [], fusionsource := [], powermap :=
[, [1, 3, 1, 3, 3]], irreducibles :=
[[1, 1, 1, 1, 1], [1, 1, 1, -1, -1], [1, -1, 1, 1, -1],
[1, -1, 1, -1, 1], [2, 0, -2, 0, 0]

], operations := CharTableOps, order := 8, name := "Isoclinic(D8)")

48.21 CharTableSplitClasses

CharTableSplitClasses(tbl, fusionmap)
CharTableSplitClasses(tbl, fusionmap, exponent)

returns a character table where the classes of the character table tbl are split according to
the fusion map fusionmap.

The two forms correspond to the two different situations to split classes:

CharTableSplitClasses(tbl, fusionmap)

If one constructs a normal subgroup (see 48.16), the order remains unchanged, powermaps,
classlengths and centralizer orders are changed with respect to the fusion, representative
orders and irreducibles are simply split. The “factor fusion” fusionmap to tbl is stored on
the result.

see example in 48.16
gap> split:= CharTableSplitClasses(sub,[1,2,3,4,5,6,7,8,8,9,10,11]);;
gap> PrintCharTable(split);
rec(identifier := "Split(Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14,\
17, 20]),[1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11])", size :=
360, order :=
360, name := "Split(Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 2\
0]),[1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11])", centralizers :=
[360, 180, 24, 12, 18, 9, 15, 15, 15, 12, 4, 6], classes :=
[1, 2, 15, 30, 20, 40, 24, 24, 24, 30, 90, 60], orders :=
[1, 3, 2, 6, 3, 3, 5, 15, 15, 2, 4, 6], powermap :=
[, [1, 2, 1, 2, 5, 6, 7, [8, 9], [8, 9], 1, 3, 5],
[1, 1, 3, 3, 1, 1, 7, 7, 7, 10, 11, 10],,
[1, 2, 3, 4, 5, 6, 1, 2, 2, 10, 11, 12]], irreducibles :=

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1],
[2, -1, 2, -1, 2, -1, 2, -1, -1, 0, 0, 0],
[6, 6, -2, -2, 0, 0, 1, 1, 1, 0, 0, 0],
[4, 4, 0, 0, 1, 1, -1, -1, -1, 2, 0, -1],
[4, 4, 0, 0, 1, 1, -1, -1, -1, -2, 0, 1],

48.21. CHARTABLESPLITCLASSES 843

[8, -4, 0, 0, 2, -1, -2, 1, 1, 0, 0, 0],
[5, 5, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1],
[5, 5, 1, 1, -1, -1, 0, 0, 0, -1, 1, -1],
[10, -5, 2, -1, -2, 1, 0, 0, 0, 0, 0, 0]], fusions := [rec(

name := "Rest(A5.2xS3,[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20])",
map := [1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11])

], operations := CharTableOps)
gap> # the table of (3×A5) :2 (incomplete)

CharTableSplitClasses(tbl, fusionmap, exponent)

To construct a downward extension is somewhat more complicated, since the new order,
representative orders, centralizer orders and classlengths are not known at the moment
when the classes are split. So the order remains unchanged, centralizer orders will just
be split, classlengths are divided by the number of image classes, and the representative
orders become parametrized with respect to the exponent exponent of the normal subgroup.
Power maps and irreducibles are computed from tbl and fusionmap, and the factor fusion
fusionmap to tbl is stored on the result.

gap> a5:= CharTable("Alternating", 5);;
gap> CharTableSplitClasses(a5, [1, 1, 2, 3, 3, 4, 4, 5, 5], 2);;
gap> PrintCharTable(last);
rec(identifier := "Split(A5,[1, 1, 2, 3, 3, 4, 4, 5, 5])", size :=
60, order :=
60, name := "Split(A5,[1, 1, 2, 3, 3, 4, 4, 5, 5])", centralizers :=\
[60, 60, 4, 3, 3, 5, 5, 5, 5], classes :=
[1/2, 1/2, 15, 10, 10, 6, 6, 6, 6], orders :=
[1, 2, [2, 4], [3, 6], [3, 6], [5, 10], [5, 10],
[5, 10], [5, 10]], powermap :=

[, [1, 1, [1, 2], [4, 5], [4, 5], [8, 9], [8, 9],
[6, 7], [6, 7]],

[1, 2, 3, [1, 2], [1, 2], [8, 9], [8, 9], [6, 7],
[6, 7]],,

[1, 2, 3, [4, 5], [4, 5], [1, 2], [1, 2], [1, 2],
[1, 2]]], irreducibles := [[1, 1, 1, 1, 1, 1, 1, 1, 1],

[4, 4, 0, 1, 1, -1, -1, -1, -1], [5, 5, 1, -1, -1, 0, 0, 0, 0],
[3, 3, -1, 0, 0, -E(5)-E(5)^4, -E(5)-E(5)^4, -E(5)^2-E(5)^3,

-E(5)^2-E(5)^3],
[3, 3, -1, 0, 0, -E(5)^2-E(5)^3, -E(5)^2-E(5)^3, -E(5)-E(5)^4,

-E(5)-E(5)^4]], fusions := [rec(
name := "A5",
map := [1, 1, 2, 3, 3, 4, 4, 5, 5])

], operations := CharTableOps)

Note that powermaps (and in the second case also the representative orders) may become
parametrized maps (see Chapter 51).

The inverse process of splitting is the fusion of classes, see 48.22.

844 CHAPTER 48. CHARACTER TABLES

48.22 CharTableCollapsedClasses

CharTableCollapsedClasses(tbl, fusionmap)

returns a character table where all classes of the character table tbl with equal images
under the map fusionmap are collapsed; the fields orders, classes, and the characters in
irreducibles are the images under fusionmap, the powermaps are obtained on conjugation
(see 51.9) with fusionmap, order remains unchanged, and centralizers arise from classes
and order.

The fusion to the returned table is stored on tbl .

gap> c3:= CharTable("Cyclic", 3);;
gap> t:= CharTableSplitClasses(c3, [1, 2, 2, 3, 3]);;
gap> PrintCharTable(t);
rec(identifier := "Split(C3,[1, 2, 2, 3, 3])", size := 3, order :=
3, name := "Split(C3,[1, 2, 2, 3, 3])", centralizers :=
[3, 6, 6, 6, 6], classes := [1, 1/2, 1/2, 1/2, 1/2], orders :=
[1, 3, 3, 3, 3], powermap := [,, [1, 1, 1, 1, 1]
], irreducibles :=
[[1, 1, 1, 1, 1], [1, E(3), E(3), E(3)^2, E(3)^2],
[1, E(3)^2, E(3)^2, E(3), E(3)]], fusions := [rec(

name := [’C’, ’3’],
map := [1, 2, 2, 3, 3])], operations := CharTableOps)

gap> c:= CharTableCollapsedClasses(t, [1, 2, 2, 3, 3]);;
gap> PrintCharTable(c);
rec(identifier := "Collapsed(Split(C3,[1, 2, 2, 3, 3]),[1, 2, 2, 3\
, 3])", size := 3, order :=
3, name := "Collapsed(Split(C3,[1, 2, 2, 3, 3]),[1, 2, 2, 3, 3])",\
centralizers := [3, 3, 3], orders := [1, 3, 3], powermap :=
[,, [1, 1, 1]], fusionsource := ["Split(C3,[1, 2, 2, 3, 3])"
], irreducibles := [[1, 1, 1], [1, E(3), E(3)^2],
[1, E(3)^2, E(3)]], classes :=

[1, 1, 1], operations := CharTableOps)

The inverse process of fusion is the splitting of classes, see 48.21.

48.23 CharDegAgGroup

CharDegAgGroup(G [, q])

CharDegAgGroup computes the degrees of irreducible characters of the finite polycyclic group
G over the algebraic closed field of characteristic q . The default value for q is zero. The
degrees are returned as a list of pairs, the first entry denoting a degree, and the second
denoting its multiplicity.

gap> g:= SolvableGroup(24, 15);
S4
gap> CharDegAgGroup(g);
[[1, 2], [2, 1], [3, 2]] # two linear characters, one of

degree 2, two of degree 3
gap> CharDegAgGroup(g, 3);

48.24. CHARTABLESSGROUP 845

[[1, 2], [3, 2]]

The algorithm bases on [Con90b]. It works for all solvable groups.

48.24 CharTableSSGroup

CharTableSSGroup(G)

CharTableSSGroup returns the character table of the supersolvable ag-group G and stores it
in G.charTable. If G is not supersolvable not all irreducible characters migth be calculated
and a warning will be printed out. The algorithm bases on [Con90a] and [Con90b].

All the characters calculated are monomial, so they are the induced of a linear character of
some subgroup of G . For every character the subgroup it is induced from and the kernel
the linear character has are written down in t.irredinfo[i].inducedFrom.subgroup and
t.irredinfo[i].inducedFrom.kernel.

gap> t:= CharTableSSGroup(SolvableGroup(8 , 5));;
gap> PrintCharTable(t);
rec(size := 8, classes := [1, 1, 2, 2, 2], powermap :=
[, [1, 1, 2, 2, 2]
], operations := CharTableOps, group := Q8, irreducibles :=
[[1, 1, 1, 1, 1], [1, 1, 1, -1, -1], [1, 1, -1, 1, -1],
[1, 1, -1, -1, 1], [2, -2, 0, 0, 0]], orders :=

[1, 2, 4, 4, 4], irredinfo := [rec(
inducedFrom := rec(

subgroup := Q8,
kernel := Q8)), rec(

inducedFrom := rec(
subgroup := Q8,
kernel := Subgroup(Q8, [b, c]))), rec(

inducedFrom := rec(
subgroup := Q8,
kernel := Subgroup(Q8, [a, c]))), rec(

inducedFrom := rec(
subgroup := Q8,
kernel := Subgroup(Q8, [a*b, c]))), rec(

inducedFrom := rec(
subgroup := Subgroup(Q8, [b, c]),
kernel := Subgroup(Q8, [])))], order :=

8, centralizers := [8, 8, 4, 4, 4
], identifier := "Q8", name := "Q8")

48.25 MatRepresentationsPGroup

MatRepresentationsPGroup(G)
MatRepresentationsPGroup(G [, int])

MatRepresentationsPGroup(G) returns a list of homomorphisms from the finite poly-
cyclic group G to irreducible complex matrix groups. These matrix groups form a system
of representatives of the complex irreducible representations of G .

846 CHAPTER 48. CHARACTER TABLES

MatRepresentationsPGroup(G, int) returns only the int-th representation.
Let G be a finite polycyclic group with an abelian normal subgroup N such that the fac-
torgroup G/N is supersolvable. MatRepresentationsPGroup uses the algorithm described
in [Bau91]. Note that for such groups all such representations are equivalent to monomial
ones, and in fact MatRepresentationsPGroup only returns monomial representations.
If G has not the property stated above, a system of representatives of irreducible representa-
tions and characters only for the factor group G/M can be computed using this algorithm,
where M is the derived subgroup of the supersolvable residuum of G . In this case first a
warning is printed. MatRepresentationsPGroup returns the irreducible representations of
G with kernel containing M then.

gap> g:= SolvableGroup(6, 2);
S3
gap> MatRepresentationsPGroup(g);
[GroupHomomorphismByImages(S3, Group([[1]]), [a, b],

[[[1]], [[1]]]), GroupHomomorphismByImages(S3, Group(
[[-1]]), [a, b], [[[-1]], [[1]]]),

GroupHomomorphismByImages(S3, Group([[0, 1], [1, 0]],
[[E(3), 0], [0, E(3)^2]]), [a, b],
[[[0, 1], [1, 0]], [[E(3), 0], [0, E(3)^2]]])]

CharTablePGroup can be used to compute the character table of a group with the above
properties (see 48.26).

48.26 CharTablePGroup

CharTablePGroup(G)

CharTablePGroup returns the character table of the finite polycyclic group G , and stores
it in G.charTable. Do not change the order of G.conjugacyClasses after having called
CharTablePGroup.
Let G be a finite polycyclic group with an abelian normal subgroup N such that the factor-
group G/N is supersolvable. CharTablePGroup uses the algorithm described in [Bau91].
If G has not the property stated above, a system of representatives of irreducible representa-
tions and characters only for the factor group G/M can be computed using this algorithm,
where M is the derived subgroup of the supersolvable residuum of G . In this case first a
warning is printed. CharTablePGroup returns an incomplete table containing exactly those
irreducibles with kernel containing M .

gap> t:= CharTablePGroup(SolvableGroup(8, 4));;
gap> PrintCharTable(t);
rec(size := 8, centralizers := [8, 8, 4, 4, 4], classes :=
[1, 1, 2, 2, 2], orders := [1, 2, 2, 2, 4], irreducibles :=
[[1, 1, 1, 1, 1], [1, 1, -1, 1, -1], [1, 1, 1, -1, -1],
[1, 1, -1, -1, 1], [2, -2, 0, 0, 0]

], operations := CharTableOps, order := 8, powermap :=
[, [1, 1, 1, 1, 2]
], identifier := "D8", name := "D8", group := D8)

MatRepresentationsPGroup can be used to compute representatives of the complex irre-
ducible representations (see 48.25).

48.27. INITCLASSESCHARTABLE 847

48.27 InitClassesCharTable

InitClassesCharTable(tbl)

returns the list of conjugacy class lengths of the character table tbl , and assigns it to the
field tbl.classes; the classlengths are computed from the centralizer orders of tbl .

InitClassesCharTable is called automatically for tables that are read from the library (see
48.12) or constructed as generic character tables (see 49).

gap> t:= rec(centralizers:= [2, 2], identifier:= "C2");;
gap> InitClassesCharTable(t); t;
[1, 1]
rec(
centralizers := [2, 2],
identifier := "C2",
classes := [1, 1])

48.28 InverseClassesCharTable

InverseClassesCharTable(tbl)

returns the list mapping each class of the character table tbl to its inverse class. This list
can be regarded as (-1)-st powermap; it is computed using tbl.irreducibles.

gap> InverseClassesCharTable(CharTable("L3(2)"));
[1, 2, 3, 4, 6, 5]

48.29 ClassNamesCharTable

ClassNamesCharTable(tbl)

ClassNamesCharTable computes names for the classes of the character table tbl as strings
consisting of the order of an element of the class and and least one distinguishing letter.

The list of these names at the same time is returned by this function and stored in the table
tbl as record component classnames.

Moreover for each class a component with its name is constructed, containing the position
of this name in the list classnames as its value.

gap> c3:= CharTable("Cyclic", 3);;
gap> ClassNamesCharTable(c3);
["1a", "3a", "3b"]
gap> PrintCharTable(c3);
rec(identifier := "C3", name := "C3", size := 3, order :=
3, centralizers := [3, 3, 3], orders := [1, 3, 3], powermap :=
[,, [1, 1, 1]], irreducibles :=
[[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]
], classparam := [[1, 0], [1, 1], [1, 2]], irredinfo :=
[rec(

charparam := [1, 0]), rec(
charparam := [1, 1]), rec(
charparam := [1, 2])

848 CHAPTER 48. CHARACTER TABLES

], text := "computed using generic character table for cyclic groups"\
, classes := [1, 1, 1], operations := CharTableOps, fusions :=
[], fusionsource := [], projections := [], projectionsource :=
[], classnames := ["1a", "3a", "3b"], 1a := 1, 3a := 2, 3b := 3)

If the record component classnames of tbl is unbound, ClassNamesCharTable is automat-
ically called by DisplayCharTable (see 48.37).

Note that once the class names are computed the resulting record fields are stored on tbl .
They are not deleted by another call of ClassNamesCharTable.

48.30 ClassMultCoeffCharTable

ClassMultCoeffCharTable(tbl, c1, c2, c3)

returns the class multiplication coefficient of the classes c1 , c2 and c3 of the group G with
character table tbl .

gap> t:= CharTable("L3(2)");;
gap> ClassMultCoeffCharTable(t, 2, 2, 4);
4

The class multiplication coefficient c1,2,3 of the classes c1 , c2 and c3 equals the number of
pairs (x, y) of elements x, y ∈ G such that x lies in class c1 , y lies in class c2 and their
product xy is a fixed element of class c3 .

Also in the center of the group algebra these numbers are found as coefficients of the de-
composition of the product of two class sums Ki and Kj into class sums,

KiKj =
∑
k

cijkKk.

Given the character table of a finite group G, whose classes are C1, . . . , Cr with represen-
tatives gi ∈ Ci, the class multiplication coefficients cijk can be computed by the following
formula.

cijk =
|Ci||Cj |
|G|

∑
χ∈Irr(G)

χ(gi)χ(gj)χ(gk)
χ(1)

On the other hand the knowledge of the class multiplication coefficients enables the compu-
tation of the character table (see 48.12).

48.31 MatClassMultCoeffsCharTable

MatClassMultCoeffsCharTable(tbl, class)

returns the matrix Ci = [aijk]j,k of structure constants (see 48.30).

gap> L3_2:= CharTable("L3(2)");;
gap> MatClassMultCoeffsCharTable(t, 2);
[[0, 1, 0, 0, 0, 0], [21, 4, 3, 4, 0, 0], [0, 8, 6, 8, 7, 7],
[0, 8, 6, 1, 7, 7], [0, 0, 3, 4, 0, 7], [0, 0, 3, 4, 7, 0]]

48.32. CLASSSTRUCTURECHARTABLE 849

48.32 ClassStructureCharTable

ClassStructureCharTable(tbl, classes)

returns the so–called class structure of the classes in the list classes, for the character table
tbl of the group G. The length of classes must be at least 2.

gap> t:= CharTable("M12");;
gap> ClassStructureCharTable(t, [2,6,9,13]);
916185600
gap> ClassStructureCharTable(t, [2,9,13]); # equals the group order
95040

Let C1, . . . , Cn denote the conjugacy classes of G that are indexed by classes. The class
structure n(C1, C2, . . . , Cn) equals the number of tuples (g1, g2, . . . , gn) of elements gi ∈
Ci with g1g2 · · · gn = 1. Note the difference to the definition of the class multiplication
coefficients in 48.30 ClassMultCoeffCharTable.
n(C1, C2, . . . , Cn) is computed using the formula

n(C1, C2, . . . , Cn) =
|C1||C2| · · · |Cn|

|G|
∑

χ∈Irr(G)

χ(g1)χ(g2) · · ·χ(gn)
χ(1)n−2

.

48.33 RealClassesCharTable

RealClassesCharTable(tbl)

returns a list of the real classes of the group G with character table tbl .
gap> RealClassesCharTable(L3_2);
[1, 2, 3, 4]

An element x ∈ G is called real, if it is conjugate with its inverse. And as x−1 = xo(x)−1,
this fact is tested by looking at the powermap of tbl .
Real elements take only real character values.

48.34 ClassOrbitCharTable

ClassOrbitCharTable(tbl, class)

returns a list of classes containing elements of the cyclic subgroup generated by an element
x of class class.

gap> ClassOrbitCharTable(L3_2, 5);
[5, 6]

Being all powers of x this data is recovered from the powermap of tbl .

48.35 ClassRootsCharTable

ClassRootsCharTable(tbl)

returns a list of the classes of all nontrivial p–th roots of the classes of tbl where for each
class, p runs over the prime divisors of the representative order.

gap> ClassRootsCharTable(L3_2);
[[2, 3, 5, 6], [4], [], [], [], []]

This information is found by looking at the powermap of tbl , too.

850 CHAPTER 48. CHARACTER TABLES

48.36 NrPolyhedralSubgroups

NrPolyhedralSubgroups(tbl, c1, c2, c3)

returns the number and isomorphism type of polyhedral subgroups of the group with char-
acter table tbl which are generated by an element g of class c1 and an element h of class c2
with the property that the product gh lies in class c3 .

gap> NrPolyhedralSubgroups(L3_2, 2, 2, 4);
rec(
number := 21,
type := "D8")

According to [NPP84, p. 233] the number of polyhedral subgroups of isomorphism type V4,
D2n, A4, S4 and A5 can be derived from the class multiplication coefficient (see 48.30) and
the number of Galois conjugates of a class (see 48.34).
Note that the classes c1 , c2 and c3 in the parameter list must be ordered according to the
order of the elements in these classes.

48.37 DisplayCharTable

DisplayCharTable(tbl)
DisplayCharTable(tbl, arec)

DisplayCharTable prepares the data contained in the character table tbl for a pretty colum-
nwise output.
In the first form DisplayCharTable prints all irreducible characters of the table tbl , together
with the orders of the centralizers in factorized form and the available powermaps.
Thus it can be used to echo character tables in interactive use, being the value of the record
field Print of a record field operations of tbl (see 48.2, 48.7).
Each displayed character is given a name X.n.
The number of columns printed at one time depends on the actual linelength, which is
restored by the function SizeScreen (see 3.19).
The first lines of the output describe the order of the centralizer of an element of the class
factorized into its prime divisor.
The next line gives the name of the class. If the record field classnames of the table tbl is
not bound, DisplayCharTable calls the function ClassNamesCharTable to determine the
class names and to store them on the table tbl (see 48.29).
Preceded by a name Pn the next lines show the nth powermaps of tbl in terms of the former
shown class names.
Every ambiguous or unknown (see 17.1) value of the table is displayed as a question mark
?.
Irrational character values are not printed explicitly because the lengths of their printed
representation might disturb the view. Instead of that every irrational value is indicated by
a name, which is a string of a least one capital letter.
Once a name for an irrational number is found, it is used all over the printed table. Moreover
the complex conjugate and the star of an irrationality are represented by that very name
preceded by a / resp. a *.

48.37. DISPLAYCHARTABLE 851

The printed character table is then followed by a legend, a list identifying the occurred
symbols with their actual irrational value. Occasionally this identity is supplemented by
a quadratic representation of the irrationality together with the corresponding ATLAS–
notation.

gap> a5:= CharTable("A5");;
gap> DisplayCharTable(a5);
A5

2 2 2 . . .
3 1 . 1 . .
5 1 . . 1 1

1a 2a 3a 5a 5b
2P 1a 1a 3a 5b 5a
3P 1a 2a 1a 5b 5a
5P 1a 2a 3a 1a 1a

X.1 1 1 1 1 1
X.2 3 -1 . A *A
X.3 3 -1 . *A A
X.4 4 . 1 -1 -1
X.5 5 1 -1 . .

A = -E(5)-E(5)^4
= (1-ER(5))/2 = -b5

In the second form DisplayCharTable takes an argument record arec as an additional
argument. This record can be used to change the default style for displaying a character as
shown above. Its relevant fields are

chars
an integer or a list of integers to select a sublist of the irreducible characters of tbl ,
or a list of characters of tbl (in this case the letter "X" is replaced by "Y"),

classes
an integer or a list of integers to select a sublist of the classes of tbl ,

centralizers
suppresses the printing of the orders of the centralizers if false,

powermap
an integer or a list of integers to select a subset of the available powermaps, or false
to suppress the powermaps,

letter
a single capital letter (e. g. "P" for permutation characters) to replace "X",

indicator
true enables the printing of the second Schur indicator, a list of integers enables the
printing of the corresponding indicators.

gap> arec:= rec(chars:= 4, classes:= [a5.3a..a5.5a],
> centralizers:= false, indicator:= true, powermap:= [2]);;

852 CHAPTER 48. CHARACTER TABLES

gap> Indicator(a5, 2);;
gap> DisplayCharTable(a5, arec);
A5

3a 5a
2P 3a 5b
2

X.4 + 1 -1

48.38 SortCharactersCharTable

SortCharactersCharTable(tbl)
SortCharactersCharTable(tbl, permutation)
SortCharactersCharTable(tbl, chars)
SortCharactersCharTable(tbl, chars, permutation)
SortCharactersCharTable(tbl, chars, "norm")
SortCharactersCharTable(tbl, chars, "degree")

If no list chars of characters of the character table tbl is entered, SortCharactersCharTable
sorts tbl.irreducibles; then additionally the list tbl.irredinfo is permuted by the same
permutation. Otherwise SortCharactersCharTable sorts the list chars.

There are four possibilities to sort characters: Besides the application of an explicitly given
permutation (see 27.35), they can be sorted according to ascending norms (parameter
"norm"), to ascending degree (parameter "degree") or both (no third parameter), i.e.,
characters with same norm are sorted according to ascending degree, and characters with
smaller norm precede those with bigger norm.

If the trivial character is contained in the sorted list, it will be sorted to the first posi-
tion. Rational characters always will precede other ones with same norm resp. same degree
afterwards.

SortCharactersCharTable returns the permutation that was applied to chars.

gap> t:= CharTable("Symmetric", 5);;
gap> PrintCharTable(t);
rec(identifier := "S5", name := "S5", size := 120, order :=
120, centralizers := [120, 12, 8, 6, 6, 4, 5], orders :=
[1, 2, 2, 3, 6, 4, 5], powermap :=
[, [1, 1, 1, 4, 4, 3, 7], [1, 2, 3, 1, 2, 6, 7],,
[1, 2, 3, 4, 5, 6, 1]], irreducibles :=

[[1, -1, 1, 1, -1, -1, 1], [4, -2, 0, 1, 1, 0, -1],
[5, -1, 1, -1, -1, 1, 0], [6, 0, -2, 0, 0, 0, 1],
[5, 1, 1, -1, 1, -1, 0], [4, 2, 0, 1, -1, 0, -1],
[1, 1, 1, 1, 1, 1, 1]], classparam :=

[[1, [1, 1, 1, 1, 1]], [1, [2, 1, 1, 1]], [1, [2, 2, 1]],
[1, [3, 1, 1]], [1, [3, 2]], [1, [4, 1]], [1, [5]]

], irredinfo := [rec(
charparam := [1, [1, 1, 1, 1, 1]]), rec(
charparam := [1, [2, 1, 1, 1]]), rec(

48.39. SORTCLASSESCHARTABLE 853

charparam := [1, [2, 2, 1]]), rec(
charparam := [1, [3, 1, 1]]), rec(
charparam := [1, [3, 2]]), rec(
charparam := [1, [4, 1]]), rec(
charparam := [1, [5]])

], text := "computed using generic character table for symmetric grou\
ps", classes := [1, 10, 15, 20, 20, 30, 24
], operations := CharTableOps, fusions := [], fusionsource :=
[], projections := [], projectionsource := [])
gap> SortCharactersCharTable(t, t.irreducibles, "norm");
(1,2,3,4,5,6,7) # sort the trivial character to the first position
gap> SortCharactersCharTable(t);
(4,5,7)
gap> t.irreducibles;
[[1, 1, 1, 1, 1, 1, 1], [1, -1, 1, 1, -1, -1, 1],
[4, -2, 0, 1, 1, 0, -1], [4, 2, 0, 1, -1, 0, -1],
[5, -1, 1, -1, -1, 1, 0], [5, 1, 1, -1, 1, -1, 0],
[6, 0, -2, 0, 0, 0, 1]]

48.39 SortClassesCharTable

SortClassesCharTable(tbl)
SortClassesCharTable(tbl, "centralizers")
SortClassesCharTable(tbl, "representatives")
SortClassesCharTable(tbl, permutation)
SortClassesCharTable(chars, permutation)

The last form simply permutes the classes of all elements of chars with permutation. All
other forms take a character table tbl as parameter, and SortClassesCharTable permutes
the classes of tbl :

SortClassesCharTable(tbl, "centralizers")
sorts the classes according to descending centralizer orders,

SortClassesCharTable(tbl, "representatives")
sorts the classes according to ascending representative orders,

SortClassesCharTable(tbl)
sorts the classes according to ascending representative orders, and classes with equal
representative orders according to descending centralizer orders,

SortClassesCharTable(tbl, permutation)
sorts the classes by application of permutation

After having calculated the permutation, SortClassesCharTable will adjust the following
fields of tbl :

by application of the permutation: orders, centralizers, classes, print, all entries of
irreducibles, classtext, classparam, classnames, all fusion maps, all entries of the
chars lists in the records of projectives

by conjugation with the permutation: all powermaps, automorphisms,

by multiplication with the permutation: permutation,

854 CHAPTER 48. CHARACTER TABLES

and the fields corresponding to tbl.classnames (see 48.29).

The applied permutation is returned by SortClassesCharTable.

Note that many programs expect the class 1A to be the first one (see 48.10).

gap> t:= CharTable("Symmetric", 5);;
gap> PrintCharTable(t);
rec(identifier := "S5", name := "S5", size := 120, order :=
120, centralizers := [120, 12, 8, 6, 6, 4, 5], orders :=
[1, 2, 2, 3, 6, 4, 5], powermap :=
[, [1, 1, 1, 4, 4, 3, 7], [1, 2, 3, 1, 2, 6, 7],,
[1, 2, 3, 4, 5, 6, 1]], irreducibles :=

[[1, -1, 1, 1, -1, -1, 1], [4, -2, 0, 1, 1, 0, -1],
[5, -1, 1, -1, -1, 1, 0], [6, 0, -2, 0, 0, 0, 1],
[5, 1, 1, -1, 1, -1, 0], [4, 2, 0, 1, -1, 0, -1],
[1, 1, 1, 1, 1, 1, 1]], classparam :=

[[1, [1, 1, 1, 1, 1]], [1, [2, 1, 1, 1]], [1, [2, 2, 1]],
[1, [3, 1, 1]], [1, [3, 2]], [1, [4, 1]], [1, [5]]

], irredinfo := [rec(
charparam := [1, [1, 1, 1, 1, 1]]), rec(
charparam := [1, [2, 1, 1, 1]]), rec(
charparam := [1, [2, 2, 1]]), rec(
charparam := [1, [3, 1, 1]]), rec(
charparam := [1, [3, 2]]), rec(
charparam := [1, [4, 1]]), rec(
charparam := [1, [5]])

], text := "computed using generic character table for symmetric grou\
ps", classes := [1, 10, 15, 20, 20, 30, 24
], operations := CharTableOps, fusions := [], fusionsource :=
[], projections := [], projectionsource := [])
gap> SortClassesCharTable(t, "centralizers");
(6,7)
gap> SortClassesCharTable(t, "representatives");
(5,7)
gap> t.centralizers; t.orders;
[120, 12, 8, 6, 4, 5, 6]
[1, 2, 2, 3, 4, 5, 6]

48.40 SortCharTable

SortCharTable(tbl, kernel)
SortCharTable(tbl, normalseries)
SortCharTable(tbl, facttbl, kernel)

sorts classes and irreducibles of the character table tbl , and returns a record with com-
ponents columns and rows, which are the permutations applied to classes and characters.

The first form sorts the classes at positions contained in the list kernel to the beginning,
and sorts all characters in tbl.irreducibles such that the first characters are those that
contain kernel in their kernel.

48.41. MATAUTOMORPHISMS 855

The second form does the same successively for all kernels ki in the list normalseries =
[k1, k2, . . . , kn] where ki must be a sublist of ki+1 for 1 ≤ i ≤ n− 1.

The third form computes the table F of the factor group of tbl modulo the normal subgroup
formed by the classes whose positions are contained in the list kernel ; F must be permutation
equivalent to the table facttbl (in the sense of 48.44), else false is returned. The classes of tbl
are sorted such that the preimages of a class of F are consecutive, and that the succession of
preimages is that of facttbl . tbl.irreducibles is sorted as by SortCharTable(tbl, kernel
). (Note that the transformation is only unique up to table automorphisms of F , and this
need not be unique up to table automorphisms of tbl .)

All rearrangements of classes and characters are stable, i.e., the relative positions of classes
and characters that are not distinguished by any relevant property is not changed.

SortCharTable uses 48.39 SortClassesCharTable and 48.38 SortCharactersCharTable.

gap> t:= CharTable("Symmetric",4);;
gap> Set(List(t.irreducibles, KernelChar));
[[1], [1, 2, 3, 4, 5], [1, 3], [1, 3, 4]]
gap> SortCharTable(t, Permuted(last, (2,4,3)));
rec(
columns := (2,4,3),
rows := (1,2,4,5))

gap> DisplayCharTable(t);
S4

2 3 3 . 2 2
3 1 . 1 . .

1a 2a 3a 2b 4a
2P 1a 1a 3a 1a 2a
3P 1a 2a 1a 2b 4a

X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 2 2 -1 . .
X.4 3 -1 . -1 1
X.5 3 -1 . 1 -1

48.41 MatAutomorphisms

MatAutomorphisms(mat, maps, subgroup)

returns the permutation group record representing the matrix automorphisms of the matrix
mat that respect all lists in the list maps, i.e. representing the group of those permutations
of columns of mat which acts on the set of rows of mat and additionally fixes all lists in
maps.

subgroup is a list of permutation generators of a subgroup of this group. E.g. generators of
the Galois automorphisms of a matrix of ordinary characters may be entered here.

gap> t:= CharTable("Dihedral", 8);;

856 CHAPTER 48. CHARACTER TABLES

gap> PrintCharTable(t);
rec(identifier := "D8", name := "D8", size := 8, order :=
8, centralizers := [8, 4, 8, 4, 4], orders := [1, 4, 2, 2, 2
], powermap := [, [1, 3, 1, 1, 1]], irreducibles :=
[[1, 1, 1, 1, 1], [1, 1, 1, -1, -1], [1, -1, 1, 1, -1],
[1, -1, 1, -1, 1], [2, 0, -2, 0, 0]], classparam :=

[[1, 0], [1, 1], [1, 2], [2, 0], [2, 1]], irredinfo :=
[rec(

charparam := [1, 0]), rec(
charparam := [1, 1]), rec(
charparam := [1, 2]), rec(
charparam := [1, 3]), rec(
charparam := [2, 1])

], text := "computed using generic character table for dihedral group\
s", classes := [1, 2, 1, 2, 2
], operations := CharTableOps, fusions := [], fusionsource :=
[], projections := [], projectionsource := [])
gap> MatAutomorphisms(t.irreducibles, [], Group(()));
Group((4,5), (2,4))
gap> MatAutomorphisms(t.irreducibles, [t.orders], Group(()));
Group((4,5))

48.42 TableAutomorphisms

TableAutomorphisms(tbl, chars)
TableAutomorphisms(tbl, chars, "closed")

returns a permutation group record for the group of those matrix automorphisms of chars
(see 48.41) which are admissible by (i.e. which fix) the fields orders and all uniquely
determined (i.e. not parametrized) maps in powermap of the character table tbl ; the action
on orders is the natural permutation, that on the powermaps is conjugation.

If chars is closed under galois conjugacy –this is always satisfied for ordinary character
tables– the parameter ”closed” may be entered. In that case the subgroup of Galois auto-
morphisms is computed by 13.15 GaloisMat.

gap> t:= CharTable("Dihedral", 8);; # as in 48.41
gap> TableAutomorphisms(t, t.irreducibles);
Group((4,5))

48.43 TransformingPermutations

TransformingPermutations(mat1, mat2)

tries to construct a permutation π that transforms the set of rows of the matrix mat1
to the set of rows of the matrix mat2 by permutation of columns. If such a permuta-
tion exists, a record with fields columns, rows and group is returned, otherwise false: If
TransformingPermutations(mat1 ,mat2) = r 6= false then

Permuted(List(mat1,x->Permuted(x,r.columns)),r.rows) = mat2 ,

48.44. TRANSFORMINGPERMUTATIONSCHARTABLES 857

and r.group is the group of matrix automorphisms of mat2 ; this group stabilizes the trans-
formation, i.e. for g in that group and π the value of the columns field, also πg would be a
valid permutation of columns.

gap> mat1:= CharTable("Alternating", 5).irreducibles;
[[1, 1, 1, 1, 1], [4, 0, 1, -1, -1], [5, 1, -1, 0, 0],
[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]]

gap> mat2:= CharTable("A5").irreducibles;
[[1, 1, 1, 1, 1], [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]]

gap> TransformingPermutations(mat1, mat2);
rec(
columns := (),
rows := (2,4)(3,5),
group := Group((4,5)))

48.44 TransformingPermutationsCharTables

TransformingPermutationsCharTables(tbl1, tbl2)

tries to construct a permutation π that transforms the set of rows of tbl1.irreducibles to
the set of rows of tbl2.irreducibles by permutation of columns (see 48.43) and that also
transforms the powermaps and the orders field. If such a permutation exists, it returns a
record with components columns (a valid permutation of columns), rows (the permutation of
tbl.irreducibles corresponding to that permutation), and group (the permutation group
record of table automorphisms of tbl2 , see 48.42). If no such permutation exists, it returns
false.

gap> t1:= CharTable("Dihedral",8);;t2:= CharTable("Quaternionic",8);;
gap> TransformingPermutations(t1.irreducibles, t2.irreducibles);
rec(
columns := (),
rows := (),
group := Group((4,5), (2,4)))

gap> TransformingPermutationsCharTables(t1, t2);
false
gap> t1:= CharTable("Dihedral", 6);; t2:= CharTable("Symmetric",3);;
gap> TransformingPermutationsCharTables(t1, t2);
rec(
columns := (2,3),
rows := (1,3,2),
group := Group(()))

48.45 GetFusionMap

GetFusionMap(source, destination)
GetFusionMap(source, destination, specification)

858 CHAPTER 48. CHARACTER TABLES

For character tables source and destination, GetFusionMap(source, destination) returns
the map field of the fusion stored on the character table source that has the identifier
component destination.name;

GetFusionMap(source, destination, specification) gets that fusion that additionally has
the specification field specification.

Both versions adjust the ordering of classes of destination using destination.permutation
(see 48.39, 48.10). That is the reason why destination cannot be simply the identifier of the
destination table.

If both source and destination are Brauer tables, GetFusionMap returns the fusion cor-
responding to that between the ordinary tables; for that, this fusion must be stored on
source.ordinary.

If no appropriate fusion is found, false is returned.

gap> s:= CharTable("L2(11)");;
gap> t:= CharTable("J1");;
gap> SortClassesCharTable(t, (3, 4, 5, 6));;
gap> t.permutation;
(3,4,5,6)
gap> GetFusionMap(s, t);
[1, 2, 4, 6, 5, 3, 10, 10]
gap> s.fusions[5];
rec(
name := "J1",
map := [1, 2, 3, 5, 4, 6, 10, 10],
text := [’f’, ’u’, ’s’, ’i’, ’o’, ’n’, ’ ’, ’i’, ’s’, ’ ’, ’u’,

’n’, ’i’, ’q’, ’u’, ’e’, ’ ’, ’u’, ’p’, ’ ’, ’t’, ’o’, ’ ’,
’t’, ’a’, ’b’, ’l’, ’e’, ’ ’, ’a’, ’u’, ’t’, ’o’, ’m’, ’o’,
’r’, ’p’, ’h’, ’i’, ’s’, ’m’, ’s’, ’,’, ’\n’, ’t’, ’h’, ’e’,
’ ’, ’r’, ’e’, ’p’, ’r’, ’e’, ’s’, ’e’, ’n’, ’t’, ’a’, ’t’,
’i’, ’v’, ’e’, ’ ’, ’i’, ’s’, ’ ’, ’e’, ’q’, ’u’, ’a’, ’l’,
’ ’, ’t’, ’o’, ’ ’, ’t’, ’h’, ’e’, ’ ’, ’f’, ’u’, ’s’, ’i’,
’o’, ’n’, ’ ’, ’m’, ’a’, ’p’, ’ ’, ’o’, ’n’, ’ ’, ’t’, ’h’,
’e’, ’ ’, ’C’, ’A’, ’S’, ’ ’, ’t’, ’a’, ’b’, ’l’, ’e’])

48.46 StoreFusion

StoreFusion(source, destination, fusion)
StoreFusion(source, destination, fusionmap)

For character tables source and destination, fusion must be a record containing at least the
field map which is regarded as a fusion from source to destination. fusion is stored on source
if no ambiguity arises, i.e. if there is not yet a fusion into destination stored on source or if
any fusion into destination stored on source has a specification field different from that
of fusion. The map field of fusion is adjusted by destination.permutation. (Thus the map
will remain correct even if the classes of a concerned table are sorted, see 48.39 and 48.10;
the correct fusion can be got using 48.45, so be careful!). Additionally, source.identifier
is added to destination.fusionsource.

The second form works like the first, with fusion = rec(map:= fusionmap).

48.47. FUSIONCONJUGACYCLASSES 859

gap> s:= CharTable("A6.2_1");; t:= CharTable("A7.2");;
gap> fus:= RepresentativesFusions(s, SubgroupFusions(s, t), t);
[[1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13]]
gap> s.fusions; t.fusionsource;
[]
["2.A7.2", "3.A7.2", "6.A7.2", "A7"]
gap> StoreFusion(s, t, fus[1]);
gap> s.fusions; t.fusionsource;
[rec(

name := "A7.2",
map := [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13])]

["2.A7.2", "3.A7.2", "6.A7.2", "A6.2_1", "A7"]

48.47 FusionConjugacyClasses

FusionConjugacyClasses(subgroup, group)
FusionConjugacyClasses(group , factorgroup)

FusionConjugacyClasses returns a list denoting the fusion of conjugacy classes from the
first group to the second one. If both groups have components charTable this list is written
to the character tables, too.

gap> g := SolvableGroup(24, 14);
Sl(2,3)
gap> FusionConjugacyClasses(g, g / Subgroup(g, [g.4]));
[1, 1, 2, 3, 3, 4, 4]
gap> FusionConjugacyClasses(Subgroup(g, [g.2, g.3, g.4]), g);
[1, 2, 3, 3, 3]

48.48 MAKElb11

MAKElb11(listofns)

prints field information for fields with conductor Qn where n is in the list listofns;

MAKElb11([3 .. 189]) will print something very similar to Richard Parker’s file
lb11.

gap> MAKElb11([3, 4]);
3 2 0 1 0
4 2 0 1 0

48.49 ScanMOC

ScanMOC(list)

returns a record containing the information encoded in the list list , the components of
the result are the labels in list . If list is in MOC2 format (10000–format) the names of
components are 30000–numbers, if it is in MOC3 format the names of components have
yABC–format.

gap> ScanMOC("y100y105ay110t28t22z");

860 CHAPTER 48. CHARACTER TABLES

rec(
y105 := [0],
y110 := [28, 22])

48.50 MOCChars

MOCChars(tbl, gapchars)

returns translations of GAP format characters gapchars to MOC format. tbl must be a GAP
format table or a MOC format table.

48.51 GAPChars

GAPChars(tbl, mocchars)

returns translations of MOC format characters mocchars to GAP format. tbl must be a GAP
format table or a MOC format table.

mocchars may also be a list of integers, e.g., a component containing characters in a record
produced by 48.49.

48.52 MOCTable

MOCTable(gaptbl)
MOCTable(gaptbl, basicset)

return the MOC format table record of the GAP table gaptbl , and stores it in the component
MOCtbl of gaptbl .

The first form can be used for ordinary (G.0) tables only, for modular (G.p) tables one has
to specify a basic set basicset of ordinary irreducibles which must be the list of positions
of these characters in the irreducibles component of the corresponding ordinary table
(which is stored in gaptbl .ordinary).

The result contains the information of gaptbl in a format similar to the MOC 3 format, the
table itself can e.g. easily be printed out or be used to print out characters using 48.53.

The components of the result are identifier the string MOCTable(name) where
name is the identifier component of gaptbl ,

isMOCformat has value true,

GAPtbl the record gaptbl ,

operations equal to MOCTableOps, containing just an appropriate Print function,

prime the characteristic of the field (label 30105 in MOC),

centralizers centralizer orders for cyclic subgroups (label 30130)

orders element orders for cyclic subgroups (label 30140)

fields at position i the number field generated by the character values of the i–th
cyclic subgroup; the base component of each field is a Parker base, (the length of
fields is equal to the value of label 30110 in MOC).

cycsubgps cycsubgps[i] = j means that class i of the GAP table belongs to the
j–th cyclic subgroup of the GAP table,

48.53. PRINTTOMOC 861

repcycsub repcycsub[j] = i means that class i of the GAP table is the represen-
tative of the j–th cyclic subgroup of the GAP table. Note that the representatives
of GAP table and MOC table need not agree!

galconjinfo a list [r1, c1, r2, c2, . . . , rn, cn] which means that the i–th class of the
GAP table is the ci–th conjugate of the representative of the ri–th cyclic subgroup
on the MOC table. (This is used to translate back to GAP format, stored under label
30160)

30170 (power maps) for each cyclic subgroup (except the trivial one) and each prime
divisor of the representative order store four values, the number of the subgroup, the
power, the number of the cyclic subgroup containing the image, and the power to
which the representative must be raised to give the image class. (This is used only
to construct the 30230 power map/embedding information.) In result.30170 only
a list of lists (one for each cyclic subgroup) of all these values is stored, it will not be
used by GAP.

tensinfo tensor product information, used to compute the coefficients of the Parker
base for tensor products of characters (label 30210 in MOC). For a field with vector
space base (v1, v2, . . . , vn) the tensor product information of a cyclic subgroup in
MOC (as computed by fct) is either 1 (for rational classes) or a sequence

nx1,1y1,1z1,1x1,2y1,2z1,2 . . . x1,m1y1,m1z1,m10x2,1 . . . z2,m20 . . . xn,mnyn,mnzn,mn0

which means that the coefficient of vk in the product

(
n∑
i=1

aivi)(
n∑
j=1

bjvj)

is equal to
mk∑
i=1

xk,iayk,ibzk,i .

On a MOC table in GAP the tensinfo component is a list of lists, each containing
exactly the sequence

invmap inverse map to compute complex conjugate characters, label 30220 in MOC.

powerinfo field embeddings for p–th symmetrizations, p prime in [2 .. 19];
note that the necessary power maps must be stored on gaptbl to compute this com-
ponent. (label 30230 in MOC)

30900 basic set of restricted ordinary irreducibles in the case of nonzero characteristic,
all ordinary irreducibles else.

48.53 PrintToMOC

PrintToMOC(moctbl)
PrintToMOC(moctbl, chars)

The first form prints the MOC3 format of the character table moctbl which must be an
character table in MOC format (as produced by 48.52). The second form prints a table

862 CHAPTER 48. CHARACTER TABLES

in MOC3 format that contains the MOC format characters chars (as produced by 48.50)
under label y900.

gap> t:= CharTable("A5mod3");;
gap> moct:= MOCTable(t, [1, 2, 3, 4]);;
gap> PrintTo("a5mod3", PrintToMOC(moct), "\n");

produces a file a5mod3 whose first characters are

y100y105dy110edy130t60efy140bcfy150bbfcabbey160bbcbdbdcy170ccbbefbb

48.54 PrintToCAS

PrintToCAS(filename, tbl)
PrintToCAS(tbl, filename)

produces a file with name filename which contains a CAS library table of the GAP character
table tbl ; this file can be read into CAS using the get-command (see [NPP84]).

The line length in the file is at most the current value SizeScreen()[1] (see 3.19).

Only the components identifier, text, order, centralizers, orders, print, powermap,
classtext (for partitions only), fusions, irredinfo, characters, irreducibles of tbl
are considered.

If tbl.characters is bound, this list is taken as characters entry of the CAS table, otherwise
tbl.irreducibles (if exists) will form the list characters of the CAS table.

gap> PrintToCAS("c2", CharTable("Cyclic", 2));

produces a file with name c2 containing the following data:

’C2’
00/00/00. 00.00.00.
(2,2,0,2,-1,0)
text:
(#computed using generic character table for cyclic groups#),
order=2,
centralizers:(2,2),
reps:(1,2),
powermap:2(1,1),
characters:
(1,1)
(1,-1);
/// converted from GAP

Chapter 49

Generic Character Tables

This chapter informs about the conception of generic character tables (see 49.1), it gives
some examples of generic tables (see 49.2), and introduces the specialization function (see
49.3).

The generic tables that are actually available in the GAP group collection are listed in 48.12,
see also 52.1.

49.1 More about Generic Character Tables

Generic character tables provide a means for writing down the character tables of all groups
in a (usually infinite) series of similar groups, e.g. the cyclic groups, the symmetric groups
or the general linear groups GL(2, q).

Let {Gq|q ∈ I}, where I is an index set, be such a series. The table of a member Gq could
be computed using a program for this series which takes q as parameter, and constructs
the table. It is, however, desirable to compute not only the whole table but to get a single
character or just one character value without computation the table. E.g. both conjugacy
classes and irreducible characters of the symmetric group Sn are in bijection with the par-
titions of n. Thus for given n, it makes sense to ask for the character corresponding to a
particular partition, and its value at a partition:

gap> t:= CharTable("Symmetric");;
gap> t.irreducibles[1][1](5, [3, 2], [2, 2, 1]);
1 # a character value of S5

gap> t.orders[1](5, [2, 1, 1, 1]);
2 # a representative order in S5

Generic table in GAP means that such local evaluation is possible, so GAP can also deal
with tables that are too big to be computed as a whole. In some cases there are methods
to compute the complete table of small members Gq faster than local evaluation. If such
an algorithm is part of the generic table, it will be used when the generic table is used to
compute the whole table (see 49.3).

While the numbers of conjugacy classes for the series are usually not bounded, there is
a fixed finite number of types (equivalence classes) of conjugacy classes; very often the
equivalence relation is isomorphism of the centralizer of the representatives.

863

864 CHAPTER 49. GENERIC CHARACTER TABLES

For each type t of classes and a fixed q ∈ I, a parametrisation of the classes in t is a
function that assigns to each conjugacy class of Gq in t a parameter by which it is uniquely
determined. Thus the classes are indexed by pairs (t, pt) for a type t and a parameter pt for
that type.

There has to be a fixed number of types of irreducibles characters of Gq, too. Like the
classes, the characters of each type are parametrised.

In GAP, the parametrisations of classes and characters of the generic table is given by the
record fields classparam and charparam; they are both lists of functions, each function rep-
resenting the parametrisation of a type. In the specialized table, the field classparam con-
tains the lists of class parameters, the character parameters are stored in the field charparam
of the irredinfo records (see 48.2).

The centralizer orders, representative orders and all powermaps of the generic character
table can be represented by functions in q, t and pt; in GAP, however, they are represented
by lists of functions in q and a class parameter where each function represents a type of
classes. The value of a powermap at a particular class is a pair consisting of type and
parameter that specifies the image class.

The values of the irreducible characters of Gq can be represented by functions in q, class
type and parameter, character type and parameter; in GAP, they are represented by lists of
lists of functions, each list of functions representing the characters of a type, the function
(in q, character parameters and class parameters) representing the classes of a type in these
characters.

Any generic table is a record like an ordinary character table (see 48.2). There are some
fields which are used for generic tables only:

isGenericTable
always true

specializedname
function that maps q to the name of the table of Gq

domain
function that returns true if its argument is a valid q for Gq in the series

wholetable
function to construct the whole table, more efficient than the local evaluation for this
purpose

The table of Gq can be constructed by specializing q and evaluating the functions in the
generic table (see 49.3 and the examples given in 49.2).

The available generic tables are listed in 52.1 and 48.12.

49.2 Examples of Generic Character Tables

1. The generic table of the cyclic group:

For the cyclic group Cq = 〈x〉 of order q, there is one type of classes. The class parameters
are integers k ∈ {0, . . . , q − 1}, the class of the parameter k consists of the group element
xk. Group order and centralizer orders are the identity function q 7→ q, independent of the
parameter k.

49.2. EXAMPLES OF GENERIC CHARACTER TABLES 865

The representative order function maps (q, k) to q
gcd(q,k) , the order of xk in Cq; the p-th

powermap is the function (q, k, p) 7→ [1, (kp mod q)].

There is one type of characters with parameters l ∈ {0, . . . , q−1}; for eq a primitive complex
q-th root of unity, the character values are χl(xk) = eklq .

The library file contains the following generic table:

rec(name:="Cyclic",
specializedname:=(q->ConcatenationString("C",String(q))),
order:=(n->n),
text:="generic character table for cyclic groups",
centralizers:=[function(n,k) return n;end],
classparam:=[(n->[0..n-1])],
charparam:=[(n->[0..n-1])],
powermap:=[function(n,k,pow) return [1,k*pow mod n];end],
orders:=[function(n,k) return n/Gcd(n,k);end],
irreducibles:=[[function(n,k,l) return E(n)^(k*l);end]],
domain:=(n->IsInt(n) and n>0),
libinfo:=rec(firstname:="Cyclic",othernames:=[]),
isGenericTable:=true);

2. The generic table of the general linear group GL(2, q):

We have four types t1, t2, t3, t4 of classes according to the rational canonical form of the
elements:
t1 scalar matrices,
t2 nonscalar diagonal matrices,
t3 companion matrices of (X − ρ)2 for elements ρ ∈ F ∗q and
t4 companion matrices of irreducible polynomials of degree 2 over Fq.

The sets of class parameters of the types are in bijection with
F ∗q for t1 and t3, {{ρ, τ}; ρ, τ ∈ F ∗q , ρ 6= τ} for t2 and {{ε, εq}; ε ∈ Fq2 \ Fq} for t4.

The centralizer order functions are q 7→ (q2 − 1)(q2 − q) for type t1, q 7→ (q − 1)2 for type
t2, q 7→ q(q − 1) for type t3 and q 7→ q2 − 1 for type t4.

The representative order function of t1 maps (q, ρ) to the order of ρ in Fq, that of t2 maps
(q, {ρ, τ}) to the least common multiple of the orders of ρ and τ .

The file contains something similar to this table:

rec(name:="GL2",
specializedname:=(q->ConcatenationString("GL(2,",String(q),")")),
order:= (q -> (q^2-1)*(q^2-q)),
text:= "generic character table of GL(2,q),\

see Robert Steinberg: The Representations of Gl(3,q), Gl(4,q),\
PGL(3,q) and PGL(4,q), Canad. J. Math. 3 (1951)",

classparam:= [(q -> [0..q-2]), (q -> [0..q-2]),
(q -> Combinations([0..q-2], 2)),
(q -> Filtered([1..q^2-2], x -> not (x mod (q+1) = 0)

and (x mod (q^2-1)) < (x*q mod (q^2-1))))],
charparam:= [(q -> [0..q-2]), (q -> [0..q-2]),

(q -> Combinations([0..q-2], 2)),

866 CHAPTER 49. GENERIC CHARACTER TABLES

(q -> Filtered([1..q^2-2], x -> not (x mod (q+1) = 0)
and (x mod (q^2-1)) < (x*q mod (q^2-1))))],

centralizers := [function(q, k) return (q^2-1) * (q^2-q); end,
function(q, k) return q^2-q; end,
function(q, k) return (q-1)^2; end,
function(q, k) return q^2-1; end],

orders:= [function(q, k) return (q-1)/Gcd(q-1, k); end,
..., ..., ...],

classtext:= [..., ..., ..., ...],
powermap:=

[function(q, k, pow) return [1, (k*pow) mod (q-1)]; end,
..., ..., ...],

irreducibles := [[function(q, k, l) return E(q-1)^(2*k*l); end,
function(q, k, l) return E(q-1)^(2*k*l); end,
...,
function(q, k, l) return E(q-1)^(k*l); end],
[..., ..., ..., ...],
[..., ..., ..., ...],
[..., ..., ..., ...]],

domain := (q->IsInt(q) and q>1 and Length(Set(FactorsInt(q)))=1),
isGenericTable := true)

49.3 CharTableSpecialized

CharTableSpecialized(generic table, q)

returns a character table which is computed by evaluating the generic character table
generic table at the parameter q .

gap> t:= CharTableSpecialized(CharTable("Cyclic"), 5);;
gap> PrintCharTable(t);
rec(identifier := "C5", name := "C5", size := 5, order :=
5, centralizers := [5, 5, 5, 5, 5], orders := [1, 5, 5, 5, 5
], powermap := [,,,, [1, 1, 1, 1, 1]], irreducibles :=
[[1, 1, 1, 1, 1], [1, E(5), E(5)^2, E(5)^3, E(5)^4],
[1, E(5)^2, E(5)^4, E(5), E(5)^3],
[1, E(5)^3, E(5), E(5)^4, E(5)^2],
[1, E(5)^4, E(5)^3, E(5)^2, E(5)]], classparam :=

[[1, 0], [1, 1], [1, 2], [1, 3], [1, 4]], irredinfo :=
[rec(

charparam := [1, 0]), rec(
charparam := [1, 1]), rec(
charparam := [1, 2]), rec(
charparam := [1, 3]), rec(
charparam := [1, 4])

], text := "computed using generic character table for cyclic groups"\
, classes := [1, 1, 1, 1, 1
], operations := CharTableOps, fusions := [], fusionsource :=
[], projections := [], projectionsource := [])

Chapter 50

Characters

The functions described in this chapter are used to handle characters (see Chapter 48). For
this, in many cases one needs maps (see Chapter 51).

There are four kinds of functions:

First, those functions which get informations about characters; they compute the scalar
product of characters (see 50.1, 50.2), decomposition matrices (see 50.3, 50.4), the kernel of
a character (see 50.5), p-blocks (see 50.6), Frobenius-Schur indicators (see 50.7), eigenvalues
of the corresponding representations (see 50.8), and Molien series of characters (see 50.9),
and decide if a character might be a permutation character candidate (see 50.26).

Second, those functions which construct characters or virtual characters, that is, differences
of characters; these functions compute reduced characters (see 50.10, 50.11), tensor products
(see 50.12), symmetrisations (see 50.13, 50.14, 50.15, 50.16, 50.17, 50.18), and irreducibles
differences of virtual characters (see 50.19). Further, one can compute restricted charac-
ters (see 50.20), inflated characters (see 50.21), induced characters (see 50.22, 50.23), and
permutation character candidates (see 50.26, 50.31).

Third, those functions which use general methods for lattices. These are the LLL algorithm
to compute a lattice base consisting of short vectors (see 50.33, 50.34, 50.35), functions to
compute all orthogonal embeddings of a lattice (see 50.36), and one for the special case of
Dn lattices (see 50.40). A backtrack search for irreducible characters in the span of proper
characters is performed by 50.38.

Finally, those functions which find special elements of parametrized characters (see 51.1);
they compute the set of contained virtual characters (see 50.41) or characters (see 50.42), the
set of contained vectors which possibly are virtual characters (see 50.43, 50.45) or characters
(see 50.44).

50.1 ScalarProduct

ScalarProduct(tbl, character1, character2)

returns the scalar product of character1 and character2 , regarded as characters of the
character table tbl .

gap> t:= CharTable("A5");;

867

868 CHAPTER 50. CHARACTERS

gap> ScalarProduct(t, t.irreducibles[1], [5, 1, 2, 0, 0]);
1
gap> ScalarProduct(t, [4, 0, 1, -1, -1], [5, -1, 1, 0, 0]);
2/3

50.2 MatScalarProducts

MatScalarProducts(tbl, chars1, chars2)
MatScalarProducts(tbl, chars)

For a character table tbl and two lists chars1 , chars2 of characters, the first version returns
the matrix of scalar products (see 50.1); we have

MatScalarProducts(tbl , chars1 , chars2)[i][j] = ScalarProduct(tbl , chars1 [j], chars2 [i]),

i.e., row i contains the scalar products of chars2[i] with all characters in chars1 .

The second form returns a lower triangular matrix of scalar products:

MatScalarProducts(tbl , chars)[i][j] = ScalarProduct(tbl , chars[j], chars[i])

for j ≤ i.

gap> t:= CharTable("A5");;
gap> chars:= Sublist(t.irreducibles, [2 .. 4]);;
gap> chars:= Set(Tensored(chars, chars));;
gap> MatScalarProducts(t, chars);
[[2], [1, 3], [1, 2, 3], [2, 2, 1, 3], [2, 1, 2, 2, 3],
[2, 3, 3, 3, 3, 5]]

50.3 Decomposition

Decomposition(A, B, depth)
Decomposition(A, B, "nonnegative")

For a m × n matrix A of cyclotomics that has rank m ≤ n, and a list B of cyclotomic
vectors, each of dimension n, Decomposition tries to find integral solutions x of the linear
equation systems x *A = B[i] by computing the p–adic series of hypothetical solutions.

Decomposition(A, B, depth), where depth is a nonnegative integer, computes for every
vector B[i] the initial part

∑depth
k=0 xkp

k (all xk integer vectors with entries bounded by
±p−1

2). The prime p is 83 first; if the reduction of A modulo p is singular, the next prime
is chosen automatically.

A list X is returned. If the computed initial part really is a solution of x *A = B[i], we
have X [i] = x , otherwise X [i] = false.

Decomposition(A, B, "nonnegative") assumes that the solutions have only nonnega-
tive entries, and that the first column of A consists of positive integers. In this case the
necessary number depth of iterations is computed; the i-th entry of the returned list is
false if there exists no nonnegative integral solution of the system x *A = B[i], and it
is the solution otherwise.

50.4. SUBROUTINES OF DECOMPOSITION 869

If A is singular, an error is signalled.

gap> a5:= CharTable("A5");; a5m3:= CharTable("A5mod3");;
gap> a5m3.irreducibles;
[[1, 1, 1, 1], [3, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [4, 0, -1, -1]]

gap> reg:= CharTableRegular(a5, 3);;
gap> chars:= Restricted(a5, reg, a5.irreducibles);
[[1, 1, 1, 1], [3, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [4, 0, -1, -1],
[5, 1, 0, 0]]

gap> Decomposition(a5m3.irreducibles, chars, "nonnegative");
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1],
[1, 0, 0, 1]]

gap> last * a5m3.irreducibles = chars;
true

For the subroutines of Decomposition, see 50.4.

50.4 Subroutines of Decomposition

Let A be a square integral matrix, p an odd prime. The reduction of A modulo p is A, its
entries are chosen in the interval [−p−1

2 , p−1
2]. If A is regular over the field with p elements,

we can form A′ = A
−1

. Now consider the integral linear equation system xA = b, i.e., we
look for an integral solution x. Define b0 = b, and then iteratively compute

xi = (biA′) mod p, bi+1 =
1
p

(bi − xiA) fori = 0, 1, 2,

By induction, we get

pi+1bi+1 + (
i∑

j=0

pjxj)A = b.

If there is an integral solution x, it is unique, and there is an index l such that bl+1 is zero
and x =

∑l
j=0 p

jxj .

There are two useful generalizations. First, A need not be square; it is only necessary that
there is a square regular matrix formed by a subset of columns. Second, A does not need to
be integral; the entries may be cyclotomic integers as well, in this case one has to replace
each column of A by the columns formed by the coefficients (which are integers). Note that
this preprocessing must be performed compatibly for A and b.

And these are the subroutines called by Decomposition:

LinearIndependentColumns(A)

returns for a matrix A a maximal list lic of positions such that the rank of List(A, x ->
Sublist(x, lic)) is the same as the rank of A.

870 CHAPTER 50. CHARACTERS

InverseMatMod(A, p)

returns for a square integral matrix A and a prime p a matrix A′ with the property that A′A
is congruent to the identity matrix modulo p; if A is singular modulo p, false is returned.

PadicCoefficients(A, Amodpinv, b, p, depth)

returns the list [x0, x1, . . . , xl, bl+1] where l = depth or l is minimal with the property that
bl+1 = 0.

IntegralizedMat(A)
IntegralizedMat(A, inforec)

return for a matrix A of cyclotomics a record intmat with components mat and inforec.
Each family of galois conjugate columns of A is encoded in a set of columns of the rational
matrix intmat.mat by replacing cyclotomics by their coefficients. intmat.inforec is a
record containing the information how to encode the columns.

If the only argument is A, the component inforec is computed that can be entered as
second argument inforec in a later call of IntegralizedMat with a matrix B that shall be
encoded compatible with A.

DecompositionInt(A, B, depth)

does the same as Decomposition (see 50.3), but only for integral matrices A, B , and non-
negative integers depth.

50.5 KernelChar

KernelChar(char)

returns the set of classes which form the kernel of the character char , i.e. the set of positions
i with char [i] = char [1].

For a factor fusion map fus, KernelChar(fus) is the kernel of the epimorphism.

gap> s4:= CharTable("Symmetric", 4);;
gap> s4.irreducibles;
[[1, -1, 1, 1, -1], [3, -1, -1, 0, 1], [2, 0, 2, -1, 0],
[3, 1, -1, 0, -1], [1, 1, 1, 1, 1]]

gap> List(last, KernelChar);
[[1, 3, 4], [1], [1, 3], [1], [1, 2, 3, 4, 5]]

50.6 PrimeBlocks

PrimeBlocks(tbl, prime)
PrimeBlocks(tbl, chars, prime)

For a character table tbl and a prime prime, PrimeBlocks(tbl, chars, prime) returns
a record with fields

block
a list of positive integers which has the same length as the list chars of characters, the
entry n at position i in that list means that chars[i] belongs to the n-th prime-block

50.7. INDICATOR 871

defect
a list of nonnegative integers, the value at position i is the defect of the i–th block.

PrimeBlocks(tbl, prime) does the same for chars = tbl.irreducibles, and addition-
ally the result is stored in the irredinfo field of tbl .

gap> t:= CharTable("A5");;
gap> PrimeBlocks(t, 2); PrimeBlocks(t, 3); PrimeBlocks(t, 5);
rec(
block := [1, 1, 1, 2, 1],
defect := [2, 0])

rec(
block := [1, 2, 3, 1, 1],
defect := [1, 0, 0])

rec(
block := [1, 1, 1, 1, 2],
defect := [1, 0])

gap> InverseMap(last.block); # distribution of characters to blocks
[[1, 2, 3, 4], 5]

If InfoCharTable2 = Print, the defects of the blocks and the heights of the contained
characters are printed.

50.7 Indicator

Indicator(tbl, n)
Indicator(tbl, chars, n)
Indicator(modtbl, 2)

For a character table tbl , Indicator(tbl, chars, n) returns the list of n-th Frobenius
Schur indicators for the list chars of characters.

Indicator(tbl, n) does the same for chars = tbl.irreducibles, and additionally the
result is stored in the field irredinfo of tbl .

Indicator(modtbl, 2) returns the list of 2nd indicators for the irreducible characters of
the Brauer character table modtbl and stores the indicators in the irredinfo component of
modtbl ; this does not work for tables in characteristic 2.

gap> t:= CharTable("M11");; Indicator(t, t.irreducibles, 2);
[1, 1, 0, 0, 1, 0, 0, 1, 1, 1]

50.8 Eigenvalues

Eigenvalues(tbl, char, class)

Let M be a matrix of a representation with character char which is a character of the table
tbl , for an element in the conjugacy class class. Eigenvalues(tbl, char, class) returns
a list of length n = tbl.orders[class] where at position i the multiplicity of E(n)^i =
e

2πi
n as eigenvalue of M is stored.

gap> t:= CharTable("A5");;
gap> chi:= t.irreducibles[2];
[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]

872 CHAPTER 50. CHARACTERS

gap> List([1 .. 5], i -> Eigenvalues(t, chi, i));
[[3], [2, 1], [1, 1, 1], [0, 1, 1, 0, 1], [1, 0, 0, 1, 1]]

List([1..n], i -> E(n)^i) * Eigenvalues(tbl,char,class)) is equal to char[class
].

50.9 MolienSeries

MolienSeries(psi)
MolienSeries(psi, chi)
MolienSeries(tbl, psi)
MolienSeries(tbl, psi, chi)

returns a record that describes the series

Mψ,χ(z) =
∞∑
d=0

(χ, ψ[d])zd

where ψ[d] denotes the symmetrization of ψ with the trivial character of the symmetric
group Sd (see 50.14).

psi and chi must be characters of the table tbl , the default for χ is the trivial character. If
no character table is given, psi and chi must be class function recods.

ValueMolienSeries(series, i)

returns the i -th coefficient of the Molien series series.

gap> psi:= Irr(CharTable("A5"))[3];
Character(CharTable("A5"),
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4])
gap> mol:= MolienSeries(psi);;
gap> List([1 .. 10], i -> ValueMolienSeries(mol, i));
[0, 1, 0, 1, 0, 2, 0, 2, 0, 3]

The record returned by MolienSeries has components

summands
a list of records with components numer, r, and k, describing the summand numer/(1−
zr)k,

size
the size component of the character table,

degree
the degree of psi .

50.10 Reduced

Reduced(tbl, constituents, reducibles)
Reduced(tbl, reducibles)

returns a record with fields remainders and irreducibles, both lists: Let rems be the set
of nonzero characters obtained from reducibles by subtraction of

50.11. REDUCEDORDINARY 873

∑
χ∈constituents

ScalarProduct(tbl , χ, reducibles[i])
ScalarProduct(tbl , χ, constituents[j])

· χ

from reducibles[i] in the first case or subtraction of

∑
j≤i

ScalarProduct(tbl , reducibles[j], reducibles[i])
ScalarProduct(tbl , reducibles[j], reducibles[j])

· reducibles[j]

in the second case.

Let irrs be the list of irreducible characters in rems. rems is reduced with irrs and all
found irreducibles until no new irreducibles are found. Then irreducibles is the set of all
found irreducible characters, remainders is the set of all nonzero remainders.

If one knows that reducibles are ordinary characters of tbl and constituents are irreducible
ones, 50.11 ReducedOrdinary may be faster.

Note that elements of remainders may be only virtual characters even if reducibles are
ordinary characters.

gap> t:= CharTable("A5");;
gap> chars:= Sublist(t.irreducibles, [2 .. 4]);;
gap> chars:= Set(Tensored(chars, chars));;
gap> Reduced(t, chars);
rec(
remainders := [],
irreducibles :=
[[1, 1, 1, 1, 1], [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]])

50.11 ReducedOrdinary

ReducedOrdinary(tbl, constituents, reducibles)

works like 50.10 Reduced, but assumes that the elements of constituents and reducibles are
ordinary characters of the character table tbl . So scalar products are calculated only for
those pairs of characters where the degree of the constituent is smaller than the degree of
the reducible.

50.12 Tensored

Tensored(chars1, chars2)

returns the list of tensor products (i.e. pointwise products) of all characters in the list chars1
with all characters in the list chars2 .

gap> t:= CharTable("A5");;
gap> chars1:= Sublist(t.irreducibles, [1 .. 3]);;
gap> chars2:= Sublist(t.irreducibles, [2 .. 3]);;

874 CHAPTER 50. CHARACTERS

gap> Tensored(chars1, chars2);
[[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4],
[9, 1, 0, -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4,

-E(5)-2*E(5)^2-2*E(5)^3-E(5)^4], [9, 1, 0, -1, -1],
[9, 1, 0, -1, -1],
[9, 1, 0, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4, -2*E(5)-E(5)^2-E(5)^3

-2*E(5)^4]]

Note that duplicate tensor products are not deleted; the tensor product of chars1[i] with
chars2[j] is stored at position (i− 1)Length(chars1) + j.

50.13 Symmetrisations

Symmetrisations(tbl, chars, Sn)
Symmetrisations(tbl, chars, n)

returns the list of nonzero symmetrisations of the characters chars, regarded as characters
of the character table tbl , with the ordinary characters of the symmetric group of degree n;
alternatively, the table of the symmetric group can be entered as Sn.

The symmetrisation χ[λ] of the character χ of tbl with the character λ of the symmetric
group Sn of degree n is defined by

χ[λ](g) =
1
n!

∑
ρ∈Sn

λ(ρ)
n∏
k=1

χ(gk)ak(ρ),

where ak(ρ) is the number of cycles of length k in ρ.

For special symmetrisations, see 50.14, 50.15, 50.16 and 50.17, 50.18.

gap> t:= CharTable("A5");;
gap> chars:= Sublist(t.irreducibles, [1 .. 3]);;
gap> Symmetrisations(t, chars, 3);
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1],
[1, 1, 1, 1, 1], [8, 0, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[10, -2, 1, 0, 0], [1, 1, 1, 1, 1],
[8, 0, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [10, -2, 1, 0, 0]]

Note that the returned list may contain zero characters, and duplicate characters are not
deleted.

50.14 SymmetricParts

SymmetricParts(tbl, chars, n)

returns the list of symmetrisations of the characters chars, regarded as characters of the
character table tbl , with the trivial character of the symmetric group of degree n (see 50.13).

gap> t:= CharTable("A5");;
gap> SymmetricParts(t, t.irreducibles, 3);
[[1, 1, 1, 1, 1], [10, -2, 1, 0, 0], [10, -2, 1, 0, 0],
[20, 0, 2, 0, 0], [35, 3, 2, 0, 0]]

50.15. ANTISYMMETRICPARTS 875

50.15 AntiSymmetricParts

AntiSymmetricParts(tbl, chars, n)

returns the list of symmetrisations of the characters chars, regarded as characters of the
character table tbl , with the alternating character of the symmetric group of degree n (see
50.13).

gap> t:= CharTable("A5");;
gap> AntiSymmetricParts(t, t.irreducibles, 3);
[[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1],
[4, 0, 1, -1, -1], [10, -2, 1, 0, 0]]

50.16 MinusCharacter

MinusCharacter(char, prime powermap, prime)

returns the (possibly parametrized, see chapter 51) character χp− for the character χ =
char and a prime p = prime, where χp− is defined by χp−(g) = (χ(g)p − χ(gp))/p, and
prime powermap is the (possibly parametrized) p-th powermap.

gap> t:= CharTable("S7");; pow:= InitPowermap(t, 2);;
gap> Congruences(t, t.irreducibles, pow, 2);; pow;
[1, 1, 3, 4, [2, 9, 10], 6, 3, 8, 1, 1, [2, 9, 10], 3, 4, 6,
[7, 12]]

gap> chars:= Sublist(t.irreducibles, [2 .. 5]);;
gap> List(chars, x-> MinusCharacter(x, pow, 2));
[[0, 0, 0, 0, [0, 1], 0, 0, 0, 0, 0, [0, 1], 0, 0, 0, [0, 1]],
[15, -1, 3, 0, [-2, -1, 0], 0, -1, 1, 5, -3, [0, 1, 2], -1, 0,

0, [0, 1]],
[15, -1, 3, 0, [-1, 0, 2], 0, -1, 1, 5, -3, [1, 2, 4], -1, 0,

0, 1],
[190, -2, 1, 1, [0, 2], 0, 1, 1, -10, -10, [0, 2], -1, -1, 0,

[-1, 0]]]

50.17 OrthogonalComponents

OrthogonalComponents(tbl, chars, m)

If χ is a (nonlinear) character with indicator +1, a splitting of the tensor power χm is given
by the so-called Murnaghan functions (see [Mur58]). These components in general have
fewer irreducible constituents than the symmetrizations with the symmetric group of degree
m (see 50.13).

OrthogonalComponents returns the set of orthogonal symmetrisations of the characters of
the character table tbl in the list chars, up to the power m, where the integer m is one of
{2, 3, 4, 5, 6}.
Note: It is not checked if all characters in chars do really have indicator +1; if there are
characters with indicator 0 or −1, the result might contain virtual characters, see also 50.18.

The Murnaghan functions are implemented as in [Fra82].

gap> t:= CharTable("A8");; chi:= t.irreducibles[2];

876 CHAPTER 50. CHARACTERS

[7, -1, 3, 4, 1, -1, 1, 2, 0, -1, 0, 0, -1, -1]
gap> OrthogonalComponents(t, [chi], 4);
[[21, -3, 1, 6, 0, 1, -1, 1, -2, 0, 0, 0, 1, 1],
[27, 3, 7, 9, 0, -1, 1, 2, 1, 0, -1, -1, -1, -1],
[105, 1, 5, 15, -3, 1, -1, 0, -1, 1, 0, 0, 0, 0],
[35, 3, -5, 5, 2, -1, -1, 0, 1, 0, 0, 0, 0, 0],
[77, -3, 13, 17, 2, 1, 1, 2, 1, 0, 0, 0, 2, 2],
[189, -3, -11, 9, 0, 1, 1, -1, 1, 0, 0, 0, -1, -1],
[330, -6, 10, 30, 0, -2, -2, 0, -2, 0, 1, 1, 0, 0],
[168, 8, 8, 6, -3, 0, 0, -2, 2, -1, 0, 0, 1, 1],
[35, 3, -5, 5, 2, -1, -1, 0, 1, 0, 0, 0, 0, 0],
[182, 6, 22, 29, 2, 2, 2, 2, 1, 0, 0, 0, -1, -1]]

50.18 SymplecticComponents

SymplecticComponents(tbl, chars, m)

If χ is a (nonlinear) character with indicator −1, a splitting of the tensor power χm is given
in terms of the so-called Murnaghan functions (see [Mur58]). These components in general
have fewer irreducible constituents than the symmetrizations with the symmetric group of
degree m (see 50.13).
SymplecticComponents returns the set of symplectic symmetrisations of the characters of
the character table tbl in the list chars, up to the power m, where the integer m is one of
{2, 3, 4, 5}.
Note: It is not checked if all characters in chars do really have indicator −1; if there are
characters with indicator 0 or +1, the result might contain virtual characters, see also 50.17.

gap> t:= CharTable("U3(3)");; chi:= t.irreducibles[2];
[6, -2, -3, 0, -2, -2, 2, 1, -1, -1, 0, 0, 1, 1]
gap> SymplecticComponents(t, [chi], 4);
[[14, -2, 5, -1, 2, 2, 2, 1, 0, 0, 0, 0, -1, -1],

[21, 5, 3, 0, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1],
[64, 0, -8, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
[14, 6, -4, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2],
[56, -8, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0],
[70, -10, 7, 1, 2, 2, 2, -1, 0, 0, 0, 0, -1, -1],
[189, -3, 0, 0, -3, -3, -3, 0, 0, 0, 1, 1, 0, 0],
[90, 10, 9, 0, -2, -2, -2, 1, -1, -1, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[126, 14, -9, 0, 2, 2, 2, -1, 0, 0, 0, 0, -1, -1]]

50.19 IrreducibleDifferences

IrreducibleDifferences(tbl, chars1, chars2)
IrreducibleDifferences(tbl, chars1, chars2, scprmat)
IrreducibleDifferences(tbl, chars, "triangle")
IrreducibleDifferences(tbl, chars, "triangle", scprmat)

returns the list of irreducible characters which occur as difference of two elements of chars
(if "triangle" is specified) or of an element of chars1 and an element of chars2 ; if scprmat

50.20. RESTRICTED 877

is not specified it will be computed (see 50.2), otherwise we must have

scprmat [i][j] = ScalarProduct(tbl , chars[i], chars[j])

resp.
scprmat [i][j] = ScalarProduct(tbl , chars1 [i], chars2 [j])

.

gap> t:= CharTable("A5");;
gap> chars:= Sublist(t.irreducibles, [2 .. 4]);;
gap> chars:= Set(Tensored(chars, chars));;
gap> IrreducibleDifferences(t, chars, "triangle");
[[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]]

50.20 Restricted

Restricted(tbl, subtbl, chars)
Restricted(tbl, subtbl, chars, specification)
Restricted(chars, fusionmap)

returns the restrictions, i.e. the indirections, of the characters in the list chars by a subgroup
fusion map. This map can either be entered directly as fusionmap, or it must be stored on
the character table subtbl and must have destination tbl ; in the latter case the value of the
specification field of the desired fusion may be specified as specification (see 48.45). If
no such fusion is stored, false is returned.

The fusion map may be a parametrized map (see 51.1); any value that is not uniquely
determined in a restricted character is set to an unknown (see 17.1); for parametrized
indirection of characters, see 51.2.

Restriction and inflation are the same procedures, so Restricted and Inflated are identi-
cal, see 50.21.

gap> s5:= CharTable("A5.2");; a5:= CharTable("A5");;
gap> Restricted(s5, a5, s5.irreducibles);
[[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [6, -2, 0, 1, 1],
[4, 0, 1, -1, -1], [4, 0, 1, -1, -1], [5, 1, -1, 0, 0],
[5, 1, -1, 0, 0]]

gap> Restricted(s5.irreducibles, [1, 6, 2, 6]);
restrictions to the cyclic group of order 4

[[1, 1, 1, 1], [1, -1, 1, -1], [6, 0, -2, 0], [4, 0, 0, 0],
[4, 0, 0, 0], [5, -1, 1, -1], [5, 1, 1, 1]]

50.21 Inflated

Inflated(factortbl, tbl, chars)
Inflated(factortbl, tbl, chars, specification)
Inflated(chars, fusionmap)

returns the inflations, i.e. the indirections of chars by a factor fusion map. This map can
either be entered directly as fusionmap, or it must be stored on the character table tbl and

878 CHAPTER 50. CHARACTERS

must have destination factortbl ; in the latter case the value of the specification field of
the desired fusion may be specified as specification (see 48.45). If no such fusion is stored,
false is returned.

The fusion map may be a parametrized map (see 51.1); any value that is not uniquely deter-
mined in an inflated character is set to an unknown (see 17.1); for parametrized indirection
of characters, see 51.2.

Restriction and inflation are the same procedures, so Restricted and Inflated are identi-
cal, see 50.20.

gap> s4:= CharTable("Symmetric", 4);;
gap> s3:= CharTableFactorGroup(s4, [3]);;
gap> s3.irreducibles;
[[1, -1, 1], [2, 0, -1], [1, 1, 1]]
gap> s4.fusions;
[rec(

map := [1, 2, 1, 3, 2],
type := "factor",
name := [’S’, ’4’, ’/’, ’[’, ’ ’, ’3’, ’ ’, ’]’])]

gap> Inflated(s3, s4, s3.irreducibles);
[[1, -1, 1, 1, -1], [2, 0, 2, -1, 0], [1, 1, 1, 1, 1]]

50.22 Induced

Induced(subtbl, tbl, chars)
Induced(subtbl, tbl, chars, specification)
Induced(subtbl, tbl, chars, fusionmap)

returns a set of characters induced from subtbl to tbl ; the elements of the list chars will be
induced. The subgroup fusion map can either be entered directly as fusionmap, or it must
be stored on the table subtbl and must have destination tbl ; in the latter case the value of
the specification field may be specified by specification (see 48.45). If no such fusion is
stored, false is returned.

The fusion map may be a parametrized map (see 51.1); any value that is not uniquely
determined in an induced character is set to an unknown (see 17.1).

gap> Induced(a5, s5, a5.irreducibles);
[[2, 2, 2, 2, 0, 0, 0], [6, -2, 0, 1, 0, 0, 0],

[6, -2, 0, 1, 0, 0, 0], [8, 0, 2, -2, 0, 0, 0],
[10, 2, -2, 0, 0, 0, 0]]

50.23 InducedCyclic

InducedCyclic(tbl)
InducedCyclic(tbl, "all")
InducedCyclic(tbl, classes)
InducedCyclic(tbl, classes, "all")

returns a set of characters of the character table tbl . They are characters induced from
cyclic subgroups of tbl . If "all" is specified, all irreducible characters of those subgroups

50.24. COLLAPSEDMAT 879

are induced, otherwise only the permutation characters are computed. If a list classes is
specified, only those cyclic subgroups generated by these classes are considered, otherwise
all classes of tbl are considered.

Note that the powermaps for primes dividing tbl.order must be stored on tbl ; if any pow-
ermap for a prime not dividing tbl.order that is smaller than the maximal representative
order is not stored, this map will be computed (see 51.12) and stored afterwards.

The powermaps may be parametrized maps (see 51.1); any value that is not uniquely deter-
mined in an induced character is set to an unknown (see 17.1). The representative orders
of the classes to induce from must not be parametrized (see 51.1).

gap> t:= CharTable("A5");; InducedCyclic(t, "all");
[[12, 0, 0, 2, 2], [12, 0, 0, E(5)^2+E(5)^3, E(5)+E(5)^4],
[12, 0, 0, E(5)+E(5)^4, E(5)^2+E(5)^3], [20, 0, -1, 0, 0],
[20, 0, 2, 0, 0], [30, -2, 0, 0, 0], [30, 2, 0, 0, 0],
[60, 0, 0, 0, 0]]

50.24 CollapsedMat

CollapsedMat(mat, maps)

returns a record with fields mat and fusion: The fusion field contains the fusion that
collapses the columns of mat that are identical also for all maps in the list maps, the mat
field contains the image of mat under that fusion.

gap> t.irreducibles;
[[1, 1, 1, 1, 1], [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]]

gap> t:= CharTable("A5");; RationalizedMat(t.irreducibles);
[[1, 1, 1, 1, 1], [6, -2, 0, 1, 1], [4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]]

gap> CollapsedMat(last, []);
rec(
mat := [[1, 1, 1, 1], [6, -2, 0, 1], [4, 0, 1, -1],

[5, 1, -1, 0]],
fusion := [1, 2, 3, 4, 4])

gap> Restricted(last.mat, last.fusion);
[[1, 1, 1, 1, 1], [6, -2, 0, 1, 1], [4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]]

50.25 Power

Power(powermap, chars, n)

returns the list of indirections of the characters chars by the n-th powermap; for a character
χ in chars, this indirection is often called χ(n). The powermap is calculated from the
(necessarily stored) powermaps of the prime divisors of n if it is not stored in powermap
(see 51.30).

Note that χ(n) is in general only a virtual characters.

880 CHAPTER 50. CHARACTERS

gap> t:= CharTable("A5");; Power(t.powermap, t.irreducibles, 2);
[[1, 1, 1, 1, 1], [3, 3, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4],
[3, 3, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3], [4, 4, 1, -1, -1],
[5, 5, -1, 0, 0]]

gap> MatScalarProducts(t, t.irreducibles, last);
[[1, 0, 0, 0, 0], [1, -1, 0, 0, 1], [1, 0, -1, 0, 1],
[1, -1, -1, 1, 1], [1, -1, -1, 0, 2]]

50.26 Permutation Character Candidates

For groups H,G with H ≤ G, the induced character (1G)H is called the permutation
character of the operation of G on the right cosets of H. If only the character table of
G is known, one can try to get informations about possible subgroups of G by inspection
of those characters π which might be permutation characters, using that such a character
must have at least the following properties:

π(1) divides |G|,
[π, ψ] ≤ ψ(1) for each character ψ of G,

[π, 1G] = 1,

π(g) is a nonnegative integer for g ∈ G,

π(g) is smaller than the centralizer order of g for 1 6= g ∈ G,

π(g) ≤ π(gm) for g ∈ G and any integer m,

π(g) = 0 for every |g| not diving |G|
π(1) ,

π(1)|NG(g)| divides |G|π(g), where |NG(g)| denotes the normalizer order of 〈g〉.
Any character with these properties will be called a permutation character candidate
from now on.

GAP provides some algorithms to compute permutation character candidates, see 50.31.
Some information about the subgroup can computed from a permutation character using
PermCharInfo (see 50.28).

50.27 IsPermChar

IsPermChar(tbl, pi)

missing, like tests TestPerm1, TestPerm2, TestPerm3

50.28 PermCharInfo

PermCharInfo(tbl, permchars)

Let tbl be the character table of the group G, and permchars the permutation character
(1U)G for a subgroup U of G, or a list of such characters. PermCharInfo returns a record
with components

contained
a list containing for each character in permchars a list containing at position i

50.29. INEQUALITIES 881

the number of elements of U that are contained in class i of tbl , this is equal to
permchar[i]|U |/tbl.centralizers[i],

bound
Let permchars[k] be the permutation character (1U)G. Then the class length in
U of an element in class i of tbl must be a multiple of the value bound[k][i] =
|U |/ gcd(|U |, tbl .centralizers[i]),

display
a record that can be used as second argument of DisplayCharTable to display the
permutation characters and the corresponding components contained and bound, for
the classes where at least one character of permchars is nonzero,

ATLAS
list of strings containing for each character in permchars the decomposition into
tbl.irreducibles in ATLAS notation.

gap> t:= CharTable("A6");;
gap> PermCharInfo(t, [15, 3, 0, 3, 1, 0, 0]);
rec(
contained := [[1, 9, 0, 8, 6, 0, 0]],
bound := [[1, 3, 8, 8, 6, 24, 24]],
display := rec(

classes := [1, 2, 4, 5],
chars := [[15, 3, 0, 3, 1, 0, 0], [1, 9, 0, 8, 6, 0, 0],

[1, 3, 8, 8, 6, 24, 24]],
letter := "I"),

ATLAS := ["1a+5b+9a"])
gap> DisplayCharTable(t, last.display);
A6

2 3 3 . 2
3 2 . 2 .
5 1 . . .

1a 2a 3b 4a
2P 1a 1a 3b 2a
3P 1a 2a 1a 4a
5P 1a 2a 3b 4a

I.1 15 3 3 1
I.2 1 9 8 6
I.3 1 3 8 6

50.29 Inequalities

Inequalities(tbl)

The condition π(g) ≥ 0 for every permutation character candidate π places restrictions on
the multiplicities ai of the irreducible constituents χi of π =

∑r
i=1 aiχi. For every group

element g holds
∑r
i=1 aiχi(g) ≥ 0. The power map provides even stronger conditions.

882 CHAPTER 50. CHARACTERS

This system of inequalities is kind of diagonalized, resulting in a system of inequalities
restricting ai in terms of aj , j < i. These inequalities are used to construct characters
with nonnegative values (see 50.31). PermChars either calls Inequalities or takes this
information from the record field ineq of its argument record.

The number of inequalities arising in the process of diagonalization may grow very strong.

There are two strategies to perform this diagonalization. The default is to simply eliminate
one unknown ai after the other with decreasing i. In some cases it turns out to be better
first to look which choice for the next unknown will yield the fewest new inequalities.

50.30 PermBounds

PermBounds(tbl, d)

All characters π satisfying π(g) > 0 and π(1) = d for a given degree d lie in a simplex
described by these conditions. PermBounds computes the boundary points of this simplex
for d = 0, from which the boundary points for any other d are easily derived. Some conditions
from the powermap are also involved.

For this purpose a matrix similar to the rationalized character table has to be inverted.

These boundary points are used by PermChars (see 50.31) to construct all permutation
character candidates of a given degree. PermChars either calls PermBounds or takes this
information from the record field bounds of its argument record.

50.31 PermChars

PermChars(tbl)
PermChars(tbl, degree)
PermChars(tbl, arec)

GAP provides several algorithms to determine permutation character candidates from a
given character table. The algorithm is selected from the choice of the record fields of the
optional argument record arec. The user is encouraged to try different approaches especially
if one choice fails to come to an end.

Regardless of the algorithm used in a special case, PermChars returns a list of all permu-
tation character candidates with the properties given in arec. There is no guarantee that
a character of this list is in fact a permutation character. But an empty list always means
there is no permutation character with these properties (e.g. of a certain degree).

In the first form PermChars(tbl) returns the list of all permutation characters of the group
with character table tbl . This list might be rather long for big groups, and it might take
much time. The algorithm depends on a preprocessing step, where the inequalities arising
from the condition π(g) ≤ 0 are transformed into a system of inequalities that guides the
search (see 50.29).

gap> m11:= CharTable("M11");;
gap> PermChars(m11);; # will return the list of 39 permutation

character candidates of M11.

There are two different search strategies for this algorithm. One simply constructs all
characters with nonnegative values and then tests for each such character whether its degree

50.32. FAITHFUL PERMUTATION CHARACTERS 883

is a divisor of the order of the group. This is the default. The other strategy uses the
inequalities to predict if it is possible to find a character of a certain degree in the currently
searched part of the search tree. To choose this strategy set the field mode of arec to
"preview" and the field degree to the degree (or a list of degrees which might be all
divisors of the order of the group) you want to look for. The record field ineq can take the
inequalities from Inequalities if they are needed more than once.

In the second form PermChars(tbl, degree) returns the list of all permutation characters
of degree degree. For that purpose a preprocessing step is performed where essentially the
rationalized character table is inverted in order to determine boundary points for the simplex
in which the permutation character candidates of a given degree must lie (see 50.30). Note
that inverting big integer matrices needs a lot of time and space. So this preprocessing is
restricted to groups with less than 100 classes, say.

gap> PermChars(m11, 220);
[[220, 4, 4, 0, 0, 4, 0, 0, 0, 0],
[220, 12, 4, 4, 0, 0, 0, 0, 0, 0],
[220, 20, 4, 0, 0, 2, 0, 0, 0, 0]]

In the third form PermChars(tbl, arec) returns the list of all permutation characters
which have the properties given in the argument record arec. If arec contains a degree in
the record field degree then PermChars will behave exactly as in the second form.

gap> PermChars(m11, rec(degree:= 220));
[[220, 4, 4, 0, 0, 4, 0, 0, 0, 0],
[220, 12, 4, 4, 0, 0, 0, 0, 0, 0],
[220, 20, 4, 0, 0, 2, 0, 0, 0, 0]]

Alternatively arec may have the record fields chars and torso. arec.chars is a list of
(in most cases all) rational irreducible characters of tbl which might be constituents of the
required characters, and arec.torso is a list that contains some known values of the required
characters at the right positions.

Note: At least the degree arec.torso[1] must be an integer. If arec.chars does not contain
all rational irreducible characters of G, it may happen that any scalar product of π with an
omitted character is negative; there should be nontrivial reasons for excluding a character
that is known to be not a constituent of π.

gap> rat:= RationalizedMat(m11.irreducibles);;
gap> PermChars(m11, rec(torso:= [220], chars:= rat));
[[220, 4, 4, 0, 0, 4, 0, 0, 0, 0],
[220, 20, 4, 0, 0, 2, 0, 0, 0, 0],
[220, 12, 4, 4, 0, 0, 0, 0, 0, 0]]

gap> PermChars(m11, rec(torso:= [220,,,,,2], chars:= rat));
[[220, 20, 4, 0, 0, 2, 0, 0, 0, 0]]

50.32 Faithful Permutation Characters

PermChars(tbl, arec)

PermChars may as well determine faithful candidates for permutation characters. In that
case arec requires the fields normalsubgrp, nonfaithful, chars, lower, upper, and torso.

884 CHAPTER 50. CHARACTERS

Let tbl be the character table of the group G, arec.normalsubgrp a list of classes forming
a normal subgroup N of G. arec.nonfaithful is a permutation character candidate (see
50.26) of G with kernel N . arec.chars is a list of (in most cases all) rational irreducible
characters of tbl .

PermChars computes all those permutation character candidates π having following prop-
erties:

arec.chars contains every rational irreducible constituent of π.

π[i] ≥ arec.lower[i] for all integer values of the list arec.lower.

π[i] ≤ arec.upper[i] for all integer values of the list arec.upper.

π[i] = arec.torso[i] for all integer values of the list arec.torso.

No irreducible constituent of π − arec.nonfaithful has N in its kernel.

If there exists a subgroup V of G, V ≥ N , with nonfaithful = (1V)G, the last condition
means that the candidates for those possible subgroups U with V = UN are constructed.

Note:At least the degree torso[1] must be an integer. If chars does not contain all rational
irreducible characters of G, it may happen that any scalar product of π with an omitted
character is negative; there should be nontrivial reasons for excluding a character that is
known to be not a constituent of π.

50.33 LLLReducedBasis

LLLReducedBasis([L],vectors[,y][,"linearcomb"])

LLLReducedBasis provides an implementation of the LLL lattice reduction algorithm by
Lenstra, Lenstra and Lovász (see [LLL82], [Poh87]). The implementation follows the de-
scription on pages 94f. in [Coh93].

LLLReducedBasis returns a record whose component basis is a list of LLL reduced linearly
independent vectors spanning the same lattice as the list vectors.

L must be a lattice record whose scalar product function is stored in the component
operations.NoMessageScalarProduct or operations.ScalarProduct. It must be a func-
tion of three arguments, namely the lattice and the two vectors. If no lattice L is given the
standard scalar product is taken.

In the case of option "linearcomb", the record contains also the components relations and
transformation, which have the following meaning. relations is a basis of the relation
space of vectors, i.e., of vectors x such that x *vectors is zero. transformation gives the
expression of the new lattice basis in terms of the old, i.e., transformation *vectors equals
the basis component of the result.

Another optional argument is y , the “sensitivity”of the algorithm, a rational number be-
tween 1

4 and 1 (the default value is 3
4).

(The function 50.34 computes an LLL reduced Gram matrix.)

gap> vectors:= [[9, 1, 0, -1, -1], [15, -1, 0, 0, 0],
> [16, 0, 1, 1, 1], [20, 0, -1, 0, 0],
> [25, 1, 1, 0, 0]];;
gap> LLLReducedBasis(vectors, "linearcomb");
rec(

50.34. LLLREDUCEDGRAMMAT 885

basis :=
[[1, 1, 1, 1, 1], [1, 1, -2, 1, 1], [-1, 3, -1, -1, -1],

[-3, 1, 0, 2, 2]],
relations := [[-1, 0, -1, 0, 1]],
transformation :=
[[0, -1, 1, 0, 0], [-1, -2, 0, 2, 0], [1, -2, 0, 1, 0],

[-1, -2, 1, 1, 0]])

50.34 LLLReducedGramMat

LLLReducedGramMat(G [,y])

LLLReducedGramMat provides an implementation of the LLL lattice reduction algorithm
by Lenstra, Lenstra and Lovász (see [LLL82], [Poh87]). The implementation follows the
description on pages 94f. in [Coh93].

Let G the Gram matrix of the vectors (b1, b2, . . . , bn); this means G is either a square
symmetric matrix or lower triangular matrix (only the entries in the lower triangular half
are used by the program).

LLLReducedGramMat returns a record whose component remainder is the Gram matrix of
the LLL reduced basis corresponding to (b1, b2, . . . , bn). If G was a lower triangular matrix
then also the remainder component is a lower triangular matrix.

The result record contains also the components relations and transformation, which
have the following meaning.

relations is a basis of the space of vectors (x1, x2, . . . , xn) such that
∑n
i=1 xibi is zero,

and transformation gives the expression of the new lattice basis in terms of the old, i.e.,
transformation is the matrix T such that T · G · T tr is the remainder component of the
result.

The optional argument y denotes the “sensitivity of the algorithm, it must be a rational
number between 1

4 and 1; the default value is y = 3
4 .

(The function 50.33 computes an LLL reduced basis.)

gap> g:= [[4, 6, 5, 2, 2], [6, 13, 7, 4, 4],
> [5, 7, 11, 2, 0], [2, 4, 2, 8, 4], [2, 4, 0, 4, 8]];;
gap> LLLReducedGramMat(g);
rec(
remainder :=
[[4, 2, 1, 2, -1], [2, 5, 0, 2, 0], [1, 0, 5, 0, 2],

[2, 2, 0, 8, 2], [-1, 0, 2, 2, 7]],
relation := [],
transformation :=
[[1, 0, 0, 0, 0], [-1, 1, 0, 0, 0], [-1, 0, 1, 0, 0],

[0, 0, 0, 1, 0], [-2, 0, 1, 0, 1]],
scalarproducts := [, [1/2], [1/4, -1/8], [1/2, 1/4, -2/25],

[-1/4, 1/8, 37/75, 8/21]],
bsnorms := [4, 4, 75/16, 168/25, 32/7])

886 CHAPTER 50. CHARACTERS

50.35 LLL

LLL(tbl, characters [, y] [, "sort"] [, "linearcomb"])

calls the LLL algorithm (see 50.33) in the case of lattices spanned by (virtual) characters
characters of the character table tbl (see 50.1). By finding shorter vectors in the lattice
spanned by characters, i.e. virtual characters of smaller norm, in some cases LLL is able to
find irreducible characters.

LLL returns a record with at least components irreducibles (the list of found irreducible
characters), remainders (a list of reducible virtual characters), and norms (the list of norms
of remainders). irreducibles together with remainders span the same lattice as charac-
ters.

There are some optional parameters:

y
controls the sensitivity of the algorithm; the value of y must be between 1/4 and 1,
the default value is 3/4.

"sort"
LLL sorts characters and the remainders component of the result according to the
degrees.

"linearcomb"
The returned record contains components irreddecomp and reddecomp which are de-
composition matrices of irreducibles and remainders, with respect to characters.

gap> s4:= CharTable("Symmetric", 4);;
gap> chars:= [[8, 0, 0, -1, 0], [6, 0, 2, 0, 2],
> [12, 0, -4, 0, 0], [6, 0, -2, 0, 0], [24, 0, 0, 0, 0],
> [12, 0, 4, 0, 0], [6, 0, 2, 0, -2], [12, -2, 0, 0, 0],
> [8, 0, 0, 2, 0], [12, 2, 0, 0, 0], [1, 1, 1, 1, 1]];;
gap> LLL(s4, chars);
rec(
irreducibles :=
[[2, 0, 2, -1, 0], [1, 1, 1, 1, 1], [3, 1, -1, 0, -1],

[3, -1, -1, 0, 1], [1, -1, 1, 1, -1]],
remainders := [],
norms := [])

50.36 OrthogonalEmbeddings

OrthogonalEmbeddings(G [, "positive"] [, maxdim])

computes all possible orthogonal embeddings of a lattice given by its Gram matrix G which
must be a regular matrix (see 50.34). In other words, all solutions X of the problem

XtrX = G

are calculated (see [Ple90]). Usually there are many solutions X but all their rows are chosen
from a small set of vectors, so OrthogonalEmbeddings returns the solutions in an encoded
form, namely as a record with components

50.36. ORTHOGONALEMBEDDINGS 887

vectors
the list [x1, x2, . . . , xn] of vectors that may be rows of a solution; these are exactly
those vectors that fulfill the condition xiG

−1xtri ≤ 1 (see 50.37), and we have G =∑n
i=1 x

tr
i xi,

norms the list of values xiG−1xtri , and

solutions
a list S of lists; the i–th solution matrix is Sublist(L, S[i]), so the dimension
of the i–th solution is the length of S[i].

The optional argument "positive" will cause OrthogonalEmbeddings to compute only
vectors xi with nonnegative entries. In the context of characters this is allowed (and useful)
if G is the matrix of scalar products of ordinary characters.

When OrthogonalEmbeddings is called with the optional argument maxdim (a positive inte-
ger), it computes only solutions up to dimension maxdim; this will accelerate the algorithm
in some cases.

G may be the matrix of scalar products of some virtual characters. From the characters
and the embedding given by the matrix X, Decreased (see 50.39) may be able to compute
irreducibles.

gap> b := [[3, -1, -1], [-1, 3, -1], [-1, -1, 3]];;
gap> c:=OrthogonalEmbeddings(b);
rec(
vectors :=
[[-1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 0],

[-1, 0, 1], [1, 0, 0], [0, -1, 1], [0, 1, 0],
[0, 0, 1]],

norms := [1, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2],
solutions := [[1, 2, 3], [1, 6, 6, 7, 7], [2, 5, 5, 8, 8],

[3, 4, 4, 9, 9], [4, 5, 6, 7, 8, 9]])
gap> Sublist(c.vectors, c.solutions[1]);
[[-1, 1, 1], [1, -1, 1], [-1, -1, 1]]

OrthogonalEmbeddingsSpecialDimension
(tbl, reducibles, grammat [, "positive"], dim)

This form can be used if you want to find irreducible characters of the table tbl , where
reducibles is a list of virtual characters, grammat is the matrix of their scalar products, and
dim is the maximal dimension of an embedding. First all solutions up to dim are compute,
and then 50.39 Decreased is called in order to find irreducible characters of tab.

If reducibles consists of ordinary characters only, you should enter the optional argument
"positive"; this imposes some conditions on the possible embeddings (see the description
of OrthogonalEmbeddings).

OrthogonalEmbeddingsSpecialDimension returns a record with components

irreducibles a list of found irreducibles, the intersection of all lists of irreducibles
found by Decreased, for all possible embeddings, and

remainders a list of remaining reducible virtual characters

888 CHAPTER 50. CHARACTERS

gap> s6:= CharTable("Symmetric", 6);;
gap> b:= InducedCyclic(s6, "all");;
gap> Add(b, [1,1,1,1,1,1,1,1,1,1,1]);
gap> c:= LLL(s6, b).remainders;;
gap> g:= MatScalarProducts(s6, c, c);;
gap> d:= OrthogonalEmbeddingsSpecialDimension(s6, c, g, 8);
rec(
irreducibles :=
[[5, -3, 1, 1, 2, 0, -1, -1, -1, 0, 1], [5, 1, 1, -3, -1, 1,

2, -1, -1, 0, 0], [10, -2, -2, 2, 1, 1, 1, 0, 0, 0, -1],
[10, 2, -2, -2, 1, -1, 1, 0, 0, 0, 1]],

remainders :=
[[0, 4, 0, -4, 3, 1, -3, 0, 0, 0, -1], [4, 0, 0, 4, -2, 0, 1,

-2, 2, -1, 1], [6, 2, 2, -2, 3, -1, 0, 0, 0, 1, -2],
[14, 6, 2, 2, 2, 0, -1, 0, 0, -1, -1]])

50.37 ShortestVectors

ShortestVectors(G, m)
ShortestVectors(G, m, "positive")

computes all vectors x with xGxtr ≤ m, where G is a matrix of a symmetric bilinear form,
and m is a nonnegative integer. If the optional argument "positive" is entered, only those
vectors x with nonnegative entries are computed.

ShortestVectors returns a record with components

vectors the list of vectors x, and

norms the list of their norms according to the Gram matrix G.

gap> g:= [[2, 1, 1], [1, 2, 1], [1, 1, 2]];;
gap> ShortestVectors(g,4);
rec(
vectors := [[-1, 1, 1], [0, 0, 1], [-1, 0, 1], [1, -1, 1],

[0, -1, 1], [-1, -1, 1], [0, 1, 0], [-1, 1, 0],
[1, 0, 0]],

norms := [4, 2, 2, 4, 2, 4, 2, 2, 2])

This algorithm is used in 50.36 OrthogonalEmbeddings.

50.38 Extract

Extract(tbl, reducibles, grammat)
Extract(tbl, reducibles, grammat, missing)

tries to find irreducible characters by drawing conclusions out of a given matrix grammat
of scalar products of the reducible characters in the list reducibles, which are characters of
the table tbl . Extract uses combinatorial and backtrack means.

Note: Extract works only with ordinary characters!

missing number of characters missing to complete the tbl perhaps Extract may be
accelerated by the specification of missing .

50.39. DECREASED 889

Extract returns a record extr with components solution and choice where solution is
a list [M1, . . . ,Mn] of decomposition matrices that satisfy the equation

M tr
i ·X = Sublist(reducibles, extr .choice[i]) ,

for a matrix X of irreducible characters, and choice is a list of length n whose entries are
lists of indices.
So each column stands for one of the reducible input characters, and each row stands for an
irreducible character. You can use 50.39 Decreased to examine the solution for computable
irreducibles.

gap> s4 := CharTable("Symmetric", 4);;
gap> y := [[5, 1, 5, 2, 1], [2, 0, 2, 2, 0], [3, -1, 3, 0, -1],
> [6, 0, -2, 0, 0], [4, 0, 0, 1, 2]];;
gap> g := MatScalarProducts(s4, y, y);
[[6, 3, 2, 0, 2], [3, 2, 1, 0, 1], [2, 1, 2, 0, 0],
[0, 0, 0, 2, 1], [2, 1, 0, 1, 2]]

gap> e:= Extract(s4, y, g, 5);
rec(
solution :=
[[[1, 1, 0, 0, 2], [1, 0, 1, 0, 1], [0, 1, 0, 1, 0],

[0, 0, 1, 0, 1], [0, 0, 0, 1, 0]]],
choice := [[2, 5, 3, 4, 1]])

continued in Decreased (see 50.39)

50.39 Decreased

Decreased(tbl, reducibles, mat)
Decreased(tbl, reducibles, mat, choice)

tries to solve the output of 50.36 OrthogonalEmbeddings or 50.38 Extract in order to find
irreducible characters. tbl must be a character table, reducibles the list of characters used
for the call of OrtgogonalEmbeddings or Extract, mat one solution, and in the case of a
solution returned by Extract, choice must be the corresponding choice component.
Decreased returns a record with components
irreducibles

the list of found irreducible characters,
remainders

the remaining reducible characters, and
matrix

the decomposition matrix of the characters in the remainders component, which
could not be solved.

see example in 50.38 Extract
gap> d := Decreased(s4, y, e.solution[1], e.choice[1]);
rec(
irreducibles :=
[[1, 1, 1, 1, 1], [3, -1, -1, 0, 1], [1, -1, 1, 1, -1],

[3, 1, -1, 0, -1], [2, 0, 2, -1, 0]],
remainders := [],
matrix := [])

890 CHAPTER 50. CHARACTERS

50.40 DnLattice

DnLattice(tbl, grammat, reducibles)

tries to find sublattices isomorphic to root lattices of type Dn (for n ≥ 5 or n = 4) in a
lattice that is generated by the norm 2 characters reducibles, which must be characters of
the table tbl . grammat must be the matrix of scalar products of reducibles, i.e., the Gram
matrix of the lattice.

DnLattice is able to find irreducible characters if there is a lattice with n > 4. In the case
n = 4 DnLattice only in some cases finds irreducibles.

DnLattice returns a record with components

irreducibles
the list of found irreducible characters,

remainders
the list of remaining reducible characters, and

gram
the Gram matrix of the characters in remainders.

The remaining reducible characters are transformed into a normalized form, so that the
lattice-structure is cleared up for further treatment. So DnLattice might be useful even if
it fails to find irreducible characters.

gap> tbl:= CharTable("Symmetric", 4);;
gap> y1:=[[2, 0, 2, 2, 0], [4, 0, 0, 1, 2], [5, -1, 1, -1, 1],
> [-1, 1, 3, -1, -1]];;
gap> g1:= MatScalarProducts(tbl, y1, y1);
[[2, 1, 0, 0], [1, 2, 1, -1], [0, 1, 2, 0], [0, -1, 0, 2]]
gap> e:= DnLattice(tbl, g1, y1);
rec(

gram := [],
remainders := [],
irreducibles :=
[[2, 0, 2, -1, 0], [1, -1, 1, 1, -1], [1, 1, 1, 1, 1],

[3, -1, -1, 0, 1]])

DnLatticeIterative(tbl, arec)

was made for iterative use of DnLattice. arec must be either a list of characters of the table
tbl , or a record with components

remainders
a list of characters of the character table tbl , and

norms
the norms of the characters in remainders,

e.g., a record returned by 50.35 LLL. DnLatticeIterative will select the characters of
norm 2, call DnLattice, reduce the characters with found irreducibles, call DnLattice for
the remaining characters, and so on, until no new irreducibles are found.

DnLatticeIterative returns (like 50.35 LLL) a record with components

50.41. CONTAINEDDECOMPOSABLES 891

irreducibles
the list of found irreducible characters,

remainders
the list of remaining reducible characters, and

norms
the list of norms of the characters in remainders.

gap> tbl:= CharTable("Symmetric", 4);;
gap> y1:= [[2, 0, 2, 2, 0], [4, 0, 0, 1, 2],
> [5, -1, 1, -1, 1], [-1, 1, 3, -1, -1], [6, -2, 2, 0, 0]];;
gap> DnLatticeIterative(tbl, y1);
rec(
irreducibles :=
[[2, 0, 2, -1, 0], [1, -1, 1, 1, -1], [1, 1, 1, 1, 1],

[3, -1, -1, 0, 1]],
remainders := [],
norms := [])

50.41 ContainedDecomposables

ContainedDecomposables(constituents, moduls, parachar, func)

For a list of rational characters constituents and a parametrized rational character parachar
(see 51.1), the set of all elements χ of parachar is returned that satisfy func(χ) (i.e., for that
true is returned) and that “modulo moduls lie in the lattice spanned by constituents”. This
means they lie in the lattice spanned by constituents and the set {moduls[i] · ei; 1 ≤ i ≤ n},
where n is the length of parachar and ei is the i-th vector of the standard base.

gap> hs:= CharTable("HS");; s:= CharTable("HSM12");; s.identifier;
"5:4xa5"
gap> rat:= RationalizedMat(s.irreducibles);;
gap> fus:= InitFusion(s, hs);
[1, [2, 3], [2, 3], [2, 3], 4, 5, 5, [5, 6, 7], [5, 6, 7],
9, [8, 9], [8, 9], [8, 9, 10], [8, 9, 10], [11, 12],
[17, 18], [17, 18], [17, 18], 21, 21, 22, [23, 24],
[23, 24], [23, 24], [23, 24]]

restrict a rational character of hs by fus,
see chapter 51:
gap> rest:= CompositionMaps(hs.irreducibles[8], fus);
[231, [-9, 7], [-9, 7], [-9, 7], 6, 15, 15, [-1, 15],
[-1, 15], 1, [1, 6], [1, 6], [1, 6], [1, 6], [-2, 0],
[1, 2], [1, 2], [1, 2], 0, 0, 1, 0, 0, 0, 0]

all vectors in the lattice:
gap> ContainedDecomposables(rat, s.centralizers, rest, x -> true);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

892 CHAPTER 50. CHARACTERS

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]
better filter, only characters (see 50.42):
gap> ContainedDecomposables(rat, s.centralizers, rest,
> x->NonnegIntScalarProducts(s,s.irreducibles,x));
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

An application of ContainedDecomposables is 50.42 ContainedCharacters.

For another strategy that works also for irrational characters, see 50.43.

50.42 ContainedCharacters

ContainedCharacters(tbl, constituents, parachar)

returns the set of all characters contained in the parametrized rational character parachar
(see 51.1), that modulo centralizer orders lie in the linear span of the rational characters
constituents of the character table tbl and that have nonnegative integral scalar products
with all elements of constituents.

Note: This does not imply that an element of the returned list is necessary a linear combi-
nation of constituents.

gap> s:= CharTable("HSM12");; hs:= CharTable("HS");;
gap> rat:= RationalizedMat(s.irreducibles);;
gap> fus:= InitFusion(s, hs);;
gap> rest:= CompositionMaps(hs.irreducibles[8], fus);;
gap> ContainedCharacters(s, rat, rest);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

ContainedCharacters calls 50.41 ContainedDecomposables.

50.43 ContainedSpecialVectors

ContainedSpecialVectors(tbl, chars, parachar, func)

returns the list of all elements vec of the parametrized character parachar (see 51.1), that
have integral norm and integral scalar product with the principal character of the character
table tbl and that satisfy func(tbl, chars, vec), i.e., for that true is returned.

gap> s:= CharTable("HSM12");; hs:= CharTable("HS");;
gap> fus:= InitFusion(s, hs);;
gap> rest:= CompositionMaps(hs.irreducibles[8], fus);;
no further condition:
gap> ContainedSpecialVectors(s, s.irreducibles, rest,
> function(tbl,chars,vec) return true; end);;

50.44. CONTAINEDPOSSIBLECHARACTERS 893

gap> Length(last);
24
better filter: those with integral scalar products
gap> ContainedSpecialVectors(s, s.irreducibles, rest,
> IntScalarProducts);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]
better filter: the scalar products must be nonnegative
gap> ContainedSpecialVectors(s, s.irreducibles, rest,
> NonnegIntScalarProducts);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

Special cases of ContainedSpecialVectors are 50.44 ContainedPossibleCharacters and
50.45 ContainedPossibleVirtualCharacters.
ContainedSpecialVectors successively examines all vectors contained in parachar , thus it
might not be useful if the indeterminateness exceeds 106. For another strategy that works
for rational characters only, see 50.41.

50.44 ContainedPossibleCharacters

ContainedPossibleCharacters(tbl, chars, parachar)

returns the list of all elements vec of the parametrized character parachar (see 51.1), which
have integral norm and integral scalar product with the principal character of the character
table tbl and nonnegative integral scalar product with all elements of the list chars of
characters of tbl .

see example in 50.43
gap> ContainedPossibleCharacters(s, s.irreducibles, rest);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

ContainedPossibleCharacters calls 50.43 ContainedSpecialVectors.
ContainedPossibleCharacters successively examines all vectors contained in parachar ,
thus it might not be useful if the indeterminateness exceeds 106. For another strategy that
works for rational characters only, see 50.41.

50.45 ContainedPossibleVirtualCharacters

ContainedPossibleVirtualCharacters(tbl, chars, parachar)

894 CHAPTER 50. CHARACTERS

returns the list of all elements vec of the parametrized character parachar (see 51.1), which
have integral norm and integral scalar product with the principal character of the character
table tbl and integral scalar product with all elements of the list chars of characters of tbl .

see example in 50.43
gap> ContainedPossibleVirtualCharacters(s, s.irreducibles, rest);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,

0, 1, 0, 0, 0, 0]]

ContainedPossibleVirtualCharacters calls 50.43 ContainedSpecialVectors.

ContainedPossibleVirtualCharacters successively examines all vectors that are con-
tained in parachar , thus it might not be useful if the indeterminateness exceeds 106. For
another strategy that works for rational characters only, see 50.41.

Chapter 51

Maps and Parametrized Maps

In this chapter, first the data structure of (parametrized) maps is introduced (see 51.1).
Then a description of several functions which mainly deal with parametrized maps follows;
these are

basic operations with paramaps (see 51.2, 51.3, 51.29, 51.4, 51.5, 51.6, 51.7, 51.8, 51.9),

functions which inform about ambiguity with respect to a paramap (see 51.10, 51.11),

functions used for the construction of powermaps and subgroup fusions (see 51.12, 51.13 and
their subroutines 51.14, 51.15, 51.16, 51.17, 51.23, 51.18, 51.19, 51.20, 51.21, 51.22, 51.24,
51.26, 51.25, 51.28, 51.27, 51.30) and

the function 51.31.

51.1 More about Maps and Parametrized Maps

Besides the characters, powermaps are an important part of a character table. Often
their computation is not easy, and in general they cannot be obtained from the matrix of
irreducible characters, so it is useful to store them on the table.

If not only a single table is considered but different tables of groups and subgroups are used,
also subgroup fusion maps must be known to get informations about the embedding or
simply to induce or restrict characters.

These are examples of class functions which are called maps for short; in GAP, maps are
lists: Characters are maps, the lists of element orders, centralizer orders, classlengths are
maps, and for a permutation perm of classes, ListPerm(perm) is a map.

When maps are constructed, in most cases one only knows that the image of any class is
contained in a set of possible images, e.g. that the image of a class under a subgroup fusion
is in the set of all classes with the same element order. Using further informations, like
centralizer orders, powermaps and the restriction of characters, the sets of possible images
can be diminished. In many cases, at the end the images are uniquely determined.

For this, many functions do not only work with maps but with parametrized maps (or
short paramaps): These are lists whose entries are either the images themselves (i.e. in-
tegers for fusion maps, powermaps, element orders etc. and cyclotomics for characters) or

895

896 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

lists of possible images. Thus maps are special paramaps. A paramap paramap can be
identified with the set of all maps map with map[i] = paramap[i] or map[i] contained
in paramap[i]; we say that map is contained in paramap then.

The composition of two paramaps is defined as the paramap that contains all compositions
of elements of the paramaps. For example, the indirection of a character by a parametrized
subgroup fusion map is the parametrized character that contains all possible restrictions of
that character.

51.2 CompositionMaps

CompositionMaps(paramap2, paramap1)
CompositionMaps(paramap2, paramap1, class)

For parametrized maps paramap1 and paramap2 where paramap[i] is a bound position
or a set of bound positions in paramap2 , CompositionMaps(paramap2, paramap1) is a
parametrized map with image CompositionMaps(paramap2, paramap1, class) at posi-
tion class.

If paramap1[class] is unique, we have

CompositionMaps(paramap2 , paramap1 , class) = paramap2 [paramap1 [class]],

otherwise it is the union of paramap2[i] for i in paramap1[class].

gap> map1:= [1, [2, 3, 4], [4, 5], 1];;
gap> map2:= [[1, 2], 2, 2, 3, 3];;
gap> CompositionMaps(map2, map1); CompositionMaps(map1, map2);
[[1, 2], [2, 3], 3, [1, 2]]
[[1, 2, 3, 4], [2, 3, 4], [2, 3, 4], [4, 5], [4, 5]]

Note: If you want to get indirections of characters which contain unknowns (see chapter
17) instead of sets of possible values, use 51.29 Indirected.

51.3 InverseMap

InverseMap(paramap)

InverseMap(paramap)[i] is the unique preimage or the set of all preimages of i under
paramap, if there are any; otherwise it is unbound.

(We have CompositionMaps(paramap, InverseMap(paramap)) the identity map.)

gap> t:= CharTable("2.A5");; f:= CharTable("A5");;
gap> fus:= GetFusionMap(t, f); # the factor fusion map
[1, 1, 2, 3, 3, 4, 4, 5, 5]
gap> inverse:= InverseMap(fus);
[[1, 2], 3, [4, 5], [6, 7], [8, 9]]
gap> CompositionMaps(fus, inverse);
[1, 2, 3, 4, 5]
gap> t.powermap[2];
[1, 1, 2, 4, 4, 8, 8, 6, 6]
transfer a powermap up to the factor group:

51.4. PROJECTIONMAP 897

gap> CompositionMaps(fus, CompositionMaps(last, inverse));
[1, 1, 3, 5, 4] # is equal to f.powermap[2]
transfer a powermap down to the group:
gap> CompositionMaps(inverse, CompositionMaps(last, fus));
[[1, 2], [1, 2], [1, 2], [4, 5], [4, 5], [8, 9],
[8, 9], [6, 7], [6, 7]] # contains t.powermap[2]

51.4 ProjectionMap

ProjectionMap(map)

For each image i under the (necessarily not parametrized) map map, ProjectionMap(map
)[i] is the smallest preimage of i .

(We have CompositionMaps(map, ProjectionMap(map)) the identity map.)

gap> ProjectionMap([1,1,1,2,2,2,3,4,5,5,5,6,6,6,7,7,7]);
[1, 4, 7, 8, 9, 12, 15]

51.5 Parametrized

Parametrized(list)

returns the parametrized cover of list , i.e. the parametrized map with smallest indetermi-
nateness that contains all maps in list . Parametrized is the inverse function of 51.6 in the
sense that Parametrized(ContainedMaps(paramap)) = paramap.

gap> Parametrized([[1, 3, 4, 6, 8, 10, 11, 11, 15, 14],
> [1, 3, 4, 6, 8, 10, 11, 11, 14, 15],
> [1, 3, 4, 7, 8, 10, 12, 12, 15, 14],
> [1, 3, 4, 7, 8, 10, 12, 12, 14, 15]]);
[1, 3, 4, [6, 7], 8, 10, [11, 12], [11, 12], [14, 15],
[14, 15]]

51.6 ContainedMaps

ContainedMaps(paramap)

returns the set of all maps contained in the parametrized map paramap. ContainedMaps is
the inverse function of 51.5 in the sense that Parametrized(ContainedMaps(paramap)
) = paramap.

gap> ContainedMaps([1, 3, 4, [6, 7], 8, 10, [11, 12], [11, 12],
> 14, 15]);
[[1, 3, 4, 6, 8, 10, 11, 11, 14, 15],

[1, 3, 4, 6, 8, 10, 11, 12, 14, 15],
[1, 3, 4, 6, 8, 10, 12, 11, 14, 15],
[1, 3, 4, 6, 8, 10, 12, 12, 14, 15],
[1, 3, 4, 7, 8, 10, 11, 11, 14, 15],
[1, 3, 4, 7, 8, 10, 11, 12, 14, 15],
[1, 3, 4, 7, 8, 10, 12, 11, 14, 15],
[1, 3, 4, 7, 8, 10, 12, 12, 14, 15]]

898 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

51.7 UpdateMap

UpdateMap(char, paramap, indirected)

improves the paramap paramap using that indirected is the (possibly parametrized) indi-
rection of the character char by paramap.

gap> s:= CharTable("S4(4).2");; he:= CharTable("He");;
gap> fus:= InitFusion(s, he);
[1, 2, 2, [2, 3], 4, 4, [7, 8], [7, 8], 9, 9, 9, [10, 11],
[10, 11], 18, 18, 25, 25, [26, 27], [26, 27], 2, [6, 7],
[6, 7], [6, 7, 8], 10, 10, 17, 17, 18, [19, 20], [19, 20]]

gap> Filtered(s.irreducibles, x -> x[1] = 50);
[[50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1,

10, 2, 2, 2, 1, 1, 0, 0, 0, -1, -1],
[50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1,

-10, -2, -2, -2, -1, -1, 0, 0, 0, 1, 1]]
gap> UpdateMap(he.irreducibles[2], fus, last[1] + s.irreducibles[1]);
gap> fus;
[1, 2, 2, 3, 4, 4, 8, 7, 9, 9, 9, 10, 10, 18, 18, 25, 25,
[26, 27], [26, 27], 2, [6, 7], [6, 7], [6, 7], 10, 10,
17, 17, 18, [19, 20], [19, 20]]

51.8 CommutativeDiagram

CommutativeDiagram(paramap1, paramap2, paramap3, paramap4)
CommutativeDiagram(paramap1, paramap2, paramap3, paramap4, improvements)

If

CompositionMaps(paramap2 , paramap1) = CompositionMaps(paramap4 , paramap3)

shall hold, the consistency is checked and the four maps will be improved according to this
condition.

If a record improvements with fields imp1, imp2, imp3, imp4 (all lists) is entered as pa-
rameter, only diagrams containing elements of impi as positions in the i -th paramap are
considered.

CommutativeDiagram returns false if an inconsistency was found, otherwise a record is
returned that contains four lists imp1, . . . , imp4, where impi is the list of classes where the
i -th paramap was improved.

gap> map1:= [[1, 2, 3], [1, 3]];;
gap> map2:= [[1, 2], 1, [1, 3]];;
gap> map3:= [[2, 3], 3];; map4:= [, 1, 2, [1, 2]];;
gap> CommutativeDiagram(map1, map2, map3, map4);
rec(

imp1 := [2],
imp2 := [1],
imp3 := [],
imp4 := [])

51.9. TRANSFERDIAGRAM 899

gap> imp:= last;; map1; map2; map3; map4;
[[1, 2, 3], 1]
[2, 1, [1, 3]]
[[2, 3], 3]
[, 1, 2, [1, 2]]
gap> CommutativeDiagram(map1, map2, map3, map4, imp);
rec(
imp1 := [],
imp2 := [],
imp3 := [],
imp4 := [])

51.9 TransferDiagram

TransferDiagram(inside1, between, inside2)
TransferDiagram(inside1, between, inside2, improvements)

Like in 51.8, it is checked that

CompositionMaps(between, inside1) = CompositionMaps(inside2 , between)

holds for the paramaps inside1 , between and inside2 , that means the paramap between
occurs twice in each commutative diagram.

Additionally, 51.20 CheckFixedPoints is called.

If a record improvements with fields impinside1, impbetween and impinside2 is speci-
fied, only those diagrams with elements of impinside1 as positions in inside1 , elements of
impbetween as positions in between or elements of impinside2 as positions in inside2 are
considered.

When an inconsistency occurs, the program immediately returns false; else it returns a
record with lists impinside1, impbetween and impinside2 of found improvements.

gap> s:= CharTable("2F4(2)");; ru:= CharTable("Ru");;
gap> fus:= InitFusion(s, ru);;
gap> permchar:= Sum(Sublist(ru.irreducibles, [1, 5, 6]));;
gap> CheckPermChar(s, ru, fus, permchar);; fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,
[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],
[18, 19], [25, 26], [25, 26], 27, 27]

gap> TransferDiagram(s.powermap[2], fus, ru.powermap[2]);
rec(
impinside1 := [],
impbetween := [12, 23],
impinside2 := [])

gap> TransferDiagram(s.powermap[3], fus, ru.powermap[3]);
rec(
impinside1 := [],
impbetween := [14, 24, 25],
impinside2 := [])

gap> TransferDiagram(s.powermap[2], fus, ru.powermap[2], last);

900 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

rec(
impinside1 := [],
impbetween := [],
impinside2 := [])

gap> fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [25, 26],
[25, 26], 5, 5, 6, 8, 14, 13, 19, 19, [25, 26], [25, 26], 27,
27]

51.10 Indeterminateness

Indeterminateness(paramap)

returns the indeterminateness of paramap, i.e. the number of maps contained in the
parametrized map paramap

gap> m11:= CharTable("M11");; m12:= CharTable("M12");;
gap> fus:= InitFusion(m11, m12);
[1, [2, 3], [4, 5], [6, 7], 8, [9, 10], [11, 12],
[11, 12], [14, 15], [14, 15]]

gap> Indeterminateness(fus);
256
gap> TestConsistencyMaps(m11.powermap, fus, m12.powermap);; fus;
[1, 3, 4, [6, 7], 8, 10, [11, 12], [11, 12], [14, 15],
[14, 15]]

gap> Indeterminateness(fus);
32

51.11 PrintAmbiguity

PrintAmbiguity(list, paramap)

prints for each character in list its position, its indeterminateness with respect to paramap
and the list of ambiguous classes

gap> s:= CharTable("2F4(2)");; ru:= CharTable("Ru");;
gap> fus:= InitFusion(s, ru);;
gap> permchar:= Sum(Sublist(ru.irreducibles, [1, 5, 6]));;
gap> CheckPermChar(s, ru, fus, permchar);; fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,

[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],
[18, 19], [25, 26], [25, 26], 27, 27]

gap> PrintAmbiguity(Sublist(ru.irreducibles, [1 .. 8]), fus);
1 1 []
2 16 [16, 17, 26, 27]
3 16 [16, 17, 26, 27]
4 32 [12, 14, 23, 24, 25]
5 4 [12, 23]
6 1 []
7 32 [12, 14, 23, 24, 25]

51.12. POWERMAP 901

8 1 []
gap> Indeterminateness(fus);
512

51.12 Powermap

Powermap(tbl, prime)
Powermap(tbl, prime, parameters)

returns a list of possibilities for the prime-th powermap of the character table tbl .

The optional record parameters may have the following fields:

chars
a list of characters which are used for the check of kernels (see 51.16), the test of
congruences (see 51.15) and the test of scalar products of symmetrisations (see 51.23);
the default is tbl.irreducibles

powermap
a (parametrized) map which is an approximation of the desired map

decompose
a boolean; if true, the symmetrisations of chars must have all constituents in chars,
that will be used in the algorithm; if chars is not bound and tbl.irreducibles is
complete, the default value of decompose is true, otherwise false

quick
a boolean; if true, the subroutines are called with the option "quick"; especially, a
unique map will be returned immediately without checking all symmetrisations; the
default value is false

parameters
a record with fields maxamb, minamb and maxlen which control the subroutine 51.23:
It only uses characters with actual indeterminateness up to maxamb, tests decompos-
ability only for characters with actual indeterminateness at least minamb and admits
a branch only according to a character if there is one with at most maxlen possible
minus-characters.

cf. example in 51.14
gap> t:= CharTable("U4(3).4");;
gap> pow:= Powermap(t, 2);
[[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4,

5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18,
18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29]]

51.13 SubgroupFusions

SubgroupFusions(subtbl, tbl)
SubgroupFusions(subtbl, tbl, parameters)

returns the list of all subgroup fusion maps from subtbl into tbl .

The optional record parameters may have the following fields:

902 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

chars
a list of characters of tbl which will be restricted to subtbl , (see 51.24); the default is
tbl.irreducibles

subchars
a list of characters of subtbl which are constituents of the retrictions of chars, the
default is subtbl.irreducibles

fusionmap
a (parametrized) map which is an approximation of the desired map

decompose
a boolean; if true, the restrictions of chars must have all constituents in subchars,
that will be used in the algorithm; if subchars is not bound and subtbl.irreducibles
is complete, the default value of decompose is true, otherwise false

permchar
a permutation character; only those fusions are computed which afford that permu-
tation character (see 51.19)

quick
a boolean; if true, the subroutines are called with the option "quick"; especially, a
unique map will be returned immediately without checking all symmetrisations; the
default value is false

parameters
a record with fields maxamb, minamb and maxlen which control the subroutine 51.24:
It only uses characters with actual indeterminateness up to maxamb, tests decompos-
ability only for characters with actual indeterminateness at least minamb and admits
a branch only according to a character if there is one with at most maxlen possible
restrictions.

cf. example in 51.24
gap> s:= CharTable("U3(3)");; t:= CharTable("J4");;
gap> SubgroupFusions(s, t, rec(quick:= true));
[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],

[1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21],
[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 15, 15, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 16, 16, 22, 22]]

51.14 InitPowermap

InitPowermap(tbl, prime)

computes a (probably parametrized, see 51.1) first approximation of of the prime-th pow-
ermap of the character table tbl , using that for any class i of tbl , the following properties
hold:
The centralizer order of the image is a multiple of the centralizer order of i. If the element
order of i is relative prime to prime, the centralizer orders of i and its image must be equal.
If prime divides the element order x of the class i, the element order of its image must be
x/prime; otherwise the element orders of i and its image must be equal. Of course, this is
used only if the element orders are stored on the table.

51.15. CONGRUENCES 903

If no prime-th powermap is possible because of these properties, false is returned. Other-
wise InitPowermap returns the parametrized map.

cf. example in 51.12
gap> t:= CharTable("U4(3).4");;
gap> pow:= InitPowermap(t, 2);
[1, 1, 3, 4, 5, [2, 16], [2, 16, 17], 8, 3, [3, 4],

[11, 12], [11, 12], [6, 7, 18, 19, 30, 31, 32, 33], 14,
[9, 20], 1, 1, 2, 2, 3, [3, 4, 5], [3, 4, 5],
[6, 7, 18, 19, 30, 31, 32, 33], 8, 9, 9, [9, 10, 20, 21, 22],
[11, 12], [11, 12], 16, 16, [2, 16], [2, 16], 17, 17,
[6, 18, 30, 31, 32, 33], [6, 18, 30, 31, 32, 33],
[6, 7, 18, 19, 30, 31, 32, 33], [6, 7, 18, 19, 30, 31, 32, 33],
20, 20, [9, 20], [9, 20], [9, 10, 20, 21, 22],
[9, 10, 20, 21, 22], 24, 24, [15, 25, 26, 40, 41, 42, 43],
[15, 25, 26, 40, 41, 42, 43], [28, 29], [28, 29], [28, 29],
[28, 29]]

continued in 51.15
InitPowermap is used by 51.12 Powermap.

51.15 Congruences

Congruences(tbl, chars, prime powermap, prime)
Congruences(tbl, chars, prime powermap, prime, "quick")

improves the parametrized map prime powermap (see 51.1) that is an approximation of the
prime-th powermap of the character table tbl :
For G a group with character table tbl , g ∈ G and a character χ of tbl , the congruence

GaloisCyc(χ(g), prime) ≡ χ(gprime) (mod prime)

holds; if the representative order of g is relative prime to prime, we have

GaloisCyc(χ(g), prime) = χ(gprime).

Congruences checks these congruences for the (virtual) characters in the list chars.
If "quick" is specified, only those classes are considered for which prime powermap is am-
biguous.
If there are classes for which no image is possible, false is returned, otherwise Congruences
returns true.

see example in 51.14
gap> Congruences(t, t.irreducibles, pow, 2); pow;
true
[1, 1, 3, 4, 5, [2, 16], [2, 16, 17], 8, 3, 4, 11, 12,
[6, 7, 18, 19], 14, [9, 20], 1, 1, 2, 2, 3, 4, 5,
[6, 7, 18, 19], 8, 9, 9, [10, 21], 11, 12, 16, 16, [2, 16],
[2, 16], 17, 17, [6, 18], [6, 18], [6, 7, 18, 19],
[6, 7, 18, 19], 20, 20, [9, 20], [9, 20], 22, 22, 24, 24,
[15, 25, 26], [15, 25, 26], 28, 28, 29, 29]

continued in 51.16
Congruences is used by 51.12 Powermap.

904 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

51.16 ConsiderKernels

ConsiderKernels(tbl, chars, prime powermap, prime)
ConsiderKernels(tbl, chars, prime powermap, prime, "quick")

improves the parametrized map prime powermap (see 51.1) that is an approximation of the
prime-th powermap of the character table tbl :

For G a group with character table tbl , the kernel of each character in the list chars is a
normal subgroup of G, so for every g ∈ Kernel(chi) we have gprime ∈ Kernel(chi).

Depending on the order of the factor group modulo Kernel(chi), there are two further
properties:If the order is relative prime to prime, for each g /∈ Kernel(chi) the prime-th
power is not contained in Kernel(chi); if the order is equal to prime, the prime-th powers
of all elements lie in Kernel(chi).

If "quick" is specified, only those classes are considered for which prime powermap is am-
biguous.

If Kernel(chi) has an order not dividing tbl.order for an element chi of chars, or if no
image is possible for a class, false is returned; otherwise ConsiderKernels returns true.

Note that chars must consist of ordinary characters, since the kernel of a virtual character
is not defined.

see example in 51.15
gap> ConsiderKernels(t, t.irreducibles, pow, 2); pow;
true
[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [6, 7], 14, 9, 1, 1, 2, 2,
3, 4, 5, [6, 7, 18, 19], 8, 9, 9, [10, 21], 11, 12, 16, 16,
[2, 16], [2, 16], 17, 17, [6, 18], [6, 18],
[6, 7, 18, 19], [6, 7, 18, 19], 20, 20, [9, 20], [9, 20],
22, 22, 24, 24, [15, 25, 26], [15, 25, 26], 28, 28, 29, 29]

continued in 51.23

ConsiderKernels is used by 51.12 Powermap.

51.17 ConsiderSmallerPowermaps

ConsiderSmallerPowermaps(tbl, prime powermap, prime)
ConsiderSmallerPowermaps(tbl, prime powermap, prime, "quick")

improves the parametrized map prime powermap (see chapter 51) that is an approximation
of the prime-th powermap of the character table tbl :

If prime > tbl .orders[i] for a class i, try to improve prime powermap at class i using that
for g in class i, gprime

i = g
prime mod tbl.orders[i]
i holds;

so if the (prime mod tbl.orders[i])-th powermap at class i is determined by the maps
stored in tbl.powermap, this information is used.

If "quick" is specified, only those classes are considered for which prime powermap is am-
biguous.

If there are classes for which no image is possible, false is returned, otherwise true.

Note: If tbl.orders is unbound, true is returned without tests.

51.18. INITFUSION 905

gap> t:= CharTable("3.A6");; init:= InitPowermap(t, 5);;
gap> Indeterminateness(init);
4096
gap> ConsiderSmallerPowermaps(t, init, 5);;
gap> Indeterminateness(init);
256

ConsiderSmallerPowermaps is used by 51.12 Powermap.

51.18 InitFusion

InitFusion(subtbl, tbl)

computes a (probably parametrized, see 51.1) first approximation of of the subgroup fusion
from the character table subtbl into the character table tbl , using that for any class i of
subtbl , the centralizer order of the image is a multiple of the centralizer order of i and the
element order of i is equal to the element order of its image (used only if element orders are
stored on the tables).

If no fusion map is possible because of these properties, false is returned. Otherwise
InitFusion returns the parametrized map.

gap> s:= CharTable("2F4(2)");; ru:= CharTable("Ru");;
gap> fus:= InitFusion(s, ru);
[1, 2, 2, 4, [5, 6], [5, 6, 7, 8], [5, 6, 7, 8], [9, 10],
11, 14, 14, [13, 14, 15], [16, 17], [18, 19], 20, [25, 26],
[25, 26], [5, 6], [5, 6], [5, 6], [5, 6, 7, 8],
[13, 14, 15], [13, 14, 15], [18, 19], [18, 19], [25, 26],
[25, 26], [27, 28, 29], [27, 28, 29]]

InitFusion is used by 51.13 SubgroupFusions.

51.19 CheckPermChar

CheckPermChar(subtbl, tbl, fusionmap, permchar)

tries to improve the parametrized fusion fusionmap (see Chapter 51) from the character
table subtbl into the character table tbl using the permutation character permchar that
belongs to the required fusion: A possible image x of class i is excluded if class i is too
large, and a possible image y of class i is the right image if y must be the image of all classes
where y is a possible image.

CheckPermChar returns true if no inconsistency occurred, and false otherwise.

gap> fus:= InitFusion(s, ru);; # cf. example in 51.18
gap> permchar:= Sum(Sublist(ru.irreducibles, [1, 5, 6]));;
gap> CheckPermChar(s, ru, fus, permchar);; fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,
[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],
[18, 19], [25, 26], [25, 26], 27, 27]

CheckPermChar is used by 51.13 SubgroupFusions.

906 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

51.20 CheckFixedPoints

CheckFixedPoints(inside1, between, inside2)

If the parametrized map (see 51.1) between transfers the parametrized map inside1 to
inside2 , i.e. inside2 ◦ between = between ◦ inside1 , between must map fixed points of inside1
to fixed points of inside2 . Using this property, CheckFixedPoints tries to improve between
and inside2 .

If an inconsistency occurs, false is returned. Otherwise, CheckFixedPoints returns the
list of classes where improvements were found.

gap> s:= CharTable("L4(3).2_2");; o7:= CharTable("O7(3)");;
gap> fus:= InitFusion(s, o7);;
gap> CheckFixedPoints(s.powermap[5], fus, o7.powermap[5]);
[48, 49]
gap> fus:= InitFusion(s, o7);; Sublist(fus, [48, 49]);
[[54, 55, 56, 57], [54, 55, 56, 57]]
gap> CheckFixedPoints(s.powermap[5], fus, o7.powermap[5]);
[48, 49]
gap> Sublist(fus, [48, 49]);
[[56, 57], [56, 57]]

CheckFixedPoints is used by 51.13 SubgroupFusions.

51.21 TestConsistencyMaps

TestConsistencyMaps(powmap1, fusmap, powmap2)
TestConsistencyMaps(powmap1, fusmap, powmap2, fus imp)

Like in 51.9, it is checked that parametrized maps (see chapter 51) commute:

For all positions i where both powmap1[i] and powmap2[i] are bound,

CompositionMaps(fusmap, powmap1 [i]) = CompositionMaps(powmap2 [i], fusmap)

shall hold, so fusmap occurs in diagrams for all considered elements of powmap1 resp.
powmap2 , and it occurs twice in each diagram.

If a set fus imp is specified, only those diagrams with elements of fus imp as preimages of
fusmap are considered.

TestConsistencyMaps stores all found improvements in fusmap and elements of powmap1
and powmap2 . When an inconsistency occurs, the program immediately returns false;
otherwise true is returned.

TestConsistencyMaps stops if no more improvements of fusmap are possible. E.g. if fusmap
was unique from the beginning, the powermaps will not be improved. To transfer powermaps
by fusions, use 51.9 TransferDiagram.

gap> s:= CharTable("2F4(2)");; ru:= CharTable("Ru");;
gap> fus:= InitFusion(s, ru);;
gap> permchar:= Sum(Sublist(ru.irreducibles, [1, 5, 6]));;
gap> CheckPermChar(s, ru, fus, permchar);; fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,

51.22. CONSIDERTABLEAUTOMORPHISMS 907

[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],
[18, 19], [25, 26], [25, 26], 27, 27]

gap> TestConsistencyMaps(s.powermap, fus, ru.powermap);
true
gap> fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [25, 26],
[25, 26], 5, 5, 6, 8, 14, 13, 19, 19, [25, 26], [25, 26], 27,
27]

gap> Indeterminateness(fus);
16

TestConsistencyMaps is used by 51.13 SubgroupFusions.

51.22 ConsiderTableAutomorphisms

ConsiderTableAutomorphisms(parafus, tableautomorphisms)

improves the parametrized subgroup fusion map parafus (see 51.1): Let T be the permutation
group that has the list tableautomorphisms as generators, let T0 be the subgroup of T that
is maximal with the property that T0 operates on the set of fusions contained in parafus by
permutation of images.

ConsiderTableAutomorphisms replaces orbits by representatives at suitable positions so
that afterwards exactly one representative of fusion maps (that is contained in parafus) in
every orbit under the operation of T0 is contained in parafus.

The list of positions where improvements were found is returned.

gap> fus:= InitFusion(s, ru);;
gap> permchar:= Sum(Sublist(ru.irreducibles, [1, 5, 6]));;
gap> CheckPermChar(s, ru, fus, permchar);; fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,
[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19],
[18, 19], [25, 26], [25, 26], 27, 27]

gap> ConsiderTableAutomorphisms(fus, ru.automorphisms);
[16]
gap> fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,
25, [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19], [18, 19],
[25, 26], [25, 26], 27, 27]

ConsiderTableAutomorphisms is used by SubgroupFusions (see 51.13). Note that the
function SubgroupFusions forms orbits of fusion maps under table automorphisms, but it
returns all possible fusions. If you want to get only orbit representatives, use the function
RepresentativesFusions (see 51.27).

51.23 PowermapsAllowedBySymmetrisations

PowermapsAllowedBySymmetrisations(tbl, subchars, chars, pow,
prime, parameters)

returns a list of (possibly parametrized, see 51.1) maps map which are contained in the
parametrized map pow and which have the property that for all χ in the list chars of

908 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

characters of the character table tbl , the symmetrizations

χp− = MinusCharacter(χ,map, prime)

(see 50.16) have nonnegative integral scalar products with all characters in the list subchars.

parameters must be a record with fields

maxlen
an integer that controls the position where branches take place

contained
a function, usually 50.42 or 50.44; for a symmetrization minus, it returns the list
contained(tbl, subchars, minus)

minamb, maxamb
two arbitrary objects; contained is called only for symmetrizations minus with

minamb < Indeterminateness(minus) < maxamb

quick
a boolean; if it is true, the scalar products of uniquely determined symmetrizations
are not checked.

pow will be improved, i.e. is changed by the algorithm.

If there is no character left which allows an immediate improvement but there are characters
in chars with indeterminateness of the symmetrizations bigger than parameters.minamb, a
branch is necessary. Two kinds of branches may occur: If parameters.contained(tbl,
subchars, minus) has length at most parameters.maxlen, the union of maps allowed by
the characters in minus is computed; otherwise a suitable class c is taken which is significant
for some character, and the union of all admissible maps with image x on c is computed,
where x runs over pow[c].

see example in 51.16
gap> t := CharTable("U4(3).4");;
gap> PowermapsAllowedBySymmetrisations(t,t.irreducibles,t.irreducibles,
> pow, 2, rec(maxlen:=10, contained:=ContainedPossibleCharacters,
> minamb:= 2, maxamb:= "infinity", quick:= false));
[[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4,

5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18,
18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29]]

gap> t.powermap[2] = last[1];
true

51.24 FusionsAllowedByRestrictions

FusionsAllowedByRestrictions(subtbl, tbl, subchars, chars,
fus, parameters)

returns a list of (possibly parametrized, see 51.1) maps map which are contained in the
parametrized map fus and which have the property that for all χ in the list chars of char-
acters of the character table tbl , the restrictions

χsubtbl = CompositionMaps(χ, fus)

51.25. ORBITFUSIONS 909

(see 51.2) have nonnegative integral scalar products with all characters in the list subchars.

parameters must be a record with fields

maxlen
an integer that controls the position where branches take place

contained
a function, usually 50.42 or 50.44; for a restriction rest , it returns the list contained(
subtbl, subchars, rest);

minamb, maxamb
two arbitrary objects; contained is called only for restrictions rest with minamb
<Indeterminateness(rest) <maxamb;

quick
a boolean value; if it is true, the scalar products of uniquely determined restrictions
are not checked.

fus will be improved, i.e. is changed by the algorithm.

If there is no character left which allows an immediate improvement but there are characters
in chars with indeterminateness of the restrictions bigger than parameters.minamb, a branch
is necessary. Two kinds of branches may occur: If parameters.contained(tbl, subchars,
rest) has length at most parameters.maxlen, the union of maps allowed by the characters
in rest is computed; otherwise a suitable class c is taken which is significant for some
character, and the union of all admissible maps with image x on c is computed, where x
runs over fus[c].

gap> s:= CharTable("U3(3)");; t:= CharTable("J4");;
gap> fus:= InitFusion(s, t);;
gap> TestConsistencyMaps(s.powermap, fus, t.powermap);;
gap> ConsiderTableAutomorphisms(fus, t.automorphisms);; fus;
[1, 2, 4, 4, [5, 6], [5, 6], [5, 6], 10, 12, [12, 13],

[14, 15, 16], [14, 15, 16], [21, 22], [21, 22]]
gap> FusionsAllowedByRestrictions(s, t, s.irreducibles,
> t.irreducibles, fus, rec(maxlen:= 10,
> contained:= ContainedPossibleCharacters,
> minamb:= 2, maxamb:= "infinity", quick:= false));
[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],

[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22]]

cf. example in 51.13

FusionsAllowedByRestrictions is used by 51.13 SubgroupFusions.

51.25 OrbitFusions

OrbitFusions(subtblautomorphisms, fusionmap, tblautomorphisms)

returns the orbit of the subgroup fusion map fusionmap under the operations of maximal
admissible subgroups of the table automorphism groups of the character tables. subtblauto-
morphisms is a list of generators of the automorphisms of the subgroup table, tblautomor-
phisms is a list of generators of the automorphisms of the supergroup table.

910 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

gap> s:= CharTable("U3(3)");; t:= CharTable("J4");;
gap> GetFusionMap(s, t);
[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21]
gap> OrbitFusions(s.automorphisms, last, t.automorphisms);
[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],
[1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21]]

51.26 OrbitPowermaps

OrbitPowermaps(powermap, matautomorphisms)

returns the orbit of the powermap powermap under the operation of the subgroup matau-
tomorphisms of the maximal admissible subgroup of the matrix automorphisms of the cor-
responding character table.

gap> t:= CharTable("3.McL");;
gap> maut:= MatAutomorphisms(t.irreducibles, [], Group(()));
Group((55,58)(56,59)(57,60)(61,64)(62,65)(63,66), (35,36), (26,29)
(27,30)(28,31)(49,52)(50,53)(51,54), (40,43)(41,44)(42,45), (2, 3)
(5, 6)(8, 9)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(30,31)(33,34)
(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66))
gap> OrbitPowermaps(t.powermap[3], maut);
[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,
37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37],

[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37,
37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]]

51.27 RepresentativesFusions

RepresentativesFusions(subtblautomorphisms, listoffusionmaps, tblautomorphisms)
RepresentativesFusions(subtbl, listoffusionmaps, tbl)

returns a list of representatives of the list listoffusionmaps of subgroup fusion maps under
the operations of maximal admissible subgroups of the table automorphism groups of the
character tables. subtblautomorphisms is a list of generators of the automorphisms of the
subgroup table, tblautomorphisms is a list of generators of the automorphisms of the su-
pergroup table. if the parameters subtbl and tbl (character tables) are used, the values of
subtbl.automorphisms and subtbl.automorphisms will be taken.

gap> s:= CharTable("2F4(2)");; ru:= CharTable("Ru");;
gap> SubgroupFusions(s, ru);
[[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, 25, 26, 5, 5,

6, 8, 14, 13, 19, 19, 26, 25, 27, 27],
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, 26, 25, 5, 5,

6, 8, 14, 13, 19, 19, 25, 26, 27, 27]]

51.28. REPRESENTATIVESPOWERMAPS 911

gap> RepresentativesFusions(s, last, ru);
[[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, 25, 26, 5, 5,

6, 8, 14, 13, 19, 19, 26, 25, 27, 27]]

51.28 RepresentativesPowermaps

RepresentativesPowermaps(listofpowermaps, matautomorphisms)

returns a list of representatives of the list listofpowermaps of powermaps under the op-
eration of a subgroup matautomorphisms of the maximal admissible subgroup of matrix
automorphisms of irreducible characters of the corresponding character table.

gap> t:= CharTable("3.McL");;
gap> maut:= MatAutomorphisms(t.irreducibles, [], Group(()));
Group((55,58)(56,59)(57,60)(61,64)(62,65)(63,66), (35,36), (26,29)
(27,30)(28,31)(49,52)(50,53)(51,54), (40,43)(41,44)(42,45), (2, 3)
(5, 6)(8, 9)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(30,31)(33,34)
(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66))
gap> Powermap(t, 3);
[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37,
37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37],

[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,
37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]]

gap> RepresentativesPowermaps(last, maut);
[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,

4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,
37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]]

51.29 Indirected

Indirected(char, paramap)

We have
Indirected(char , paramap)[i] = char [paramap[i]],

if this value is unique; otherwise it is set unknown (see chapter 17). (For a parametrized
indirection, see 51.2.)

gap> m12:= CharTable("M12");;
gap> fus:= [1, 3, 4, [6, 7], 8, 10, [11, 12], [11, 12],
> [14, 15], [14, 15]];; # parametrized subgroup fusion

from M11

gap> chars:= Sublist(m12.irreducibles, [1 .. 6]);;
gap> List(chars, x -> Indirected(x, fus));
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

912 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

[11, 3, 2, Unknown(1), 1, 0, Unknown(2), Unknown(3), 0, 0],
[11, 3, 2, Unknown(4), 1, 0, Unknown(5), Unknown(6), 0, 0],
[16, 0, -2, 0, 1, 0, 0, 0, Unknown(7), Unknown(8)],
[16, 0, -2, 0, 1, 0, 0, 0, Unknown(9), Unknown(10)],
[45, -3, 0, 1, 0, 0, -1, -1, 1, 1]]

51.30 Powmap

Powmap(powermap, n)
Powmap(powermap, n, class)

The first form returns the n-th powermap where powermap is the powermap of a character
table (see 48.2). If the n-th position in powermap is bound, this map is returned, otherwise
it is computed from the (necessarily stored) powermaps of the prime divisors of n.

The second form returns the image of class under the n-th powermap; for any valid class
class, we have Powmap(powermap, n)[class] = Powmap(powermap, n, class).

The entries of powermap may be parametrized maps (see 51.1).

gap> t:= CharTable("3.McL");;
gap> Powmap(t.powermap, 3);
[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37, 37,
37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14,
14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]

gap> Powmap(t.powermap, 27);
[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 1, 1, 37, 37,
37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14,
14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37]

gap> Lcm(t.orders); Powmap(t.powermap, last);
27720
[1,
1, 1,
1, 1]

51.31 ElementOrdersPowermap

ElementOrdersPowermap(powermap)

returns the list of element orders given by the maps in the powermap powermap. The entries
at positions where the powermaps do not uniquely determine the element order are set to
unknowns (see chapter 17).

gap> t:= CharTable("3.J3.2");; t.powermap;
[, [1, 2, 1, 2, 5, 6, 7, 3, 4, 10, 11, 12, 5, 6, 8, 9, 18, 19, 17,

10, 11, 12, 13, 14, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 1,
3, 7, 8, 8, 13, 18, 19, 17, 23, 23, 28, 30],

[1, 1, 3, 3, 1, 1, 1, 8, 8, 10, 10, 10, 3, 3, 15, 15, 7, 7, 7, 20,
20, 20, 8, 8, 10, 10, 10, 30, 30, 28, 28, 32, 32, 32, 35, 36,
35, 38, 39, 36, 37, 37, 37, 38, 38, 47, 46],,

51.31. ELEMENTORDERSPOWERMAP 913

[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 2, 13, 14, 15, 16, 19, 17, 18,
3, 4, 4, 23, 24, 5, 6, 6, 30, 31, 28, 29, 32, 34, 33, 35, 36,
37, 38, 39, 40, 43, 41, 42, 44, 45, 47, 46],,,,,,,,,,,,

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 1, 2, 1, 2, 32, 34, 33, 35,
36, 37, 38, 39, 40, 41, 42, 43, 45, 44, 35, 35],,

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 2, 2,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]]

gap> ElementOrdersPowermap(last);
[1, 3, 2, 6, 3, 3, 3, 4, 12, 5, 15, 15, 6, 6, 8, 24, 9, 9, 9, 10,
30, 30, 12, 12, 15, 15, 15, 17, 51, 17, 51, 19, 57, 57, 2, 4, 6, 8,
8, 12, 18, 18, 18, 24, 24, 34, 34]

gap> Unbind(t.powermap[17]); ElementOrdersPowermap(t.powermap);
[1, 3, 2, 6, 3, 3, 3, 4, 12, 5, 15, 15, 6, 6, 8, 24, 9, 9, 9, 10,
30, 30, 12, 12, 15, 15, 15, Unknown(11), Unknown(12), Unknown(13),
Unknown(14), 19, 57, 57, 2, 4, 6, 8, 8, 12, 18, 18, 18, 24, 24,
Unknown(15), Unknown(16)]

914 CHAPTER 51. MAPS AND PARAMETRIZED MAPS

Chapter 52

Character Table Libraries

The utility of GAP for character theoretical tasks depends on the availability of many known
character tables, so there is a lot of tables in the GAP group collection.

There are three different libraries of character tables, namely ordinary character tables,
Brauer tables and generic character tables.

Of course, these libraries are “open” in the sense that they shall be extended. So we would
be grateful for any further tables of interest sent to us for inclusion into our libraries.

This chapter mainly explains properties not of single tables but of the libraries and their
structure; for the format of character tables, see 48.2, 48.3 and chapter 49.

The chapter informs about

• the actually available tables (see 52.1),

• the sublibraries of ATLAS tables (see 52.3) and CAS tables (see 52.5),

• the organization of the libraries (see 52.6),

• and how to extend a library (see 52.7).

52.1 Contents of the Table Libraries

As stated at the beginning of the chapter, there are three libraries of character tables:
ordinary character tables, Brauer tables, and generic character tables.

Ordinary Character Tables

Two different aspects are useful to list up the ordinary character tables available to GAP
the aspect of source of the tables and that of connections between the tables.

As for the source, there are two big sources, the ATLAS (see 52.3) and the CAS library of
character tables. Many ATLAS tables are contained in the CAS library, and difficulties may
arise because the succession of characters or classes in CAS tables and ATLAS tables are
different, so see 52.5 and 48.2 for the relations between the (at least) two forms of the same

915

916 CHAPTER 52. CHARACTER TABLE LIBRARIES

table. A large subset of the CAS tables is the set of tables of Sylow normalizers of sporadic
simple groups as published in [Ost86], so this may be viewed as another source.

To avoid confusions about the actual format of a table, authorship and so on, the text
component of the table contains the information

origin: ATLAS of finite groups
for ATLAS tables (see 52.3)

origin: Ostermann
for tables of [Ost86] and

origin: CAS library
for any table of the CAS table library that is contained neither in the ATLAS nor in
[Ost86].

If one is interested in the aspect of connections between the tables, i.e., the internal structure
of the library of ordinary tables (which corresponds to the access to character tables, as
described in 48.12), the contents can be listed up the following way:

We have

• all ATLAS tables (see 52.3), i.e. the tables of the simple groups which are contained
in the ATLAS, and the tables of cyclic and bicyclic extensions of these groups;

• most tables of maximal subgroups of sporadic simple groups (not all for HN, F3+,
B, M);

• some tables of maximal subgroups of other ATLAS tables (which?)

• most nontrivial Sylow normalizers of sporadic simple groups as printed in [Ost86],
where nontrivial means that the group is not contained in p:(p−1) (not J4N2, Co1N2,
Co1N5, all of Fi23, Fi′24, B, M , HN , and Fi22N2)

• some tables of element centralizers

• some tables of Sylow subgroups

• a few other tables, e.g. W(F4)
namely which?

Brauer Tables

This library contains the tables of the modular ATLAS which are yet known. Some of them
still contain unknowns (see 17.1). Since there is ongoing work in computing new tables, this
library is changed nearly every day.

These Brauer tables contain the information

origin: modular ATLAS of finite groups

in their text component.

Generic Character Tables

At the moment, generic tables of the following groups are available in GAP (see 48.12):

• alternating groups

52.2. SELECTING LIBRARY TABLES 917

• cyclic groups,

• dihedral groups,

• some linear groups,

• quaternionic (dicyclic) groups

• Suzuki groups,

• symmetric groups,

• wreath products of a group with a symmetric group (see 48.18),

• Weyl groups of types Bn and Dn

52.2 Selecting Library Tables

Single library tables can be selected by their name (see 48.12 for admissible names of library
tables, and 52.1 for the organization of the library).

In general it does not make sense to select tables with respect to certain properties, as is
useful for group libraries (see 37). But it may be useful to get an overview of all library
tables, or all library tables of simple groups, or all library tables of sporadic simple
groups. It is sufficient to know an admissible name of these tables, so they need not be
loaded. A table can then be read using 48.12 CharTable.

The mechanism is similar to that for group libraries.

AllCharTableNames()
returns a list with an admissible name for every library table,

AllCharTableNames(IsSimple)
returns a list with an admissible name for every library table of a simple group,

AllCharTableNames(IsSporadicSimple)
returns a list with an admissible name for every library table of a sporadic simple
group.

Admissible names of maximal subgroups of sporadic simple groups are stored in the
component maxes of the tables of the sporadic simple groups. Thus

gap> maxes:= CharTable("M11").maxes;
["A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4"]

returns the list containing these names for the Mathieu group M11, and

gap> List(maxes, CharTable);
[CharTable("A6.2_3"), CharTable("L2(11)"),
CharTable("3^2:Q8.2"), CharTable("A5.2"), CharTable("2.S4")]

will read them from the library files.

918 CHAPTER 52. CHARACTER TABLE LIBRARIES

52.3 ATLAS Tables

The GAP group collection contains all character tables that are included in the Atlas of
finite groups ([CCN+85], from now on called ATLAS) and the Brauer tables contained in
the modular ATLAS ([JLPW95]). Although the Brauer tables form a library of their own,
they are described here since all conventions for ATLAS tables stated here hold for Brauer
tables, too.

Additionally some conventions are necessary about follower characters!

These tables have the information

origin: ATLAS of finite groups

resp.

origin: modular ATLAS of finite groups

in their text component, further on they are simply called ATLAS tables.

In addition to the information given in Chapters 6–8 of the ATLAS which tell how to read
the printed tables, there are some rules relating these to the corresponding GAP tables.

Improvements

Note that for the GAP library not the printed ATLAS is relevant but the revised version
given by the list of Improvements to the ATLAS which can be got from Cambridge.

Also some tables are regarded as ATLAS tables which are not printed in the ATLAS but
available in ATLAS format from Cambridge; at the moment, these are the tables related to
L2(49), L2(81), L6(2), O−8 (3), O+

8 (3) and S10(2).

Powermaps

In a few cases (namely the tables of 3.McL, 32.U4(3) and its covers, 32.U4(3).23 and its
covers) the powermaps are not uniquely determined by the given information but determined
up to matrix automorphisms (see 48.41) of the characters; then the first possible map
according to lexicographical ordering was chosen, and the automorphisms are listed in the
text component of the concerned table.

Projective Characters

For any nontrivial multiplier of a simple group or of an automorphic extension of a simple
group, there is a component projectives in the table of G that is a list of records with the
names of the covering group (e.g. "12 1.U4(3)") and the list of those faithful characters
which are printed in the ATLAS(so–called proxy characters).

Projections

ATLAS tables contain the component projections: For any covering group of G for which
the character table is available in ATLAS format a record is stored there containing compo-
nents name (the name of the cover table) and map (the projection map); the projection maps
any class of G to that preimage in the cover for that the column is printed in the ATLAS; it
is called g0 in Chapter 7, Section 14 there.

(In a sense, a projection map is an inverse of the factor fusion from the cover table to the
actual table (see 51.4).)

Tables of Isoclinic Groups

52.3. ATLAS TABLES 919

As described in Chapter 6, Section 7 and Chapter 7, Section 18 of the ATLAS, there exist
two different groups of structure 2.G.2 for a simple group G which are isoclinic. The ATLAS
table in the library is that which is printed in the ATLAS, the isoclinic variant can be got
using 48.20 CharTableIsoclinic.

Succession of characters and classes

(Throughout this paragraph, G always means the involved simple group.)

1. For G itself, the succession of classes and characters in the GAP table is as printed in
the ATLAS.

2. For an automorphic extension G.a, there are three types of characters:

• If a character χ of G extends to G.a, the different extensions χ0, χ1, . . . , χa−1 are
consecutive (see ATLAS, Chapter 7, Section 16).

• If some characters of G fuse to give a single character of G.a, the position of that
character is the position of the first involved character of G.

• If both, extension and fusion, occur, the result characters are consecutive, and
each replaces the first involved character.

3. Similarly, there are different types of classes for an automorphic extension G.a:

• If some classes collapse, the result class replaces the first involved class.

• For a > 2, any proxy class and its followers are consecutive; if there are more
than one followers for a proxy class (the only case that occurs is for a = 5), the
succession of followers is the natural one of corresponding galois automorphisms
(see ATLAS, Chapter 7, Section 19).

The classes of G.a1 always precede the outer classes of G.a2 for a1, a2 dividing a and
a1 < a2. This succession is like in the ATLAS, with the only exception U3(8).6.

4. For a central extension M.G, there are different types of characters:

• Every character can be regarded as a faithful character of the factor group m.G,
where m divides M . Characters faithful for the same factor group are consecutive
like in the ATLAS, the succession of these sets of characters is given by the order
of precedence 1, 2, 4, 3, 6, 12 for the different values of m.

• If m > 2, a faithful character of m.G that is printed in the ATLAS (a so-called
proxy) represents one or more followers, this means galois conjugates of the proxy;
in any GAP table, the proxy precedes its followers; the case m = 12 is the only
one that occurs with more than one follower for a proxy, then the three followers
are ordered according to the corresponding galois automorphisms 5, 7, 11 (in that
succession).

5. For the classes of a central extension we have:

• The preimages of a G-class in M.G are subsequent, the succession is the same as
that of the lifting order rows in the ATLAS.

• The primitive roots of unity chosen to represent the generating central element
(class 2) are E(3), E(4), E(6)^5 (= E(2) *E(3)) and E(12)^7 (= E(3) *E(4))
for m = 3, 4, 6 and 12, respectively.

920 CHAPTER 52. CHARACTER TABLE LIBRARIES

6. For tables of bicyclic extensions m.G.a, both the rules for automorphic and central
extensions hold; additionally we have:

• Whenever classes of the subgroup m.G collapse or characters fuse, the result class
resp. character replaces the first involved class resp. character.

• Extensions of a character are subsequent, and the extensions of a proxy character
precede the extensions of its followers.

• Preimages of a class are subsequent, and the preimages of a proxy class precede
the preimages of its followers.

52.4. EXAMPLES OF THE ATLAS FORMAT FOR GAP TABLES 921

52.4 Examples of the ATLAS format for GAP tables

We give three little examples for the conventions stated in 52.3, listing up the ATLAS format
and the table displayed by GAP.

First, let G be the trivial group. The cyclic group C6 of order 6 can be viewed in several
ways:

1. As a downward extension of the factor group C2 which contains G as a subgroup;
equivalently, as an upward extension of the subgroup C3 which has a factor group G:

3.G 3.G.2

G G.2

; @ ; ; @

1 1
p power A
p' part A
ind 1A fus ind 2A

χ1 + 1 : ++ 1

ind 1 fus ind 2
3 6
3 6

χ2 o2 1 : oo2 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 3a 3b 2a 6a 6b
2P 1a 3b 3a 1a 3b 3a
3P 1a 1a 1a 2a 2a 2a

X.1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1
X.3 1 A /A 1 A /A
X.4 1 A /A -1 -A -/A
X.5 1 /A A 1 /A A
X.6 1 /A A -1 -/A -A
A = E(3)

= (-1+ER(-3))/2 = b3

X.1, X.2 extend χ1. X.3, X.4 extend the proxy character χ2. X.5, X.6 extend its
follower. 1a, 3a, 3b are preimages of 1A, and 2a, 6a, 6b are preimages of 2A.

2. As a downward extension of the factor group C3 which contains G as a subgroup;
equivalently, as an upward extension of the subgroup C2 which has a factor group G:

2.G 2.G.3

G G.3

; @ ; ; @

1 1
p power A
p' part A
ind 1A fus ind 3A

χ1 + 1 : +oo 1

ind 1 fus ind 3
2 6

χ2 + 1 : +oo 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 2a 3a 6a 3b 6b
2P 1a 1a 3b 3b 3a 3a
3P 1a 2a 1a 2a 1a 2a

X.1 1 1 1 1 1 1
X.2 1 1 A A /A /A
X.3 1 1 /A /A A A
X.4 1 -1 1 -1 1 -1
X.5 1 -1 A -A /A -/A
X.6 1 -1 /A -/A A -A
A = E(3)

= (-1+ER(-3))/2 = b3

X.1-X.3 extend χ1, X.4-X.6 extend χ2. 1a, 2a are preimages of 1A. 3a, 6a are preim-
ages of the proxy class 3A, and 3b, 6b are preimages of its follower class.

922 CHAPTER 52. CHARACTER TABLE LIBRARIES

3. As a downward extension of the factor groups C3 and C2 which have G as a factor
group:

6.G

3.G

2.G

G

; @

1
p power
p' part
ind 1A

χ1 + 1

ind 1
2

χ2 + 1

ind 1
3
3

χ3 o2 1

ind 1
6
3
2
3
6

χ4 o2 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 6a 3a 2a 3b 6b
2P 1a 3a 3b 1a 3a 3b
3P 1a 2a 1a 2a 1a 2a

X.1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1
X.3 1 A /A 1 A /A
X.4 1 /A A 1 /A A
X.5 1 -A /A -1 A -/A
X.6 1 -/A A -1 /A -A
A = E(3)

= (-1+ER(-3))/2 = b3

X.1, X.2 correspond to χ1, χ2, respectively; X.3, X.5 correspond to the proxies χ3, χ4,
and X.4, X.6 to their followers. The factor fusion onto 3.G is [1, 2, 3, 1, 2, 3
], that onto G.2 is [1, 2, 1, 2, 1, 2].

4. As an upward extension of the subgroups C3 or C2 which both contain a subgroup G:

G G.2 G.3 G.6

; @ ; ; @ ; ; @ ; ; @

1 1 1 1
p power A A AA
p' part A A AA
ind 1A fus ind 2A fus ind 3A fus ind 6A

χ1 + 1 : ++ 1 : +oo 1 :+oo+oo 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 2a 3a 3b 6a 6b
2P 1a 1a 3b 3a 3b 3a
3P 1a 2a 1a 1a 2a 2a

X.1 1 1 1 1 1 1
X.2 1 -1 A /A -A -/A
X.3 1 1 /A A /A A
X.4 1 -1 1 1 -1 -1
X.5 1 1 A /A A /A
X.6 1 -1 /A A -/A -A
A = E(3)

= (-1+ER(-3))/2 = b3

1a, 2a correspond to 1A, 2A, respectively; 3a, 6a correspond to the proxies 3A, 6A,
and 3b, 6b to their followers.

52.4. EXAMPLES OF THE ATLAS FORMAT FOR GAP TABLES 923

The second example explains the fusion case; again, G is the trivial group.

6.G

3.G

2.G

G

6.G.2

3.G.2

2.G.2

G.2

; @ ; ; @

1 1
p power A
p' part A
ind 1A fus ind 2A

χ1 + 1 : ++ 1

ind 1 fus ind 2
2 2

χ2 + 1 : ++ 1

ind 1 fus ind 2
3
3

χ3 o2 1 * +

ind 1 fus ind 2
6 2
3
2
3
6

χ4 o2 1 * +

3.G.2
2 1 . 1
3 1 1 .

1a 3a 2a
2P 1a 3a 1a
3P 1a 1a 2a

X.1 1 1 1
X.2 1 1 -1
X.3 2 -1 .

6.G.2
2 2 1 1 2 2 2
3 1 1 1 1 . .

1a 6a 3a 2a 2b 2c
2P 1a 3a 3a 1a 1a 1a
3P 1a 2a 1a 2a 2b 2c

Y.1 1 1 1 1 1 1
Y.2 1 1 1 1 -1 -1
Y.3 1 -1 1 -1 1 -1
Y.4 1 -1 1 -1 -1 1
Y.5 2 -1 -1 2 . .
Y.6 2 1 -1 -2 . .

The tables of G, 2.G, 3.G, 6.G and G.2 are known from the first example, that of 2.G.2 ∼= V4

will be given in the next one. So here we only print the GAP tables of 3.G.2 ∼= D6 and
6.G.2 ∼= D12:

In 3.G.2, X.1, X.2 extend χ1; χ3 and its follower fuse to give X.3, and two of the preimages
of 1A collapse.

In 6.G.2, Y.1-Y.4 are extensions of χ1, χ2, so these characters are the inflated characters
from 2.G.2 (with respect to the factor fusion [1, 2, 1, 2, 3, 4]). Y.5 is inflated from
3.G.2 (with respect to the factor fusion [1, 2, 2, 1, 3, 3]), and Y.6 is the result of
the fusion of χ4 and its follower.

924 CHAPTER 52. CHARACTER TABLE LIBRARIES

For the last example, let G be the group 22. Consider the following tables:

2.G 2.G.3

G G.3

; @ @ @ @ ; ; @

4 4 4 4 1
p power A A A A
p' part A A A A
ind 1A 2A 2B 2C fus ind 3A

χ1 + 1 1 1 1 : +oo 1

χ2 + 1 1 -1 -1 . + 0

χ3 + 1 -1 1 -1 .

χ4 + 1 -1 -1 1 .

ind 1 4 4 4 fus ind 3
2 6

χ5 - 2 0 0 0 : -oo 1

G.3
2 2 2 . .
3 1 . 1 1

1a 2a 3a 3b
2P 1a 1a 3b 3a
3P 1a 2a 1a 1a

X.1 1 1 1 1
X.2 1 1 A /A
X.3 1 1 /A A
X.4 3 -1 . .
A = E(3)

= (-1+ER(-3))/2 = b3

2.G
2 3 3 2 2 2

1a 2a 4a 4b 4c
2P 1a 1a 2a 1a 1a
3P 1a 2a 4a 4b 4c

X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 1 1 -1 1 -1
X.4 1 1 -1 -1 1
X.5 2 -2 . . .

2.G.3
2 3 3 2 1 1 1 1
3 1 1 . 1 1 1 1

1a 2a 4a 3a 6a 3b 6b
2P 1a 1a 2a 3b 3b 3a 3a
3P 1a 2a 4a 1a 2a 1a 2a

X.1 1 1 1 1 1 1 1
X.2 1 1 1 A A /A /A
X.3 1 1 1 /A /A A A
X.4 3 3 -1
X.5 2 -2 . 1 1 1 1
X.6 2 -2 . A -A /A -/A
X.7 2 -2 . /A -/A A -A
A = E(3)

= (-1+ER(-3))/2 = b3

In the table of G.3 ∼= A4, the characters χ2, χ3 and χ4 fuse, and the classes 2A, 2B and 2C
collapse. To get the table of 2.G ∼= Q8 one just has to split the class 2A and adjust the
representative orders. Finally, the table of 2.G.3 ∼= SL2(3) is given; the subgroup fusion
corresponding to the injection 2.G ↪→ 2.G.3 is [1, 2, 3, 3, 3], and the factor fusion
corresponding to the epimorphism 2.G.3→ G.3 is [1, 1, 2, 3, 3, 4, 4].

52.5. CAS TABLES 925

52.5 CAS Tables

All tables of the CAS table library are available in GAP, too. This sublibrary has been
completely revised, i.e., errors have been corrected and powermaps have been completed.

Any CAS table is accessible by each of its CAS names, that is, the table name or the filename
(see 48.12):

gap> t:= CharTable("m10");; t.name;
"A6.2_3"

One does, however, not always get the original CAS table: In many cases (mostly ATLAS
tables, see 52.3) not only the name but also the succession of classes and characters has
changed; the records in the component CAS of the table (see 48.2) contain the permutations
which must be applied to classes and characters to get the original CAS table:

gap> t.CAS;
[rec(

name := "m10",
permchars := (3,5)(4,8,7,6),
permclasses := (),
text := [’n’, ’a’, ’m’, ’e’, ’s’, ’:’, ’ ’, ’ ’, ’ ’, ’ ’,

’ ’, ’m’, ’1’, ’0’, ’\n’, ’o’, ’r’, ’d’, ’e’, ’r’, ’:’,
’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’2’, ’^’, ’4’, ’.’, ’3’, ’^’, ’2’,
’.’, ’5’, ’ ’, ’=’, ’ ’, ’7’, ’2’, ’0’, ’\n’, ’n’, ’u’,
’m’, ’b’, ’e’, ’r’, ’ ’, ’o’, ’f’, ’ ’, ’c’, ’l’, ’a’, ’s’,
’s’, ’e’, ’s’, ’:’, ’ ’, ’8’, ’\n’, ’s’, ’o’, ’u’, ’r’,
’c’, ’e’, ’:’, ’ ’, ’ ’, ’ ’, ’ ’, ’c’, ’a’, ’m’, ’b’, ’r’,
’i’, ’d’, ’g’, ’e’, ’ ’, ’a’, ’t’, ’l’, ’a’, ’s’, ’\n’,
’c’, ’o’, ’m’, ’m’, ’e’, ’n’, ’t’, ’s’, ’:’, ’ ’, ’ ’, ’p’,
’o’, ’i’, ’n’, ’t’, ’ ’, ’s’, ’t’, ’a’, ’b’, ’i’, ’l’, ’i’,
’z’, ’e’, ’r’, ’ ’, ’o’, ’f’, ’ ’, ’m’, ’a’, ’t’, ’h’, ’i’,
’e’, ’u’, ’-’, ’g’, ’r’, ’o’, ’u’, ’p’, ’ ’, ’m’, ’1’, ’1’,
’\n’, ’t’, ’e’, ’s’, ’t’, ’:’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’,
’ ’, ’o’, ’r’, ’t’, ’h’, ’,’, ’ ’, ’m’, ’i’, ’n’, ’,’, ’ ’,
’s’, ’y’, ’m’, ’[’, ’3’, ’]’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’,
’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’,
’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’\n’])]

The subgroup fusions were computed anew; their record component text tells if the fusion
is equal to that in the CAS library –of course modulo the permutation of classes.

Note that the fusions are neither tested to be consistent for any two subgroups of a group
and their intersection, nor tested to be consistent with respect to composition of maps.

52.6 Organization of the Table Libraries

The primary files are TBLNAME/ctadmin.tbl and TBLNAME/ctprimar.tbl. The former
contains the evaluation function CharTableLibrary (see 48.12) and some utilities, the latter
contains the global variable LIBLIST which encodes all information where to find library
tables; the file TBLNAME/ctprimar.tbl can be constructed from the data files of the table
libraries using the awk script maketbl in the etc directory of the GAP distribution.

926 CHAPTER 52. CHARACTER TABLE LIBRARIES

Also the secondary files are all stored in the directory TBLNAME; they are

clmelab.tbl clmexsp.tbl ctadmin.tbl ctbalter.tbl ctbatres.tbl
ctbconja.tbl ctbfisc1.tbl ctbfisc2.tbl ctbline1.tbl ctbline2.tbl
ctbline3.tbl ctbline4.tbl ctbline5.tbl ctbmathi.tbl ctbmonst.tbl
ctborth1.tbl ctborth2.tbl ctborth3.tbl ctbspora.tbl ctbsympl.tbl
ctbtwis1.tbl ctbtwis2.tbl ctbunit1.tbl ctbunit2.tbl ctbunit3.tbl
ctbunit4.tbl ctgeneri.tbl ctoalter.tbl ctoatres.tbl ctocliff.tbl
ctoconja.tbl ctofisc1.tbl ctofisc2.tbl ctoholpl.tbl ctoinert.tbl
ctoline1.tbl ctoline2.tbl ctoline3.tbl ctoline4.tbl ctoline5.tbl
ctoline6.tbl ctomathi.tbl ctomaxi1.tbl ctomaxi2.tbl ctomaxi3.tbl
ctomaxi4.tbl ctomaxi5.tbl ctomaxi6.tbl ctomisc1.tbl ctomisc2.tbl
ctomisc3.tbl ctomisc4.tbl ctomisc5.tbl ctomisc6.tbl ctomonst.tbl
ctonews.tbl ctoorth1.tbl ctoorth2.tbl ctoorth3.tbl ctoorth4.tbl
ctoorth5.tbl ctospora.tbl ctosylno.tbl ctosympl.tbl ctotwis1.tbl
ctotwis2.tbl ctounit1.tbl ctounit2.tbl ctounit3.tbl ctounit4.tbl

The names start with ct for “character table”, followed by o for “ordinary”, b for “Brauer”
or g for “generic”, then an up to 5 letter description of the contents, e.g., alter for the
alternating groups, and the extension .tbl.

The file ctbdescr.tbl contains (at most) the Brauer tables corresponding to the ordinary
tables in ctodescr.tbl.

The format of library tables is always like this:

MOT(tblname,
...

here the data components are stored
...);

Here tblname is the value of the identifier component of the table, e.g. "A5".

For the contents of the table record, there are three different ways how tables are stored:

Full tables (like that of A5) are stored similar to the internal format (see 48.2). Lists of
characters, however, will be abbreviated in the following way:

For each subset of characters which differ just by multiplication with a linear character or by
Galois conjugacy, only one is given by its values, the others are replaced by [TENSOR,[i,j]]
(which means that the character is the tensor product of the i -th and the j -th character)
or [GALOIS,[i,j]] (which means that the character is the j -th Galois conjugate of the i -th
character.

Brauer tables (like that of A5 mod 2) are stored relative to the corresponding ordinary
table; instead of irreducible characters the files contain decomposition matrices or Brauer
trees for the blocks of nonzero defect (see 48.3), and components which can be got by
restriction to p–regular classes are not stored at all.

Construction tables (like that of O−8 (3)M7) have a component construction that is a
function of one variable. This function is called by CharTable (see 48.12) when the table is
constructed, i.e. not when the file containing the table is read.

The aim of this rather complicated way to store a character table is that big tables with a
simple structure (e.g. direct products) can be stored in a very compact way.

Another special case where construction tables are useful is that of projective tables:

52.7. HOW TO EXTEND A TABLE LIBRARY 927

In their component irreducibles they do not contain irreducible characters but a list
with information about the factor groups: Any entry is a list of length 2 that contains at
position 1 the name of the table of the factor group, at the second position a list of integers
representing the Galois automorphisms to get follower characters. E.g., for 12.M22, the
value of irreducibles is

[["M22",[]],["2.M22",[]],
["3.M22",[-1,-13,-13,-1,23,23,-1,-1,-1,-1,-1]],
["4.M22",[-1,-1,15,15,23,23,-1,-1]],,
["6.M22",[-13,-13,-1,23,23,-1,-7,-7,-1,-1]],,,,,,
["12.M22",[[17,-17,-1],[17,-17,-1],[-55,-377,-433],[-55,-377,-433],
[89,991,1079],[89,991,1079],[-7,7,-1]]]]

Using this and the projectives component of the table of the smallest nontrivial factor
group, 48.12 CharTable constructs the irreducible characters. The table head, however,
need not be constructed.

52.7 How to Extend a Table Library

If you have some ordinary character tables which are not (or not yet) in a GAP table library,
but which you want to treat as library tables, e.g., assign them to variables using 48.12
CharTable, you can include these tables. For that, two things must be done:

First you must notify each table, i.e., tell GAP on which file it can be found, and which
names are admissible; this can be done using

NotifyCharTable(firstname, filename, othernames),

with strings firstname (the identifier component of the table) and filename (the name of
the file containing the table, relative to TBLNAME, and without extension .tbl), and a list
othernames of strings which are other admissible names of the table (see 48.12).

NotifyCharTable will add the necessary information to LIBLIST. A warning is printed for
each table libtbl that was already accessible by some of the names, and these names are
ignored for the new tables. Of course this affects only the value of LIBLIST in the current
GAP session, not that on the file.

Note that an error is raised if you want to notify a table with firstname or name in other-
names which is already the identifier component of a library table.

gap> Append(TBLNAME, ";tables/");
tells GAP that the directory tables is a place to look for
library tables
gap> NotifyCharTable("Private", "mytables", ["My"]);
tells GAP that the table with names "Private" and "My"
is stored on file mytables.tbl
gap> FirstNameCharTable("My");
"Private"
gap> FileNameCharTable("My");
"mytables"

The second condition is that each file must contain tables in library format as described in
52.6; in the example, the contents of the file tables/mytables.tbl may be this:

SET_TABLEFILENAME("mytables");

928 CHAPTER 52. CHARACTER TABLE LIBRARIES

ALN:= Ignore;
MOT("Private",
[
"my private character table"
],
[2,2],
[],
[[1,1],[1,-1]],
[]);
ALN("Private",["my"]);
LIBTABLE.LOADSTATUS.("mytables"):="loaded";

We simulate reading this file by explicitly assigning some of the components.

gap> LIBTABLE.("mytables"):= rec(
> Private:= rec(identifier:= "Private",
> centralizers:= [2,2],
> irreducibles:= [[1,1],[1,-1]]));;
gap> LIBTABLE.LOADSTATUS.("mytables"):="loaded";;

Now the private table is a library table:

gap> CharTable("My");
CharTable("Private")

To append the table tbl in library format to the file with name file, use

PrintToLib(file, tbl).

Note that here file is the absolute name of the file, not the name relative to TBLNAME. Thus
the filename in the row with the assignment to LIBTABLE must be adjusted to make the file
a library file.

52.8 FirstNameCharTable

FirstNameCharTable(name)

returns the value of the identifier component of the character table with admissible name
name, if exists; otherwise false is returned.

For each admissible name, also the lowercase string is admissible.

gap> FirstNameCharTable("m22mod3");
"M22mod3"
gap> FirstNameCharTable("s5");
"A5.2"
gap> FirstNameCharTable("J5");
false

52.9 FileNameCharTable

FileNameCharTable(tblname)

returns the value of the filename component of the information record in LIBLIST for the
table with admissible name tblname, if exists; otherwise false is returned.

52.9. FILENAMECHARTABLE 929

gap> FileNameCharTable("M22mod3");
"ctbmathi"
gap> FileNameCharTable("J5");
false

930 CHAPTER 52. CHARACTER TABLE LIBRARIES

Chapter 53

Class Functions

This chapter introduces class functions and group characters in GAP.

First section 53.1 tells about the ideas why to use these structures besides the characters
and character tables described in chapters 48 and 50.

The subsequent section 53.2 tells details about the implementation of group characters and
class functions in GAP.

Sections 53.3 and 53.4 tell about the operators and functions for class functions and (virtual)
characters.

Sections 53.5, 53.6, 53.7, and 53.11 describe how to construct such class functions and group
characters.

Sections 53.8, 53.9, and 53.10 describe the characteristic functions of class functions and
virtual characters.

Then sections 53.12 and 53.13 describe other functions for characters.

Then sections 53.14, 53.15, 53.16, and 53.17 tell about some functions and record compo-
nents to access and store frequently used (normal) subgroups.

The final section 53.18 describes the records that implement class functions.

In this chapter, all examples use irreducible characters of the symmetric group S4. For
running the examples, you must first define the group and its characters as follows.

gap> S4:= SolvableGroup("S4");;
gap> irr:= Irr(S4);;

53.1 Why Group Characters

When one says “χ is a character of a group G” then this object χ carries a lot of information.
χ has certain properties such as being irreducible or not. Several subgroups of G are related
to χ, such as the kernel and the centre of χ. And one can apply operators to χ, such as
forming the conjugate character under the action of an automorphism of G, or computing
the determinant of χ.

931

932 CHAPTER 53. CLASS FUNCTIONS

In GAP, the characters known from chapters 48 and 50 are just lists of character values. This
has several disadvantages. Firstly one cannot store knowledge about a character directly in
the character, and secondly for every computation that requires more than just the character
values one has to regard this list explicitly as a character belonging to a character table. In
practice this means that the user has the task to put the objects into the right context, or
–more concrete– the user has to supply lots of arguments.

This works nicely for characters that are used without groups, like characters of library
tables. And if one deals with incomplete character tables often it is necessary to specify the
arguments explicitly, for example one has to choose a fusion map or power map from a set
of possibilities.

But for dealing with a group and its characters, and maybe also subgroups and their char-
acters, it is desirable that GAP keeps track of the interpretation of characters.

Because of this it seems to be useful to introduce an alternative concept where a group
character in GAP is represented as a record that contains the character values, the underlying
group or character table, an appropriate operations record, and all the knowledge about the
group character.

Together with characters, also the more general class functions and virtual characters are
implemented.

Here is an example that shows both approaches. First we define the groups.

gap> S4:= SolvableGroup("S4");;
gap> D8:= SylowSubgroup(S4, 2);; D8.name:= "D8";;

We do some computations using the functions described in chapters 50 and 48.

gap> t := CharTable(S4);;
gap> tD8 := CharTable(D8);;
gap> FusionConjugacyClasses(D8, S4);;
gap> chi:= tD8.irreducibles[2];
[1, -1, 1, 1, -1]
gap> Tensored([chi], [chi])[1];
[1, 1, 1, 1, 1]
gap> ind:= Induced(tD8, t, [chi])[1];
[3, -1, 0, 1, -1]
gap> List(t.irreducibles, x -> ScalarProduct(t, x, ind));
[0, 0, 0, 1, 0]
gap> det:= DeterminantChar(t, ind);
[1, 1, 1, -1, -1]
gap> cent:= CentralChar(t, ind);
[1, -1, 0, 2, -2]
gap> rest:= Restricted(t, tD8, [cent])[1];
[1, -1, -1, 2, -2]

And now we do the same calculations with the class function records.

gap> irr := Irr(S4);;
gap> irrD8 := Irr(D8);;
gap> chi:= irrD8[2];
Character(D8, [1, -1, 1, 1, -1])

53.2. MORE ABOUT CLASS FUNCTIONS 933

gap> chi * chi;
Character(D8, [1, 1, 1, 1, 1])
gap> ind:= chi ^ S4;
Character(S4, [3, -1, 0, 1, -1])
gap> List(irr, x -> ScalarProduct(x, ind));
[0, 0, 0, 1, 0]
gap> det:= Determinant(ind);
Character(S4, [1, 1, 1, -1, -1])
gap> cent:= Omega(ind);
ClassFunction(S4, [1, -1, 0, 2, -2])
gap> rest:= Character(D8, cent);
Character(D8, [1, -1, -1, 2, -2])

Of course we could have used the Induce and Restricted function also for lists of class
functions.

gap> Induced(tD8, t, tD8.irreducibles{ [1, 3] });
[[3, 3, 0, 1, 1], [3, 3, 0, -1, -1]]
gap> Induced(irrD8{ [1, 3] }, S4);
[Character(S4, [3, 3, 0, 1, 1]),
Character(S4, [3, 3, 0, -1, -1])]

If one deals with complete character tables then often the table provides enough information,
so it is possible to use the table instead of the group.

gap> s5 := CharTable("A5.2");; irrs5 := Irr(s5);;
gap> m11:= CharTable("M11");; irrm11:= Irr(m11);;
gap> irrs5[2];
Character(CharTable("A5.2"), [1, 1, 1, 1, -1, -1, -1])
gap> irrs5[2] ^ m11;
Character(CharTable("M11"), [66, 2, 3, -2, 1, -1, 0, 0, 0, 0])
gap> Determinant(irrs5[4]);
Character(CharTable("A5.2"), [1, 1, 1, 1, -1, -1, -1])

In this case functions that compute normal subgroups related to characters will return the
list of class positions corresponding to that normal subgroup.

gap> Kernel(irrs5[2]);
[1, 2, 3, 4]

But if we ask for non-normal subgroups of course there is no chance to get an answer without
the group, for example inertia subgroups cannot be computed from character tables.

53.2 More about Class Functions

Let G be a finite group. A class function of G is a function from G into the complex
numbers (or a subfield of the complex numbers) that is constant on conjugacy classes of G.
Addition, multiplication, and scalar multiplication of class functions are defined pointwise.
Thus the set of all class functions of G is an algebra (or ring, or vector space).

Class functions and (virtual) group characters

Every mapping with source G that is constant on conjugacy classes of G is called a class
function of G. Differences of characters of G are called virtual characters of G.

934 CHAPTER 53. CLASS FUNCTIONS

Class functions occur in a natural way when one deals with characters. For example, the
central character of a group character is only a class function.

Every character is a virtual character, and every virtual character is a class function.
Any function or operator that is applicable to a class function can of course be applied
to a (virtual) group character. There are functions only for (virtual) group characters,
like IsIrreducible, which doesn’t make sense for a general class function, and there are
also functions that do not make sense for virtual characters but only for characters, like
Determinant.

Class functions as mappings

In GAP, class functions of a group G are mappings (see chapter 42) with source G and range
Cyclotomics (or a subfield). All operators and functions for mappings (like 42.8 Image,
42.12 PreImages) can be applied to class functions.

Note, however, that the operators * and ^ allow also other arguments than mappings do
(see 53.3).

53.3 Operators for Class Functions

chi = psi
chi < psi

Equality and comparison of class functions are defined as for mappings (see 42.6); in case
of equal source and range the values components are used to compute the result.

gap> irr[1]; irr[2];
Character(S4, [1, 1, 1, 1, 1])
Character(S4, [1, 1, 1, -1, -1])
gap> irr[1] < irr[2];
false
gap> irr[1] > irr[2];
true
gap> irr[1] = Irr(SolvableGroup("S4"))[1];
false # The groups are different.

chi + psi
chi - psi

+ and - denote the addition and subtraction of class functions.

n * chi
chi * psi

* denotes (besides the composition of mappings, see 42.7) the multiplication of a class
function chi with a scalar n and the tensor product of two class functions.

chi / n

/ denotes the division of the class function chi by a scalar n.

gap> psi:= irr[3] * irr[4];

53.4. FUNCTIONS FOR CLASS FUNCTIONS 935

Character(S4, [6, -2, 0, 0, 0])
gap> psi:= irr[3] - irr[1];
VirtualCharacter(S4, [1, 1, -2, -1, -1])
gap> phi:= psi * irr[4];
VirtualCharacter(S4, [3, -1, 0, -1, 1])
gap> IsCharacter(phi); phi;
true
Character(S4, [3, -1, 0, -1, 1])
gap> psi:= (3 * irr[2] - irr[3]) * irr[4];
VirtualCharacter(S4, [3, -1, 0, -3, 3])
gap> 2 * psi ;
VirtualCharacter(S4, [6, -2, 0, -6, 6])
gap> last / 3;
ClassFunction(S4, [2, -2/3, 0, -2, 2])

chi ^ n
g ^ chi
denote the tensor power by a nonnegative integer n and the image of the group element g ,
like for all mappings (see 42.7).
chi ^ g
is the conjugate class function by the group element g , that must be an element of the
parent of the source of chi or something else that acts on the source via ^. If chi.source is
not a permutation group then g may also be a permutation that is interpreted as acting by
permuting the classes (This maybe useful for table characters.).
chi ^ G
is the induced class function.

gap> V4:= Subgroup(S4, S4.generators{ [3, 4] });
Subgroup(S4, [c, d])
gap> V4.name:= "V4";;
gap> V4irr:= Irr(V4);;
gap> chi:= V4irr[3];
Character(V4, [1, -1, 1, -1])
gap> chi ^ S4;
Character(S4, [6, -2, 0, 0, 0])
gap> chi ^ S4.2;
Character(V4, [1, -1, -1, 1])
gap> chi ^ (S4.2 ^ 2);
Character(V4, [1, 1, -1, -1])
gap> S4.3 ^ chi; S4.4 ^ chi;
1
-1
gap> chi ^ 2;
Character(V4, [1, 1, 1, 1])

53.4 Functions for Class Functions

Besides the usual mapping functions (see chapter 42 for the details.), the following poly-

936 CHAPTER 53. CLASS FUNCTIONS

morphic functions are overlaid in the operations records of class functions and (virtual)
characters. They are listed in alphabetical order.

Centre(chi)
centre of a class function

Constituents(chi)
set of irreducible characters of a virtual character

Degree(chi)
degree of a class function

Determinant(chi)
determinant of a character

Display(chi)
displays the class function with the table head

Induced(list, G)
induced class functions corresp. to class functions in the list list from subgroup H to
group G

IsFaithful(chi)
property check (virtual characters only)

IsIrreducible(chi)
property check (characters only)

Kernel(chi)
kernel of a class function

Norm(chi)
norm of class function

Omega(chi)
central character

Print(chi)
prints a class function

Restricted(list, H)
restrictions of class functions in the list list to subgroup H

ScalarProduct(chi, psi)
scalar product of two class functions

53.5 ClassFunction

ClassFunction(G, values)

returns the class function of the group G with values list values.

ClassFunction(G, chi)

returns the class function of G corresponding to the class function chi of H. The group H
can be a factor group of G , or G can be a subgroup or factor group of H.

gap> phi:= ClassFunction(S4, [1, -1, 0, 2, -2]);
ClassFunction(S4, [1, -1, 0, 2, -2])
gap> coeff:= List(irr, x -> ScalarProduct(x, phi));

53.6. VIRTUALCHARACTER 937

[-1/12, -1/12, -1/6, 5/4, -3/4]
gap> ClassFunction(S4, coeff);
ClassFunction(S4, [-1/12, -1/12, -1/6, 5/4, -3/4])
gap> syl2:= SylowSubgroup(S4, 2);;
gap> ClassFunction(syl2, phi);
ClassFunction(D8, [1, -1, -1, 2, -2])

53.6 VirtualCharacter

VirtualCharacter(G, values)

returns the virtual character of the group G with values list values.

VirtualCharacter(G, chi)

returns the virtual character of G corresponding to the virtual character chi of H. The
group H can be a factor group of G , or G can be a subgroup or factor group of H.

gap> syl2:= SylowSubgroup(S4, 2);;
gap> psi:= VirtualCharacter(S4, [0, 0, 3, 0, 0]);
VirtualCharacter(S4, [0, 0, 3, 0, 0])
gap> VirtualCharacter(syl2, psi);
VirtualCharacter(D8, [0, 0, 0, 0, 0])
gap> S3:= S4 / V4;
Group(a, b)
gap> VirtualCharacter(S3, irr[3]);
VirtualCharacter(Group(a, b), [2, -1, 0])

Note that it is not checked whether the result is really a virtual character.

53.7 Character

Character(repres)

returns the character of the group representation repres.

Character(G, values)

returns the character of the group G with values list values.

Character(G, chi)

returns the character of G corresponding to the character chi with source H. The group H
can be a factor group of G , or G can be a subgroup or factor group of H.

gap> syl2:= SylowSubgroup(S4, 2);;
gap> Character(syl2, irr[3]);
Character(D8, [2, 2, 2, 0, 0])
gap> S3:= S4 / V4;
Group(a, b)
gap> Character(S3, irr[3]);
Character(Group(a, b), [2, -1, 0])
gap> reg:= Character(S4, [24, 0, 0, 0, 0]);
Character(S4, [24, 0, 0, 0, 0])

Note that it is not checked whether the result is really a character.

938 CHAPTER 53. CLASS FUNCTIONS

53.8 IsClassFunction

IsClassFunction(obj)

returns true if obj is a class function, and false otherwise.

gap> chi:= S4.charTable.irreducibles[3];
[2, 2, -1, 0, 0]
gap> IsClassFunction(chi);
false
gap> irr[3];
Character(S4, [2, 2, -1, 0, 0])
gap> IsClassFunction(irr[3]);
true

53.9 IsVirtualCharacter

IsVirtualCharacter(obj)

returns true if obj is a virtual character, and false otherwise. For a class function obj
that does not know whether it is a virtual character, the scalar products with all irreducible
characters of the source of obj are computed. If they are all integral then obj is turned into
a virtual character record.

gap> psi:= irr[3] - irr[1];
VirtualCharacter(S4, [1, 1, -2, -1, -1])
gap> cf:= ClassFunction(S4, [1, 1, -2, -1, -1]);
ClassFunction(S4, [1, 1, -2, -1, -1])
gap> IsVirtualCharacter(cf);
true
gap> IsCharacter(cf);
false
gap> cf;
VirtualCharacter(S4, [1, 1, -2, -1, -1])

53.10 IsCharacter

IsCharacter(obj)

returns true if obj is a character, and false otherwise. For a class function obj that does
not know whether it is a character, the scalar products with all irreducible characters of the
source of obj are computed. If they are all integral and nonegative then obj is turned into
a character record.

gap> psi:= ClassFunction(S4, S4.charTable.centralizers);
ClassFunction(S4, [24, 8, 3, 4, 4])
gap> IsCharacter(psi); psi;
true
Character(S4, [24, 8, 3, 4, 4])
gap> cf:= ClassFunction(S4, irr[3] - irr[1]);
ClassFunction(S4, [1, 1, -2, -1, -1])
gap> IsCharacter(cf); cf;

53.11. IRR 939

false
VirtualCharacter(S4, [1, 1, -2, -1, -1])

53.11 Irr

Irr(G)

returns the list of irreducible characters of the group G . If necessary the character table of
G is computed. The succession of characters is the same as in CharTable(G).

gap> Irr(SolvableGroup("S4"));
[Character(S4, [1, 1, 1, 1, 1]),
Character(S4, [1, 1, 1, -1, -1]),
Character(S4, [2, 2, -1, 0, 0]),
Character(S4, [3, -1, 0, 1, -1]),
Character(S4, [3, -1, 0, -1, 1])]

53.12 InertiaSubgroup

InertiaSubgroup(G, chi)

For a class function chi of a normal subgroup N of the group G , InertiaSubgroup(G,
chi) returns the inertia subgroup IG(chi), that is, the subgroup of all those elements g ∈ G
that satisfy chiˆg = chi .

gap> V4:= Subgroup(S4, S4.generators{ [3, 4] });
Subgroup(S4, [c, d])
gap> irrsub:= Irr(V4);
#W Warning: Group has no name
[Character(Subgroup(S4, [c, d]), [1, 1, 1, 1]),
Character(Subgroup(S4, [c, d]), [1, 1, -1, -1]),
Character(Subgroup(S4, [c, d]), [1, -1, 1, -1]),
Character(Subgroup(S4, [c, d]), [1, -1, -1, 1])]

gap> List(irrsub, x -> InertiaSubgroup(S4, x));
[Subgroup(S4, [a, b, c, d]), Subgroup(S4, [a*b^2, c, d]),
Subgroup(S4, [a*b, c, d]), Subgroup(S4, [a, c, d])]

53.13 OrbitsCharacters

OrbitsCharacters(irr)

returns a list of orbits of the characters irr under the action of Galois automorphisms and
multiplication with linear characters in irr . This is used for functions that need to consider
only representatives under the operation of this group, like 54.9.

OrbitsCharacters works also for irr a list of character value lists. In this case the result
contains orbits of these lists.

Note that OrbitsCharacters does not require that irr is closed under the described action,
so the function may also be used to complete the orbits.

gap> irr:= Irr(SolvableGroup("S4"));;
gap> OrbitsCharacters(irr);

940 CHAPTER 53. CLASS FUNCTIONS

[[Character(S4, [1, 1, 1, -1, -1]),
Character(S4, [1, 1, 1, 1, 1])],

[Character(S4, [2, 2, -1, 0, 0])],
[Character(S4, [3, -1, 0, -1, 1]),

Character(S4, [3, -1, 0, 1, -1])]]
gap> OrbitsCharacters(List(irr{ [1,2,4] }, x -> x.values));
[[[1, 1, 1, -1, -1], [1, 1, 1, 1, 1]],
[[3, -1, 0, 1, -1], [3, -1, 0, -1, 1]]]

53.14 Storing Subgroup Information

Many computations for a group character χ of a group G, such as that of kernel or centre
of χ, involve computations in (normal) subgroups or factor groups of G.

There are two aspects that make it reasonable to store relevant information used in these
computations.

First it is possible to use the character table of a group for computations with the group. For
example, suppose we know for every normal subgroup N the list of positions of conjugacy
classes that form N . Then we can compute the intersection of normal subgroups efficiently
by intersecting the corresponding lists.

Second one should try to reuse (expensive) information one has computed. Suppose you
need the character table of a certain subgroup U that was constructed for example as inertia
subgroup of a character. Then it may be probable that this group has been constructed
already. So one should look whether U occurs in a list of interesting subgroups for that the
tables are already known.

This section lists several data structures that support storing and using information about
subgroups.

Storing Normal Subgroup Information

In some cases a question about a normal subgroup N can be answered efficiently if one knows
the character table of G and the G-conjugacy classes that form N , e.g., the question whether
a character of G restricts irreducibly to N . But other questions require the computation
of the group N or even more information, e.g., if we want to know whether a character
restricts homogeneously to N this will in general require the computation of the character
table of N .

In order to do such computations only once, we introduce three components in the group
record of G to store normal subgroups, the corresponding lists of conjugacy classes, and (if
known) the factor groups, namely

nsg
a list of (not necessarily all) normal subgroups of G,

nsgclasses
at position i the list of positions of conjugacy classes forming the i-th entry of the
nsg component,

nsgfactors
at position i (if bound) the factor group modulo the i-th entry of the nsg component.

53.15. NORMALSUBGROUPCLASSES 941

The functions

NormalSubgroupClasses,
FactorGroupNormalSubgroupClasses,
ClassesNormalSubgroup

initialize these components and update them. They are the only functions that do this.

So if you need information about a normal subgroup of G for that you know the G-conjugacy
classes, you should get it using NormalSubgroupClasses. If the normal subgroup was
already stored it is just returned, with all the knowledge it contains. Otherwise the normal
subgroup is computed and added to the lists, and will be available for the next call.

Storing information for computing conjugate class functions

The computation of conjugate class functions requires the computation of permutatins of
the list of conjugacy classes. In order to minimize the number of membership tests in con-
jugacy classes it is useful to store a partition of classes that is respected by every admissible
permutation. This is stored in the component globalPartitionClasses.

If the normalizer N of H in its parent is stored in H, or if H is normal in its parent then the
component permClassesHomomorphism is used. It holds the group homomorphism mapping
every element of N to the induced permutation of classes.

Both components are generated automatically when they are needed.

Storing inertia subgroup information

Let N be the normalizer of H in its parent, and χ a character of H. The inertia subgroup
IN (χ) is the stabilizer in N of χ under conjugation of class functions. Characters with
same value distribution, like Galois conjugate characters, have the same inertia subgroup.
It seems to be useful to store this information. For that, the inertiaInfo component of
H is initialized when needed, a record with components partitions and stabilizers,
both lists. The stabilizers component contains the stabilizer in N of the corresponding
partition.

53.15 NormalSubgroupClasses

NormalSubgroupClasses(G, classes)

returns the normal subgroup of the group G that consists of the conjugacy classes whose
positions are in the list classes.

If G.nsg does not contain the required normal subgroup, and if G contains the component
G.normalSubgroups then the result and the group in G.normalSubgroups will be identical.

gap> ccl:= ConjugacyClasses(S4);
[ConjugacyClass(S4, IdAgWord), ConjugacyClass(S4, d),
ConjugacyClass(S4, b), ConjugacyClass(S4, a),
ConjugacyClass(S4, a*d)]

gap> NormalSubgroupClasses(S4, [1, 2]);
Subgroup(S4, [c, d])

The list of classes corresponding to a normal subgroup is returned by 53.16.

942 CHAPTER 53. CLASS FUNCTIONS

53.16 ClassesNormalSubgroup

ClassesNormalSubgroup(G, N)

returns the list of positions of conjugacy classes of the group G that are contained in the
normal subgroup N of G .

gap> ccl:= ConjugacyClasses(S4);
[ConjugacyClass(S4, IdAgWord), ConjugacyClass(S4, d),
ConjugacyClass(S4, b), ConjugacyClass(S4, a),
ConjugacyClass(S4, a*d)]

gap> V4:= NormalClosure(S4, Subgroup(S4, [S4.4]));
Subgroup(S4, [c, d])
gap> ClassesNormalSubgroup(S4, V4);
[1, 2]

The normal subgroup corresponding to a list of classes is returned by 53.15.

53.17 FactorGroupNormalSubgroupClasses

FactorGroupNormalSubgroupClasses(G, classes)

returns the factor group of the group G modulo the normal subgroup of G that consists of
the conjugacy classes whose positions are in the list classes.

gap> ccl:= ConjugacyClasses(S4);
[ConjugacyClass(S4, IdAgWord), ConjugacyClass(S4, d),
ConjugacyClass(S4, b), ConjugacyClass(S4, a),
ConjugacyClass(S4, a*d)]

gap> S3:= FactorGroupNormalSubgroupClasses(S4, [1, 2]);
Group(a, b)

53.18 Class Function Records

Every class function has the components

isClassFunction
always true,

source
the underlying group (or character table),

values
the list of values, corresponding to the conjugacyClasses component of source,

operations
the operations record which is one of ClassFunctionOps, VirtualCharacterOps,
CharacterOps.

Optional components are

isVirtualCharacter
The class function knows to be a virtual character.

isCharacter
The class function knows to be a character.

Chapter 54

Monomiality Questions

This chapter describes functions dealing with monomiality questions.

Section 54.1 gives some hints how to use the functions in the package.

The next sections (see 54.2, 54.3, 54.4) describe functions that deal with character degrees
and derived length.

The next sections describe tests for homogeneous restriction, quasiprimitivity, and induction
from a normal subgroup of a group character (see 54.5, 54.6, 54.7, 54.8).

The next sections describe tests for subnormally monomiality, monomiality, and relatively
subnormally monomiality of a group or group character (see 54.9, 54.10, 54.11, 54.12).

The final sections 54.13 and 54.14 describe functions that construct minimal nonmonomial
groups, or check whether a group is minimal nonmonomial.

All examples in this chapter use the symmetric group S4 and the special linear group Sl(2, 3).
For running the examples, you must first define the groups.

gap> S4:= SolvableGroup("S4");;
gap> Sl23:= SolvableGroup("Sl(2,3)");;

54.1 More about Monomiality Questions

Group Characters

All the functions in this package assume characters to be character records as described
in chapter 53.

Property Tests

When we ask whether a group character χ has a certain property, like quasiprimitivity, we
usually want more information than yes or no. Often we are interested in the reason why a
group character χ could be proved to have a certain property, e.g., whether monomiality of
χ was proved by the observation that the underlying group is nilpotent, or if it was necessary
to construct a linear character of a subgroup from that χ can be induced. In the latter case
we also may be interested in this linear character.

943

944 CHAPTER 54. MONOMIALITY QUESTIONS

Because of this the usual property checks of GAP that return either true or false are not
sufficient for us. Instead there are test functions that return a record with the possibly
useful information. For example, the record returned by the function TestQuasiPrimitive
(see 54.6) contains the component isQuasiPrimitive which is the known boolean prop-
erty flag, a component comment which is a string telling the reason for the value of the
isQuasiPrimitive component, and in the case that the argument χ was a not quasiprimi-
tive character the component character which is an irreducible constituent of a nonhomo-
geneous restriction of χ to a normal subgroup.

The results of these test functions are stored in the respective records, in our example χ
will have a component testQuasiPrimitive after the call of TestQuasiPrimitive.

Besides these test functions there are also the known property checks, e.g., the func-
tion IsQuasiPrimitive which will call TestQuasiPrimitive and return the value of the
isQuasiPrimitive component of the result.

Where one should be careful

Monomiality questions usually involve computations in a lot of subgroups and factor groups
of a given group, and for these groups often expensive calculations like that of the character
table are necessary. If it is probable that the character table of a group will occur at a later
stage again, one should try to store the group (with the character table stored in the group
record) and use this record later rather than a new record that describes the same group.

An example: Suppose you want to restrict a character to a normal subgroup N that was
constructed as a normal closure of some group elements, and suppose that you have already
computed normal subgroups (by calls to NormalSubgroups or MaximalNormalSubgroups)
and their character tables. Then you should look in the lists of known normal subgroups
whether N is contained, and if yes you can use the known character table.

A mechanism that supports this for normal subgroups is described in 53.14. The following
hint may be useful in this context.

If you know that sooner or later you will compute the character table of a group G then
it may be advisable to do this as soon as possible. For example if you need the normal
subgroups of G then they can be computed more efficiently if the character table of G
is known, and they can be stored compatibly to the contained G-conjugacy classes. This
correspondence of classes list and normal subgroup can be used very often.

Package Information

Some of the functions print (perhaps useful) information if the function InfoMonomial is
set to the value Print.

54.2 Alpha

Alpha(G)

returns for a solvable group G a list whose i -th entry is the maximal derived length of
groups G/ ker(χ) for χ ∈ Irr(G) with χ(1) at most the i -th irreducible degree of G .

The result is stored in the group record as G.alpha.

54.3. DELTA 945

Note that calling this function will cause the computation of factor groups of G , so it works
efficiently only for AG groups.

gap> Alpha(Sl23);
[1, 3, 3]
gap> Alpha(S4);
[1, 2, 3]

54.3 Delta

Delta(G)

returns for a solvable group G the list [1, alp[2]-alp[1], ..., alp[n]-alp[n-1]]
where alp = Alpha(G) (see 54.2).

gap> Delta(Sl23);
[1, 2, 0]
gap> Delta(S4);
[1, 1, 1]

54.4 BergerCondition

BergerCondition(chi)
BergerCondition(G)

Called with an irreducible character chi of the group G of degree d, BergerCondition
returns true if chi satisfies M ′ ≤ ker(χ) for every normal subgroup M of G with the
property that M ≤ ker(ψ) for all ψ ∈ Irr(G) with ψ(1) < χ(1), and false otherwise.

Called with a group G , BergerCondition returns true if all irreducible characters of G
satisfy the inequality above, and false otherwise; in the latter case InfoMonomial tells
about the smallest degree for that the inequality is violated.

For groups of odd order the answer is always true by a theorem of T. R. Berger (see [Ber76],
Thm. 2.2).

gap> BergerCondition(S4);
true
gap> BergerCondition(Sl23);
false
gap> List(Irr(Sl23), BergerCondition);
[true, true, true, false, false, false, true]
gap> List(Irr(Sl23), Degree);
[1, 1, 1, 2, 2, 2, 3]

54.5 TestHomogeneous

TestHomogeneous(chi, N)

returns a record with information whether the restriction of the character chi of the group G
to the normal subgroup N of G is homogeneous, i.e., is a multiple of an irreducible character
of N .

N may be given also as list of conjugacy class positions w.r. to G.

946 CHAPTER 54. MONOMIALITY QUESTIONS

The components of the result are

isHomogeneous
true or false,

comment
a string telling a reason for the value of the isHomogeneous component,

character
irreducible constituent of the restriction, only bound if the restriction had to be
checked,

multiplicity
multiplicity of the character component in the restriction of chi .

gap> chi:= Irr(Sl23)[4];
Character(Sl(2,3), [2, -2, 0, -1, 1, -1, 1])
gap> n:= NormalSubgroupClasses(Sl23, [1, 2, 3]);
Subgroup(Sl(2,3), [b, c, d])
gap> TestHomogeneous(chi, [1, 2, 3]);
rec(
isHomogeneous := true,
comment := "restricts irreducibly")

gap> chi:= Irr(Sl23)[7];
Character(Sl(2,3), [3, 3, -1, 0, 0, 0, 0])
gap> TestHomogeneous(chi, n);
#W Warning: Group has no name
rec(
isHomogeneous := false,
comment := "restriction checked",
character := Character(Subgroup(Sl(2,3), [b, c, d]),
[1, 1, -1, 1, -1]),

multiplicity := 1)

54.6 TestQuasiPrimitive

TestQuasiPrimitive(chi)

returns a record with information about quasiprimitivity of the character chi of the group
G (i.e., whether chi restricts homogeneously to every normal subgroup of G).

The record contains the components

isQuasiPrimitive
true or false,

comment
a string telling a reason for the value of the isQuasiPrimitive component,

character
an irreducible constituent of a nonhomogeneous restriction of chi , bound only if chi
is not quasi-primitive.

IsQuasiPrimitive(chi)

54.7. ISPRIMITIVE FOR CHARACTERS 947

returns true or false, depending on whether the character chi of the group G is quasiprim-
itive.

gap> chi:= Irr(Sl23)[4];
Character(Sl(2,3), [2, -2, 0, -1, 1, -1, 1])
gap> TestQuasiPrimitive(chi);
#W Warning: Group has no name
rec(
isQuasiPrimitive := true,
comment := "all restrictions checked")

gap> chi:= Irr(Sl23)[7];
Character(Sl(2,3), [3, 3, -1, 0, 0, 0, 0])
gap> TestQuasiPrimitive(chi);
rec(
isQuasiPrimitive := false,
comment := "restriction checked",
character := Character(Subgroup(Sl(2,3), [b, c, d]),
[1, 1, -1, 1, -1]))

54.7 IsPrimitive for Characters

IsPrimitive(chi)

returns true if the irreducible character chi of the solvable group G is not induced from
any proper subgroup of G, and false otherwise.

Note that an irreducible character of a solvable group is primitive if and only if it is quasi-
primitive (see 54.6).

gap> IsPrimitive(Irr(Sl23)[4]);
true
gap> IsPrimitive(Irr(Sl23)[7]);
false

54.8 TestInducedFromNormalSubgroup

TestInducedFromNormalSubgroup(chi, N)
TestInducedFromNormalSubgroup(chi)

returns a record with information about whether the irreducible character chi of the group
G is induced from a proper normal subgroup of G.

If chi is the only argument then it is checked whether there is a maximal normal subgroup of
G from that chi is induced. If there is a second argument N , a normal subgroup of G, then
it is checked whether chi is induced from N . N may also be given as the list of positions of
conjugacy classes contained in the normal subgroup in question.

The result contains the components

isInduced
true or false,

comment
a string telling a reason for the value of the isInduced component,

948 CHAPTER 54. MONOMIALITY QUESTIONS

character
if bound, a character of a maximal normal subgroup of G or of the argument N from
that chi is induced.

IsInducedFromNormalSubgroup(chi)

returns true if the group character chi is induced from a proper normal subgroup of the
group of chi , and false otherwise.

gap> List(Irr(Sl23), IsInducedFromNormalSubgroup);
[false, false, false, false, false, false, true]
gap> List(Irr(S4){ [1, 3, 4] },
> TestInducedFromNormalSubgroup);
#W Warning: Group has no name
[rec(

isInduced := false,
comment := "linear character"), rec(
isInduced := true,
comment := "induced from component ’.character’",
character := Character(Subgroup(S4, [b, c, d]),

[1, 1, E(3), E(3)^2])), rec(
isInduced := false,
comment := "all maximal normal subgroups checked")]

54.9 TestSubnormallyMonomial

TestSubnormallyMonomial(G)
TestSubnormallyMonomial(chi)

returns a record with information whether the group G or the irreducible group character
chi of the group G is subnormally monomial.

The result contains the components

isSubnormallyMonomial
true or false,

comment
a string telling a reason for the value of the isSubnormallyMonomial component,

character
if bound, a character of G that is not subnormally monomial.

IsSubnormallyMonomial(G)
IsSubnormallyMonomial(chi)

returns true if the group G or the group character chi is subnormally monomial, and false
otherwise.

gap> TestSubnormallyMonomial(S4);
rec(

isSubnormallyMonomial := false,
character := Character(S4, [3, -1, 0, -1, 1]),

54.10. TESTMONOMIALQUICK 949

comment := "found not SM character")
gap> TestSubnormallyMonomial(Irr(S4)[4]);
rec(
isSubnormallyMonomial := false,
comment := "all subnormal subgroups checked")

gap> TestSubnormallyMonomial(SolvableGroup("A4"));
#W Warning: Group has no name
rec(
isSubnormallyMonomial := true,
comment := "all irreducibles checked")

54.10 TestMonomialQuick

TestMonomialQuick(chi)
TestMonomialQuick(G)

does some easy checks whether the irreducible character chi or the group G are monomial.
TestMonomialQuick returns a record with components

isMonomial
either true or false or the string "?", depending on whether (non)monomiality could
be proved, and

comment
a string telling the reason for the value of the isMonomial component.

A group G is proved to be monomial by TestMonomialQuick if its order is not divisible
by the third power of a prime, or if G is nilpotent or Sylow abelian by supersolvable.
Nonsolvable groups are proved to me nonmonomial by TestMonomialQuick.

An irreducible character is proved to be monomial if it is linear, or if its codegree is a prime
power, or if its group knows to be monomial, or if the factor group modulo the kernel can
be proved to be monomial by TestMonomialQuick.

gap> TestMonomialQuick(Irr(S4)[3]);
rec(
isMonomial := true,
comment := "kernel factor group is supersolvable")

gap> TestMonomialQuick(S4);
rec(
isMonomial := true,
comment := "abelian by supersolvable group")

gap> TestMonomialQuick(Sl23);
rec(
isMonomial := "?",
comment := "no decision by cheap tests")

54.11 TestMonomial

TestMonomial(chi)
TestMonomial(G)

950 CHAPTER 54. MONOMIALITY QUESTIONS

returns a record containing information about monomiality of the group G or the group
character chi of a solvable group, respectively.

If a character chi is proved to be monomial the result contains components isMonomial
(then true), comment (a string telling a reason for monomiality), and if it was necessary to
compute a linear character from that chi is induced, also a component character.

If chi or G is proved to be nonmonomial the component isMonomial is false, and in the
case of G a nonmonomial character is contained in the component character if it had been
necessary to compute it.

If the program cannot prove or disprove monomiality then the result record contains the
component isMonomial with value "?".

This case occurs in the call for a character chi if and only if chi is not induced from the
inertia subgroup of a component of any reducible restriction to a normal subgroup. It can
happen that chi is monomial in this situation.

For a group this case occurs if no irreducible character can be proved to be nonmonomial,
and if no decision is possible for at least one irreducible character.

IsMonomial(G)
IsMonomial(chi)

returns true if the group G or the character chi of a solvable group can be proved to be
monomial, false if it can be proved to be nonmonomial, and the string "?" otherwise.

gap> TestMonomial(S4);
rec(
isMonomial := true,
comment := "abelian by supersolvable group")

gap> TestMonomial(Sl23);
rec(
isMonomial := false,
comment := "list Delta(G) contains entry > 1")

IsMonomial(n)

for a positive integer n returns true if every solvable group of order n is monomial, and
false otherwise.

gap> Filtered([1 .. 111], x -> not IsMonomial(x));
[24, 48, 72, 96, 108]

54.12 TestRelativelySM

TestRelativelySM(G)
TestRelativelySM(chi, N)

If the only argument is a SM group G then TestRelativelySM returns a record with infor-
mation about whether G is relatively subnormally monomial (relatively SM) with respect
to every normal subgroup.

If there are two arguments, an irreducible character chi of a SM group G and a normal
subgroup N of G, then TestRelativelySM returns a record with information whether chi

54.13. ISMINIMALNONMONOMIAL 951

is relatively SM with respect to N , i.e, whether there is a subnormal subgroup H of G that
contains N such that chi is induced from a character ψ of H where the restriction of ψ to
N is irreducible.

The component isRelativelySM is true or false, the component comment contains a string
that describes the reason. If the argument is G , and G is not relatively SM with respect to
a normal subgroup then the component character contains a not relatively SM character
of such a normal subgroup.

Note: It is not checked whether G is SM.

gap> IsSubnormallyMonomial(SolvableGroup("A4"));
#W Warning: Group has no name
true
gap> TestRelativelySM(SolvableGroup("A4"));
rec(
isRelativelySM := true,
comment :=
"normal subgroups are abelian or have nilpotent factor group")

54.13 IsMinimalNonmonomial

IsMinimalNonmonomial(G)

returns true if the solvable group G is a minimal nonmonomial group, and false otherwise.
A group is called minimal nonmonomial if it is nonmonomial, and all proper subgroups
and factor groups are monomial.

The solvable minimal nonmonomial groups were classified by van der Waall (see [vdW76]).

gap> IsMinimalNonmonomial(Sl23);
true
gap> IsMinimalNonmonomial(S4);
false

54.14 MinimalNonmonomialGroup

MinimalNonmonomialGroup(p, factsize)

returns a minimal nonmonomial group described by the parameters factsize and p if such a
group exists, and false otherwise.

Suppose that a required group K exists. factsize is the size of the Fitting factor K/F (K);
this value must be 4, 8, an odd prime, twice an odd prime, or four times an odd prime.

In the case that factsize is twice an odd prime the centre Z(K) iscyclic of order 2p+1. In all
other cases p denotes the (unique) prime that divides the order of F (K).

The solvable minimal nonmonomial groups were classified by van der Waall (see [vdW76],
the construction follows this article).

gap> MinimalNonmonomialGroup(2, 3); # SL2(3)
2^(1+2):3
gap> MinimalNonmonomialGroup(3, 4);
3^(1+2):4

952 CHAPTER 54. MONOMIALITY QUESTIONS

gap> MinimalNonmonomialGroup(5, 8);
5^(1+2):Q8
gap> MinimalNonmonomialGroup(13, 12);
13^(1+2):2.D6
gap> MinimalNonmonomialGroup(1, 14);
2^(1+6):D14
gap> MinimalNonmonomialGroup(2, 14);
(2^(1+6)Y4):D14

Chapter 55

Getting and Installing GAP

GAP runs on a large number of different operating systems. It behaves slightly different
on each of those. This chapter describes the behaviour of GAP, the installation, and the
options on some of those operating systems.

Currently it contains sections for UNIX (see 55.2), which runs on an ever increasing number
of machines, for MS-DOS (see 55.5), which is one operating system on IBM PC com-
patibles, and TOS (see 55.13), which is the operating system on Atari ST and MacOS
(see 55.9), which is the operating system on Apple Macintosh computers.

For other systems the section 55.17 gives hints how to approach such a port.

55.1 Getting GAP

GAP is distributed free of charge. You can obtain it via ftp and give it away to your
colleagues. GAP is not in the public domain, however. In particular you are not allowed to
incorporate GAP or parts thereof into a commercial product.

If you get GAP, we would appreciate it if you could notify us, e.g., by sending a short e-mail
message to gap@math.rwth-aachen.de, containing your full name and address, so that we
have a rough idea of the number of users. We also hope that this number will be large
enough to convince various agencies that GAP is a project worthy of (financial) support. If
you publish some result that was partly obtained using GAP, we would appreciate it if you
would cite GAP, just as you would cite another paper that you used. Specifically, please
refer to
[S+ 97] Martin Sch"onert et.al. GAP -- Groups, Algorithms, and Programming.

Lehrstuhl D f"ur Mathematik, Rheinisch Westf"alische Technische
Hochschule, Aachen, Germany, sixth edition, 1997.

Again we would appreciate if you could inform us about such a paper.

We distribute the full source for everything, the C code for the kernel, the GAP code for
the library, and the LATEX code for the manual, which has at present about 1600 pages.
So it should be no problem to get GAP, even if you have a rather uncommon system. Of
course, ports to non UNIX systems may require some work. We already have ports for IBM
PC compatibles with an Intel processor under MS-DOS, Windows, or OS/2, for the Atari

953

954 CHAPTER 55. GETTING AND INSTALLING GAP

ST under TOS and Apple Macintosh using the CodeWarrior compiler. Note that about 8
MByte of main memory and about 20MB of disk space are required to run GAP. A full GAP
installation, including all share packages and data libraries can use up to 100MB of disk
space.

The easiest way to get GAP 3.4 for most users is probably via the World Wide Web. The
main GAP Web site is found at http://www-gap.dcs.st-and.ac.uk/~gap.

There are three mirror sites updated automatically each night, at:
http://www.math.rwth-aachen.de/LDFM/GAP
http://www.ccs.neu.edu/Cobwebs/GAP and
http://wwwmaths.anu.edu.au/algebra/GAP/WWW.

At these sites you can browse this manual, download the system and contributed extensions,
read past postings to the GAP forum, and find out about authors of and contributors to
GAP, publications that cited GAP andGAP related events.

GAP 3.4 can also be obtained by anonymous ftp from the following servers.

ftp-gap.dcs.st-and.ac.uk
School of Mathematical and Computational Sciences,
University of St Andrews, Scotland
directory /pub/gap/gap/.

ftp.math.rwth-aachen.de
Lehrstuhl D fur Mathematik, RWTH Aachen, Germany,
directory /pub/gap/.

math.ucla.edu
Math. Dept., Univ. of California at Los Angeles,
directory /pub/gap/.

wuarchive.wustl.edu
Math. Archives, Washington Univ. at St. Louis,
directory /edu/math/source.code/group.theory/gap.

dehn.mth.pdx.edu
PSU Mathematics Department, Portland State Univ.,
directory /mirror/gap/

pell.anu.edu.au
School of Mathematical Sciences, Australian National Univ., Canberra,
directory /pub/algebra/gap/.

ftp to the server closest to you, login as user ftp and give your full e-mail address as
password. Remember when you transmit the files to set the file transfer type to binary
image, otherwise you will only receive unusable garbage. Those servers will always have
the latest version of GAP available.

The ftp directory contains the following files. Please check first which files you need, to
avoid transferring those that you don’t need.

README
the file you are currently reading.

gap3r4p4.zoo
This file contains the complete distribution of GAP version 3 release 4 current patch-
level 4. It is a zoo archive approximately 18 MByte large.

55.2. GAP FOR UNIX 955

unzoo.c
A simple zoo archive extractor, which should be used to unpack the distribution. The
utils subdirectory contains ready compiled executables for common systems.

More files are in the following subdirectories

bin
This directory contains executables for systems that dont come with a C compiler
or where another C compiler produces a faster executable. The KERNELS file tells you
which executables are here.

split
This directory contains the complete distribution of GAP 3r4p4 in several archives.
This allows you to get only the parts that you are really interested in. The SPLIT file
tells you which archive contains what.

utils
This directory contains several utilities that you may need to get or upgrade GAP,
e.g., unzoo and patch. The UTILS file tells you which files are here.

55.2 GAP for UNIX

GAP runs very well under UNIX. In fact it is being developed on UNIX workstations. GAP
running on any UNIX machine should behave exactly as described in the manual.

GAP has successfully been compiled and installed on the following UNIX machines.

Vendor, Model, Processor, System, Compiler
DEC, DECstation 3100, MIPS R2000, Ultrix 4.0, cc and GNU gcc
DEC, DECstation 5120, MIPS R3000, Ultrix 4.2, cc and GNU gcc
HP, HP 9000/825, HP-PA 1.0, HP-UX 7.0, cc
HP, HP 9000/720, HP-PA 1.1, HP-UX 8.0.5, cc
IBM, POWERstation 530, RS/6000, AIX, cc
IBM, PC, i386/i486, 386BSD, GNU gcc
IBM, PC, i386/i486, Linux, GNU gcc
MIPS, M120/5, MIPS R2000, RiscOS, cc
NeXT, NeXTstation, MC68040, Mach, GNU gcc
Sequent, Symmetry, ---, Dynix, cc,
SGI, Iris, MIPS R3000, Irix, cc and GNU gcc
Sun, Sun 3/60, MC68020, SunOS 4.0.1, cc and GNU gcc
Sun, Sun 4/280, Sparc, SunOS 4.0.1, cc and GNU gcc
Sun Sparcstations Sparc, Solaris 2.5 cc and GNU gcc

We hope that compiling and installing GAP on another UNIX machine does not pose any
problem. If it does, please inform us of your problems, and, if possible of your solution.

The section 55.3 describes how you install GAP on a UNIX machine, and the section 55.4
describe the options that GAP accepts under UNIX.

55.3 Installation of GAP for UNIX

Installation of GAP for UNIX is fairly easy.

956 CHAPTER 55. GETTING AND INSTALLING GAP

First go to the directory where you want to install GAP. If you will be the only user using
GAP, you probably should install it in you homedirectory. If other users will be using
GAP also, you should install it in a public place, such as /usr/local/lib/. GAP will be
installed in a subdirectory gap3r4p4 of this directory. You can later move GAP to a different
location. For example you can first install it in your homedirectory and when it works move
it to /usr/local/lib/. In the following example we will assume that you, as user you,
want to install GAP for your own use in your homedirectory on a DECstation called ernie.
Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

Get the distribution gap3r4p4.zoo and the source for the zoo archive extractor unzoo.c.
How you can get those files is described in the section 55.1. The usual way would be to get
it with ftp onto your machine. Remember that the distribution consists of binary files and
that you must transmit them in binary mode.

Compile the zoo archive extractor unzoo with the command

you@ernie:~ > cc -o unzoo -DSYS_IS_UNIX -O unzoo.c
you@ernie:~ > ls -l unzoo
-rwxr-xr-x you 45056 Nov 3 10:11 unzoo
you@ernie:~ >

Unpack the distribution with the command

you@ernie:~ > unzoo -x gap3r4p4.zoo
gap3r4p4/bin/gap.sh -- extracted as text
gap3r4p4/doc/aboutgap.tex -- extracted as text
gap3r4p4/doc/aggroup.tex -- extracted as text
about 500 more lines
gap3r4p4/two/twogpd8.grp -- extracted as text
you@ernie:~ >

Change into the source directory gap3r4p4/src/ and execute make to see which compilation
targets are predefined.

you@ernie:~ > cd gap3r4p4/src
you@ernie:~/gap3r4p4/src > make
usage: ’make <target>’ where target is one of
’atari-m68k-tos-gcc2’ for Atari ST under TOS with GNU cc 2
’dec-mips-ultrix-gcc2’ for DECstation under Ultrix with GNU cc 2
’dec-mips-ultrix-cc’ for DECstation under Ultrix with cc
’hp-hppa1.0-hpux-cc’ for HP 9000/800 under HP-UX with cc
’hp-hppa1.1-hpux-cc’ for HP 9000/700 under HP-UX with cc
’ibm-power-aix-cc’ for IBM RS/6000 under AIX with cc
’ibm-i386-386bsd-gcc2’ for IBM PC under 386BSD with GNU cc 2
’ibm-i386-386bsd-cc’ for IBM PC under 386BSD with cc (GNU)
’ibm-i386-linux-gcc2’ for IBM PC under Linux with GNU cc 2
’ibm-i386-dos-djgpp’ for IBM PC under MSDOS with DJ GNU cc
’ibm-i386-os2-emx’ for IBM PC under OS/2 with EMX GNU cc
’mips-mips-bsd-cc’ for MIPS under RISC/os Berkeley with cc
’mips-mips-sysv-cc’ for MIPS under RISC/os System V with cc
’next-m68k-mach-gcc2’ for NEXTSTEP 3 on NeXT with GNU cc 2

55.3. INSTALLATION OF GAP FOR UNIX 957

’next-m68k-mach-cc’ for NEXTSTEP 3 on NeXT with cc (GNU)
’next-i386-mach-gcc2’ for NEXTSTEP 3 on IBM PC with GNU cc 2
’next-i386-mach-cc’ for NEXTSTEP 3 on IBM PC with cc (GNU)
’sequent-i386-dynix-cc’ for Sequent Symmetry under Dynix with cc
’sgi-mips-irix-gcc2’ for SGI under Irix with GNU cc 2
’sgi-mips-irix-cc’ for SGI under Irix with cc
’sun-m68k-sunos-gcc2’ for SUN 3 under SunOS with GNU cc 2
’sun-m68k-sunos-cc’ for SUN 3 under SunOS with cc
’sun-sparc-sunos-gcc2’ for SUN 4 under SunOS with GNU cc 2
’sun-sparc-sunos-cc’ for SUN 4 under SunOS with cc
’bsd’ for others under Berkeley UNIX with cc
’usg’ for others under System V UNIX with cc
targets are listed according to preference, i.e.,
’sun-sparc-sunos-gcc2’ is better than ’sun-sparc-sunos-cc’.
additional C compiler and linker flags can be passed with
’make <target> COPTS=<compiler-opts> LOPTS=<linker-opts>’,
i.e., ’make sun-sparc-sunos-gcc2 COPTS=-g LOPTS=-g.’
you@ernie:~/gap3r4p4/src >

Choose the best matching target. If nothing matches precisely, use bsd (if your UNIX is
more Berkeley) or usg (if your UNIX is more System V). If compilation of the file system.c
fails or the command line editing does not work, remove the file system.o and try the other
target. If system.c cannot be compiled neither with target bsd nor with target usg, look
at this file and try to modify it so that compilation works. If you can compile but command
line editing does not work with either target, we suggest that you always start GAP with
option -n to disable command line editing. In any case we would like to hear about such
problems.

In our example the right target is obviously dec-mips-ultrix-cc (remember ernie was
assumed to be a DECstation). Compile GAP.

you@ernie:~/gap3r4p4/src > make dec-mips-ultrix-cc
cc -DSYS_IS_BSD -DSYS_HAS_ANSI=1 -c system.c
cc -O2 -c gap.c
about 30 more lines
you@ernie:~/gap3r4p4/src > ls -l gap
-rwxr-xr-x you 711620 Nov 13 12:47 gap
you@ernie:~/gap3r4p4/src >

You may want to keep the source and object files around until you are certain that everything
works. However if space is a tight resource on your system you may remove the source
and object files now. All you need in the src/ subdirectory from now on is (are) the
executable(s).

Copy or move the executable to the gap3r4p4/bin/ directory.

you@ernie:~/gap3r4p4/src > mv gap ../bin
you@ernie:~/gap3r4p4/src > cd ../..
you@ernie:~ >

Then edit the shell script gap.sh in the gap3r4p4/bin/ directory according to the instruc-
tions in this file. This script will start GAP and is the place for all necessary configurations.

958 CHAPTER 55. GETTING AND INSTALLING GAP

Then copy this script to a directory in your search path, i.e., /bin/. (If you are using the
C-shell, you will also have to rehash, so that the C-shell adds gap to its internal tables).

you@ernie:~ > cd gap3r4p4/bin
you@ernie:~/gap3r4p4/bin > cp gap.sh ~/bin/gap
you@ernie:~/gap3r4p4/bin > cd ../..
you@ernie:~ >

When you later move GAP to another location you must only edit this script.

Now start GAP and try a few things. The -b option suppresses the banner. Note that GAP
has to read most of the library for the fourth statement below, so this takes quite a while.
Subsequent definitions of groups will be much faster.

you@ernie:~ > gap -b
gap> 2 * 3 + 4;
10
gap> Factorial(30);
265252859812191058636308480000000
gap> Factors(10^42 + 1);
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]
gap> m11 := Group((1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6));;
gap> Size(m11);
7920
gap> Factors(7920);
[2, 2, 2, 2, 3, 3, 5, 11]
gap> Number(ConjugacyClasses(m11));
10

Especially try the command line editing and history facilities, because the are probably the
most machine dependent feature of GAP. Enter a few commands and then make sure that
ctr -P redisplays the last command, that ctr -E moves the cursor to the end of the line, that
ctr -B moves the cursor back one character, and that ctr -D deletes single characters. So, after
entering the above commands, typing
ctr -P ctr -P ctr -E ctr -B ctr -B ctr -B ctr -B ctr -D 1
should give the following line.

gap> Factors(7921);
[89, 89]

If command line editing does not work, remove the file system.o and try to compile with
a different target, i.e., bsd instead of usg or vice versa. If neither works, we suggest that
you disable command line editing by calling GAP always with the -n option. In any case
we would like to hear about such problems.

If your operating system has job control, make sure that you can still stop GAP, which is
usually done by pressing ctr -Z.

If you have a big version of LATEX available, you may now want to make a printed copy of
the manual. Change into the directory gap3r4p4/doc/ and run LATEX twice on the source.
The first pass with LATEX produces the .aux files, which resolve all the cross references. The
second pass produces the final formatted dvi file manual.dvi. Then print the dvi file. How
this is done depends on your local TEX installation, if in doubt ask your local computer
guru.

55.3. INSTALLATION OF GAP FOR UNIX 959

you@ernie:~ > cd gap3r4p4/doc
you@ernie:~/gap3r4p4/doc > latex manual
about 2400 messages about undefined references
you@ernie:~/gap3r4p4/doc > latex manual
there should be no warnings this time
you@ernie:~/gap3r4p4/doc > ls -l manual.dvi
-rw-r--r-- you 4806136 Nov 3 23:28 manual.dvi
you@ernie:~/gap3r4p4/doc > lp -dvi manual.dvi
you@ernie:~/gap3r4p4/doc > cd ../..
you@ernie:~ >

Note that because of the large number of cross references in the manual you need a big
LATEX to format the GAP manual. If you see the error message TeX capacity exceeded,
you do not have a big LATEX; again ask your local computer guru to provide a big version of
LATEX. If this is not possible, you may also obtain the already formatted dvi file manual.dvi
from the same place where you obtained the rest of the GAP distribution.
Note that, apart from the *.tex files and the file manual.bib (bibliography database), which
you absolutely need, we supply also the files manual.toc (table of contents), manual.ind
(unsorted index), manual.idx (sorted index), and manual.bbl (bibliography). If those files
are missing, or if you prefer to do everything yourself, here is what you will have to do. After
the first pass with LATEX, you will have preliminary manual.toc and manual.ind files. All
the page numbers are still incorrect, because the do not account for the pages used by
the table of contents itself. Now bibtex manual will create manual.bbl from manual.bib.
After the second pass with LATEX you will have a correct manual.toc and manual.ind.
makeindex now produces the sorted index manual.idx from manual.ind. The third pass
with LATEX incorporates this index into the manual.

you@ernie:~ > cd gap3r4p4/doc
you@ernie:~/gap3r4p4/doc > latex manual
about 2000 messages about undefined references
you@ernie:~/gap3r4p4/doc > bibtex manual
bibtex prints the name of each file it is scanning
you@ernie:~/gap3r4p4/doc > latex manual
still some messages about undefined citations
you@ernie:~/gap3r4p4/doc > makeindex manual
makeindex prints some diagnostic output
you@ernie:~/gap3r4p4/doc > latex manual
there should be no warnings this time
you@ernie:~/gap3r4p4/doc > lp -dvi manual.dvi
you@ernie:~/gap3r4p4/doc > cd ../..
you@ernie:~ >

The full manual is, to put it mildly, now rather long (almost 1600 pages). For this reason,
it may be more convenient just to print selected chapters. This can be done using
the \includeonly LaTeX command, which is present in manual.tex (around line 240), but
commented out. To use this, you must first LaTeX the whole manual as normal, to obtain
the complete set of .aux files and determine the pages and numbers of all the chapters and
sections. After that, you can edit manual.tex to uncomment the \includeonly command
and select the chapters you want. A good start can be to include only the first chapter,
from the file aboutgap.tex, by editing the line to read \includeonly{aboutgap}. The

960 CHAPTER 55. GETTING AND INSTALLING GAP

next step is to LaTeX the manual again. This time only the selected chapter(s) and the
table of contents and indices will be processed, producing a shorter dvi file that you can
print by whatever means applies locally.

you@ernie:~/gap3r4p4/doc > latex manual
many messages about undefined references, 1600 pages output
you@ernie:~/gap3r4p4/doc > vi manual.tex
edit line 241 to include only aboutgap
you@ernie:~/gap3r4p4/doc > latex manual
pages 0-196 and 1503-1553 only output no warnings
you@ernie:~/gap3r4p4/doc > ls -l manual.dvi
-rw-rw-r-- 1 you 1277496 Apr 3 14:48 manual.dvi
the full manual is nearly 5MB
you@ernie:~/gap3r4p4/doc > lp -d manual.dvi

Thats all, finally you are done. We hope that you will enjoy using GAP. If you have problems,
do not hesitate to contact us.

55.4 Features of GAP for UNIX

When you start GAP for UNIX, you may specify a number of options on the command-line
to change the default behaviour of GAP. All these options start with a hyphen -, followed by
a single letter. Options must not be grouped, e.g., gap -gq is illegal, use gap -g -q instead.
Some options require an argument, this must follow the option and must be separated by a
space, e.g., gap -m 256k, it is not correct to say gap -m256k instead.

GAP for UNIX will only accept lower case options.

As is described in the previous section (see 55.3) usually you will not execute GAP directly.
Instead you will call a shell script, with the name gap, which in turn executes GAP. This
shell script sets some options as necessary to make GAP work on your system. This means
that the default settings mentioned below may not be what you experience when you execute
GAP on your system.

-g

The option -g tells GAP to print a information message every time a garbage collection is
performed.

G collect garbage, 1931 used, 5012 dead, 912 KB free, 4096 KB total

For example, this tells you that there are 1931 live objects that survived a garbage collection,
that 5012 unused objects were reclaimed by it, and that 912 KByte of totally allocated 4096
KBytes are available afterwards.

-l libname The option -l tells GAP that the library of GAP functions is in the directory
libname. Per default libname is lib/, i.e., the library is normally expected in the subdirec-
tory lib/ of the current directory. GAP searches for the library files, whose filenames end
in .g, and which contain the functions initially known to GAP, in this directory. libname
should end with a pathname separator, i.e., /, but GAP will silently add one if it is missing.
GAP will read the file libname/init.g during startup. If GAP cannot find this file it will
print the following warning

gap: hmm, I cannot find ’lib/init.g’, maybe use option ’-l <lib>’?

55.4. FEATURES OF GAP FOR UNIX 961

If you want a bare bones GAP, i.e., if you do not need any library functions, you may ignore
this warning, otherwise you should leave GAP and start it again, specifying the correct
library path using the -l option.

It is also possible to specify several alternative library paths by separating them with semi-
colons ;. Note that in this case all path names must end with the pathname separator /.
GAP will then search for its library files in all those directories in turn, reading the first it
finds. E.g., if you specify -l "lib/;/usr/local/lib/gap3r4p4/lib/" GAP will search for
a library file first in the subdirectory lib/ of the current directory, and if it does not find it
there in the directory /usr/local/lib/gap3r4p4/lib/. This way you can built your own
directory of GAP library files that override the standard ones.

GAP searches for the group files, whose filenames end in .grp, and which contain the groups
initially known to GAP, in the directory one gets by replacing the string lib in libname with
the string grp. If you do not want to put the group directory grp/ in the same directory
as the lib/ directory, for example if you want to put the groups onto another hard disk
partition, you have to edit the assignment in libname/init.g that reads

GRPNAME := ReplacedString(LIBNAME, "lib", "grp");

This path can also consist of several alternative paths, just as the library path. If the library
path consists of several alternative paths the default value for this path will consist of the
same paths, where in each component the last occurrence of lib/ is replaced by grp/.

Similar considerations apply to the character table files. Those filenames end in .tbl. GAP
looks for those files in the directory given by TBLNAME. The default value for TBLNAME is
obtained by replacing lib in libname with tbl.

-h docname

The option -h tells GAP that the on-line documentation for GAP is in the directory docname.
Per default docname is obtained by replacing lib in libname with doc. docname should
end with a pathname separator, i.e., /, but GAP will silently add one if it is missing. GAP
will read the file docname/manual.toc when you first use the help system. If GAP cannot
find this file it will print the following warning

help: hmm, I cannot open the table of contents file ’doc/manual.toc’
maybe you should use the option ’-h <docname>’?

-m memory

The option -m tells GAP to allocate memory bytes at startup time. If the last character of
memory is k or K it is taken in KBytes and if the last character is m or M memory is taken
in MBytes.

Under UNIX the default amount of memory allocated by GAP is 4 MByte. The amount
of memory should be large enough so that computations do not require too many garbage
collections. On the other hand if GAP allocates more virtual memory than is physically
available it will spend most of the time paging.

-n

The option -n tells GAP to disable the line editing and history (see 3.4).

You may want to do this if the command line editing is incompatible with another program
that is used to run GAP. For example if GAP is run from inside a GNU Emacs shell window,

962 CHAPTER 55. GETTING AND INSTALLING GAP

-n should be used since otherwise every input line will be echoed twice, once by Emacs and
once by GAP.

-b

The option -b tells GAP to suppress the banner. That means that GAP immediately prints
the prompt. This is useful when you get tired of the banner after a while.

-q

The option -q tells GAP to be quiet. This means that GAP does not display the banner and
the prompts gap>. This is useful if you want to run GAP as a filter with input and output
redirection and want to avoid the the banner and the prompts clobbering the output file.

-x length

With this option you can tell GAP how long lines are. GAP uses this value to decide when
to split long lines.

The default value is 80, which is the right value if you have a standard ASCII terminal. If
you have a larger monitor, or use a smaller font, or redirect the output to a printer, you
may want to increase this value.

-y length

With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should display -- <space> for more --.

The default value is 24, which is the right value if you have a standard ASCII terminal. If
you have a larger monitor, or use a smaller font, or redirect the output to a printer, you
may want to increase this value.

Further arguments are taken as filenames of files that are read by GAP during startup, after
libname/init.g is read, but before the first prompt is printed. The files are read in the
order in that they appear on the command line. GAP only accepts 14 filenames on the
command line. If a file cannot be opened GAP will print an error message and will abort.

When you start GAP, it looks for the file with the name .gaprc in your homedirectory. If
such a file is found it is read after libname/init.g, but before any of the files mentioned
on the command line are read. You can use this file for your private customizations. For
example, if you have a file containing functions or data that you always need, you could read
this from .gaprc. Or if you find some of the names in the library too long, you could define
abbreviations for those names in .gaprc. The following sample .gaprc file does both.

Read("/usr/you/dat/mygroups.grp");
Op := Operation;
OpHom := OperationHomomorphism;
RepOp := RepresentativeOperation;
RepsOp := RepresentativesOperation;

55.5 GAP for MS-DOS

This sections contain information about GAP that is specific to the port of GAP for IBM
PC compatibles under MS-DOS or Windows (simply called GAP for MS-DOS below).

To run GAP for MS-DOS you need an IBM PC compatible with an Intel 80386, Intel 80486,
or Intel Pentium processor, it will not run on IBM PC compatibles with an Intel 80186

55.6. COPYRIGHT OF GAP FOR MS-DOS 963

or Intel 80286 processor. The system must have at least 4 MByte of main memory and a
harddisk. The operating system must be MS-DOS version 5.0 or later or Windows 3.1 or
later (earlier versions may work, but this has not been tested).

The section 55.6 describes the copyright as it applies to the executable version that we
distribute. The section 55.7 describes how you install GAP for MS-DOS, and the section
55.8 describes the special features of GAP for MS-DOS.

55.6 Copyright of GAP for MS-DOS

In addition to the general copyright for GAP set forth in the Copyright the following terms
apply to GAP for MS-DOS.

The system dependent part for GAP for MS-DOS was written by Steve Linton. He assigns
the copyright to the Lehrstuhl D fuer Mathematik. Many thanks to Steve Linton for his
work.

The executable of GAP for MS-DOS that we distribute was compiled with DJ Delorie’s port
of the Free Software Foundation’s GNU C compiler version 2.7.2. The compiler can be
obtained by anonymous ftp from a variety of general public FTP archives. Many thanks
to the Free Software Foundation and DJ Delorie for this amazing piece of work.

The GNU C compiler is

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cam-
bridge, MA 02139, USA

under the terms of the GNU General Public License (GPL). Note that the GNU GPL states
that the mere act of compiling does not affect the copyright status of GAP.

The modifications to the compiler to make it operating under MS-DOS, the functions from
the standard library libpc.a, the modifications of the functions from the standard li-
brary libc.a to make them operate under MS-DOS, and the DOS extender go32 (which is
prepended to gapexe.386) are

Copyright (C) 1991 DJ Delorie, 24 Kirsten Ave, Rochester NH 03867-2954,
USA

also under the terms of the GNU GPL. The terms of the GPL require that we make the source
code for libpc.a available. They can be obtained by writing to Steve Linton (however, it
may be easier for you to ftp them from grape.ecs.clarkson.edu yourself). They also
require that GAP falls under the GPL too, i.e., is distributed freely, which it basically does
anyhow.

The functions in libc.a that GAP for the 386 uses are

Copyright (c) 1988 Regents of the University of California

under the following terms

All rights reserved.

Redistribution and use in source and binary forms are permitted provided that
the above copyright notice and this paragraph are duplicated in all such forms
and that any documentation, advertising materials, and other materials related
to such distribution and use acknowledge that the software was developed by
the University of California, Berkeley. The name of the University may not be

964 CHAPTER 55. GETTING AND INSTALLING GAP

used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED AS IS AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

55.7 Installation of GAP for MS-DOS

Installation of GAP on IBM PC compatibles is fairly easy. As already mentioned above,
GAP must be installed on a harddisk, because it is too large to be run from floppy disks.

First go to a directory where you want to install GAP, e.g., c:\. GAP will be installed in
a subdirectory gap3r4p4\ of this directory. You can later move GAP to another location,
for example you can first install it in d:\tmp\ and once it works move it to c:\. In the
following example we assume that you want to install GAP in c:\. Note that certain parts
of the output in the examples should only be taken as rough outline, especially file sizes and
file dates are not to be taken literally.

Get the GAP distribution onto your IBM PC compatible. One usual way would be to get the
distribution with ftp onto some UNIX workstation and to download it from there onto your
IBM PC compatible, for example with kermit. Remember that the distribution consists of
binary files and that you must transmit them in binary mode. Another possibility is that
you got a set of floppy disks.

If you get the distribution via ftp, you must get the distribution gap3r4p4.zoo, the zoo
archive extractor unzoo-ibm-i386-msdos.exe, which is in the subdirectory util and which
you should rename to unzoo.exe, and the executable bin3r4p4-ibm-i386-msdos.zoo,
which is in the subdirectory bin and which you should rename to bin3r4p4.zoo. You may
have to get the latter 2 files from ftp.math.rwth-aachen.de, because some ftp servers
may not keep it. We recommend that you use unzoo even if you already have zoo on your
system, because unzoo automatically translates text files to the appropriate local format.

If you got the distribution via ftp unpack the executable and the distribution with the
following commands

C: > unzoo -x bin3r4p4.zoo
gap3r4p4\bin\README.DOS -- extracted as text
gap3r4p4\bin\gap.bat -- extracted as text
gap3r4p4\bin\gapdjg.exe -- extracted as binary
C: > unzoo -x gap3r4p4.zoo
gap3r4p4\bin\gap.sh -- extracted as text
gap3r4p4\doc\aboutgap.tex -- extracted as text
gap3r4p4\doc\aggroup.tex -- extracted as text
about 500 more lines
gap3r4p4\two\twogpd8.grp -- extracted as text
C: >

If you got the executable and the distribution on disks, you must unpack each of the zoo
files separately with commands such as the following (assuming that your disk drive is A:)

C: > rem Insert the 1. disk.

55.7. INSTALLATION OF GAP FOR MS-DOS 965

C: > copy a:\unzoo.exe .
C: > unzoo -x a:\bin3r4p4.zoo
gap3r4p4\bin\README.DOS -- extracted as text
gap3r4p4\bin\gap.bat -- extracted as text
gap3r4p4\bin\gapdjg.exe -- extracted as binary
C: > unzoo -x a:\etc3r4p4.zoo
gap3r4p4\etc\README -- extracted as text
about 20 more messages
C: > unzoo -x a:\grp3r4p4.zoo
gap3r4p4\grp\basic.grp -- extracted as text
about 10 more messages
C: > unzoo -x a:\lib3r4p4.zoo
gap3r4p4\lib\abattoir.g -- extracted as text
about 77 more messages
C: > rem Insert the 2. disk.
C: > unzoo -x a:\doc3r4p4.zoo
gap3r4p4\doc\about.tex -- extracted as text
about 65 more messages
C: > unzoo -x a:\two3r4p4.zoo
gap3r4p4\two\twogp.grp
about 25 more messages
C: > unzoo -x a:\thr3r4p4.zoo
gap3r4p4\thr\thrgp.grp
about 10 more messages
C: > rem Insert the 3. disk.
C: > unzoo -x a:\tbl3r4x1.zoo
gap3r4p4\tbl\ctbalter.tbl
about 50 more messages
C: > rem Insert the 4. disk.
C: > unzoo -x a:\tbl3r4x2.zoo
gap3r4p4\tbl\ctomonst.tbl
about 10 more messages
C: > unzoo -x a:\tom3r4p4.zoo
gap3r4p4\tom\tmaltern.tom
about 10 more messages
C: > unzoo -x a:\src3r4p4.zoo
gap3r4p4\src\Makefile -- extracted as text
about 60 more messages
C: > rem Insert the 5. disk.
C: > unzoo -x a:\pkg3r4p4.zoo
gap3r4p4\pkg\anupq\MakeLibrary\MakeLibray -- extracted as text
about 150 more messages
C: >

Instead of using the executable that we provide in bin3r4p4.zoo you can compile GAP
yourself if you have the DJGPP compiler installed. To do this change into the source
directory gap3r4p4\src and compile GAP with the commands

C: > chdir gap3r4p4\src

966 CHAPTER 55. GETTING AND INSTALLING GAP

C:\GAP3R4P4\SRC > make ibm-i386-msdos-djgpp
gcc -DSYS_IS_MSDOS_DJGPP -DSYS_HAS_STRING_PROTO -DSYS_HAS_STDIO_PROTO\

-DSYS_HAS_MISC_PROTO -c system.c
gcc -O2 -c gap.c
about 30 more messages
C:\GAP3R4P4\SRC > copy gapdjg.exe ..\bin
C:\GAP3R4P4\SRC > chdir ..\..
C: >

Change into the directory gap3r4p4\bin\ and edit the script gap.bat, which starts GAP,
according to the instructions in this file. Then copy this script to a directory in your search
path, e.g., c:\bin\, with the commands

C: > chdir gap3r4p4\bin
C:\GAP3R4P4\BIN > edit gap.bat
edit the script gap.bat
C:\GAP3R4P4\BIN > copy gap.bat c:\bin\gap.bat
C:\GAP3R4P4\BIN > chdir ..\..
C: >

When you later move GAP to another location you must only edit this script.

An alternative possibility is to compile a version of GAP for use under MS-DOS, on a
UNIX system, using a cross-compiler. Cross-compiling versions of gcc can be found on
some FTP archives, or compiled according to the instructions supplied with the gcc source
distribution.

GAP must sometimes open more than 8 files at once. MS-DOS disallows this, unless you
add the following line to the file config.sys on your boot drive. You must then reboot for
this change to take effect.

files=32

Start GAP and try a few things. Note that GAP has to read most of the library for the
fourth statement below, so this takes quite a while. Subsequent definitions of groups will
be much faster.

C: > gap -b
gap> 2 * 3 + 4;
10
gap> Factorial(30);
265252859812191058636308480000000
gap> Factors(10^42 + 1);
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]
gap> m11 := Group((1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6));;
gap> Size(m11);
7920
gap> Factors(7920);
[2, 2, 2, 2, 3, 3, 5, 11]
gap> Number(ConjugacyClasses(m11));
10

Especially try the command line editing and history facilities, because the are probably the
most machine dependent feature of GAP. Enter a few commands and then make sure that

55.7. INSTALLATION OF GAP FOR MS-DOS 967

ctr -P redisplays the last command, that ctr -E moves the cursor to the end of the line, that
ctr -B moves the cursor back one character, and that ctr -D deletes single characters. So after
entering the above three commands typing
ctr -P ctr -P ctr -E ctr -B ctr -B ctr -B ctr -B ctr -D 1
should give the following line.

gap> Factors(7921);
[89, 89]

If you have a big version of LATEX available you may now want to make a printed copy of
the manual. Change into the directory gap3r4p4\doc\ and run LATEX twice on the source.
The first pass with LATEX produces the .aux files, which resolve all the cross references.
The second pass produces the final formatted dvi file manual.dvi. This will take quite a
while, since the manual is large. Then print the dvi file. How you actually print the dvi
file produced by LATEX depends on the printer you have, the version of LATEX you have, and
whether you use a TEX-shell or not, so we will not attempt to describe it here.

C: > chdir gap3r4p4\doc
C:\GAP3R4P4\DOC > latex manual
about 2000 messages about undefined references
C:\GAP3R4P4\DOC > latex manual
there should be no warnings this time
C:\GAP3R4P4\DOC > dir manual.dvi
-a--- 4591132 Nov 13 23:29 manual.dvi
C:\GAP3R4P4\DOC > chdir ..\..
C: >

Note that because of the large number of cross references in the manual you need a big
LATEX to format the GAP manual. If you see the error message TeX capacity exceeded,
you do not have a big LATEX. In this case you may also obtain the already formatted dvi
file manual.dvi from the same place where you obtained the rest of the GAP distribution.

Note that, apart from the *.tex files and the file manual.bib (bibliography database), which
you absolutely need, we supply also the files manual.toc (table of contents), manual.ind
(unsorted index), manual.idx (sorted index), and manual.bbl (bibliography). If those files
are missing, or if you prefer to do everything yourself, here is what you will have to do. After
the first pass with LATEX, you will have preliminary manual.toc and manual.ind files. All
the page numbers are still incorrect, because the do not account for the pages used by
the table of contents itself. Now bibtex manual will create manual.bbl from manual.bib.
After the second pass with LATEX you will have a correct manual.toc and manual.ind.
makeindex now produces the sorted index manual.idx from manual.ind. The third pass
with LATEX incorporates this index into the manual.

C: > chdir gap3r4p4\doc
about 2000 messages about undefined references
C:\GAP3R4P4\DOC > bibtex manual
bibtex prints the name of each file it is scanning
C:\GAP3R4P4\DOC > latex manual
still some messages about undefined citations
C:\GAP3R4P4\DOC > makeindex manual
makeindex prints some diagnostic output
C:\GAP3R4P4\DOC > latex manual

968 CHAPTER 55. GETTING AND INSTALLING GAP

there should be no warnings this time
C:\GAP3R4P4\DOC > chdir ..\..
C: >

The full manual is, to put it mildly, now rather long (almost 1600 pages). For this reason,
it may be more convenient just to print selected chapters. This can be done using
the \includeonly LaTeX command, which is present in manual.tex (around line 240), but
commented out. To use this, you must first LaTeX the whole manual as normal, to obtain
the complete set of .aux files and determine the pages and numbers of all the chapters and
sections. After that, you can edit manual.tex to uncomment the \includeonly command
and select the chapters you want. A good start can be to include only the first chapter,
from the file aboutgap.tex, by editing the line to read \includeonly{aboutgap}. The
next step is to LaTeX the manual again. This time only the selected chapter(s) and the
table of contents and indices will be processed, producing a shorter dvi file that you can
print by whatever means applies locally.

C:\GAP3R4P4\DOC > latex manual
many messages about undefined references, 1600 pages output
C:\GAP3R4P4\DOC > edit manual.tex
edit line 241 to include only aboutgap
C:\GAP3R4P4\DOC > latex manual
pages 0-196 and 1503-1553 only output no warnings
C:\GAP3R4P4\DOC > dir manual.dvi
-a--- 1291132 Nov 13 23:29 manual.dvi
C:\GAP3R4P4\DOC >
now print the DVI file in whatever way is appropriate

Thats all, finally you are done. We hope that you will enjoy using GAP. If you have problems,
do not hesitate to contact us.

55.8 Features of GAP for MS-DOS

Note that GAP for MS-DOS will use up to 128 MByte of extended memory (using XMS,
VDISK memory allocation strategies) or up to 128 MByte of expanded memory (using VCPI
programs, such as QEMM and 386MAX) and up to 128 MByte of disk space for swapping.

If you hit ctr -C the DOS extender (go32) catches it and aborts GAP immediately. The keys
ctr -Z and alt-C can be used instead to interrupt GAP.

The arrow keys left , right , up, down, home, end , and delete can be used for command line
editing with their intuitive meaning.

Pathnames may be given inside GAP using either slash (/) or backslash (\) as a separator
(though \ must be escaped in strings of course).

When you start GAP you may specify a number of options on the command-line to change
the default behaviour of GAP. All these options start with a hyphen -, followed by a single
letter. Options must not be grouped, e.g., gap -gq is illegal, use gap -g -q instead. Some
options require an argument, this must follow the option and must be separated by a space,
e.g., gap -m 256k, it is not correct to say gap -m256k instead.

GAP for MS-DOS accepts the following (lowercase) options.

-g

55.8. FEATURES OF GAP FOR MS-DOS 969

The options -g tells GAP to print a information message every time a garbage collection is
performed.

G collect garbage, 1931 used, 5012 dead, 912 KB free, 3072 KB total

For example, this tells you that there are 1931 live objects that survived a garbage collection,
that 5012 unused objects were reclaimed by it, and that 912 KByte of totally allocated 3072
KBytes are available afterwards.

-l libname

The option -l tells GAP that the library of GAP functions is in the directory libname. Per
default libname is lib/, i.e., the library is normally expected in the subdirectory lib/ of
the current directory. GAP searches for the library files, whose filenames end in .g, and
which contain the functions initially known to GAP, in this directory. libname should end
with a pathname separator, i.e., \, but GAP will silently add one if it is missing. GAP will
read the file libname\init.g during startup. If GAP cannot find this file it will print the
following warning

gap: hmm, I cannot find ’lib\init.g’, maybe use option ’-l <lib>’?

If you want a bare bones GAP, i.e., if you do not need any library functions, you may ignore
this warning, otherwise you should leave GAP and start it again, specifying the correct
library path using the -l option.

It is also possible to specify several alternative library paths by separating them with semi-
colons ;. Note that in this case all path names must end with the pathname separator \.
GAP will then search for its library files in all those directories in turn, reading the first it
finds. E.g., if you specify -l "lib\;\usr\local\lib\gap3r4p4\lib\" GAP will search for
a library file first in the subdirectory lib\ of the current directory, and if it does not find it
there in the directory \usr\local\lib\gap3r4p4\lib\. This way you can built your own
directory of GAP library files that override the standard ones.

GAP searches for the group files, whose filenames end in .grp, and which contain the groups
initially known to GAP, in the directory one gets by replacing the string lib in libname by
the string grp. If you do not want to put the group directory grp\ in the same directory
as the lib\ directory, for example if you want to put the groups onto another hard disk
partition, you have to edit the assignment in libname\init.g that reads

GRPNAME := ReplacedString(LIBNAME, "lib", "grp");

This path can also consist of several alternative paths, just as the library path. If the library
path consists of several alternative paths the default value for this path will consist of the
same paths, where in each component the last occurrence of lib\ is replaced by grp\.

Similar considerations apply to the character table files. Those filenames end in .tbl. GAP
looks for those files in the directory given by TBLNAME. The default value for TBLNAME is
obtained by replacing lib in libname with tbl.

-h docname

The option -h tells GAP that the on-line documentation for GAP is in the directory docname.
Per default docname is obtained by replacing lib in libname with doc. docname should
end with a pathname separator, i.e., \, but GAP will silently add one if it is missing. GAP
will read the file docname\manual.toc when you first use the help system. If GAP cannot
find this file it will print the following warning

970 CHAPTER 55. GETTING AND INSTALLING GAP

help: hmm, I cannot open the table of contents file ’doc\manual.toc’
maybe you should use the option ’-h <docname>’?

-m memory

The option -m tells GAP to allocate memory bytes at startup time. If the last character of
memory is k or K it is taken in KBytes and if the last character is m or M memory is taken
in MBytes.

GAP for MS-DOS will by default allocate 4 MBytes of memory. If you specify -m memory
GAP will only allocate that much memory. The amount of memory should be large enough
so that computations do not require too many garbage collections. On the other hand if
GAP allocates more virtual memory than is physically available it will spend most of the
time paging.

-n

The options -n tells GAP to disable the line editing and history (see 3.4).

There does not seem to be a good reason to do this on IBM PC compatibles.

-b

The option -b tells GAP to suppress the banner. That means that GAP immediately prints
the prompt. This is useful when you get tired of the banner after a while.

-q

The option -q tells GAP to be quiet. This means that GAP does not display the banner and
the prompts gap>. This is useful if you want to run GAP as a filter with input and output
redirection and want to avoid the the banner and the prompts clobber the output file.

-x length

With this option you can tell GAP how long lines are. GAP uses this value to decide when
to split long lines.

The default value is 80, which is correct if you start GAP from the desktop or one of the
usual shells. However, if you start GAP from a window shell such as gemini, you may want
to decrease this value. If you have a larger monitor, or use a smaller font, or redirect the
output to a printer, you may want to increase this value.

-y length

With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should display -- <space> for more --.

The default value is 24, which is the right value if you start GAP from the desktop or one of
the usual shells. However, if you start GAP from a window shell such as gemini, you may
want to decrease this value. If you have a larger monitor, or use a smaller font, or redirect
the output to a printer, you may want to increase this value.

-z freq

GAP for MS-DOS checks in regular intervals whether the user has entered ctr -Z or alt-C
to interrupt an ongoing computation. Under MS-DOS this requires reading the keyboard
status (UNIX on the other hand will deliver a signal to GAP when the user entered ctr -C),
which is rather expensive. Therefor GAP only reads the keyboard status every freq-th time.
The default is 20. With the option -z this value can be changed. Lower values make GAP
more responsive to interrupts, higher values make GAP a little bit faster.

55.9. GAP FOR MACOS 971

Further arguments are taken as filenames of files that are read by GAP during startup, after
libname\init.g is read, but before the first prompt is printed. The files are read in the
order in that they appear on the command line. GAP only accepts 14 filenames on the
command line. If a file cannot be opened GAP will print an error message and will abort.

When you start GAP, it looks for the file with the name gap.rc in your homedirectory (i.e.,
the directory defined by the environment variable HOME). If such a file is found it is read after
libname\init.g, but before any of the files mentioned on the command line are read. You
can use this file for your private customizations. For example, if you have a file containing
functions or data that you always need, you could read this from gap.rc. Or if you find
some of the names in the library too long, you could define abbreviations for those names
in gap.rc. The following sample gap.rc file does both.

Read("c:\\gap\\dat\\mygroups.grp");
Op := Operation;
OpHom := OperationHomomorphism;
RepOp := RepresentativeOperation;
RepsOp := RepresentativesOperation;

55.9 GAP for MacOS

This sections contain information about GAP that is specific to the port of GAP for Apple
Macintosh systems under MacOS (simply called GAP for MacOS below).

To run GAP for MacOS you need to be written

The section 55.10 describes the copyright as it applies to the executable version that we
distribute. The section 55.11 describes how you install GAP for MacOS, and the section
55.12 describes the special features of GAP for MacOS.

55.10 Copyright of GAP for MacOS

to be written

55.11 Installation of GAP for MacOS

to be written

55.12 Features of GAP for MacOS

to be written

55.13 GAP for TOS

This sections contain information about GAP that is specific to the port of GAP for Atari
ST systems under TOS (simply called GAP for TOS below). We no longer have access to
any TOS systems, and so we have not tested GAP 3 release 4 patchlevel 4 on such a system,
and cannot, at present supply a TOS binary. To the best of our knowledge, however, the
system should work as described in this section.

To run GAP for TOS you need an Atari ST or Atari TT. The system must have at least 4
MByte of main memory and a harddisk. The operation system must be TOS 1.4 or later.

972 CHAPTER 55. GETTING AND INSTALLING GAP

Since GAP is a plain text application a monochrome monitor is probably best, but you may
also use a color monitor.

The section 55.14 describes the copyright as it applies to the executable version that we
distribute. The section 55.15 describes how you install GAP for TOS, and the section 55.16
describes the special features of GAP for TOS.

55.14 Copyright of GAP for TOS

In addition to the general copyright for GAP set forth in the copyright the following terms
apply to the executable of GAP for TOS.

GAP for TOS was compiled with J. Bammi’s port of the Free Software Foundation’s GNU
C compiler version 2.5. The compiler is available by anonymous ftp from the ftp server
atari.archive.umich.edu where it is found in the directory atari/Gnustuff/Tos. Many
thanks to the Free Software Foundation and J. Bammi for this amazing piece of work.

The GNU C compiler is

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cam-
bridge, MA 02139, USA

under the terms of the GNU General Public License (GPL). Note that the GNU GPL states
that the mere act of compiling does not affect the copyright status of GAP.

The executable is linked with the GNU library gnu.obl, which is

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge,
MA 02139, USA

under the terms of the GNU Library General Public License (LGPL). The terms of the
LGPL require that we make the source code for the gnu.olb available. They can be ob-
tained by writing to Martin Schoenert (however, it may be easier for you to ftp them from
atari.archive.umich.edu yourself). They also require that we make GAP available in a
form that allows you to modify it, which we basically to anyhow.

55.15 Installation of GAP for TOS

Installation of GAP on an Atari ST is fairly easy. As already mentioned above, GAP must
be installed on a harddisk, because it is too large to be run from floppy disks.

First go to a directory where you want to install GAP, e.g., c:\. GAP will be installed in
a subdirectory gap3r4p4\ of this directory. You can later move GAP to another location,
for example you can first install it in d:\tmp\ and once it works move it to c:\. In the
following example we assume that you want to install GAP in c:\. We will also assume
in the examples that you install GAP using some shell, e.g. tcsh, ksh, bash, or gulam.
Installation from the desktop is also possible, but it would be much more difficult to give
examples, because you have to use the mouse in this case. Note that certain parts of the
output in the examples should only be taken as rough outline, especially file sizes and file
dates are not to be taken literally.

Get the GAP distribution onto your Atari ST. One usual way would be to get the distribution
with ftp onto some UNIX workstation and to download it from there onto your Atari ST,
for example with kermit. Remember that the distribution consists of binary files and that

55.15. INSTALLATION OF GAP FOR TOS 973

you must transmit them in binary mode. Another possibility is that you got a set of floppy
disks.

If you get the distribution via ftp, you must get the distribution gap3r4p4.zoo, the zoo
archive extractor unzoo-atari-m68k-tos.ttp, which is in the subdirectory util and which
you should rename to unzoo.ttp, and the executable bin3r4p4-atari-m68k-tos.zoo,
which is in the subdirectory bin and which you should rename to bin3r4p4.zoo. You
may have to get the latter 2 files from samson.math.rwth-aachen.de, because some ftp
servers may not keep it. We recommend that you use unzoo even if you already have zoo
on your system, because unzoo automatically translates text files to the appropriate local
format.

If you got the distribution via ftp unpack the executable and the distribution with the
following commands

C: > unzoo -x bin3r4p4.zoo
gap3r4p4\bin\README.TOS -- extracted as text
gap3r4p4\bin\gap.ttp -- extracted as binary
C: > unzoo -x gap3r4p4.zoo
gap3r4p4\bin\gap.sh -- extracted as text
gap3r4p4\doc\aboutgap.tex -- extracted as text
gap3r4p4\doc\aggroup.tex -- extracted as text
about 500 more lines
gap3r4p4\two\twogpd8.grp -- extracted as text
C: >

If you got the executable and the distribution on disks, you must unpack them with the
following commands (assuming that your disk drive is A:)

C: > rem Insert the 1. disk.
C: > copy a:\unzoo.exe .
C: > unzoo -x a:\bin3r4p4.zoo
gap3r4p4\bin\README.TOS -- extracted as text
gap3r4p4\bin\gap.ttp -- extracted as binary
C: > unzoo -x a:\etc3r4p4.zoo
gap3r4p4\etc\README -- extracted as text
about 20 more messages
C: > unzoo -x a:\grp3r4p4.zoo
gap3r4p4\grp\basic.grp -- extracted as text
about 10 more messages
C: > unzoo -x a:\lic3r4p4.zoo
gap3r4p4\lib\ctautoms.g -- extracted as text
about 10 more messages
C: > rem Insert the 2. disk.
C: > unzoo -x a:\lib3r4p4.zoo
gap3r4p4\lib\abattoir.g -- extracted as text
about 70 more messages
C: > rem Insert the 3. disk.
C: > unzoo -x a:\doc3r4p4.zoo
gap3r4p4\doc\about.tex -- extracted as text
about 65 more messages

974 CHAPTER 55. GETTING AND INSTALLING GAP

C: > rem Insert the 4. disk.
C: > unzoo -x a:\two3r4p4.zoo
gap3r4p4\two\twogp.grp
about 25 more messages
C: > unzoo -x a:\thr3r4p4.zoo
gap3r4p4\thr\thrgp.grp
about 10 more messages
C: > rem Insert the 5. disk.
C: > unzoo -x a:\tom3r4p4.zoo
gap3r4p4\tom\tmaltern.tom
about 10 more messages
C: > rem Insert the 6. disk.
C: > unzoo -x a:\src3r4p4.zoo
gap3r4p4\src\Makefile -- extracted as text
about 60 more messages
C: >

Instead of using the executable that we provide in bin3r4p4.zoo you can compile GAP
yourself if you have the GNU C compiler installed. To do this change into the source
directory gap3r4p4\src\ and compile GAP with the commands

C: > chdir gap3r4p4\src
C:\GAP3R4P4\SRC > make atari-m68k-tos-gcc2
gcc -DSYS_IS_TOS_GCC2 -DSYS_HAS_MISC_PROTO -c system.c
gcc -O2 -c gap.c
about 30 more messages
C:\GAP3R4P4\SRC > copy gap.ttp ..\bin
C:\GAP3R4P4\SRC > chdir ..\..
C: >

In either case now move the executable gap.ttp from the gap3r4p4\bin\ subdirectory
to the gap3r4p4\ directory. Then you can either start GAP from the desktop by double
clicking or from a shell such as Gulam or bash (in which case you must use -b install-
dir\gap3r4p4\lib\ option to tell GAP where to find the library).

Start GAP and try a few things. Note that GAP has to read most of the library for the
fourth statement below, so this takes quite a while. Subsequent definitions of groups will
be much faster.

C: > gap -b
gap> 2 * 3 + 4;
10
gap> Factorial(30);
265252859812191058636308480000000
gap> Factors(10^42 + 1);
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]
gap> m11 := Group((1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6));;
gap> Size(m11);
7920
gap> Factors(7920);
[2, 2, 2, 2, 3, 3, 5, 11]

55.15. INSTALLATION OF GAP FOR TOS 975

gap> Number(ConjugacyClasses(m11));
10

Especially try the command line editing and history facilities, because the are probably the
most machine dependent feature of GAP. Enter a few commands and then make sure that
ctr -P redisplays the last command, that ctr -E moves the cursor to the end of the line, that
ctr -B moves the cursor back one character, and that ctr -D deletes single characters. So after
entering the above three commands typing
ctr -P ctr -P ctr -E ctr -B ctr -B ctr -B ctr -B ctr -D 1
should give the following line.

gap> Factors(7921);
[89, 89]

If you have a big version of LATEX available you may now want to make a printed copy of
the manual. Change into the directory gap3r4p4\doc\ and run LATEX twice on the source.
The first pass with LATEX produces the .aux files, which resolve all the cross references.
The second pass produces the final formatted dvi file manual.dvi. This will take quite a
while, since the manual is large. Then print the dvi file. How you actually print the dvi
file produced by LATEX depends on the printer you have, the version of LATEX you have, and
whether you use a TEX-shell or not, so we will not attempt to describe it here.

C: > chdir gap3r4p4\doc
C:\GAP3R4P4\DOC > latex manual
about 2000 messages about undefined references
C:\GAP3R4P4\DOC > latex manual
there should be no warnings this time
C:\GAP3R4P4\DOC > dir manual.dvi
-a--- 2591132 Nov 13 23:29 manual.dvi
C:\GAP3R4P4\DOC > chdir ..\..
C: >

Note that because of the large number of cross references in the manual you need a big
LATEX to format the GAP manual. If you see the error message TeX capacity exceeded,
you do not have a big LATEX. In this case you may also obtain the already formatted dvi
file manual.dvi from the same place where you obtained the rest of the GAP distribution.

Note that, apart from the *.tex files and the file manual.bib (bibliography database), which
you absolutely need, we supply also the files manual.toc (table of contents), manual.ind
(unsorted index), manual.idx (sorted index), and manual.bbl (bibliography). If those files
are missing, or if you prefer to do everything yourself, here is what you will have to do. After
the first pass with LATEX, you will have preliminary manual.toc and manual.ind files. All
the page numbers are still incorrect, because the do not account for the pages used by
the table of contents itself. Now bibtex manual will create manual.bbl from manual.bib.
After the second pass with LATEX you will have a correct manual.toc and manual.ind.
makeindex now produces the sorted index manual.idx from manual.ind. The third pass
with LATEX incorporates this index into the manual.

C: > chdir gap3r4p4\doc
about 2000 messages about undefined references
C:\GAP3R4P4\DOC > bibtex manual
bibtex prints the name of each file it is scanning

976 CHAPTER 55. GETTING AND INSTALLING GAP

C:\GAP3R4P4\DOC > latex manual
still some messages about undefined citations
C:\GAP3R4P4\DOC > makeindex manual
makeindex prints some diagnostic output
C:\GAP3R4P4\DOC > latex manual
there should be no warnings this time
C:\GAP3R4P4\DOC > chdir ..\..
C: >

Thats all, finally you are done. We hope that you will enjoy using GAP. If you have problems,
do not hesitate to contact us.

55.16 Features of GAP for TOS

GAP for TOS will usually allocate all available memory. Note that GAP for TOS does not
support virtual memory, i.e., you can never use more memory than this default gives you. If
you specify -m memory , GAP will only allocate that much memory. If you specify a negative
amount, GAP leaves this much memory unallocated. You may want to do this, so that that
it is possible to run other programs from inside GAP with the Exec command.

The arrow keys left , right , up, and down can be used for command line editing with their
intuitive meaning.

GAP for TOS supports UNIXMODE, i.e., if the environment variable UNIXMODE is set to an
appropriate value such as /.,rCLAHbd, GAP will emulate a UNIX style file system on top of
the TOS filesystem. That is GAP will accept pathnames with the / as separator, which it
will automatically map to the TOS separator \. It will also allow long filenames (with more
than 8+3 characters), which it will automatically map to TOS filenames and remember the
true filenames in a special file .dir. .dir is used to symbolic links, which can be resolved
by GAP (to create then you need the GNU ln program).

GAP for TOS runs as an ordinary TOS program. That means that it does not open windows
or display a menu bar etc. The advantage of this is that no valuable memory space is wasted
for the windows. The disadvantage is that GEM programs with windows are certainly more
sexy. A GEM version is being developed, but don’t hold your breath.

Apart from this everything works as described in this manual and you should not have any
problems using GAP.

When you start GAP on the Atari ST, you may specify a number of options on the command-
line to change the default behaviour of GAP. All these options start with a hyphen -,
followed by a single letter. Options must not be grouped, e.g., gap -gq is illegal, use gap
-g -q instead. Some options require an argument, this must follow the option and must be
separated by a space, e.g., gap -m 256k, it is not correct to say gap -m256k instead.

You must declare GAP as TOS-takes-parameter program if you want to specify command-
line options when you start GAP by double clicking. This means that the name of the GAP
program file must be gap.ttp. When you start GAP from a shell, such as gulam.tos, the
name of the program file does not matter. GAP for TOS, unlike the UNIX versions, does
not distinguish upper and lower case for options.

GAP for TOS accepts the following (lowercase) options.

-g

55.16. FEATURES OF GAP FOR TOS 977

The options -g tells GAP to print a information message every time a garbage collection is
performed.

G collect garbage, 1931 used, 5012 dead, 912 KB free, 3072 KB total

For example, this tells you that there are 1931 live objects that survived a garbage collection,
that 5012 unused objects were reclaimed by it, and that 912 KByte of totally allocated 3072
KBytes are available afterwards.

-l libname

The option -l tells GAP that the library of GAP functions is in the directory libname. Per
default libname is lib/, i.e., the library is normally expected in the subdirectory lib/ of
the current directory. GAP searches for the library files, whose filenames end in .g, and
which contain the functions initially known to GAP, in this directory. libname should end
with a pathname separator, i.e., \, but GAP will silently add one if it is missing. GAP will
read the file libname\init.g during startup. If GAP cannot find this file it will print the
following warning

gap: hmm, I cannot find ’lib\init.g’, maybe use option ’-l <lib>’?

If you want a bare bones GAP, i.e., if you do not need any library functions, you may ignore
this warning, otherwise you should leave GAP and start it again, specifying the correct
library path using the -l option.

It is also possible to specify several alternative library paths by separating them with semi-
colons ;. Note that in this case all path names must end with the pathname separator \.
GAP will then search for its library files in all those directories in turn, reading the first it
finds. E.g., if you specify -l "lib\;\usr\local\lib\gap3r4p4\lib\" GAP will search for
a library file first in the subdirectory lib\ of the current directory, and if it does not find it
there in the directory \usr\local\lib\gap3r4p4\lib\. This way you can built your own
directory of GAP library files that override the standard ones.

GAP searches for the group files, whose filenames end in .grp, and which contain the groups
initially known to GAP, in the directory one gets by replacing the string lib in libname by
the string grp. If you do not want to put the group directory grp\ in the same directory
as the lib\ directory, for example if you want to put the groups onto another hard disk
partition, you have to edit the assignment in libname\init.g that reads

GRPNAME := ReplacedString(LIBNAME, "lib", "grp");

This path can also consist of several alternative paths, just as the library path. If the library
path consists of several alternative paths the default value for this path will consist of the
same paths, where in each component the last occurrence of lib\ is replaced by grp\.

Similar considerations apply to the character table files. Those filenames end in .tbl. GAP
looks for those files in the directory given by TBLNAME. The default value for TBLNAME is
obtained by replacing lib in libname with tbl.

-h docname

The option -h tells GAP that the on-line documentation for GAP is in the directory docname.
Per default docname is obtained by replacing lib in libname with doc. docname should
end with a pathname separator, i.e., \, but GAP will silently add one if it is missing. GAP
will read the file docname\manual.toc when you first use the help system. If GAP cannot
find this file it will print the following warning

978 CHAPTER 55. GETTING AND INSTALLING GAP

help: hmm, I cannot open the table of contents file ’doc\manual.toc’
maybe you should use the option ’-h <docname>’?

-m memory

The option -m tells GAP to allocate memory bytes at startup time. If the last character of
memory is k or K it is taken in KBytes and if the last character is m or M memory is taken
in MBytes.

GAP for TOS will by default allocate all available memory. If you specify -m memory GAP
will only allocate that much memory, unless memory is larger than the default, in that case
GAP will fail. If you specify a negative amount GAP leaves that much memory unallocated.
You may want to do this so that it is possible to run other programs from inside GAP with
the Exec command, for example gap -m -256k will leave 256 KByte unallocated, enough
to run MicroEMACS from inside GAP.

-n

The options -n tells GAP to disable the line editing and history (see 3.4).

There does not seem to be a good reason to do this on an Atari ST.

-b

The option -b tells GAP to suppress the banner. That means that GAP immediately prints
the prompt. This is useful when you get tired of the banner after a while.

-q

The option -q tells GAP to be quiet. This means that GAP does not display the banner and
the prompts gap>. This is useful if you want to run GAP as a filter with input and output
redirection and want to avoid the the banner and the prompts clobber the output file.

-x length

With this option you can tell GAP how long lines are. GAP uses this value to decide when
to split long lines.

The default value is 80, which is correct if you start GAP from the desktop or one of the
usual shells. However, if you start GAP from a window shell such as gemini, you may want
to decrease this value. If you have a larger monitor, or use a smaller font, or redirect the
output to a printer, you may want to increase this value.

-y length

With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should display -- <space> for more --.

The default value is 24, which is the right value if you start GAP from the desktop or one of
the usual shells. However, if you start GAP from a window shell such as gemini, you may
want to decrease this value. If you have a larger monitor, or use a smaller font, or redirect
the output to a printer, you may want to increase this value.

-z freq

GAP for TOS checks in regular intervals whether the user has entered ctr -Z or alt-C to
interrupt an ongoing computation. Under TOS this requires reading the keyboard status
(UNIX on the other hand will deliver a signal to GAP when the user entered ctr -C), which
is rather expensive. Therefor GAP only reads the keyboard status every freq-th time. The

55.17. PORTING GAP 979

default is 20. With the option -z this value can be changed. Lower values make GAP more
responsive to interrupts, higher values make GAP a little bit faster.

Further arguments are taken as filenames of files that are read by GAP during startup, after
libname\init.g is read, but before the first prompt is printed. The files are read in the
order in that they appear on the command line. GAP only accepts 14 filenames on the
command line. If a file cannot be opened GAP will print an error message and will abort.

When you start GAP, it looks for the file with the name gap.rc in your homedirectory (i.e.,
the directory defined by the environment variable HOME). If such a file is found it is read after
libname\init.g, but before any of the files mentioned on the command line are read. You
can use this file for your private customizations. For example, if you have a file containing
functions or data that you always need, you could read this from gap.rc. Or if you find
some of the names in the library too long, you could define abbreviations for those names
in gap.rc. The following sample gap.rc file does both.

Read("c:\\gap\\dat\\mygroups.grp");
Op := Operation;
OpHom := OperationHomomorphism;
RepOp := RepresentativeOperation;
RepsOp := RepresentativesOperation;

55.17 Porting GAP

Porting GAP to a new operating system should not be very difficult. However, GAP expects
some features from the operating system and the compiler and porting GAP to a system or
with a compiler that do not have those features may prove very difficult.

The design of GAP makes it quite portable. GAP consists of a small kernel written in the
programming language C and a large library written in the programming language provided
by the GAP kernel, which is also called GAP.

Once the kernel has been ported, the library poses no additional problem, because all
those functions only need the kernel to work, they need no additional support from the
environment.

The kernel itself is separated into a large part that is largely operating system and compiler
independent, and one file that contains all the operating system and compiler dependent
functions. Usually only this file must be modified to port GAP to a new operating system.

Now lets take a look at the minimal support that GAP needs from the operating system and
the machine.

First of all you need enough filespace. The kernel sources and the object files need between
3.5 MByte and 4 MByte, depending on the size of object files produced by your compiler.
The library takes up an additional 4.8 MBytes, and the online documentation also needs 4
MByte. So you need about 13 MByte of available filespace, for example on a harddisk.

Next you need enough main memory in your computer. The size of the GAP kernel varies
between different machine, with as little as 300 KByte (compiled with GNU C on an Atari
ST) and as much as 600 KByte (compiled with UNIX cc on a HP 9000/800). Add to that
the fact the library of functions that GAP loads takes up another 1.5 MByte. So it is clear
that at least 4 MByte of main memory are required to do any serious work with GAP.

980 CHAPTER 55. GETTING AND INSTALLING GAP

Note that this implies that there is no point in trying to port GAP to plain MS-DOS
running on IBM PCs and compatibles. The version of GAP for IBM PC compatibles that
we provide runs on machines with the Intel 80386, Intel 80486, Pentium or Pentium Pro
processor under extended DOS in protected 32 bit mode. (This is also necessary, because,
as mentioned below, GAP wants to view its memory as a large flat address space.)

Next lets turn to the requirements for the C compiler and its library.

As was already mentioned, the GAP kernel is written in the C language. We have tried to
use as few features of the C language as possible. GAP has been compiled without problems
with compilers that adhere to the old definition from Kernighan and Ritchie, and with
compilers that adhere to the new definition from the ANSI-C standard.

However, it is probably necessary that the compiler has a default integer size of 32 bits, i.e.,
sizeof(int) should be 4 not 2. It may be possible to fix all the places where 32 bit ints
are assumed, but we assume that it will be easier to get a 32 bit compiler. In particular,
it is not possible to run GAP version 3 on machines with 64 bit integers or 64 bit pointers.
This will be corrected in version 4.

The most critical aspect probably is that the GAP kernel needs a flat address space. There
are especially two systems where this is a problem.

The first is MS-DOS with its segments. As was already mentioned above, we circumvent
this by using an extended DOS in protected 32 bit mode on PC compatibles with an Intel
386 or Intel 486 processor.

The other system is the Macintosh. On the Macintosh the operating system wants to deal
out the memory only in small chunks, and also wants programs to allow it to move those
chunks to the disk temporarily. This is because Apple wanted to support programs that
used quite some memory on its initial Macs, which had only 512 KByte of memory, without
true virtual memory support. Thus they forced the application programs to simulate virtual
memory. GAP does not do this. Probably the best way to deal with that is to allocate as
much memory as one can get in one large chunk, while leaving enough memory free for
the operating system, and to lock this chunk in memory. Such behaviour is considered
uncooperative, but it is the best GAP can do without a major rewrite.

The two points mentioned above are necessary, because most parts of GAP depend on those
features. All other dependencies on the operating system or compiler should be separated
in one special file which is called the system file. When you port GAP to a new operating
system, you probably have to create a new system file. You should however look through
the system.c file that we supply and take as much code from them as possible. Currently
system.c supports Berkeley UNIX, System V UNIX, IBM PC compatibles under MS-DOS
with the DJGPP compiler, and the Atari ST under TOS with the GNU C compiler.

The system file contains the following functions.

First file input and output. The functions used by the three system files mentioned above
are fopen, fclose, fgets, and fputs. They are pretty standard, and in fact are in the ANSI
C standard library. The only thing that may be necessary is to make sure that files are
opened in text mode. However, the most important transformation applied in text mode
seems to be to replace the end of line sequence newline-return, used in some operating
systems, with a single newline, used in C. However, since GAP treats newline and return
both as whitespaces even this is not absolutely necessary.

55.17. PORTING GAP 981

Second you need character oriented input from the keyboard and to the screen. This is
not absolutely necessary, you can use the line oriented input and output described above.
However, if you want the history and the command line editing, GAP must be able to read
every single character as the user types it without echo, and also must be able to put single
characters to the screen. Reading characters unblocked and without echo is very system
dependent.

Third you need a way to detect if the user typed ctr -C to interrupt an ongoing computation
in GAP. Again this is not absolutely necessary, you can do without. However if you want
to be able to interrupt computations, GAP must be able to receive the interrupt. This can
be done in two ways. Under UNIX you can catch the signal that is generated if the user
types ctr -C (SIGINT). Under other operating systems that do not support such signals you
can poll the input stream at regular intervals and simply look for ctr -C.

Fourth you need a way to find out how long GAP has been running. Again this is not
absolutely necessary. You can simply always return 0, fooling GAP into thinking that it is
extremely fast. However if you want timing statistics, GAP must be able to find out how
much CPU time it has spent.

The last and most important function is the function to allocate memory for GAP. GAP as-
sumes that it can allocate the initial workspace with the function SyGetmem and expand this
workspace on demand with further calls to SyGetmem. The memory allocated by consecutive
calls to SyGetmem must be adjacent, because GAP wants to manage a single large block of
memory. Usually this can be done with the C library function sbrk. If this does not work,
you can define a large static array in the system file and return this on the first call to
SyGetmem and return 0 on subsequent calls to indicate that this array cannot dynamically
be expanded.

982 CHAPTER 55. GETTING AND INSTALLING GAP

Chapter 56

Share Libraries

Contributions from people working at Lehrstuhl D, RWTH Aachen, or any other place can
become available in GAP in two different ways:

1. They can become parts of the main GAP library of functions. Their origin will then
be rather carefully documented in the respective program files, but will not occur in the
description of these functions in the manual. This is e.g. the case – to mention just one
of many such contributions – with programs for finding composition factors of permutation
groups, written by Akos Seress. The reason for this decision about keeping track of the
origin of such contributions is that quite often such functions in the main GAP library have
a complicated history with changes and contributions from various people.

2. On the other hand there are packages written by one or several persons for specific
purposes either in the GAP language or even in C which are made available en block in
GAP. Such packages will constitute share libraries. A share library will stay under the full
responsibility of its author(s), which will be named in the respective chapter in the manual,
they will in particular keep the copyright for this package, and they will also have to provide
the documentation for it. However provisions will be made to call the functions of such a
package like any other GAP functions, and to call the documentation via help functions like
any other part of the GAP documentation. Also these packages will automatically be made
available with the main body of GAP through ftp and will be sent together with the main
body of GAP in case we have to fulfill a request to send GAP to institutions that cannot
obtain GAP via electronic networks.

The inclusion of packages as GAP share libraries should be negotiated with Lehrstuhl D
für Mathematik, RWTH Aachen, for certain standards of the documentation and program
organisation that should be met in order to facilitate the use of the packages in the context
of GAP without problems. A necessary condition for any package to become a GAP share
library is that it is made available under the conditions formulated in the GAP copyright
statement, in particular free of any charge, except for refund of expenses for sending, if such
occur.

The first section describes how to load a share library package (see 56.1).

The next sections describe the ANU pq package and how to install it (see 56.2 and 56.3).

The next sections describe the ANU Sq package and how to install it (see 56.4 and 56.5).

983

984 CHAPTER 56. SHARE LIBRARIES

The next sections describe the GRAPE package and how to install it (see 56.6 and 56.7).

The next sections describe the MeatAxe package and how to install it (see 56.8 and 56.9).

The next sections describe the NQ package and how to install it (see 56.10 and 56.11).

The next sections describe the SISYPHOS package and how to install it (see 56.12 and
56.13).

The next sections describe the Vector Enumeration package and how to install it (see 56.14
and 56.15).

The last sections describe the experimental X-Windows interface (see 56.16).

56.1 RequirePackage

RequirePackage(name)

RequirePackage will try to initialize the share library name. If the package name is not
installed at your site RequirePackage will signal an error. If the package name is already
initialized RequirePackage simply returns without any further actions.

gap> CartanMat("A", 4);
Error, Variable: ’CartanMat’ must have a value
gap> ?CartanMat
CartanMat ________________________ Root systems and finite Coxeter groups

’CartanMat(<type>, <n>)’

returns the Cartan matrix of Dynkin type <type> and rank <n>. Admissible
types are the strings ’"A"’, ’"B"’, ’"C"’, ’"D"’, ’"E"’,
’"F"’, ’"G"’, ’"H"’, ’"I"’.

gap> C := CartanMat("F", 4);;
gap> PrintArray(C);
[[2, -1, 0, 0],
[-1, 2, -1, 0],
[0, -2, 2, -1],
[0, 0, -1, 2]]

For type I_2(m), which is in fact an infinity of types depending on the
number m, a third argument is needed specifying the integer m so the
syntax is in fact ’CartanMat("I", 2, <m>)’:

gap> CartanMat("I", 2, 5);
[[2, E(5)^2+E(5)^3], [E(5)^2+E(5)^3, 2]]

’CartanMat(<type1>, <n1>, ... , <typek>, <nk>)’

returns the direct sum of ’CartanMat(<type1>, <n1>)’, ldots,
’CartanMat(<typek>, <nk>)’. One can use as argument a computed list of
types by ’ApplyFunc(CartanMat, [<type1>, <n1>, ... , <typek>, <nk>])’.

56.2. ANU PQ PACKAGE 985

This function requires the package "chevie" (see "RequirePackage").

gap> RequirePackage("Chevie");
Error, share library "Chevie" is not installed in
LoadPackage(name) called from
RequirePackage("Chevie") called from
main loop
brk> quit;
gap> RequirePackage("chevie");

WELCOME to the CHEVIE package, Version 3 (Dec 1996)

Meinolf Geck, Frank Luebeck, Gerhard Hiss,
Gunter Malle, Jean Michel, and Goetz Pfeiffer,

Lehrstuhl D fuer Mathematik, RWTH Aachen,
IWR der Universitaet Heidelberg,
University of St. Andrews and
Universite Paris VII

This replaces the former weyl package. For first help type

?CHEVIE Version 3 -- a short introduction

gap> CartanMat("A", 4);;
gap> PrintArray(last);
[[2, -1, 0, 0],
[-1, 2, -1, 0],
[0, -1, 2, -1],
[0, 0, -1, 2]]

56.2 ANU pq Package

The ANU pq provides access to implementations of the following algorithms:

1. A p-quotient algorithm to compute a power-commutator presentation for a group of
prime power order. The algorithm implemented here is based on that described in Newman
and O’Brien (1996), Havas and Newman (1980), and papers referred to there. Another
description of the algorithm appears in Vaughan-Lee (1990). A FORTRAN implementation
of this algorithm was programmed by Alford and Havas. The basic data structures of that
implementation are retained.

2. A p-group generation algorithm to generate descriptions of groups of prime power order.
The algorithm implemented here is based on the algorithms described in Newman (1977)
and O’Brien (1990). A FORTRAN implementation of this algorithm was earlier developed
by Newman and O’Brien.

3. A standard presentation algorithm used to compute a canonical power-commutator
presentation of a p-group. The algorithm implemented here is described in O’Brien (1994).

986 CHAPTER 56. SHARE LIBRARIES

4. An algorithm which can be used to compute the automorphism group of a p-group. The
algorithm implemented here is described in O’Brien (1994).

The following section describes the installation of the ANU pq package, a description of the
functions available in the ANU pq package is given in chapter 57.

A reader interested in details of the algorithms and explanations of terms used is referred
to [NO96], [HN80], [O´Br90], [O´Br94], [O´Br95], [New77], [VL84], [VL90b], and [VL90a].

For details about the implementation and the standalone version see the README. This
implementation was developed in C by

Eamonn O’Brien
Lehrstuhl D fuer Mathematik
RWTH Aachen

e-mail obrien@math.rwth-aachen.de

56.3 Installing the ANU pq Package

The ANU pq is written in C and the package can only be installed under UNIX. It has been
tested on DECstation running Ultrix, a HP 9000/700 and HP 9000/800 running HP-UX,
a MIPS running RISC/os Berkeley, a NeXTstation running NeXTSTEP 3.0, and SUNs
running SunOS.

If you got a complete binary and source distribution for your machine, nothing has to be
done if you want to use the ANU pq for a single architecture. If you want to use the ANU
pq for machines with different architectures skip the extraction and compilation part of this
section and proceed with the creation of shell scripts described below.

If you got a complete source distribution, skip the extraction part of this section and proceed
with the compilation part below.

In the example we will assume that you, as user gap, are installing the ANU pq package
for use by several users on a network of two DECstations, called bert and tiffy, and
a NeXTstation, called bjerun. We assume that GAP is also installed on these machines
following the instructions given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file anupq.zoo (see 55.1). Then you must locate the GAP
directory containing lib/ and doc/, this is usually gap3r4p0 where 0 is to be replaced by
the current patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap 1024 Nov 8 1991 gap3r4p0
-rw-r--r-- 1 gap 360891 Dec 27 15:16 anupq.zoo
gap@tiffy:~ > ls -l gap3r4p0
drwxr-xr-x 2 gap 3072 Nov 26 11:53 doc
drwxr-xr-x 2 gap 1024 Nov 8 1991 grp
drwxr-xr-x 2 gap 2048 Nov 26 09:42 lib
drwxr-xr-x 2 gap 2048 Nov 26 09:42 pkg
drwxr-xr-x 2 gap 2048 Nov 26 09:42 src
drwxr-xr-x 2 gap 1024 Nov 26 09:42 tst

56.3. INSTALLING THE ANU PQ PACKAGE 987

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p0 to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo x anupq
gap@tiffy:~ > cd gap3r4p0/pkg/anupq
gap@tiffy:../anupq> ls -l
drwxr-xr-x 5 gap 512 Feb 24 11:17 MakeLibrary
-rw-r--r-- 1 gap 28926 Jun 8 14:21 Makefile
-rw-r--r-- 1 gap 8818 Jun 8 14:21 README
-rw-r--r-- 1 gap 753 Jun 23 18:59 StandardPres
drwxr-xr-x 2 gap 1024 Jun 8 14:15 TEST
drwxr-xr-x 2 gap 512 Jun 16 16:03 bin
drwxr-xr-x 2 gap 512 May 16 06:58 cayley
drwxr-xr-x 2 gap 512 Jun 8 08:48 doc
drwxr-xr-x 2 gap 1024 Mar 5 04:01 examples
drwxr-xr-x 2 gap 512 Jun 23 16:37 gap
drwxr-xr-x 2 gap 512 Jun 24 10:51 include
-rw-rw-rw- 1 gap 867 Jun 9 16:12 init.g
drwxr-xr-x 2 gap 1024 May 21 02:28 isom
drwxr-xr-x 2 gap 512 May 16 07:58 magma
drwxr-xr-x 2 gap 6656 Jun 24 11:10 src

Typing make will produce a list of possible target.

gap@tiffy:../anupq > make
usage: ’make <target> EXT=<ext>’ where <target> is one of
’dec-mips-ultrix-gcc2-gmp’ for DECstations under Ultrix with gcc/gmp
’dec-mips-ultrix-cc-gmp’ for DECstations under Ultrix with cc/gmp
’dec-mips-ultrix-gcc2’ for DECstations under Ultrix with gcc
’dec-mips-ultrix-cc’ for DECstations under Ultrix with cc
’hp-hppa1.1-hpux-cc-gmp’ for HP 9000/700 under HP-UX with cc/gmp
’hp-hppa1.1-hpux-cc’ for HP 9000/700 under HP-UX with cc
’hp-hppa1.0-hpux-cc-gmp’ for HP 9000/800 under HP-UX with cc/gmp
’hp-hppa1.0-hpux-cc’ for HP 9000/800 under HP-UX with cc
’ibm-i386-386bsd-gcc2-gmp’ for IBM PCs under 386BSD with gcc/gmp
’ibm-i386-386bsd-cc-gmp’ for IBM PCs under 386BSD with cc/gmp
’ibm-i386-386bsd-gcc2’ for IBM PCs under 386BSD with gcc2
’ibm-i386-386bsd-cc’ for IBM PCs under 386BSD with cc
’mips-mips-bsd-cc-gmp’ for MIPS under RISC/os Berkeley with cc/gmp
’mips-mips-bsd-cc’ for MIPS under RISC/os Berkeley with cc
’next-m68k-mach-gcc2-gmp’ for NeXT under Mach with gcc/gmp
’next-m68k-mach-cc-gmp’ for NeXT under Mach with cc/gmp
’next-m68k-mach-gcc2’ for NeXT under Mach with gcc
’next-m68k-mach-cc’ for NeXT under Mach with cc
’sun-sparc-sunos-gcc2-gmp’ for SUN 4 under SunOs with gcc/gmp
’sun-sparc-sunos-cc-gmp’ for SUN 4 under SunOs with cc/gmp
’sun-sparc-sunos-gcc2’ for SUN 4 under SunOs with gcc2
’sun-sparc-sunos-cc’ for SUN 4 under SunOs with cc
’unix-gmp’ for a generic unix system with cc/gmp

988 CHAPTER 56. SHARE LIBRARIES

’unix’ for a generic unix system with cc
’clean’ remove all created files

where <ext> should be a sensible extension, i.e.,
’EXT=-sun-sparc-sunos’ for SUN 4 or ’EXT=’ if the PQ only
runs on a single architecture

targets are listed according to preference,
i.e., ’sun-sparc-sunos-gcc2’ is better than ’sun-sparc-sunos-cc’.
additional C compiler and linker flags can be passed with
’make <target> COPTS=<compiler-opts> LOPTS=<linker-opts>’,
i.e., ’make sun-sparc-sunos-cc COPTS=-g LOPTS=-g’.

set GAP if gap 3.4 is not started with the command ’gap’,
i.e., ’make sun-sparc-sunos-cc GAP=/home/gap/bin/gap-3.4’.

in order to use the GNU multiple precision (gmp) set
’GNUINC’ (default ’/usr/local/include’) and
’GNULIB’ (default ’/usr/local/lib’)

Select the target you need. If you have the GNU multiple precision arithmetic (gmp) in-
stalled on your system, select the target ending in -gmp. Note that the gmp is not required.
In our case we first compile the DECstation version. We assume that the command to start
GAP is /usr/local/bin/gap for tiffy and bjerun and /rem/tiffy/usr/local/bin/gap
for bert.

gap@tiffy:../anupq > make dec-mips-ultric-cc \
GAP=/usr/local/bin/gap \

EXT=-dec-mips-ultrix
you will see a lot of messages and a few warnings

Now repeat the compilation for the NeXTstation. Do not forget to clean up.

gap@tiffy:../anupq > rlogin bjerun
gap@bjerun:~ > cd gap3r4p0/pkg/anupq
gap@bjerun:../anupq > make clean
gap@bjerun:../src > make next-m68k-mach-cc \

GAP=/usr/local/bin/gap \
EXT=-next-m68k-mach

you will see a lot of messages and a few warnings
gap@bjerun:../anupq > exit
gap@tiffy:../anupq >

Switch into the subdirectory bin/ and create a script which will call the correct binary for
each machine. A skeleton shell script is provided in bin/pq.sh.

gap@tiffy:../anupq > cd bin
gap@tiffy:../bin > cat > pq
#!/bin/csh
switch (‘hostname‘)
case ’tiffy’:
exec $0-dec-mips-ultrix $* ;

56.3. INSTALLING THE ANU PQ PACKAGE 989

breaksw ;
case ’bert’:
setenv ANUPQ_GAP_EXEC /rem/tiffy/usr/local/bin/gap ;
exec $0-dec-mips-ultrix $* ;
breaksw ;

case ’bjerun’:
limit stacksize 2048 ;
exec $0-next-m68k-mach $* ;
breaksw ;

default:
echo "pq: sorry, no executable exists for this machine" ;
breaksw ;

endsw
ctr -D
gap@tiffy:../bin > chmod 755 pq
gap@tiffy:../bin > cd ..

Note that the NeXTstation requires you to raise the stacksize. If your default limit on
any other machine for the stack size is less than 1024 you might need to add the limit
stacksize 2048 line.

If the documentation is not already installed or an older version is installed, copy the file
gap/anupq.tex into the doc/ directory and run latex again (see 55.3). In general the
documentation will already be installed so you can just skip the following step.

gap@tiffy:../anupq > cp gap/anupq.tex ../../doc
gap@tiffy:../anupq > cd ../../doc
gap@tiffy:../doc > latex manual
a few messages about undefined references
gap@tiffy:../doc > latex manual
a few messages about undefined references
gap@tiffy:../doc > makeindex manual
makeindex prints some diagnostic output
gap@tiffy:../doc > latex manual
there should be no warnings this time
gap@tiffy:../doc cd ../pkg/anupq

Now it is time to test the installation. The first test will only test the ANU pq.

gap@tiffy:../anupq > bin/pq < gap/test1.pga
a lot of messages ending in
**
Starting group: c3c3 #2;2 #4;3
Order: 3^7
Nuclear rank: 3
3-multiplicator rank: 4
of immediate descendants of order 3^8 is 7
of capable immediate descendants is 5

**
34 capable groups saved on file c3c3_class4

990 CHAPTER 56. SHARE LIBRARIES

Construction of descendants took 1.92 seconds

Select option: 0
Exiting from p-group generation

Select option: 0
Exiting from ANU p-Quotient Program
Total user time in seconds is 1.97
gap@tiffy:../anupq > ls -l c3c3*
total 89
-rw-r--r-- 1 gap 3320 Jun 24 11:24 c3c3_class2
-rw-r--r-- 1 gap 5912 Jun 24 11:24 c3c3_class3
-rw-r--r-- 1 gap 56184 Jun 24 11:24 c3c3_class4
gap:../anupq > rm c3c3_class*

The second test will test the stacksize. If it is too small you will get a memory fault, try to
raise the stacksize as described above.

gap@tiffy:../anupq > bin/pq < gap/test2.pga
a lot of messages ending in
**
Starting group: c2c2 #1;1 #1;1 #1;1
Order: 2^5
Nuclear rank: 1
2-multiplicator rank: 3
Group c2c2 #1;1 #1;1 #1;1 is an invalid starting group

**
Starting group: c2c2 #2;1 #1;1 #1;1
Order: 2^5
Nuclear rank: 1
2-multiplicator rank: 3
Group c2c2 #2;1 #1;1 #1;1 is an invalid starting group
Construction of descendants took 0.47 seconds

Select option: 0
Exiting from p-group generation

Select option: 0
Exiting from ANU p-Quotient Program
Total user time in seconds is 0.50
gap@tiffy:../anupq > ls -l c2c2*
total 45
-rw-r--r-- 1 gap 6228 Jun 24 11:25 c2c2_class2
-rw-r--r-- 1 gap 11156 Jun 24 11:25 c2c2_class3
-rw-r--r-- 1 gap 2248 Jun 24 11:25 c2c2_class4
-rw-r--r-- 1 gap 0 Jun 24 11:25 c2c2_class5
gap:../anupq > rm c2c2_class*

The third example tests the link between the ANU pq and GAP. If there is a problem you

56.3. INSTALLING THE ANU PQ PACKAGE 991

will get a error message saying Error in system call to GAP; if this happens, check the
environment variable ANUPQ GAP EXEC.

gap@tiffy:../anupq > bin/pq < gap/test3.pga
a lot of messages ending in
**
Starting group: c5c5 #1;1 #1;1
Order: 5^4
Nuclear rank: 1
5-multiplicator rank: 2
of immediate descendants of order 5^5 is 2

**
Starting group: c5c5 #1;1 #2;2
Order: 5^5
Nuclear rank: 3
5-multiplicator rank: 3
of immediate descendants of order 5^6 is 3
of immediate descendants of order 5^7 is 3
of capable immediate descendants is 1
of immediate descendants of order 5^8 is 1
of capable immediate descendants is 1

**
2 capable groups saved on file c5c5_class4

**
Starting group: c5c5 #1;1 #2;2 #4;2
Order: 5^7
Nuclear rank: 1
5-multiplicator rank: 2
of immediate descendants of order 5^8 is 2
of capable immediate descendants is 2

**
Starting group: c5c5 #1;1 #2;2 #7;3
Order: 5^8
Nuclear rank: 2
of immediate descendants of order 5^9 is 1
of capable immediate descendants is 1
of immediate descendants of order 5^10 is 1
of capable immediate descendants is 1

**
4 capable groups saved on file c5c5_class5
Construction of descendants took 0.62 seconds

Select option: 0

992 CHAPTER 56. SHARE LIBRARIES

Exiting from p-group generation

Select option: 0
Exiting from ANU p-Quotient Program
Total user time in seconds is 0.68
gap@tiffy:../anupq > ls -l c5c5*
total 41
-rw-r--r-- 1 gap 924 Jun 24 11:27 c5c5_class2
-rw-r--r-- 1 gap 2220 Jun 24 11:28 c5c5_class3
-rw-r--r-- 1 gap 3192 Jun 24 11:30 c5c5_class4
-rw-r--r-- 1 gap 7476 Jun 24 11:32 c5c5_class5
gap:../anupq > rm c5c5_class*

The fourth test will test the standard presentation part of the pq.
gap@tiffy:../anupq > bin/pq -i -k < gap/test4.sp
a lot of messages ending in
Computing standard presentation for class 9 took 0.43 seconds
The largest 5-quotient of the group has class 9

Select option: 0
Exiting from ANU p-Quotient Program
Total user time in seconds is 2.17
gap@tiffy:../anupq > ls -l SPRES
-rw-r--r-- 1 gap 768 Jun 24 11:33 SPRES
gap@tiffy:../anupq > diff SPRES gap/out4.sp
there should be no difference if compiled with -gmp
156250000
gap@tiffy:../anupq > rm SPRES

The last test will test the link between GAP and the ANU pq. If everything goes well you
should not see any message.

gap@tiffy:../anupq > gap -b
gap> RequirePackage("anupq");
gap> ReadTest("gap/anupga.tst");
gap>

You may now repeat the tests for the other machines.

56.4 ANU Sq Package

Sq(G, L)

The function Sq is the interface to the Soluble Quotient standalone program.
Let G be a finitely presented group and let L be a list of lists. Each of these lists is a list
of integer pairs [pi,ci], where pi is a prime and ci is a non-negative integer and pi 6= pi+1

and ci positive for i < k. Sq computes a consistent power conjugate presentation for a finite
soluble group given as a quotient of the finitely presented group G which is described by L
as follows.
Let H be a group and p a prime. The series

H = P p0 (H) ≥ P p1 (H) ≥ · · · with P pi (H) = [P pi−1(H),H]
(
P pi−1(H)

)p

56.4. ANU SQ PACKAGE 993

for i ≥ 1 is the lower exponent-p central series of H.

For 1 ≤ i ≤ k and 0 ≤ j ≤ ci define the list Li,j = [(p1, c1), . . . , (pi−1, ci−1), (pi, j)]. Define
L1,0(G) = G. For 1 ≤ i ≤ k and 1 ≤ j ≤ ci define the subgroups

Li,j(G) = Ppij (Li,0(G))

and for 1 ≤ i < k define the subgroups

Li+1,0(G) = Li,ci(G)

and L(G) = Lk,ck(G). Note that Li,j(G) ≥ Li,j+1(G) holds for j < ci.

The chain of subgroups

G = L1,0(G) ≥ L1,1(G) ≥ · · · ≥ L1,c1(G) = L2,0(G) ≥ · · · ≥ Lk,ck(G) = L(G)

is called the soluble L-series of G.

Sq computes a consistent power conjugate presentation for G/L(G), where the presentation
exhibits a composition series of the quotient group which is a refinement of the soluble
L-series. An epimorphism from G onto G/L(G) is listed in comments.

The algorithm proceeds by computing power conjugate presentations for the quotients
G/Li,j(G) in turn. Without loss of generality assume that a power conjugate presentation
for G/Li,j(G) has been computed for j < ci. The basic step computes a power conjugate
presentation for G/Li,j+1(G). The group Li,j(G)/Li,j+1(G) is a pi-group. If during the basic
step it is discovered that Li,j(G) = Li,j+1(G), then Li+1,0(G) is set to Li,j(G).

Note that during the basic step the vector enumerator is called.

gap> RequirePackage("anusq");
gap> f := FreeGroup("a", "b");;
gap> f := f/[(f.1*f.2)^2*f.2^-6, f.1^4*f.2^-1*f.1*f.2^-9*f.1^-1*f.2];
Group(a, b)
gap> g := Sq(f, [[2,1],[3,1],[2,2],[3,2]]);
rec(
generators := [a.1, a.2, a.3, a.4, a.5, a.6, a.7, a.8],
relators :=
[a.1^2*a.3^-1, a.1^-1*a.2*a.1*a.4^-1*a.2^-2, a.2^3*a.5^-1,

a.1^-1*a.3*a.1*a.3^-1,
a.2^-1*a.3*a.2*a.6^-1*a.5^-1*a.4^-1*a.3^-1, a.3^2*a.7^-1*a.5^-1,
a.1^-1*a.4*a.1*a.7^-1*a.4^-1*a.3^-1,
a.2^-1*a.4*a.2*a.8^-1*a.7^-1*a.6^-2*a.3^-1,
a.3^-1*a.4*a.3*a.8^-2*a.7^-2*a.5^-1*a.4^-1,
a.4^2*a.8^-2*a.7^-2*a.6^-2*a.5^-1,
a.1^-1*a.5*a.1*a.8^-1*a.7^-1*a.6^-1*a.5^-1,
a.2^-1*a.5*a.2*a.5^-1, a.3^-1*a.5*a.3*a.8^-2*a.6^-1*a.5^-1,
a.4^-1*a.5*a.4*a.7^-1*a.5^-1, a.5^2,
a.1^-1*a.6*a.1*a.8^-1*a.7^-2*a.6^-1,
a.2^-1*a.6*a.2*a.8^-2*a.6^-2,
a.3^-1*a.6*a.3*a.8^-2*a.7^-2*a.6^-2,
a.4^-1*a.6*a.4*a.8^-1*a.7^-2, a.5^-1*a.6*a.5*a.8^-2*a.6^-2,

994 CHAPTER 56. SHARE LIBRARIES

a.6^3, a.1^-1*a.7*a.1*a.6^-2, a.2^-1*a.7*a.2*a.7^-2*a.6^-2,
a.3^-1*a.7*a.3*a.8^-1*a.7^-1*a.6^-2, a.4^-1*a.7*a.4*a.6^-1,
a.5^-1*a.7*a.5*a.7^-2, a.6^-1*a.7*a.6*a.8^-1*a.7^-1, a.7^3,
a.1^-1*a.8*a.1*a.8^-2, a.2^-1*a.8*a.2*a.8^-1,
a.3^-1*a.8*a.3*a.8^-1, a.4^-1*a.8*a.4*a.8^-1,
a.5^-1*a.8*a.5*a.8^-1, a.6^-1*a.8*a.6*a.8^-1,
a.7^-1*a.8*a.7*a.8^-1, a.8^3])

This implementation was developed in C by

Alice C. Niemeyer
Department of Mathematics
University of Western Australia
Nedlands, WA 6009
Australia

email alice@maths.uwa.edu.au

56.5 Installing the ANU Sq Package

The ANU Sq is written in C and the package can only be installed under UNIX. It has been
tested on DECstation running Ultrix, a HP 9000/700 and HP 9000/800 running HP-UX, a
MIPS running RISC/os Berkeley, a PC running NnetBSD 0.9, and SUNs running SunOS.

It requires Steve Linton’s vector enumerator (either as standalone or as GAP share library).
Make sure that it is installed before trying to install the ANU Sq.

If you have a complete binary and source distribution for your machine, nothing has to be
done if you want to use the ANU Sq for a single architecture. If you want to use the ANU
Sq for machines with different architectures skip the extraction and compilation part of this
section and proceed with the creation of shell scripts described below.

If you have a complete source distribution, skip the extraction part of this section and
proceed with the compilation part below.

In the example we will assume that you, as user gap, are installing the ANU Sq package for
use by several users on a network of two DECstations, called bert and tiffy, and a Sun
running SunOS 5.3, called galois. We assume that GAP is also installed on these machines
following the instructions given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file anusq.zoo (see 55.1). Then you must locate the GAP
directory containing lib/ and doc/, this is usually gap3r4p0 where 0 is to be replaced by
the current patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap 1024 Nov 8 1991 gap3r4p0
-rw-r--r-- 1 gap 360891 Dec 27 15:16 anusq.zoo
gap@tiffy:~ > ls -l gap3r4p0
drwxr-xr-x 2 gap 3072 Nov 26 11:53 doc
drwxr-xr-x 2 gap 1024 Nov 8 1991 grp
drwxr-xr-x 2 gap 2048 Nov 26 09:42 lib

56.5. INSTALLING THE ANU SQ PACKAGE 995

drwxr-xr-x 2 gap 2048 Nov 26 09:42 pkg
drwxr-xr-x 2 gap 2048 Nov 26 09:42 src
drwxr-xr-x 2 gap 1024 Nov 26 09:42 tst

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p0 to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo x anusq
gap@tiffy:~ > cd gap3r4p0/pkg/anusq
gap@tiffy:../anusq> ls -l
-rw-r--r-- 1 gap 5232 Apr 10 12:40 Makefile
-rw-r--r-- 1 gap 13626 Mar 28 16:31 README
drwxr-xr-x 2 gap 512 Apr 10 13:30 bin
drwxr-xr-x 2 gap 512 Apr 9 20:28 examples
drwxr-xr-x 2 gap 512 Apr 10 14:22 gap
-rw-r--r-- 1 gap 5272 Apr 10 13:34 init.g
drwxr-xr-x 2 gap 1024 Apr 10 13:41 src
-rwxr-xr-x 1 gap 525 Mar 28 15:50 testSq

Typing make will produce a list of possible target.

gap@tiffy:../anusq > make
usage: ’make <target> EXT=<ext>’ where <target> is one of
’bsd-gcc’ for Berkeley UNIX with GNU cc 2
’bsd-cc’ for Berkeley UNIX with cc
’usg-gcc’ for System V UNIX with cc
’usg-cc’ for System V UNIX with cc
’clean’ remove all created files

where <ext> should be a sensible extension, i.e.,
’EXT=-sun-sparc-sunos’ for SUN 4 or ’EXT=’ if the SQ only
runs on a single architecture

additional C compiler and linker flags can be passed with
’make <target> COPTS=<compiler-opts> LOPTS=<linker-opts>’,
i.e., ’make bsd-cc COPTS="-DTAILS -DCOLLECT"’, see the
README file for details on TAILS and COLLECT.

set ME if the vector enumerator is not started with the
command ’‘pwd‘/../ve/bin/me’,
i.e., ’make bsd-cc ME=/home/ve/bin/me’.

Select the target you need. The DECstations are running Ultrix, so we chose bsd-gcc.

gap@tiffy:../anusq > make bsd-gcc EXT=-dec-mips-ultrix
you will see a lot of messages

Now repeat the compilation for the Sun run SunOS 5.3. Do not forget to clean up.

gap@tiffy:../anusq > rlogin galois
gap@galois:~ > cd gap3r4p0/pkg/anusq
gap@galois:../anusq > make clean

996 CHAPTER 56. SHARE LIBRARIES

gap@galois:../src > make usg-cc EXT=-sun-sparc-sunos
you will see a lot of messages and a few warnings
gap@galois:../anusq > exit
gap@tiffy:../anusq >

Switch into the subdirectory bin/ and create a script which will call the correct binary for
each machine. A skeleton shell script is provided in bin/Sq.sh.

gap@tiffy:../anusq > cd bin
gap@tiffy:../bin > cat > sq
#!/bin/csh
switch (‘hostname‘)
case ’tiffy’:
exec $0-dec-mips-ultrix $* ;
breaksw ;

case ’bert’:
setenv ANUSQ_ME_EXEC /rem/tiffy/usr/local/bin/me ;
exec $0-dec-mips-ultrix $* ;
breaksw ;

case ’galois’:
exec $0-sun-sparc-sunos $* ;
breaksw ;

default:
echo "sq: sorry, no executable exists for this machine" ;
breaksw ;

endsw
ctr -D
gap@tiffy:../bin > chmod 755 Sq
gap@tiffy:../bin > cd ..

Now it is time to test the installation. The first test will only test the ANU Sq.
gap@tiffy:../anusq > ./testSq
Testing examples/grp1.fp succeeded
Testing examples/grp2.fp succeeded
Testing examples/grp3.fp succeeded

If there is a problem and you get an error message saying me not found, set the environment
variable ANUSQ ME EXEC to the module enumerator executable and try again.
The second test will test the link between GAP and the ANU Sq. If everything goes well
you should not see any message.

gap@tiffy:../anusq > gap -b
gap> RequirePackage("anusq");
gap> ReadTest("gap/test1.tst");
gap>

You may now repeat the tests for the other machines.

56.6 GRAPE Package

GRAPE (Version 2.2) is a system for computing with graphs, and is primarily designed for
constructing and analysing graphs related to groups and finite geometries.

56.7. INSTALLING THE GRAPE PACKAGE 997

The vast majority of GRAPE functions are written entirely in the GAP language, except for
the automorphism group and isomorphism testing functions, which use Brendan McKay’s
nauty (Version 1.7) package [McK90].

Except for the nauty 1.7 package included with GRAPE, the GRAPE system was designed
and written by Leonard H. Soicher, School of Mathematical Sciences, Queen Mary and
Westfield College, Mile End Road, London E1 4NS, U.K., email:L.H.Soicher@qmw.ac.uk.

Please tell Leonard Soicher if you install GRAPE. Also, if you use GRAPE to solve a problem
then also tell him about it, and reference

L.H.Soicher, GRAPE: a system for computing with graphs and groups, in Groups and Com-
putation (L. Finkelstein and W.M. Kantor, eds.), DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 11, pp. 287–291.

If you use the automorphism group and graph isomorphism testing functions of GRAPE then
you are also using Brendan McKay’s nauty package, and should also reference

B.D.McKay, nauty users guide (version 1.5), Technical Report TR-CS-90-02, Computer
Science Department, Australian National University, 1990.

This document is in nauty17/nug.alw in postscript form. There is also a readme for nauty
in nauty17/read.me.

Warning A canonical labelling given by nauty can depend on the version of nauty (Ver-
sion 1.7 in GRAPE 2.2), certain parameters of nauty (always set the same by GRAPE 2.2)
and the compiler and computer used. If you use a canonical labelling (say by using the
IsIsomorphicGraph function) of a graph stored on a file, then you must be sure that this
field was created in the same environment in which you are presently computing. If in
doubt, unbind the canonicalLabelling field of the graph.

The only incompatible changes from GRAPE 2.1 to GRAPE 2.2 are that Components is now
called ConnectedComponents, and Component is now called ConnectedComponent, and only
works for simple graphs.

GRAPE is provided ”as is”, with no warranty whatsoever. Please read the copyright notice
in the file COPYING.

Please send comments on GRAPE, bug reports, etc. to L.H.Soicher@qmw.ac.uk.

56.7 Installing the GRAPE Package

GRAPE consists of two parts. The first part is a set of GAP functions for constructing and
analysing graphs, which will run on any machine that supports GAP. The second part is
based on the nauty package written in C and computes automorphism groups of graphs, and
tests for graph isomorphisms. This part of the package can only be installed under UNIX.

If you got a complete binary and source distribution for your machine, nothing has to be
done if you want to use GRAPE for a single architecture. If you want to use GRAPE for
machines with different architectures skip the extraction and compilation part of this section
and proceed with the creation of shell scripts described below.

If you got a complete source distribution, skip the extraction part of this section and proceed
with the compilation part below.

In the example we will assume that you, as user gap, are installing the GRAPE package for
use by several users on a network of two DECstations, called bert and tiffy, and a PC

998 CHAPTER 56. SHARE LIBRARIES

running 386BSD, called waldorf. We assume that GAP is also installed on these machines
following the instructions given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file grape.zoo (see 55.1). Then you must locate the GAP
directories containing lib/ and doc/, this is usually gap3r4p0 where 0 is to be replaced by
current the patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap gap 1024 Nov 8 1991 gap3r4p0
-rw-r--r-- 1 gap gap 342865 May 27 15:16 grape.zoo
gap@tiffy:~ > ls -l gap3r4p0
drwxr-xr-x 2 gap gap 3072 Nov 26 11:53 doc
drwxr-xr-x 2 gap gap 1024 Nov 8 1991 grp
drwxr-xr-x 2 gap gap 2048 Nov 26 09:42 lib
drwxr-xr-x 2 gap gap 2048 Nov 26 09:42 src
drwxr-xr-x 2 gap gap 1024 Nov 26 09:42 tst

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p0 to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo x grape.zoo
gap@tiffy:~ > ls -l gap3r4p0/pkg/grape
-rw-r--r-- 1 gap 1063 May 22 14:40 COPYING
-rw-r--r-- 1 gap 2636 May 28 09:58 Makefile
-rw-r--r-- 1 gap 4100 May 24 14:57 README
drwxr-xr-x 2 gap 512 May 28 11:36 bin
drwxr-xr-x 2 gap 512 May 25 14:52 doc
drwxr-xr-x 2 gap 512 May 22 16:59 grh
-rw-r--r-- 1 gap 82053 May 27 12:19 init.g
drwxr-xr-x 2 gap 512 May 27 14:18 lib
drwxr-xr-x 2 gap 512 May 28 11:36 nauty17
drwxr-xr-x 2 gap 512 May 22 12:32 prs
drwxr-xr-x 2 gap 512 May 28 11:36 src

You are now able to use the all functions described in chapter 63 except AutGroupGraph
and IsIsomorphicGraph which use the nauty package.

gap> RequirePackage("grape");

Loading GRAPE 2.2 (GRaph Algorithms using PErmutation groups),
by L.H.Soicher@qmw.ac.uk.

gap> gamma := JohnsonGraph(4, 2);
rec(
isGraph := true,
order := 6,
group := Group((1,5)(2,6), (1,3)(4,6), (2,3)(4,5)),
schreierVector := [-1, 3, 2, 3, 1, 2],

56.7. INSTALLING THE GRAPE PACKAGE 999

adjacencies := [[2, 3, 4, 5]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4],

[3, 4]],
isSimple := true)

If the documentation is not already installed or an older version is installed, copy the file
doc/grape.tex into the doc/ directory and run latex again (see 55.3). In general the
documentation will already be installed so you can just skip the following step.

gap@tiffy:~ > cd gap3r4p0/pkg/grape
gap@tiffy:../grape > cp doc/grape.tex ../../doc
gap@tiffy:../grape > cd ../../doc
gap@tiffy:../doc > latex manual
a few messages about undefined references
gap@tiffy:../doc > latex manual
a few messages about undefined references
gap@tiffy:../doc > makeindex manual
makeindex prints some diagnostic output
gap@tiffy:../doc > latex manual
there should be no warnings this time
gap@tiffy:../doc cd ../pkg/grape

In order to compile nauty and the filters used by GRAPE to interact with nauty type make
to get a list of support machines.

gap@tiffy:../grape > make
usage: ’make <target>’ EXT=<ext> where target is one of
’dec-mips-ultrix-cc’ for DECstations running Ultrix with cc
’hp-hppa1.1-hpux-cc’ for HP 9000/700 under HP-UX with cc
’hp-hppa1.0-hpux-cc’ for HP 9000/800 under HP-UX with cc
’ibm-i386-386bsd-gcc2’ for IBM PCs under 386BSD with GNU cc 2
’ibm-i386-386bsd-cc’ for IBM PCs under 386BSD with cc (GNU)
’sun-sparc-sunos-cc’ for SUN 4 under SunOS with cc
’bsd’ for others under Berkeley UNIX with cc
’usg’ for others under System V UNIX with cc

where <ext> should be a sensible extension, i.e.,
’EXT=.sun’ for SUN or ’EXT=’ if GRAPE only runs
on a single architecture

Select the target you need. In your case we first compile the DECstation version. We use
the extension -dec-mips-ultrix, which creates the binaries
dreadnaut-dec-mips-ultrix, drcanon3-dec-mips-ultrix,
gap3todr-dec-mips-ultrix and drtogap3-dec-mips-ultrix
in the bin/ directory.

gap@tiffy:../grape > make dec-mips-ultric-cc EXT=-dec-mips-ultrix
you will see a lot of messages

Now repeat the compilation for the PC. Do not forget to clean up.

gap@tiffy:../grape > rlogin waldorf

1000 CHAPTER 56. SHARE LIBRARIES

gap@waldorf:~ > cd gap3r4p0/pkg/grape
gap@waldorf:../grape > make clean
gap@waldorf:../grape > make ibm-i386-386bsd-gcc2 EXT=-ibm-i386-386bsd
you will see a lot of messages
gap@waldorf:../grape > exit
gap@tiffy:../grape >

Switch into the subdirectory bin/ and create four shell scripts which will call the cor-
rect binary for each machine. Skeleton shell scripts are provided in bin/dreadnaut.sh,
bin/drcanon3.sh, etc.

gap@tiffy:../grape > cat > bin/dreadnaut
#!/bin/csh
switch (‘hostname‘)
case ’tiffy’:
case ’bert’:
exec $0-dec-mips-ultrix $* ;
breaksw ;

case ’waldorf’:
exec $0-ibm-i386-386bsd $* ;
breaksw ;

default:
echo "dreadnaut: sorry, no executable exists for this machine" ;
breaksw ;

endsw
ctr -D
gap@tiffy:../grape > chmod 755 bin/dreadnaut

You must also create similar shell scripts for drcanon3, drtogap3, and gap3todr. Note that
if you are using GRAPE only on a single architecture you can specify an empty extension
using EXT= as a parameter to make. In this case do not create the above shell scripts. The
following example will test the interface between GRAPE and nauty.

gap> IsIsomorphicGraph(JohnsonGraph(7,3), JohnsonGraph(7,4));
true
gap> AutGroupGraph(JohnsonGraph(4,2));
Group((3,4), (2,3)(4,5), (1,2)(5,6))

56.8 MeatAxe Package

The MeatAxe package provides algorithms for computing with finite field matrices, permu-
tations, matrix groups, matrix algebras, and their modules.

Every such object exists outside GAP on a file, and GAP is only responsible for handling
these files using the appropriate programs.

Details about the standalone can be found in [Rin93]. This implementation was developed
in C by

Michael Ringe
Lehrstuhl D für Mathematik
RWTH Aachen
52062 Aachen, Germany

56.9. INSTALLING THE MEATAXE PACKAGE 1001

e-mail mringe@math.rwth-aachen.de

56.9 Installing the MeatAxe Package

The MeatAxe is written in C, and it is assumed that the package is installed under UNIX.
Some other systems –currently MS-DOS and VM/CMS– are supported, but this applies only
for the standalone and not for the use of the MeatAxe from within GAP (see the MeatAxe
manual [Rin93] for details of the installation in these cases).

If you got a complete binary and source distribution, skip the extraction and compilation
part of this section. All what you have to do in this case is to make the executables accessible
via a pathname that contains the hostname of the machine; this is best done by creating
suitable links, as is described at the end of this section.

If you got a complete source distribution, skip the extraction part of this section and proceed
with the compilation part below.

In the example we will assume that you, as user gap, are installing the MeatAxe package
for use by several users on a network of two DECstations, called bert and tiffy, and
a NeXTstation, called bjerun. We assume that GAP is also installed on these machines
following the instructions given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file meataxe.zoo (see 55.1). Then you must locate the GAP
directory containing lib/ and doc/, this is usually gap3r4p0 where 0 is to be be replaced
by the patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap gap 1024 Nov 8 1991 gap3r4p0
-rw-r--r-- 1 gap gap 359381 May 11 11:34 meataxe.zoo
gap@tiffy:~ > ls -l gap3r4p0
drwxr-xr-x 2 gap 3072 Nov 26 11:53 doc
drwxr-xr-x 2 gap 1024 Nov 8 1991 grp
drwxr-xr-x 2 gap 2048 Nov 26 09:42 lib
drwxr-xr-x 2 gap 2048 Nov 26 09:42 src
drwxr-xr-x 2 gap 1024 Nov 26 09:42 tst

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p0 to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo x meataxe.zoo
gap@tiffy:~ > ls -l gap3r4p0/pkg/meataxe
-rw-r--r-- 1 gap 17982 Aug 6 1993 COPYING
-rw-r--r-- 1 gap 3086 Mar 15 15:07 README
drwxr-xr-x 3 gap 512 Mar 26 18:01 bin
drwxr-xr-x 2 gap 512 Feb 25 12:07 doc
drwxr-xr-x 2 gap 512 May 11 09:34 gap
-rw-r--r-- 1 gap 1023 May 11 09:34 init.g
drwxr-xr-x 2 gap 1024 Mar 26 18:02 lib
drwxr-xr-x 2 gap 1536 Mar 26 18:02 src

1002 CHAPTER 56. SHARE LIBRARIES

drwxr-xr-x 2 gap 512 Mar 15 11:36 tests

Switch into the directory bin/, edit the Makefile, and follow the instructions given there.
In most cases it will suffice to choose the right COMPFLAGS. Then type make to compile the
MeatAxe. In your case we first compile the DECstation version.

gap@tiffy:~ > cd gap3r4p0/pkg/meataxe/bin
gap@tiffy:../bin > make
you will see a lot of messages

The executables reside in a directory with the same name as the host, in this case this is
tiffy. The programs will be called from GAP using the hostname, thus for every machine
that shall run the MeatAxe under GAP such a directory is necessary. In your case there
is a second DEC-station called bert which can use the same executables, we make them
available via a link.

gap@tiffy:../bin > ln -s tiffy bert

Now repeat the compilation for the NeXTstation. If you want to save space you can clean
up using make clean but this is not necessary. If the make run was interrupted you can
return to the prior situation using make delete, and then call make again.

gap@tiffy:../bin > rlogin bjerun
gap@bjerun:~ > cd gap3r4p0/pkg/meataxe/bin
gap@bjerun:../bin > make clean
gap@bjerun:../bin > make
you will see a lot of messages
gap@bjerun:../bin > exit
gap@tiffy:../bin >

Now it is time to test the package. Switch into the directory ../tests/ and type ./testmtx.
You should get no error messages, and end up with the message all tests passed.

gap@tiffy:../bin > cd ../tests
gap@tiffy:../tests > ./testmtx
you will see a lot of messages
gap@tiffy:../tests >

56.10 NQ Package

NilpotentQuotient(F)
NilpotentQuotient(F, c)

NilpotentQuotient computes the quotient groups of the finitely presented group F suc-
cessively modulo the terms of the lower central series of F . If it terminates, it returns a list
L. The i-th entry of L contains the non-trivial abelian invariants of the i-th factor of the
lower central series of F (the largest abelian quotient being the first factor).

NilpotentQuotient accepts a positive integer c as an optional second argument. If the
second argument is present, the function computes the quotient group of F modulo the c-th
term of the lower central series of F (the commutator subgroup is the first term).

gap> RequirePackage("nq");
gap> a := AbstractGenerator("a");;
gap> b := AbstractGenerator("b");;

56.11. INSTALLING THE NQ PACKAGE 1003

gap>
gap> G := rec(generators := [a, b],
> relators := [LeftNormedComm(b,a,a,a,a),
> LeftNormedComm(b,a,b,b,b),
> LeftNormedComm(b,a,a*b,a*b,a*b),
> LeftNormedComm(b,a,a*b^2,a*b^2,a*b^2),
> LeftNormedComm(b,a,b,a,a,a),
> LeftNormedComm(b,a,a,b,b,b)]
>);;
gap>
gap> NilpotentQuotient(G, 6);
[[0, 0], [0], [0, 0], [0, 0, 0], [2, 0, 0], [2, 10, 0]]

This implementation was developed in C by

Werner Nickel
School of Mathematical Sciences
Australian National University
Canberra, ACT 0200

e-mail werner@pell.anu.edu.au

56.11 Installing the NQ Package

The NQ is written in C and the package can only be installed under UNIX. It has been
tested on DECstation running Ultrix, a NeXTstation running NeXT-Step 3.0, and SUNs
running SunOS. It requires the GNU multiple precision arithmetic. Make sure that this
library is installed before trying to install the NQ.

If you got a complete binary and source distribution for your machine, nothing has to be
done if you want to use the NQ for a single architecture. If you want to use the NQ for
machines with different architectures skip the extraction and compilation part of this section
and proceed with the creation of shell scripts described below.

If you got a complete source distribution, skip the extraction part of this section and proceed
with the compilation part below.

In the example we will assume that you, as user gap, are installing the NQ package for use by
several users on a network of two DECstations, called bert and tiffy, and a NeXTstation,
called bjerun. We assume that GAP is also installed on these machines following the
instructions given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file nq.zoo (see 55.1). Then you must locate the GAP
directories containing lib/ and doc/, this is usually gap3r4p0 where 0 is to be be replaced
by the patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap gap 1024 Nov 8 1991 gap3r4p0
-rw-r--r-- 1 gap gap 106307 Jan 24 15:16 nq.zoo
gap@tiffy:~ > ls -l
drwxr-xr-x 2 gap gap 3072 Nov 26 11:53 doc

1004 CHAPTER 56. SHARE LIBRARIES

drwxr-xr-x 2 gap gap 1024 Nov 8 1991 grp
drwxr-xr-x 2 gap gap 2048 Nov 26 09:42 lib
drwxr-xr-x 2 gap gap 2048 Nov 26 09:42 src
drwxr-xr-x 2 gap gap 1024 Nov 26 09:42 tst

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p0 to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo x nq.zoo
gap@tiffy:~ > ls -l gap3r4p0/pkg/nq
drwxr-xr-x 2 gap gap 1024 Jan 24 21:00 bin
drwxr-xr-x 2 gap gap 1024 Jan 19 11:33 examples
drwxr-xr-x 2 gap gap 1024 Jan 24 21:03 gap
lrwxrwxrwx 1 gap gap 8 Jan 19 11:33 init.g
drwxr-xr-x 2 gap gap 1024 Jan 24 21:04 src
-rwxr--r-- 1 gap gap 144 Dec 28 15:08 testNq

Switch into the directory src/ and type make to compile the NQ. If the header files for the
GNU multiple precision arithmetic are not in /usr/local/include you must set GNUINC
to the correct directory. If the library for the GNU multiple precision arithmetic is not
/usr/local/lib/libmp.a you must set GNULIB. In your case we first compile the DECsta-
tion version. If your operating system does not provide a function getrusage start make
with COPTS=-DNO GETRUSAGE.

gap@tiffy:~ > cd gap3r4p0/pkg/nq/src
gap@tiffy:../src > make GNUINC=/usr/gnu/include \

GNULIB=/usr/gnu/lib/libmp.a
you will see a lot of messages

Now it is possible to test the standalone.

gap@tiffy:../src > cd ..
gap@tiffy:../nq > testNq

If testNq reports a difference others then machine name, runtime or size, check the GNU
multiple precision arithmetic and warnings generated by make. If testNq succeeded , move
the executable to the bin/ directory.

gap@tiffy:../nq > mv src/nq bin/nq-dec-mips-ultrix

Now repeat the compilation for the NeXTstation. Do not forget to clean up.

gap@tiffy:../nq > rlogin bjerun
gap@bjerun:~ > cd gap3r4p0/pkg/nq/src
gap@bjerun:../src > make clean
gap@bjerun:../src > make
you will see a lot of messages
gap@bjerun:../src > mv nq ../bin/nq-next-m68k-mach
gap@bjerun:../src > exit
gap@tiffy:../src >

Switch into the subdirectory bin/ and create a script which will call the correct binary for
each machine. A skeleton shell script is provided in bin/nq.sh.

gap@tiffy:../src > cd ..

56.12. SISYPHOS PACKAGE 1005

gap@tiffy:../nq > cat > bin/nq
#!/bin/csh
switch (‘hostname‘)
case ’bert’:
case ’tiffy’:
exec $0-dec-mips-ultrix $* ;
breaksw ;

case ’bjerun’:
exec $0-next-m68k-mach $* ;
breaksw ;

default:
echo "nq: sorry, no executable exists for this machine" ;
breaksw ;

endsw
ctr -D
gap@tiffy:../nq > chmod 755 bin/nq

Now it is time to test the package. Assuming that testNq worked the following will test
the link to GAP.

gap@tiffy:../nq > gap -b
gap> RequirePackage("nq");
gap> ReadTest("gap/nq.tst");
gap>

56.12 SISYPHOS Package

SISYPHOS provides access to implementations of algorithms for dealing with p-groups and
their modular group algebras. At the moment only the programs for p-groups are accessible
via GAP. They can be used to compute isomorphisms between p-groups, and automorphism
groups of p-groups.

The description of the functions available in the SISYPHOS package is given in chapter
70.

For details about the implementation and the standalone version see the README. This
implementation was developed in C by

Martin Wursthorn
Math. Inst. B, 3. Lehrstuhl
Universität Stuttgart

e-mail pluto@machnix.mathematik.uni-stuttgart.de
Tel. +49 (0)711 685 5517
Fax. +49 (0)711 685 5322

56.13 Installing the SISYPHOS Package

SISYPHOS is written in ANSI-C and should run on every UNIX system (and some non-
UNIX systems) that provides an ANSI-C Compiler, e.g., the GNU C compiler. SISYPHOS

has been ported to IBM RS6000 running AIX 3.2, HP9000 7xx running HP-UX 8.0/9.0, PC

1006 CHAPTER 56. SHARE LIBRARIES

386/486 running Linux, PC 386/486 running DOS or OS/2 with emx and ATARI ST/TT
running TOS.

In the example we will assume that you, as user gap, are installing the SISYPHOS package
for use by several users on a network of two DECstations, called bert and tiffy, and a 486
PC, called waldorf. We assume that GAP is also installed on these machines following the
instructions given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file sisyphos.zoo (see 55.1). Then you must locate the GAP
directories containing lib/ and doc/, this is usually gap3r4p0 where 0 is to be be replaced
by the patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap 1024 Nov 8 1991 gap3r4p0
-rw-r--r-- 1 gap 245957 Dec 27 15:16 sisyphos.zoo
gap@tiffy:~ > ls -l gap3r4p0
drwxr-xr-x 2 gap 3072 Nov 26 11:53 doc
drwxr-xr-x 2 gap 1024 Nov 8 1991 grp
drwxr-xr-x 2 gap 2048 Nov 26 09:42 lib
drwxr-xr-x 2 gap 2048 Nov 26 09:42 src
drwxr-xr-x 2 gap 1024 Nov 26 09:42 tst

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p0 to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo x sisyphos.zoo
gap@tiffy:~ > ls -l gap3r4p0/pkg/sisyphos
-rw-r--r-- 1 gap 9496 Feb 11 1993 README
drwxr-xr-x 3 gap 512 Oct 19 10:24 doc
drwxr-xr-x 2 gap 512 Oct 15 14:30 groups
drwxr-xr-x 2 gap 512 Apr 1 1993 ideal
-rw-r--r-- 1 gap 22072 Oct 19 10:23 init.g
drwxr-xr-x 2 gap 1536 Oct 15 14:49 src

Switch into the directory src/. It contains the makefile for SISYPHOS.

gap@tiffy:../src > make
usage: ’make <target>’ where target is one of
’hp700-hpux-gcc2’ for HP 9000/7xx under HP-UX with GNU cc 2
’hp700-hpux-cc’ for HP 9000/7xx under HP-UX with cc
’hp700-hpux-cci’ for HP 9000/7xx under HP-UX with cc -

generate version for profile dependent optimization
’hp700-hpux-ccp’ for HP 9000/7xx under HP-UX with cc -

relink with profile dependent optimization
’ibm6000-aix-cc’ for IBM RS/6000 under AIX with cc
’ibmpc-linux-gcc2’ for IBM PCs under Linux with GNU cc 2
’ibmpc-emx-gcc2’ for IBM PCs under DOS or OS/2 2.0 with emx
’generic-unix-gcc2’ for other UNIX machines with GNU cc 2

this should work on most machines

56.14. VECTOR ENUMERATION PACKAGE 1007

Select the target you need. In our case we first compile the DECstation version. We
assume that the command to start GAP is /usr/local/bin/gap for tiffy and waldorf
and /rem/tiffy/usr/local/bin/gap for bert.

gap@tiffy:../src > make generic-unix-gcc2
you will see a lot of messages and maybe a few warnings

You should test the standalone now. The following command should run without any
comment. This will work, however, only for UNIX machines.

gap@tiffy:../src > testsis

The executables will be collected in the /bin directory, so we move that for the DECstation
there.

gap@tiffy:../src > mv sis ../bin/sis.ds

Now repeat the compilation for the PC. Do not forget to clean up.
gap@tiffy:../src > rlogin waldorf
gap@waldorf:~ > cd gap3r4p0/pkg/sisyphos/src
gap@waldorf:../src > make clean
gap@waldorf:../src > make generic-unix-gcc2
you will see a lot of messages and maybe a few warnings

Test the executable (under UNIX only), and move it to the right place.
gap@waldorf:../src > testsis
gap@waldorf:../src > mv sis ../bin/sis.386bsd
gap@waldorf:../src > exit
gap@tiffy:../src >

Switch into the subdirectory bin/ and create a script which will call the correct binary for
each machine.

gap@tiffy:../src > cd ..
gap@tiffy:../sisyphos > cat > bin/sis
#!/bin/csh
switch (‘hostname‘)
case ’bert’:
case ’tiffy’:
exec ~gap/3.2/pkg/sisyphos/bin/sis.ds $* ;
breaksw ;

case ’waldorf’:
exec ~gap/3.2/pkg/sisyphos/bin/sis.386bsd $* ;
breaksw ;

default:
echo "sis: sorry, no executable exists for this machine" ;
breaksw ;

endsw
ctr -D
gap@tiffy:../sisyphos > chmod 755 bin/sis

56.14 Vector Enumeration Package

The Vector Enumeration package provides access to the implementation of the “linear Todd-
Coxeter”method for computing matrix representations of finitely presented algebras.

1008 CHAPTER 56. SHARE LIBRARIES

The description of the functions available in the Vector Enumeration package is given in
chapter 72.

For details about the implementation and the standalone version see the README. This
implementation was developed in C by

Stephen A. Linton
Division of Computer Science
School of Mathematical and Computational Science
University of St. Andrews
North Haugh
St. Andrews
Fife
KY10 2SA
SCOTLAND

e-mail sal@cs.at-andrews.ac.uk
Tel. +44 334 63239
Fax. +44 334 63278

56.15 Installing the Vector Enumeration Package

The Vector Enumerator (VE) is written in C and the package can only be installed under
UNIX. It has been tested on DECstation running Ultrix, a 486 running NetBSD, and SUNs
running SunOS.

The parts of the package that deal with rationals require the GNU multiple precision arith-
metic library GMP. Make sure that this library is installed before trying to install VE.

If you got a complete binary and source distribution for your machine, nothing has to be
done if you want to use the VE for a single architecture. If you want to use the VE for
machines with different architectures skip the extraction and compilation part of this section
and proceed with the creation of shell scripts described below.

If you got a complete source distribution, skip the extraction part of this section and proceed
with the compilation part below.

In the example we will assume that you, as user gap, are installing the VE package for use by
several users on a network of two DECstations, called bert and tiffy, and a NeXTstation,
called bjerun. We assume that GAP is also installed on these machines following the
instructions given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file ve.zoo (see 55.1). Then you must locate the GAP
directories containing lib/ and doc/, this is usually gap3r4p0 where 0 is to be be replaced
by the patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap gap 1024 Nov 8 1991 gap3r4p0
-rw-r--r-- 1 gap gap 106307 Jan 24 15:16 ve.zoo
gap@tiffy:~ > ls -l gap3r4p0
drwxr-xr-x 2 gap gap 3072 Nov 26 11:53 doc

56.15. INSTALLING THE VECTOR ENUMERATION PACKAGE 1009

drwxr-xr-x 2 gap gap 1024 Nov 8 1991 grp
drwxr-xr-x 2 gap gap 2048 Nov 26 09:42 lib
drwxr-xr-x 2 gap gap 2048 Nov 26 09:42 src
drwxr-xr-x 2 gap gap 1024 Nov 26 09:42 tst

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p0 to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo x ve.zoo
gap@tiffy:~ > ls -l gap3r4p0/pkg/ve
-rw-r--r-- 1 sam 16761 May 10 17:39 Makefile
-rw-r----- 1 sam 1983 May 6 1993 README
drwxr-xr-x 2 sam 512 May 10 17:41 bin
drwxr-xr-x 2 sam 512 May 10 17:34 docs
drwxr-xr-x 2 sam 512 May 10 17:34 examples
drwxr-xr-x 3 sam 512 Mar 28 17:55 gap
-rw-r--r-- 1 sam 553 Mar 24 18:18 init.g
drwxr-xr-x 5 sam 1024 May 10 17:36 src

Switch into the directory ve/ and type make to see a list of targets for compilation; then type
make target to compile VE, where target is the target that is closest to your machine. If the
header files for the GNU multiple precision arithmetic are not in /usr/local/include you
must set INCDIRGMP to the correct directory. If the library for the GNU multiple precision
arithmetic is not /usr/local/lib/libgmp.a you must set LIBDIRGMP. In this case we first
compile the DECstation version.

gap@tiffy:~ > cd gap3r4p0/pkg/ve
gap@tiffy:../ve > make INCDIRGMP=/usr/gnu/include \

LIBDIRGMP=/usr/gnu/lib/ dec-mips-ultrix-gcc2
you will see a lot of messages

Now repeat the compilation for the NeXTstation. Do not forget to clean up.

gap@tiffy:../ve > mv bin/me.exe bin/me.dec
gap@tiffy:../ve > mv bin/qme.exe bin/qme.dec
gap@tiffy:../ve > rlogin bjerun
gap@bjerun:~ > cd gap3r4p0/pkg/ve
gap@bjerun:../ve > make clean
you will see some messages
gap@bjerun:../ve > make next-m68k-mach-gcc2
you will see a lot of messages
gap@bjerun:../ve > mv bin/me.exe bin/me.next
gap@bjerun:../ve > mv bin/qme.exe bin/qme.next
gap@bjerun:../ve > exit
gap@tiffy:../ve >

Switch into the subdirectory bin/ and create scripts which will call the correct binary for
each machine. The shell scripts that are already contained in ‘bin/me.sgl‘ and ‘bin/qme.sgl‘
are suitable only for a single architecture installation.

gap@tiffy:../ve > cat > bin/me
#!/bin/csh

1010 CHAPTER 56. SHARE LIBRARIES

switch (‘hostname‘)
case ’bert’:
case ’tiffy’:
exec $0.dec $* ;
breaksw ;

case ’bjerun’:
exec $0.next $* ;
breaksw ;

default:
echo "me/qme/zme: sorry, no executable exists for this machine" ;
breaksw ;

endsw
ctr -D
gap@tiffy:../ve > chmod 755 bin/me
gap@tiffy:../ve > ln bin/me bin/qme

56.16 The XGap Package

XGAP is a graphical user interface for GAP, it extends the GAP library with functions
dealing with graphic sheets and objects. Using these functions it also supplies a graphical
interface for investigating the subgroup lattice of a group, giving you easy access to the low
index subgroups, prime quotient and Reidemeister-Schreier algorithms and many other GAP
functions for groups and subgroups. At the moment the only supported window system is
X-Windows X11R5, however, programs using the XGAP library functions will run on other
platforms as soon as XGAP is available on these. We plan to release a Windows 3.11 version
in the near future.

In order to produce a preliminary manual and installation guide for the XGAP package,
switch into the directory gap3r4p4/pkg/xgap/doc and latex the document latexme.tex.

Frank Celler & Susanne Keitemeier

Chapter 57

ANU Pq

The ANU p-quotient program (pq) may be called from GAP. Using this program, GAP
provides access to the following: the p-quotient algorithm; the p-group generation algorithm;
a standard presentation algorithm; an algorithm to compute the automorphism group of a
p-group.

The following section describes the function Pq, which gives access to the p-quotient algo-
rithm.

The next section describes the function PqDescendants, which gives access to the p-group
generation algorithm.

The next sections describe functions for saving results to file (see 57.4 and 57.5).

The next section describes the function StandardPresentation which gives access to the
standard presentation algorithm and to the algorithm used to compute the automorphism
group of a p-group.

The last sections describes the function IsIsomorphicPGroup which implements an isomor-
phism test for p-groups using the standard presentation algorithm.

57.1 Pq

Pq(F, ...)

Let F be a finitely presented group. Then Pq returns the desired p-quotient of F as an ag
group.

The following parameters or parameter pairs are supported.

”Prime”, p
Compute the p-quotient for the prime p.

”ClassBound”, n
The p-quotient computed has lower exponent-p class at most n.

”Exponent”, n
The p-quotient computed has exponent n. By default, no exponent law is enforced.

”Metabelian”
The largest metabelian p-quotient is constructed.

1011

1012 CHAPTER 57. ANU PQ

”Verbose”
The runtime-information generated by the ANU pq is displayed. By default, pq works
silently.

”OutputLevel”, n
The runtime-information generated by the ANU pq is displayed at output level n,
which must be a integer from 0 to 3. This parameter implies ”Verbose”.

”SetupFile”, name
Do not run the ANU pq, just construct the input file and store it in the file name.
In this case true is returned.

Alternatively, you can pass Pq a record as a parameter, which contains as entries some (or
all) of the above mentioned. Those parameters which do not occur in the record are set to
their default values.

See also 57.2.

gap> RequirePackage("anupq");
gap> f2 := FreeGroup(2, "f2");
Group(f2.1, f2.2)
gap> Pq(f2, rec(Prime := 2, ClassBound := 3));
Group(G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10)
gap> g := f2 / [f2.1^4, f2.2^4];;
gap> Pq(g, rec(Prime := 2, ClassBound := 3));
Group(G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8)
gap> Pq(g, "Prime", 2, "ClassBound", 3, "Exponent", 4);
Group(G.1, G.2, G.3, G.4, G.5, G.6, G.7)
gap> g := f2 / [f2.1^25, Comm(Comm(f2.2,f2.1),f2.1), f2.2^5];;
gap> Pq(g, "Prime", 5, "Metabelian", "ClassBound", 5);
Group(G.1, G.2, G.3, G.4, G.5, G.6, G.7)

This function requires the package ”anupq” (see 56.1).

57.2 PqHomomorphism

PqHomomorphism(G, images)

Let G be a p-quotient of F computed using Pq. If images is a list of images of F.generators
under an automorphism of F , PqHomomorphism will return the corresponding automorphism
of G .

gap> F := FreeGroup (2, "F");
Group(F.1, F.2)
gap> G := Pq (F, "Prime", 5, "Class", 2);
Group(G.1, G.2, G.3, G.4, G.5)
gap> PqHomomorphism (G, [F.2, F.1]);
GroupHomomorphismByImages(Group(G.1, G.2, G.3, G.4, G.5), Group(
G.1, G.2, G.3, G.4, G.5), [G.1, G.2, G.3, G.4, G.5],
[G.2, G.1, G.3^4, G.5, G.4])

57.3 PqDescendants

PqDescendants(G, ...)

57.3. PQDESCENDANTS 1013

Let G be an ag group of prime power order with a consistent power-commutator presentation
(see 25.28). PqDescendants returns a list of descendants of G .

If G does not have p-class 1, then a list of automorphisms of G must be bound to the
record component G.automorphisms such that G.automorphisms together with the inner
automorphisms of G generate the automorphism group of G .

One method which may be used to obtain such a generating set for the automorphism
group is to call StandardPresentation. The record returned has a generating set for the
automorphism group of G stored as a component (see 57.6).

The following optional parameters or parameter pairs are supported.

”ClassBound”, n
PqDescendants generates only descendants with lower exponent-p class at most n.
The default value is the exponent-p class of G plus one.

”OrderBound”, n
PqDescendants generates only descendants of size at most pn . Note that you cannot
set both ”OrderBound” and ”StepSize”.

”StepSize”, n
Let n be a positive integer. PqDescendants generates only those immediate descen-
dants which are pn bigger than their parent group.

”StepSize”, l
Let l be a list of positive integers such that the sum of the length of l and the
exponent-p class of G is equal to the class bound ”ClassBound”. Then l describes
the step size for each additional class.

”AgAutomorphisms”
The automorphisms stored in G.automorphisms are a PAG generating sequence for
the automorphism group of G supplied in reverse order.

”RankInitialSegmentSubgroups”, n
Set the rank of the initial segment subgroup chosen to be n. By default, this has
value 0.

”SpaceEfficient”
The ANU pq performs calculations more slowly but with greater space efficiency.
This flag is frequently necessary for groups of large Frattini quotient rank. The space
saving occurs because only one permutation is stored at any one time. This option
is only available in conjunction with the ”AgAutomorphisms” flag.

”AllDescendants”
By default, only capable descendants are constructed. If this flag is set, compute all
descendants.

”Exponent”, n
Construct only descendants with exponent n. Default is no exponent law.

”Metabelian”
Construct only metabelian descendants.

”SubList”, sub
Let L be the list of descendants generated. If list sub is supplied, PqDescendants
returns Sublist(L,sub). If an integer n is supplied, PqDescendants returns L[n].

1014 CHAPTER 57. ANU PQ

”Verbose”
The runtime-information generated by the ANU pq is displayed. By default, pq works
silently.

”SetupFile”, name
Do not run the ANU pq, just construct the input file and store it in the file name.
In this case true is returned.

”TmpDir”, dir
PqDescendants stores intermediate results in temporary files; the location of these
files is determined by the value selected by TmpName. If your default temporary
directory does not have enough free disk space, you can supply an alternative path dir .
In this case PqDescendants stores its intermediate results in a temporary subdirectory
of dir . Alternatively, you can globally set the variable ANUPQtmpDir, for instance in
your ”.gaprc” file, to point to a suitable location.

Alternatively, you can pass PqDescendants a record as a parameter, which contains as
entries some (or all) of the above mentioned. Those parameters which do not occur in the
record are set to their default values.

Note that you cannot set both ”OrderBound” and ”StepSize”.

In the first example we compute all descendants of the Klein four group which have exponent-
2 class at most 5 and order at most 26.

gap> f2 := FreeGroup(2, "g");;
gap> g := AgGroupFpGroup(f2 / [f2.1^2, f2.2^2, Comm(f2.2,f2.1)]);
Group(g.1, g.2)
gap> g.name := "g";;
gap> l := PqDescendants(g, "OrderBound", 6, "ClassBound", 5,
> "AllDescendants");;
gap> Length(l);
83
gap> Number(l, x -> x.isCapable);
47
gap> List(l, x -> Size(x));
[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32,
32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32,
32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64]

gap> List(l, x -> Length(PCentralSeries(x, 2)) - 1);
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5]

In the second example we compute all capable descendants of order 27 of the elementary
abelian group of order 9. Here, we supply automorphisms which form a PAG generating
sequence (in reverse order) for the class 1 group, since this makes the computation more
efficient.

gap> f2 := FreeGroup(2, "g");;

57.4. PQLIST 1015

gap> g := AgGroupFpGroup(f2 / [f2.1^3, f2.2^3, Comm(f2.1,f2.2)]);
Group(g.1, g.2)
gap> g.name := "g";;
gap> g.automorphisms := [];;
gap> GroupHomomorphismByImages(g, g, [g.1, g.2], [g.1^2, g.2^2]);;
gap> Add(g.automorphisms, last);
gap> GroupHomomorphismByImages(g, g, [g.1, g.2], [g.2^2, g.1]);;
gap> Add(g.automorphisms, last);
gap> GroupHomomorphismByImages(g,g,[g.1,g.2],[g.1*g.2^2,g.1^2*g.2^2]);;
gap> Add(g.automorphisms, last);
gap> GroupHomomorphismByImages(g, g, [g.1,g.2], [g.1,g.1^2*g.2]);;
gap> Add(g.automorphisms, last);
gap> GroupHomomorphismByImages(g, g, [g.1, g.2], [g.1^2, g.2]);;
gap> Add(g.automorphisms, last);
gap> l := PqDescendants(g, "OrderBound", 3,
> "ClassBound", 2,
> "AgAutomorphisms");;
gap> Length(l);
2
gap> List(l, x -> Size(x));
[27, 27]
gap> List(l, x -> Length(PCentralSeries(x, 3)) - 1);
[2, 2]

In the third example, we compute all capable descendants of the elementary abelian group
of order 52 which have exponent-5 class at most 3, exponent 5, and are metabelian.

gap> f2 := FreeGroup(2, "g");;
gap> g := AgGroupFpGroup(f2 / [f2.1^5, f2.2^5, Comm(f2.2,f2.1)]);
Group(g.1, g.2)
gap> g.name := "g";;
gap> l := PqDescendants(g,"Metabelian","ClassBound",3,"Exponent",5);;
gap> List(l, x -> Length(PCentralSeries(x, 5)) - 1);
[2, 3, 3]
gap> List(l, x -> Length(DerivedSeries(x)));
[3, 3, 3]
gap> List(l, x -> Maximum(List(Elements(x), y -> Order(x,y))));
[5, 5, 5]

This function requires the package ”anupq” (see 56.1).

57.4 PqList

PqList(file)
PqList(file, sub)
PqList(file, n)

The function PqList reads a file file and returns the list L of ag groups defined in this file.

If list sub is supplied as a parameter, the function returns Sublist(L, sub). If an integer
n is supplied, PqList returns L[n].

1016 CHAPTER 57. ANU PQ

This function and SavePqList (see 57.5) can be used to save and restore a list of descendants
(see 57.3).

This function requires the package ”anupq” (see 56.1).

57.5 SavePqList

SavePqList(name, list)

The function SavePqList writes a list of descendants list to a file name.

This function and PqList (see 57.4) can be used to save and restore results of PqDescendants
(see 57.3).

This function requires the package ”anupq” (see 56.1).

57.6 StandardPresentation

StandardPresentation(F, p, ...)
StandardPresentation(F, G, ...)

Let F be a finitely presented group. Then StandardPresentation returns the standard
presentation for the desired p-quotient of F as an ag group.

Let H be the p-quotient whose standard presentation is computed. A generating set for a
supplement to the inner automorphism group of H is also returned, stored as the component
H .automorphisms. Each generator is described by its action on each of the generators of
the standard presentation of H .

A finitely-presented group F must be supplied as input. Usually, the user will also supply a
prime p and the program will compute the standard presentation for the desired p-quotient
of F .

Alternatively, a user may supply an ag group G which is the class 1 p-quotient of F . If this is
so, a list of automorphisms of G must be bound to the record component G.automorphisms
such that G.automorphisms together with the inner automorphisms of G generate the
automorphism group of G . The presentation for G can be constructed by an initial call to
Pq (see 57.1).

Of course, G need not be the class 1 p-quotient of F . However, G.automorphisms must
contain a description of the automorphism group of G and this is most readily available
when G is an elementary abelian group. Where the necessary information is available for
a p-quotient of higher class, one can apply the standard presentation algorithm from that
class onwards.

The following parameters or parameter pairs are supported.

”ClassBound”, n
The standard presentation is computed for the largest p-quotient of F having lower
exponent-p class at most n.

”Exponent”, n
The p-quotient computed has exponent n. By default, no exponent law is enforced.

”Metabelian”
The p-quotient constructed is metabelian.

57.6. STANDARDPRESENTATION 1017

”AgAutomorphisms”
The automorphisms stored in G.automorphisms are a PAG generating sequence for
the automorphism group of G supplied in reverse order.

”Verbose”
The runtime-information generated by the ANU pq is displayed. By default, pq works
silently.

”OutputLevel”, n
The runtime-information generated by the ANU pq is displayed at output level n,
which must be a integer from 0 to 3. This parameter implies ”Verbose”.

”SetupFile”, name
Do not run the ANU pq, just construct the input file and store it in the file name.
In this case true is returned.

”TmpDir”, dir
StandardPresentation stores intermediate results in temporary files; the location of
these files is determined by the value selected by TmpName. If your default temporary
directory does not have enough free disk space, you can supply an alternative path
dir . In this case StandardPresentation stores its intermediate results in a temporary
subdirectory of dir . Alternatively, you can globally set the variable ANUPQtmpDir, for
instance in your ”.gaprc” file, to point to a suitable location.

Alternatively, you can pass StandardPresentation a record as a parameter, which contains
as entries some (or all) of the above mentioned. Those parameters which do not occur in
the record are set to their default values.

We illustrate the method with the following examples.

gap> f2 := FreeGroup("a", "b");;
gap> g := f2 / [f2.1^25, Comm(Comm(f2.2,f2.1), f2.1), f2.2^5];
Group(a, b)
gap> StandardPresentation(g, 5, "ClassBound", 10);
Group(G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12,
G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23,
G.24, G.25, G.26)
gap> f2 := FreeGroup("a", "b");;
gap> g := f2 / [f2.1^625,
> Comm(Comm(Comm(Comm(f2.2,f2.1),f2.1),f2.1),f2.1)/Comm(f2.2,f2.1)^5,
> Comm(Comm(f2.2,f2.1),f2.2), f2.2^625];;
gap> StandardPresentation(g, 5, "ClassBound", 15, "Metabelian");
Group(G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12,
G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20)
gap> f4 := FreeGroup("a", "b", "c", "d");;
gap> g4 := f4 / [f4.2^4, f4.2^2 / Comm(Comm (f4.2, f4.1), f4.1),
> f4.4^16, f4.1^16 / (f4.3 * f4.4),
> f4.2^8 / (f4.4 * f4.3^4)];
Group(a, b, c, d)
gap> g := Pq(g4, "Prime", 2, "ClassBound", 1);
Group(G.1, G.2)
gap> g.automorphisms := [];;

1018 CHAPTER 57. ANU PQ

gap> GroupHomomorphismByImages(g,g,[g.1,g.2],[g.2,g.1*g.2]);;
gap> Add(g.automorphisms, last);
gap> GroupHomomorphismByImages(g,g,[g.1,g.2],[g.2,g.1]);;
gap> Add(g.automorphisms, last);
gap> StandardPresentation(g4,g,"ClassBound",14,"AgAutomorphisms");
Group(G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12,
G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23,
G.24, G.25, G.26, G.27, G.28, G.29, G.30, G.31, G.32, G.33, G.34,
G.35, G.36, G.37, G.38, G.39, G.40, G.41, G.42, G.43, G.44, G.45,
G.46, G.47, G.48, G.49, G.50, G.51, G.52, G.53)

This function requires the package ”anupq” (see 56.1).

57.7 IsomorphismPcpStandardPcp

IsomorphismPcpStandardPcp(G, S)

Let G be a p-group and let S be the standard presentation computed for G by StandardPresentation.
IsomorphismPcpStandardPcp returns the isomorphism from G to S .

We illustrate the function with the following example.

gap> F := FreeGroup (6);
Group(f.1, f.2, f.3, f.4, f.5, f.6)
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3];;
gap> q := F / R;;
gap> G := Pq (q, "Prime", 3, "ClassBound", 3);
Group(G.1, G.2, G.3, G.4, G.5, G.6)
gap> S := StandardPresentation (q, 3, "ClassBound", 3);
Group(G.1, G.2, G.3, G.4, G.5, G.6)
gap> phi := IsomorphismPcpStandardPcp (G, S);
GroupHomomorphismByImages(Group(G.1, G.2, G.3, G.4, G.5,
G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6],
[G.1*G.2^2*G.3*G.4^2*G.5^2, G.1*G.2*G.3*G.5, G.3^2, G.4*G.6^2, G.5,

G.6])

This function requires the package ”anupq” (see 56.1).

57.8 AutomorphismsPGroup

AutomorphismsPGroup(G)
AutomorphismsPGroup(G, output-level)

Let G be a p-group. Then AutomorphismsPGroup returns a generating set for the automor-
phism group of G . Each generator is described by its action on each of the generators of G .
The runtime-information generated by the ANU pq is displayed at output-level , which must
be a integer from 0 to 3.

57.9. ISISOMORPHICPGROUP 1019

We illustrate the function using the p-group considered above.

gap> Auts := AutomorphismsPGroup (G);
[GroupHomomorphismByImages(Group(G.1, G.2, G.3, G.4, G.5,

G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6],
[G.1, G.2*G.5^2, G.3, G.4, G.5, G.6]),

GroupHomomorphismByImages(Group(G.1, G.2, G.3, G.4, G.5,
G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6],
[G.1, G.2*G.3, G.3, G.4, G.5, G.6]),

GroupHomomorphismByImages(Group(G.1, G.2, G.3, G.4, G.5,
G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6], [G.1*G.3^2, G.2, G.3*G.5, G.4,
G.5, G.6]), GroupHomomorphismByImages(Group(G.1, G.2, G.3,

G.4, G.5, G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6],
[G.1*G.6, G.2*G.6, G.3, G.4, G.5, G.6]),

GroupHomomorphismByImages(Group(G.1, G.2, G.3, G.4, G.5,
G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6], [G.1*G.5^2, G.2*G.5, G.3, G.4,
G.5, G.6]), GroupHomomorphismByImages(Group(G.1, G.2, G.3,

G.4, G.5, G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6], [G.1*G.6^2, G.2*G.6, G.3, G.4,
G.5, G.6]), GroupHomomorphismByImages(Group(G.1, G.2, G.3,

G.4, G.5, G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6],
[G.1*G.4, G.2*G.4*G.6, G.3, G.4*G.6, G.5, G.6]),

GroupHomomorphismByImages(Group(G.1, G.2, G.3, G.4, G.5,
G.6), Group(G.1, G.2, G.3, G.4, G.5, G.6),
[G.1, G.2, G.3, G.4, G.5, G.6],
[G.1^2*G.3^2, G.2^2*G.3, G.3*G.5, G.4^2, G.5^2, G.6^2])]

This function requires the package ”anupq” (see 56.1).

57.9 IsIsomorphicPGroup

IsIsomorphicPGroup(G, H)

The functions returns true if G is isomorphic to H . Both groups must be ag groups of prime
power order.

gap> p1 := Group((1,2,3,4), (1,3));
Group((1,2,3,4), (1,3))
gap> p2 := SolvableGroup(8, 5);
Q8
gap> p3 := SolvableGroup(8, 4);
D8
gap> IsIsomorphicPGroup(AgGroup(p1), p2);
false
gap> IsIsomorphicPGroup(AgGroup(p1), p3);

1020 CHAPTER 57. ANU PQ

true

The function computes and compares the standard presentations for G and H (see 57.6).

This function requires the package ”anupq” (see 56.1).

Chapter 58

Automorphism Groups of
Special Ag Groups

This chapter describes functions which compute and display information about automor-
phism groups of finite soluble groups.

The algorithm used for computing the automorphism group requires that the soluble group
be given in terms of a special ag presentation. Such presentations are described in the
chapter of the GAP manual which deals with Special Ag Groups. Given a group presented
by an arbitrary ag presentation, a special ag presentation can be computed using the function
SpecialAgGroup.

The automorphism group is returned as a standard GAP group record. Automorphisms are
represented by their action on the sag group generating set of the input group. The order
of the automorphism group is also computed.

The performance of the automorphism group algorithm is highly dependent on the structure
of the input group. Given two groups with the same sequence of LG-series factor groups
it will usually take much less time to compute the automorphism group of the one with
the larger automorphism group. For example, it takes less than 1 second (Sparc 10/52)
to compute the automorphism group of the exponent 7 extraspecial group of order 73.
It takes more than 40 seconds to compute the automorphism group of the exponent 49
extraspecial group of order 73. The orders of the automorphism groups are 98784 and 2058
respectively. It takes only 20 minutes (Sparc 10/52) to compute the automorphism group of
the 2-generator Burnside group of exponent 6, a group of order 228 ·325 whose automorphism
group has order 240 · 353 · 5 · 7; note, however, that it can take substantially longer than this
to compute the automorphism groups of some of the groups of order 64 (for nilpotent groups
one should use the function AutomorphismsPGroup from the ANU PQ package instead).

The following section describes the function that computes the automorphism group of a
special ag group (see 58.1). It is followed by a description of automorphism group elements
and their operations (see 58.2 and 58.3). Functions for obtaining some structural information
about the automorphism group are described next (see 58.4, 58.5 and 58.6). Finally, a
function that converts the automorphism group into a form which may be more suitable for
some applications is described (see 58.7).

1021

1022 CHAPTER 58. AUTOMORPHISM GROUPS OF SPECIAL AG GROUPS

58.1 AutGroupSagGroup

AutGroupSagGroup(G)
AutGroupSagGroup(G, l)

Given a special ag group G , the function AutGroupSagGroup computes the automorphism
group of G . It returns a group generated by automorphism group elements (see 58.2). The
order of the resulting automorphism group can be obtained by applying the function Size
to it.

If the optional argument l is supplied, the automorphism group of G/Gl is computed, where
Gl is the l-th term of the LG-series of G (see More about Special Ag Groups).

gap> C6 := CyclicGroup(AgWords, 6);;
gap> S3 := SymmetricGroup(AgWords, 3);;
gap> H := WreathProduct(C6,S3);;
gap> G := SpecialAgGroup(H / Centre(H));;
gap> G := RenamedGensSagGroup(G, "g"); # rename gens of G to [g1,g2,..,g12]
Group(g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12)
gap> G.name := "G";;
gap> A := AutGroupSagGroup(G);
Group(Aut(G, [g1*g2, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12
]), Aut(G, [g1, g2, g3^2, g4^2*g6^2*g7, g5^2*g6*g7^2, g6*g8^2,
g7*g8^2, g8^2, g10*g11, g10, g9*g10, g9*g11*g12]), Aut(G,

[g1, g2, g3, g4, g5^2*g6*g7^2, g6*g7, g7^2, g8^2, g9, g10, g11, g12
]), Aut(G, [g1, g2, g3, g4*g6*g7^2, g5*g6^2*g7, g6, g7, g8, g9, g10,
g11, g12]), Aut(G, [g1, g2, g3, g4, g5*g6*g7^2, g6, g7, g8, g9,
g10, g11, g12]), Aut(G, [g1, g2, g3, g4^2, g5*g6^2*g7, g6^2*g8,
g7^2*g8, g8, g10*g11, g10, g9*g10, g9*g11*g12]), Aut(G,

[g1, g2, g3, g4*g6^2*g7, g5*g6*g7^2, g6, g7, g8, g9, g10, g11, g12
]), InnerAut(G, g1), InnerAut(G, g3), InnerAut(G, g4), InnerAut(G,
g5), InnerAut(G, g6), Aut(G, [g1, g2, g3*g7*g8, g4, g5, g6*g8, g7,
g8, g9, g10, g11, g12]), InnerAut(G, g7*g8), Aut(G,

[g1, g2, g3, g4, g5*g8, g6, g7, g8, g9, g10, g11, g12]), InnerAut(G,
g8^2), Aut(G, [g1, g2, g3, g4, g5, g6, g7, g8, g9, g9*g11, g9*g10,
g10*g11*g12]), Aut(G, [g1, g2, g3, g4, g5, g6, g7, g8, g10*g12,
g10, g9*g11*g12, g9*g10]), InnerAut(G, g10), InnerAut(G,

g11), InnerAut(G, g12), InnerAut(G, g9))
gap> Size(A);
30233088
gap> PrimePowersInt(last);
[2, 9, 3, 10]

The size of the outer automorphism group is easily computed as follows.

gap> innersize := Size(G) / Size(Centre(G));
23328
gap> outersize := Size(A) / innersize;
1296

58.2. AUTOMORPHISM GROUP ELEMENTS 1023

58.2 Automorphism Group Elements

An element a of an automorphism group is a group element record with the following
additional components:

isAut
Is bound to true if a is an automorphism record.

group
Is the special ag group G on which the automorphism a acts.

images
Is the list of images of the generating set of G under a. That is, a.images[i] is the
image of G.generators[i] under the automorphism.

The following components may also be defined for an automorphism group element:

inner
If this component is bound, then it is either an element g of G indicating that a is
the inner automorphism of G induced by g , or it is false indicating that a is not an
inner automorphism.

weight
This component is set for the elements of the generating set of the full automorphism
group of a sag group. It stores the weight of the generator (see 58.4).

Along with most of the functions that can be applied to any group elements (e.g. Order
and IsTrivial), the following functions are specific to automorphism group elements:

IsAut(a)

The function IsAut returns true if a is an automorphism record, and false otherwise.

IsInnerAut(a)

Returns true if a is an inner automorphism, and false otherwise. If a.inner is already
bound, then the information stored there is used. If a.inner is not bound, IsInnerAut
determines whether a is an inner automorphism, and sets a.inner appropriately before
returning the answer.

58.3 Operations for Automorphism Group Elements

a = b

For automorphism group elements a and b, the operator = evaluates to true if the auto-
morphism records correspond to the same automorphism, and false otherwise. Note that
this may return true even when the two records themselves are different (one of them may
have more information stored in it).

a * b

For automorphism group elements a and b, the operator * evaluates to the product ab of
the automorphisms.

1024 CHAPTER 58. AUTOMORPHISM GROUPS OF SPECIAL AG GROUPS

a / b

For automorphism group elements a and b, the operator / evaluates to the quotient ab−1

of the automorphisms.

a ^ i

For an automorphism group element a and an integer i , the operator ^ evaluates to the i -th
power ai of a.

a ^ b

For automorphism group elements a and b, the operator ^ evaluates to the conjugate b−1ab
of a by b.

Comm(a, b)

The function Comm returns the commutator a−1b−1ab of the two automorphism group ele-
ments a and b.

g ^ a

For a sag group element g and an automorphism group element a, the operator ^ evaluates
to the image ga of the ag word g under the automorphism a. The sag group element g must
be an element of a.group.

S ^ a

For a subgroup S of a sag group and an automorphism group element a, the operator ^
evaluates to the image Sa of the subgroup S under the automorphism a. The subgroup S
must be a subgroup of a.group.

list * a
a * list

For a list list and an automorphism group element a, the operator * evaluates to the list
whose i -th entry is list[i] * a or a * list[i] respectively.

list ^ a

For a list list and an automorphism group element a, the operator ^ evaluates to the list
whose i -th entry is list[i] ^ a.

Note that the action of automorphism group elements on the elements of the sag group via
the operator ^ corresponds to the default action OnPoints (see Other Operations) so that
the functions Orbit and Stabilizer can be used in the natural way. For example:

gap> Orbit(A, G.7);
[g7, g7*g8^2, g7^2, g7^2*g8, g7*g8, g7^2*g8^2]
gap> Length(last);
6

58.4. AUTGROUPSTRUCTURE 1025

gap> S := Subgroup(G, [G.11, G.12]);
Subgroup(G, [g11, g12])
gap> Size(S);
4
gap> Orbit(A, S);
[Subgroup(G, [g11, g12]), Subgroup(G, [g9*g10, g9*g11*g12])]
gap> Intersection(last);
Subgroup(G, [])

58.4 AutGroupStructure

AutGroupStructure(A)

The generating set of the automorphism group returned by AutGroupSagGroup is closely
related to a particular subnormal series of the automorphism group. This function displays
a description of the factors of this series.

Let A be the automorphism group of G. Let G = G1 > G2 > . . . > Gm > Gm+1 = 1 be
the LG-series of G (see More about Special Ag Groups). For 0 ≤ i ≤ m let A2i+1 be the
subgroup of A containing all those automorphisms which induce the identity on G/Gi+1.
Clearly A1 = A and A2m+1 = 1. Furthermore, let A2i+2 be the subgroup of A2i+1 containing
those automorphisms which also act trivially on the quotient Gi/Gi+1. Note that A2/A3 is
always trivial. Thus the subnormal series

A = A1 ≥ A2 ≥ . . . ≥ A2m+1 = 1

of A is obtained. The subgroup Ai is the weight i subgroup of A. The weight of a generator
α of A is defined to be the least i such that α ∈ Ai.
The function AutGroupStructure takes as input an automorphism group A computed using
AutGroupSagGroup and prints out a description of the non-trivial factors of the subnormal
series of the automorphism group A.

The factor of weight i is Ai/Ai+1. A factor of even weight is an elementary abelian group,
and it is described by giving its order. A factor of odd weight is described by giving a
generating set for a faithful representation of it as a matrix group acting on a layer of the
LG-series of G (the weight 2i− 1 factor acts on the LG-series layer Gi/Gi+1).

gap> AutGroupStructure(A);;

Order of full automorphism group is 30233088 = 2^9 * 3^10

Factor of size 2 (matrix group, weight 1)
Field: GF(2)
[1 1]
[0 1]

Factor of size 2 (matrix group, weight 3)
Field: GF(3)
[2]

Factor of size 36 = 2^2 * 3^2 (matrix group, weight 5)

1026 CHAPTER 58. AUTOMORPHISM GROUPS OF SPECIAL AG GROUPS

Field: GF(3)
[1 0 0] [1 0 1] [1 0 0] [2 0 0] [1 0 2]
[0 2 1] [0 1 2] [0 1 1] [0 1 2] [0 1 1]
[0 0 1] [0 0 1] [0 0 1] [0 0 2] [0 0 1]

[2 0 0] [1 0 1]
[0 2 0] [0 1 0]
[0 0 2] [0 0 1]

Factor of size 27 = 3^3 (elementary abelian, weight 6)

Factor of size 3 (elementary abelian, weight 8)

Factor of size 27 = 3^3 (elementary abelian, weight 10)

Factor of size 6 = 2 * 3 (matrix group, weight 11)
Field: GF(2)
[1 0 0 0] [0 1 0 1]
[1 0 1 0] [0 1 0 0]
[1 1 0 0] [1 0 1 1]
[0 1 1 1] [1 1 0 0]

Factor of size 16 = 2^4 (elementary abelian, weight 12)

As mentioned earlier, each generator of the automorphism group has its weight stored in
the record component weight.

gap> List(Generators(A), a -> a.weight);
[1, 3, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 8, 10, 10, 10, 11, 11, 12, 12,
12, 12]

Note that the subgroup Ai of A is generated by the elements of the generating set of A whose
weights are at least i. Hence, in analogy to strong generating sets of permutation groups,
the generating set of A is a strong generating set relative to the chain of subgroups Ai.

The generating set of a matrix group displayed by AutGroupStructure corresponds directly
to the list of elements of the corresponding weight in A.generators. In the example above,
the first matrix listed at weight 5 corresponds to A.generators[3], and the last matrix
listed at weight 5 corresponds to A.generators[9].

It is also worth noting that the generating set for an automorphism group returned by
AutGroupSagGroup can be heavily redundant. In the example given above, the weight
5 matrix group can be generated by just three of the seven elements listed (for example
elements 1, 5 and 6). The other four elements can be discarded from the generating set for
the matrix group, and the corresponding elements of the generating set for A can also be
discarded.

58.5. AUTGROUPFACTORS 1027

58.5 AutGroupFactors

AutGroupFactors(A)

The function AutGroupFactors takes as input an automorphism group A computed by
AutGroupSagGroup and returns a list containing descriptions of the non-trivial factors
Ai/Ai+1 (see 58.4). Each element of this list is either a list [p, e] which indicates that
the factor is elementary abelian of order pe, or a matrix group which is isomorphic to the
corresponding factor.

gap> fact := AutGroupFactors(A);
[Group([[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]]),
Group([[Z(3)]]),
Group([[Z(3)^0, 0*Z(3), 0*Z(3)], [0*Z(3), Z(3), Z(3)^0],

[0*Z(3), 0*Z(3), Z(3)^0]],
[[Z(3)^0, 0*Z(3), Z(3)^0], [0*Z(3), Z(3)^0, Z(3)],
[0*Z(3), 0*Z(3), Z(3)^0]],

[[Z(3)^0, 0*Z(3), 0*Z(3)], [0*Z(3), Z(3)^0, Z(3)^0],
[0*Z(3), 0*Z(3), Z(3)^0]],

[[Z(3), 0*Z(3), 0*Z(3)], [0*Z(3), Z(3)^0, Z(3)],
[0*Z(3), 0*Z(3), Z(3)]],

[[Z(3)^0, 0*Z(3), Z(3)], [0*Z(3), Z(3)^0, Z(3)^0],
[0*Z(3), 0*Z(3), Z(3)^0]],

[[Z(3), 0*Z(3), 0*Z(3)], [0*Z(3), Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), Z(3)]],

[[Z(3)^0, 0*Z(3), Z(3)^0], [0*Z(3), Z(3)^0, 0*Z(3)],
[0*Z(3), 0*Z(3), Z(3)^0]]), [3, 3], [3, 1], [3, 3],

Group([[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)],
[Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2)],
[0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0]],

[[0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0],
[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0],
[Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2)]]), [2, 4]]

gap> Length(fact);
8
gap> Size(fact[3]);
36

Of course, the factors of the returned series can be examine further. For example

gap> F := fact[3];;
gap> D := DerivedSubgroup(F);;
gap> Nice(Generators(D));
Field: GF(3)
[1 0 0]
[0 1 2]
[0 0 1]

gap> S := SylowSubgroup(F,2);;

1028 CHAPTER 58. AUTOMORPHISM GROUPS OF SPECIAL AG GROUPS

gap> Nice(Generators(S));
Field: GF(3)
[2 0 0] [1 0 0]
[0 1 1] [0 2 2]
[0 0 2] [0 0 1]

58.6 AutGroupSeries

AutGroupSeries(A)

The function AutGroupSeries takes as input an automorphism group A computed by
AutGroupSagGroup and returns a list containing those subgroups Ai of A which give non-
trivial quotients Ai/Ai+1 (see 58.4).

gap> A.name := "Aut(G)";;
gap> series := AutGroupSeries(A);;
gap> Length(series);
8
gap> series[7];
Subgroup(Aut(G),
[Aut(G, [g1, g2, g3, g4, g5, g6, g7, g8, g9, g9*g11, g9*g10,

g10*g11*g12]),
Aut(G, [g1, g2, g3, g4, g5, g6, g7, g8, g10*g12, g10, g9*g11*g12,

g9*g10]), InnerAut(G, g10), InnerAut(G, g11), InnerAut(G, g12),
InnerAut(G, g9)])

gap> series[8];
Subgroup(Aut(G), [InnerAut(G, g10), InnerAut(G, g11),
InnerAut(G, g12), InnerAut(G, g9)])

Each of the subgroups in the list has its weight stored in record component weight.

gap> series[7].weight;
11
gap> series[8].weight;
12

58.7 AutGroupConverted

AutGroupConverted (A)

Convert the automorphism group returned by AutGroupSagGroup into a group generated
by GroupHomomorphismByImages records, and return the resulting group. Note that this
function should not be used unless absolutely necessary, since operations for elements of the
resulting group are substantially slower than operations with automorphism records.

gap> H := AutGroupConverted(A);
Group(GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g2, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],

58.7. AUTGROUPCONVERTED 1029

[g1, g2, g3^2, g4^2*g6^2*g7, g5^2*g6*g7^2, g6*g8^2, g7*g8^2, g8^2,
g10*g11, g10, g9*g10, g9*g11*g12

]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4, g5^2*g6*g7^2, g6*g7, g7^2, g8^2, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4*g6*g7^2, g5*g6^2*g7, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4, g5*g6*g7^2, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4^2, g5*g6^2*g7, g6^2*g8, g7^2*g8, g8, g10*g11, g10,
g9*g10, g9*g11*g12]), GroupHomomorphismByImages(G, G,

[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4*g6^2*g7, g5*g6*g7^2, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4^2, g5^2, g6^2*g7^2*g8^2, g7*g8^2, g8^2, g10*g11, g10,
g9*g10, g9*g11*g12]), GroupHomomorphismByImages(G, G,

[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4*g6*g7^2, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g4^2, g2, g3*g6^2*g7, g4, g5*g7^2*g8, g6*g8^2, g7*g8^2, g8,
g10*g11, g9*g10*g12, g11*g12, g11

]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g5^2, g2, g3, g4*g7*g8^2, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g6^2*g7*g8, g2, g3, g4*g8, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3*g7*g8, g4, g5, g6*g8, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4*g8, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4, g5*g8, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g8, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g9*g11, g9*g10, g10*g11*g12

1030 CHAPTER 58. AUTOMORPHISM GROUPS OF SPECIAL AG GROUPS

]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4, g5, g6, g7, g8, g10*g12, g10, g9*g11*g12, g9*g10
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1, g2, g3, g4*g9*g12, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g9*g10*g11, g2, g3, g4*g12, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g9*g11, g2, g3, g4*g11*g12, g5, g6, g7, g8, g9, g10, g11, g12
]), GroupHomomorphismByImages(G, G,
[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12],
[g1*g9*g10*g11, g2, g3, g4*g9*g10*g11, g5, g6, g7, g8, g9, g10, g11,
g12]))

Chapter 59

Cohomology

This chapter describes functions which may be used to perform certain cohomological cal-
culations on a finite group G .

These include:
(i) The p-part Mulp of the Schur multiplier Mul of G , and a presentation of a covering
extension of Mulp by G , for a specified prime p;
(ii) The dimensions of the first and second cohomology groups of G acting on a finite
dimensional KG module M , where K is a field of prime order; and
(iii) Presentations of split and nonsplit extensions of M by G .

All of these functions require G to be defined as a finite permutation group. The functions
which compute presentations require, in addition, a presentation of G . Finally, the functions
which operate on a module M require the module to be defined by a list of matrices over
K . This situation is handled by first defining a GAP record, which contains the required
information. This is done using the function CHR, which must be called before any of the
other functions. The remaining functions operate on this record.

If no presentation of the permutation group G is known, and G has order at most 32767,
then a presentation can be computed using the function CalcPres. On the other hand, if
you start with a finitely presented group, then you can create a permutation representation
with the function PermRep (although there is no guarantee that the representation will be
faithful ingeneral).

The functions all compute and make use of a descending sequence of subgroups of G , starting
at G and ending with a Sylow p-subgroup of G , and it is usually most efficient to have the
indices of the subgroups in this chain as small as possible. If you get a warning message,
and one of the function fails because the indices in the chain computed are too large, then
you can try to remedy matters by supplying your own chain. See Section 59.10 for more
details, and an example.

If you set the external variable InfoCohomolofy to the value Print, then a small amount of
information will be printed, indicating what is happening. If chr is the cohomology record
you are working with, and you set the field chr.verbose to the value true, then you will
see all the output of the external programs.

1031

1032 CHAPTER 59. COHOMOLOGY

59.1 CHR

CHR(G, p, [F], [mats])

CHR constructs a cohomology-record, which is used as a parameter for all of the other
functions in this chapter. G must be a finite permutation group, and p a prime number.
If present, F must either be zero or a finitely presented group with the same number of
generators as G , of which the relators are satisfied by the generators of G . In fact, to obtain
meaningful results, F should almost certainly be isomorphic to G . If present, mats should
be a list of invertible matrices over the finite field K = GF(p). The list should have the
same length as the number of generators of G , and the matrices should correspond to these
generators, and define a GF(p)G-module, which we will denote by M .

59.2 SchurMultiplier

SchurMultiplier(chr)

chr must be a cohomology-record that was created by a call of CHR(G,p,[F],[mats]).
SchurMultiplier calculates the p-part Mulp of the Schur multiplier Mul of G . The result
is returned as a list of integers, which are the abelian invariants of Mulp. If the list is empty,
then Mulp is trivial.

59.3 CoveringGroup

CoveringGroup(chr)

chr must be a cohomology-record, created by a call of CHR(G,p,F,[mats]), where F is a
finitely presented group. CoveringGroup calculates a presentation of a covering extension
of Mulp by G , where Mulp is the p-part of the Schur multiplier Mul of G . The set of
generators of the finitely presented group that is returned is a union of two sets, which are
in one-one correspondence with the generators of F and of Mulp, respectively.

The relators fall into three classes:
a) Those that specify the orders of the generators of Mulp;
b) Those that say that the generators of Mulp are central; and
c) Those that give the values of the relators of F as elements of Mulp.

59.4 FirstCohomologyDimension

FirstCohomologyDimension(chr)

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats). (If there is no
finitely presented group F involved, then the third parameter of CHR should be given as 0.)
FirstCohomologyDimension calculates and returns the dimension over K = GF(p) of the
first cohomology group H1(G,M) of the group G in its action on the module M defined by
the matrices mats.

59.5 SecondCohomologyDimension

SecondCohomologyDimension(chr)

59.6. SPLITEXTENSION 1033

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats). (If there is no
finitely presented group F involved, then the third parameter of CHR should be given as 0.)
SecondCohomologyDimension calculates and returns the dimension over K = GF(p) of the
second cohomology group H2(G,M) of the group G in its action on the module M defined
by the matrices mats.

59.6 SplitExtension

SplitExtension(chr)

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats), where F is a
finitely presented group. SplitExtension returns a presentation of the split extension of
the module M defined by the matrices mats by the group G . This is a straightforward
calculation, and involves no call of the external cohomology programs. It is provided here
for convenience.

59.7 NonsplitExtension

NonsplitExtension(chr, [vec])

chr must be a cohomology-record, created by a call of CHR(G,p,F,mats), where F is a
finitely presented group. If present, vec must be a list of integers of length equal to the
dimension over K = GF(p) of the second cohomology group H2(G,M) of the group G in
its action on the module M defined by the matrices mats. NonsplitExtension calculates
and returns a presentation of a nonsplit extension of M by G . Since there may be many such
extensions, and the equivalence classes of these extensions are in one-one correspondence
with the nonzero elements of H2(G,M), the optional second parameter can be used to
specify an element of H2(G,M) as a vector. The default value of this vector is [1,0,...,0].
The set of generators of the finitely presented group that is returned is a union of two sets,
which are in one-one correspondence with the generators of F and of M (as an abelian
group), respectively.

The relators fall into three classes:
a) Those that say that M is an abelian group of exponent p;
b) Those that define the action of the generators of F on those of M ; and
c) Those that give the values of the relators of F as elements of M .

(Note:It is not particularly efficient to call SecondCohomologyDimension first to calculate
the dimension of H2(G,M), which must of course be known if the second parameter is to be
given; it is preferable to call NonsplitExtension immediately without the second parameter
(which will return one nonsplit extension), and then to call SecondCohomologyDimension,
which will at that stage return the required dimension immediately - all subsequent calls of
NonsplitExtension on chr will also yield immediate results.)

59.8 CalcPres

CalcPres(chr)

CalcPres computes a presentation of the permutation group chr.permgp on the same gen-
erators as chr.permgp, and stores it as chr.fpgp. It currently only works for groups of
order up to 32767, although that could easily be increased if required.

1034 CHAPTER 59. COHOMOLOGY

59.9 PermRep

PermRep(G, K)

PermRep calculates the permutation representation of the finitely presented group F on
the right cosets of the subgroup K , and returns it as a permutation group of which the
generators correspond to those of F . It simply calls the GAP Todd-Coxeter function. Of
course, there is no guarantee in general that this representation will be faithful.

59.10 Further Information

Suppose, as usual, that the cohomology record chr was constructed with the call CHR(G,p,
[F],[mats]). All of the functions make use of a strictly decreasing chain of subgroups
of the permutation group G starting with G itself and ending with a Sylow p-subgroup P
of G . In general, the programs run most efficiently if the indices between successive terms
in this sequence are as small as possible. By default, GAP will attempt to find a suitable
chain, when you call the first cohomology function on chr . However, you may be able to
construct a better chain yourself. If so, then you can do this by assigning the record field
chr.chain to the list L of subgroups that you wish to use. You should do that before calling
any of the cohomology functions. Remeber that the first term in the list must be G itself,
the sequence of subgroups must be strictly decreasing, and the last term must be equal to
the Sylow subgroup stored as chr.sylow. (You can change chr.sylow to a different Sylow
p-subgroup if you like.) Here is a slightly contrived example of this process.

gap> RequirePackage("cohomolo");
gap> G:=AlternatingGroup(16);;
gap> chr:=CHR(G,2);;
gap> InfoCohomology:=Print;;
gap> SchurMultiplier(chr);
#Indices in the subgroup chain are: 2027025 315
#WARNING: An index in the subgroup chain found is larger than 50000.
#This calculation may fail. See manual for possible remedies.
#I Cohomology package: Calling external program.
#I External program complete.
Error, ’Cohomology’ failed for some reason.
in
Cohomology(chr, true, false, false, TmpName()) called from
SchurMultiplier(chr) called from
main loop
brk> quit;

The first index in the chain found by GAP was hopelessly large. Let’s try and do better.

gap> P:=chr.sylow;;
gap> H1:=Subgroup(G, [(1,2)(9,10), (2,3,4,5,6,7,8),
> (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]);;
gap> Index(G,H1);
6435
gap> H2:=Subgroup(H1, [(1,2)(5,6), (1,2)(9,10), (2,3,4),
> (1,5)(2,6)(3,7)(4,8),

59.10. FURTHER INFORMATION 1035

> (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]);;
gap> Index(H1,H2);
1225
gap> IsSubgroup(H2,P);
true

If that had been false, we could have replaced chr.sylow by a Sylow 2-subgroup of H2. As
it is true, we just continue.

gap> Index(H2,P);
81
gap> chr.chain := [G,H1,H2,P];;
gap> SchurMultiplier(chr);
#I Cohomology package: Calling external program.
#I External program complete.
#I Removing temporary files.
[2]

1036 CHAPTER 59. COHOMOLOGY

Chapter 60

CrystGap–The Crystallographic
Groups Package

The CrystGap package provides functions for the computation with affine crystallographic
groups, in particular space groups. Also provided are some functions dealing with related
linear matrix groups, such as point groups. For the definition of the standard crystallo-
graphic notions we refer to the International Tables [TH95], in particular the chapter by
Wondratschek [Won95], and to the introductory chapter in [BBN+78]. Some material can
also be found in the chapters 37.13 and 37.12. The principal algorithms used in this pack-
age are described in [BEN97], a preprint of which in included in the doc directory of this
package.

CrystGap is implemented in the GAP language, and runs on any system supporting GAP 3.4.4.
The function WyckoffLattice, however, requires the share package XGap, which in turn runs
only under Unix. The functions described in this chapter can be used only after loading
CrystGap with the command

gap> RequirePackage("cryst");

CrystGap has been developed by

Bettina Eick
Lehrstuhl D für Mathematik, RWTH Aachen, D-52056 Aachen, Germany
e-mail: Bettina.Eick@math.RWTH-Aachen.de

Franz Gähler
Centre de Physique Théorique, Ecole Polytechnique, F-91128 Palaiseau, France
e-mail: gaehler@pth.polytechnique.fr

Werner Nickel
School of Mathematical and Computational Sciences, University of St Andrews,
St Andrews, Fife KY16 9SS, Scotland
e-mail: werner@dcs.st-and.ac.uk

Please send bug reports, suggestions and other comments to any of these e-mail addresses.

The first and third authors acknowledge financial support from the Graduiertenkolleg Ana-
lyse und Konstruktion in der Mathematik. The second author was supported by the Swiss

1037

1038 CHAPTER 60. CRYSTGAP–THE CRYSTALLOGRAPHIC GROUPS PACKAGE

Bundesamt für Bildung und Wissenschaft in the framework of the HCM programme of the
European Community. This collaboration was in part made possible by financial support
from the HCM project Computational Group Theory.

60.1 Crystallographic Groups

An affine crystallographic group G is a subgroup of the group of all Euclidean motions of
d-dimensional space, with the property that its subgroup T of all pure translations is a
freely abelian, normal subgroup of G , which has rank at most equal to d , and which has
finite index in G .

In this package, the term CrystGroup always refers to such an affine crystallographic
group. Linear matrix groups, whether crystallographic or not, will carry different designa-
tions (see below). CrystGroups are represented as special matrix groups, whose elements
are affine matrices of the form

[M 0]
[t 1]

acting on row vectors (x, 1) from the right. Note that this is different from the crystallo-
graphic convention, where matrices usually act from the left on column vectors (see also
37.13). We have adopted this convention to maintain compatibility with the rest of GAP.

The “linear”parts M of the elements of a CrystGroup G generate the point group P of G ,
which is isomorphic to the quotient G/T . There is a natural homomorphism from G to P ,
whose kernel is T . The translation vectors of the elements of T generate a free Z-module L,
called the translation lattice of G . CrystGroups can be defined with respect to any basis
of Euclidean space, but internally most computations will be done in a basis which contains
a basis of L (see 60.3).

CrystGroups carry a special operations record CrystGroupOps, and are identified with a
tag isCrystGroup. CrystGroups must be constructed with a call to CrystGroup (see 60.4)
which sets the tag isCrystGroup to true, and sets the operations record to CrystGroupOps.

Warning: The groups in GAP’s crystallographic groups library (see 37.13), whether they are
extracted with SpaceGroup or TransposedSpaceGroup, are not CrystGroups in the sense
of this package, because CrystGroups have different record entries and a different operations
record. However, a group extracted with TransposedSpaceGroup from that library can be
converted to a CrystGroup by a call to CrystGroup (see 60.4).

60.2 Space Groups

A CrystGroup which has a translation subgroup of full rank is called a space group.
Certain functions are available only for space groups, and not for general CrystGroups,
notably all functions dealing with Wyckoff positions (see 60.17).

Space groups which are equivalent under conjugation in the affine group (shortly: affine
equivalent space groups) are said to belong to the same space group type. As is well
known, in three dimensions there are 219 such space group types (if only conjugation by
transformations with positive determinant is allowed, there are 230).

Representatives of all space group types in dimensions 2, 3 and 4 can be obtained from
the crystallographic groups library contained in GAP (see 37.13). They must be extracted

60.3. MORE ABOUT CRYSTALLOGRAPHIC GROUPS 1039

with the function CrystGroup, and not with the usual extraction functions SpaceGroup and
TransposedSpaceGroup of that library, as these latter functions return groups which do not
have an operations record that would allow to compute with them. CrystGroup accepts
exactly the same arguments as SpaceGroup and TransposedSpaceGroup. It returns the
same group as TransposedSpaceGroup, but equipped with a working operations record.
Space group types (and thus space groups) are classified into ZZ-classes and Q′ -classes. Two
space groups belong to the same ZZ-class if their point groups, expressed in a basis of their
respective translation lattices, are conjugate as subgroups of GL(d, ZZ). If the point groups
are conjugate as subgoups of GL(d,Q′), the two space groups are said to be in the same
Q′ -class. This provides also a classification of point groups (expressed in a lattice basis, i.e.,
integral point groups) into ZZ-classes and Q′ -classes.
For a given finite integral matrix group P , representing a point group expressed in a lattice
basis, a set of representative space groups for each space group type in the ZZ-class of P
can be obtained with SpaceGroupsPointGroup (see 60.16). If, moreover, the normalizer of
P in GL(d, ZZ) is known (see 60.23), exactly one representative is obtained for each space
group type. Representatives of all ZZ-classes of maximal irreducible finite point groups are
contained in a GAP library (see 37.12) in all dimensions up to 11, and in prime dimensions
up to 23. For some other dimensions, at least Q′ -class representatives are available.
Important information about a space group is contained in its affine normalizer (see
60.27), which is the normlizer of the space group in the affine group. In a way, the affine
normalizer can be regarded as the symmetry of the space group.
Warning: Groups which are called space groups in this manual should not be confused with
groups extracted with SpaceGroup from the crystallographic groups library (see 37.13). The
latter are not CrystGroups in the sense of this package.

60.3 More about Crystallographic Groups

In this section we describe how a CrystGroup G is represented internally. The casual user
can skip this section in a first reading. Although the generators of a CrystGroup can be
specified with respect to any basis, most computations are done internally in a special,
standard basis, which is stored in G.internalBasis. The results are translated into the
user-specified basis only afterwards. G.internalBasis consists of a (standard) basis of the
translation lattice of G , complemented, if necessary, with suitable standard basis vectors.
The standard basis of the translation lattice is stored in G.translations.
As soon as G.internalBasis has been determined, both the CrystGroup G and its point
group P obtain a component internalGenerators. For the point group P , the component
P.internalGenerators contains a set of generators of P , expressed with respect to the
internalBasis of G , whereas for the CrystGroup G the component G.internalGenerators
contains a set of homomorphic preimages of P.internalGenerators in G , also expressed
in the internalBasis of G . Thus G.internalGenerators does not contain any transla-
tion generators. These are easy to add, however: With respect to the internal basis, the
translations are generated by the first k standard basis vectors, where k is the rank of the
translation lattice.
Note that the internalGenerators of both a point group P and a CrystGroup G may
be changed by some functions, notably by FpGroup. Thus they need not have any obvious
connection to P.generators and G.generators, respectively. Internal record entries of a
CrystGroup should never be changed by the user.

1040 CHAPTER 60. CRYSTGAP–THE CRYSTALLOGRAPHIC GROUPS PACKAGE

60.4 CrystGroup

CrystGroup(matgroup)

CrystGroup(generating matrices)

CrystGroup(list of generators, identity)

CrystGroup(integers)

CrystGroup(string)

CrystGroup accepts as arguments either a group of affine matrices, or a list of generating
affine matrices, or an argument identifying a space group from the crystallographic groups
library, i.e., a list of two or five integers, or a string containing a Hermann-Mauguin symbol,
and converts it into a CrystGroup in the sense of this package. CrystGroup tests whether
the generators are indeed affine matrices.

60.5 IsCrystGroup

IsCrystGroup(G)

tests whether G.isCrystGroup is present and true. G.isCrystGroup is set by CrystGroup.

60.6 PointGroup

PointGroup(G)

extracts the point group P of a space group G , binds it to G.pointGroup, and returns
it. It also determines the homomorphism from G to P , and binds it to G.pointHomom.
A point group P has always a component P.isPointGroup set to true, and a component
P.crystGroup containing the CrystGroup from which it was constructed.

60.7 TranslationsCrystGroup

TranslationsCrystGroup(G)

determines a basis of the translation lattice of G , binds it to G.translations, and returns
it. Note that this translation lattice is always invariant under the point group P of G . If
G.translations is not yet present, a finite presentation of P needs to be determined. A ba-
sis of the translation lattice can also be added by the user, with AddTranslationsCrystGroup
(see 60.8).

Warning: The component G.translations must never be set by hand. The func-
tions TranslationsCrystGroup and AddTranslationsCrystGroups have important (and
wanted) side effects.

60.8 AddTranslationsCrystGroup

AddTranslationsCrystGroup(G, basis)

Since TranslationsCrystGroup (see 60.7) needs a presentation of the point group, the com-
putation of G.translations can be rather time consuming. If a basis of the translation lat-
tice is known, AddTranslationsCrystGroup can be used to add this knowledge to a Cryst-
Group. If G.translations is already known, its value is kept without further notice. It is

60.9. CHECKTRANSLATIONS 1041

the responsibility of the user that the basis handed over to AddTranslationsCrystGroup is
a correct basis of the translation lattice. In case of doubt, the function CheckTranslations
(see 60.9) can be used to check whether the basis added was indeed correct.

Warning: The component G.translations must never be set by hand. The func-
tions TranslationsCrystGroup and AddTranslationsCrystGroups have important (and
wanted) side effects.

60.9 CheckTranslations

CheckTranslations(G)

checks whether G.translations is indeed correct. If G.translations is incorrect, a warn-
ing message is printed, otherwise GAP remains silent. In the case of an incorrect translation
basis a new CrystGroup must be created, and the computations must be started afresh,
because the wrong translation basis may have produced wrong information components.
CheckTranslations is useful if a basis has been added with AddTranslationsCrystGroup,
and doubts arise later whether the basis added was correct.

60.10 ConjugatedCrystGroup

ConjugatedCrystGroup(G, c)

returns a new CrystGroup which is a conjugate of G . The conjugator c can either be a
d-dimensional linear matrix (which then is complemented with the zero translation), or a
(d + 1)-dimensional affine matrix. The generators are conjugated as gc = cgc−1. Some
components which are bound in G are copied and translated to the new basis, in par-
ticular G.generators, G.translations, G.internalBasis, and G.wyckoffPositons. If
G.internalBasis is bound,

ConjugatedCrystGroup(G, G.internalBasis)

returns a CrystGroup whose translation lattice (of rank k) is generated by the first k rows
of the identity matrix. ConjugatedCrystGroup allows as input only a parent CrystGroup.

60.11 FpGroup for point groups

FpGroup(P)

computes a finite presentation of the point group P , and binds it to P.fpGroup. If P (and
thus its CrystGroup G := P.crystGroup) is solvable, a power-commutator presentation is
returned.

Warning: If P is solvable, the abstract generators are not necessarily isomorphic images
of P.generators (see 60.3).

60.12 FpGroup for CrystGroups

FpGroup(G)

computes a finite presentation of the CrystGroup G , and binds it to G.fpGroup. If the
point group (and thus G) is solvable, a power-commutator presentation is returned. The

1042 CHAPTER 60. CRYSTGAP–THE CRYSTALLOGRAPHIC GROUPS PACKAGE

presentation is always an extension of the presentation of the point group (which is computed
if necessary).

Warning: The abstract generators of the presentation are not necessarily isomorphic images
of G.generators (see 60.3).

60.13 MaximalSubgroupsRepresentatives

MaximalSubgroupsRepresentatives(S, "translationEqual", [, ind])

MaximalSubgroupsRepresentatives(S, "classEqual", ind)

MaximalSubgroupsRepresentatives(S, ind)

returns a list of conjugacy class representatives of maximal subgroups of the CrystGroup
S . If ind is present, which must be a prime or a list of primes, only those subgroups are
returned whose index is a power of a prime contained in or equal to ind . If the flag “transla-
tionEqual”is present, only those subgroups are returned which are translation-equal (trans-
lationengleich) with S . If the flag “classEqual”is present, only those subgroups are return
which are class-equal (klassengleich) with S . ind is optional only if the flag “latticeEqual”is
present. In all other cases, ind is required.

60.14 IsSpaceGroup

IsSpaceGroup(S)

determines whether the CrystGroup S is a space group (see 60.1).

60.15 IsSymmorphicSpaceGroup

IsSymmorphicSpaceGroup(S)

determines whether the space group S is symmorphic. A space group is called symmorphic
if it is equivalent to a semidirect product of its point group with its translation subgroup.

60.16 SpaceGroupsPointGroup

SpaceGroupsPointGroup(P)

SpaceGroupsPointGroup(P, normalizer elements)

where P is any finite subgroup of GL(d, Z), returns a list of all space groups with point
group P, up to conjugacy in the full translation group of Euclidean space. All these space
groups are returned as CrystGroups in standard representation. If a second argument is
present, which must be a list of elements of the normalizer of P in GL(d, Z), only space
groups inequivalent under conjugation with these elements are returned. If these normalizer
elements, together with P, generate the full normalizer of P in GL(d, Z), then exactly one
representative of each space group type is obtained.

60.17 Wyckoff Positions

A Wyckoff position of a space group G is an equivalence class of points in Euclidean space,
having stabilizers which are conjugate subgroups of G . Apart from a subset of lower di-
mension, which contains points with even bigger stabilizers, a Wyckoff position consists of

60.18. WYCKOFFPOSITIONS 1043

a G-orbit of some affine subspace A. A Wyckoff position W therefore can be specified by
a representative affine subspace A and its stabilizer subgroup. In CrystGap, a Wyckoff
position W is represented as a record with the following components:

W.basis
Basis of the linear space L parallel to A. This basis is also a basis of the intersection
of L with the translation lattice of S.
Can be extracted with WyckoffBasis(W).

W.translation
W.translation is such that A = L + W.translation.
Can be extracted with WyckoffTranslation(W).

W.stabilizer
The stabilizer subgroup of any generic point in A.
Can be extracted with WyckoffStabilizer(W).

W.class
Wyckoff positions carry the same class label if and only if their stabilizers have point
groups which are conjugate subgroups of the point group of S.
Can be extracted with WyckoffPosClass(W).

W.spaceGroup
The space group of which it is a Wyckoff position.
Can be extracted with WyckoffSpaceGroup(W).

W.isWyckoffPosition
A flag identifying the record as a Wyckoff position. It is set to true.
Can be tested with IsWyckoffPosition(W).

W.operations
The operations record of a Wyckoff position. It currently contains only a Print
function.

60.18 WyckoffPositions

WyckoffPositions(G)

returns the list of all Wyckoff positions of the space group G .

60.19 WyckoffPositionsByStabilizer

WyckoffPositionsByStabilizer(G, U),

where G is a space group and U a subgroup of the point group or a list of such subgroups,
determines only the Wyckoff positions (see 60.18) having a representative affine subspace
whose stabilizer has a point group equal to the subgroup U or contained in the list U ,
respectively.

60.20 WyckoffPositionsQClass

WyckoffPositionsQClass(G, S)

For space groups with larger point groups, most of the time in the computation of Wyckoff
positions (see 60.18) is spent computing the subgroup lattice of the point group. If Wyckoff

1044 CHAPTER 60. CRYSTGAP–THE CRYSTALLOGRAPHIC GROUPS PACKAGE

positions are needed for several space groups which are in the same Q class, and therefore
have isomorphic point groups, one can avoid recomputing the same subgroup lattice for each
of them as follows. For the computation of the Wyckoff positions of the first space group S
one uses a call to WyckoffPositions. For the remaining space groups, S is then passed as
a second argument to WyckoffPositionsQClass(G, S), which uses some of the results
already obtained for S .

60.21 WyckoffOrbit

WyckoffOrbit(W)

takes a Wyckoff position W (see 60.17) and returns a list of Wyckoff positions which are
different representations of W , such that the representative affine subspaces of these repre-
sentations form an orbit under the space group G of W , modulo lattice translations.

60.22 WyckoffLattice

WyckoffLattice(G)

If a point x in a Wyckoff position W1 has a stabilizer which is a subgroup of the stabilizer
of some point y in a Wyckoff position W2, then the closure of W1 will contain W2. These
incidence relations are best represented in a graph. WyckoffLattice(G) determines and
displays this graph using XGAP (note that XGAP runs only under Unix plus the X Window
System). Each Wyckoff position is represented by a vertex. If W1 contains W2, its vertex
is placed below that of W2 (i.e., Wyckoff positions with bigger stabilizers are placed higher
up), and the two are connected, either directly (if there is no other Wyckoff position in
between) or indirectly. With the left mouse button and with the XGAP CleanUp menu it
is possible to change the layout of the graph (see the XGAP manual). When clicking with
the right mouse button on a vertex, a pop up menu appears, which allows to obtain the
following information about the representative affine subspace of the Wyckoff position:

StabDim:
Dimension of the affine subspace of stable points.

StabSize:
Size of the stabilizer subgroup.

ClassSize:
Number of Wyckoff positions having a stabilizer whose point group is in the same
subgroup conjugacy class.

IsAbelian, IsCyclic, IsNilpotent, IsPerfect, IsSimple, IsSolvable:
Information about the stabilizer subgroup.

Isomorphism:
Isomorphism type of the stabilizer subgroup. Works only for small sizes.

ConjClassInfo:
Prints (in the GAP window) information about each of the conjugacy classes of the
stabilizer, namely the order, the trace and the determinant of its elements, and the
size of the conjugacy class. Note that trace refers here only to the trace of the point
group part, without the trailing 1 of the affine matrix.

60.23. NORMALIZERGL 1045

Translation:
The representative point of the affine subspace.

Basis:
The basis of the linear space parallel to the affine subspace.

60.23 NormalizerGL

NormalizerGL(G),

where G is a finite subgroup of GL(d,Z), returns the normalizer of G in GL(d,Z). At present,
this function is available only for groups which are the point group of a CrystGroup extracted
from the space group library.

60.24 CentralizerGL

CentralizerGL(G),

where G is a finite subgroup of GL(d,Z), returns the centralizer of G in GL(d,Z). At present,
this function is available only for groups which are the point group of a CrystGroup extracted
from the space group library.

60.25 PointGroupsBravaisClass

PointGroupsBravaisClass(B)

PointGroupsBravaisClass(B [, norm])

where B is a finite integral matrix group, returns a list of representatives of those conjugacy
classes of subgroups of B which are in the same Bravais class as B . These representatives
are returned as parent groups, not subgroups. If B is a Bravais group, the list contains
a representative of each point group in the Bravais class of B . If a second argument is
present, which must be a list of elements of the normalizer of B in GL(d, ZZ), only subgroups
inequivalent under conjugation with these elements are returned.

60.26 TranslationNormalizer

TranslationNormalizer(S)

returns the normalizer of the space group S in the full translation group. At present, this
function is implemented only for space groups, not for general CrystGroups. The translation
normalizer TN of S may contain a continuous subgroup C . A basis of the space of such
continuous translations is bound in TN.continuousTranslations. Since this subgroup
is not finitely generated, it is not contained in the group generated by TN.generators.
Properly speaking, the translation normalizer is the span of TN and C together.

60.27 AffineNormalizer

AffineNormalizer(S)

returns the affine normalizer of the space group S . The affine normalizer contains the trans-
lation normalizer as a subgroup. Similarly as with TranslationNormalizer, the subgroup

1046 CHAPTER 60. CRYSTGAP–THE CRYSTALLOGRAPHIC GROUPS PACKAGE

C of continuous translations, which is not finitely generated, is not part of the group that is
returned. However, a basis of the space of continuous translations is bound in the component
continuousTranslations.
At present, this function is available only for for space groups, not for general CrystGroups.
Moreover, the NormalizerGL (see 60.23) of the point group of S must be know, which
currently is the case only for CrystGroups extracted from the space group library.

60.28 AffineInequivalentSubgroups

AffineInequivalentSubgroups(sub)

takes as input a list of subgroups with common parent space group S , and returns a sublist
of those which are affine inequivalent. For this, the affine normalizer of S is required, which
currently is available only if S is a space group extracted from the space groups library.

60.29 Other functions for CrystGroups

In the operations record of a CrystGroup many of the usual GAP functions are replaced
with a CrystGroup specific implementation. For other functions the default implementation
can be used. Since CrystGroups are matrix groups, all functions which work for a finite
matrix group should work also for a finite CrystGroup (i.e., one which contains no pure
translations). Of course, functions which require a finite group as input will work only
for finite CrystGroups. Following is a (probably not exhaustive) list of functions that are
known to work for also for infinite CrystGroups.

in
Parent, IsParent, Group, IsGroup
Subgroup, IsSubgroup, AsSubgroup, Index
Centralizer, Centre, Normalizer
Closure, NormalClosure
Intersection, NormalIntersection
ConjugacyClassSubgroups, ConjugateSubgroups
DerivedSubgroup, CommutatorSubgroup, Core
DerivedSeries, SubnormalSeries
FactorGroup, CommutatorFactorGroup
ConjugateSubgroup, TrivialSubgroup
IsAbelian, IsCentral, IsTrivial
IsNormal, IsSubnormal, IsPerfect, IsSolvable

The following functions work for CrystGroups provided the subgroup H has finite index
in G . The elements of the resulting domain are given in ascending order (with respect to an
ad hoc, but fixed ordering).

Cosets(G, H)
RightCosets(G, H)
LeftCosets(G, H)

The following functions dealing with group operations work for CrystGroups provided the
orbits of the action are finite. Since CrystGroups are not finite in general, this is a non-
trivial requirement, and so some care is needed.

60.30. COLOR GROUPS 1047

Orbit(G, d, opr)
Orbits(G, D, opr)
OrbitLengths(G, D, opr)
Stabilizer(G, d, opr)
RepresentativeOperation(G, d, e, opr)
RepresentativesOperation(G, d, opr)

The following functions have a CrystGroup specific implementation, but work for finite
CrystGroups only:

Elements(G)
ConjugacyClasses(G)
PermGroup(G)
SylowSubgroup(G, p)

60.30 Color Groups

Elements of a color group C are colored in the following way. The elements having the
same color as C.identity form a subgroup H , which has finite index n in C . H is called
the ColorSubgroup of C . Elements of C have the same color if and only if they are in the
same right coset of H in C . A fixed list of right cosets of H in C , called ColorCosets,
therefore determines a labelling of the colors, which runs from 1 to n. Elements of H
by definition have color 1, i.e., the coset with representative C.identity is always the
first element of ColorCosets. Right multiplication by a fixed element g of C induces a
permutation p(g) of the colors of the parent of C . This defines a natural homomorphism of
C into the permutation group of degree n. The image of this homomorphism is called the
ColorPermGroup of C , and the homomorphism to it is called the ColorHomomorphism of C .

60.31 ColorGroup

A color group is constructed with

ColorGroup(G, H),

which returns a colored copy of G , with color subgroup H . G must be a parent group, and
H must be a finite index subgroup of G . Color subgroups must be constructed as subgroups
of color parent groups, and not by coloring uncolored subgroups. Subgroups of color groups
will inherit the coloring of their parent, including the labelling of the colors.

Color groups are identified with a tag isColorGroup. They always have a component
colorSubgroup. Color parent groups moreover always have a component colorCosets,
which fixes a labelling of the colors.

Groups which may be colored include, in particular, CrystGroups, but coloring of any finite
group, such as a finite matrix group or permutation group, should work as well.

60.32 IsColorGroup

IsColorGroup(G)

checks whether G.isColorGroup is bound and true.

1048 CHAPTER 60. CRYSTGAP–THE CRYSTALLOGRAPHIC GROUPS PACKAGE

60.33 ColorSubgroup

ColorSubgroup(G)

returns the color subgroup of G .

60.34 ColorCosets

ColorCosets(G)

returns the color cosets of G .

60.35 ColorOfElement

ColorOfElement(G, elem)

returns the color of an element.

60.36 ColorPermGroup

ColorPermGroup(G)

returns the ColorPermGroup of G , which is the permutation group induced by G acting on
the colors of the parent of G .

60.37 ColorHomomorphism

ColorHomomorphism(G)

returns the homomomorphism from G to its ColorPermGroup.

60.38 Subgroup for color groups

If C is a color group,

Subgroup(C, [elems])

returns a colored subgroup of C , whereas

C.operations.UncoloredSubgroup(C, [elems])

returns an ordinary, uncolored subgroup.

60.39 PointGroup for color CrystGroups

If C is a color CrystGroup whose color subgroup is lattice-equal (or translationengleich)
with C , the point group of C can consistently be colored. In that case,

PointGroup(C)

returns a colored point group. Otherwise, the point group will be uncolored. An uncolored
point group can always be obtained with

C.operations.UncoloredPointGroup(C)

60.40. INEQUIVALENT COLORINGS OF SPACE GROUPS 1049

60.40 Inequivalent colorings of space groups

Two colorings of a space group S are equivalent if the two ColorSubgroups are conjugate
in the affine normalizer of S .

AffineInequivalentSubgroups(L)

where L is a list of sub space groups with a common parent space group S , returns a
list of affine inequivalent subgroups from L. At present, this routine is supported only for
CrystGroups constructed from the space group library.

A list of prime index p subgroups of S (actually, a list of conjugacy class representatives of
such subgroups) can be obtained with

Filtered(MaximalSubgroupsRepresentatives(S, p), U -> U.index = p)

These two routines together therefore allow to determine all inequivalent colorings of S with
p colors.

1050 CHAPTER 60. CRYSTGAP–THE CRYSTALLOGRAPHIC GROUPS PACKAGE

Chapter 61

The Double Coset Enumerator

61.1 Double Coset Enumeration

Double Coset Enumeration (DCE) can be seen either as a space- (and time-) saving variant
of ordinary Coset Enumeration (the Todd-Coxeter procedure), as a way of constructing
finite quotients of HNN-extensions of known groups or as a way of constructing groups
given by symmetric presentations in a sense defined by Robert Curtis. A double coset
enumeration works with a finitely-presented group G, a finitely generated subgroup H (given
by generators) and a finite subgroup K, given explicitly, usually as a permutation group.
The action of G on the cosets of H divides into orbits under K, and is constructed as such,
using only a relatively small amount of information for each orbit.
The next two sections 61.2 and 61.3 describe the authorship of the package, and the simple
procedure for installing it.
In 61.4 the calculation performed by the double coset enumerator, and the meaning of the
input is described more precisely. The following sections: 61.5, 61.6 and 61.7 describe how
the input is organized as GAP data, and a number of examples are given in 61.8.
The data structure returned by DCE is described in 61.9 and the control of the comments
printed during calculation in 61.10. Succeeding sections: 61.11, 61.12, 61.13, 61.14, 61.15
and 61.16 describe the basic functions used to run DCE, extract information from the result,
and save and restore double coset tables. The use of these functions is shown in 61.17.
The user can exert considerable control over the behaviour of DCE, as described in 61.18
and 61.19.
Since double coset enumeration can construct permutation representations of very high
degree, it may not be feasible to extract permutations from the result. Nevertheless, some
analysis of the permutation representation may be possible. This is described in 61.20 and
the functions used are documented in: 61.21, 61.22 and 61.23 and demonstrated in 61.24.
Finally, the link with Robert Curtis’ notion of a symmetric presentation is described in 61.25
with detailed documentation in 61.26 and 61.27.
More detailed documentation of the data structures used in double coset enumeration, and
the internal functions available to access them is found in the document “GAP Double Coset
Enumerator – Internals”, found in the doc directory of the dce package.

1051

1052 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

61.2 Authorship and Contact Information

The dce package was written by Steve Linton of the Division of Computer Science, University
of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK
e-mail: sal@dcs.st-and.ac.uk, and any problems or questions should be directed to him.

The work was done mainly during a visit to Lehrstuhl D f”ur Mathematik, RWTH-Aachen,
Aachen, Germany, and the author gratefuly acknowledges the hospitality of Lehrstuhl D
and the financial support of the Deutsche Forschungsgemeinschaft.

61.3 Installing the DCE Package

The DCE package is completely written in the GAP language, it does not require any
additional programs and/or compilations. It will run on any computer that runs GAP. In
the following we will describe the installation under UNIX. The installation on the Atari
ST, TT or IBM PC is similar.

In the example we give we will assume that GAP is installed in the home directory of a
pseudo user gap and that you, as user gap, want to install the DCE package. Note that
certain parts of the output in the examples should only be taken as rough outline, especially
file sizes and file dates are not to be taken literally.

First of all you have to get the file dce.zoo (see 55.1). Then you must locate the GAP
directories containing lib/ and doc/, this is usually gap3r4p2 where 2 is to be replaced by
the current the patch level.

user@host:~ > ls -l
drwxr-xr-x 11 gap gap 1024 Jul 8 14:05 gap3r4p2
-rw-r--r-- 1 gap gap 76768 Sep 11 12:33 dce.zoo
user@host:~ > ls -l gap3r4p2
drwxr-xr-x 2 gap gap 3072 Aug 26 11:53 doc
drwxr-xr-x 2 gap gap 1024 Jul 8 14:05 grp
drwxr-xr-x 2 gap gap 2048 Aug 26 09:42 lib
drwxr-xr-x 2 gap gap 2048 Aug 26 09:42 src
drwxr-xr-x 2 gap gap 1024 Aug 26 09:42 tst

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p2 to unpack the files. After you have unpacked the source you may remove
the archive-file.

user@host:~ > unzoo x dce.zoo
user@host:~ > ls -l gap3r4p2/pkg/dce
-rw-r--r-- 1 gap gap 1536 Nov 22 04:16 README
-rw-r--r-- 1 gap gap 116553 Nov 22 04:02 init.g
-rw-r--r-- 1 gap gap 48652 Nov 22 04:18 dce.tex
-rw-r--r-- 1 gap gap 549708 Nov 22 04:18 dce.dvi
-rw-r--r-- 1 gap gap 14112 Nov 22 04:18 dce-inte.tex
-rw-r--r-- 1 gap gap 116553 Nov 22 03:41 dce.g

Copy the file dce.tex into the doc/ directory, and edit manual.tex (also in the doc/
directory) and add a line \Include{dce} after the line \Include{cohomolo} near the end
of the file. Finally run latex again (see 55.3).

61.3. INSTALLING THE DCE PACKAGE 1053

user@host:~ > cd gap3r4p2/pkg/dce
user@host:../dce > cp dce.tex ../../doc
user@host:../dce > cd ../../doc
user@host:../doc > vi manual.tex # and add the necessary line
user@host:../doc > latex manual
a few messages about undefined references
user@host:../doc > latex manual
a few messages about undefined references
user@host:../doc > makeindex manual
’makeindex’ prints some diagnostic output
user@host:../doc > latex manual
there should be no warnings this time

Now it is time to test the installation. Let us assume that the executable of GAP lives in
src/ and is called gap.

user@host:~/gap3r4p2 > src/gap -b
gap> RequirePackage("dce");
gap> k := SymmetricGroup(3);
Group((1,3), (2,3))
gap> c := AbstractGenerator("c");;
gap> d := AbstractGenerator("d");;
gap> S5Pres := rec(
> groupK := k,
> gainGroups := [rec(), rec(dom := 3)],
> gens := [rec(name := c, invol := true, wgg := 2),
> rec(name := d, invol := true, wgg := 1)],
> relators := [DCEWord(k,c*d)^3,DCEWord(k,[(2,3),c])^3],
> subgens := [DCEWord(k,(1,2,3)), DCEWord(k,(1,2)), DCEWord(k,c)]);
rec(
groupK := Group((1,3), (2,3)),
gainGroups := [rec(

), rec(
dom := 3)],

gens := [rec(
name := c,
invol := true,
wgg := 2), rec(
name := d,
invol := true,
wgg := 1)],

relators :=
[DCEWord(Group((1,3), (2,3)),[c, d])^3, DCEWord(Group((1,3),

(2,3)),[(2,3), c])^3],
subgens :=
[DCEWord(Group((1,3), (2,3)),[(1,2,3)]), DCEWord(Group((1,3),

(2,3)),[(1,2)]), DCEWord(Group((1,3), (2,3)),[c])])
gap> u := DCE(S5Pres);
#I Set up generators and inverses

1054 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

#I Set up column structure: 4 columns
#I Pre-processed relators
#I Done subgroup generators
#I Also done relators in subgroup
#I Pushing at weight 3
#I 1 double 1 single 1 blanks
#I 1 DCEWord(K,[c, d])^3
#I 1 cases
#I 1 DCEWord(K,[(2,3), c])^3
#I 1 cases
#I Pushing at weight 5
#I 3 double 5 single 1 blanks
#I 2 DCEWord(K,[c, d])^3
#I 1 cases
#I 2 DCEWord(K,[(2,3), c])^3
#I 1 cases
#I 3 DCEWord(K,[c, d])^3
#I 2 cases
#I 3 DCEWord(K,[(2,3), c])^3
#I 3 cases
#I Pushing at weight 101
#I 3 double 5 single 0 blanks
#I 1 DCEWord(K,[c, c])
#I 1 cases
#I 1 DCEWord(K,[d, d])
#I 1 cases
#I Pushing at weight 103
#I 3 double 5 single 0 blanks
#I 2 DCEWord(K,[c, c])
#I 1 cases
#I 2 DCEWord(K,[d, d])
#I 1 cases
#I 3 DCEWord(K,[c, c])
#I 2 cases
#I 3 DCEWord(K,[d, d])
#I 1 cases
<< Double coset table "No name" closed 3 double 5 single >>

If RequirePackage signals an error check the permissions of the subdirectories pkg/ and
dce/.

61.4 Mathematical Introduction

Coset Enumeration can be considered as a means of constructing a permutation represen-
tation of a finitely-presented group. Let G be such a group, and let Ω = H\G be the set
of right cosets of a subgroup H, on which G acts. Let K be a subgroup of G. The action
of K will divide Ω into orbits corresponding to the double cosets H\G/K. Now, suppose
that x ∈ G and let L = K ∩Kx−1

. Let D ∈ H\G/K be a double coset and let d be a fixed

61.5. GAIN GROUP REPRESENTATION 1055

single coset contained in it (so that D = dK). Let l ∈ L. Then

(dl)x = (dx)lx ∈ (dx)K

so that the action of x on Ω can be computed from its action on a set of orbit representatives
of L and its action on L, which takes place within K. If L is large this can provide a con-
siderable saving of space. This space saving is the motivation for double coset enumeration.
The group L is called the gain group of x, since the space saving is approximately a factor
of |L|.
The input to the double coset enumeration algorithm includes a specification of a group
K, and of a set of generators X. For each x ∈ X, a pair of subgroups Lx, L(x) ≤ K is
given, together with an isomorphism θx : Lx → L(x). This information defines a group F ,
obtained from the free product of K with the free group FX by requiring that each x act
by conjugation on Lx according to the map θx. Technically F is a multiple HNN-extension
of K.

The final parts of the input (mathematically speaking, in practice additional input is used to
guide the program towards efficiency) are a set of relators R and a set of subgroup generators
W , consisting of elements of the free product of K and FX , that is words composed of the
letters x and elements of K.

The algorithm then constructs a compact representation of the action of a group G = F/N ,
where N = 〈R〉F , on the set Ω of cosets of H = 〈W 〉N/N . This can also be viewed as a
permutation action of F , with kernel N and point stabiliser 〈W 〉N . We take this view to
avoid writing KN/N all the time.

This representation is organized in terms of the orbits (double cosets) of K on Ω. For each
orbit D, an arbitrary representative d ∈ D is chosen, and the group Md = StabK(d) is
recorded (as a subgroup of K). For historical reasons this group is known as the “muddle
group of the double coset. This allows us to refer to elements of Ω by expressions of the
form dk, with

d1k1 = d2k2 ⇐⇒ d1 = d2 and k1k
−1
2 ∈Md1 .

We call such an expression a name for the element of Ω.

In addition for each x ∈ X, and for each orbit of Lx contained in D, with representative dk,
a name for the point dkx is recorded. By the arguments of the initial paragraph, the action
of x on any dk can then be computed, and the action of K is by right multiplication, so the
full action of F (or equivalently G) is available.

61.5 Gain Group Representation

In the representation described in section 61.4, computing the action of a generator x on a
double coset named dk depends on finding the Lx-orbit representative of dk. The Lx orbits
lying in D = dK correspond to the double cosets Md\K/Lx and so to the orbits of Md on
the left cosets Lx.

The effect of this is that the program spends most of its time computing with the action of
K on the left cosets of the various groups Lx. If this action can be represented in some more
direct way, such as an action on points, tuples or sets, then there is a huge performance gain.
The input format of the program is set up to reflect this. Each gain group Lx is specified

1056 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

by giving an action of K on some domain which is permutationally equivalent to the action
of K on left cosets of Lx.
It sometimes happens that two generators x and y have identical, or conjugate, gain groups.
The program does a considerable amount of pre-computation with each gain group, and
builds some potentially large data structures, so it is sensible to combine these for identical
or conjugate gain groups. To allow this, the gain groups are specified as one part of the
input, and then another part specifies, for each generator, a reference to the gain group and
possibly a conjugating element.

61.6 DCE Words

As indicated in section 61.4, the relators and subgroup generators are specified as elements
of the free product, K ∗ FX which is to say products of elements of K and generators from
X (and their inverses). These are represented in GAP as DCE Words, created using the
DCEWord function. This is called as DCEWord(K, l) where l is an element of K, a word
in abstract generators or a list of these. DCE Words are in GroupElements and can be
multiplied (when the groups K match), inverted, raised to powers and so forth.
Note that the abstract generators are used here simply as place-holders. Although, in
general, creating abstract generators with AbstractGenerator rather than FreeGroup is a
bad idea, it will not cause problems here. A new version of this package will be produced
for GAP 4 which will avoid this problem.

61.7 DCE Presentations

The input to the GAP Double Coset Enumerator is presented as a record. This has the
following compulsory components.
groupK The group K, given as a GAP group. In general, it is best to represent K as

a permutation group of low degree.
gainGroups This specifies the types (K-conjugacy classes) of gain groups L associated

with the generators. It takes the form of a list of records, each with the following
components:

dom – A representative of a set on which K acts in the same way that it acts on
the left cosets of L. If this is not given then L = K and other fields are set
accordingly.

op – The operation of K on this set. This should be a GAP operation such
as OnPoints. If op is not given, and dom is an integer then op defaults to
OnPoints. If op is not given and dom is a set, then the op defaults to OnSets.

gens This field specifies the generators (the set X). It is a list of records, each with
the fields:

name – The abstract generator that will be used to denote this generator in the
relations and subgroup generators.

invol – A Boolean value indicating whether this generator should be considered
as its own inverse. Default false.

inverse – The ’name’ of the inverse of this generator. This field is ignored if
invol is present. If both inverse and invol are absent then a new generator
will be created to be an inverse.

61.8. EXAMPLES OF DOUBLE COSET ENUMERATION 1057

wgg – The index (in gainGroups) of the gain group of this generator (up to
conjugacy).

ggconj – The gain group conjugator. The actual gain group of this generator will
be that defined by entry wgg of the gainGroups list, conjugated by the element
ggconj (of K). If this field is absent then it is taken to be the identity of K.

action – This specifies the isomorphism θx induced by x between Lx and Lx−1 .
It can be false, indicating no action, an element of K, indicating action by
conjugation, or it can be an explicit isomorphism. The default is false. If an
explicit homomorphism is given and the the field invol is not present, then
the field inverse must be present; that is, a generator inverse to x cannot be
synthesized in this case.

relators The relations of the presentation, as a list of DCE Words. Certain addi-
tional fields may be added to the words (which are represented as records) to optimize
the calculation. These are described below.

subgens The generators of H, as a list of DCE Words.

61.8 Examples of Double Coset Enumeration

To save space and avoid clutter the examples are shown without the gap> and > prompts, as
they might appear in an input file. For examples of DCE in operation see 61.17 and 61.19.

The Symmetric group of degree 5

It is well known that

G = S5 = 〈 a, b, c, d | a2 = b2 = c2 = d2 = (ab)3 = (bc)3 = (cd)3 =
(ac)2 = (ad)2 = (bd)2 = 1

〉
.

For brevity we denote this presentation by a Coxeter diagram:

b b b ba b c d

We let K = 〈 a, b 〉 ∼= S3 and identify a with (1, 2) and b with (2, 3). Then G is generated
by K and X = {c, d}. We can see from the presentation that Lc = 〈 a 〉 = StabK(3), while
Ld = K. We set H = 〈 a, b, c 〉 ∼= S4 and obtain the following presentation:

gap> k := SymmetricGroup(3);
Group((1,3), (2,3))
gap> c := AbstractGenerator("c");;
gap> d := AbstractGenerator("d");;
gap> S5Pres := rec(
> groupK := k,
> gainGroups := [rec(), # default to L=K
> rec(dom := 3)], # default to action on points
> gens := [rec(name := c, invol := true, wgg := 2),
> rec(name := d, invol := true, wgg := 1)],
> relators := [DCEWord(k,c*d)^3,DCEWord(k,[(2,3),c])^3],
> subgens := [DCEWord(k,(1,2,3)), DCEWord(k,(1,2)), DCEWord(k,c)]);;

1058 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

The Weyl Group of Type E6

We consider another group given by a Coxeter presentation

b b b b ba b c d e

bf
This time we take K = H = 〈 a, b, c, d, e 〉 ∼= S6 and obtain the presentation:

gap> k := SymmetricGroup(6);
Group((1,6), (2,6), (3,6), (4,6), (5,6))
gap> f := AbstractGenerator("f");;
gap> WE6Pres := rec (
> groupK := k,
> gainGroups := [rec(dom := [1,2,3])], # action defaults to OnSets
> gens := [rec(name := f,wgg := 1, invol := true)],
> relators := [DCEWord(k,[(3,4),f])^3],
> subgens := [DCEWord(k,(1,2,3,4,5,6)),DCEWord(k,(1,2))]);;

S5 revisited

To illustrate other features of the program, we consider the presentation of S5 again, but
this time we choose K = 〈 b, c 〉 ∼= S3 and identify b with (1, 2) and c with (2, 3). Now
La = 〈 c 〉 = StabK(1), while Ld = 〈 b 〉 = StabK(3). These are two conjugate subgroups of
K, so we can use the ggconj feature to combine the data structures for them.
We can present this as:

gap> k := SymmetricGroup(3);
Group((1,3), (2,3))
gap> a := AbstractGenerator("a");;
gap> d := AbstractGenerator("d");;
gap> b := (1,2);;
gap> c := (2,3);;
gap> S5PresA := rec (
> groupK := k,
> gainGroups := [rec(dom := 1)],
> gens := [rec(name := a, invol := true, wgg := 1),
> rec(name := d, invol := true, wgg := 1, ggconj := (1,3))],
> relators := [DCEWord(k,[c,d])^3,DCEWord(k,[a,b])^3,
> DCEWord(k,[a,d])^2],
> subgens := [DCEWord(k,(1,2,3)),DCEWord(k,(1,2)), DCEWord(k,a)]);;

The Harada-Norton Group

The almost-simple group HN : 2 can be constructed as follows. Take the symmetric group
S12 acting naturally on {1, . . . , 12} and let L be the stabiliser of {1, 2, 3, 4, 5, 6}. Then
L ∼= S6 × S6. Extend S12 by adjoining an element a which normalizes L and acts on
each factor S6 by its outer automorphism. Impose the additional relations a2 = 1 and
(a(6, 7))5 = 1.

61.9. THE DCE UNIVERSE 1059

With H = K, this construction translates directly into DCE input:
gap> a := AbstractGenerator("a");;
gap> K := Group((1,2,3,4,5,6,7,8,9,10,11,12),(1,2));;
gap> L := Stabilizer(K,[1,2,3,4,5,6],OnSets);;
gap> f := GroupHomomorphismByImages(L,L,
> [(1,5,4,3,2),(5,6),(12,8,9,10,11),(7,8)],
> [(1,5,4,3,2),(1,4)(2,3)(5,6),(12,8,9,10,11),(12,9)(10,11)(7,8)]);;
gap> HNPres := rec(
> groupK := K,
> gainGroups := [rec(dom := [1,2,3,4,5,6], op := OnSets)],
> gens := [rec(name := a, invol := true, wgg := 1, action := f)],
> relators := [DCEWord(K,[a,(6,7)])^5],
> strategy := rec(whichStrategy := "HLT", EC := [1140000]),
> subgens := [(1,2,3,4,5,6,7,8,9,10,11,12),(1,2)]);;

A Non-permutation Example
The programs were written with the case of K a permutation group uppermost in the
author’s mind, however other representations are possible.
In this example, we represent the symmetric group S4 as an AG-group in the Coxeter
presentation of S6. This example also demonstrates the explicit use of the action of K on
left cosets of Lx, when no suitable action on points, sets or similar is available.

gap> k := AgGroup(SymmetricGroup(4));
Group(g1, g2, g3, g4)
gap> a := PreImage(k.bijection,(1,2));
g1
gap> b := PreImage(k.bijection,(2,3));
g1*g2
gap> c := PreImage(k.bijection,(3,4));
g1*g4
gap> d := AbstractGenerator("d");;
gap> e := AbstractGenerator("e");;
gap> l := Subgroup(k,[a,b]);
Subgroup(Group(g1, g2, g3, g4), [g1, g1*g2])
gap> OurOp := function(cos,g)
> return g^-1*cos; # note the inversion
> end;;
gap> Pres := rec (
> groupK := k,
> gainGroups := [rec(dom := k.identity*l, op := OurOp),rec()],
> gens := [rec(name := d, invol := true, wgg := 1),
> rec(name := e, invol := true, wgg := 2)],
> relators := [DCEWord(k,d*e)^3,DCEWord(k,[c,d])^3],
> subgens := [DCEWord(k,a),DCEWord(k,b), DCEWord(k,c),DCEWord(k,d)]);;

61.9 The DCE Universe

The various user functions described below operate on a record called a DCE Universe.

1060 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

This is created by the function DCESetup (or by DCE, which calls DCESetup) and is then
passed as first argument to all other DCE functions. The following fields are likely to be of
most interest:

K The group K. For brevity this group is given the name “K”.

pres The presentation from which this universe was created.

isDCEUniverse Always true.

status A string describing the status of the enumeration. Values include:

“in end game” – The program believes that the enumeration is almost complete
and has shifted to a Felsch-like strategy to try and finish it.

“early-closed” – The table is closed, that is has no blank entries, but the program
has not actually proved that the permutation representation described satisfies
all the relations. The program will stop under these circumstances if the degree
falls within a range set by the user (see 61.18

“running” – Enumeration is in progress.

“closed” – The enumeration has been completed.

“Setting up” – The data structures are still being initialized.

“Set up” – The data structures are initialized but computation has not yet started.

degree The number of single cosets represented by the current double coset table.

dcct The number of double cosets in the current table.

61.10 Informational Messages from DCE

InfoDCE1

InfoDCE2

InfoDCE3

InfoDCE4

DCEInfoPrint

The level of information printed by the programs can be controlled by setting the vari-
ables InfoDCE1, InfoDCE2, InfoDCE3 and InfoDCE4. These can be (sensibly) set to either
DCEInfoPrint or to Ignore. By default InfoDCE1 is set to DCEInfoPrint and the rest to
Ignore. Setting further variables to DCEInfoPrint produces more detailed comments. The
higher numbered variables are intended mainly for debugging.

61.11 DCE

DCE(pres)

The basic command to run the double coset enumerator is DCE. This takes one argument,
the presentation record in the format described above, and returns a DCE Universe of status
“closed” or “early-closed”. The exact details of operation are controlled by various fields in
the input structure, as described in 61.18.

61.12. DCESETUP 1061

61.12 DCESetup

DCESetup(pres)

This function is called by DCE to initialize all the data structures needed. It returns a DCE
Universe of status “Set up”.

61.13 DCEPerm

DCEPerm(universe,word)

This function computes the permutation action of the DCEWord word on the single cosets
described by universe. The status of universe should be “closed” or “early-closed”. The
first time this function (or DCEPerms) is called some large data structures are computed and
stored in universe.

61.14 DCEPerms

DCEPerms(universe)

This function returns a list of permutations which generate the permutation group described
by universe, which should have status “closed” or “early-closed”. The permutations corre-
spond to the generators X of the presentation (except any which are inverses of preceding
generators) and then to the generators of K.

61.15 DCEWrite

DCEWrite(universe,filename)

This function writes selected information from the DCE Universe universe onto the file
filename in a format suitable for recovery with DCERead.

61.16 DCERead

DCERead(universe,filename)

This function recovers the information written to file filename by DCEWrite. universe must
be a DCE Universe of status “Set up”, created from exactly the same presentation as was
used to create the universe originally written to the file.

61.17 Example of DCE Functions

We take the first example presentation above, run it and demonstrate the above functions
on the result.

gap> k := S5Pres.groupK;;
gap> c := S5Pres.gens[1].name;;
gap> d := S5Pres.gens[2].name;;
gap> u := DCE(S5Pres);
#I Set up generators and inverses
#I Set up column structure: 4 columns

1062 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

#I Pre-processed relators
#I Done subgroup generators
#I Also done relators in subgroup
#I Pushing at weight 3
#I 1 double 1 single 1 blanks
#I 1 DCEWord(K,[c, d])^3
#I 1 cases
#I 1 DCEWord(K,[(2,3), c])^3
#I 1 cases
#I Pushing at weight 5
#I 3 double 5 single 1 blanks
#I 2 DCEWord(K,[c, d])^3
#I 1 cases
#I 2 DCEWord(K,[(2,3), c])^3
#I 1 cases
#I 3 DCEWord(K,[c, d])^3
#I 2 cases
#I 3 DCEWord(K,[(2,3), c])^3
#I 3 cases
#I Pushing at weight 101
#I 3 double 5 single 0 blanks
#I 1 DCEWord(K,[c, c])
#I 1 cases
#I 1 DCEWord(K,[d, d])
#I 1 cases
#I Pushing at weight 103
#I 3 double 5 single 0 blanks
#I 2 DCEWord(K,[c, c])
#I 1 cases
#I 2 DCEWord(K,[d, d])
#I 1 cases
#I 3 DCEWord(K,[c, c])
#I 2 cases
#I 3 DCEWord(K,[d, d])
#I 1 cases
<< Double coset table "No name" closed 3 double 5 single >>
gap> u.degree;
5
gap> u.status;
"closed"
gap> u.dcct;
3
gap> a1 := DCEWord(k,(1,2));
DCEWord(K,[(1,2)])
gap> b1 := DCEWord(k,(2,3));
DCEWord(K,[(2,3)])
gap> c1 := DCEWord(k,c);
DCEWord(K,[c])

61.18. STRATEGIES FOR DOUBLE COSET ENUMERATION 1063

gap> d1 := DCEWord(k,d);
DCEWord(K,[d])
gap> DCEPerm(u,a1);
#I Starting To Add Cosets
#I Done cosets, starting image
(4,5)
gap> DCEPerm(u,a1*c1*b1);
#I Done cosets, starting image
(2,4,5,3)
gap> DCEPerms(u);
#I Done cosets, starting image
#I Done cosets, starting image
#I Done cosets, starting image
#I Done cosets, starting image
[(2,3), (1,2), (3,5), (3,4)]
gap> DCEWrite(u,"s5.dct");
gap> u1 := DCESetup(S5Pres);
#I Set up generators and inverses
#I Set up column structure: 4 columns
#I Pre-processed relators
<< Double coset table "No name" Set up >>
gap> DCERead(u1,"s5.dct");
#I Read the file
gap> u1;
<< Double coset table "No name" closed 3 double 5 single >>
gap> DCEPerms(u1);
#I Starting To Add Cosets
#I Done cosets, starting image
#I Done cosets, starting image
#I Done cosets, starting image
#I Done cosets, starting image
[(2,3), (1,2), (3,5), (3,4)]

61.18 Strategies for Double Coset Enumeration

As with the Todd-Coxeter algorithm, the order of defining new (double) cosets and applying
relations can make a huge difference to the performance of the algorithm. There is consid-
erable scope for user control of the strategy followed by the DCE program. This is exercised
by setting the strategy field in the presentation record (and less importantly by adding
various fields to the relators). This field should be set to a record, for which various fields
are meaningful. The most important is whichStrategy, which should take one of three
values:

“HLT” A weighted Haselgrove-Leech-Trotter strategy. This is the default.

“Felsch” A pure Felsch strategy.

“Havas” A family of hybrid strategies, controlled by three parameters: FF which
regulates the use of the preferred definition list to ensure that all definitions get made

1064 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

eventually (high values use the list more); HavN which is the number of double cosets
that will be filled by definition before the relators are pushed from HavK double cosets.

When it completes successfully HLT is generally much the fastest strategy.

Apart from the fields FF, HavN and HavK, the other meaningful field in the strategy record
is EC, which is the set (usually a range) of degrees at which early-closing is allowed. Even if
you know the exact degree of the final representation it is worth-while allowing some “slack”
so that the “end-game” strategy can come into play.

The “HLT” strategy can be fine-tuned by setting “weights” on the relators. Weights are
integers, and a relator with higher weight will be used less than one with lower weight. This
is done by adding a field weight to the relator record. The default weight is the base two
logarithm of the length of the relator (after consecutive elements of K in the relator have
been combined).

Finally, setting the insg field of a relator causes it to be used as a subgroup generator as
well.

61.19 Example of Double Coset Enumeration Strategies

We look at a presentation for the sporadic group Fi22, given by the Coxeter diagram:

b b b b b bb b b
�
�

@
@

@
@

�
�

@
@

(1,2) (2,3) (3,4)

(4,5) (5,6)

(6,7)

a

g
f

with the additional relation (f(4, 5)(6, 7)(3, 4)(5, 6)a)4 = 1 (the “hexagon” relation).

As indicated by the labels on the diagram we take K = S7. The subgroup generated by all
the nodes except the left-most has index 3510. An enumeration over that subgroup is coded
as:

gap> k := SymmetricGroup(7);
Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7))
gap>
gap> aname := AbstractGenerator("a");; a := DCEWord(k,aname);
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7)),[a])
gap> fname := AbstractGenerator("f");; f := DCEWord(k,fname);
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7)),[f])
gap> gname := AbstractGenerator("g");; g := DCEWord(k,gname);
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7)),[g])
gap>
gap> hexagon := (f*DCEWord(k,(4,5)*(6,7)*(3,4)*(5,6))*a)^4;
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7),
(6,7)),[f, (3,4,6,7,5), a])^4
gap> hexagon.name := "hex";
"hex"
gap>

61.19. EXAMPLE OF DOUBLE COSET ENUMERATION STRATEGIES 1065

gap> rel1 := (a*DCEWord(k,(3,4)))^3;
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7)),[a, (3,4)])^
3
gap> rel2 := (f*DCEWord(k,(6,7)))^3;
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7)),[f, (6,7)])^
3
gap> rel3 := (a*g)^2;
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7)),[a, g])^2
gap> rel4 := (f*g)^3;
DCEWord(Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7)),[f, g])^3
gap>
gap> F22Pres := rec(
> groupK := k,
> gainGroups := [rec(), rec(dom := 7, op := OnPoints),
> rec(dom := [1,2,3], op := OnSets)],
> gens := [rec(name := aname, invol := true, wgg := 3),
> rec (name := fname, invol := true, wgg := 2),
> rec (name := gname, invol := true, wgg := 1)],
> relators := [rel1,rel2,rel4,rel3,hexagon],
> subgens := [(2,3,4,5,6,7),(3,2),f,a,g]);;

HLT Strategy

As given, this presentation will use the default HLT strategy. On a SparcStation 10-41 this
enumeration takes 60.8 CPU seconds and defines a total of 95 double cosets (for a final total
of 24).

Since we know the correct index in this example, we can use early-closing, by setting

gap> F22Pres.strategy := rec(EC := [3510]);
rec(
EC := [3510])

gap> DCE(F22Pres);
#I Set up generators and inverses
#I Set up column structure: 43 columns
#I Pre-processed relators
#I Done subgroup generators
#I Also done relators in subgroup
#I Pushing at weight 3
#I 1 double 7 single 2 blanks
#I 1 DCEWord(K,[a, (3,4)])^3
#I 4 cases
...

The calculation proceeds identically until, after 40 seconds, it reaches a table with 3510 single
cosets and only four blank entries. The program then changes strategies and attempts to
fill the blanks as seen in the following piece of output:

...
#I 13 hex
#I 70 cases

1066 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

#I 22 DCEWord(K,[a, (3,4)])^3
#I 39 cases
#I 22 DCEWord(K,[f, (6,7)])^3
#I 9 cases
#I 22 DCEWord(K,[f, g])^3
#I 3 cases
#I 22 DCEWord(K,[a, g])^2
#I 8 cases
#I 15 hex
#I 90 cases
#I Entering Pre-early closing 24 3510 4
#I 48 DCEWord(K,[a, (3,4)])^3
#I 29 cases
#I 48 DCEWord(K,[f, (6,7)])^3
#I 5 cases
<< Double coset table "No name" early-closed 24 double 3510 single >>

This succeeds after a further 2 seconds, producing a closed table. This method actually
defines more double cosets (97), but is much faster.

We can cause the change of strategies to occur a little earlier by widening the range of
acceptable indices. With:

gap> F22Pres.strategy := rec(EC := [3500..3600]);
rec(
EC := [3500 .. 3600])

gap> u := DCE(F22Pres);
#I Set up generators and inverses
#I Set up column structure: 43 columns
#I Pre-processed relators
#I Done subgroup generators
#I Also done relators in subgroup
#I Pushing at weight 3
#I 1 double 7 single 2 blanks
#I 1 DCEWord(K,[a, (3,4)])^3
#I 4 cases
...

With this option we see:

...
#I 13 hex
#I 70 cases
#I Entering Pre-early closing 24 3516 18
#I 22 DCEWord(K,[a, (3,4)])^3
#I 39 cases
#I 22 DCEWord(K,[f, (6,7)])^3
#I 9 cases
#I 22 DCEWord(K,[f, g])^3
#I 3 cases
#I 22 DCEWord(K,[a, g])^2

61.19. EXAMPLE OF DOUBLE COSET ENUMERATION STRATEGIES 1067

#I 8 cases
#I 22 hex
#I 130 cases
#I 22 DCEWord(K,[a, a])
#I 8 cases
#I 22 DCEWord(K,[f, f])
#I 3 cases
#I 22 DCEWord(K,[g, g])
#I 1 cases
#I 36 DCEWord(K,[a, (3,4)])^3
#I 39 cases
#I 36 DCEWord(K,[f, (6,7)])^3
#I 9 cases
#I 36 DCEWord(K,[f, g])^3
#I 3 cases
#I 36 DCEWord(K,[a, g])^2
#I 8 cases
#I 36 hex
#I 130 cases
<< Double coset table "No name" early-closed 24 double 3510 single >>

and a run time of about 37 seconds.
Apart from the early-closing criteria, we can tune the behaviour of the HLT algorithm by
varying the relator weights. We can see the default weights by doing:

gap> List(u.relators,r->[r,r.weight]);
[[DCEWord(K,[a, (3,4)])^3, 2], [DCEWord(K,[f, (6,7)])^3, 2],
[DCEWord(K,[f, g])^3, 2], [DCEWord(K,[a, g])^2, 2], [hex, 3],
[DCEWord(K,[a, a]), 100], [DCEWord(K,[f, f]), 100],
[DCEWord(K,[g, g]), 100]]

The relators with weight 100 are simply added automatically to ensure that the algorithm
cannot terminate without closing the table.
We could emulate the unweighted HLT algorithm by setting hexagon.weight:= 2;

This produces significantly worse performance, as the long hexagon relation is pushed more
often than necessary. On the other hand increasing its weight to 4 also produces worse per-
formance than the default, because unnecessarily much of the infinite hyperbolic reflection
group (defined by the other relations) is constructed.

Felsch Strategies
We can try this presentation with the Felsch strategy by simply setting:
F22Pres.strategy := rec(whichStrategy := "Felsch",EC := [3500..3600]);

Using this strategy the enumeration takes longer (92 seconds), but defines only 35 double
cosets in total. The Felsch algorithm can often be improved by adding the longer relators as
redundant subgroup generators. We can try this by setting hexagon.insg := true; but
the improvement is very slight (to 91 seconds and 35 double cosets).

Hybrid strategy

1068 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

We can access the hybrid methods be setting F22Pres.strategy.whichStrategy := "Havas";

We first look at the preferred definition list alone, by setting
gap> strat := F22Pres.strategy;
rec(

EC := [3500 .. 3600])
gap> strat.FF := 5;
5
gap> strat.HavN := 100;
100
gap> strat.HavK := 0;
0

This turns out to be significantly worse than the simple Felsch algorithm, defining 56 double
cosets and taking 145 seconds. Smaller values for FF produce performance closer to the
simple Felsch.
By setting

gap> strat.FF := 1;
1
gap> strat.HavN := 5;
5
gap> strat.HavK := 2;
2

We can try a hybrid strategies (without the PDL). This runs in about 100 seconds, making
41 definitions.

61.20 Functions for Analyzing Double Coset Tables

The functions DCEPerm and DCEPerms have already been described, while elementary infor-
mation (such as the numbers of single and double cosets) can be read directly from the DCE
Universe produced by an enumeration. When the number of single cosets is large, however,
as in the example of HN : 2 above, DCEPerm requires an improbably large amount of space,
so permutations cannot sensibly be obtained. However some analysis of the permutation
representation is possible directly from the double coset table.
Specifically, functions exist to study the orbits of H, and compute their sizes and the col-
lapsed adjacency matrices of the orbital graphs. The performance of these functions depends
crucially on the size of the group M = H ∩K, which will always be the muddle group of
the first double coset HK. When M = K, so that K ≤ H, then each orbit of H is just a
union of double cosets and the algorithms are fast, whereas when M = 1 there no benefit
over extracting permutations.

61.21 DCEColAdj

DCEColAdj(universe)
This function computes the complete set of collapsed adjacency matrices (incidence matri-
ces) for all the orbital graphs in the permutation action implied by universe, which must
be a DCE Universe of status “closed” or “early-closed”. For very large degrees, and/or if
some of the subgroup generators are long words, this function can take infeasibly long, so
some other functions are provided for partial calculations.

61.22. DCEHORBITS 1069

61.22 DCEHOrbits

DCEHOrbits(universe)

This function determines the orbits of H, as unions of orbits of M = H ∩ K. Various
additions are made to the data structures in universe, which are described in detail else-
where. The most comprehensible field is u.orbsizes which gives the number of points
(single cosets) in the orbits.

61.23 DCEColAdjSingle

DCEColAdjSingle(universe,orbnum)

This function determines the single collapsed adjacency matrix corresponding to orbital
graph number orbnum (in the ordering of <universe>.orbsizes). This takes time roughly
proportional to <universe>.orbsizes[<orbnum>], so that extracting the adjacency matri-
ces corresponding to small orbits in large representations is possible.

61.24 Example of DCEColAdj

We return to the hexagon presentation for Fi22, and join it just as the double coset enu-
meration is finishing:

gap> InfoDCE1 := Ignore;
function (...) internal; end
gap> u := DCE(F22Pres);
<< Double coset table "No name" early-closed 24 double 3510 single >>
gap> InfoDCE1 := DCEInfoPrint;;
gap> DCEHOrbits(u);
#I Completed preliminaries, index of M is 7
#I Annotated table
#I Completed orbit 1 size 1
#I Completed orbit 2 size 2816
#I Completed orbit 3 size 693
gap> u.orbsizes;
[1, 2816, 693]
gap> DCEColAdj(u);
#I Added contribution from 1 part 1
#I Added contribution from 1 part 2
#I Added contribution from 2 part 1
#I Added contribution from 2 part 5
#I Added contribution from 3 part 1
#I Added contribution from 4 part 1

. . .

#I Added contribution from 70 part 1
#I Added contribution from 70 part 3
#I Added contribution from 70 part 4
#I Added contribution from 70 part 5
#I Added contribution from 70 part 7

1070 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

#I Added contribution from 77 part 1
#I Added contribution from 77 part 5
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
[[0, 2816, 0], [1, 2248, 567], [0, 2304, 512]],
[[0, 0, 693], [0, 567, 126], [1, 512, 180]]]

gap> DCEColAdjSingle(u,3);
#I Added contribution from 2 part 5
#I Added contribution from 6 part 5
#I Added contribution from 7 part 3
#I Added contribution from 11 part 2
#I Added contribution from 13 part 5
#I Added contribution from 15 part 4
#I Added contribution from 19 part 1
#I Added contribution from 20 part 5
#I Added contribution from 22 part 4
#I Added contribution from 23 part 4
#I Added contribution from 26 part 1
#I Added contribution from 36 part 3
#I Added contribution from 42 part 7
#I Added contribution from 44 part 7
#I Added contribution from 61 part 1
#I Added contribution from 65 part 7
#I Added contribution from 70 part 5
[[0, 0, 693], [0, 567, 126], [1, 512, 180]]

61.25 Double Coset Enumeration and Symmetric Pre-
sentations

R.T. Curtis has defined the notion of a symmetric presentation: given a group K, permuting
a set S, we consider a generating set X in bijection with S, with conjugation by K permuting
X as K permutes S. A symmetric presentation is such a set up, together with relations
given in terms of the elements of K and T .

It is not hard to see that, at least when K is transitive on S, this is equivalent to the set
up for double coset enumeration, with one generator t, and gain group equal to the point
stabiliser in K of some s0 ∈ S. The relations can be written in terms of K, t and conjugates
of t by K, and so in terms of K and t.

61.26 SetupSymmetricPresentation

SetupSymmetricPresentation(K,name [, base [, op]])

The function SetupSymmetricPresentation implements the equivalence between presen-
tations for DCE and Symmetric Presentations in the sense of Curtis. The argument K is
the group acting, and name is an AbstractGenerator that will be used as t. The optional
arguments base and op can be used to specify s0 and the action of K on S. base defaults
to 1 and op to OnPoints.

The function returns a record with two components:

61.27. EXAMPLES OF DCE AND SYMMETRIC PRESENTATIONS 1071

skeleton a partial DCE Presentation. The fields K, gainGroups and gens are bound.
Fields relators and subgens must still be added, and name and strategy may be
added, before enumeration.

makeGen is a function which converts elements of Orbit(K,base,op) into DCE-
Words for the corresponding symmetric Generators.

61.27 Examples of DCE and Symmetric Presentations

M12

The following input gives a symmetric presentation of the Mathieu group M12:

gap> t := AbstractGenerator("t");;
gap> K := Group((1,2,3,4,5),(1,2,3));
Group((1,2,3,4,5), (1,2,3))
gap> SGrec := SetupSymmetricPresentation(K,t);
rec(
skeleton := rec(

groupK := Group((1,2,3,4,5), (1,2,3)),
gainGroups := [rec(

dom := 1,
op := function (...) internal; end)],

gens := [rec(
name := t,
wgg := 1)]),

makeGen := function (pt) ... end)
gap> t := SGrec.makeGen;
function (pt) ... end
gap> Pres := SGrec.skeleton;
rec(
groupK := Group((1,2,3,4,5), (1,2,3)),
gainGroups := [rec(

dom := 1,
op := function (...) internal; end)],

gens := [rec(
name := t,
wgg := 1)])

gap> Pres.name := "M12 Symmetric";
"M12 Symmetric"
gap> Pres.strategy := rec(EC := [1000..3000]);
rec(
EC := [1000 .. 3000])

gap> Pres.relators := [t(1)^3,(t(1)/t(2))^2*DCEWord(K,(3,4,5))];
[DCEWord(Group((1,2,3,4,5), (1,2,3)),[t])^3,
DCEWord(Group((1,2,3,4,5),
(1,2,3)),[t, (1,3,4,5,2), t^-1, (1,2,5,4,3), t, (1,3,4,5,2), t^-1\

, (1,2,5,4,3), (3,4,5)])]
gap> Pres.subgens := [DCEWord(K,(1,2,3,4,5)),DCEWord(K,(1,2,3)),
> (DCEWord(K,(1,2,3,4,5))*t(1))^8];

1072 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

[DCEWord(Group((1,2,3,4,5), (1,2,3)),[(1,2,3,4,5)]),
DCEWord(Group((1,2,3,4,5), (1,2,3)),[(1,2,3)]),
DCEWord(Group((1,2,3,4,5), (1,2,3)),[(1,2,3,4,5), t])^8]

gap> Pres.relators[1].weight := 2;; # default weight is too low

DCE enumerates this presentation in a few seconds.

gap> InfoDCE1 := Ignore;
function (...) internal; end
gap> u := DCE(Pres);
<< Double coset table "M12 Symmetric" early-closed 47 double
1584 single >>
gap> time;
5400

He : 2

The following is a presentation of He : 2 generated by 180 symmetric generators of order 7
permuted by 3S7× 2. This is really 30 generators permuted monomially, but we don’t have
monomial groups in GAP.

The following can be placed in an input file he2.g.

#
The group K we want is 3S7 x 2. We make this from a handy
representation of 3S7
#
DoubleP := function(p,n)

local l;
l := OnTuples([1..n],p);
Append(l,l+n);
return PermList(l);

end;

Swap := function(n)
return PermList(Concatenation([n+1..2*n],[1..n]));

end;

K := Group(
DoubleP((1, 2)(3, 5)(4, 7)(6,10)(8,12)(9,14)(11,17)(13,20)

(15,23)(16,25)(18,28)(19,30)(21,33)(22,35)(24,37)(26,40)(27,41)
(29,44)(31,47)(32,49)(34,51)(36,54)(38,57)(39,46)(42,61)(43,63)
(45,66)(48,53)(50,70)(52,60)(55,73)(56,65)(58,76)(59,78)(62,75)
(64,80)(67,84)(68,74)(69,77)(71,85)(72,86)(79,89)(81,88)(82,87)
(83,90),90),

DoubleP((1, 3, 6)(44,65,49)
(2,4,8,13,21,34,52,10,16,26,28,43,64,82,5,9,15,24,38,58,77)
(7,11,18,29,45,67,63,14,22,20,32,50,61,33,25,39,37,56,75,86,57)
(12,19,31,48,69,51,71,23,36,55,74,87,76,88,40,59,79,41,60,80,90)
(17,27,42,62,81,47,30,46,68,84,70,85,89,78,35,53,72,66,83,73,54)
,90),Swap(90));

61.27. EXAMPLES OF DCE AND SYMMETRIC PRESENTATIONS 1073

#
Now lets get the generators we want
#
x := DCEWord(K,K.1);
y := DCEWord(K,K.2);
a := DCEWord(K,K.3);
#
And the name for our generator outside K
#
t := AbstractGenerator("t");
#
Now we can specify our setup
#
SGrec := SetupSymmetricPresentation(K,t);
SG := SGrec.makeGen;
Pres := SGrec.skeleton;
#
We still have to put some fields in the presentation
#
Pres.name := "He:2 Symmetric";
Pres.relators := [

SG(1)^7,(SG(1)* SG(2))^2,
SG(1)^2 / SG(3),
y^-7 / (SG(1)^-1*SG(2)^-2*SG(1)^2*SG(2)),
y^9 / Comm(SG(1),SG(65)),
SG(1)*SG(91),
DCEWord(K,DoubleP((1,2)(3,5)(4,76)(6,10)(7,58)(8,12)(9,80)(11,70)

(13,20)(14,64)(15,23)(16,51)(17,50)(18,28)(19,42)(21,87)
(22,62)(24,37)(25,34)(26,40)(27,32)(29,68)(30,61)(31,85)
(33,82)(35,75)(36,72)(38,60)(39,66)(41,49)(43,69)(44,74)
(45,46)(47,71)(48,65)(52,57)(53,56)(54,86)(55,81)(59,84)
(63,77)(67,78)(73,88)(79,83)(89,90),90)) /

(SG(1)*SG(2)^2*SG(1)^2*SG(2))];
Pres.subgens := [t,x,x^(y^3)*x^(y^-1*x*y^-2),

Comm(x,y^-1*x*y^-1),Comm(x,y*x*y^2),a];
Pres.strategy := rec(EC := [8000..12000]);

We can run this example quietly:

gap> Read("he2.g");
gap> InfoDCE1 := Ignore;
function (...) internal; end
gap> u := DCE(Pres);
<< Double coset table "He:2 Symmetric" early-closed 9 double
8330 single >>
gap> time;
126716

1074 CHAPTER 61. THE DOUBLE COSET ENUMERATOR

Chapter 62

GLISSANDO

GLISSANDO (version 1.0) is a share library package that implements a GAP library of small
semigroups and near-rings. The library files can be systematically searched for near-rings
and semigroups with certain properties.

The GLISSANDO package (version 1.0) was written by

Christof Nöbauer
Institut für Mathematik
Johannes Kepler Universität Linz
4040 Linz, Austria

e-mail noebsi@bruckner.stoch.uni-linz.ac.at

and supported by the

Austrian Fonds zur Förderung der wissenschaftlichen Forschung, Project P11486-TEC.

62.1 Installing the Glissando Package

The GLISSANDO package is completely written in the GAP language, it does not require
any additional programs and/or compilations. It will run on any computer that runs GAP.
To access GLISSANDO, use RequirePackage("gliss"); (see 56.1).

62.2 Transformations

A transformation is a mapping with equal source and range, say X . For example, X may
be a set or a group. A transformation on X then acts on X by transforming each element
of X into (precisely one) element of X .

Note that a transformation is just a special case of a mapping. So all GAP functions that
work for mappings will also work for transformations.

For the following, it is important to keep in mind that in GAP sets are represented by sorted
lists without holes and duplicates. Throughout this section, let X be a set or a group with
n elements. A transformation on X is uniquely determined by a list of length n without
holes and with entries which are integers between 1 and n.

1075

1076 CHAPTER 62. GLISSANDO

For example, for the set X := [1,2,3], the list [1,1,2] determines the transformation on
X which transforms 1 into 1, 2 into 1, and 3 into 2.

Analogously, for the cyclic group of order 3: C3, with (the uniquely ordered) set of elements
[(),(1,2,3),(1,3,2)], the list [2,3,3] determines the transformation on C3 which trans-
forms () into (1,2,3), (1,2,3) into (1,3,2), and (1,3,2) into (1,3,2).

Such a list which on a given set or group uniquely determines a transformation will be called
transformation list (short tfl).

Transformations are created by the constructor functions Transformation or AsTransfor-
mation and they are represented by records that contain all the information about the
transformations.

62.3 Transformation

Transformation(obj, tfl)

The constructor function Transformation returns the transformation determined by the
transformation list tfl on obj where obj must be a group or a set.
gap> t1:=Transformation([1..3],[1,1,2]);
Transformation([1, 2, 3], [1, 1, 2])
gap> g:=Group((1,2),(3,4));
Group((1,2), (3,4))
gap> gt := Transformation(g,[1,1,2,5]);
Error, Usage: Transformation(<obj>, <tfl>) where <obj> must be a set
or a group and <tfl> must be a valid transformation list for <obj> in
Transformation(g, [1, 1, 2, 5]) called from
main loop
brk>
gap> gt := Transformation(g, [4,2,2,1]);
Transformation(Group((1,2), (3,4)), [4, 2, 2, 1])

62.4 AsTransformation

AsTransformation(map)

The constructor function AsTransformation returns the mapping map as transformation.
Of course, this function can only be applied to mappings with equal source and range,
otherwise an error will be signaled.

gap> s3:=Group((1,2),(1,2,3));
Group((1,2), (1,2,3))
gap> i:=InnerAutomorphism(s3,(2,3));
InnerAutomorphism(Group((1,2), (1,2,3)), (2,3))
gap> AsTransformation(i);
Transformation(Group((1,2), (1,2,3)), [1, 2, 6, 5, 4, 3])

62.5 IsTransformation

IsTransformation(obj)

IsTransformation returns true if the object obj is a transformation and false otherwise.

62.6. ISSETTRANSFORMATION 1077

gap> IsTransformation([1,1,2]);
false # a list is not a transformation
gap> IsTransformation((1,2,3));
false # a permutation is not a transformation
gap> IsTransformation(t1);
true

62.6 IsSetTransformation

IsSetTransformation(obj)

IsSetTransformation returns true if the object obj is a set transformation and false
otherwise.

gap> IsSetTransformation(t1);
true
gap> g:= Group((1,2),(3,4));
Group((1,2), (3,4))
gap> gt:=Transformation(g,[4,2,2,1]);
[4, 2, 2, 1]
gap> IsSetTransformation(gt);
false

62.7 IsGroupTransformation

IsGroupTransformation(obj)

IsGroupTransformation returns true if the object obj is a group transformation and false
otherwise.

gap> IsGroupTransformation(t1);
false
gap> IsGroupTransformation(gt);
true

Note that transformations are defined to be either a set transformation or a group transfor-
mation.

62.8 IdentityTransformation

IdentityTransformation(obj)

IdentityTransformation is the counterpart to the GAP standard library function Iden-
tityMapping. It returns the identity transformation on obj where obj must be a group or
a set.

gap> IdentityTransformation([1..3]);
Transformation([1, 2, 3], [1, 2, 3])
gap> IdentityTransformation(s3);
Transformation(Group((1,2), (1,2,3)), [1, 2, 3, 4, 5, 6])

1078 CHAPTER 62. GLISSANDO

62.9 Kernel for transformations

Kernel(t)

For a transformation t on X , the kernel of t is defined as an equivalence relation Kernel(t)
as: ∀x, y ∈ X : (x, y) ∈ Kernel(t) iff t(x) = t(y).

Kernel returns the kernel of the transformation t as a list l of lists where each sublist of l
represents an equivalence class of the equivalence relation Kernel(t).
gap> t:=Transformation([1..5], [2,3,2,4,4]);
Transformation([1, 2, 3, 4, 5], [2, 3, 2, 4, 4])
gap> Kernel(t);
[[1, 3], [2], [4, 5]]

62.10 Rank for transformations

Rank(t)

For a transformation t on X , the rank of t is defined as the size of the image of t , i.e.
| {t(x) | x ∈ X} |, or, in GAP language: Length(Image(t)).

Rank returns the rank of the transformation t .

gap> t1;
Transformation([1, 2, 3], [1, 1, 2])
gap> Rank(t1);
2
gap>
gap> gt;
Transformation(Group((1,2), (3,4)), [4, 2, 2, 1])
gap> Rank(gt);
3

62.11 Operations for transformations

t1 * t2

The product operator * returns the transformation which is obtained from the transforma-
tions t1 and t2 , by composition of t1 and t2 (i.e. performing t2 after t1). This function
works for both set transformations as well as group transformations.
gap> t1:=Transformation([1..3], [1,1,2]);
Transformation([1, 2, 3], [1, 1, 2])
gap> t2:=Transformation([1..3], [2,3,3]);
Transformation([1, 2, 3], [2, 3, 3])
gap> t1*t2;
Transformation([1, 2, 3], [2, 2, 3])
gap> t2*t1;
Transformation([1, 2, 3], [1, 2, 2])

t1 + t2

The add operator + returns the group transformation which is obtained from the group
transformations t1 and t2 by pointwise addition of t1 and t2 . (Note that in this context

62.12. DISPLAYTRANSFORMATION 1079

addition means performing the GAP operation p * q for the corresponding permutations p
and q).

t1 - t2

The subtract operator - returns the group transformation which is obtained from the group
transformations t1 and t2 by pointwise subtraction of t1 and t2 . (Note that in this context
subtraction means performing the GAP operation p * q^-1 for the corresponding permu-
tations p and q).

Of course, those two functions + and - work only for group transformations.

gap> g:=Group((1,2,3));
Group((1,2,3))
gap> gt1:=Transformation(g, [2,3,3]);
Transformation(Group((1,2,3)), [2, 3, 3])
gap> gt2:=Transformation(g, [1,3,2]);
Transformation(Group((1,2,3)), [1, 3, 2])
gap> gt1+gt2;
Transformation(Group((1,2,3)), [2, 2, 1])
gap> gt1-gt2;
Transformation(Group((1,2,3)), [2, 1, 2])

62.12 DisplayTransformation

DisplayTransformation(t)

DisplayTransformation nicely displays a transformation t .

gap> t:=Transformation([1..5], [3,3,2,1,4]);
Transformation([1, 2, 3, 4, 5], [3, 3, 2, 1, 4])
gap> DisplayTransformation(t);
Transformation on [1, 2, 3, 4, 5]:
1 -> 3
2 -> 3
3 -> 2
4 -> 1
5 -> 4

gap>

62.13 Transformation records

As almost all objects in GAP, transformations, too, are representend by records. Such a
transformation record has the following components:

isGeneralMapping
this is always true, since in particular, any transformation is a general mapping.

domain
the entry of this record field is Mappings.

isMapping
this is always true since a transformation is in particular a single valued mapping.

1080 CHAPTER 62. GLISSANDO

isTransformation
always true for a transformation.

isSetTransformation
this exists and is set to true for set transformations exclusively.

isGroupTransformation, isGroupElement
these two exist and are set to true for group transformations exclusively.

elements
this record field holds a list of the elements of the source.

source, range
both entries contain the same set in case of a set transformation, resp. the same
group in case of a group transformation.

tfl
this contains the transformation list which uniquely determines the transformation.

operations
the operations record of the transformation. E.g. * or =, etc. can be found here.

image, rank, ker
these are bound and contain image, rank, kernel in case they have already been
computed for the transformation.

62.14 Transformation Semigroups

Having established transformations and being able to perform the associative operation
composition (which in GAP is denoted as * with them, the next step is to consider trans-
formation semigroups.

All functions described in this section are intended for finite transformation semigroups, in
particular transformation semigroups on a finite set or groupX. A transformation semigroup
is created by the constructor function TransformationSemigroup and it is represented by
a record that contains all the information about the transformation semigroup.

62.15 TransformationSemigroup

TransformationSemigroup(t1, ..., tn)
TransformationSemigroup([t1, ..., tn])

When called in this form, the constructor function TransformationSemigroup returns the
transformation semigroup generated by the transformations t1, ..., tn. There is another way
to call this function:

TransformationSemigroup(n)

If the argument is a positive integer n, TransformationSemigroup returns the semigroup
of all transformations on the set {1, 2, . . . , n}.
gap> t1 := Transformation([1..3], [1,1,2]);
Transformation([1, 2, 3], [1, 1, 2])
gap> t2 := Transformation([1..3], [2,3,3]);
Transformation([1, 2, 3], [2, 3, 3])
gap> s:=TransformationSemigroup(t1, t2);

62.16. ISSEMIGROUP 1081

TransformationSemigroup(Transformation([1, 2, 3],
[1, 1, 2], Transformation([1, 2, 3], [2, 3, 3]))
gap> s27 := TransformationSemigroup(3);
TransformationSemigroup(Transformation([1, 2, 3],
[1, 1, 1]), Transformation([1, 2, 3],
[1, 1, 2]), Transformation([1, 2, 3],
[1, 1, 3]), Transformation([1, 2, 3],
[1, 2, 1]), Transformation([1, 2, 3],
[1, 2, 2]), Transformation([1, 2, 3],
[1, 2, 3]), Transformation([1, 2, 3],
[1, 3, 1]), Transformation([1, 2, 3],
[1, 3, 2]), Transformation([1, 2, 3],
[1, 3, 3]), Transformation([1, 2, 3],
[2, 1, 1]), Transformation([1, 2, 3],
[2, 1, 2]), Transformation([1, 2, 3],
[2, 1, 3]), Transformation([1, 2, 3],
[2, 2, 1]), Transformation([1, 2, 3],
[2, 2, 2]), Transformation([1, 2, 3],
[2, 2, 3]), Transformation([1, 2, 3],
[2, 3, 1]), Transformation([1, 2, 3],
[2, 3, 2]), Transformation([1, 2, 3],
[2, 3, 3]), Transformation([1, 2, 3],
[3, 1, 1]), Transformation([1, 2, 3],
[3, 1, 2]), Transformation([1, 2, 3],
[3, 1, 3]), Transformation([1, 2, 3],
[3, 2, 1]), Transformation([1, 2, 3],
[3, 2, 2]), Transformation([1, 2, 3],
[3, 2, 3]), Transformation([1, 2, 3],
[3, 3, 1]), Transformation([1, 2, 3],
[3, 3, 2]), Transformation([1, 2, 3], [3, 3, 3]))

62.16 IsSemigroup

IsSemigroup(obj)

IsSemigroup returns true if the object obj is a semigroup and false otherwise. This
function simply checks whether the record component obj.isSemigroup is bound and is
true.

gap> IsSemigroup(t1);
false # a transformation is not a semigroup
gap> IsSemigroup(Group((1,2,3)));
false # a group is not a semigroup
gap> IsSemigroup(s27);
true

62.17 IsTransformationSemigroup

IsTransformationSemigroup(obj)

1082 CHAPTER 62. GLISSANDO

IsTransformationSemigroup returns true if the object obj is a transformation semigroup
and false otherwise.

gap> IsTransformationSemigroup(s27);
true

62.18 Elements for semigroups

Elements(sg)

Elements computes the elements of the semigroup sg . Note: the GAP standard library
dispatcher function Elements calls the function sg.operations.Elements which performs
a simple closure algorithm.

gap> t1 := Transformation([1..3], [1,1,2]);
Transformation([1, 2, 3], [1, 1, 2])
gap> t2 := Transformation([1..3], [2,3,3]);
Transformation([1, 2, 3], [2, 3, 3])
gap> s := TransformationSemigroup(t1, t2);
TransformationSemigroup(Transformation([1, 2, 3],
[1, 1, 2]), Transformation([1, 2, 3], [2, 3, 3]))
gap> Elements(s);
[Transformation([1, 2, 3], [1, 1, 1]),

Transformation([1, 2, 3], [1, 1, 2]),
Transformation([1, 2, 3], [1, 2, 2]),
Transformation([1, 2, 3], [2, 2, 2]),
Transformation([1, 2, 3], [2, 2, 3]),
Transformation([1, 2, 3], [2, 3, 3]),
Transformation([1, 2, 3], [3, 3, 3])]

62.19 Size for semigroups

Size(sg)

Size returns the number of elements in sg .

gap> Size(s);
7

62.20 DisplayCayleyTable for semigroups

DisplayCayleyTable(sg)

DisplayCayleyTable prints the Cayley table of the semigroup sg . Note: The dispatcher
function DisplayCayleyTable calls the function sg.operations.DisplayTable which per-
forms the actual printing. DisplayCayleyTable has no return value.

gap> DisplayCayleyTable(s);
Let:
s0 := Transformation([1, 2, 3], [1, 1, 1])
s1 := Transformation([1, 2, 3], [1, 1, 2])
s2 := Transformation([1, 2, 3], [1, 2, 2])

62.21. IDEMPOTENTELEMENTS FOR SEMIGROUPS 1083

s3 := Transformation([1, 2, 3], [2, 2, 2])
s4 := Transformation([1, 2, 3], [2, 2, 3])
s5 := Transformation([1, 2, 3], [2, 3, 3])
s6 := Transformation([1, 2, 3], [3, 3, 3])

* | s0 s1 s2 s3 s4 s5 s6

s0 | s0 s0 s0 s3 s3 s3 s6
s1 | s0 s0 s1 s3 s3 s4 s6
s2 | s0 s0 s2 s3 s3 s5 s6
s3 | s0 s0 s3 s3 s3 s6 s6
s4 | s0 s1 s3 s3 s4 s6 s6
s5 | s0 s2 s3 s3 s5 s6 s6
s6 | s0 s3 s3 s3 s6 s6 s6

62.21 IdempotentElements for semigroups

IdempotentElements(sg)

An element i of a semigroup (S, ·) is called an idempotent (element) iff i · i = i.

The function IdempotentElements returns a list of those elements of the semigroup sg that
are idempotent. (Note that for a finite semigroup this can never be the empty list).

gap> IdempotentElements(s);
[Transformation([1, 2, 3], [1, 1, 1]),

Transformation([1, 2, 3], [1, 2, 2]),
Transformation([1, 2, 3], [2, 2, 2]),
Transformation([1, 2, 3], [2, 2, 3]),
Transformation([1, 2, 3], [3, 3, 3])]

62.22 IsCommutative for semigroups

IsCommutative(sg)

A semigroup (S, ·) is called commutative if ∀a, b ∈ S : a · b = b · a.

The function IsCommutative returns the according value true or false for a semigroup sg .

gap> IsCommutative(s);
false

62.23 Identity for semigroups

Identity(sg)

An element i of a semigroup (S, ·) is called an identity iff ∀s ∈ S : s · i = i · s = s. Since
for two identities, i, j: i = i · j = j, an identity is unique if it exists.

The function Identity returns a list containing as single entry the identity of the semigroup
sg if it exists or the empty list [] otherwise.

gap> Identity(s);

1084 CHAPTER 62. GLISSANDO

[]
gap> tr1 := Transformation([1..3], [1,1,1]);
Transformation([1, 2, 3], [1, 1, 1])
gap> tr2 := Transformation([1..3], [1,2,2]);
Transformation([1, 2, 3], [1, 2, 2])
gap> sg := TransformationSemigroup(tr1, tr2);
TransformationSemigroup(Transformation([1, 2, 3],
[1, 1, 1]), Transformation([1, 2, 3], [1, 2, 2]))
gap> Elements(sg);
[Transformation([1, 2, 3], [1, 1, 1]),
Transformation([1, 2, 3], [1, 2, 2])]

gap> Identity(sg);
[Transformation([1, 2, 3], [1, 2, 2])]

The last example shows that the identity element of a transformation semigroup on a set X
needs not necessarily be the identity transformation on X.

62.24 SmallestIdeal

SmallestIdeal(sg)

A subset I of a semigroup (S, ·) is defined as an ideal of S if ∀i ∈ I, s ∈ S : i·s ∈ I & s·i ∈ I.
An ideal I is called minimal, if for any ideal J , J ⊆ I implies J = I. If a minimal ideal
exists, then it is unique and therefore the smallest ideal of S.

The function SmallestIdeal returns the smallest ideal of the transformation semigroup sg .
Note that for a finite semigroup the smallest ideal always exists. (Which is not necessarily
true for an arbitrary semigroup).

gap> SmallestIdeal(s);
[Transformation([1, 2, 3], [1, 1, 1]),

Transformation([1, 2, 3], [2, 2, 2]),
Transformation([1, 2, 3], [3, 3, 3])]

62.25 IsSimple for semigroups

IsSimple(sg)

A semigroup S is called simple if it has no honest ideals, i.e. in case that S is finite the
smallest ideal of S equals S itself.

The GAP standard library dispatcher function IsSimple calls the function sg.operations.-
IsSimple which checks if the semigroup sg equals its smallest ideal and if so, returns true
and otherwise false.

gap> IsSimple(s);
false
gap> c3 := TransformationSemigroup(Transformation([1..3],
> [2,3,1]));
TransformationSemigroup(Transformation([1, 2, 3], [2, 3, 1]))
gap> IsSimple(c3);
true

62.26. GREEN 1085

62.26 Green

Green(sg, string)

Let (S, ·) be a semigroup and a ∈ S. The set a · S1 := a · S ∪ {a} is called the principal
right ideal generated by a. Analogously, S1 · a := S · a∪{a} is called the principal left ideal
generated by a and S1 · a · S1 := S · a · S ∪ S · a ∪ a · S ∪ {a} is called the principal ideal
generated by a.

Now, Green’s equivalence relation L on S is defined as: (a, b) ∈ L : ⇔ S1 · a = S1 · b i.e. a
and b generate the same principal left ideal. Similarly: (a, b) ∈ R : ⇔ a · S1 = b · S1 i.e. a
and b generate the same principal right ideal and (a, b) ∈ J : ⇔ S1 · a · S1 = S1 · b · S1 i.e.
a and b generate the same principal ideal. H is defined as the intersection of L and R and
D is defined as the join of L and R.

In a finite semigroup, D = J .

The arguments of the function Green are a finite transformation semigroup sg and a one
character string string where string must be one of the following: "L", "R", "D", "J", "H".
The return value of Green is a list of lists of elements of sg representing the equivalence
classes of the according Green’s relation.

gap> s;
TransformationSemigroup(Transformation([1, 2, 3],
[1, 1, 2]), Transformation([1, 2, 3], [2, 3, 3]))
gap> Elements(s);
[Transformation([1, 2, 3], [1, 1, 1]),

Transformation([1, 2, 3], [1, 1, 2]),
Transformation([1, 2, 3], [1, 2, 2]),
Transformation([1, 2, 3], [2, 2, 2]),
Transformation([1, 2, 3], [2, 2, 3]),
Transformation([1, 2, 3], [2, 3, 3]),
Transformation([1, 2, 3], [3, 3, 3])]

gap> Green(s, "L");
[[Transformation([1, 2, 3], [1, 1, 1]),

Transformation([1, 2, 3], [2, 2, 2]),
Transformation([1, 2, 3], [3, 3, 3])],

[Transformation([1, 2, 3], [1, 1, 2]),
Transformation([1, 2, 3], [2, 2, 3])],

[Transformation([1, 2, 3], [1, 2, 2]),
Transformation([1, 2, 3], [2, 3, 3])]]

gap> Green(s, "R");
[[Transformation([1, 2, 3], [1, 1, 1])],
[Transformation([1, 2, 3], [1, 1, 2]),

Transformation([1, 2, 3], [1, 2, 2])],
[Transformation([1, 2, 3], [2, 2, 2])],
[Transformation([1, 2, 3], [2, 2, 3]),

Transformation([1, 2, 3], [2, 3, 3])],
[Transformation([1, 2, 3], [3, 3, 3])]]

gap> Green(s, "H");
[[Transformation([1, 2, 3], [1, 1, 1])],

1086 CHAPTER 62. GLISSANDO

[Transformation([1, 2, 3], [1, 1, 2])],
[Transformation([1, 2, 3], [1, 2, 2])],
[Transformation([1, 2, 3], [2, 2, 2])],
[Transformation([1, 2, 3], [2, 2, 3])],
[Transformation([1, 2, 3], [2, 3, 3])],
[Transformation([1, 2, 3], [3, 3, 3])]]

gap> Green(s, "D");
[[Transformation([1, 2, 3], [1, 1, 1]),

Transformation([1, 2, 3], [2, 2, 2]),
Transformation([1, 2, 3], [3, 3, 3])],

[Transformation([1, 2, 3], [1, 1, 2]),
Transformation([1, 2, 3], [1, 2, 2]),
Transformation([1, 2, 3], [2, 2, 3]),
Transformation([1, 2, 3], [2, 3, 3])]]

62.27 Rank for semigroups

Rank(sg)

The rank of a transformation semigroup S is defined as the minimal rank of the elements
of S, i.e. min{rank(s) | s ∈ S}.
The function Rank returns the rank of the semigroup sg .

gap> Rank(s);
1
gap> c3;
TransformationSemigroup(Transformation([1, 2, 3], [2, 3, 1]))
gap> Rank(c3);
3

62.28 LibrarySemigroup

LibrarySemigroup(size, num)

The semigroup library contains all semigroups of sizes 1 up to 5, classified into classes of iso-
morphic semigroups. LibrarySemigroup retrieves a representative of an isomorphism class
from the semigroup library and returns it as a transformation semigroup. The parameters of
LibrarySemigroup are two positive integers: size must be in {1, 2, 3, 4, 5} and indicates the
size of the semigroup to be retrieved, num indicates the number of an isomorphism class.

gap> ls := LibrarySemigroup(4, 123);
TransformationSemigroup(Transformation([1, 2, 3, 4],
[1, 1, 3, 3]), Transformation([1, 2, 3, 4],
[1, 2, 3, 4]), Transformation([1, 2, 3, 4],
[1, 3, 3, 1]), Transformation([1, 2, 3, 4], [1, 4, 3, 2]))
gap> DisplayCayleyTable(ls);
Let:
s0 := Transformation([1, 2, 3, 4], [1, 1, 3, 3])
s1 := Transformation([1, 2, 3, 4], [1, 2, 3, 4])
s2 := Transformation([1, 2, 3, 4], [1, 3, 3, 1])

62.29. TRANSFORMATION SEMIGROUP RECORDS 1087

s3 := Transformation([1, 2, 3, 4], [1, 4, 3, 2])

* | s0 s1 s2 s3

s0 | s0 s0 s0 s0
s1 | s0 s1 s2 s3
s2 | s2 s2 s2 s2
s3 | s2 s3 s0 s1

In dependence of size, num must be one of the following:

size num
1 1 ≤ num ≤ 1
2 1 ≤ num ≤ 5
3 1 ≤ num ≤ 24
4 1 ≤ num ≤ 188
5 1 ≤ num ≤ 1915

62.29 Transformation semigroup records

Transformation Semigroups are implemented as records. Such a transformation semigroup
record has the following components:

isDomain, isSemigroup
these two are always true for a transformation semigroup.

isTransformationSemigroup
this is bound and true only for transformation semigroups.

generators
this holds the set of generators of a transformation semigroup.

multiplication
this record field contains a function that represents the binary operation of the semi-
group that can be performed on the elements of the semigroup. For transformation
semigroups this equals of course, composition. Example:

gap> elms := Elements(s);
[Transformation([1, 2, 3], [1, 1, 1]),

Transformation([1, 2, 3], [1, 1, 2]),
Transformation([1, 2, 3], [1, 2, 2]),
Transformation([1, 2, 3], [2, 2, 2]),
Transformation([1, 2, 3], [2, 2, 3]),
Transformation([1, 2, 3], [2, 3, 3]),
Transformation([1, 2, 3], [3, 3, 3])]

gap> s.multiplication(elms[5], elms[2]);
Transformation([1, 2, 3], [1, 1, 2])

operations
this is the operations record of the semigroup.

1088 CHAPTER 62. GLISSANDO

size, elements, rank, smallestIdeal, IsFinite, identity
these entries become bound if the according functions have been performed on the
semigroup.

GreenL, GreenR, GreenD, GreenJ, GreenH
these are entries according to calls of the function Green with the corresponding
parameters.

62.30 Near-rings

In section 62.2 we introduced transformations on sets and groups. We used set transforma-
tions together with composition * to construct transformation semigroups in section 62.14.
In section 62.2 we also introduced the operation of pointwise addition + for group trans-
formations. Now we are able to use these group transformations together with pointwise
addition + and composition * to construct (right) near-rings.

A (right) near-ring is a nonempty set N together with two binary operations on N , +
and · s.t. (N,+) is a group, (N, ·) is a semigroup, and · is right distributive over +, i.e.
∀n1, n2, n3 ∈ N : (n1 + n2) · n3 = n1 · n3 + n2 · n3.

Here we have to make a remark: we let transformations act from the right; yet in order to
get a right transformation near-ring transformations must act from the left, hence we define
a near-ring multiplication · of two transformations, t1, t2 as t1 · t2 := t2 ∗ t1.

There are three possibilities to get a near-ring in GAP: the constructor function Nearring
can be used in two different ways or a near-ring can be extracted from the near-rings library
by using the function LibraryNearring. All functions described here were programmed for
permutation groups and they also work fine with them; other types of groups (such as AG
groups) are not supported.

Near-rings are represented by records that contain the necessary information to identify
them and to do computations with them.

62.31 IsNrMultiplication

IsNrMultiplication(G, mul)

The arguments of the function IsNrMultiplication are a permutation group G and a GAP
function mul which has two arguments x and y which must both be elements of the group
G and returns an element z of G s.t. mul defines a binary operation on G .

IsNrMultiplication returns true (false) if mul is (is not) a near-ring multiplication on
G i.e. it checks whether it is well-defined, associative and right distributive over the group
operation of G .

gap> g := Group((1,2), (1,2,3));
Group((1,2), (1,2,3))
gap> mul_r := function(x,y) return x; end;
function (x, y) ... end
gap> IsNrMultiplication(g, mul_r);
true
gap> mul_l := function(x,y) return y; end;
function (x, y) ... end

62.32. NEARRING 1089

gap> IsNrMultiplication(g, mul_l);
specified multiplication is not right distributive.
false

62.32 Nearring

Nearring(G, mul)

In this form the constructor function Nearring returns the near-ring defined by the permu-
tation group G and the near-ring multiplication mul . (For a detailed explanation of mul
see 62.31). Nearring calls IsNrMultiplication in order to make sure that mul is really a
near-ring multiplication.

gap> g := Group((1,2,3));
Group((1,2,3))
gap> mul_r := function(x,y) return x; end;
function (x, y) ... end
gap> n := Nearring(g, mul_r);
Nearring(Group((1,2,3)), function (x, y)

return x;
end)
gap> DisplayCayleyTable(n);
Let:
n0 := ()
n1 := (1,2,3)
n2 := (1,3,2)

+ | n0 n1 n2

n0 | n0 n1 n2
n1 | n1 n2 n0
n2 | n2 n0 n1

* | n0 n1 n2

n0 | n0 n0 n0
n1 | n1 n1 n1
n2 | n2 n2 n2

Nearring(t1, ..., tn)
Nearring([t1, ..., tn])

In this form the constructor function Nearring returns the near-ring generated by the group
transformations t1, . . . , tn. All of them must be transformations on the same permutation
group.

Note that Nearring allows also a list of group transformations as argument, which makes
it possible to call Nearring e.g. with a list of endomorphisms generated by the function
Endomorphisms (see 62.71), which for a group G allows to compute E(G); Nearring called
with the list of all inner automorphisms of a group G would return I(G).

1090 CHAPTER 62. GLISSANDO

gap> t := Transformation(Group((1,2)), [2,1]);
Transformation(Group((1,2)), [2, 1])
gap> n := Nearring(t);
Nearring(Transformation(Group((1,2)), [2, 1]))
gap> DisplayCayleyTable(n);
Let:
n0 := Transformation(Group((1,2)), [1, 1])
n1 := Transformation(Group((1,2)), [1, 2])
n2 := Transformation(Group((1,2)), [2, 1])
n3 := Transformation(Group((1,2)), [2, 2])

+ | n0 n1 n2 n3

n0 | n0 n1 n2 n3
n1 | n1 n0 n3 n2
n2 | n2 n3 n0 n1
n3 | n3 n2 n1 n0

* | n0 n1 n2 n3

n0 | n0 n0 n0 n0
n1 | n0 n1 n2 n3
n2 | n3 n2 n1 n0
n3 | n3 n3 n3 n3

gap> g := Group((1,2), (1,2,3));
Group((1,2), (1,2,3))
gap> e := Endomorphisms(g);
[Transformation(Group((1,2), (1,2,3)), [1, 1, 1, 1, 1, 1]),
Transformation(Group((1,2), (1,2,3)), [1, 2, 2, 1, 1, 2]),
Transformation(Group((1,2), (1,2,3)), [1, 2, 6, 5, 4, 3]),
Transformation(Group((1,2), (1,2,3)), [1, 3, 2, 5, 4, 6]),
Transformation(Group((1,2), (1,2,3)), [1, 3, 3, 1, 1, 3]),
Transformation(Group((1,2), (1,2,3)), [1, 3, 6, 4, 5, 2]),
Transformation(Group((1,2), (1,2,3)), [1, 6, 2, 4, 5, 3]),
Transformation(Group((1,2), (1,2,3)), [1, 6, 3, 5, 4, 2]),
Transformation(Group((1,2), (1,2,3)), [1, 6, 6, 1, 1, 6]),
Transformation(Group((1,2), (1,2,3)), [1, 2, 3, 4, 5, 6])]

gap> nr := Nearring(e); # the endomorphisms near-ring on S3
Nearring(Transformation(Group((1,2), (1,2,3)), [1, 1, 1, 1, 1, 1
]), Transformation(Group((1,2), (1,2,3)), [1, 2, 2, 1, 1, 2
]), Transformation(Group((1,2), (1,2,3)), [1, 2, 3, 4, 5, 6
]), Transformation(Group((1,2), (1,2,3)), [1, 2, 6, 5, 4, 3
]), Transformation(Group((1,2), (1,2,3)), [1, 3, 2, 5, 4, 6
]), Transformation(Group((1,2), (1,2,3)), [1, 3, 3, 1, 1, 3
]), Transformation(Group((1,2), (1,2,3)), [1, 3, 6, 4, 5, 2
]), Transformation(Group((1,2), (1,2,3)), [1, 6, 2, 4, 5, 3
]), Transformation(Group((1,2), (1,2,3)), [1, 6, 3, 5, 4, 2

62.33. ISNEARRING 1091

]), Transformation(Group((1,2), (1,2,3)), [1, 6, 6, 1, 1, 6]))
gap> Size(nr);
54

62.33 IsNearring

IsNearring(obj)

IsNearring returns true if the object obj is a near-ring and false otherwise. This function
simply checks if the record component obj.isNear-ring is bound to the value true.

gap> n := LibraryNearring("C3", 4);
LibraryNearring("C3", 4)
gap> IsNearring(n);
true
gap> IsNearring(nr);
true
gap> IsNearring(Integers);
false # Integers is a ring record, not a near-ring record

62.34 IsTransformationNearring

IsTransformationNearring(obj)

IsTransformationNearring returns true if the object obj is a transformation near-ring
and false otherwise. IsTransformationNearring simply checks if the record component
obj.isTransformationNearring is bound to true.

gap> IsTransformationNearring(nr);
true
gap> IsTransformationNearring(n);
false

62.35 LibraryNearring

LibraryNearring(grp name, num)

LibraryNearring retrieves a near-ring from the near-rings library files. grp name must be
one of the following strings indicating the name of the according group: "C2", "C3", "C4",
"V4", "C5", "C6", "S3", "C7", "C8", "C2xC4", "C2xC2xC2", "D8", "Q8", "C9", "C3xC3",
"C10", "D10", "C11", "C12", "C2xC6", "D12", "A4", "T", "C13", "C14", "D14", "C15", num
must be an integer which indicates the number of the class of near-rings on the specified
group.

gap> n := LibraryNearring("V4", 13);
LibraryNearring("V4", 13)

In dependence of grp name, num must be one of the following:

1092 CHAPTER 62. GLISSANDO

grp name num grp name num
"C2" 1 ≤ num ≤ 3 "C3xC3" 1 ≤ num ≤ 264
"C3" 1 ≤ num ≤ 5 "C10" 1 ≤ num ≤ 329
"C4" 1 ≤ num ≤ 12 "D10" 1 ≤ num ≤ 206
"V4" 1 ≤ num ≤ 23 "C11" 1 ≤ num ≤ 139
"C5" 1 ≤ num ≤ 10 "C12" 1 ≤ num ≤ 1749
"C6" 1 ≤ num ≤ 60 "C2xC6" 1 ≤ num ≤ 3501
"S3" 1 ≤ num ≤ 39 "D12" 1 ≤ num ≤ 48137
"C7" 1 ≤ num ≤ 24 "A4" 1 ≤ num ≤ 483
"C8" 1 ≤ num ≤ 135 "T" 1 ≤ num ≤ 824

"C2xC4" 1 ≤ num ≤ 1159 "C13" 1 ≤ num ≤ 454
"C2xC2xC2" 1 ≤ num ≤ 834 "C14" 1 ≤ num ≤ 2716

"D8" 1 ≤ num ≤ 1447 "D14" 1 ≤ num ≤ 1821
"Q8" 1 ≤ num ≤ 281 "C15" 1 ≤ num ≤ 3817
"C9" 1 ≤ num ≤ 222

62.36 DisplayCayleyTable for near-rings

DisplayCayleyTable(nr)

DisplayCayleyTable prints the additive and multiplicative Cayley tables of the near-ring
nr . This function works the same way as for semigroups; the dispatcher function Display-
CayleyTable calls nr.operations.DisplayTable which performs the actual printing.
gap> DisplayCayleyTable(LibraryNearring("V4", 22));
Let:
n0 := ()
n1 := (3,4)
n2 := (1,2)
n3 := (1,2)(3,4)

+ | n0 n1 n2 n3

n0 | n0 n1 n2 n3
n1 | n1 n0 n3 n2
n2 | n2 n3 n0 n1
n3 | n3 n2 n1 n0

* | n0 n1 n2 n3

n0 | n0 n0 n0 n0
n1 | n0 n1 n2 n3
n2 | n2 n2 n2 n2
n3 | n2 n3 n0 n1

62.37 Elements for near-rings

Elements(nr)

62.38. SIZE FOR NEAR-RINGS 1093

The function Elements computes the elements of the near-ring nr . As for semigroups the
GAP standard library dispatcher function Elements calls nr.operations.Elements which
simply returns the elements of nr.group if nr is not a transformation near-ring or – if nr
is a transformation near-ring – performs a simple closure algorithm and returns a set of
transformations which are the elements of nr .

gap> t := Transformation(Group((1,2)), [2,1]);
Transformation(Group((1,2)), [2, 1])
gap> Elements(Nearring(t));
[Transformation(Group((1,2)), [1, 1]),
Transformation(Group((1,2)), [1, 2]),
Transformation(Group((1,2)), [2, 1]),
Transformation(Group((1,2)), [2, 2])]

gap> Elements(LibraryNearring("C3", 4));
[(), (1,2,3), (1,3,2)]

62.38 Size for near-rings

Size(nr)

Size returns the number of elements in the near-ring nr .

gap> Size(LibraryNearring("C3", 4));
3

62.39 Endomorphisms for near-rings

Endomorphisms(nr)

Endomorphisms computes all the endomorphisms of the near-ring nr . The endomorphisms
are returned as a list of transformations. In fact, the returned list contains those endomor-
phisms of nr.group which are also endomorphisms of the near-ring nr .

gap> t := Transformation(Group((1,2)), [2,1]);
Transformation(Group((1,2)), [2, 1])
gap> nr := Nearring(t);
Nearring(Transformation(Group((1,2)), [2, 1]))
gap> Endomorphisms(nr);
[Transformation(Group((1,2)(3,4), (1,3)(2,4)), [1, 1, 1, 1]),
Transformation(Group((1,2)(3,4), (1,3)(2,4)), [1, 2, 2, 1]),
Transformation(Group((1,2)(3,4), (1,3)(2,4)), [1, 2, 3, 4])]

62.40 Automorphisms for near-rings

Automorphisms(nr)

Automorphisms computes all the automorphisms of the near-ring nr . The automorphisms
are returned as a list of transformations. In fact, the returned list contains those automor-
phisms of nr.group which are also automorphisms of the near-ring nr .

gap> t := Transformation(Group((1,2)), [2,1]);
Transformation(Group((1,2)), [2, 1])

1094 CHAPTER 62. GLISSANDO

gap> nr := Nearring(t);
Nearring(Transformation(Group((1,2)), [2, 1]))
gap> Automorphisms(nr);
[Transformation(Group((1,2)(3,4), (1,3)(2,4)), [1, 2, 3, 4])]

62.41 FindGroup

FindGroup(nr)

For a transformation near-ring nr , this function computes the additive group of nr as a
GAP permutation group and stores it in the record component nr.group.

gap> t := Transformation(Group((1,2)), [2,1]);
Transformation(Group((1,2)), [2, 1])
gap> n := Nearring(t);
Nearring(Transformation(Group((1,2)), [2, 1]))
gap> g := FindGroup(n);
Group((1,2)(3,4), (1,3)(2,4))
gap> Elements(g);
[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)]
gap> Elements(n);
[Transformation(Group((1,2)), [1, 1]),
Transformation(Group((1,2)), [1, 2]),
Transformation(Group((1,2)), [2, 1]),
Transformation(Group((1,2)), [2, 2])]

62.42 NearringIdeals

NearringIdeals(nr)
NearringIdeals(nr, ”l”)
NearringIdeals(nr, ”r”)

NearringIdeals computes all (left) (right) ideals of the near-ring nr . The return value is
a list of subgroups of the additive group of nr representing the according ideals. In case
that nr is a transformation near-ring, FindGroup is used to determine the additive group of
nr as a permutation group. If the optional parameters "l" or "r" are passed, all left resp.
right ideals are computed.

gap> n := LibraryNearring("V4", 11);
LibraryNearring("V4", 11)
gap> NearringIdeals(n);
[Subgroup(V4, []), Subgroup(V4, [(3,4)]), V4]
gap> NearringIdeals(n, "r");
[Subgroup(V4, []), Subgroup(V4, [(3,4)]), V4]
gap> NearringIdeals(n, "l");
[Subgroup(V4, []), Subgroup(V4, [(3,4)]),

Subgroup(V4, [(1,2)]), Subgroup(V4, [(1,2)(3,4)]), V4]

62.43 InvariantSubnearrings

InvariantSubnearrings(nr)

62.44. SUBNEARRINGS 1095

A subnear-ring (M,+, ·) of a near-ring (N,+, ·) is called an invariant subnear-ring if
both, M ·N ⊆M and N ·M ⊆M .

The function InvariantSubnearrings computes all invariant subnear-rings of the near-ring
nr . The function returns a list of near-rings representing the according invariant subnear-
rings. In case that nr is a transformation near-ring, FindGroup is used to determine the
additive group of nr as a permutation group.

gap> InvariantSubnearrings(LibraryNearring("V4", 22));
[Nearring(Subgroup(V4, [(1,2)]), function (x, y)

return elms[tfle.(f[Position(elms, y)])[Position(elms, x)]
];

end), Nearring(V4, function (x, y)
return elms[tfle.(f[Position(elms, y)])[Position(elms, x)]

];
end)]

62.44 Subnearrings

Subnearrings(nr)

The function Subnearrings computes all subnear-rings of the near-ring nr . The function
returns a list of near-rings representing the according subnear-rings. In case that nr is a
transformation near-ring, FindGroup is used to determine the additive group of nr as a
permutation group.

gap> Subnearrings(LibraryNearring("V4", 22));
[Nearring(Subgroup(V4, []), function (x, y)

return elms[tfle.(f[Position(elms, y)])[Position(elms, x)]
];

end), Nearring(Subgroup(V4, [(3,4)]), function (x, y)
return elms[tfle.(f[Position(elms, y)])[Position(elms, x)]

];
end), Nearring(Subgroup(V4, [(1,2)]), function (x, y)

return elms[tfle.(f[Position(elms, y)])[Position(elms, x)]
];

end), Nearring(V4, function (x, y)
return elms[tfle.(f[Position(elms, y)])[Position(elms, x)]

];
end)]

62.45 Identity for near-rings

Identity(nr)

The function Identity returns a list containing the identity of the multiplicative semigroup
of the near-ring nr if it exists and the empty list [] otherwise.

gap> Identity(LibraryNearring("V4", 22));
[(3,4)]

1096 CHAPTER 62. GLISSANDO

62.46 Distributors

Distributors(nr)

An element x of a near-ring (N,+, ·) is called a distributor if x = n1 · (n2 + n3) − (n1 ·
n2 + n1 · n3) for some elements n1, n2, n3 of N .

The function Distributors returns a list containing the distributors of the near-ring nr .

gap> Distributors(LibraryNearring("S3", 19));
[(), (1,2,3), (1,3,2)]

62.47 DistributiveElements

DistributiveElements(nr)

An element d of a right near-ring (N,+, ·) is called a distributive element if it is also left
distributive over all elements, i.e. ∀n1, n2 ∈ N : d · (n1 + n2) = d · n1 + d · n2.

The function DistributiveElements returns a list containing the distributive elements of
the near-ring nr .

gap> DistributiveElements(LibraryNearring("S3", 25));
[(), (1,2,3), (1,3,2)]

62.48 IsDistributiveNearring

IsDistributiveNearring(nr)

A right near-ring N is called distributive near-ring if its multiplication is also left dis-
tributive.

The function IsDistributiveNearring simply checks if all elements are distributive and
returns the according boolean value true or false.

gap> IsDistributiveNearring(LibraryNearring("S3", 25));
false

62.49 ZeroSymmetricElements

ZeroSymmetricElements(nr)

Let (N,+, ·) be a right near-ring and denote by 0 the neutral element of (N,+). An element
n of N is called a zero-symmetric element if n · 0 = 0.

Remark: note that in a right near-ring 0 · n = 0 is true for all elements n.

The function ZeroSymmetricElements returns a list containing the zero-symmetric elements
of the near-ring nr .

gap> ZeroSymmetricElements(LibraryNearring("S3", 25));
[(), (1,2,3), (1,3,2)]

62.50. ISABSTRACTAFFINENEARRING 1097

62.50 IsAbstractAffineNearring

IsAbstractAffineNearring(nr)

A right near-ring N is called abstract affine if its additive group is abelian and its zero-
symmetric elements are exactly its distributive elements.
The function IsAbstractAffineNear-ring returns the according boolean value true or
false.
gap> IsAbstractAffineNearring(LibraryNearring("S3", 25));
false

62.51 IdempotentElements for near-rings

IdempotentElements(nr)

The function IdempotentElements returns a list containing the idempotent elements of the
multiplicative semigroup of the near-ring nr .
gap> IdempotentElements(LibraryNearring("S3", 25));
[(), (2,3)]

62.52 IsBooleanNearring

IsBooleanNearring(nr)

A right near-ring N is called boolean if all its elements are idempotent with respect to
multiplication.
The function IsBooleanNearring simply checks if all elements are idempotent and returns
the according boolean value true or false.
gap> IsBooleanNearring(LibraryNearring("S3", 25));
false

62.53 NilpotentElements

NilpotentElements(nr)

Let (N,+, ·) be a near-ring with zero 0. An element n of N is called nilpotent if there is
a positive integer k such that nk = 0.
The function NilpotentElements returns a list of sublists of length 2 where the first entry
is a nilpotent element n and the second entry is the smallest k such that nk = 0.
gap> NilpotentElements(LibraryNearring("V4", 4));
[[(), 1], [(3,4), 2], [(1,2), 3], [(1,2)(3,4), 3]]

62.54 IsNilNearring

IsNilNearring(nr)

A near-ring N is called nil if all its elements are nilpotent.
The function IsNilNearring checks if all elements are nilpotent and returns the according
boolean value true or false.
gap> IsNilNearring(LibraryNearring("V4", 4));
true

1098 CHAPTER 62. GLISSANDO

62.55 IsNilpotentNearring

IsNilpotentNearring(nr)

A near-ring N is called nilpotent if there is a positive integer k, s.t. Nk = {0}.
The function IsNilpotentNearring tests if the near-ring nr is nilpotent and returns the
according boolean value true or false.

gap> IsNilpotentNearring(LibraryNearring("V4", 4));
true

62.56 IsNilpotentFreeNearring

IsNilpotentFreeNearring(nr)

A near-ring N is called nilpotent free if its only nilpotent element is 0.

The function IsNilpotentFreeNearring checks if 0 is the only nilpotent and returns the
according boolean value true or false.

gap> IsNilpotentFreeNearring(LibraryNearring("V4", 22));
true

62.57 IsCommutative for near-rings

IsCommutative(nr)

A near-ring (N,+, ·) is called commutative if its multiplicative semigroup is commutative.

The function IsCommutative returns the according value true or false.

gap> IsCommutative(LibraryNearring("C15", 1235));
false
gap> IsCommutative(LibraryNearring("V4", 13));
true

62.58 IsDgNearring

IsDgNearring(nr)

A near-ring (N,+, ·) is called distributively generated (d.g.) if (N,+) is generated
additively by the distributive elements of the near-ring.

The function IsDgNearring returns the according value true or false for a near-ring nr .

gap> IsDgNearring(LibraryNearring("S3", 25));
false
gap> IsDgNearring(LibraryNearring("S3", 1));
true

62.59 IsIntegralNearring

IsIntegralNearring(nr)

A near-ring (N,+, ·) with zero element 0 is called integral if it has no zero divisors, i.e. the
condition ∀n1, n2 : n1 · n2 = 0⇒ n1 = 0 ∨ n2 = 0 holds.

62.60. ISPRIMENEARRING 1099

The function IsIntegralNearring returns the according value true or false for a near-ring
nr .

gap> IsIntegralNearring(LibraryNearring("S3", 24));
true
gap> IsIntegralNearring(LibraryNearring("S3", 25));
false

62.60 IsPrimeNearring

IsPrimeNearring(nr)

A near-ring (N,+, ·) with zero element 0 is called prime if the ideal {0} is a prime ideal.

The function IsPrimeNearring checks if nr is a prime near-ring by using the condition for
all non-zero ideals I, J : I · J 6= {0} and returns the according value true or false.

gap> IsPrimeNearring(LibraryNearring("V4", 11));
false

62.61 QuasiregularElements

QuasiregularElements(nr)

Let (N,+, ·) be a right near-ring. For an element z ∈ N , denote the left ideal generated by
the set {n− n · z | n ∈ N} by Lz. An element z of N is called quasiregular if z ∈ Lz.
The function QuasiregularElements returns a list of all quasiregular elements of a near-ring
nr .

gap> QuasiregularElements(LibraryNearring("V4", 4));
[(), (3,4), (1,2), (1,2)(3,4)]

62.62 IsQuasiregularNearring

IsQuasiregularNearring(nr)

A near-ring N is called quasiregular if all its elements are quasiregular.

The function IsQuasiregularNearring simply checks if all elements of the near-ring nr are
quasiregular and returns the according boolean value true or false.

gap> IsQuasiregularNearring(LibraryNearring("V4", 4));
true

62.63 RegularElements

RegularElements(nr)

Let (N,+, ·) be a near-ring. An element n of N is called regular if there is an element x
such that n · x · n = n.

The function RegularElements returns a list of all regular elements of a near-ring nr .

gap> RegularElements(LibraryNearring("V4", 4));
[()]

1100 CHAPTER 62. GLISSANDO

62.64 IsRegularNearring

IsRegularNearring(nr)

A near-ring N is called regular if all its elements are regular.

The function IsRegularNearring simply checks if all elements of the near-ring nr are
regular and returns the according boolean value true or false.

gap> IsRegularNearring(LibraryNearring("V4", 4));
false

62.65 IsPlanarNearring

IsPlanarNearring(nr)

Let (N,+, ·) be a right near-ring. For a, b ∈ N define the equivalence relation ≡ by a ≡ b :
⇔ ∀n ∈ N : n · a = n · b. If a ≡ b then a and b are called equivalent multipliers. A
near-ring N is called planar if | N/≡ |≥ 3 and if every equation of the form x · a = x · b+ c
has a unique solution for two non equivalent multipliers a and b.

The function IsPlanarNearring returns the according value true or false for a near-ring
nr .

Remark: this function works only for library near-rings, i.e. near-rings which are con-
structed by using the function LibraryNearring.

gap> IsPlanarNearring(LibraryNearring("V4", 22));
false

62.66 IsNearfield

IsNearfield(nr)

Let (N,+, ·) be a near-ring with zero 0 and denote by N∗ the set N −{0}. N is a nearfield
if (N∗, ·) is a group.

The function IsNearfield tests if nr has an identity and if every non-zero element has a
multiplicative inverse and returns the according value true or false.

gap> IsNearfield(LibraryNearring("V4", 16));
true

62.67 LibraryNearringInfo

LibraryNearringInfo(group name, list, string)

This function provides information about the specified library near-rings in a way similar to
how near-rings are presented in the appendix of [Pil83]. The parameter group name specifies
the name of a group; valid names are exactly those which are also valid for the function
LibraryNearrings (cf. section 62.35).

The parameter list must be a non-empty list of integers defining the classes of near-rings to
be printed. Naturally, these integers must all fit into the ranges described in section 62.35
for the according groups.

62.68. NEARRING RECORDS 1101

The third parameter string is optional. string must be a string consisting of one or more
(or all) of the following characters: l, m, i, v, s, e, a. Per default, (i.e. if this parameter is
not specified), the output is minimal. According to each specified character, the following
is added:

c
print the meaning of the letters used in the output.

m
print the multiplication tables.

i
list the ideals.

l
list the left ideals.

r
list the right ideals.

v
list the invariant subnear-rings.

s
list the subnear-rings.

e
list the near-ring endomorphisms.

a
list the near-ring automorphisms.

Examples:

LibraryNearringInfo("C3", [3], "lmivsea") will print all available information on
the third class of near-rings on the group C3.

LibraryNearringInfo("C4", [1..12]) will provide a minimal output for all classes
of near-rings on C4.

LibraryNearringInfo("S3", [5, 18, 21], "mi") will print the minimal information
plus the multiplication tables plus the ideals for the classes 5, 18, and 21 of near-rings on
the group S3.

62.68 Nearring records

The record of a nearring has the following components:

isDomain, isNearring
these two are always true for a near-ring.

isTransformationNearring
this is bound and true only for transformation near-rings (i.e. those near-rings that
are generated by group transformations by using the constructor function Nearring
in the second form).

generators
this is bound only for a transformation near-ring and holds the set of generators of
the transformation near-ring.

1102 CHAPTER 62. GLISSANDO

group
this component holds the additive group of the near-ring as permutation group.

addition, subtraction, multiplication
these record fields contain the functions that represent the binary operations that can
be performed with the elements of the near-ring on the additive group of the near-
ring (addition, subtraction) resp. on the multiplicative semigroup of the near-ring
(multiplication)

gap> nr := Nearring(Transformation(Group((1,2)), [2,1]));
Nearring(Transformation(Group((1,2)), [2, 1]))
gap> e := Elements(nr);
[Transformation(Group((1,2)), [1, 1]),
Transformation(Group((1,2)), [1, 2]),
Transformation(Group((1,2)), [2, 1]),
Transformation(Group((1,2)), [2, 2])]

gap> nr. addition(e[2], e[3]);
Transformation(Group((1,2)), [2, 2])
gap> nr.multiplication(e[2], e[4]);
Transformation(Group((1,2)), [2, 2])
gap> nr.multiplication(e[2], e[3]);
Transformation(Group((1,2)), [2, 1])

operations
this is the operations record of the near-ring.

size, elements, endomorphisms, automorphisms
these entries become bound if the according functions have been performed on the
near-ring.

62.69 Supportive Functions for Groups

In order to support near-ring calculations, a few functions for groups had to be added to
the standard GAP group library functions.

62.70 DisplayCayleyTable for groups

DisplayCayleyTable(group)

DisplayCayleyTable prints the Cayley table of the group group. This function works the
same way as for semigroups and near-rings: the dispatcher function DisplayCayleyTable
calls group.operations.DisplayTable which performs the printing.

gap> g := Group((1,2), (3,4)); # this is Klein’s four group
Group((1,2), (3,4))
gap> DisplayCayleyTable(g);
Let:
g0 := ()
g1 := (3,4)
g2 := (1,2)
g3 := (1,2)(3,4)

62.71. ENDOMORPHISMS FOR GROUPS 1103

+ | g0 g1 g2 g3

g0 | g0 g1 g2 g3
g1 | g1 g0 g3 g2
g2 | g2 g3 g0 g1
g3 | g3 g2 g1 g0

62.71 Endomorphisms for groups

Endomorphisms(group)

Endomorphisms computes all the endomorphisms of the group group. This function is most
essential for computing the near-rings on a group. The endomorphisms are returned as a
list of transformations s.t. the identity endomorphism is always the last entry in this list.
For each transformation in this list the record component isGroupEndomorphism is set to
true and if such a transformation is in fact an automorphism then in addition the record
component isGroupAutomorphism is set to true.

gap> g := Group((1,2,3));
Group((1,2,3))
gap> Endomorphisms(g);
[Transformation(Group((1,2,3)), [1, 1, 1]),
Transformation(Group((1,2,3)), [1, 3, 2]),
Transformation(Group((1,2,3)), [1, 2, 3])]

62.72 Automorphisms for groups

Automorphisms(group)

Automorphisms computes all the automorphisms of the group group. The automorphisms
are returned as a list of transformations s.t. the identity automorphism is always the last
entry in this list. For each transformation in this list the record components isGroupEndo-
morphism and isGroupAutomorphism are both set to true.

gap> d8 := Group((1,2,3,4), (2,4)); # dihedral group of order 8
Group((1,2,3,4), (2,4))
gap> a := Automorphisms(d8);
[Transformation(Group((1,2,3,4), (2,4)), [1, 2, 8, 7, 5, 6, 4, 3

]), Transformation(Group((1,2,3,4), (2,4)),
[1, 3, 2, 7, 8, 6, 4, 5]), Transformation(Group((1,2,3,4),
(2,4)), [1, 3, 5, 4, 8, 6, 7, 2]),

Transformation(Group((1,2,3,4), (2,4)), [1, 5, 3, 7, 2, 6, 4, 8
]), Transformation(Group((1,2,3,4), (2,4)),
[1, 5, 8, 4, 2, 6, 7, 3]), Transformation(Group((1,2,3,4),
(2,4)), [1, 8, 2, 4, 3, 6, 7, 5]),

Transformation(Group((1,2,3,4), (2,4)), [1, 8, 5, 7, 3, 6, 4, 2
]), Transformation(Group((1,2,3,4), (2,4)),
[1, 2, 3, 4, 5, 6, 7, 8])]

1104 CHAPTER 62. GLISSANDO

62.73 InnerAutomorphisms

InnerAutomorphisms(group)

InnerAutomorphisms computes all the inner automorphisms of the group group. The inner
automorphisms are returned as a list of transformations s.t. the identity automorphism is
always the last entry in this list. For each transformation in this list the record components
isInnerAutomorphism, isGroupEndomorphism, and isGroupAutomorphism are all set to
true.

gap> i := InnerAutomorphisms(d8);
[Transformation(Group((1,2,3,4), (2,4)), [1, 2, 8, 7, 5, 6, 4, 3

]), Transformation(Group((1,2,3,4), (2,4)),
[1, 5, 3, 7, 2, 6, 4, 8]), Transformation(Group((1,2,3,4),
(2,4)), [1, 5, 8, 4, 2, 6, 7, 3]),

Transformation(Group((1,2,3,4), (2,4)), [1, 2, 3, 4, 5, 6, 7, 8
])]

62.74 SmallestGeneratingSystem

SmallestGeneratingSystem(group)

SmallestGeneratingSystem computes a smallest generating system of the group group i.e.
a smallest subset of the elements of the group s.t. the group is generated by this subset.

Remark: there is a GAP standard library function SmallestGenerators for permutation
groups. This function computes a generating set of a given group such that its elements are
smallest possible permutations (w.r.t. the GAP internal sorting of permutations).

gap> s5 := SymmetricGroup(5);
Group((1,5), (2,5), (3,5), (4,5))
gap> SmallestGenerators(s5);
[(4,5), (3,4), (2,3), (1,2)]
gap> SmallestGeneratingSystem(s5);
[(1,3,5)(2,4), (1,2)(3,4,5)]

62.75 IsIsomorphicGroup

IsIsomorphicGroup(g1, g2)

IsIsomorphicGroup determines if the groups g1 and g2 are isomorphic and if so, returns a
group homomorphism that is an isomorphism between these two groups and false other-
wise.

gap> g1 := Group((1,2,3));
Group((1,2,3))
gap> g2 := Group((7,8,9));
Group((7,8,9))
gap> g1 = g2;
false
gap> IsIsomorphicGroup(g1, g2);
GroupHomomorphismByImages(Group((1,2,3)), Group((7,8,9)),
[(1,2,3)], [(7,8,9)])

62.76. PREDEFINED GROUPS 1105

62.76 Predefined groups

The following variables are predefined as according permutation groups with a default small-
est set of generators: C2, C3, C4, V4, C5, C6, S3, C7, C8, C2xC4, C2xC2xC2, D8, Q8, C9, C3xC3,
C10, D10, C11, C12, C2xC6, D12, A4, T, C13, C14, D14, C15.

gap> S3;
S3
gap> Elements(S3);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]
gap> IsPermGroup(S3);
true
gap> S3.generators;
[(1,2), (1,2,3)]

62.77 How to find near-rings with certain properties

The near-ring library files can be used to systematically search for near-rings with (or
without) certain properties.

For instance, the function LibraryNearring can be integrated into a loop or occur as a part
of the Filtered or the First function to get all numbers of classes (or just the first class)
of near-rings on a specified group which have the specified properties.

In what follows, we shall give a few examples how this can be accomplished:

To get the number of the first class of near-rings on the group C6 which have an identity,
one could use a command like:

gap> First([1..60], i ->
> Identity(LibraryNearring("C6", i)) <> []);
28

If we try the same with S3, we will get an error message, indicating that there is no near-ring
with identity on S3:

gap> First([1..39], i ->
> Identity(LibraryNearring("S3", i)) <> []);
Error, at least one element of <list> must fulfill <func> in
First([1 .. 39], function (i) ... end) called from
main loop
brk>
gap>

To get all seven classes of near-rings with identity on the dihedral group D8 of order 8,
something like the following will work fine:

gap> l := Filtered([1..1447], i ->
> Identity(LibraryNearring("D8", i)) <> []);
[842, 844, 848, 849, 1094, 1096, 1097]
gap> time;
122490

Note that a search like this may take a few minutes.

1106 CHAPTER 62. GLISSANDO

Here is another example that provides the class numbers of the four boolean near-rings on
D8:

gap> l := Filtered([1..1447], i ->
> IsBooleanNearring(LibraryNearring("D8", i)));
[1314, 1380, 1446, 1447]

The search for class numbers of near-rings can also be accomplished in a loop like the
following:

gap> l:=[];;
gap> for i in [1..1447] do
> n := LibraryNearring("D8", i);
> if IsDgNearring(n) and
> not IsDistributiveNearring(n) then
> Add(l, i);
> fi;
> od;
gap> time;
261580
gap> l;
[765, 1094, 1098, 1306]

This provides a list of those class numbers of near-rings on D8 which are distributively
generated but not distributive.

Two or more conditions for library near-rings can also be combined with or:

gap> l := [];;
gap> for i in [1..1447] do
> n := LibraryNearring("D8", i);
> if Size(ZeroSymmetricElements(n)) < 8 or
> Identity(n) <> [] or
> IsIntegralNearring(n) then
> Add(l, i);
> fi;
> od;
gap> time;
124480
gap> l;
[842, 844, 848, 849, 1094, 1096, 1097, 1314, 1315, 1316, 1317, 1318,
1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329,
1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340,
1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351,
1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362,
1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1373,
1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384,
1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395,
1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406,
1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417,
1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428,
1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439,

62.77. HOW TO FIND NEAR-RINGS WITH CERTAIN PROPERTIES 1107

1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447]
gap> Length(l);
141

This provides a list of all 141 class numbers of near-rings on D8 which are non-zerosymmetric
or have an identity or are integral. (cf. [Pil83], pp. 416ff).

The following loop does the same for the near-rings on the quaternion group of order 8, Q8:

gap> l := [];;
gap> for i in [1..281] do
> n := LibraryNearring("Q8", i);
> if Size(ZeroSymmetricElements(n)) < 8 or
> Identity(n) <> [] or
> IsIntegralNearring(n) then
> Add(l, i);
> fi;
> od;
gap> time;
17740
gap> l;
[280, 281]

Once a list of class numbers has been computed (in this case here: l), e.g. the function
LibraryNearringInfo can be used to print some information about these near-rings:

gap> LibraryNearringInfo("Q8", l);
--
>>> GROUP: Q8
elements: [n0, n1, n2, n3, n4, n5, n6, n7]
addition table:

+ | n0 n1 n2 n3 n4 n5 n6 n7

n0 | n0 n1 n2 n3 n4 n5 n6 n7
n1 | n1 n2 n3 n0 n7 n4 n5 n6
n2 | n2 n3 n0 n1 n6 n7 n4 n5
n3 | n3 n0 n1 n2 n5 n6 n7 n4
n4 | n4 n5 n6 n7 n2 n3 n0 n1
n5 | n5 n6 n7 n4 n1 n2 n3 n0
n6 | n6 n7 n4 n5 n0 n1 n2 n3
n7 | n7 n4 n5 n6 n3 n0 n1 n2

group endomorphisms:
1: [n0, n0, n0, n0, n0, n0, n0, n0]
2: [n0, n0, n0, n0, n2, n2, n2, n2]
3: [n0, n1, n2, n3, n5, n6, n7, n4]
4: [n0, n1, n2, n3, n6, n7, n4, n5]
5: [n0, n1, n2, n3, n7, n4, n5, n6]
6: [n0, n2, n0, n2, n0, n2, n0, n2]
7: [n0, n2, n0, n2, n2, n0, n2, n0]

1108 CHAPTER 62. GLISSANDO

8: [n0, n3, n2, n1, n4, n7, n6, n5]
9: [n0, n3, n2, n1, n5, n4, n7, n6]
10: [n0, n3, n2, n1, n6, n5, n4, n7]
11: [n0, n3, n2, n1, n7, n6, n5, n4]
12: [n0, n4, n2, n6, n1, n7, n3, n5]
13: [n0, n4, n2, n6, n3, n5, n1, n7]
14: [n0, n4, n2, n6, n5, n1, n7, n3]
15: [n0, n4, n2, n6, n7, n3, n5, n1]
16: [n0, n5, n2, n7, n1, n4, n3, n6]
17: [n0, n5, n2, n7, n3, n6, n1, n4]
18: [n0, n5, n2, n7, n4, n3, n6, n1]
19: [n0, n5, n2, n7, n6, n1, n4, n3]
20: [n0, n6, n2, n4, n1, n5, n3, n7]
21: [n0, n6, n2, n4, n3, n7, n1, n5]
22: [n0, n6, n2, n4, n5, n3, n7, n1]
23: [n0, n6, n2, n4, n7, n1, n5, n3]
24: [n0, n7, n2, n5, n1, n6, n3, n4]
25: [n0, n7, n2, n5, n3, n4, n1, n6]
26: [n0, n7, n2, n5, n4, n1, n6, n3]
27: [n0, n7, n2, n5, n6, n3, n4, n1]
28: [n0, n1, n2, n3, n4, n5, n6, n7]

NEARRINGS:
--
280) phi: [1, 28, 28, 28, 28, 28, 28, 28]; 28; -B----I--P-RW
--
281) phi: [28, 28, 28, 28, 28, 28, 28, 28]; 28; -B----I--P-RW
--

62.78 Defining near-rings with known multiplication ta-
ble

Suppose that for a given group g the multiplication table of a binary operation ∗ on the
elements of g is known such that ∗ is a near-ring multiplication on g. Then the constructor
function Nearring can be used to input the near-ring specified by g and ∗.

An example shall illustrate a possibility how this could be accomplished: Take the group
S3, which in GAP can be defined e.g. by

gap> g := Group((1,2), (1,2,3));
Group((1,2), (1,2,3))

This group has the following list of elements:

gap> Elements(g);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

Let 1 stand for the first element in this list, 2 for the second, and so on up to 6 which stands
for the sixth element in the following multiplication table:

62.78. DEFINING NEAR-RINGS WITH KNOWN MULTIPLICATION TABLE 1109

∗ 1 2 3 4 5 6
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 2 2 6 3 6 3
4 1 1 5 4 5 4
5 1 1 4 5 4 5
6 2 2 3 6 3 6

A near-ring on g with this multiplication can be input by first defining a multiplication
function, say m in the following way:

gap> m := function(x, y)
> local elms, table;
> elms := Elements(g);
> table := [[1, 1, 1, 1, 1, 1],
> [2, 2, 2, 2, 2, 2],
> [2, 2, 6, 3, 6, 3],
> [1, 1, 5, 4, 5, 4],
> [1, 1, 4, 5, 4, 5],
> [2, 2, 3, 6, 3, 6]];
>
> return elms[table[Position(elms, x)][Position(elms, y)]];
> end;
function (x, y) ... end

Then the near-ring can be constructed by calling Nearring with the parameters g and m:

gap> n := Nearring(g, m);
Nearring(Group((1,2), (1,2,3)), function (x, y)

local elms, table;
elms := Elements(g);
table := [[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2],

[2, 2, 6, 3, 6, 3], [1, 1, 5, 4, 5, 4],
[1, 1, 4, 5, 4, 5], [2, 2, 3, 6, 3, 6]];

return elms[table[Position(elms, x)][Position(elms, y)]];
end)

1110 CHAPTER 62. GLISSANDO

Chapter 63

Grape

This chapter describes the main functions of the GRAPE (Version 2.31) share library package
for computing with graphs and groups. All functions described here are written entirely in
the GAP language, except for the automorphism group and isomorphism testing functions,
which make use of B. McKay’s nauty (Version 1.7) package [McK90].

GRAPE is primarily designed for the construction and analysis of graphs related to per-
mutation groups and finite geometries. Special emphasis is placed on the determination
of regularity properties and subgraph structure. The GRAPE philosophy is that a graph Γ
always comes together with a known subgroup G of Aut (Γ), and that G is used to reduce
the storage and CPU-time requirements for calculations with Γ (see [Soi93]). Of course G
may be the trivial group, and in this case GRAPE algorithms will perform more slowly than
strictly combinatorial algorithms (although this degradation in performance is hopefully
never more than a fixed constant factor).

In general GRAPE deals with directed graphs which may have loops but have no multiple
edges. However, many GRAPE functions only work for simple graphs (i.e. no loops, and
whenever [x, y] is an edge then so is [y, x]), but these functions will check if an input graph
is simple.

In GRAPE, a graph gamma is stored as a record, with mandatory components isGraph,
order, group, schreierVector, representatives, and adjacencies. Usually, the user
need not be aware of this record structure, and is strongly advised only to use GRAPE
functions to construct and modify graphs.

The order component contains the number of vertices of gamma. The vertices of gamma
are always 1, .., gamma.order, but they may also be given names, either by a user or by a
function constructing a graph (e.g. InducedSubgraph, BipartiteDouble, QuotientGraph).
The names component, if present, records these names. If the names component is not
present (the user may, for example, choose to unbind it), then the names are taken to be
1, ..., gamma.order. The group component records the the GAP permutation group associ-
ated with gamma (this group must be a subgroup of Aut (gamma)). The representatives
component records a set of orbit representatives for gamma.group on the vertices of gamma,
with gamma.adjacencies[i] being the set of vertices adjacent to gamma.representatives[i].
The only mandatory component which may change once a graph is initially constructed is
adjacencies (when an edge orbit of gamma.group is added to, or removed from, gamma).

1111

1112 CHAPTER 63. GRAPE

A graph record may also have some of the optional components isSimple, autGroup, and
canonicalLabelling, which record information about that graph.

GRAPE has the ability to make use of certain random group theoretical algorithms, which
can result in time and store savings. The use of these random methods may be switched on
and off by the global boolean variable GRAPE RANDOM, whose default value is false (random
methods not used). Even if random methods are used, no function described below depends
on the correctness of such a randomly computed result. For these functions the use of these
random methods only influences the time and store taken. All global variables used by
GRAPE start with GRAPE .

The user who is interested in knowing more about the GRAPE system, and its advanced
use, should consult [Soi93] and the GRAPE source code.

Before using any of the functions described in this chapter you must load the package by
calling the statement

gap> RequirePackage("grape");

Loading GRAPE 2.31 (GRaph Algorithms using PErmutation groups),
by L.H.Soicher@qmw.ac.uk.

63.1 Functions to construct and modify graphs

The following sections describe the functions used to construct and modify graphs.

63.2 Graph

Graph(G, L, act, rel)
Graph(G, L, act, rel, invt)

This is the most general and useful way of constructing a graph in GRAPE.

First suppose that the optional boolean parameter invt is unbound or has value false.
Then L should be a list of elements of a set S on which the group G acts (operates in
GAP language), with the action given by the function act . The parameter rel should be a
boolean function defining a G-invariant relation on S (so that for g in G , x, y in S, rel(x, y)
if and only if rel(act(x, g), act(y, g))). Then function Graph returns a graph gamma which
has as vertex names

Concatenation(Orbits(G, L, act))

(the concatenation of the distinct orbits of the elements in L under G), and for vertices v, w
of gamma, [v, w] is an edge if and only if

rel(VertexName(gamma, v), VertexName(gamma, w))

Now if the parameter invt exists and has value true, then it is assumed that L is invariant
under G with respect to action act . Then the function Graph behaves as above, except that
the vertex names of gamma become (a copy of) L.

The group associated with the graph gamma returned is the image of G acting via act on
gamma.names.

63.3. EDGEORBITSGRAPH 1113

For example, suppose you have an n × n adjacency matrix A for a graph X, so that the
vertices of X are {1, . . . , n}, and [i, j] is an edge of X if and only if A[i][j] = 1. Suppose also
that G ≤ Aut (X) (G may be trivial). Then you can make a GRAPE graph isomorphic to X
via Graph(G, [1..n], OnPoints, function(x,y) return A[x][y]=1; end, true);

gap> A := [[0,1,0],[1,0,0],[0,0,1]];
[[0, 1, 0], [1, 0, 0], [0, 0, 1]]
gap> G := Group((1,2));
Group((1,2))
gap> Graph(G, [1..3], OnPoints,
> function(x,y) return A[x][y]=1; end,
> true);
rec(
isGraph := true,
order := 3,
group := Group((1,2)),
schreierVector := [-1, 1, -2],
adjacencies := [[2], [3]],
representatives := [1, 3],
names := [1 .. 3])

We now construct the Petersen graph.

gap> Petersen := Graph(SymmetricGroup(5), [[1,2]], OnSets,
> function(x,y) return Intersection(x,y)=[]; end);
rec(
isGraph := true,
order := 10,
group := Group((1, 2)(6, 8)(7, 9), (1, 3)(4, 8)(5, 9),

(2, 4)(3, 6)(9,10), (2, 5)(3, 7)(8,10)),
schreierVector := [-1, 1, 2, 3, 4, 3, 4, 2, 2, 4],
adjacencies := [[8, 9, 10]],
representatives := [1],
names := [[1, 2], [2, 5], [1, 5], [2, 3], [2, 4],

[1, 3], [1, 4], [3, 5], [4, 5], [3, 4]])

63.3 EdgeOrbitsGraph

EdgeOrbitsGraph(G, E)
EdgeOrbitsGraph(G, E, n)

This is a common way of constructing a graph in GRAPE.

This function returns the (directed) graph with vertex set {1, ...,n}, edge set ∪e∈E e
G , and

associated (permutation) group G , which must act naturally on {1, ...,n}. The parameter
E should be a list of edges (lists of length 2 of vertices), although a singleton edge will be
understood as an edge list of length 1. The parameter n may be omitted, in which case the
number of vertices is the largest point moved by a generator of G .

Note that G may be the trivial permutation group (Group(()) in GAP notation), in which
case the (directed) edges of gamma are simply those in the list E .

1114 CHAPTER 63. GRAPE

gap> EdgeOrbitsGraph(Group((1,3),(1,2)(3,4)), [[1,2],[4,5]], 5);
rec(
isGraph := true,
order := 5,
group := Group((1,3), (1,2)(3,4)),
schreierVector := [-1, 2, 1, 2, -2],
adjacencies := [[2, 4, 5], []],
representatives := [1, 5],
isSimple := false)

63.4 NullGraph

NullGraph(G)
NullGraph(G, n)

This function returns the null graph on n vertices, with associated (permutation) group G .
The parameter n may be omitted, in which case the number of vertices is the largest point
moved by a generator of G .
See also 63.29.

gap> NullGraph(Group((1,2,3)), 4);
rec(

isGraph := true,
order := 4,
group := Group((1,2,3)),
schreierVector := [-1, 1, 1, -2],
adjacencies := [[], []],
representatives := [1, 4],
isSimple := true)

63.5 CompleteGraph

CompleteGraph(G)
CompleteGraph(G, n)
CompleteGraph(G, n, mustloops)

This function returns a complete graph on n vertices with associated (permutation) group
G . The parameter n may be omitted, in which case the number of vertices is the largest
point moved by a generator of G . The optional boolean parameter mustloops determines
whether the complete graph has all loops present or no loops (default: false (no loops)).
See also 63.30.

gap> CompleteGraph(Group((1,2,3), (1,2)));
rec(

isGraph := true,
order := 3,
group := Group((1,2,3), (1,2)),
schreierVector := [-1, 1, 1],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true)

63.6. JOHNSONGRAPH 1115

63.6 JohnsonGraph

JohnsonGraph(n, e)

This function returns a graph gamma isomorphic to the Johnson graph, whose vertices are
the e-subsets of {1, ...,n}, with x joined to y if and only if |x ∩ y| = e − 1. The group
associated with gamma is image of the the symmetric group Sn acting on the e-subsets of
{1, . . . ,n}.

gap> JohnsonGraph(5,3);
rec(

isGraph := true,
order := 10,
group := Group((1, 8)(2, 9)(4,10), (1, 5)(2, 6)(7,10),
(1, 3)(4, 6)(7, 9), (2, 3)(4, 5)(7, 8)),

schreierVector := [-1, 4, 3, 4, 2, 3, 4, 1, 3, 2],
adjacencies := [[2, 3, 4, 5, 7, 8]],
representatives := [1],
names := [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4],

[1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5],
[2, 4, 5], [3, 4, 5]],

isSimple := true)

63.7 AddEdgeOrbit

AddEdgeOrbit(gamma, e)
AddEdgeOrbit(gamma, e, H)

This procedure adds the edge orbit egamma.group to the edge set of graph gamma. The
parameter e must be a sequence of length 2 of vertices of gamma. If the optional third
parameter H is given then it is assumed that e[2] has the same orbit under H as it does
under the stabilizer in gamma.group of e[1], and this knowledge can greatly speed up the
procedure.

Note that if gamma.group is trivial then this procedure simply adds the single edge e to
gamma.

gap> gamma := NullGraph(Group((1,3), (1,2)(3,4)));
rec(
isGraph := true,
order := 4,
group := Group((1,3), (1,2)(3,4)),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[]],
representatives := [1],
isSimple := true)

gap> AddEdgeOrbit(gamma, [4,3]);
gap> gamma;
rec(
isGraph := true,
order := 4,

1116 CHAPTER 63. GRAPE

group := Group((1,3), (1,2)(3,4)),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[2, 4]],
representatives := [1],
isSimple := true)

63.8 RemoveEdgeOrbit

RemoveEdgeOrbit(gamma, e)
RemoveEdgeOrbit(gamma, e, H)

This procedure removes the edge orbit egamma.group from the edge set of the graph gamma.
The parameter e must be a sequence of length 2 of vertices of gamma, but if e is not an
edge of gamma then this procedure has no effect. If the optional third parameter H is given
then it is assumed that e[2] has the same orbit under H as it does under the stabilizer in
gamma.group of e[1], and this knowledge can greatly speed up the procedure.

gap> gamma := CompleteGraph(Group((1,3), (1,2)(3,4)));
rec(
isGraph := true,
order := 4,
group := Group((1,3), (1,2)(3,4)),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[2, 3, 4]],
representatives := [1],
isSimple := true)

gap> RemoveEdgeOrbit(gamma, [4,3]);
gap> gamma;
rec(
isGraph := true,
order := 4,
group := Group((1,3), (1,2)(3,4)),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[3]],
representatives := [1],
isSimple := true)

63.9 AssignVertexNames

AssignVertexNames(gamma, names)

This function allows the user to give new names to the vertices of gamma, by specifying a
list names of vertex names for the vertices of gamma, such that names[i] contains the user’s
name for the i-th vertex of gamma.

A copy of names is assigned to gamma.names. See also 63.14.

gap> gamma := NullGraph(Group(()), 3);
rec(
isGraph := true,
order := 3,

63.10. FUNCTIONS TO INSPECT GRAPHS, VERTICES AND EDGES 1117

group := Group(()),
schreierVector := [-1, -2, -3],
adjacencies := [[], [], []],
representatives := [1, 2, 3],
isSimple := true)

gap> AssignVertexNames(gamma, ["a","b","c"]);
gap> gamma;
rec(
isGraph := true,
order := 3,
group := Group(()),
schreierVector := [-1, -2, -3],
adjacencies := [[], [], []],
representatives := [1, 2, 3],
isSimple := true,
names := ["a", "b", "c"])

63.10 Functions to inspect graphs, vertices and edges

The next sections describe functions to inspect graphs, vertices and edges.

63.11 IsGraph

IsGraph(obj)

This boolean function returns true if and only if obj , which can be an object of arbitrary
type, is a graph.

gap> IsGraph(1);
false
gap> IsGraph(JohnsonGraph(3, 2));
true

63.12 OrderGraph

OrderGraph(gamma)

This function returns the number of vertices (order) of the graph gamma.
gap> OrderGraph(JohnsonGraph(4, 2));
6

63.13 IsVertex

IsVertex(gamma, v)

This boolean function returns true if and only if v is vertex of gamma.
gap> gamma := JohnsonGraph(3, 2);;
gap> IsVertex(gamma, 1);
true
gap> IsVertex(gamma, 4);
false

1118 CHAPTER 63. GRAPE

63.14 VertexName

VertexName(gamma, v)

This function returns (a copy of) the name of the vertex v of gamma.

See also 63.9.

gap> VertexName(JohnsonGraph(4,2), 6);
[3, 4]

63.15 Vertices

Vertices(gamma)

This function returns the vertex set {1, ..., gamma.order} of the graph gamma.

gap> Vertices(JohnsonGraph(4, 2));
[1 .. 6]

63.16 VertexDegree

VertexDegree(gamma, v)

This function returns the (out)degree of the vertex v of the graph gamma.

gap> VertexDegree(JohnsonGraph(3, 2), 1);
2

63.17 VertexDegrees

VertexDegrees(gamma)

This function returns the set of vertex (out)degrees for the graph gamma.

gap> VertexDegrees(JohnsonGraph(4, 2));
[4]

63.18 IsLoopy

IsLoopy(gamma)

This boolean function returns true if and only if the graph gamma has a loop, that is, an
edge of the form [x, x].

gap> IsLoopy(JohnsonGraph(4, 2));
false
gap> IsLoopy(CompleteGraph(Group((1,2,3), (1,2)), 3));
false
gap> IsLoopy(CompleteGraph(Group((1,2,3), (1,2)), 3, true));
true

63.19. ISSIMPLEGRAPH 1119

63.19 IsSimpleGraph

IsSimpleGraph(gamma)

This boolean function returns true if and only if the graph gamma is simple, that is, has
no loops and whenever [x, y] is an edge then so is [y, x].

gap> IsSimpleGraph(CompleteGraph(Group((1,2,3)), 3));
true
gap> IsSimpleGraph(CompleteGraph(Group((1,2,3)), 3, true));
false

63.20 Adjacency

Adjacency(gamma, v)

This function returns (a copy of) the set of vertices of gamma adjacent to vertex v . A vertex
w is adjacent to v if and only if [v, w] is an edge.

gap> Adjacency(JohnsonGraph(4, 2), 1);
[2, 3, 4, 5]
gap> Adjacency(JohnsonGraph(4, 2), 6);
[2, 3, 4, 5]

63.21 IsEdge

IsEdge(gamma, e)

This boolean function returns true if and only if e is an edge of gamma.

gap> IsEdge(JohnsonGraph(4, 2), [1, 2]);
true
gap> IsEdge(JohnsonGraph(4, 2), [1, 6]);
false

63.22 DirectedEdges

DirectedEdges(gamma)

This function returns the set of directed (ordered) edges of the graph gamma.

See also 63.23.

gap> gamma := JohnsonGraph(3, 2);
rec(
isGraph := true,
order := 3,
group := Group((1,3), (1,2)),
schreierVector := [-1, 2, 1],
adjacencies := [[2, 3]],
representatives := [1],
names := [[1, 2], [1, 3], [2, 3]],
isSimple := true)

1120 CHAPTER 63. GRAPE

gap> DirectedEdges(gamma);
[[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]
gap> UndirectedEdges(gamma);
[[1, 2], [1, 3], [2, 3]]

63.23 UndirectedEdges

UndirectedEdges(gamma)

This function returns the set of undirected (unordered) edges of gamma, which must be a
simple graph.

See also 63.22.

gap> gamma := JohnsonGraph(3, 2);
rec(

isGraph := true,
order := 3,
group := Group((1,3), (1,2)),
schreierVector := [-1, 2, 1],
adjacencies := [[2, 3]],
representatives := [1],
names := [[1, 2], [1, 3], [2, 3]],
isSimple := true)

gap> DirectedEdges(gamma);
[[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]
gap> UndirectedEdges(gamma);
[[1, 2], [1, 3], [2, 3]]

63.24 Distance

Distance(gamma, X , Y)
Distance(gamma, X , Y , G)

This function returns the distance from X to Y in gamma. The parameters X and Y may
be vertices or vertex sets. We define the distance d(X ,Y) from X to Y to be the minimum
length of a (directed) path joining a vertex of X to a vertex of Y if such a path exists, and
−1 otherwise.

The optional parameter G , if present, is assumed to be a subgroup of Aut (gamma) fixing
X setwise. Including such a G can speed up the function.

gap> Distance(JohnsonGraph(4,2), 1, 6);
2
gap> Distance(JohnsonGraph(4,2), 1, 5);
1

63.25 Diameter

Diameter(gamma)

This function returns the diameter of gamma. A diameter of −1 is returned if gamma is
not (strongly) connected.

63.26. GIRTH 1121

gap> Diameter(JohnsonGraph(5, 3));
2
gap> Diameter(JohnsonGraph(5, 4));
1

63.26 Girth

Girth(gamma)

This function returns the girth of gamma, which must be a simple graph. A girth of −1 is
returned if gamma is a forest.

gap> Girth(JohnsonGraph(4, 2));
3

63.27 IsConnectedGraph

IsConnectedGraph(gamma)

This boolean function returns true if and only if gamma is (strongly) connected, i.e. if
there is a (directed) path from x to y for every pair of vertices x, y of gamma.

gap> IsConnectedGraph(JohnsonGraph(4,2));
true
gap> IsConnectedGraph(NullGraph(SymmetricGroup(4)));
false

63.28 IsBipartite

IsBipartite(gamma)

This boolean function returns true if and only if the graph gamma, which must be simple,
is bipartite, i.e. if the vertex set can be partitioned into two null graphs (which are called
bicomponents or parts of gamma).

See also 63.41, 63.51, and 63.54.

gap> gamma := JohnsonGraph(4,2);
rec(
isGraph := true,
order := 6,
group := Group((1,5)(2,6), (1,3)(4,6), (2,3)(4,5)),
schreierVector := [-1, 3, 2, 3, 1, 2],
adjacencies := [[2, 3, 4, 5]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4],

[3, 4]],
isSimple := true)

gap> IsBipartite(gamma);
false
gap> delta := BipartiteDouble(gamma);
rec(

1122 CHAPTER 63. GRAPE

isGraph := true,
order := 12,
group := Group((1, 5)(2, 6)(7,11)(8,12), (1, 3)(4, 6)(7, 9)
(10,12), (2, 3)(4, 5)(8, 9)(10,11), (1, 7)(2, 8)(3, 9)
(4,10)(5,11)(6,12)),

schreierVector := [-1, 3, 2, 3, 1, 2, 4, 4, 4, 4, 4, 4],
adjacencies := [[8, 9, 10, 11]],
representatives := [1],
isSimple := true,
names := [[[1, 2], "+"], [[1, 3], "+"], [[1, 4], "+"],

[[2, 3], "+"], [[2, 4], "+"], [[3, 4], "+"],
[[1, 2], "-"], [[1, 3], "-"], [[1, 4], "-"],
[[2, 3], "-"], [[2, 4], "-"], [[3, 4], "-"]])

gap> IsBipartite(delta);
true

63.29 IsNullGraph

IsNullGraph(gamma)

This boolean function returns true if and only if the graph gamma has no edges.

See also 63.4.

gap> IsNullGraph(CompleteGraph(Group(()), 3));
false
gap> IsNullGraph(CompleteGraph(Group(()), 1));
true

63.30 IsCompleteGraph

IsCompleteGraph(gamma)
IsCompleteGraph(gamma, mustloops)

This boolean function returns true if and only if the graph gamma is a complete graph.
The optional boolean parameter mustloops determines whether all loops must be present
for gamma to be considered a complete graph (default: false (loops are ignored)).

See also 63.5.

gap> IsCompleteGraph(NullGraph(Group(()), 3));
false
gap> IsCompleteGraph(NullGraph(Group(()), 1));
true
gap> IsCompleteGraph(CompleteGraph(SymmetricGroup(3)), true);
false

63.31 Functions to determine regularity properties of
graphs

The following sections describe functions to determine regularity properties of graphs.

63.32. ISREGULARGRAPH 1123

63.32 IsRegularGraph

IsRegularGraph(gamma)

This boolean function returns true if and only if the graph gamma is (out)regular.

gap> IsRegularGraph(JohnsonGraph(4,2));
true
gap> IsRegularGraph(EdgeOrbitsGraph(Group(()),[[1,2]],2));
false

63.33 LocalParameters

LocalParameters(gamma, V)
LocalParameters(gamma, V , G)

This function determines any local parameters ci(V), ai(V), or bi(V) that simple, con-
nected gamma may have, with respect to the singleton vertex or vertex set V (see [BCN89]).
The function returns a list of triples, whose i-th element is [ci−1(V), ai−1(V), bi−1(V)], ex-
cept that if some local parameter does not exist then a −1 is put in its place. This function
can be used to determine whether a given subset of the vertices of a graph is a distance-
regular code in that graph.

The optional parameter G , if present, is assumed to be a subgroup of Aut (gamma) fixing
V (setwise). Including such a G can speed up the function.

gap> LocalParameters(JohnsonGraph(4,2), 1);
[[0, 0, 4], [1, 2, 1], [4, 0, 0]]
gap> LocalParameters(JohnsonGraph(4,2), [1,6]);
[[0, 0, 4], [2, 2, 0]]

63.34 GlobalParameters

GlobalParameters(gamma)

In a similar way to LocalParameters (see 63.33), this function determines the global
parameters ci, ai, bi of simple, connected gamma (see [BCN89]). The nonexistence of a
global parameter is denoted by −1.

gap> gamma := JohnsonGraph(4,2);;
gap> GlobalParameters(gamma);
[[0, 0, 4], [1, 2, 1], [4, 0, 0]]
gap> GlobalParameters(BipartiteDouble(gamma));
[[0, 0, 4], [1, 0, 3], [-1, 0, -1], [4, 0, 0]]

63.35 IsDistanceRegular

IsDistanceRegular(gamma)

This boolean function returns true if and only if gamma is distance-regular, i.e. gamma is
simple, connected, and all possible global parameters exist.

gap> gamma := JohnsonGraph(4,2);;

1124 CHAPTER 63. GRAPE

gap> IsDistanceRegular(gamma);
true
gap> IsDistanceRegular(BipartiteDouble(gamma));
false

63.36 CollapsedAdjacencyMat

CollapsedAdjacencyMat(G, gamma)

This function returns the collapsed adjacency matrix for gamma, where the collapsing group
is G . It is assumed that G is a subgroup of Aut (gamma).
The (i, j)-entry of the collapsed adjacency matrix equals the number of edges in {[x, y]|y ∈ j-
th G-orbit }, where x is a fixed vertex in the i-th G-orbit.
See also 63.37.

gap> gamma := JohnsonGraph(4,2);;
gap> G := Stabilizer(gamma.group, 1);;
gap> CollapsedAdjacencyMat(G, gamma);
[[0, 4, 0], [1, 2, 1], [0, 4, 0]]

63.37 OrbitalGraphIntersectionMatrices

OrbitalGraphIntersectionMatrices(G)
OrbitalGraphIntersectionMatrices(G, H)

This function returns a sequence of intersection matrices corresponding to the orbital graphs
for the transitive permutation group G . An intersection matrix for an orbital graph gamma
for G is a collapsed adjacency matrix of gamma, collapsed with respect to the stabilizer in
G of a point.
If the optional parameter H is given then it is assumed to be the stabilizer in G of the point
1, and this information can speed up the function.
See also 63.36.

gap> OrbitalGraphIntersectionMatrices(SymmetricGroup(7));
[[[1, 0], [0, 1]], [[0, 6], [1, 5]]]

63.38 Some special vertex subsets of a graph

The following sections describe functions for special vertex subsets of a graph.

63.39 ConnectedComponent

ConnectedComponent(gamma, v)

This function returns the set of all vertices in gamma which can be reached by a path
starting at the vertex v . The graph gamma must be simple.
See also 63.40.

gap> ConnectedComponent(NullGraph(Group((1,2))), 2);
[2]
gap> ConnectedComponent(JohnsonGraph(4,2), 2);
[1, 2, 3, 4, 5, 6]

63.40. CONNECTEDCOMPONENTS 1125

63.40 ConnectedComponents

ConnectedComponents(gamma)

This function returns a list of the vertex sets of the connected components of gamma, which
must be a simple graph.

See also 63.39.

gap> ConnectedComponents(NullGraph(Group((1,2,3,4))));
[[1], [2], [3], [4]]
gap> ConnectedComponents(JohnsonGraph(4,2));
[[1, 2, 3, 4, 5, 6]]

63.41 Bicomponents

Bicomponents(gamma)

If the graph gamma, which must be simple, is bipartite, this function returns a length 2 list
of bicomponents or parts of gamma, otherwise the empty list is returned.

Note: if gamma is not connected then its bicomponents are not necessarily uniquely deter-
mined. See also 63.28.

gap> Bicomponents(NullGraph(SymmetricGroup(4)));
[[1, 2, 3], [4]]
gap> Bicomponents(JohnsonGraph(4,2));
[]

63.42 DistanceSet

DistanceSet(gamma, distances, V)
DistanceSet(gamma, distances, V , G)

This function returns the set of vertices w of gamma, such that d(V , w) is in distances (a
list or singleton distance).

The optional parameter G , if present, is assumed to be a subgroup of Aut (gamma) fixing
V setwise. Including such a G can speed up the function.

gap> DistanceSet(JohnsonGraph(4,2), 1, [1,6]);
[2, 3, 4, 5]

63.43 Layers

Layers(gamma, V)
Layers(gamma, V , G)

This function returns a list whose i-th element is the set of vertices of gamma at distance
i− 1 from V , which may be a vertex set or a singleton vertex.

The optional parameter G , if present, is assumed to be a subgroup of Aut (gamma) which
fixes V setwise. Including such a G can speed up the function.

gap> Layers(JohnsonGraph(4,2), 6);
[[6], [2, 3, 4, 5], [1]]

1126 CHAPTER 63. GRAPE

63.44 IndependentSet

IndependentSet(gamma)
IndependentSet(gamma, indset)
IndependentSet(gamma, indset, forbidden)

Returns a (hopefully large) independent set (coclique) of the graph gamma, which must
be simple. At present, a greedy algorithm is used. The returned independent set will
contain the (assumed) independent set indset (default: []), and not contain any element of
forbidden (default: [], in which case the returned independent set is maximal). An error is
signalled if indset and forbidden have non-trivial intersection.

gap> IndependentSet(JohnsonGraph(4,2), [3]);
[3, 4]

63.45 Functions to construct new graphs from old

The following sections describe functions to construct new graphs from old ones.

63.46 InducedSubgraph

InducedSubgraph(gamma, V)
InducedSubgraph(gamma, V , G)

This function returns the subgraph of gamma induced on the vertex list V (which must not
contain repeated elements). If the optional third parameter G is given, then it is assumed
that G fixes V setwise, and is a group of automorphisms of the induced subgraph when
restriced to V . This knowledge is then used to give an associated group to the induced
subgraph. If no such G is given then the associated group is trivial.

gap> gamma := JohnsonGraph(4,2);;
gap> S := [2,3,4,5];;
gap> InducedSubgraph(gamma, S, Stabilizer(gamma.group,S,OnSets));
rec(
isGraph := true,
order := 4,
group := Group((2,3), (1,2)(3,4)),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true,
names := [[1, 3], [1, 4], [2, 3], [2, 4]])

63.47 DistanceSetInduced

DistanceSetInduced(gamma, distances, V)
DistanceSetInduced(gamma, distances, V , G)

This function returns the subgraph of gamma induced on the set of vertices w of gamma
such that d(V , w) is in distances (a list or singleton distance).

63.48. DISTANCEGRAPH 1127

The optional parameter G , if present, is assumed to be a subgroup of Aut (gamma) fixing
V setwise. Including such a G can speed up the function.

gap> DistanceSetInduced(JohnsonGraph(4,2), [0,1], [1]);
rec(

isGraph := true,
order := 5,
group := Group((2,3)(4,5), (2,5)(3,4)),
schreierVector := [-1, -2, 1, 2, 2],
adjacencies := [[2, 3, 4, 5], [1, 3, 4]],
representatives := [1, 2],
isSimple := true,
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4]])

63.48 DistanceGraph

DistanceGraph(gamma, distances)

This function returns the graph delta, with the same vertex set as gamma, such that [x, y]
is an edge of delta if and only if d(x, y) (in gamma) is in the list distances.

gap> DistanceGraph(JohnsonGraph(4,2), [2]);
rec(
isGraph := true,
order := 6,
group := Group((1,5)(2,6), (1,3)(4,6), (2,3)(4,5)),
schreierVector := [-1, 3, 2, 3, 1, 2],
adjacencies := [[6]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4],

[3, 4]],
isSimple := true)

gap> ConnectedComponents(last);
[[1, 6], [2, 5], [3, 4]]

63.49 ComplementGraph

ComplementGraph(gamma)
ComplementGraph(gamma, comploops)

This function returns the complement of the graph gamma. The optional boolean parameter
comploops determines whether or not loops/nonloops are complemented (default: false
(loops/nonloops are not complemented)).

gap> ComplementGraph(NullGraph(SymmetricGroup(3)));
rec(
isGraph := true,
order := 3,
group := Group((1,3), (2,3)),
schreierVector := [-1, 2, 1],
adjacencies := [[2, 3]],

1128 CHAPTER 63. GRAPE

representatives := [1],
isSimple := true)

gap> IsLoopy(last);
false
gap> IsLoopy(ComplementGraph(NullGraph(SymmetricGroup(3)),true));
true

63.50 PointGraph

PointGraph(gamma)
PointGraph(gamma, v)

Assuming that gamma is simple, connected, and bipartite, this function returns the induced
subgraph on the connected component of DistanceGraph(gamma,2) containing the vertex
v (default: v = 1).

Thus, if gamma is the incidence graph of a connected geometry, and v represents a point,
then the point graph of the geometry is returned.

gap> BipartiteDouble(CompleteGraph(SymmetricGroup(4)));;
gap> PointGraph(last);
rec(

isGraph := true,
order := 4,
group := Group((3,4), (2,4), (1,4)),
schreierVector := [-1, 2, 1, 3],
adjacencies := [[2, 3, 4]],
representatives := [1],
isSimple := true,
names := [[1, "+"], [2, "+"], [3, "+"], [4, "+"]])

gap> IsCompleteGraph(last);
true

63.51 EdgeGraph

EdgeGraph(gamma)

This function returns the edge graph, also called the line graph, of the simple graph gamma.

This edge graph delta has the unordered edges of gamma as vertices, and e is joined to f
in delta precisely when |e ∩ f | = 1.

gap> EdgeGraph(CompleteGraph(SymmetricGroup(5)));
rec(
isGraph := true,
order := 10,
group := Group((1, 7)(2, 9)(3,10), (1, 4)(5, 9)(6,10),
(2, 4)(5, 7)(8,10), (3, 4)(6, 7)(8, 9)),

schreierVector := [-1, 3, 4, 2, 3, 4, 1, 4, 2, 2],
adjacencies := [[2, 3, 4, 5, 6, 7]],
representatives := [1],
isSimple := true,

63.52. UNDERLYINGGRAPH 1129

names := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3],
[2, 4], [2, 5], [3, 4], [3, 5], [4, 5]])

63.52 UnderlyingGraph

UnderlyingGraph(gamma)

This function returns the underlying graph delta of gamma. The graph delta has the same
vertex set as gamma, and has an edge [x, y] precisely when gamma has an edge [x, y] or an
edge [y, x]. This function also sets the isSimple components of gamma and delta.

gap> gamma := EdgeOrbitsGraph(Group((1,2,3,4)), [1,2]);
rec(
isGraph := true,
order := 4,
group := Group((1,2,3,4)),
schreierVector := [-1, 1, 1, 1],
adjacencies := [[2]],
representatives := [1],
isSimple := false)

gap> UnderlyingGraph(gamma);
rec(
isGraph := true,
order := 4,
group := Group((1,2,3,4)),
schreierVector := [-1, 1, 1, 1],
adjacencies := [[2, 4]],
representatives := [1],
isSimple := true)

63.53 QuotientGraph

QuotientGraph(gamma, R)

Let S be the smallest gamma.group-invariant equivalence relation on the vertices of gamma,
such that S contains the relation R (which should be a list of ordered pairs (length 2 lists)
of vertices of gamma). Then this function returns a graph isomorphic to the quotient delta
of the graph gamma, defined as follows. The vertices of delta are the equivalence classes of
S, and [X,Y] is an edge of delta if and only if [x, y] is an edge of gamma for some x ∈ X,
y ∈ Y .

gap> gamma := JohnsonGraph(4,2);;
gap> QuotientGraph(gamma, [[1,6]]);
rec(
isGraph := true,
order := 3,
group := Group((1,2), (1,3), (2,3)),
schreierVector := [-1, 1, 2],
adjacencies := [[2, 3]],
representatives := [1],

1130 CHAPTER 63. GRAPE

isSimple := true,
names := [[[1, 2], [3, 4]], [[1, 3], [2, 4]],

[[1, 4], [2, 3]]])

63.54 BipartiteDouble

BipartiteDouble(gamma)

This function returns the bipartite double of the graph gamma, as defined in [BCN89].

gap> gamma := JohnsonGraph(4,2);
rec(
isGraph := true,
order := 6,
group := Group((1,5)(2,6), (1,3)(4,6), (2,3)(4,5)),
schreierVector := [-1, 3, 2, 3, 1, 2],
adjacencies := [[2, 3, 4, 5]],
representatives := [1],
names := [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4],

[3, 4]],
isSimple := true)

gap> IsBipartite(gamma);
false
gap> delta := BipartiteDouble(gamma);
rec(
isGraph := true,
order := 12,
group := Group((1, 5)(2, 6)(7,11)(8,12), (1, 3)(4, 6)(7, 9)
(10,12), (2, 3)(4, 5)(8, 9)(10,11), (1, 7)(2, 8)(3, 9)
(4,10)(5,11)(6,12)),

schreierVector := [-1, 3, 2, 3, 1, 2, 4, 4, 4, 4, 4, 4],
adjacencies := [[8, 9, 10, 11]],
representatives := [1],
isSimple := true,
names := [[[1, 2], "+"], [[1, 3], "+"], [[1, 4], "+"],

[[2, 3], "+"], [[2, 4], "+"], [[3, 4], "+"],
[[1, 2], "-"], [[1, 3], "-"], [[1, 4], "-"],
[[2, 3], "-"], [[2, 4], "-"], [[3, 4], "-"]])

gap> IsBipartite(delta);
true

63.55 GeodesicsGraph

GeodesicsGraph(gamma, x, y)

This function returns the the graph induced on the set of geodesics between vertices x and
y , but not including x or y . This function is only for a simple graph gamma.

gap> GeodesicsGraph(JohnsonGraph(4,2), 1, 6);
rec(

63.56. COLLAPSEDINDEPENDENTORBITSGRAPH 1131

isGraph := true,
order := 4,
group := Group((1,3)(2,4), (1,4)(2,3), (1,3,4,2)),
schreierVector := [-1, 2, 1, 2],
adjacencies := [[2, 3]],
representatives := [1],
isSimple := true,
names := [[1, 3], [1, 4], [2, 3], [2, 4]])

gap> GlobalParameters(last);
[[0, 0, 2], [1, 0, 1], [2, 0, 0]]

63.56 CollapsedIndependentOrbitsGraph

CollapsedIndependentOrbitsGraph(G, gamma)
CollapsedIndependentOrbitsGraph(G, gamma, N)

Given a subgroup G of the automorphism group of the graph gamma, this function returns
a graph isomorphic to delta, defined as follows. The vertices of delta are those G-orbits of
the vertices of gamma that are independent sets, and x is not joined to y in delta if and
only if x ∪ y is an independent set in gamma.
If the optional parameter N is given, then it is assumed to be a subgroup of Aut (gamma)
preserving the set of G-orbits of the vertices of gamma (for example, the normalizer in
gamma.group of G). This information can make the function more efficient.

gap> G := Group((1,2));;
gap> gamma := NullGraph(SymmetricGroup(3));;
gap> CollapsedIndependentOrbitsGraph(G, gamma);
rec(

isGraph := true,
order := 2,
group := Group(()),
schreierVector := [-1, -2],
adjacencies := [[], []],
representatives := [1, 2],
isSimple := true,
names := [[1, 2], [3]])

63.57 CollapsedCompleteOrbitsGraph

CollapsedCompleteOrbitsGraph(G, gamma)
CollapsedCompleteOrbitsGraph(G, gamma, N)

Given a subgroup G of the automorphism group of the simple graph gamma, this function
returns a graph isomorphic to delta, defined as follows. The vertices of delta are those G-
orbits of the vertices of gamma on which complete subgraphs are induced in gamma, and x
is joined to y in delta if and only if x 6= y and the subgraph of gamma induced on x ∪ y is
a complete graph.
If the optional parameter N is given, then it is assumed to be a subgroup of Aut (gamma)
preserving the set of G-orbits of the vertices of gamma (for example, the normalizer in
gamma.group of G). This information can make the function more efficient.

1132 CHAPTER 63. GRAPE

gap> G := Group((1,2));;
gap> gamma := NullGraph(SymmetricGroup(3));;
gap> CollapsedCompleteOrbitsGraph(G, gamma);
rec(
isGraph := true,
order := 1,
group := Group(()),
schreierVector := [-1],
adjacencies := [[]],
representatives := [1],
names := [[3]],
isSimple := true)

gap> gamma := CompleteGraph(SymmetricGroup(3));;
gap> CollapsedCompleteOrbitsGraph(G, gamma);
rec(
isGraph := true,
order := 2,
group := Group(()),
schreierVector := [-1, -2],
adjacencies := [[2], [1]],
representatives := [1, 2],
names := [[1, 2], [3]],
isSimple := true)

63.58 NewGroupGraph

NewGroupGraph(G, gamma)

This function returns a copy delta of gamma, except that the group associated with delta
is G , which is a assumed to be a subgroup of Aut (delta).
Note that the result of some functions of a graph depend on the group associated with that
graph (which must always be a subgroup of the automorphism group of the graph).

gap> gamma := JohnsonGraph(4,2);;
gap> aut := AutGroupGraph(gamma);
Group((3,4), (2,3)(4,5), (1,2)(5,6))
gap> Size(gamma.group);
24
gap> Size(aut);
48
gap> delta := NewGroupGraph(aut, gamma);;
gap> Size(delta.group);
48
gap> IsIsomorphicGraph(gamma, delta);
true

63.59 Vertex-Colouring and Complete Subgraphs

The following sections describe functions for vertex-colouring or constructing complete sub-
graphs of given graphs.

63.60. VERTEXCOLOURING 1133

63.60 VertexColouring

VertexColouring(gamma)

This function returns a proper vertex-colouring C for the graph gamma, which must be
simple.

This proper vertex-colouring C is a list of natural numbers, indexed by the vertices of
gamma, and has the property that C[i] 6= C[j] whenever [i, j] is an edge of gamma. At
present a greedy algorithm is used.

gap> VertexColouring(JohnsonGraph(4,2));
[1, 2, 3, 3, 2, 1]

63.61 CompleteSubgraphs

CompleteSubgraphs(gamma)
CompleteSubgraphs(gamma, k)
CompleteSubgraphs(gamma, k, alls)

This function returns a set K of complete subgraphs of gamma, which must be a simple
graph. A complete subgraph is represented by its vertex set. If k > −1 then the elements
of K each have size k , otherwise the elements of K represent maximal complete subgraphs
of gamma. The default for k is −1, i.e. maximal complete subgraphs.

The optional boolean parameter alls controls how many complete subgraphs are returned.
If alls is true (the default), then K will contain (perhaps properly) a set of gamma.group
orbit-representatives of the size k (if k > −1) or maximal (if k < 0) complete subgraphs of
gamma.

If alls is false then K will contain at most one element. In this case, if k < 0 then K will
contain just one maximal complete subgraph, and if k > −1 then K will contain a complete
subgraph of size k if and only if such a subgraph is contained in gamma.

gap> gamma := JohnsonGraph(5,2);;
gap> CompleteSubgraphs(gamma);
[[1, 2, 3, 4], [1, 2, 5]]
gap> CompleteSubgraphs(gamma,2,false);
[[1, 2]]

63.62 CompleteSubgraphsOfGivenSize

CompleteSubgraphsOfGivenSize(gamma, k)
CompleteSubgraphsOfGivenSize(gamma, k, alls)
CompleteSubgraphsOfGivenSize(gamma, k, alls, maxi)
CompleteSubgraphsOfGivenSize(gamma, k, alls, maxi, colnum)

Let gamma be a simple graph and k > 0. This function returns a set K of complete
subgraphs of size k of gamma, if such subgraphs exist (else the empty set is returned). A
complete subgraph is represented by its vertex set. This function is more efficient for its
purpose than the more general function CompleteSubgraphs.

The boolean parameter alls is used to control how many complete subgraphs are returned.
If alls is true (the default), then K will contain (perhaps properly) a set of gamma.group

1134 CHAPTER 63. GRAPE

orbit-representatives of the size k complete subgraphs of gamma. If alls is false then K will
contain at most one element, and will contain one element if and only if gamma contains a
complete subgraph of size k .

If the boolean parameter maxi is bound and has value true, then it is assumed that all
complete subgraphs of size k of gamma are maximal.

If the optional rational parameter colnum is given, then a sensible value is

OrderGraph(gamma)/Length(Set(VertexColouring(gamma))).

The use of this parameter may speed up the function.

gap> gamma := JohnsonGraph(5,2);;
gap> CompleteSubgraphsOfGivenSize(gamma,5);
[]
gap> CompleteSubgraphsOfGivenSize(gamma,4,true,true);
[[1, 2, 3, 4]]
gap> gamma := NewGroupGraph(Group(()), gamma);;
gap> CompleteSubgraphsOfGivenSize(gamma,4,true,true);
[[1, 2, 3, 4], [1, 5, 6, 7], [2, 5, 8, 9], [3, 6, 8, 10],

[4, 7, 9, 10]]

63.63 Functions depending on nauty

For convenience, GRAPE provides a (somewhat primitive) interface to Brendan McKay’s
nauty (Version 1.7) package (see [McK90]) for calculating automorphism groups of vertex-
coloured graphs, and for testing graph isomorphism.

63.64 AutGroupGraph

AutGroupGraph(gamma)
AutGroupGraph(gamma, colouring)

The first version of this function returns the automorphism group of the (directed) graph
gamma, using nauty.

In the second version, colouring is a vertex-colouring of gamma, and the subgroup of
Aut (gamma) preserving this colouring is returned. Here, a colouring should be given as a
list of sets, forming a partion of the vertices. The set for the last colour may be omitted.
Note that we do not require that adjacent vertices have different colours.

gap> gamma := JohnsonGraph(4,2);;
gap> Size(AutGroupGraph(gamma));
48
gap> Size(AutGroupGraph(gamma,[[1,6]]));
16

63.65 IsIsomorphicGraph

IsIsomorphicGraph(gamma1, gamma2)

63.66. AN EXAMPLE 1135

This boolean function uses the nauty program to test the isomorphism of gamma1 with
gamma2 . The value true is returned if and only if the graphs are isomorphic (as directed,
uncoloured graphs).

This function creates or uses the record component canonicalLabelling of a graph. As
noted in [McK90], a canonical labelling given by nauty can depend on the version of
nauty (Version 1.7 in GRAPE 2.31), certain parameters of nauty (always set the same by
GRAPE 2.31), and the compiler and computer used. If you use the canonicalLabelling
component (say by using IsIsomorphicGraph) of a graph stored on a file, then you must
be sure that this field was created in the same environment in which you are presently
computing. If in doubt, unbind the canonicalLabelling component of the graph before
testing isomorphism.

gap> gamma := JohnsonGraph(7,4);;
gap> delta := JohnsonGraph(7,3);;
gap> IsIsomorphicGraph(gamma, delta);
true

63.66 An example

We conclude this chapter with a simple example to illustrate further the use of GRAPE.

In this example we construct the Petersen graph P , and its edge graph (often called line
graph) EP . We compute the (global) parameters of EP , and so verify that EP is distance-
regular (see [BCN89]). We also show that there is just one orbit of 1-factors of P under
the automorphism group of P (but you should read the documentation of the function
CompleteSubgraphsOfGivenSize to see exactly what that function does).

gap> P := Graph(SymmetricGroup(5), [[1,2]], OnSets,
> function(x,y) return Intersection(x,y)=[]; end);
rec(
isGraph := true,
order := 10,
group := Group((1, 2)(6, 8)(7, 9), (1, 3)(4, 8)(5, 9),
(2, 4)(3, 6)(9,10), (2, 5)(3, 7)(8,10)),

schreierVector := [-1, 1, 2, 3, 4, 3, 4, 2, 2, 4],
adjacencies := [[8, 9, 10]],
representatives := [1],
names := [[1, 2], [2, 5], [1, 5], [2, 3], [2, 4],

[1, 3], [1, 4], [3, 5], [4, 5], [3, 4]])
gap> Diameter(P);
2
gap> Girth(P);
5
gap> EP := EdgeGraph(P);
rec(
isGraph := true,
order := 15,
group := Group((1, 4)(2, 5)(3, 6)(10,11)(12,13)(14,15), (1, 7)
(2, 8)(3, 9)(10,15)(11,13)(12,14), (2, 3)(4, 7)(5,10)(6,11)
(8,12)(9,14), (1, 3)(4,12)(5, 8)(6,13)(7,10)(9,15)),

1136 CHAPTER 63. GRAPE

schreierVector := [-1, 3, 4, 1, 3, 1, 2, 3, 2, 4, 1, 4, 1, 2, 2],
adjacencies := [[2, 3, 13, 15]],
representatives := [1],
isSimple := true,
names := [[[1, 2], [3, 5]], [[1, 2], [4, 5]],

[[1, 2], [3, 4]], [[1, 3], [2, 5]],
[[1, 4], [2, 5]], [[2, 5], [3, 4]],
[[1, 5], [2, 3]], [[1, 5], [2, 4]],
[[1, 5], [3, 4]], [[1, 4], [2, 3]],
[[2, 3], [4, 5]], [[1, 3], [2, 4]],
[[2, 4], [3, 5]], [[1, 3], [4, 5]],
[[1, 4], [3, 5]]])

gap> GlobalParameters(EP);
[[0, 0, 4], [1, 1, 2], [1, 2, 1], [4, 0, 0]]
gap> CompleteSubgraphsOfGivenSize(ComplementGraph(EP),5);
[[1, 5, 9, 11, 12]]

Chapter 64

GRIM (Groups of Rational and
Integer Matrices)

This chapter describes the main functions of the GRIM(Version 1.0) share library package
for testing finiteness of rational and integer matrix groups. All functions described here are
written entirely in the GAP language.

Before using any of the functions described in this chapter you must load the package by
calling the statement

gap> RequirePackage("grim");

Loading GRIM (Groups of Rational and Integer Matrices) 1.0,
by beals@math.arizona.edu

64.1 Functions to test finiteness and integrality

The following sections describe the functions used to test finiteness and integrality of rational
matrix groups.

64.2 IsFinite for rational matrix groups

IsFinite(G)

The group G , which must consist of rational matrices, is tested for finiteness.

A group of rational matrices is finite iff the following two conditions hold: There is a basis
with respect to which all elements of G have integer entries, and G preserves a positive
definite quadratic form.

If G contains non-integer matrices, then IsFinite first calls InvariantLattice (see 64.3) to
find a basis with respect to which all elements of G are integer matrices.

IsFinite then finds a positive definite quadratic form, or determines that none exists. If G
is finite, then the quadratic form is stored in G .quadraticForm.

gap> a := [[1,1/2],[0,-1]];; G := Group(a);;

1137

1138 CHAPTER 64. GRIM (GROUPS OF RATIONAL AND INTEGER MATRICES)

gap> IsFinite(G);
true
gap> L := G.invariantLattice;;
gap> L*a*L^(-1);
[[1, 1], [0, -1]]
gap> B := G.quadraticForm;
[[4, 1], [1, 3/2]]
gap> TransposedMat(a)*B*a;
[[4, 1], [1, 3/2]]

This function is Las Vegas: it is randomized, but the randomness only affects the running
time, not the correctness of the output. (See 64.4.)

64.3 InvariantLattice for rational matrix groups

InvariantLattice(G)

This function returns a lattice L (given by a basis) which is G-invariant. That is, for any
A in G , LAL−1 is an integer matrix.
L is also stored in G .invariantLattice, and the conjugate group LGL−1 is stored in G .integerMatrixGroup.
This function finds an L unless G contains elements of non-integer trace (in which case no
such L exists, and false is returned).
gap> a := [[1,1/2],[0,-1]];; G := Group(a);;
gap> L := InvariantLattice(G);;
gap> L*a*L^(-1);
[[1, 1], [0, -1]]

This function is Las Vegas: it is randomized, but the randomization only affects the running
time, not the correctness of the output.

64.4 IsFiniteDeterministic for integer matrix groups

IsFiniteDeterministic(G)

The integer matrix group G is tested for finiteness, using a deterministic algorithm. In most
cases, this seems to be less efficient than the Las Vegas IsFinite. However, the number of
arithmetic steps of this algorithm does not depend on the size of the entries of G , which is
not true of the Las Vegas version.
If G is finite, then a G-invariant positive definite quadratic form is stored in G .quadraticForm.
gap> a := [[1,1],[0,-1]];
[[1, 1], [0, -1]]
gap> G := Group(a);;
gap> IsFiniteDeterministic(G);
true
gap> B := G.quadraticForm;;
gap> B;
[[1, 1/2], [1/2, 3/2]]
gap> TransposedMat(a)*B*a;
[[1, 1/2], [1/2, 3/2]]

See also (64.2).

Chapter 65

GUAVA

GUAVA is a share library package that implements coding theory algorithms in GAP. Codes
can be created and manipulated and information about codes can be calculated.

GUAVA consists of various files written in the GAP language, and an external program from
J.S. Leon for dealing with automorphism groups of codes and isomorphism testing functions.
Several algorithms that need the speed are integrated in the GAP kernel. Please send your
bug reports to the gap-forum (GAP-Forum@Math.RWTH-Aachen.DE).

GUAVA is written as a final project during our study of Mathematics at the Delft Univer-
sity of Technology, department of Pure Mathematics, and in Aachen, at Lehrstuhl D fuer
Mathematik.

We would like to thank the GAP people at the RWTH Aachen for their support, A.E. Brouwer
for his advice and J. Simonis for his supervision.

Jasper Cramwinckel,
Erik Roijackers, and
Reinald Baart.

Delft University of Technology
Faculty of Technical Mathematics and Informatics
Department of Pure Mathematics

As of version 1.3, new functions are added. These functions are also written in Delft as a
final project during my study of Mathematics. For more information, see 65.141.

Eric Minkes.

The following sections describe the functions of the GUAVA (Version 1.3) share libary package
for computing with codes. All functions described here are written entirely in the GAP
language, except for the automorphism group and isomorphism testing functions, which
make use of J.S. Leon’s partition backtrack programs.

GUAVA is primarily designed for the construction and analysis of codes. The functions can
be divided into three subcategories:

Construction of codes
GUAVA can construct unrestricted, linear and cyclic codes. Information about
the code is stored in a record, together with operations applicable to the code.

1139

1140 CHAPTER 65. GUAVA

Manipulations of codes
Manipulation transforms one code into another, or constructs a new code from two
codes. The new code can profit from the data in the record of the old code(s), so in
these cases calculation time decreases.

Computations of information about codes
GUAVA can calculate important data of codes very fast. The results are stored in the
code record.

65.1 Loading GUAVA

After starting up GAP, the GUAVA package needs to be loaded. Load GUAVA by typing at
the GAP prompt

gap> RequirePackage("guava");

___________ |
/ \ / --+-- Version 1.3
/ | | |\\ //| |

| _ | | | \\ // |
| \ | | |--\\ //--| Jasper Cramwinckel
\ || | | \\ // | Erik Roijackers
___/ ___/ | \\// | Reinald Baart

Eric Minkes

If GUAVA isn’t already in memory, it is loaded and its beautiful banner is displayed.

If you are a frequent user of GUAVA, you might consider putting this line in your .gaprc
file.

65.2 Codewords

A codeword is basically just a vector of finite field elements. In GUAVA, a codeword is a
record, with this base vector as its most important element.

Codewords have been implemented in GUAVA mainly because of their easy interfacing with
the user. The user can input codewords in different formats, and output information is
formatted in a readable way.

Codewords work together with codes (see 65.15), although many operations are available
on codewords themselves.

The first sections describe how codewords are constructed (see 65.3 and 65.4).

The next sections describe the operations applicable to codewords (see 65.5 and 65.6).

The next sections describe the functions that convert codewords back to vectors or polyno-
mials (see 65.7 and 65.8), and functions that change the way a codeword is displayed (see
65.9 and 65.10).

The next section describes a single function to generate a null word (see 65.11).

The next sections describe the functions for codewords (see 65.12, 65.13 and 65.14).

65.3. CODEWORD 1141

65.3 Codeword

Codeword(obj [, n] [, F])

Codeword returns a codeword or a list of codewords constructed from obj . The object obj
can be a vector, a string, a polynomial or a codeword. It may also be a list of those (even
a mixed list).

If a number n is specified, all constructed codewords have length n. This is the only way to
make sure that all elements of obj are converted to codewords of the same length. Elements
of obj that are longer than n are reduced in length by cutting of the last positions. Elements
of obj that are shorter than n are lengthened by adding zeros at the end. If no n is specified,
each constructed codeword is handled individually.

If a Galois field F is specified, all codewords are constructed over this field. This is the
only way to make sure that all elements of obj are converted to the same field F (otherwise
they are converted one by one). Note that all elements of obj must have elements over F
or over Integers. Converting from one Galois field to another is not allowed. If no F is
specified, vectors or strings with integer elements will be converted to the smallest Galois
field possible.

Note that a significant speed increase is achieved if F is specified, even when all elements
of obj already have elements over F .

Every vector in obj can be a finite field vector over F or a vector over Integers. In the last
case, it is converted to F or, if omitted, to the smallest Galois field possible.

Every string in obj must be a string of numbers, without spaces, commas or any other
characters. These numbers must be from 0 to 9. The string is converted to a codeword over
F or, if F is omitted, over the smallest Galois field possible. Note that since all numbers in
the string are interpreted as one-digit numbers, Galois fields of size larger than 10 are not
properly represented when using strings.

Every polynomial in obj is converted to a codeword of length n or, if omitted, of a length
dictated by the degree of the polynomial. If F is specified, a polynomial in obj must be over
F .

Every element of obj that is already a codeword is changed to a codeword of length n. If
no n was specified, the codeword doesn’t change. If F is specified, the codeword must have
base field F .

gap> c := Codeword([0,1,1,1,0]);
[0 1 1 1 0]
gap> Field(c);
GF(2)
gap> c2 := Codeword([0,1,1,1,0], GF(3));
[0 1 1 1 0]
gap> Field(c2);
GF(3)
gap> Codeword([c, c2, "0110"]);
[[0 1 1 1 0], [0 1 1 1 0], [0 1 1 0]]
gap> p := Polynomial(GF(2), [Z(2)^0, 0*Z(2), Z(2)^0]);
Z(2)^0*(X(GF(2))^2 + 1)
gap> Codeword(p);

1142 CHAPTER 65. GUAVA

x^2 + 1

Codeword(obj, C)

In this format, the elements of obj are converted to elements of the same vector space as
the elements of a code C . This is the same as calling Codeword with the word length of C
(which is n) and the field of C (which is F).

gap> C := WholeSpaceCode(7,GF(5));
a cyclic [7,7,1]0 whole space code over GF(5)
gap> Codeword(["0220110", [1,1,1]], C);
[[0 2 2 0 1 1 0], [1 1 1 0 0 0 0]]
gap> Codeword(["0220110", [1,1,1]], 7, GF(5));
[[0 2 2 0 1 1 0], [1 1 1 0 0 0 0]]

65.4 IsCodeword

IsCodeword(obj)

IsCodeword returns true if obj , which can be an object of arbitrary type, is of the codeword
type and false otherwise. The function will signal an error if obj is an unbound variable.

gap> IsCodeword(1);
false
gap> IsCodeword(ReedMullerCode(2,3));
false
gap> IsCodeword("11111");
false
gap> IsCodeword(Codeword("11111"));
true

65.5 Comparisons of Codewords

c1 = c2
c1 <> c2

The equality operator = evaluates to true if the codewords c1 and c2 are equal, and to false
otherwise. The inequality operator <> evaluates to true if the codewords c1 and c2 are not
equal, and to false otherwise.

Note that codewords are equal if and only if their base vectors are equal. Whether they are
represented as a vector or polynomial has nothing to do with the comparison.

Comparing codewords with objects of other types is not recommended, although it is possi-
ble. If c2 is the codeword, the other object c1 is first converted to a codeword, after which
comparison is possible. This way, a codeword can be compared with a vector, polynomial,
or string. If c1 is the codeword, then problems may arise if c2 is a polynomial. In that
case, the comparison always yields a false, because the polynomial comparison is called
(see Comparisons of Polynomials).

gap> P := Polynomial(GF(2), Z(2)*[1,0,0,1]);
Z(2)^0*(X(GF(2))^3 + 1)
gap> c := Codeword(P, GF(2));
x^3 + 1

65.6. OPERATIONS FOR CODEWORDS 1143

gap> P = c; # codeword operation
true
gap> c = P; # polynomial operation
false
gap> c2 := Codeword("1001", GF(2));
[1 0 0 1]
gap> c = c2;
true

65.6 Operations for Codewords

The following operations are always available for codewords. The operands must have a
common base field, and must have the same length. No implicit conversions are performed.

c1 + c2

The operator + evaluates to the sum of the codewords c1 and c2.

c1 - c2

The operator - evaluates to the difference of the codewords c1 and c2.

C + c
c + C

The operator + evaluates to the coset code of code C after adding a codeword c to all
codewords. See 65.101.

In general, the operations just described can also be performed on vectors, strings or poly-
nomials, although this is not recommended. The vector, string or polynomial is first
converted to a codeword, after which the normal operation is performed. For this to
go right, make sure that at least one of the operands is a codeword. Further more, it
will not work when the right operand is a polynomial. In that case, the polynomial
operations (FiniteFieldPolynomialOps) are called, instead of the codeword operations
(CodewordOps).

Some other code-oriented operations with codewords are described in 65.20.

65.7 VectorCodeword

VectorCodeword(obj [, n] [, F])
VectorCodeword(obj, C)

VectorCodeword returns a vector or a list of vectors of elements of a Galois field, converted
from obj . The object obj can be a vector, a string, a polynomial or a codeword. It may also
be a list of those (even a mixed list).

In fact, the object obj is treated the same as in the function Codeword (see 65.3).

gap> a := Codeword("011011");; VectorCodeword(a);
[0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0]
gap> VectorCodeword([0, 1, 2, 1, 2, 1]);
[0*Z(3), Z(3)^0, Z(3), Z(3)^0, Z(3), Z(3)^0]
gap> VectorCodeword([0, 0, 0, 0], GF(9));
[0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3)]

1144 CHAPTER 65. GUAVA

65.8 PolyCodeword

PolyCodeword(obj [, n] [, F])
PolyCodeword(obj, C)

PolyCodeword returns a polynomial or a list of polynomials over a Galois field, converted
from obj . The object obj can be a vector, a string, a polynomial or a codeword. It may also
be a list of those (even a mixed list).

In fact, the object obj is treated the same as in the function Codeword (see 65.3).

gap> a := Codeword("011011");; PolyCodeword(a);
Z(2)^0*(X(GF(2))^5 + X(GF(2))^4 + X(GF(2))^2 + X(GF(2)))
gap> PolyCodeword([0, 1, 2, 1, 2]);
Z(3)^0*(2*X(GF(3))^4 + X(GF(3))^3 + 2*X(GF(3))^2 + X(GF(3)))
gap> PolyCodeword([0, 0, 0, 0], GF(9));
0*X(GF(3^2))^0

65.9 TreatAsVector

TreatAsVector(obj)

TreatAsVector adapts the codewords in obj to make sure they are printed as vectors. obj
may be a codeword or a list of codewords. Elements of obj that are not codewords are
ignored. After this function is called, the codewords will be treated as vectors. The vector
representation is obtained by using the coefficient list of the polynomial.

Note that this only changes the way a codeword is printed. TreatAsVector returns nothing,
it is called only for its side effect. The function VectorCodeword converts codewords to
vectors (see 65.7).

gap> B := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> c := CodewordNr(B, 4);
x^22 + x^20 + x^17 + x^14 + x^13 + x^12 + x^11 + x^10
gap> TreatAsVector(c);
gap> c;
[0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1]

65.10 TreatAsPoly

TreatAsPoly(obj)

TreatAsPoly adapts the codewords in obj to make sure they are printed as polynomials.
obj may be a codeword or a list of codewords. Elements of obj that are not codewords are
ignored. After this function is called, the codewords will be treated as polynomials. The
finite field vector that defines the codeword is used as a coefficient list of the polynomial
representation, where the first element of the vector is the coefficient of degree zero, the
second element is the coefficient of degree one, etc, until the last element, which is the
coefficient of highest degree.

Note that this only changes the way a codeword is printed. TreatAsPoly returns nothing,
it is called only for its side effect. The function PolyCodeword converts codewords to
polynomials (see 65.8).

65.11. NULLWORD 1145

gap> a := Codeword("00001",GF(2));
[0 0 0 0 1]
gap> TreatAsPoly(a); a;
x^4
gap> b := NullWord(6,GF(4));
[0 0 0 0 0 0]
gap> TreatAsPoly(b); b;
0

65.11 NullWord

NullWord(n)
NullWord(n, F)
NullWord(C)

NullWord returns a codeword of length n over the field F of only zeros. The default for F
is GF(2). n must be greater then zero. If only a code C is specified, NullWord will return
a null word with the word length and the Galois field of C .

gap> NullWord(8);
[0 0 0 0 0 0 0 0]
gap> Codeword("0000") = NullWord(4);
true
gap> NullWord(5,GF(16));
[0 0 0 0 0]
gap> NullWord(ExtendedTernaryGolayCode());
[0 0 0 0 0 0 0 0 0 0 0 0]

65.12 DistanceCodeword

DistanceCodeword(c1, c2)

DistanceCodeword returns the Hamming distance from c1 to c2. Both variables must be
codewords with equal word length over the same Galois field. The Hamming distance be-
tween two words is the number of places in which they differ. As a result, DistanceCodeword
always returns an integer between zero and the word length of the codewords.

gap> a := Codeword([0, 1, 2, 0, 1, 2]);; b := NullWord(6, GF(3));;
gap> DistanceCodeword(a, b);
4
gap> DistanceCodeword(b, a);
4
gap> DistanceCodeword(a, a);
0

65.13 Support

Support(c)

Support returns a set of integers indicating the positions of the non-zero entries in a code-
word c.

1146 CHAPTER 65. GUAVA

gap> a := Codeword("012320023002");; Support(a);
[2, 3, 4, 5, 8, 9, 12]
gap> Support(NullWord(7));
[]

The support of a list with codewords can be calculated by taking the union of the individual
supports. The weight of the support is the length of the set.

gap> L := Codeword(["000000", "101010", "222000"], GF(3));;
gap> S := Union(List(L, i -> Support(i)));
[1, 2, 3, 5]
gap> Length(S);
4

65.14 WeightCodeword

WeightCodeword(c)

WeightCodeword returns the weight of a codeword c, the number of non-zero entries in c.
As a result, WeightCodeword always returns an integer between zero and the word length
of the codeword.

gap> WeightCodeword(Codeword("22222"));
5
gap> WeightCodeword(NullWord(3));
0
gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> Minimum(List(Elements(C){[2..Size(C)]}, WeightCodeword));
3

65.15 Codes

A code basically is nothing more than a set of codewords. We call these the elements
of the code. A codeword is a sequence of elements of a finite field GF(q) where q is a prime
power. Depending on the type of code, a codeword can be interpreted as a vector or as a
polynomial. This will be explained in more detail in 65.2.

In GUAVA, codes can be defined by their elements (this will be called an unrestricted
code), by a generator matrix (a linear code) or by a generator polynomial (a cyclic
code).

Any code can be defined by its elements. If you like, you can give the code a name.

gap> C := ElementsCode(["1100", "1010", "0001"], "example code",
> GF(2));
a (4,3,1..4)2..4 example code over GF(2)

An (n,M, d) code is a code with word length n, size M and minimum distance d. If
the minimum distance has not yet been calculated, the lower bound and upper bound are
printed. So

a (4,3,1..4)2..4 code over GF(2)

65.15. CODES 1147

means a binary unrestricted code of length 4, with 3 elements and the minimum distance is
greater than or equal to 1 and less than or equal to 4 and the covering radius is greater
than or equal to 2 and less than or equal to 4.

gap> MinimumDistance(C);
2
gap> C;
a (4,3,2)2..4 example code over GF(2)

If the set of elements is a linear subspace of GF (q)n, the code is called linear. If a code is
linear, it can be defined by its generator matrix or parity check matrix. The generator
matrix is a basis for the elements of a code, the parity check matrix is a basis for the
nullspace of the code.

gap> G := GeneratorMatCode([[1,0,1],[0,1,2]], "demo code", GF(3));
a linear [3,2,1..2]1 demo code over GF(3)

So a linear [n, k, d]r code is a code with word length n, dimension k, minimum distance
d and covering radius r.

If the code is linear and all cyclic shifts of its elements are again codewords, the code is called
cyclic. A cyclic code is defined by its generator polynomial or check polynomial. All
elements are multiples of the generator polynomial modulo a polynomial xn − 1 where n is
the word length of the code. Multiplying a code element with the check polynomial yields
zero (modulo the polynomial xn − 1).

gap> G := GeneratorPolCode(X(GF(2))+Z(2)^0, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)

It is possible that GUAVA does not know that an unrestricted code is linear. This situation
occurs for example when a code is generated from a list of elements with the function
ElementsCode. By calling the function IsLinearCode, GUAVA tests if the code can be
represented by a generator matrix. If so, the code record and the operations are converted
accordingly.

gap> L := Z(2)*[[0,0,0], [1,0,0], [0,1,1], [1,1,1]];;
gap> C := ElementsCode(L, GF(2));
a (3,4,1..3)1 user defined unrestricted code over GF(2)
so far, GUAVA does not know what kind of code this is
gap> IsLinearCode(C);
true # it is linear
gap> C;
a linear [3,2,1]1 user defined unrestricted code over GF(2)

Of course the same holds for unrestricted codes that in fact are cyclic, or codes, defined by
a generator matrix, that in fact are cyclic.

Codes are printed simply by giving a small description of their parameters, the word length,
size or dimension and minimum distance, followed by a short description and the base field of
the code. The function Display gives a more detailed description, showing the construction
history of the code.

GUAVA doesn’t place much emphasis on the actual encoding and decoding processes; some
algorithms have been included though. Encoding works simply by multiplying an informa-
tion vector with a code, decoding is done by the function Decode. For more information
about encoding and decoding, see sections 65.20 and 65.43.

1148 CHAPTER 65. GUAVA

gap> R := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> w := [1, 1, 1, 1] * R;
[1 0 0 1 0 1 1 0]
gap> Decode(R, w);
[1 1 1 1]
gap> Decode(R, w + "10000000"); # One error at the first position
[1 1 1 1] # Corrected by Guava

The next sections describes the functions that tests whether an object is a code and what
kind of code it is (see 65.16, 65.17 and 65.18).
The following sections describe the operations that are available for codes (see 65.19 and
65.20).
The next sections describe basic functions for codes, e.g. MinimumDistance (see 65.21).
The following sections describe functions that generate codes (see 65.49, 65.58 and 65.72).
The next sections describe functions which manipulate codes (see 65.86).
The last part tells more about the implementation of codes. It describes the format of code
records (see 65.109).

65.16 IsCode

IsCode(obj)

IsCode returns true if obj , which can be an object of arbitrary type, is a code and false
otherwise. Will cause an error if obj is an unbound variable.

gap> IsCode(1);
false
gap> IsCode(ReedMullerCode(2,3));
true
gap> IsCode(This_object_is_unbound);
Error, Variable: ’This_object_is_unbound’ must have a value

65.17 IsLinearCode

IsLinearCode(obj)

IsLinearCode checks if object obj (not necessarily a code) is a linear code. If a code has
already been marked as linear or cyclic, the function automatically returns true. Otherwise,
the function checks if a basis G of the elements of obj exists that generates the elements of
obj . If so, G is a generator matrix of obj and the function returns true. If not, the function
returns false.

gap> C := ElementsCode([[0,0,0],[1,1,1]], GF(2));
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> IsLinearCode(C);
true
gap> IsLinearCode(ElementsCode([[1,1,1]], GF(2)));
false
gap> IsLinearCode(1);
false

65.18. ISCYCLICCODE 1149

65.18 IsCyclicCode

IsCyclicCode(obj)

IsCyclicCode checks if the object obj is a cyclic code. If a code has already been marked
as cyclic, the function automatically returns true. Otherwise, the function checks if a
polynomial g exists that generates the elements of obj . If so, g is a generator polynomial of
obj and the function returns true. If not, the function returns false.

gap> C := ElementsCode([[0,0,0], [1,1,1]], GF(2));
a (3,2,1..3)1 user defined unrestricted code over GF(2)
GUAVA does not know the code is cyclic
gap> IsCyclicCode(C); # this command tells GUAVA to find out
true
gap> IsCyclicCode(HammingCode(4, GF(2)));
false
gap> IsCyclicCode(1);
false

65.19 Comparisons of Codes

C1 = C2

C1 <> C2

The equality operator = evaluates to true if the codes C1 and C2 are equal, and to false
otherwise. The inequality operator <> evaluates to true if the codes C1 and C2 are not
equal, and to false otherwise.

Note that codes are equal if and only if their elements are equal. Codes can also be compared
with objects of other types. Of course they are never equal.

gap> M := [[0, 0], [1, 0], [0, 1], [1, 1]];;
gap> C1 := ElementsCode(M, GF(2));
a (2,4,1..2)0 user defined unrestricted code over GF(2)
gap> M = C1;
false
gap> C2 := GeneratorMatCode([[1, 0], [0, 1]], GF(2));
a linear [2,2,1]0 code defined by generator matrix over GF(2)
gap> C1 = C2;
true
gap> ReedMullerCode(1, 3) = HadamardCode(8);
true
gap> WholeSpaceCode(5, GF(4)) = WholeSpaceCode(5, GF(2));
false

Another way of comparing codes is IsEquivalent, which checks if two codes are equivalent
(see 65.40).

65.20 Operations for Codes

C1 + C2

1150 CHAPTER 65. GUAVA

The operator + evaluates to the direct sum of the codes C1 and C2. See 65.104.

C + c
c + C

The operator + evaluates to the coset code of code C after adding c to all elements of C .
See 65.101.

C1 * C2

The operator * evaluates to the direct product of the codes C1 and C2. See 65.106.

x * C

The operator * evaluates to the element of C belonging to information word x . x may be
a vector, polynomial, string or codeword or a list of those. This is the way to do encoding
in GUAVA. C must be linear, because in GUAVA, encoding by multiplication is only defined
for linear codes. If C is a cyclic code, this multiplication is the same as multiplying an
information polynomial x by the generator polynomial of C (except for the result not being
a codeword type). If C is a linear code, it is equal to the multiplication of an information
vector x by the generator matrix of C (again, the result then is not a codeword type).

To decode, use the function Decode (see 65.43).

c in C

The in operator evaluates to true if C contains the codeword or list of codewords specified
by c. Of course, c and C must have the same word lengths and base fields.

gap> C := HammingCode(2);; Elements(C);
[[0 0 0], [1 1 1]]
gap> [[0, 0, 0,], [1, 1, 1,]] in C;
true
gap> [0] in C;
false

C1 in C2

The in operator evaluates to true if C1 is a subcode of C2, i.e. if C2 contains at least all
the elements of C1.

gap> RepetitionCode(7) in HammingCode(3);
true
gap> HammingCode(3) in RepetitionCode(7);
false
gap> HammingCode(3) in WholeSpaceCode(7);
true
gap> AreEqualCodes := function(C1, C2)
> return (C1 in C2) and (C2 in C1);
> end; # this is a slow implementation of the function =
function (C1, C2) ... end
gap> AreEqualCodes(HammingCode(2), RepetitionCode(3));
true

65.21. BASIC FUNCTIONS FOR CODES 1151

65.21 Basic Functions for Codes

A few sections now follow that describe GUAVA’s basic functions on codes.

The first section describes GAP functions that work on Domains (see Domains), but are
also applicable for codes (see 65.22).

The next section describes three GAP input/output functions (see 65.23).

The next sections describe functions that return the matrices and polynomials that define
a code (see 65.24, 65.25, 65.26, 65.27, 65.28).

The next sections describe function that return the basic parameters of codes (see 65.29,
65.30 and 65.31).

The next sections describe functions that return distance and weight distributions (see 65.32,
65.33, 65.34 and 65.35).

The next sections describe boolean functions on codes (see 65.17, 65.18, 65.36, 65.38, 65.39,
and 65.37).

The next sections describe functions about equivalence of codes (see 65.40, 65.41 and 65.42).

The next sections describe functions related to decoding (see 65.43, 65.44, 65.45 and 65.46).

The next section describes a function that displays a code (see 65.47).

The next section describes the function CodewordNr (see 65.48).

The next sections describe extensions that have been added in version 1.3 of GUAVA (see
65.141).

65.22 Domain Functions for Codes

These are some GAP functions that work on Domains in general. Their specific effect on
Codes is explained here.

IsFinite(C)

IsFinite is an implementation of the GAP domain function IsFinite. It returns true for
a code C .

gap> IsFinite(RepetitionCode(1000, GF(11)));
true

Size(C)

Size returns the size of C , the number of elements of the code. If the code is linear, the size
of the code is equal to qk, where q is the size of the base field of C and k is the dimension.

gap> Size(RepetitionCode(1000, GF(11)));
11
gap> Size(NordstromRobinsonCode());
256

Field(C)

Field returns the base field of a code C . Each element of C consists of elements of this
base field. If the base field is F , and the word length of the code is n, then the codewords

1152 CHAPTER 65. GUAVA

are elements of Fn. If C is a cyclic code, its elements are interpreted as polynomials with
coefficients over F .

gap> C1 := ElementsCode([[0,0,0], [1,0,1], [0,1,0]], GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF(4)
gap> Field(C1);
GF(2^2)
gap> Field(HammingCode(3, GF(9)));
GF(3^2)

Dimension(C)

Dimension returns the parameter k of C , the dimension of the code, or the number of
information symbols in each codeword. The dimension is not defined for non-linear codes;
Dimension then returns an error.

gap> Dimension(NordstromRobinsonCode());
Error, dimension is only defined for linear codes
gap> Dimension(NullCode(5, GF(5)));
0
gap> C := BCHCode(15, 4, GF(4));
a cyclic [15,7,5]4..8 BCH code, delta=5, b=1 over GF(4)
gap> Dimension(C);
7
gap> Size(C) = Size(Field(C)) ^ Dimension(C);
true

Elements(C)

Elements returns a list of the elements of C . These elements are of the codeword type (see
65.2). Note that for large codes, generating the elements may be very time- and memory-
consuming. For generating a specific element or a subset of the elements, use CodewordNr
(see 65.48).

gap> C := ConferenceCode(5);
a (5,12,2)1..4 conference code over GF(2)
gap> Elements(C);
[[0 0 0 0 0], [1 1 0 1 0], [1 1 1 0 0], [0 1 1 0 1],

[1 0 0 1 1], [0 0 1 1 1], [1 0 1 0 1], [0 1 0 1 1],
[1 0 1 1 0], [0 1 1 1 0], [1 1 0 0 1], [1 1 1 1 1]]

gap> CodewordNr(C, [1, 2]);
[[0 0 0 0 0], [1 1 0 1 0]]

65.23 Printing and Saving Codes

Print(C)

Print prints information about C . This is the same as typing the identifier C at the GAP-
prompt.

If the argument is an unrestricted code, information in the form

a (n,M ,d)r ... code over GF(q)

is printed, where n is the word length, M the number of elements of the code, d the minimum
distance and r the covering radius.

65.24. GENERATORMAT 1153

If the argument is a linear code, information in the form

a linear [n,k,d]r ... code over GF(q)

is printed, where n is the word length, k the dimension of the code, d the minimum distance
and r the covering radius.

In all cases, if d is not yet known, it is displayed in the form

lowerbound .. upperbound

and if r is not yet known, it is displayed in the same way.

The function Display gives more information. See 65.47.

gap> C1 := ExtendedCode(HammingCode(3, GF(2)));
a linear [8,4,4]2 extended code
gap> Print("This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2).

String(C)

String returns information about C in a string. This function is used by Print (see Print).

Save(filename, C, varname)

Save prints the code C to a file with file name filename. If the file does not exist, it is
created. If it does exist, the previous contents are erased, so be careful. The code is saved
with variable name varname. The code can be read back by calling Read(filename). The
code then has name varname. Note that filename and varname are strings.

gap> C1 := HammingCode(4, GF(3));
a linear [40,36,3]1 Hamming (4,3) code over GF(3)
gap> Save("mycodes.lib", C1, "Ham_4_3");
gap> Read("mycodes.lib"); Ham_4_3;
a linear [40,36,3]1 Hamming (4,3) code over GF(3)
gap> Ham_4_3 = C1;
true

65.24 GeneratorMat

GeneratorMat(C)

GeneratorMat returns a generator matrix of C . The code consists of all linear combinations
of the rows of this matrix.

If until now no generator matrix of C was determined, it is computed from either the parity
check matrix, the generator polynomial, the check polynomial or the elements (if possible),
whichever is available.

If C is a non-linear code, the function returns an error.

gap> GeneratorMat(HammingCode(3, GF(2)));
[[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0],
[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0]]

gap> GeneratorMat(RepetitionCode(5, GF(25)));

1154 CHAPTER 65. GUAVA

[[Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0]]
gap> GeneratorMat(NullCode(14, GF(4)));
[]
gap> GeneratorMat(ElementsCode([[0, 0, 1], [1, 1, 0]], GF(2)));
Error, non-linear codes don’t have a generator matrix

65.25 CheckMat

CheckMat(C)

CheckMat returns a parity check matrix of C . The code consists of all words orthogonal
to each of the rows of this matrix. The transpose of the matrix is a right inverse of the
generator matrix. The parity check matrix is computed from either the generator matrix,
the generator polynomial, the check polynomial or the elements of C (if possible), whichever
is available.

If C is a non-linear code, the function returns an error.

gap> CheckMat(HammingCode(3, GF(2)));
[[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0],
[0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0],
[Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]]

gap> CheckMat(RepetitionCode(5, GF(25)));
[[Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5)],
[0*Z(5), Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5)],
[0*Z(5), 0*Z(5), Z(5)^0, Z(5)^2, 0*Z(5)],
[0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, Z(5)^2]]

gap> CheckMat(WholeSpaceCode(12, GF(4)));
[]

65.26 GeneratorPol

GeneratorPol(C)

GeneratorPol returns the generator polynomial of C . The code consists of all multiples of
the generator polynomial modulo xn − 1 where n is the word length of C . The generator
polynomial is determined from either the check polynomial, the generator or check matrix
or the elements of C (if possible), whichever is available.

If C is not a cyclic code, the function returns false.

gap> GeneratorPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)^0*(X(GF(2)) + 1)
gap> GeneratorPol(WholeSpaceCode(4, GF(2)));
X(GF(2))^0
gap> GeneratorPol(NullCode(7, GF(3)));
Z(3)^0*(X(GF(3))^7 + 2)

65.27 CheckPol

CheckPol(C)

65.28. ROOTSOFCODE 1155

CheckPol returns the check polynomial of C . The code consists of all polynomials f with
f ∗ h = 0 (mod xn − 1), where h is the check polynomial, and n is the word length of C .
The check polynomial is computed from the generator polynomial, the generator or parity
check matrix or the elements of C (if possible), whichever is available.

If C if not a cyclic code, the function returns an error.

gap> CheckPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)^0*(X(GF(2))^2 + X(GF(2)) + 1)
gap> CheckPol(WholeSpaceCode(4, GF(2)));
Z(2)^0*(X(GF(2))^4 + 1)
gap> CheckPol(NullCode(7,GF(3)));
X(GF(3))^0
gap> CheckPol(ElementsCode([[0, 0, 1], [1, 1, 0]], GF(2)));
Error, generator polynomial is only defined for cyclic codes

65.28 RootsOfCode

RootsOfCode(C)

RootsOfCode returns a list of all zeros of the generator polynomial of a cyclic code C . These
are finite field elements in the splitting field of the generator polynomial, GF (qm), m is the
multiplicative order of the size of the base field of the code, modulo the word length.

The reverse proces, constructing a code from a set of roots, can be carried out by the
function RootsCode (see 65.77).

gap> C1 := ReedSolomonCode(16, 5);
a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap> RootsOfCode(C1);
[Z(17), Z(17)^2, Z(17)^3, Z(17)^4]
gap> C2 := RootsCode(16, last);
a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap> C1 = C2;
true

65.29 WordLength

WordLength(C)

WordLength returns the parameter n of C , the word length of the elements. Elements of
cyclic codes are polynomials of maximum degree n−1, as calculations are carried out modulo
xn − 1.

gap> WordLength(NordstromRobinsonCode());
16
gap> WordLength(PuncturedCode(WholeSpaceCode(7)));
6
gap> WordLength(UUVCode(WholeSpaceCode(7), RepetitionCode(7)));
14

1156 CHAPTER 65. GUAVA

65.30 Redundancy

Redundancy(C)

Redundancy returns the redundancy r of C , which is equal to the number of check symbols
in each element. If C is not a linear code the redundancy is not defined and Redundancy
returns an error.

If a linear code C has dimension k and word length n, it has redundancy r = n− k.

gap> C := TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> Redundancy(C);
5
gap> Redundancy(DualCode(C));
6

65.31 MinimumDistance

MinimumDistance(C)

MinimumDistance returns the minimum distance of C , the largest integer d with the prop-
erty that every element of C has at least a Hamming distance d (see 65.12) to any other
element of C . For linear codes, the minimum distance is equal to the minimum weight. This
means that d is also the smallest positive value with w[d + 1] 6= 0, where w is the weight
distribution of C (see 65.32). For unrestricted codes, d is the smallest positive value with
w[d+ 1] 6= 0, where w is the inner distribution of C (see 65.33).

For codes with only one element, the minimum distance is defined to be equal to the word
length.

gap> C := MOLSCode(7);; MinimumDistance(C);
3
gap> WeightDistribution(C);
[1, 0, 0, 24, 24]
gap> MinimumDistance(WholeSpaceCode(5, GF(3)));
1
gap> MinimumDistance(NullCode(4, GF(2)));
4
gap> C := ConferenceCode(9);; MinimumDistance(C);
4
gap> InnerDistribution(C);
[1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10]

MinimumDistance(C, w)

In this form, MinimumDistance returns the minimum distance of a codeword w to the code
C , also called the distance to C . This is the smallest value d for which there is an element
c of the code C which is at distance d from w . So d is also the minimum value for which
D[d+ 1] 6= 0, where D is the distance distribution of w to C (see 65.35).

Note that w must be an element of the same vector space as the elements of C . w does not
necessarily belong to the code (if it does, the minimum distance is zero).

65.32. WEIGHTDISTRIBUTION 1157

gap> C := MOLSCode(7);; w := CodewordNr(C, 17);
[2 2 4 6]
gap> MinimumDistance(C, w);
0
gap> C := RemovedElementsCode(C, w);; MinimumDistance(C, w);
3 # so w no longer belongs to C

65.32 WeightDistribution

WeightDistribution(C)

WeightDistribution returns the weight distribution of C , as a vector. The ith element of
this vector contains the number of elements of C with weight i − 1. For linear codes, the
weight distribution is equal to the inner distribution (see 65.33).

Suppose w is the weight distribution of C . If C is linear, it must have the zero codeword,
so w[1] = 1 (one word of weight 0).

gap> WeightDistribution(ConferenceCode(9));
[1, 0, 0, 0, 0, 18, 0, 0, 0, 1]
gap> WeightDistribution(RepetitionCode(7, GF(4)));
[1, 0, 0, 0, 0, 0, 0, 3]
gap> WeightDistribution(WholeSpaceCode(5, GF(2)));
[1, 5, 10, 10, 5, 1]

65.33 InnerDistribution

InnerDistribution(C)

InnerDistribution returns the inner distribution of C . The ith element of the vector
contains the average number of elements of C at distance i − 1 to an element of C . For
linear codes, the inner distribution is equal to the weight distribution (see 65.32).

Suppose w is the inner distribution of C . Then w[1] = 1, because each element of C has
exactly one element at distance zero (the element itself). The minimum distance of C is
the smallest value d > 0 with w[d + 1] 6= 0, because a distance between zero and d never
occurs. See 65.31.

gap> InnerDistribution(ConferenceCode(9));
[1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10]
gap> InnerDistribution(RepetitionCode(7, GF(4)));
[1, 0, 0, 0, 0, 0, 0, 3]

65.34 OuterDistribution

OuterDistribution(C)

The function OuterDistribution returns a list of length qn, where q is the size of the
base field of C and n is the word length. The elements of the list consist of an element of
(GF (q))n (this is a codeword type) and the distribution of distances to the code (a list of
integers). This table is very large, and for n > 20 it will not fit in the memory of most
computers. The function DistancesDistribution (see 65.35) can be used to calculate one
entry of the list.

1158 CHAPTER 65. GUAVA

gap> C := RepetitionCode(3, GF(2));
a cyclic [3,1,3]1 repetition code over GF(2)
gap> OD := OuterDistribution(C);
[[[0 0 0], [1, 0, 0, 1]], [[1 1 1], [1, 0, 0, 1]],
[[0 0 1], [0, 1, 1, 0]], [[1 1 0], [0, 1, 1, 0]],
[[1 0 0], [0, 1, 1, 0]], [[0 1 1], [0, 1, 1, 0]],
[[0 1 0], [0, 1, 1, 0]], [[1 0 1], [0, 1, 1, 0]]]

gap> WeightDistribution(C) = OD[1][2];
true
gap> DistancesDistribution(C, Codeword("110")) = OD[4][2];
true

65.35 DistancesDistribution

DistancesDistribution(C, w)

DistancesDistribution returns a distribution of the distances of all elements of C to
a codeword w in the same vector space. The ith element of the distance distribution is
the number of codewords of C that have distance i − 1 to w . The smallest value d with
w[d+ 1] 6= 0 is defined as the distance to C (see 65.31).

gap> H := HadamardCode(20);
a (20,40,10)6..8 Hadamard code of order 20 over GF(2)
gap> c := Codeword("10110101101010010101", H);
[1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1]
gap> DistancesDistribution(H, c);
[0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 12, 0, 7, 0, 1, 0, 0, 0, 0, 0]
gap> MinimumDistance(H, c);
5 # distance to H

65.36 IsPerfectCode

IsPerfectCode(C)

IsPerfectCode returns true if C is a perfect code. For a code with odd minimum distance
d = 2t+ 1, this is the case when every word of the vector space of C is at distance at most
t from exactly one element of C . Codes with even minimum distance are never perfect.
In fact, a code that is not trivial perfect (the binary repetition codes of odd length, the
codes consisting of one word, and the codes consisting of the whole vector space), and does
not have the parameters of a Hamming- or Golay-code, cannot be perfect.

gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> IsPerfectCode(H);
true
gap> IsPerfectCode(ElementsCode([[1,1,0], [0,0,1]], GF(2)));
true
gap> IsPerfectCode(ReedSolomonCode(6, 3));
false
gap> IsPerfectCode(BinaryGolayCode());
true

65.37. ISMDSCODE 1159

65.37 IsMDSCode

IsMDSCode(C)

IsMDSCode returns true if C is a Maximum Distance Seperable code, or MDS code
for short. A linear [n, k, d]-code of length n, dimension k and minimum distance d is an
MDS code if k = n − d + 1, in other words if C meets the Singleton bound (see 65.111).
An unrestricted (n,M, d) code is called MDS if k = n − d + 1, with k equal to the largest
integer less than or equal to the logarithm of M with base q, the size of the base field of C .
Well known MDS codes include the repetition codes, the whole space codes, the even weight
codes (these are the only binary MDS Codes) and the Reed-Solomon codes.

gap> C1 := ReedSolomonCode(6, 3);
a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap> IsMDSCode(C1);
true # 6-3+1 = 4
gap> IsMDSCode(QRCode(23, GF(2)));
false

65.38 IsSelfDualCode

IsSelfDualCode(C)

IsSelfDualCode returns true if C is self-dual, i.e. when C is equal to its dual code (see
also 65.99). If a code is self-dual, it automatically is self-orthogonal (see 65.39).
If C is a non-linear code, it cannot be self-dual, so false is returned. A linear code can
only be self-dual when its dimension k is equal to the redundancy r.

gap> IsSelfDualCode(ExtendedBinaryGolayCode());
true
gap> C := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> DualCode(C) = C;
true

65.39 IsSelfOrthogonalCode

IsSelfOrthogonalCode(C)

IsSelfOrthogonalCode returns true if C is self-orthogonal. A code is self-orthogonal if
every element of C is orthogonal to all elements of C , including itself. In the linear case,
this simply means that the generator matrix of C multiplied with its transpose yields a null
matrix.
In addition, a code is self-dual if it contains all vectors that its elements are orthogonal to
(see 65.38).

gap> R := ReedMullerCode(1,4);
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> IsSelfOrthogonalCode(R);
true
gap> IsSelfDualCode(R);
false

1160 CHAPTER 65. GUAVA

65.40 IsEquivalent

IsEquivalent(C1, C2)

IsEquivalent returns true if C1 and C2 are equivalent codes. This is the case if C1 can
be obtained from C2 by carrying out column permutations. GUAVA only handles binary
codes. The external program desauto from J.S. Leon is used to compute the isomorphism
between the codes. If C1 and C2 are equal, they are also equivalent.

Note that the algorithm is very slow for non-linear codes.

gap> H := GeneratorPolCode([1,1,0,1]*Z(2), 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> H = HammingCode(3, GF(2));
false
gap> IsEquivalent(H, HammingCode(3, GF(2)));
true # H is equivalent to a Hamming code
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)

65.41 CodeIsomorphism

CodeIsomorphism(C1, C2)

If the two codes C1 and C2 are equivalent codes (see 65.40), CodeIsomorphism returns the
permutation that transforms C1 into C2. If the codes are not equivalent, it returns false.

gap> H := GeneratorPolCode([1,1,0,1]*Z(2), 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)
gap> PermutedCode(H, (3,4)(5,6,7)) = HammingCode(3, GF(2));
true

65.42 AutomorphismGroup

AutomorphismGroup(C)

AutomorphismGroup returns the automorphism group of a binary code C . This is the
largest permutation group of degree n such that each permutation applied to the columns of
C again yields C . GUAVA uses the external program desauto from J.S. Leon to compute
the automorphism group. The function PermutedCode permutes the columns of a code (see
65.90).

gap> R := RepetitionCode(7,GF(2));
a cyclic [7,1,7]3 repetition code over GF(2)
gap> AutomorphismGroup(R);
Group((1,7), (2,7), (3,7), (4,7), (5,7), (6,7))

every permutation keeps R identical
gap> C := CordaroWagnerCode(7);
a linear [7,2,4]3 Cordaro-Wagner code over GF(2)
gap> Elements(C);

65.43. DECODE 1161

[[0 0 0 0 0 0 0], [1 1 1 1 1 0 0], [0 0 1 1 1 1 1],
[1 1 0 0 0 1 1]]

gap> AutomorphismGroup(C);
Group((3,4), (4,5), (1,6)(2,7), (1,2), (6,7))
gap> C2 := PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap> Elements(C2);
[[0 0 0 0 0 0 0], [0 0 1 1 1 1 1], [1 1 1 1 1 0 0],
[1 1 0 0 0 1 1]]

gap> C2 = C;
true

65.43 Decode

Decode(C, c)

Decode decodes c with respect to code C . c is a codeword or a list of codewords. First,
possible errors in c are corrected, then the codeword is decoded to an information codeword
x. If the code record has a field specialDecoder, this special algorithm is used to decode
the vector. Hamming codes and BCH codes have such a special algorithm. Otherwise,
syndrome decoding is used. Encoding is done by multiplying the information vector with
the code (see 65.20).

A special decoder can be created by defining a function

C.specialDecoder := function(C, c) ... end;

The function uses the arguments C , the code record itself, and c, a vector of the codeword
type, to decode c to an information word. A normal decoder would take a codeword c of
the same word length and field as C , and would return a information word of length k, the
dimension of C . The user is not restricted to these normal demands though, and can for
instance define a decoder for non-linear codes.

gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := "1010"*C; # encoding
[1 0 1 0 1 0 1]
gap> Decode(C, c); # decoding
[1 0 1 0]
gap> Decode(C, Codeword("0010101"));
[1 0 1 0] # one error corrected
gap> C.specialDecoder := function(C, c)
> return NullWord(Dimension(C));
> end;
function (C, c) ... end
gap> Decode(C, c);
[0 0 0 0] # new decoder always returns null word

65.44 Syndrome

Syndrome(C, c)

1162 CHAPTER 65. GUAVA

Syndrome returns the syndrome of word c with respect to a code C . c is a word of the
vector space of C . If c is an element of C , the syndrome is a zero vector. The syndrome
can be used for looking up an error vector in the syndrome table (see 65.45) that is needed
to correct an error in c.

A syndrome is not defined for non-linear codes. Syndrome then returns an error.

gap> C := HammingCode(4);
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> v := CodewordNr(C, 7);
[0 0 0 0 0 0 0 0 1 1 0 0 1 1 0]
gap> Syndrome(C, v);
[0 0 0 0]
gap> Syndrome(C, "000000001100111");
[1 1 1 1]
gap> Syndrome(C, "000000000000001");
[1 1 1 1] # the same syndrome:both codewords are in the same

coset of C

65.45 SyndromeTable

SyndromeTable(C)

SyndromeTable returns a syndrome table of a linear code C , consisting of two columns.
The first column consists of the error vectors that correspond to the syndrome vectors in
the second column. These vectors both are of the codeword type. After calculating the
syndrome of a word c with Syndrome (see 65.44), the error vector needed to correct c can
be found in the syndrome table. Subtracting this vector from c yields an element of C . To
make the search for the syndrome as fast as possible, the syndrome table is sorted according
to the syndrome vectors.

gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> SyndromeTable(H);
[[[0 0 0], [0 0]], [[1 0 0], [0 1]],

[[0 1 0], [1 0]], [[0 0 1], [1 1]]]
gap> c := Codeword("101");
[1 0 1]
gap> c in H;
false # c is not an element of H
gap> Syndrome(H,c);
[1 0] # according to the syndrome table,

the error vector [0 1 0] belongs to this syndrome
gap> c - Codeword("010") in H;
true # so the corrected codeword is

[1 0 1] - [0 1 0] = [1 1 1],
this is an element of H

65.46 StandardArray

StandardArray(C)

65.47. DISPLAY 1163

StandardArray returns the standard array of a code C . This is a matrix with elements of
the codeword type. It has qr rows and qk columns, where q is the size of the base field of
C , r is the redundancy of C , and k is the dimension of C . The first row contains all the
elements of C . Each other row contains words that do not belong to the code, with in the
first column their syndrome vector (see 65.44).

A non-linear code does not have a standard array. StandardArray then returns an error.

Note that calculating a standard array can be very time- and memory- consuming.

gap> StandardArray(RepetitionCode(3,GF(3)));
[[[0 0 0], [1 1 1], [2 2 2]],
[[0 0 1], [1 1 2], [2 2 0]],
[[0 0 2], [1 1 0], [2 2 1]],
[[0 1 0], [1 2 1], [2 0 2]],
[[0 2 0], [1 0 1], [2 1 2]],
[[1 0 0], [2 1 1], [0 2 2]],
[[1 2 0], [2 0 1], [0 1 2]],
[[2 0 0], [0 1 1], [1 2 2]],
[[2 1 0], [0 2 1], [1 0 2]]]

65.47 Display

Display(C)

Display prints the method of construction of code C . With this history, in most cases an
equal or equivalent code can be reconstructed. If C is an unmanipulated code, the result is
equal to output of the function Print (see 3.14).

gap> Display(RepetitionCode(6, GF(3)));
a cyclic [6,1,6]4 repetition code over GF(3)
gap> C1 := ExtendedCode(HammingCode(2));;
gap> C2 := PuncturedCode(ReedMullerCode(2, 3));;
gap> Display(LengthenedCode(UUVCode(C1, C2)));
a linear [12,8,2]2..4 code, lengtened with 1 column(s) of
a linear [11,8,1]1..2 U|U+V construction code of
U: a linear [4,1,4]2 extended code of

a cyclic [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]0 punctured code of

a cyclic [8,7,2]1 Reed-Muller (2,3) code over GF(2)

65.48 CodewordNr

CodewordNr(C, list)

CodewordNr returns a list of codewords of C . list may be a list of integers or a single integer.
For each integer of list , the corresponding codeword of C is returned. The correspondence
of a number i with a codeword is determined as follows: if a list of elements of C is available,
the ith element is taken. Otherwise, it is calculated by multiplication of the ith information
vector by the generator matrix or generator polynomial, where the information vectors are
ordered lexicographically.

1164 CHAPTER 65. GUAVA

So CodewordNr(C, i) is equal to Elements(C)[i]. The latter function first calculates the
set of all the elements of C and then returns the ith element of that set, whereas the former
only calculates the ith codeword.

gap> R := ReedSolomonCode(2,2);
a cyclic [2,1,2]1 Reed-Solomon code over GF(3)
gap> Elements(R);
[0, x + 1, 2x + 2]
gap> CodewordNr(R, [1,3]);
[0, 2x + 2]
gap> C := HadamardCode(16);
a (16,32,8)5..6 Hadamard code of order 16 over GF(2)
gap> Elements(C)[17] = CodewordNr(C, 17);
true

65.49 Generating Unrestricted Codes

The following sections start with the description of creating codes from user defined matrices
or special matrices (see 65.50, 65.51, 65.52 and 65.53). These codes are unrestricted codes;
they may later be discovered to be linear or cyclic.

The next section describes a function for generating random codes (see 65.54).

The next section describes the Nordstrom-Robinson code (see 65.55).

The last sections describe two functions for generating Greedy codes. These are codes that
contructed by gathering codewords from a space (see 65.56 and 65.57).

65.50 ElementsCode

ElementsCode(L [, Name], F)

ElementsCode creates an unrestricted code of the list of elements L, in the field F . L must
be a list of vectors, strings, polynomials or codewords. Name can contain a short description
of the code.

If L contains a codeword more than once, it is removed from the list and a GAP set is
returned.

gap> M := Z(3)^0 * [[1, 0, 1, 1], [2, 2, 0, 0], [0, 1, 2, 2]];;
gap> C := ElementsCode(M, "example code", GF(3));
a (4,3,1..4)2 example code over GF(3)
gap> MinimumDistance(C);
4
gap> Elements(C);
[[1 0 1 1], [2 2 0 0], [0 1 2 2]]
gap> last = M;
true # Note that the elements are of codeword type

65.51 HadamardCode

HadamardCode(H , t)
HadamardCode(H)

65.52. CONFERENCECODE 1165

In the first form HadamardCode returns a Hadamard code from the Hadamard matrix H , of
the t th kind. In the second form, t = 3 is used.

A Hadamard matrix is a square matrix H with H ∗ H T = −n ∗ In, where n is the size of
H . The entries of H are either 1 or -1.

The matrix H is first transformed into a binary matrix An (by replacing the 1’s by 0’s and
the -1’s by 1’s).

The first kind (t = 1) is created by using the rows of An as elements, after deleting the first
column. This is a (n− 1, n, n/2) code. We use this code for creating the Hadamard code of
the second kind (t = 2), by adding all the complements of the already existing codewords.
This results in a (n−1, 2n, n/2−1) code. The third code (t = 3) is created by using the rows
of An (without cutting a column) and their complements as elements. This way, we have
an (n, 2n, n/2) code. The returned code is generally an unrestricted code, but for n = 2r,
the code is linear.

gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> HadamardCode(H4, 1);
a (3,4,2)1 Hadamard code of order 4 over GF(2)
gap> HadamardCode(H4, 2);
a (3,8,1)0 Hadamard code of order 4 over GF(2)
gap> HadamardCode(H4);
a (4,8,2)1 Hadamard code of order 4 over GF(2)

HadamardCode(n, t)
HadamardCode(n)

In the first form HadamardCode returns a Hadamard code with parameter n of the t th kind.
In the second form, t = 3 is used.

When called in these forms, HadamardCode first creates a Hadamard matrix (see 65.125),
of size n and then follows the same procedure as described above. Therefore the same
restrictions with respect to n as for Hadamard matrices hold.

gap> C1 := HadamardCode(4);
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> C1 = HadamardCode(H4);
true

65.52 ConferenceCode

ConferenceCode(H)

ConferenceCode returns a code of length n − 1 constructed from a symmetric conference
matrix H . H must be a symmetric matrix of order n, which satisfies H ∗HT = ((n−1)∗ I.
n = 2 (mod 4). The rows of 1/2(H + I + J), 1/2(−H + I + J), plus the zero and all-ones
vectors form the elements of a binary non-linear (n− 1, 2 ∗ n, 1/2 ∗ (n− 2)) code.

gap> H6 := [[0,1,1,1,1,1],[1,0,1,-1,-1,1],[1,1,0,1,-1,-1],
> [1,-1,1,0,1,-1],[1,-1,-1,1,0,1],[1,1,-1,-1,1,0]];;
gap> C1 := ConferenceCode(H6);
a (5,12,2)1..4 conference code over GF(2)
gap> IsLinearCode(C1);

1166 CHAPTER 65. GUAVA

false

ConferenceCode(n)

GUAVA constructs a symmetric conference matrix of order n + 1 (n = 1 (mod 4)) and uses
the rows of that matrix, plus the zero and all-ones vectors, to construct a binary non-linear
(n, 2 ∗ (n+ 1), 1/2 ∗ (n− 1)) code.

gap> C2 := ConferenceCode(5);
a (5,12,2)1..4 conference code over GF(2)
gap> Elements(C2);
[[0 0 0 0 0], [1 1 0 1 0], [1 1 1 0 0], [0 1 1 0 1],
[1 0 0 1 1], [0 0 1 1 1], [1 0 1 0 1], [0 1 0 1 1],
[1 0 1 1 0], [0 1 1 1 0], [1 1 0 0 1], [1 1 1 1 1]]

65.53 MOLSCode

MOLSCode(n, q)
MOLSCode(q)

MOLSCode returns an (n, q2, n−1) code over GF(q). The code is created from n−2 Mutually
Orthogonal Latin Squares (MOLS) of size q ∗ q. The default for n is 4. GUAVA can
construct a MOLS code for n − 2 ≤ q ; q must be a prime power, q > 2. If there are no
n − 2 MOLS, an error is signalled.

Since each of the n − 2 MOLS is a q ∗ q matrix, we can create a code of size q2 by listing
in each code element the entries that are in the same position in each of the MOLS. We
precede each of these lists with the two coordinates that specify this position, making the
word length become n.

The MOLS codes are MDS codes (see 65.37).

gap> C1 := MOLSCode(6, 5);
a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF(5)
gap> mols := List([1 .. WordLength(C1) - 2], function(nr)
> local ls, el;
> ls := NullMat(Size(Field(C1)), Size(Field(C1)));
> for el in VectorCodeword(Elements(C1)) do
> ls[IntFFE(el[1])+1][IntFFE(el[2])+1] := el[nr + 2];
> od;
> return ls;
> end);;
gap> AreMOLS(mols);
true
gap> C2 := MOLSCode(11);
a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11)

65.54 RandomCode

RandomCode(n, M , F)

RandomCode returns a random unrestricted code of size M with word length n over F . M
must be less than or equal to the number of elements in the space GF (q)n.

65.55. NORDSTROMROBINSONCODE 1167

The function RandomLinearCode returns a random linear code (see 65.70).

gap> C1 := RandomCode(6, 10, GF(8));
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> MinimumDistance(C1);
3
gap> C2 := RandomCode(6, 10, GF(8));
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> C1 = C2;
false

65.55 NordstromRobinsonCode

NordstromRobinsonCode()

NordstromRobinsonCode returns a Nordstrom-Robinson code, the best code with word
length n = 16 and minimum distance d = 6 over GF(2). This is a non-linear (16, 256, 6)
code.

gap> C := NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> OptimalityCode(C);
0

65.56 GreedyCode

GreedyCode(L, d, F)

GreedyCode returns a Greedy code with design distance d over F . The code is constructed
using the Greedy algorithm on the list of vectors L. This algorithm checks each vector in L
and adds it to the code if its distance to the current code is greater than or equal to d . It
is obvious that the resulting code has a minimum distance of at least d .

Note that Greedy codes are often linear codes.

The function LexiCode creates a Greedy code from a basis instead of an enumerated list
(see 65.57).

gap> C1 := GreedyCode(Tuples(Elements(GF(2)), 5), 3, GF(2));
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C2 := GreedyCode(Permuted(Tuples(Elements(GF(2)), 5),
> (1,4)), 3, GF(2));
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C1 = C2;
false

65.57 LexiCode

LexiCode(n, d, F)

In this format, Lexicode returns a Lexicode with word length n, design distance d over F .
The code is constructed using the Greedy algorithm on the lexicographically ordered list
of all vectors of length n over F . Every time a vector is found that has a distance to the

1168 CHAPTER 65. GUAVA

current code of at least d , it is added to the code. This results, obviously, in a code with
minimum distance greater than or equal to d .

gap> C := LexiCode(4, 3, GF(5));
a (4,17,3..4)2..4 lexicode over GF(5)

LexiCode(B, d, F)

When called in this format, LexiCode uses the basis B instead of the standard basis. B is
a matrix of vectors over F . The code is constructed using the Greedy algorithm on the list
of vectors spanned by B , ordered lexicographically with respect to B .

gap> B := [[Z(2)^0, 0*Z(2), 0*Z(2)], [Z(2)^0, Z(2)^0, 0*Z(2)]];;
gap> C := LexiCode(B, 2, GF(2));
a linear [3,1,2]1..2 lexicode over GF(2)

Note that binary Lexicodes are always linear.
The function GreedyCode creates a Greedy code that is not restricted to a lexicographical
order (see 65.56).

65.58 Generating Linear Codes

The following sections describe functions for constructing linear codes. A linear code always
has a generator or check matrix.
The first two sections describe functions that generate linear codes from the generator matrix
(65.59) or check matrix (65.60). All linear codes can be constructed with these functions.
The next sections describes some well known codes, like Hamming codes (65.61), Reed-
Muller codes (65.62) and the extended Golay codes (65.63 and 65.64).
A large and powerful family of codes are alternant codes. They are obtained by a small
modification of the parity check matrix of a BCH code. See sections 65.65, 65.66, 65.67 and
65.68.
The next section describes a function for generating random linear codes (see 65.70).

65.59 GeneratorMatCode

GeneratorMatCode(G [, Name], F)

GeneratorMatCode returns a linear code with generator matrix G . G must be a matrix over
Galois field F . Name can contain a short description of the code. The generator matrix is
the basis of the elements of the code. The resulting code has word length n, dimension k if
G is a k ∗ n-matrix. If GF (q) is the field of the code, the size of the code will be qk.
If the generator matrix does not have full row rank, the linearly dependent rows are removed.
This is done by the function BaseMat (see 34.13) and results in an equal code. The generator
matrix can be retrieved with the function GeneratorMat (see 65.24).

gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := GeneratorMatCode(G, GF(3));
a linear [5,3,1..2]1..2 code defined by generator matrix over GF(3)
gap> C2 := GeneratorMatCode(IdentityMat(5, GF(2)), GF(2));
a linear [5,5,1]0 code defined by generator matrix over GF(2)
gap> GeneratorMatCode(Elements(NordstromRobinsonCode()), GF(2));
a linear [16,11,1..4]2 code defined by generator matrix over GF(2)
This is the smallest linear code that contains the N-R code

65.60. CHECKMATCODE 1169

65.60 CheckMatCode

CheckMatCode(H [, Name], F)

CheckMatCode returns a linear code with check matrix H . H must be a matrix over Galois
field F . Name can contain a short description of the code. The parity check matrix is the
transposed of the nullmatrix of the generator matrix of the code. Therefore, c ∗ H T = 0
where c is an element of the code. If H is a r ∗ n-matrix, the code has word length n,
redundancy r and dimension n− r.
If the check matrix does not have full row rank, the linearly dependent rows are removed.
This is done by the function BaseMat (see 34.13) and results in an equal code. The check
matrix can be retrieved with the function CheckMat (see 65.25).

gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := CheckMatCode(G, GF(3));
a linear [5,2,1..2]2..3 code defined by check matrix over GF(3)
gap> CheckMat(C1);
[[Z(3)^0, 0*Z(3), Z(3)^0, Z(3), 0*Z(3)],
[0*Z(3), Z(3)^0, Z(3), Z(3)^0, Z(3)^0],
[0*Z(3), 0*Z(3), Z(3)^0, Z(3), Z(3)^0]]

gap> C2 := CheckMatCode(IdentityMat(5, GF(2)), GF(2));
a linear [5,0,5]5 code defined by check matrix over GF(2)

65.61 HammingCode

HammingCode(r, F)

HammingCode returns a Hamming code with redundancy r over F . A Hamming code is a
single-error-correcting code. The parity check matrix of a Hamming code has all nonzero
vectors of length r in its columns, except for a multiplication factor. The decoding algorithm
of the Hamming code (see 65.43) makes use of this property.

If q is the size of its field F , the returned Hamming code is a linear
[(qr − 1)/(q − 1), (qr − 1)/(q − 1)− r , 3] code.

gap> C1 := HammingCode(4, GF(2));
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := HammingCode(3, GF(9));
a linear [91,88,3]1 Hamming (3,9) code over GF(9)

65.62 ReedMullerCode

ReedMullerCode(r, k)

ReedMullerCode returns a binary Reed-Muller code R(r , k) with dimension k and order
r . This is a code with length 2k and minimum distance 2k−r . By definition, the r th order
binary Reed-Muller code of length n = 2m , for 0 ≤ r ≤ m, is the set of all vectors f , where
f is a Boolean function which is a polynomial of degree at most r .

gap> ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

1170 CHAPTER 65. GUAVA

65.63 ExtendedBinaryGolayCode

ExtendedBinaryGolayCode()

ExtendedBinaryGolayCode returns an extended binary Golay code. This is a [24, 12, 8]
code. Puncturing in the last position results in a perfect binary Golay code (see 65.75). The
code is self-dual (see 65.38).

gap> C := ExtendedBinaryGolayCode();
a linear [24,12,8]4 extended binary Golay code over GF(2)
gap> P := PuncturedCode(C);
a linear [23,12,7]3 punctured code
gap> P = BinaryGolayCode();
true

65.64 ExtendedTernaryGolayCode

ExtendedTernaryGolayCode()

ExtendedTernaryGolayCode returns an extended ternary Golay code. This is a [12, 6, 6]
code. Puncturing this code results in a perfect ternary Golay code (see 65.76). The code is
self-dual (see 65.38).

gap> C := ExtendedTernaryGolayCode();
a linear [12,6,6]3 extended ternary Golay code over GF(3)
gap> P := PuncturedCode(C);
a linear [11,6,5]2 punctured code
gap> P = TernaryGolayCode();
true

65.65 AlternantCode

AlternantCode(r, Y , F)
AlternantCode(r, Y , alpha, F)

AlternantCode returns an alternant code, with parameters r , Y and alpha (optional). r
is the design redundancy of the code. Y and alpha are both vectors of length n from which
the parity check matrix is constructed. The check matrix has entries of the form ajiyi. If
no alpha is specified, the vector [1, a, a2, .., an−1] is used, where a is a primitive element of
a Galois field F .

gap> Y := [1, 1, 1, 1, 1, 1, 1];; a := PrimitiveUnityRoot(2, 7);;
gap> alpha := List([0..6], i -> a^i);;
gap> C := AlternantCode(2, Y, alpha, GF(8));
a linear [7,3,3..4]3..4 alternant code over GF(8)

65.66 GoppaCode

GoppaCode(G, L)

GoppaCode returns a Goppa code from Goppa polynomial G , having coefficients in a Galois
Field GF (qm). L must be a list of elements in GF (qm), that are not roots of G . The word

65.67. GENERALIZEDSRIVASTAVACODE 1171

length of the code is equal to the length of L. The parity check matrix contains entries of the
form ajiG(ai), ai in L. The function VerticalConversionFieldMat converts this matrix
to a matrix with entries in GF (q) (see 65.130).

gap> x := Indeterminate(GF(2));; x.name := "x";;
gap> G := x^2 + x + 1;; L := Elements(GF(8));;
gap> C := GoppaCode(G, L);
a linear [8,2,5]3 Goppa code over GF(2)

GoppaCode(G, n)

When called with parameter n, GUAVA constructs a list L of length n, such that no element
of L is a root of G .

gap> x := Indeterminate(GF(2));; x.name := "x";;
gap> G := x^2 + x + 1;;
gap> C := GoppaCode(G, 8);
a linear [8,2,5]3 Goppa code over GF(2)

65.67 GeneralizedSrivastavaCode

GeneralizedSrivastavaCode(a, w, z, F)
GeneralizedSrivastavaCode(a, w, z, t, F)

GeneralizedSrivastavaCode returns a generalized Srivastava code with parameters a, w ,
z , t . a = a1, ..., an and w = w1, ..., ws are lists of n + s distinct elements of F = GF (qm),
z is a list of length n of nonzero elements of GF (qm). The parameter t determines the
designed distance: d ≥ st+ 1. The parity check matrix of this code has entries of the form

zi
(ai − wl)k

VerticalConversionFieldMat converts this matrix to a matrix with entries in GF (q) (see
65.130). The default for t is 1. The original Srivastava codes (see 65.68) are a special case
t = 1, zi = aµi for some µ.

gap> a := Filtered(Elements(GF(2^6)), e -> e in GF(2^3));;
gap> w := [Z(2^6)];; z := List([1..8], e -> 1);;
gap> C := GeneralizedSrivastavaCode(a, w, z, 1, GF(64));
a linear [8,2,2..5]3..4 generalized Srivastava code over GF(2)

65.68 SrivastavaCode

SrivastavaCode(a, w, F)
SrivastavaCode(a, w, mu, F)

SrivastavaCode returns a Srivastava code with parameters a, w , mu. a = a1, ..., an and
w = w1, ..., ws are lists of n + s distinct elements of F = GF (qm). The default for mu is
1. The Srivastava code is a generalized Srivastava code (see 65.67), in which zi = amu

i for
some mu and t = 1.

gap> a := Elements(GF(11)){[2..8]};;
gap> w := Elements(GF(11)){[9..10]};;
gap> C := SrivastavaCode(a, w, 2, GF(11));

1172 CHAPTER 65. GUAVA

a linear [7,5,3]2 Srivastava code over GF(11)
gap> IsMDSCode(C);
true # Always true if F is a prime field

65.69 CordaroWagnerCode

CordaroWagnerCode(n)

CordaroWagnerCode returns a binary Cordaro-Wagner code. This is a code of length n and
dimension 2 having the best possible minimum distance d . This code is just a little bit less
trivial than RepetitionCode (see 65.84).

gap> C := CordaroWagnerCode(11);
a linear [11,2,7]5 Cordaro-Wagner code over GF(2)
gap> Elements(C);
[[0 0 0 0 0 0 0 0 0 0 0], [1 1 1 1 1 1 1 0 0 0 0],
[0 0 0 0 1 1 1 1 1 1 1], [1 1 1 1 0 0 0 1 1 1 1]]

65.70 RandomLinearCode

RandomLinearCode(n, k , F)

RandomLinearCode returns a random linear code with word length n, dimension k over field
F .

To create a random unrestricted code, use RandomCode (see 65.54).

gap> C := RandomLinearCode(15, 4, GF(3));
a linear [15,4,1..4]6..10 random linear code over GF(3)
gap> RandomSeed(13); C1 := RandomLinearCode(12, 5, GF(5));
a linear [12,5,1..5]4..7 random linear code over GF(5)
gap> RandomSeed(13); C2 := RandomLinearCode(12, 5, GF(5));
a linear [12,5,1..5]4..7 random linear code over GF(5)
gap> C1 = C2;
true # Thanks to RandomSeed

65.71 BestKnownLinearCode

BestKnownLinearCode(n, k , F)

BestKnownLinearCode returns the best known linear code of length n, dimension k over
field F . The function uses the tables described in section 65.120 to construct this code.

gap> C1 := BestKnownLinearCode(23, 12, GF(2));
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> C1 = BinaryGolayCode();
true
gap> Display(BestKnownLinearCode(8, 4, GF(4)));
a linear [8,4,4]2..3 U|U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]3 repetition code over GF(4)
V: a cyclic [4,1,4]3 repetition code over GF(4)

65.72. GENERATING CYCLIC CODES 1173

gap> C := BestKnownLinearCode(131,47);
a linear [131,47,28..32]23..68 shortened code

BestKnownLinearCode(rec)

In this form, rec must be a record containing the fields lowerBound, upperBound and
construction. It uses the information in this field to construct a code. This form is
meant to be used together with the function BoundsMinimumDistance (see 65.120), if the
bounds are already calculated.

gap> bounds := BoundsMinimumDistance(20, 17, GF(4));
an optimal linear [20,17,d] code over GF(4) has d=3
gap> C := BestKnownLinearCode(bounds);
a linear [20,17,3]2 shortened code
gap> C = BestKnownLinearCode(20, 17, GF(4));
true

65.72 Generating Cyclic Codes

The elements of a cyclic code C are all multiples of a polynomial g(x), where calculations
are carried out modulo xn − 1. Therefore, the elements always have a degree less than n.
A cyclic code is an ideal in the ring of polynomials modulo xn − 1. The polynomial g(x)
is called the generator polynomial of C. This is the unique monic polynomial of least
degree that generates C. It is a divisor of the polynomial xn − 1.

The check polynomial is the polynomial h(x) with g(x) ∗ h(x) = xn − 1. Therefore it is
also a divisor of xn − 1. The check polynomial has the property that c(x) ∗ h(x) = 0 (mod
(xn − 1)) for every codeword c(x).

The first two sections describe functions that generate cyclic codes from a given generator
or check polynomial. All cyclic codes can be constructed using these functions.

The next sections describe the two cyclic Golay codes (see 65.75 and 65.76).

The next sections describe functions that generate cyclic codes from a prescribed set of
roots of the generator polynomial, among which the BCH codes. See 65.77, 65.78, 65.79
and 65.80.

The next sections describe the trivial codes (see 65.82, 65.83, 65.84).

65.73 GeneratorPolCode

GeneratorPolCode(g, n [, Name], F)

GeneratorPolCode creates a cyclic code with a generator polynomial g , word length n, over
F . g can be entered as a polynomial over F , or as a list of coefficients over F or Integers.
If g is a list of integers, these are first converted to F . Name can contain a short description
of the code.

If g is not a divisor of xn − 1, it cannot be a generator polynomial. In that case, a code is
created with generator polynomial gcd(g , xn − 1), i.e. the greatest common divisor of g and
xn − 1. This is a valid generator polynomial that generates the ideal < g . See 65.72.

gap> P := Polynomial(GF(2), Z(2)*[1,0,1]);
Z(2)^0*(X(GF(2))^2 + 1)

1174 CHAPTER 65. GUAVA

gap> G := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol(G);
Z(2)^0*(X(GF(2)) + 1)
gap> G2 := GeneratorPolCode([1,1], 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol(G2);
Z(2)^0*(X(GF(2)) + 1)

65.74 CheckPolCode

CheckPolCode(h, n [, Name], F)

CheckPolCode creates a cyclic code with a check polynomial h, word length n, over F . h
can be entered as a polynomial over F , or as a list of coefficients over F or Integers. If h
is a list of integers, these are first converted to F . Name can contain a short description of
the code.

If h is not a divisor of xn − 1, it cannot be a check polynomial. In that case, a code is
created with check polynomial gcd(h, xn − 1), i.e. the greatest common divisor of h and
xn − 1. This is a valid check polynomial that yields the same elements as the ideal < h .
See 65.72.

gap> P := Polynomial(GF(3), Z(3)*[1,0,2]);
Z(3)^0*(X(GF(3))^2 + 2)
gap> H := CheckPolCode(P, 7, GF(3));
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> CheckPol(H);
Z(3)^0*(X(GF(3)) + 2)
gap> Gcd(P, X(GF(3))^7-1);
Z(3)^0*(X(GF(3)) + 2)

65.75 BinaryGolayCode

BinaryGolayCode()

BinaryGolayCode returns a binary Golay code. This is a perfect [23,12,7] code. It is also
cyclic, and has generator polynomial g(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11. Extending
it results in an extended Golay code (see 65.63). There’s also the ternary Golay code (see
65.76).

gap> BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> ExtendedBinaryGolayCode() = ExtendedCode(BinaryGolayCode());
true
gap> IsPerfectCode(BinaryGolayCode());
true

65.76 TernaryGolayCode

TernaryGolayCode()

65.77. ROOTSCODE 1175

TernaryGolayCode returns a ternary Golay code. This is a perfect [11,6,5] code. It is also
cyclic, and has generator polynomial g(x) = 2 + x2 + 2x3 + x4 + x5. Extending it results in
an extended Golay code (see 65.64). There’s also the binary Golay code (see 65.75).

gap> TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> ExtendedTernaryGolayCode() = ExtendedCode(TernaryGolayCode());
true

65.77 RootsCode

RootsCode(n, list)

This is the generalization of the BCH, Reed-Solomon and quadratic residue codes (see 65.78,
65.79 and 65.80). The user can give a length of the code n and a prescribed set of zeros.
The argument list must be a valid list of primitive nth roots of unity in a splitting field
GF (qm). The resulting code will be over the field GF (q). The function will return the
largest possible cyclic code for which the list list is a subset of the roots of the code. From
this list, GUAVA calculates the entire set of roots.

gap> a := PrimitiveUnityRoot(3, 14);
Z(3^6)^52
gap> C1 := RootsCode(14, [a^0, a, a^3]);
a cyclic [14,7,3..6]3..7 code defined by roots over GF(3)
gap> MinimumDistance(C1);
4
gap> b := PrimitiveUnityRoot(2, 15);
Z(2^4)
gap> C2 := RootsCode(15, [b, b^2, b^3, b^4]);
a cyclic [15,7,5]3..5 code defined by roots over GF(2)
gap> C2 = BCHCode(15, 5, GF(2));
true

RootsCode(n, list, F)

In this second form, the second argument is a list of integers, ranging from 0 to n-1. The
resulting code will be over a field F . GUAVA calculates a primitive nth root of unity, α, in
the extension field of F . It uses the set of the powers of α in the list as a prescribed set of
zeros.

gap> C := RootsCode(4, [1, 2], GF(5));
a cyclic [4,2,3]2 code defined by roots over GF(5)
gap> RootsOfCode(C);
[Z(5), Z(5)^2]
gap> C = ReedSolomonCode(4, 3);
true

65.78 BCHCode

BCHCode(n, d , F)
BCHCode(n, b, d, F)

1176 CHAPTER 65. GUAVA

The function BCHCode returns a Bose-Chaudhuri-Hockenghem code (or BCH code for
short). This is the largest possible cyclic code of length n over field F , whose generator
polynomial has zeros

ab , ab+1, ..., ab+d−2,

where a is a primitive nth root of unity in the splitting field GF (qm), b is an integer > 1
and m is the multiplicative order of q modulo n. Default value for b is 1. The length n of
the code and the size q of the field must be relatively prime. The generator polynomial is
equal to the product of the minimal polynomials of Xb , Xb+1, ..., Xb+d−2.

Special cases are b = 1 (resulting codes are called narrow-sense BCH codes), and n =
qm − 1 (known as primitive BCH codes). GUAVA calculates the largest value of d ’ for
which the BCH code with designed distance d ’ coincides with the BCH code with designed
distance d . This distance is called the Bose distance of the code. The true minimum
distance of the code is greater than or equal to the Bose distance.

Printed are the designed distance (to be precise, the Bose distance) delta, and the starting
power b.

gap> C1 := BCHCode(15, 3, 5, GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C1.designedDistance;
7
gap> C2 := BCHCode(23, 2, GF(2));
a cyclic [23,12,5..7]3 BCH code, delta=5, b=1 over GF(2)
gap> C2.designedDistance;
5
gap> MinimumDistance(C2);
7

65.79 ReedSolomonCode

ReedSolomonCode(n, d)

ReedSolomonCode returns a Reed-Solomon code of length n, designed distance d . This
code is a primitive narrow-sense BCH code over the field GF (q), where q = n + 1. The
dimension of an RS code is n − d + 1. According to the Singleton bound (see 65.111) the
dimension cannot be greater than this, so the true minimum distance of an RS code is equal
to d and the code is maximum distance separable (see 65.37).

gap> C1 := ReedSolomonCode(3, 2);
a cyclic [3,2,2]1 Reed-Solomon code over GF(4)
gap> C2 := ReedSolomonCode(4, 3);
a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
gap> RootsOfCode(C2);
[Z(5), Z(5)^2]
gap> IsMDSCode(C2);
true

65.80 QRCode

QRCode(n, F)

65.81. FIRECODE 1177

QRCode returns a quadratic residue code. If F is a field GF (q), then q must be a quadratic
residue modulo n. That is, an x exists with x2 = q (mod n). Both n and q must be primes.
Its generator polynomial is the product of the polynomials x− ai. a is a primitive nth root
of unity, and i is an integer in the set of quadratic residues modulo n.

gap> C1 := QRCode(7, GF(2));
a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> IsEquivalent(C1, HammingCode(3, GF(2)));
true
gap> C2 := QRCode(11, GF(3));
a cyclic [11,6,4..5]2 quadratic residue code over GF(3)
gap> C2 = TernaryGolayCode();
true

65.81 FireCode

FireCode(G, b)

FireCode constructs a (binary) Fire code. G is a primitive polynomial of degree m, factor
of xr − 1. b an integer 0 ≤ b ≤ m not divisible by r, that determines the burst length of a
single error burst that can be corrected. The argument G can be a polynomial with base
ring GF (2), or a list of coefficients in GF (2). The generator polynomial is defined as the
product of G and x2b−1 + 1.

gap> G := Polynomial(GF(2), Z(2)^0 * [1, 0, 1, 1]);
Z(2)^0*(X(GF(2))^3 + X(GF(2))^2 + 1)
gap> Factors(G);
[Z(2)^0*(X(GF(2))^3 + X(GF(2))^2 + 1)] # So it is primitive
gap> C := FireCode(G, 3);
a cyclic [35,27,1..4]2..6 3 burst error correcting fire code over GF(2)
gap> MinimumDistance(C);
4 # Still it can correct bursts of length 3

65.82 WholeSpaceCode

WholeSpaceCode(n, F)

WholeSpaceCode returns the cyclic whole space code of length n over F . This code consists
of all polynomials of degree less than n and coefficients in F .

gap> C := WholeSpaceCode(5, GF(3));
a cyclic [5,5,1]0 whole space code over GF(3)

65.83 NullCode

NullCode(n, F)

NullCode returns the zero-dimensional nullcode with length n over F . This code has only
one word: the all zero word. It is cyclic though!

gap> C := NullCode(5, GF(3));
a cyclic [5,0,5]5 nullcode over GF(3)

1178 CHAPTER 65. GUAVA

gap> Elements(C);
[0] # this is the polynomial 0
gap> TreatAsVector(Elements(C)); Elements(C);
[[0 0 0 0 0]] # this is the vector 0

65.84 RepetitionCode

RepetitionCode(n, F)

RepetitionCode returns the cyclic repetition code of length n over F . The code has as many
elements as F , because each codeword consists of a repetition of one of these elements.

gap> C := RepetitionCode(3, GF(5));
a cyclic [3,1,3]2 repetition code over GF(5)
gap> Elements(C);
[0, x^2 + x + 1, 2x^2 + 2x + 2, 4x^2 + 4x + 4, 3x^2 + 3x + 3]
gap> IsPerfectCode(C);
false
gap> IsMDSCode(C);
true

65.85 CyclicCodes

CyclicCodes(n, F)

CyclicCodes returns a list of all cyclic codes of length n over F . It constructs all possible
generator polynomials from the factors of xn − 1. Each combination of these factors yields
a generator polynomial after multiplication.

NrCyclicCodes(n, F)

The function NrCyclicCodes calculates the number of cyclic codes of length n over field F .

gap> NrCyclicCodes(23, GF(2));
8
gap> codelist := CyclicCodes(23, GF(2));
[a cyclic [23,23,1]0 enumerated code over GF(2),
a cyclic [23,22,1..2]1 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,0,23]23 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2),
a cyclic [23,1,23]11 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2)]

gap> BinaryGolayCode() in codelist;
true
gap> RepetitionCode(23, GF(2)) in codelist;
true
gap> CordaroWagnerCode(23) in codelist;
false # This code is not cyclic

65.86. MANIPULATING CODES 1179

65.86 Manipulating Codes

This section describes several functions GUAVA uses to manipulate codes. Some of the best
codes are obtained by starting with for example a BCH code, and manipulating it.

In some cases, it is faster to perform calculations with a manipulated code than to use
the original code. For example, if the dimension of the code is larger than half the word
length, it is generally faster to compute the weight distribution by first calculating the
weight distribution of the dual code than by directly calculating the weight distribution of
the original code. The size of the dual code is smaller in these cases.

Because GUAVA keeps all information in a code record, in some cases the information can be
preserved after manipulations. Therefore, computations do not always have to start from
scratch.

The next sections describe manipulating function that take a code with certain parameters,
modify it in some way and return a different code. See 65.87, 65.88, 65.89, 65.90, 65.91,
65.92, 65.93, 65.94, 65.95, 65.96, 65.97, 65.98, 65.99, 65.100, 65.102, 65.103 and 65.101.

The next sections describe functions that generate a new code out of two codes. See 65.104,
65.105, 65.106, 65.107 and 65.108.

65.87 ExtendedCode

ExtendedCode(C [, i])

ExtendedCode extends the code C i times and returns the result. i is equal to 1 by default.
Extending is done by adding a parity check bit after the last coordinate. The coordinates
of all codewords now add up to zero. In the binary case, each codeword has even weight.

The word length increases by i . The size of the code remains the same. In the binary case,
the minimum distance increases by one if it was odd. In other cases, that is not always true.

A cyclic code in general is no longer cyclic after extending.

gap> C1 := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> C2 := ExtendedCode(C1);
a linear [8,4,4]2 extended code
gap> IsEquivalent(C2, ReedMullerCode(1, 3));
true
gap> List(Elements(C2), WeightCodeword);
[0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8]
gap> PuncturedCode(C2) = C1;
true
gap> C3 := EvenWeightSubcode(C1);
a linear [7,3,4]2..3 even weight subcode

To undo extending, call PuncturedCode (see 65.88). The function EvenWeightSubcode (see
65.89) also returns a related code with only even weights, but without changing its word
length.

1180 CHAPTER 65. GUAVA

65.88 PuncturedCode

PuncturedCode(C)

PuncturedCode punctures C in the last column, and returns the result. Puncturing is
done simply by cutting off the last column from each codeword. This means the word
length decreases by one. The minimum distance in general also decrease by one.
PuncturedCode(C, L)

PuncturedCode punctures C in the columns specified by L, a list of integers. All columns
specified by L are omitted from each codeword. If l is the length of L (so the number of
removed columns), the word length decreases by l. The minimum distance can also decrease
by l or less.
Puncturing a cyclic code in general results in a non-cyclic code. If the code is punctured
in all the columns where a word of minimal weight is unequal to zero, the dimension of the
resulting code decreases.

gap> C1 := BCHCode(15, 5, GF(2));
a cyclic [15,7,5]3..5 BCH code, delta=5, b=1 over GF(2)
gap> C2 := PuncturedCode(C1);
a linear [14,7,4]3..5 punctured code
gap> ExtendedCode(C2) = C1;
false
gap> PuncturedCode(C1, [1,2,3,4,5,6,7]);
a linear [8,7,1..2]1 punctured code
gap> PuncturedCode(WholeSpaceCode(4, GF(5)));
a linear [3,3,1]0 punctured code # The dimension decreased from 4 to 3

ExtendedCode extends the code again (see 65.87) although in general this does not result
in the old code.

65.89 EvenWeightSubcode

EvenWeightSubcode(C)

EvenWeightSubcode returns the even weight subcode of C , consisting of all codewords
of C with even weight. If C is a linear code and contains words of odd weight, the resulting
code has a dimension of one less. The minimum distance always increases with one if it
was odd. If C is a binary cyclic code, and g(x) is its generator polynomial, the even weight
subcode either has generator polynomial g(x) (if g(x) is divisible by x− 1) or g(x) ∗ (x− 1)
(if no factor x− 1 was present in g(x)). So the even weight subcode is again cyclic.
Of course, if all codewords of C are already of even weight, the returned code is equal to C .

gap> C1 := EvenWeightSubcode(BCHCode(8, 4, GF(3)));
an (8,33,4..8)3..8 even weight subcode
gap> List(Elements(C1), WeightCodeword);
[0, 4, 4, 4, 4, 4, 6, 4, 4, 4, 6, 4, 4, 4, 8, 6, 8, 4, 6, 4, 4, 6,
4, 4, 6, 8, 4, 4, 6, 4, 8, 4, 6]

gap> EvenWeightSubcode(ReedMullerCode(1, 3));
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

ExtendedCode also returns a related code of only even weights, but without reducing its
dimension (see 65.87).

65.90. PERMUTEDCODE 1181

65.90 PermutedCode

PermutedCode(C, L)

PermutedCode returns C after column permutations. L is the permutation to be executed
on the columns of C . If C is cyclic, the result in general is no longer cyclic. If a permutation
results in the same code as C , this permutation belongs to the automorphism group of
C (see 65.42). In any case, the returned code is equivalent to C (see 65.40).

gap> C1 := PuncturedCode(ReedMullerCode(1, 4));
a linear [15,5,7]5 punctured code
gap> C2 := BCHCode(15, 7, GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 = C1;
false
gap> p := CodeIsomorphism(C1, C2);
(2,13, 7,10, 8, 3, 5, 4,14)(12,15)
gap> C3 := PermutedCode(C1, p);
a linear [15,5,7]5 permuted code
gap> C2 = C3;
true

65.91 ExpurgatedCode

ExpurgatedCode(C, L)

ExpurgatedCode expurgates code C by throwing away codewords in list L. C must be a
linear code. L must be a list of codeword input. The generator matrix of the new code no
longer is a basis for the codewords specified by L. Since the returned code is still linear, it
is very likely that, besides the words of L, more codewords of C are no longer in the new
code.

gap> C1 := HammingCode(4);; WeightDistribution(C1);
[1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> L := Filtered(Elements(C1), i -> WeightCodeword(i) = 3);;
gap> C2 := ExpurgatedCode(C1, L);
a linear [15,4,3..4]5..11 code, expurgated with 7 word(s)
gap> WeightDistribution(C2);
[1, 0, 0, 0, 14, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

This function does not work on non-linear codes. For removing words from a non-linear
code, use RemovedElementsCode (see 65.93). For expurgating a code of all words of odd
weight, use EvenWeightSubcode (see 65.89).

65.92 AugmentedCode

AugmentedCode(C, L)

AugmentedCode returns C after augmenting. C must be a linear code, L must be a list of
codeword input. The generator matrix of the new code is a basis for the codewords specified
by L as well as the words that were already in code C . Note that the new code in general

1182 CHAPTER 65. GUAVA

will consist of more words than only the codewords of C and the words L. The returned
code is also a linear code.

gap> C31 := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> C32 := AugmentedCode(C31,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap> C32 = ReedMullerCode(2, 3);
true

AugmentedCode(C)

When called without a list of codewords, AugmentedCode returns C after adding the all-ones
vector to the generator matrix. C must be a linear code. If the all-ones vector was already
in the code, nothing happens and a copy of the argument is returned. If C is a binary code
which does not contain the all-ones vector, the complement of all codewords is added.

gap> C1 := CordaroWagnerCode(6);
a linear [6,2,4]2..3 Cordaro-Wagner code over GF(2)
gap> [0,0,1,1,1,1] in C1;
true
gap> C2 := AugmentedCode(C1);
a linear [6,3,1..2]2..3 code, augmented with 1 word(s)
gap> [1,1,0,0,0,0] in C2; # the complement of [001111]
true

The function AddedElementsCode adds elements to the codewords instead of adding them
to the basis (see 65.94).

65.93 RemovedElementsCode

RemovedElementsCode(C, L)

RemovedElementsCode returns code C after removing a list of codewords L from its ele-
ments. L must be a list of codeword input. The result is an unrestricted code.

gap> C1 := HammingCode(4);; WeightDistribution(C1);
[1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> L := Filtered(Elements(C1), i -> WeightCodeword(i) = 3);;
gap> C2 := RemovedElementsCode(C1, L);
a (15,2013,3..15)2..15 code with 35 word(s) removed
gap> WeightDistribution(C2);
[1, 0, 0, 0, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> MinimumDistance(C2);
3 # C2 is not linear, so the minimum weight does not have to

be equal to the minimum distance

Adding elements to a code is done by the function AddedElementsCode (see 65.94). To
remove codewords from the base of a linear code, use ExpurgatedCode (see 65.91).

65.94 AddedElementsCode

AddedElementsCode(C, L)

65.95. SHORTENEDCODE 1183

AddedElementsCode returns code C after adding a list of codewords L to its elements. L
must be a list of codeword input. The result is an unrestricted code.

gap> C1 := NullCode(6, GF(2));
a cyclic [6,0,6]6 nullcode over GF(2)
gap> C2 := AddedElementsCode(C1, "111111");
a (6,2,1..6)3 code with 1 word(s) added
gap> IsCyclicCode(C2);
true
gap> C3 := AddedElementsCode(C2, ["101010", "010101"]);
a (6,4,1..6)2 code with 2 word(s) added
gap> IsCyclicCode(C3);
true

To remove elements from a code, use RemovedElementsCode (see 65.93). To add elements
to the base of a linear code, use AugmentedCode (see 65.92).

65.95 ShortenedCode

ShortenedCode(C)

ShortenedCode returns code C shortened by taking a cross section. If C is a linear code,
this is done by removing all codewords that start with a non-zero entry, after which the first
column is cut off. If C was a [n, k, d] code, the shortened code generally is a [n− 1, k− 1, d]
code. It is possible that the dimension remains the same; it is also possible that the minimum
distance increases.

gap> C1 := HammingCode(4);
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := ShortenedCode(C1);
a linear [14,10,3]2 shortened code

If C is a non-linear code, ShortenedCode first checks which finite field element occurs most
often in the first column of the codewords. The codewords not starting with this element
are removed from the code, after which the first column is cut off. The resulting shortened
code has at least the same minimum distance as C .

gap> C1 := ElementsCode(["1000", "1101", "0011"], GF(2));
a (4,3,1..4)2 user defined unrestricted code over GF(2)
gap> MinimumDistance(C1);
2
gap> C2 := ShortenedCode(C1);
a (3,2,2..3)1..2 shortened code
gap> Elements(C2);
[[0 0 0], [1 0 1]]

ShortenedCode(C, L)

When called in this format, ShortenedCode repeats the shortening process on each of the
columns specified by L. L therefore is a list of integers. The column numbers in L are the
numbers as they are before the shortening process. If L has l entries, the returned code
has a word length of l positions shorter than C .

gap> C1 := HammingCode(5, GF(2));

1184 CHAPTER 65. GUAVA

a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap> C2 := ShortenedCode(C1, [1, 2, 3]);
a linear [28,23,3]2 shortened code
gap> OptimalityLinearCode(C2);
0

The function LengthenedCode lengthens the code again (only for linear codes), see 65.96.
In general, this is not exactly the inverse function.

65.96 LengthenedCode

LengthenedCode(C [, i])

LengtenedCode returns code C lengthened. C must be a linear code. First, the all-ones
vector is added to the generator matrix (see 65.92). If the all-ones vector was already a
codeword, nothing happens to the code. Then, the code is extended i times (see 65.87). i
is equal to 1 by default. If C was an [n, k] code, the new code generally is a [n + i, k + 1]
code.

gap> C1 := CordaroWagnerCode(5);
a linear [5,2,3]2 Cordaro-Wagner code over GF(2)
gap> C2 := LengthenedCode(C1);
a linear [6,3,2]2..3 code, lengtened with 1 column(s)

ShortenedCode shortens the code, see 65.95. In general, this is not exactly the inverse
function.

65.97 ResidueCode

ResidueCode(C [, w])

The function ResidueCode takes a codeword c of C of weight w (if w is omitted, a codeword
of minimal weight is used). C must be a linear code and w must be greater than zero. It
removes this word and all its linear combinations from the code and then punctures the
code in the coordinates where c is unequal to zero. The resulting code is an [n − w, k −
1, d− bw ∗ (q − 1)/qc] code.

gap> C1 := BCHCode(15, 7);
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 := ResidueCode(C1);
a linear [8,4,4]2 residue code
gap> c := Codeword([0,0,0,1,0,0,1,1,0,1,0,1,1,1,1], C1);;
gap> C3 := ResidueCode(C1, c);
a linear [7,4,3]1 residue code

65.98 ConstructionBCode

ConstructionBCode(C)

The function ConstructionBCode takes a binary linear code C and calculates the minimum
distance of the dual of C (see 65.99). It then removes the columns of the parity check matrix
of C where a codeword of the dual code of minimal weight has coordinates unequal to zero.

65.99. DUALCODE 1185

the resulting matrix is a parity check matrix for an [n− dd, k− dd+ 1,≥ d] code, where dd
is the minimum distance of the dual of C .

gap> C1 := ReedMullerCode(2, 5);
a linear [32,16,8]6 Reed-Muller (2,5) code over GF(2)
gap> C2 := ConstructionBCode(C1);
a linear [24,9,8]5..10 Construction B (8 coordinates)
gap> BoundsMinimumDistance(24, 9, GF(2));
an optimal linear [24,9,d] code over GF(2) has d=8 # so C2 is optimal

65.99 DualCode

DualCode(C)

DualCode returns the dual code of C . The dual code consists of all codewords that are
orthogonal to the codewords of C . If C is a linear code with generator matrix G, the dual
code has parity check matrix G (or if C has parity check matrix H, the dual code has
generator matrix H). So if C is a linear [n, k] code, the dual code of C is a linear [n, n-k]
code. If C is a cyclic code with generator polynomial g(x), the dual code has the reciprocal
polynomial of g(x) as check polynomial.

The dual code is always a linear code, even if C is non-linear.

If a code C is equal to its dual code, it is called self-dual.

gap> R := ReedMullerCode(1, 3);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> RD := DualCode(R);
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> R = RD;
true
gap> N := WholeSpaceCode(7, GF(4));
a cyclic [7,7,1]0 whole space code over GF(4)
gap> DualCode(N) = NullCode(7, GF(4));
true

65.100 ConversionFieldCode

ConversionFieldCode(C)

ConversionFieldCode returns code C after converting its field. If the field of C is GF(qm),
the returned code has field GF(q). Each symbol of every codeword is replaced by a con-
catenation of m symbols from GF(q). If C is an (n,M, d1) code, the returned code is a
(n ∗m,M, d2) code, where d2 > d1.

See also 65.131.

gap> R := RepetitionCode(4, GF(4));
a cyclic [4,1,4]3 repetition code over GF(4)
gap> R2 := ConversionFieldCode(R);
a linear [8,2,4]3..4 code, converted to basefield GF(2)
gap> Size(R) = Size(R2);
true

1186 CHAPTER 65. GUAVA

gap> GeneratorMat(R);
[[Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0]]
gap> GeneratorMat(R2);
[[Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]]

65.101 CosetCode

CosetCode(C, w)

CosetCode returns the coset of a code C with respect to word w . w must be of the codeword
type. Then, w is added to each codeword of C , yielding the elements of the new code. If C
is linear and w is an element of C , the new code is equal to C , otherwise the new code is
an unrestricted code.

Generating a coset is also possible by simply adding the word w to C . See 65.20.

gap> H := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := Codeword("1011011");; c in H;
false
gap> C := CosetCode(H, c);
a (7,16,3)1 coset code
gap> List(Elements(C), el-> Syndrome(H, el));
[[1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1],
[1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1], [1 1 1],
[1 1 1], [1 1 1], [1 1 1], [1 1 1]]

All elements of the coset have the same syndrome in H

65.102 ConstantWeightSubcode

ConstantWeightSubcode(C, w)

ConstantWeightSubcode returns the subcode of C that only has codewords of weight w .
The resulting code is a non-linear code, because it does not contain the all-zero vector.

gap> N := NordstromRobinsonCode();; WeightDistribution(N);
[1, 0, 0, 0, 0, 0, 112, 0, 30, 0, 112, 0, 0, 0, 0, 0, 1]
gap> C := ConstantWeightSubcode(N, 8);
a (16,30,6..16)5..8 code with codewords of weight 8
gap> WeightDistribution(C);
[0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0]

ConstantWeightSubcode(C)

In this format, ConstantWeightSubcode returns the subcode of C consisting of all minimum
weight codewords of C .

gap> E := ExtendedTernaryGolayCode();; WeightDistribution(E);
[1, 0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0, 24]
gap> C := ConstantWeightSubcode(E);
a (12,264,6..12)3..6 code with codewords of weight 6
gap> WeightDistribution(C);
[0, 0, 0, 0, 0, 0, 264, 0, 0, 0, 0, 0, 0]

65.103. STANDARDFORMCODE 1187

65.103 StandardFormCode

StandardFormCode(C)

StandardFormCode returns C after putting it in standard form. If C is a non-linear code,
this means the elements are organized using lexicographical order. This means they form a
legal GAP Set.

If C is a linear code, the generator matrix and parity check matrix are put in standard
form. The generator matrix then has an identity matrix in its left part, the parity check
matrix has an identity matrix in its right part. Although GUAVA always puts both matrices
in a standard form using BaseMat, this never alters the code. StandardFormCode even
applies column permutations if unavoidable, and thereby changes the code. The column
permutations are recorded in the construction history of the new code (see 65.47). C and
the new code are of course equivalent.

If C is a cyclic code, its generator matrix cannot be put in the usual upper triangular form,
because then it would be inconsistent with the generator polynomial. The reason is that
generating the elements from the generator matrix would result in a different order than
generating the elements from the generator polynomial. This is an unwanted effect, and
therefore StandardFormCode just returns a copy of C for cyclic codes.

gap> G := GeneratorMatCode(Z(2) * [[0,1,1,0], [0,1,0,1], [0,0,1,1]],
> "random form code", GF(2));
a linear [4,2,1..2]1..2 random form code over GF(2)
gap> Codeword(GeneratorMat(G));
[[0 1 0 1], [0 0 1 1]]
gap> Codeword(GeneratorMat(StandardFormCode(G)));
[[1 0 0 1], [0 1 0 1]]

65.104 DirectSumCode

DirectSumCode(C1, C2)

DirectSumCode returns the direct sum of codes C1 and C2. The direct sum code consists
of every codeword of C1 concatenated by every codeword of C2. Therefore, if Ci was a
(ni,Mi, di) code, the result is a (n1 + n2,M1 ∗M2,min(d1, d2)) code.

If both C1 and C2 are linear codes, the result is also a linear code. If one of them is
non-linear, the direct sum is non-linear too. In general, a direct sum code is not cyclic.

Performing a direct sum can also be done by adding two codes (see 65.20). Another often
used method is the ”u, u+v”-construction, described in 65.105.

gap> C1 := ElementsCode([[1,0], [4,5]], GF(7));;
gap> C2 := ElementsCode([[0,0,0], [3,3,3]], GF(7));;
gap> D := DirectSumCode(C1, C2);;
gap> Elements(D);
[[1 0 0 0 0], [1 0 3 3 3], [4 5 0 0 0], [4 5 3 3 3]]
gap> D = C1 + C2; # addition = direct sum
true

1188 CHAPTER 65. GUAVA

65.105 UUVCode

UUVCode(C1, C2)

UUVCode returns the so-called (u|u + v) construction applied to C1 and C2. The resulting
code consists of every codeword u of C1 concatenated by the sum of u and every codeword v
of C2. If C1 and C2 have different word lengths, sufficient zeros are added to the shorter code
to make this sum possible. If Ci is a (ni,Mi, di) code, the result is a (n1 +max(n1, n2),M1 ∗
M2,min(2 ∗ d1, d2)) code.

If both C1 and C2 are linear codes, the result is also a linear code. If one of them is
non-linear, the UUV sum is non-linear too. In general, a UUV sum code is not cyclic.

The function DirectSumCode returns another sum of codes (see 65.104).

gap> C1 := EvenWeightSubcode(WholeSpaceCode(4, GF(2)));
a cyclic [4,3,2]1 even weight subcode
gap> C2 := RepetitionCode(4, GF(2));
a cyclic [4,1,4]2 repetition code over GF(2)
gap> R := UUVCode(C1, C2);
a linear [8,4,4]2 U|U+V construction code
gap> R = ReedMullerCode(1,3);
true

65.106 DirectProductCode

DirectProductCode(C1, C2)

DirectProductCode returns the direct product of codes C1 and C2. Both must be linear
codes. Suppose Ci has generator matrix Gi. The direct product of C1 and C2 then has the
Kronecker product of G1 and G2 as the generator matrix (see KroneckerProduct).

If Ci is a [ni, ki, di] code, the direct product then is a [n1 ∗ n2, k1 ∗ k2, d1 ∗ d2] code.

gap> L1 := LexiCode(10, 4, GF(2));
a linear [10,5,4]2..4 lexicode over GF(2)
gap> L2 := LexiCode(8, 3, GF(2));
a linear [8,4,3]2..3 lexicode over GF(2)
gap> D := DirectProductCode(L1, L2);
a linear [80,20,12]20..45 direct product code

65.107 IntersectionCode

IntersectionCode(C1, C2)

IntersectionCode returns the intersection of codes C1 and C2. This code consists of all
codewords that are both in C1 and C2. If both codes are linear, the result is also linear. If
both are cyclic, the result is also cyclic.

gap> C := CyclicCodes(7, GF(2));
[a cyclic [7,7,1]0 enumerated code over GF(2),

a cyclic [7,6,1..2]1 enumerated code over GF(2),
a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,0,7]7 enumerated code over GF(2),

65.108. UNIONCODE 1189

a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2),
a cyclic [7,1,7]3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2)]

gap> IntersectionCode(C[6], C[8]) = C[7];
true

65.108 UnionCode

UnionCode(C1, C2)

UnionCode returns the union of codes C1 and C2. This code consists of the union of all
codewords of C1 and C2 and all linear combinations. Therefore this function works only
for linear codes. The function AddedElementsCode can be used for non-linear codes, or if
the resulting code should not include linear combinations. See 65.94. If both arguments are
cyclic, the result is also cyclic.

gap> G := GeneratorMatCode([[1,0,1],[0,1,1]]*Z(2)^0, GF(2));
a linear [3,2,1..2]1 code defined by generator matrix over GF(2)
gap> H := GeneratorMatCode([[1,1,1]]*Z(2)^0, GF(2));
a linear [3,1,3]1 code defined by generator matrix over GF(2)
gap> U := UnionCode(G, H);
a linear [3,3,1]0 union code
gap> c := Codeword("010");; c in G;
false
gap> c in H;
false
gap> c in U;
true

65.109 Code Records

Like other GAP structures, codes are represented by records that contain important infor-
mation about them. Creating such a code record is done by the code generating functions
described in 65.49, 65.58 and 65.72. It is possible to create one by hand, though this is not
recommended.

Once a code record is created you may add record components to it but it is not advisable
to alter information already present, because that may make the code record inconsistent.

Code records must always contain the components isCode, isDomain, operations and
one of the identification components elements, generatorMat, checkMat, generatorPol,
checkPol. The contents of all components of a code C are described below.

The following two components are the so-called category components used to identify
the category this domain belongs to.

isDomain
is always true as a code is a domain.

isCode
is always true as a code is a code is a code...

1190 CHAPTER 65. GUAVA

The following components determine a code domain. These are the so-called identification
components.

elements
a list of elements of the code of type codeword. The field must be present for non-
linear codes.

generatorMat and checkMat
a matrix of full rank over a finite field. Neither can exist for non-linear codes. Either
one or both must be present for linear codes.

generatorPol and checkPol
a polynomial with coefficients in a finite field. Neither can exist for non-cyclic codes.
Either one or both must be present for cyclic codes.

The following components contain basic information about the code.

name
contains a short description of the code. See 3.14 and 30.1.

history
is a list of strings, containing the history of the code. The current name of the code is
excluded in the list, so that if the minimum distance is calculated, it can be included
in the history. Each time the code is altered by a manipulating function, one or more
strings are added to this list. See 65.47.

baseField
the finite field of the codewords of C. See 6.2.

wordLength
is an integer specifying the word length of each codeword of C. See 65.29.

size
is an integer specifying the size of C, being the number of codewords that C has. See
4.10.

The following components contain knowledge about the code C.

dimension
is an integer specifying the dimension of C. The dimension is equal to the number of
rows of the generator matrix. The field is invalid for unrestricted codes. See 9.8.

redundancy
is an integer specifying the redundancy of C. The redundancy is equal to the number
of rows of the parity check matrix. The field is invalid for unrestricted codes. See
65.30.

lowerBoundMinimumDistance and upperBoundMinimumDistance
contains a lower and upper bound on the minimum distance of the code. The exact
minimum distance is known if the two values are equal. See 65.31.

upperBoundOptimalMinimumDistance
contains an upper bound for the minimum distance of an optimal code with the same
parameters.

minimumWeightOfGenerators
contains the minimum weight of the words in the generator matrix (if the code is

65.109. CODE RECORDS 1191

linear) or in the generator polynomial (if the code is cyclic). The field is invalid for
unrestricted codes.

designedDistance
is an integer specifying the designed distance of a BCH code. See 65.78.

weightDistribution
is a list of integers containing the weight distribution of C. See 65.32.

innerDistribution
is a list of integers containing the inner distribution of C. This component may only
be present if C is an unrestricted code. See 65.33.

outerDistribution
is a matrix containing the outer distribution, in which the first element of each row
is an element of type codeword, and the second a list of integers. See 65.34.

syndromeTable
is a matrix containing the syndrome table, in which the first element of each row
consists of two elements of type codeword. This component is invalid for unrestricted
codes. See 65.45.

boundsCoveringRadius
is a list of integers specifying possible values for the covering radius. See 65.143.

codeNorm
is an integer specifying the norm of C. See 65.170.

The following components are true if the code C has the property, false if not, and are
not present if it is unknown whether the code has the property or not.

isLinearCode
is true if the code is linear. See 65.17.

isCyclicCode
is true if the code is cyclic. See 65.18.

isPerfectCode
is true if C is a perfect code. See 65.36.

isSelfDualCode
is true if C is equal to its dual code. See 65.38.

isNormalCode
is true if C is a normal code. See 65.173.

isSelfComplementaryCode
is true if C is a self complementary code. See 65.179.

isAffineCode
is true if C is an affine code. See 65.180.

isAlmostAffineCode
is true if C is an almost affine code. See 65.181.

The component specialDecoder contains a function that implements a for C specific algo-
rithm for decoding. See 65.43.

The component operations contains the operations record (see Domain Records and
Dispatchers).

1192 CHAPTER 65. GUAVA

65.110 Bounds on codes

This section describes the functions that calculate estimates for upper bounds on the size
and minimum distance of codes. Several algorithms are known to compute a largest number
of words a code can have with given length and minimum distance. It is important however
to understand that in some cases the true upper bound is unknown. A code which has a
size equal to the calculated upper bound may not have been found. However, codes that
have a larger size do not exist.

A second way to obtain bounds is a table. In GUAVA, an extensive table is implemented for
linear codes over GF(2), GF(3) and GF(4). It contains bounds on the minimum distance
for given word length and dimension. For binary codes, it contains entries for word length
less than or equal to 257. For codes over GF (3) and GF (4), it contains entries for word
length less than or equal to 130.

The next sections describe functions that compute specific upper bounds on the code size
(see 65.111, 65.112, 65.113, 65.114, 65.115 and 65.116).

The next section describes a function that computes GUAVA’s best upper bound on the code
size (see 65.117).

The next sections describe two function that compute a lower and upper bound on the
minimum distance of a code (see 65.118 and 65.119).

The last section describes a function that returns a lower and upper bound on the minimum
distance with given parameters and a description how the bounds were obtained (see 65.120).

65.111 UpperBoundSingleton

UpperBoundSingleton(n, d, q)

UpperBoundSingleton returns the Singleton bound for a code of length n, minimum dis-
tance d over a field of size q . This bound is based on the shortening of codes. By shortening
an (n,M, d) code d−1 times, an (n−d+1,M, 1) code results, with M ≤ qn−d+1 (see 65.95).
Thus

M ≤ qn−d+1

Codes that meet this bound are called maximum distance separable (see 65.37).

gap> UpperBoundSingleton(4, 3, 5);
25
gap> C := ReedSolomonCode(4,3);; Size(C);
25
gap> IsMDSCode(C);
true

65.112 UpperBoundHamming

UpperBoundHamming(n, d, q)

The Hamming bound (also known as sphere packing bound) returns an upper bound on
the size of a code of length n, minimum distance d , over a field of size q . The Hamming
bound is obtained by dividing the contents of the entire space GF (q)n by the contents of

65.113. UPPERBOUNDJOHNSON 1193

a ball with radius b(d − 1)/2c. As all these balls are disjoint, they can never contain more
than the whole vector space.

M ≤ qn

V (n, e)

where M is the maxmimum number of codewords and V (n, e) is equal to the contents of a
ball of radius e (see 65.135). This bound is useful for small values of d . Codes for which
equality holds are called perfect (see 65.36).

gap> UpperBoundHamming(15, 3, 2);
2048
gap> C := HammingCode(4, GF(2));
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size(C);
2048

65.113 UpperBoundJohnson

UpperBoundJohnson(n, d)

The Johnson bound is an improved version of the Hamming bound (see 65.112). In addition
to the Hamming bound, it takes into account the elements of the space outside the balls of
radius e around the elements of the code. The Johnson bound only works for binary codes.

gap> UpperBoundJohnson(13, 5);
77
gap> UpperBoundHamming(13, 5, 2);
89 # in this case the Johnson bound is better

65.114 UpperBoundPlotkin

UpperBoundPlotkin(n, d, q)

The function UpperBoundPlotkin calculates the sum of the distances of all ordered pairs of
different codewords. It is based on the fact that the minimum distance is at most equal to
the average distance. It is a good bound if the weights of the codewords do not differ much.
It results in:

M ≤ d
d − (1− 1/q)n

M is the maximum number of codewords. In this case, d must be larger than (1 − 1/q)n,
but by shortening the code, the case d < (1− 1/q)n is covered.

gap> UpperBoundPlotkin(15, 7, 2);
32
gap> C := BCHCode(15, 7, GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> Size(C);
32
gap> WeightDistribution(C);
[1, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 1]

1194 CHAPTER 65. GUAVA

65.115 UpperBoundElias

UpperBoundElias(n, d, q)

The Elias bound is an improvement of the Plotkin bound (see 65.114) for large codes.
Subcodes are used to decrease the size of the code, in this case the subcode of all codewords
within a certain ball. This bound is useful for large codes with relatively small minimum
distances.

gap> UpperBoundPlotkin(16, 3, 2);
12288
gap> UpperBoundElias(16, 3, 2);
10280

65.116 UpperBoundGriesmer

UpperBoundGriesmer(n, d, q)

The Griesmer bound is valid only for linear codes. It is obtained by counting the number of
equal symbols in each row of the generator matrix of the code. By omitting the coordinates
in which all rows have a zero, a smaller code results. The Griesmer bound is obtained by
repeating this proces until a trivial code is left in the end.

gap> UpperBoundGriesmer(13, 5, 2);
64
gap> UpperBoundGriesmer(18, 9, 2);
8 # the maximum number of words for a linear code is 8
gap> Size(PuncturedCode(HadamardCode(20, 1)));
20 # this non-linear code has 20 elements

65.117 UpperBound

UpperBound(n, d, q)

UpperBound returns the best known upper bound A(n, d) for the size of a code of length n,
minimum distance d over a field of size q . The function UpperBound first checks for trivial
cases (like d = 1 or n = d) and if the value is in the built-in table. Then it calculates the
minimum value of the upper bound using the methods of Singleton (see 65.111), Hamming
(see 65.112), Johnson (see 65.113), Plotkin (see 65.114) and Elias (see 65.115). If the code
is binary, A(n, 2 ∗ l − 1) = A(n + 1, 2 ∗ l), so the UpperBound takes the minimum of the
values obtained from all methods for the parameters (n, 2 ∗ l − 1) and (n + 1, 2 ∗ l).

gap> UpperBound(10, 3, 2);
85
gap> UpperBound(25, 9, 8);
1211778792827540

65.118 LowerBoundMinimumDistance

LowerBoundMinimumDistance(C)

In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance
of code C .

65.119. UPPERBOUNDMINIMUMDISTANCE 1195

gap> C := BCHCode(45, 7);
a cyclic [45,23,7..9]6..16 BCH code, delta=7, b=1 over GF(2)
gap> LowerBoundMinimumDistance(C);
7 # designed distance is lower bound for minimum distance

LowerBoundMinimumDistance(n, k, F)

In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance
of the best known linear code of length n, dimension k over field F . It uses the mechanism
explained in section 65.120.

gap> LowerBoundMinimumDistance(45, 23, GF(2));
10

65.119 UpperBoundMinimumDistance

UpperBoundMinimumDistance(C)

In this form, UpperBoundMinimumDistance returns an upper bound for the minimum dis-
tance of code C . For unrestricted codes, it just returns the word length. For linear codes,
it takes the minimum of the possibly known value from the method of construction, the
weight of the generators, and the value from the table (see 65.120).

gap> C := BCHCode(45, 7);;
gap> UpperBoundMinimumDistance(C);
9

UpperBoundMinimumDistance(n, k, F)

In this form, UpperBoundMinimumDistance returns an upper bound for the minimum dis-
tance of the best known linear code of length n, dimension k over field F . It uses the
mechanism explained in section 65.120.

gap> UpperBoundMinimumDistance(45, 23, GF(2));
11

65.120 BoundsMinimumDistance

BoundsMinimumDistance(n, k, F)

The function BoundsMinimumDistance calculates a lower and upper bound for the minimum
distance of an optimal linear code with word length n, dimension k over field F . The function
returns a record with the two bounds and an explenation for each bound. The function
Display can be used to show the explanations.

The values for the lower and upper bound are obtained from a table. GUAVA has tables
containing lower and upper bounds for q = 2 (n ≤ 257), 3 and 4 (n ≤ 130). These tables
were derived from the table of Brouwer & Verhoeff. For codes over other fields and for larger
word lengths, trivial bounds are used.

The resulting record can be used in the function BestKnownLinearCode (see 65.71) to con-
struct a code with minimum distance equal to the lower bound.

gap> bounds := BoundsMinimumDistance(7, 3);; Display(bounds);
an optimal linear [7,3,d] code over GF(2) has d=4
--

1196 CHAPTER 65. GUAVA

Lb(7,3)=4, by shortening of:
Lb(8,4)=4, u|u+v construction of C1 and C2:
C1: Lb(4,3)=2, dual of the repetition code
C2: Lb(4,1)=4, repetition code
--
Ub(7,3)=4, Griesmer bound
The lower bound is equal to the upper bound, so a code with
these parameters is optimal.
gap> C := BestKnownLinearCode(bounds);; Display(C);
a linear [7,3,4]2..3 shortened code of
a linear [8,4,4]2 U|U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]2 repetition code over GF(2)
V: a cyclic [4,1,4]2 repetition code over GF(2)

65.121 Special matrices in GUAVA

This section explains functions that work with special matrices GUAVA needs for several
codes.

The next sections describe some matrix generating functions (see 65.122, 65.123, 65.124,
65.125 and 65.126).

The next sections describe two functions about a standard form of matrices (see 65.127 and
65.128).

The next sections describe functions that return a matrix after a manipulation (see 65.129,
65.130 and 65.131).

The last sections describe functions that do some tests on matrices (see 65.132 and 65.133).

65.122 KrawtchoukMat

KrawtchoukMat(n , q)

KrawtchoukMat returns the n + 1 by n + 1 matrix K = (kij) defined by kij = Ki(j) for
i, j = 0, ..., n. Ki(j) is the Krawtchouk number (see 65.136). n must be a positive integer
and q a prime power. The Krawtchouk matrix is used in the MacWilliams identities,
defining the relation between the weight distribution of a code of length n over a field of
size q , and its dual code. Each call to KrawtchoukMat returns a new matrix, so it is safe to
modify the result.

gap> PrintArray(KrawtchoukMat(3, 2));
[[1, 1, 1, 1],

[3, 1, -1, -3],
[3, -1, -1, 3],
[1, -1, 1, -1]]

gap> C := HammingCode(3);; a := WeightDistribution(C);
[1, 0, 0, 7, 7, 0, 0, 1]
gap> n := WordLength(C);; q := Size(Field(C));;
gap> k := Dimension(C);;
gap> q^(-k) * KrawtchoukMat(n, q) * a;

65.123. GRAYMAT 1197

[1, 0, 0, 0, 7, 0, 0, 0]
gap> WeightDistribution(DualCode(C));
[1, 0, 0, 0, 7, 0, 0, 0]

65.123 GrayMat

GrayMat(n, F)

GrayMat returns a list of all different vectors (see Vectors) of length n over the field F , using
Gray ordening. n must be a positive integer. This order has the property that subsequent
vectors differ in exactly one coordinate. The first vector is always the null vector. Each call
to GrayMat returns a new matrix, so it is safe to modify the result.

gap> GrayMat(3);
[[0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0, 0*Z(2)],
[Z(2)^0, Z(2)^0, 0*Z(2)], [Z(2)^0, Z(2)^0, Z(2)^0],
[Z(2)^0, 0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2), 0*Z(2)]]

gap> G := GrayMat(4, GF(4));; Length(G);
256 # the length of a GrayMat is always qn

gap> G[101] - G[100];
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]

65.124 SylvesterMat

SylvesterMat(n)

SylvesterMat returns the n by n Sylvester matrix of order n. This is a special case of the
Hadamard matrices (see 65.125). For this construction, n must be a power of 2. Each call
to SylvesterMat returns a new matrix, so it is safe to modify the result.

gap> PrintArray(SylvesterMat(2));
[[1, 1],
[1, -1]]

gap> PrintArray(SylvesterMat(4));
[[1, 1, 1, 1],
[1, -1, 1, -1],
[1, 1, -1, -1],
[1, -1, -1, 1]]

65.125 HadamardMat

HadamardMat(n)

HadamardMat returns a Hadamard matrix of order n. This is an n by n matrix with the
property that the matrix multiplied by its transpose returns n times the identity matrix.
This is only possible for n = 1,n = 2 or in cases where n is a multiple of 4. If the matrix
does not exist or is not known, HadamardMat returns an error. A large number of construc-
tion methods is known to create these matrices for different orders. HadamardMat makes
use of two construction methods (among which the Sylvester construction (see 65.124)).

1198 CHAPTER 65. GUAVA

These methods cover most of the possible Hadamard matrices, although some special algo-
rithms have not been implemented yet. The following orders less than 100 do not have an
implementation for a Hadamard matrix in GUAVA: 28, 36, 52, 76, 92.

gap> C := HadamardMat(8);; PrintArray(C);
[[1, 1, 1, 1, 1, 1, 1, 1],
[1, -1, 1, -1, 1, -1, 1, -1],
[1, 1, -1, -1, 1, 1, -1, -1],
[1, -1, -1, 1, 1, -1, -1, 1],
[1, 1, 1, 1, -1, -1, -1, -1],
[1, -1, 1, -1, -1, 1, -1, 1],
[1, 1, -1, -1, -1, -1, 1, 1],
[1, -1, -1, 1, -1, 1, 1, -1]]

gap> C * TransposedMat(C) = 8 * IdentityMat(8, 8);
true

65.126 MOLS

MOLS(q)
MOLS(q, n)

MOLS returns a list of n Mutually Orthogonal Latin Squares (MOLS). A Latin square
of order q is a q by q matrix whose entries are from a set Fq of q distinct symbols (GUAVA
uses the integers from 0 to q) such that each row and each column of the matrix contains
each symbol exactly once.

A set of Latin squares is a set of MOLS if and only if for each pair of Latin squares in this
set, every ordered pair of elements that are in the same position in these matrices occurs
exactly once.

n must be less than q . If n is omitted, two MOLS are returned. If q is not a prime power,
at most 2 MOLS can be created. For all values of q with q > 2 and q 6= 6, a list of MOLS
can be constructed. GUAVA however does not yet construct MOLS for q mod 4 = 2. If it is
not possible to construct n MOLS, the function returns false.

MOLS are used to create q-ary codes (see 65.53).

gap> M := MOLS(4, 3);;PrintArray(M[1]);
[[0, 1, 2, 3],
[1, 0, 3, 2],
[2, 3, 0, 1],
[3, 2, 1, 0]]

gap> PrintArray(M[2]);
[[0, 2, 3, 1],
[1, 3, 2, 0],
[2, 0, 1, 3],
[3, 1, 0, 2]]

gap> PrintArray(M[3]);
[[0, 3, 1, 2],
[1, 2, 0, 3],
[2, 1, 3, 0],
[3, 0, 2, 1]]

65.127. PUTSTANDARDFORM 1199

gap> MOLS(12, 3);
false

65.127 PutStandardForm

PutStandardForm(M)
PutStandardForm(M , idleft)

PutStandardForm puts a matrix M in standard form, and returns the permutation needed
to do so. idleft is a boolean that sets the position of the identity matrix in M . If idleft is
set to true, the identity matrix is put in the left side of M . Otherwise, it is put at the right
side. The default for idleft is true.

The function BaseMat also returns a similar standard form, but does not apply column
permutations. The rows of the matrix still span the same vector space after BaseMat, but
after calling PutStandardForm, this is not necessarily true.

gap> M := Z(2)*[[1,0,0,1],[0,0,1,1]];; PrintArray(M);
[[Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0]]

gap> PutStandardForm(M); # identity at the left side
(2,3)
gap> PrintArray(M);
[[Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]]

gap> PutStandardForm(M, false); # identity at the right side
(1,4,3)
gap> PrintArray(M);
[[0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]]

65.128 IsInStandardForm

IsInStandardForm(M)
IsInStandardForm(M , idleft)

IsInStandardForm determines if M is in standard form. idleft is a boolean that indicates
the position of the identity matrix in M . If idleft is true, IsInStandardForm checks if the
identity matrix is at the left side of M , otherwise if it is at the right side. The default for
idleft is true. The elements of M may be elements of any field. To put a matrix in standard
form, use PutStandardForm (see 65.127).

gap> IsInStandardForm(IdentityMat(7, GF(2)));
true
gap> IsInStandardForm([[1, 1, 0], [1, 0, 1]], false);
true
gap> IsInStandardForm([[1, 3, 2, 7]]);
true
gap> IsInStandardForm(HadamardMat(4));
false

1200 CHAPTER 65. GUAVA

65.129 PermutedCols

PermutedCols(M , P)

PermutedCols returns a matrix M with a permutation P applied to its columns.

gap> M := [[1,2,3,4],[1,2,3,4]];; PrintArray(M);
[[1, 2, 3, 4],
[1, 2, 3, 4]]

gap> PrintArray(PermutedCols(M, (1,2,3)));
[[3, 1, 2, 4],
[3, 1, 2, 4]]

65.130 VerticalConversionFieldMat

VerticalConversionFieldMat(M , F)

VerticalConversionFieldMat returns the matrix M with its elements converted from a
field F = GF (qm), q prime, to a field GF (q). Each element is replaced by its representation
over the latter field, placed vertically in the matrix.

If M is a k by n matrix, the result is a k ∗m by n matrix, since each element of GF (qm)
can be represented in GF (q) using m elements.

gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[[Z(3^2), Z(3^2)^5],
[Z(3^2)^5, Z(3^2)]]

gap> DefaultField(Flat(M));
GF(3^2)
gap> VCFM := VerticalConversionFieldMat(M, GF(9));; PrintArray(VCFM);
[[0*Z(3), 0*Z(3)],
[Z(3)^0, Z(3)],
[0*Z(3), 0*Z(3)],
[Z(3), Z(3)^0]]

gap> DefaultField(Flat(VCFM));
GF(3)

A similar function is HorizontalConversionFieldMat (see 65.131).

65.131 HorizontalConversionFieldMat

HorizontalConversionFieldMat(M , F)

HorizontalConversionFieldMat returns the matrix M with its elements converted from a
field F = GF (qm), q prime, to a field GF (q). Each element is replaced by its representation
over the latter field, placed horizontally in the matrix.

If M is a k by n matrix, the result is a k ∗m by n ∗m matrix. The new word length of
the resulting code is equal to n ∗m, because each element of GF (qm) can be represented
in GF (q) using m elements. The new dimension is equal to k ∗m because the new matrix
should be a basis for the same number of vectors as the old one.

ConversionFieldCode uses horizontal conversion to convert a code (see 65.100).

65.132. ISLATINSQUARE 1201

gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[[Z(3^2), Z(3^2)^5],
[Z(3^2)^5, Z(3^2)]]

gap> DefaultField(Flat(M));
GF(3^2)
gap> HCFM := HorizontalConversionFieldMat(M, GF(9));; PrintArray(HCFM);
[[0*Z(3), Z(3)^0, 0*Z(3), Z(3)],
[Z(3)^0, Z(3)^0, Z(3), Z(3)],
[0*Z(3), Z(3), 0*Z(3), Z(3)^0],
[Z(3), Z(3), Z(3)^0, Z(3)^0]]

gap> DefaultField(Flat(HCFM));
GF(3)

A similar function is VerticalConversionFieldMat (see 65.130).

65.132 IsLatinSquare

IsLatinSquare(M)

IsLatinSquare determines if a matrix M is a latin square. For a latin square of size n by
n, each row and each column contains all the integers 1..n exactly once.

gap> IsLatinSquare([[1,2],[2,1]]);
true
gap> IsLatinSquare([[1,2,3],[2,3,1],[1,3,2]]);
false

65.133 AreMOLS

AreMOLS(L)

AreMOLS determines if L is a list of mutually orthogonal latin squares (MOLS). For each
pair of latin squares in this list, the function checks if each ordered pair of elements that
are in the same position in these matrices occurs exactly once. The function MOLS creates
MOLS (see 65.126).

gap> M := MOLS(4,2);
[[[0, 1, 2, 3], [1, 0, 3, 2], [2, 3, 0, 1], [3, 2, 1, 0]],
[[0, 2, 3, 1], [1, 3, 2, 0], [2, 0, 1, 3], [3, 1, 0, 2]]]

gap> AreMOLS(M);
true

65.134 Miscellaneous functions

The following sections describe several functions GUAVA uses for constructing codes or per-
forming calculations with codes.

65.135 SphereContent

SphereContent(n, t, F)

1202 CHAPTER 65. GUAVA

SphereContent returns the content of a ball of radius t around an arbitrary element of the
vectorspace F n . This is the cardinality of the set of all elements of F n that are at distance
(see 65.12) less than or equal to t from an element of F n .

In the context of codes, the function is used to determine if a code is perfect. A code is
perfect if spheres of radius t around all codewords contain exactly the whole vectorspace,
where t is the number of errors the code can correct.

gap> SphereContent(15, 0, GF(2));
1 # Only one word with distance 0, which is the word itself
gap> SphereContent(11, 3, GF(4));
4984
gap> C := HammingCode(5);
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
the minimum distance is 3, so the code can correct one error
gap> (SphereContent(31, 1, GF(2)) * Size(C)) = 2 ^ 31;
true

65.136 Krawtchouk

Krawtchouk(k, i, n, q)

Krawtchouk returns the Krawtchouk number Kk (i). q must be a primepower, n must be a
positive integer, k must be a non-negative integer less then or equal to n and i can be any
integer. (See 65.122).

gap> Krawtchouk(2, 0, 3, 2);
3

65.137 PrimitiveUnityRoot

PrimitiveUnityRoot(F, n)

PrimitiveUnityRoot returns a primitive n’th root of unity in an extension field of F .
This is a finite field element a with the property an = 1 mod n, and n is the smallest integer
such that this equality holds.

gap> PrimitiveUnityRoot(GF(2), 15);
Z(2^4)
gap> last^15;
Z(2)^0
gap> PrimitiveUnityRoot(GF(8), 21);
Z(2^6)^3

65.138 ReciprocalPolynomial

ReciprocalPolynomial(P)

ReciprocalPolynomial returns the reciprocal of polynomial P . This is a polynomial with
coefficients of P in the reverse order. So if P = a0 + a1X + ... + anX

n , the reciprocal
polynomial is P ’= an + an−1X + ...+ a0X

n .

gap> P := Polynomial(GF(3), Z(3)^0 * [1,0,1,2]);

65.139. CYCLOTOMICCOSETS 1203

Z(3)^0*(2*X(GF(3))^3 + X(GF(3))^2 + 1)
gap> RecP := ReciprocalPolynomial(P);
Z(3)^0*(X(GF(3))^3 + X(GF(3)) + 2)
gap> ReciprocalPolynomial(RecP) = P;
true

ReciprocalPolynomial(P , n)

In this form, the number of coefficients of P is considered to be at least n (possibly with
zero coefficients at the highest degrees). Therefore, the reciprocal polynomial P ’ also has
degree at least n.

gap> P := Polynomial(GF(3), Z(3)^0 * [1,0,1,2]);
Z(3)^0*(2*X(GF(3))^3 + X(GF(3))^2 + 1)
gap> ReciprocalPolynomial(P, 6);
Z(3)^0*(X(GF(3))^6 + X(GF(3))^4 + 2*X(GF(3))^3)

In this form, the degree of P is considered to be at least n (if not, zero coefficients are
added). Therefore, the reciprocal polynomial P ’ also has degree at least n.

65.139 CyclotomicCosets

CyclotomicCosets(q, n)

CyclotomicCosets returns the cyclotomic cosets of q modulo n. q and n must be relatively
prime. Each of the elements of the returned list is a list of integers that belong to one
cyclotomic coset. Each coset contains all multiplications of the coset representative by
q , modulo n. The coset representative is the smallest integer that isn’t in the previous
cosets.

gap> CyclotomicCosets(2, 15);
[[0], [1, 2, 4, 8], [3, 6, 12, 9], [5, 10],
[7, 14, 13, 11]]

gap> CyclotomicCosets(7, 6);
[[0], [1], [2], [3], [4], [5]]

65.140 WeightHistogram

WeightHistogram(C)
WeightHistogram(C, h)

The function WeightHistogram plots a histogram of weights in code C . The maximum
length of a column is h. Default value for h is 1/3 of the size of the screen. The number
that appears at the top of the histogram is the maximum value of the list of weights.

gap> H := HammingCode(2, GF(5));
a linear [6,4,3]1 Hamming (2,5) code over GF(5)
gap> WeightDistribution(H);
[1, 0, 0, 80, 120, 264, 160]
gap> WeightHistogram(H);
264----------------

*
*

1204 CHAPTER 65. GUAVA

*
*
* *

* * *
* * * *
* * * *

+--------+--+--+--+--
0 1 2 3 4 5 6

65.141 Extensions to GUAVA

In this section and the following sections some extensions to GUAVA will be discussed. The
most important extensions are new code constructions and new algorithms and bounds for
the covering radius. Another important function is the implementation of the algorithm of
Leon for finding the minimum distance.

65.142 Some functions for the covering radius

Together with the new code constructions, the new functions for computing (the bounds of)
the covering radius are the most important additions to GUAVA.

These additions required a change in the fields of a code record. In previous versions of
GUAVA, the covering radius field was an integer field, called coveringRadius. To allow
the code-record to contain more information about the covering radius, this field has been
replaced by a field called boundsCoveringRadius. This field contains a vector of possible
values of the covering radius of the code. If the value of the covering radius is known, then
the length of this vector is one.

This means that every instance of coveringRadius in the previous version had to be changed
to boundsCoveringRadius. There is also an advantage to this: if bounds for a specific type
of code are known, they can be implemented (and they have been). This has been especially
useful for the Reed-Muller codes.

Of course, the main covering radius function dispatcher, CoveringRadius, had to be changed
to incorporate these changes. Previously, this dispatcher called
code.operations.CoveringRadius. Problem with these functions is that they only work
if the redundancy is not too large. Another problem is that the algorithm for linear and
cyclic codes is written in C (in the kernel of GAP). This does not allow the user to inter-
rupt the function, except by pressing ctrl-C twice, which exits GAP altogether. For more
information, check the section on the (new) CoveringRadius (65.143) function.

Perhaps the most interesting new covering radius function is
IncreaseCoveringRadiusLowerBound (65.146). It uses a probabilistic algorithm that tries
to find better lower bounds of the covering radius of a code. It works best when the
dimension is low, thereby giving a sort of complement function to CoveringRadius. When
the dimension is about half the length of a code, neither algorithm will work, although
IncreaseCoveringRadiusLowerBound is specifically designed to avoid memory problems,
unlike CoveringRadius.

The function ExhaustiveSearchCoveringRadius (65.147) tries to find the covering radius
of a code by exhaustively searching the space in which the code lies for coset leaders.

65.143. COVERINGRADIUS 1205

A number of bounds for the covering radius in general have been implemented, including
some well known bounds like the sphere-covering bound, the redundancy bound and the Del-
sarte bound. These function all start with LowerBoundCoveringRadius (sections 65.150,
65.151, 65.152, 65.153, 65.154, 65.155, 65.156, 65.150) or UpperBoundCoveringRadius (sec-
tions 65.157, 65.158, 65.159, 65.160, 65.161).

The functions GeneralLowerBoundCoveringRadius (65.148) and
GeneralUpperBoundCoveringRadius (65.149) try to find the best known bounds for a given
code. BoundsCoveringRadius (65.144) uses these functions to return a vector of possible
values for the covering radius.

To allow the user to enter values in the .boundsCoveringRadius record herself, the function
SetCoveringRadius is provided.

65.143 CoveringRadius

CoveringRadius(code)

CoveringRadius is a function that already appeared in earlier versions of GUAVA, but it is
changed to reflect the implementation of new functions for the covering radius.

If there exists a function called SpecialCoveringRadius in the operations field of the
code, then this function will be called to compute the covering radius of the code. At the
moment, no code-specific functions are implemented.

If the length of BoundsCoveringRadius (see 65.144), is 1, then the value in
code.boundsCoveringRadius is returned. Otherwise, the function
code.operations.CoveringRadius is executed, unless the redundancy of code is too large.
In the last case, a warning is issued.

If you want to overrule this restriction, you might want to execute
code.operations.CoveringRadius yourself. However, this algorithm might also issue a
warning that it cannot be executed, but this warning is sometimes issued too late, resulting
in GAP exiting with an memory error. If it does run, it can only be stopped by pressing
ctrl-C twice, thereby quitting GAP. It will not enter the usual break-loop. Therefore it is
recommendable to save your work before trying code.operations.CoveringRadius.

gap> CoveringRadius(BCHCode(17, 3, GF(2)));
3
gap> CoveringRadius(HammingCode(5, GF(2)));
1
gap> code := ReedMullerCode(1, 9);;
gap> CoveringRadius(code);
CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.
Try to use IncreaseCoveringRadiusLowerBound(<code>).
(see the manual for more details).
The covering radius of <code> lies in the interval:
[240 .. 248]
gap> code.operations.CoveringRadius(code);
Error, CosetLeaderMatFFE: sorry, no hope to finish

1206 CHAPTER 65. GUAVA

65.144 BoundsCoveringRadius

BoundsCoveringRadius(code)

BoundsCoveringRadius returns a list of integers. The first entry of this list is the maximum
of some lower bounds for the covering radius of code, the last entry the minimum of some
upper bounds of code.

If the covering radius of code is known, a list of length 1 is returned.

BoundsCoveringRadius makes use of the functions GeneralLowerBoundCoveringRadius
and GeneralUpperBoundCoveringRadius.

gap> BoundsCoveringRadius(BCHCode(17, 3, GF(2)));
[3 .. 4]
gap> BoundsCoveringRadius(HammingCode(5, GF(2)));
[1]

65.145 SetCoveringRadius

SetCoveringRadius(code, intlist)

SetCoveringRadius enables the user to set the covering radius herself, instead of letting
GUAVA compute it. If intlist is an integer, GUAVA will simply put it in the
boundsCoveringRadius field. If it is a list of integers, however, it will intersect this list
with the boundsCoveringRadius field, thus taking the best of both lists. If this would leave
an empty list, the field is set to intlist .

Because some other computations use the covering radius of the code, it is important that
the entered value is not wrong, otherwise new results may be invalid.

gap> code := BCHCode(17, 3, GF(2));;
gap> BoundsCoveringRadius(code);
[3 .. 4]
gap> SetCoveringRadius(code, [2 .. 3]);
gap> BoundsCoveringRadius(code);
[3]

65.146 IncreaseCoveringRadiusLowerBound

IncreaseCoveringRadiusLowerBound(code [, stopdistance] [, startword])

IncreaseCoveringRadiusLowerBound tries to increase the lower bound of the covering ra-
dius of code. It does this by means of a probabilistic algorithm. This algorithm takes a
random word in GF (q)n (or startword if it is specified), and, by changing random coordi-
nates, tries to get as far from code as possible. If changing a coordinate finds a word that
has a larger distance to the code than the previous one, the change is made permanent, and
the algorithm starts all over again. If changing a coordinate does not find a coset leader
that is further away from the code, then the change is made permanent with a chance of 1
in 100, if it gets the word closer to the code, or with a chance of 1 in 10, if the word stays
at the same distance. Otherwise, the algorithm starts again with the same word as before.

If the algorithm did not allow changes that decrease the distance to the code, it might get
stuck in a sub-optimal situation (the coset leader corresponding to such a situation (i.e. no

65.147. EXHAUSTIVESEARCHCOVERINGRADIUS 1207

coordinate of this coset leader can be changed in such a way that we get at a larger distance
from the code) is called an orphan).

If the algorithm finds a word that has distance stopdistance to the code, it ends and returns
that word, which can be used for further investigations.

The variable InfoCoveringRadius can be set to Print to print the maximum distance
reached so far every 1000 runs. The alogrithm can be interrupted with ctrl-C, allowing
the user to look at the word that is currently being examined (called current), or to
change the chances that the new word is made permanent (these are called staychance and
downchance). If one of these variables is i, then it corresponds with a i in 100 chance.

At the moment, the algorithm is only useful for codes with small dimension, where small
means that the elements of the code fit in the memory. It works with larger codes, however,
but when you use it for codes with large dimension, you should be very patient. If running
the algorithm quits GAP (due to memory problems), you can change the global variable
CRMemSize to a lower value. This might cause the algorithm to run slower, but without
quitting GAP. The only way to find out the best value of CRMemSize is by experimenting.

65.147 ExhaustiveSearchCoveringRadius

ExhaustiveSearchCoveringRadius(code)

ExhaustiveSearchCoveringRadius does an exhaustive search to find the covering radius
of code. Every time a coset leader of a coset with weight w is found, the function tries to
find a coset leader of a coset with weight w + 1. It does this by enumerating all words of
weight w+ 1, and checking whether a word is a coset leader. The start weight is the current
known lower bound on the covering radius.

65.148 GeneralLowerBoundCoveringRadius

GeneralLowerBoundCoveringRadius(code)

GeneralLowerBoundCoveringRadius returns a lower bound on the covering radius of code.
It uses as many functions which names start with LowerBoundCoveringRadius as possible
to find the best known lower bound (at least that GUAVA knows of) together with tables
for the covering radius of binary linear codes with length not greater than 64.

65.149 GeneralUpperBoundCoveringRadius

GeneralUpperBoundCoveringRadius(code)

GeneralUpperBoundCoveringRadius returns an upper bound on the covering radius of code.
It uses as many functions which names start with UpperBoundCoveringRadius as possible
to find the best known upper bound (at least that GUAVA knows of).

65.150 LowerBoundCoveringRadiusSphereCovering

LowerBoundCoveringRadiusSphereCovering(n, M [, F], false)

LowerBoundCoveringRadiusSphereCovering(n, r [, F] [, true])

1208 CHAPTER 65. GUAVA

If the last argument of LowerBoundCoveringRadiusSphereCovering is false, then it re-
turns a lower bound for the covering radius of a code of size M and length n. Otherwise, it
returns a lower bound for the size of a code of length n and covering radius r .

F is the field over which the code is defined. If F is omitted, it is assumed that the code is
over GF(2).

The bound is computed according to the sphere covering bound

MVq(n, r) ≥ qn (65.1)

where Vq(n, r) is the size of a sphere of radius r in GF(q)n.

65.151 LowerBoundCoveringRadiusVanWee1

LowerBoundCoveringRadiusVanWee1(n, M [, F], false)

LowerBoundCoveringRadiusVanWee1(n, r [, F] [, true])

If the last argument of LowerBoundCoveringRadiusVanWee1 is false, then it returns a
lower bound for the covering radius of a code of size M and length n. Otherwise, it returns
a lower bound for the size of a code of length n and covering radius r .

F is the field over which the code is defined. If F is omitted, it is assumed that the code is
over GF(2).

The Van Wee bound is an improvement of the sphere covering bound

M

{
Vq(n, r)−

(
n
r

)
dn−rr+1 e

(⌈
n+ 1
r + 1

⌉
− n+ 1
r + 1

)}
≥ qn (65.2)

65.152 LowerBoundCoveringRadiusVanWee2

LowerBoundCoveringRadiusVanWee2(n, M , false)

LowerBoundCoveringRadiusVanWee2(n, r [, true])

If the last argument of LowerBoundCoveringRadiusVanWee2 is false, then it returns a
lower bound for the covering radius of a code of size M and length n. Otherwise, it returns
a lower bound for the size of a code of length n and covering radius r .

This bound only works for binary codes. It is based on the following inequality

M

((
V2(n, 2)− 1

2 (r + 2)(r − 1)
)
V2(n, r) + εV2(n, r − 2)

)
(V2(n, 2)− 1

2 (r + 2)(r − 1) + ε)
≥ 2n, (65.3)

where

ε =
(
r + 2

2

)⌈(
n− r + 1

2

)
/

(
r + 2

2

)⌉
−
(
n− r + 1

2

)
. (65.4)

65.153. LOWERBOUNDCOVERINGRADIUSCOUNTINGEXCESS 1209

65.153 LowerBoundCoveringRadiusCountingExcess

LowerBoundCoveringRadiusCountingExcess(n, M , false)

LowerBoundCoveringRadiusCountingExcess(n, r [, true])

If the last argument of LowerBoundCoveringRadiusCountingExcess is false, then it re-
turns a lower bound for the covering radius of a code of size M and length n. Otherwise, it
returns a lower bound for the size of a code of length n and covering radius r .

This bound only works for binary codes. It is based on the following inequality

M (ρV2(n, r) + εV2(n, r − 1)) ≥ (ρ+ ε)2n, (65.5)

where

ε = (r + 1)
⌈
n+ 1
r + 1

⌉
− (n+ 1) (65.6)

and

ρ =
{
n− 3 + 2

n if r = 2
n− r − 1 if r ≥ 3 (65.7)

65.154 LowerBoundCoveringRadiusEmbedded1

LowerBoundCoveringRadiusEmbedded1(n, M , false)

LowerBoundCoveringRadiusEmbedded1(n, r [, true])

If the last argument of LowerBoundCoveringRadiusEmbedded1 is false, then it returns a
lower bound for the covering radius of a code of size M and length n. Otherwise, it returns
a lower bound for the size of a code of length n and covering radius r .

This bound only works for binary codes. It is based on the following inequality

M

(
V2(n, r)−

(
2r
r

))
≥ 2n −A(n, 2r + 1)

(
2r
r

)
, (65.8)

where A(n, d) denotes the maximal cardinality of a (binary) code of length n and minimum
distance d. The function UpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbedded1 is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.

65.155 LowerBoundCoveringRadiusEmbedded2

LowerBoundCoveringRadiusEmbedded2(n, M , false)

LowerBoundCoveringRadiusEmbedded2(n, r [, true])

If the last argument of LowerBoundCoveringRadiusEmbedded2 is false, then it returns a
lower bound for the covering radius of a code of size M and length n. Otherwise, it returns
a lower bound for the size of a code of length n and covering radius r .

This bound only works for binary codes. It is based on the following inequality

M

(
V2(n, r)− 3

2

(
2r
r

))
≥ 2n − 2A(n, 2r + 1)

(
2r
r

)
, (65.9)

1210 CHAPTER 65. GUAVA

where A(n, d) denotes the maximal cardinality of a (binary) code of length n and minimum
distance d. The function UpperBound is used to compute this value.
Sometimes LowerBoundCoveringRadiusEmbedded1 is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.

65.156 LowerBoundCoveringRadiusInduction

LowerBoundCoveringRadiusInduction(n, r)

LowerBoundCoveringRadiusInduction returns a lower bound for the size of a code with
length n and covering radius r .
If n = 2r + 2 and r ≥ 1, the returned value is 4.
If n = 2r + 3 and r ≥ 1, the returned value is 7.
If n = 2r + 4 and r ≥ 4, the returned value is 8.
Otherwise, 0 is returned.

65.157 UpperBoundCoveringRadiusRedundancy

UpperBoundCoveringRadiusRedundancy(code)

UpperBoundCoveringRadiusRedundancy returns the redundancy of code as an upper bound
for the covering radius of code. code must be a linear code.

65.158 UpperBoundCoveringRadiusDelsarte

UpperBoundCoveringRadiusDelsarte(code)

UpperBoundCoveringRadiusDelsarte returns an upper bound for the covering radius of
code. This upperbound is equal to the external distance of code, this is the minimum
distance of the dual code, if code is a linear code.

65.159 UpperBoundCoveringRadiusStrength

UpperBoundCoveringRadiusStrength(code)

UpperBoundCoveringRadiusStrength returns an upper bound for the covering radius of
code.
First the code is punctured at the zero coordinates (i.e. the coordinates where all codewords
have a zero). If the remaining code has strength 1 (i.e. each coordinate contains each element
of the field an equal number of times), then it returns q−1

q m+(n−m) (where q is the size of
the field and m is the length of punctured code), otherwise it returns n. This bound works
for all codes.

65.160 UpperBoundCoveringRadiusGriesmerLike

UpperBoundCoveringRadiusGriesmerLike(code)

This function returns an upper bound for the covering radius of code, which must be linear,
in a Griesmer-like fashion. It returns

n−
k∑
i=1

⌈
d

qi

⌉
(65.10)

65.161. UPPERBOUNDCOVERINGRADIUSCYCLICCODE 1211

65.161 UpperBoundCoveringRadiusCyclicCode

UpperBoundCoveringRadiusCyclicCode(code)

This function returns an upper bound for the covering radius of code, which must be a cyclic
code. It returns

n− k + 1−
⌈
w(g(x))

2

⌉
, (65.11)

where g(x) is the generator polynomial of code.

65.162 New code constructions

The next sections describe some new constructions for codes. The first constructions are
variations on the direct sum construction, most of the time resulting in better codes than
the direct sum.

The piecewise constant code construction stands on its own. Using this construction, some
good codes have been obtained.

The last five constructions yield linear binary codes with fixed minimum distances and
covering radii. These codes can be arbitrary long.

65.163 ExtendedDirectSumCode

ExtendedDirectSumCode(L, B, m)

The extended direct sum construction is described in an article by Graham and Sloane. The
resulting code consists of m copies of L, extended by repeating the codewords of B m times.

Suppose L is an [nL, kL]rL code, and B is an [nL, kB]rB code (non-linear codes are also
permitted). The length of B must be equal to the length of L. The length of the new code
is n = mnL, the dimension (in the case of linear codes) is k ≤ mkL + kB , and the covering
radius is r ≤ bmΨ(L,B)c, with

Ψ(L,B) = max
u∈FnL2

1
2kB

∑
v∈B

d(L, v + u). (65.12)

However, this computation will not be executed, because it may be too time consuming for
large codes.

If L ⊆ B, and L and B are linear codes, the last copy of L is omitted. In this case the
dimension is k = mkL + (kB − kL).

gap> c := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := WholeSpaceCode(7, GF(2));
a cyclic [7,7,1]0 whole space code over GF(2)
gap> e := ExtendedDirectSumCode(c, d, 3);
a linear [21,15,1..3]2 3-fold extended direct sum code

1212 CHAPTER 65. GUAVA

65.164 AmalgatedDirectSumCode

AmalgatedDirectSumCode(c1, c2 [, check])

AmalgatedDirectSumCode returns the amalgated direct sum of the codes c1 and c2. The
amalgated direct sum code consists of all codewords of the form (u | 0 | v) if (u | 0) ∈ c1 and
(0 | v) ∈ c2 and all codewords of the form (u | 1 | v) if (u | 1) ∈ c1 and (1 | v) ∈ c2. The result
is a code with length n = n1 + n2 − 1 and size M <= M1 ·M2/2.

If both codes are linear, they will first be standardized, with information symbols in the last
and first coordinates of the first and second code, respectively.

If c1 is a normal code with the last coordinate acceptable, and c2 is a normal code with
the first coordinate acceptable, then the covering radius of the new code is r <= r1 + r2.
However, checking whether a code is normal or not is a lot of work, and almost all codes
seem to be normal. Therefore, an option check can be supplied. If check is true, then the
codes will be checked for normality. If check is false or omitted, then the codes will not be
checked. In this case it is assumed that they are normal. Acceptability of the last and first
coordinate of the first and second code, respectively, is in the last case also assumed to be
done by the user.

gap> c := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := ReedMullerCode(1, 4);
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> e := DirectSumCode(c, d);
a linear [23,9,3]7 direct sum code
gap> f := AmalgatedDirectSumCode(c, d);;
gap> MinimumDistance(f);;
gap> CoveringRadius(f);; # takes some time
gap> f;
a linear [22,8,3]7 amalgated direct sum code

65.165 BlockwiseDirectSumCode

BlockwiseDirectSumCode(c1, l1, c2, l2)

BlockwiseDirectSumCode returns a subcode of the direct sum of c1 and c2. The fields of
c1 and c2 should be same. l1 and l2 are two equally long lists with elements from the spaces
where c1 and c2 are in, respectively, or l1 and l2 are two equally long lists containing codes.
The union of the codes in l1 and l2 must be c1 and c2, respectively.

In the first case, the blockwise direct sum code is defined as

bds =
⋃

1≤i≤l

(c1 + (l1)i)⊕ (c2 + (l2)i),

where l is the length of l1 and l2, and ⊕ is the direct sum.

In the second case, it is defined as

bds =
⋃

1≤i≤l

((l1)i ⊕ (l2)i).

65.166. PIECEWISECONSTANTCODE 1213

The length of the new code is n = n1 + n2.

gap> c := HammingCode(3, GF(2));;
gap> d := EvenWeightSubcode(WholeSpaceCode(6, GF(2)));;
gap> BlockwiseDirectSumCode(c, [[0,0,0,0,0,0,0],[1,0,1,0,1,0,0]],
> d, [[0,0,0,0,0,0],[1,0,1,0,1,0]]);
a (13,1024,1..13)1..2 blockwise direct sum code

65.166 PiecewiseConstantCode

PiecewiseConstantCode(part, weights [, field])

PiecewiseConstantCode returns a code with length n =
∑
ni, where part = [n1, ..., nk].

weights is a list of constraints, each of length k. The default field is GF(2).

A constraint is a list of integers, and a word c = (c1, ..., ck) (according to part) is in the
resulting code if and only if |ci| = w

(l)
i for all 1 ≤ i ≤ k for some constraint w(l) ∈ constraints.

An example might be more clear

gap> PiecewiseConstantCode([2, 3],
> [[0, 0], [0, 3], [1, 0], [2, 2]],
> GF(2));
a (5,7,1..5)1..5 piecewise constant code over GF(2)
gap> Elements(last);
[[0 0 0 0 0], [0 0 1 1 1], [0 1 0 0 0], [1 0 0 0 0],
[1 1 0 1 1], [1 1 1 0 1], [1 1 1 1 0]]

The first constraint is satisfied by codeword 1, the second by codeword 2, the third by
codewords 3 and 4, and the fourth by codewords 5, 6 and 7.

65.167 Gabidulin codes

These five codes are derived from an article by Gabidulin, Davydov and Tombak. These
five codes are defined by check matrices. Exact definitions can be found in the article.

The Gabidulin code, the enlarged Gabidulin code, the Davydov code, the Tombak code,
and the enlarged Tombak code, correspond with theorem 1, 2, 3, 4, and 5, respectively in
the article.

These codes have fixed minimum distance and covering radius, but can be arbitrarily long.
They are defined through check matrices.

GabidulinCode(m, w1, w2)

GabidulinCode yields a code of length 5 · 2m−2− 1, redundancy 2m− 1, minimum distance
3 and covering radius 2. w1 and w2 should be elements of GF(2m−2).

EnlargedGabidulinCode(m, w1, w2, e)

EnlargedGabidulinCode yields a code of length 7 · 2m−2 − 2, redundancy 2m, minimum
distance 3 and covering radius 2. w1 and w2 are elements of GF(2m−2). e is an element of
GF(2m). The core of an enlarged Gabidulin code consists of a Gabidulin code.

DavydovCode(r, v, ei, ej)

1214 CHAPTER 65. GUAVA

DavydovCode yields a code of length 2v + 2r−v − 3, redundancy r , minimum distance 4 and
covering radius 2. v is an integer between 2 and r − 2. ei and ej are elements of GF(2v)
and GF(2r−v), respectively.

TombakCode(m, e, beta, gamma, w1, w2)

TombakCode yields a code of length 15 · 2m−3− 3, redundancy 2m, minimum distance 4 and
covering radius 2. e is an element of GF(2m). beta and gamma are elements of GF(2m−1).
w1 and w2 are elements of GF(2m−3).

EnlargedTombakCode(m, e, beta, gamma, w1, w2, u)

EnlargedTombakCode yields a code of length 23 · 2m−4 − 3, redundancy 2m− 1, minimum
distance 4 and covering radius 2. The parameters m, e, beta, gamma, w1 and w2 are defined
as in TombakCode. u is an element of GF(2m−1). The code of an enlarged Tombak code
consists of a Tombak code.

gap> GabidulinCode(4, Z(4)^0, Z(4)^1);
a linear [19,12,3]2 Gabidulin code (m=4) over GF(2)
gap> EnlargedGabidulinCode(4, Z(4)^0, Z(4)^1, Z(16)^11);
a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF(2)
gap> DavydovCode(6, 3, Z(8)^1, Z(8)^5);
a linear [13,7,4]2 Davydov code (r=6, v=3) over GF(2)
gap> TombakCode(5, Z(32)^6, Z(16)^14, Z(16)^10, Z(4)^0, Z(4)^1);
a linear [57,47,4]2 Tombak code (m=5) over GF(2)
gap> EnlargedTombakCode(6, Z(32)^6, Z(16)^14, Z(16)^10,
> Z(4)^0, Z(4)^0, Z(32)^23);
a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)

65.168 Some functions related to the norm of a code

In the next sections, some functions that can be used to compute the norm of a code and
to decide upon its normality are discussed.

65.169 CoordinateNorm

CoordinateNorm(code, coord)

CoordinateNorm returns the norm of code with respect to coordinate coord . If Ca = {c ∈
code|ccoord = a}, then the norm of code with respect to coord is defined as

max
v∈GF (q)n

q∑
a=1

d(x,Ca), (65.13)

with the convention that d(x,Ca) = n if Ca is empty.

gap> CoordinateNorm(HammingCode(3, GF(2)), 3);
3

65.170 CodeNorm

CodeNorm(code)

65.171. ISCOORDINATEACCEPTABLE 1215

CodeNorm returns the norm of code. The norm of a code is defined as the minimum
of the norms for the respective coordinates of the code. In effect, for each coordinate
CoordinateNorm is called, and the minimum of the calculated numbers is returned.

gap> CodeNorm(HammingCode(3, GF(2)));
3

65.171 IsCoordinateAcceptable

IsCoordinateAcceptable(code, coord)

IsCoordinateAcceptable returns true if coordinate coord of code is acceptable. A coordi-
nate is called acceptable if the norm of the code with respect to that coordinate is not more
than two times the covering radius of the code plus one.

gap> IsCoordinateAcceptable(HammingCode(3, GF(2)), 3);
true

65.172 GeneralizedCodeNorm

GeneralizedCodeNorm(code, subcode1, subcode2, ..., subcodek)

GeneralizedCodeNorm returns the k -norm of code with respect to k subcodes.

gap> c := RepetitionCode(7, GF(2));;
gap> ham := HammingCode(3, GF(2));;
gap> d := EvenWeightSubcode(ham);;
gap> e := ConstantWeightSubcode(ham, 3);;
gap> GeneralizedCodeNorm(ham, c, d, e);
4

65.173 IsNormalCode

IsNormalCode(code)

IsNormalCode returns true if code is normal. A code is called normal if the norm of the
code is not more than two times the covering radius of the code plus one. Almost all codes
are normal, however some (non-linear) abnormal codes have been found.

Often, it is difficult to find out whether a code is normal, because it involves computing the
covering radius. However, IsNormalCode uses much information from the literature about
normality for certain code parameters.

gap> IsNormalCode(HammingCode(3, GF(2)));
true

65.174 DecreaseMinimumDistanceLowerBound

DecreaseMinimumDistanceLowerBound(code, s, iterations)

DecreaseMinimumDistanceLowerBound is an implementation of the algorithm for the min-
imum distance by Leon. It is described in full detail in J.S. Leon, A Probabilistic Algorithm
for Computing Minimum Weights of Large Error-Correcting Codes, IEEE Trans. Inform.
Theory, vol. 34, September 1988.

1216 CHAPTER 65. GUAVA

This algorithm tries to find codewords with small minimum weights. The parameter s is
described in the article, the best results are obtained if it is close to the dimension of the
code. The parameter iterations gives the number of runs that the algorithm will perform.

The result returned is a record with two fields; the first, mindist, gives the lowest weight
found, and word gives the corresponding codeword.

65.175 New miscellaneous functions

In this section, some new miscellaneous functions are described, including weight enumera-
tors, the MacWilliams-transform and affinity and almost affinity of codes.

65.176 CodeWeightEnumerator

CodeWeightEnumerator(code)

CodeWeightEnumerator returns a polynomial of the following form

f(x) =
n∑
i=0

Aix
i, (65.14)

where Ai is the number of codewords in code with weight i.

gap> CodeWeightEnumerator(ElementsCode([[0,0,0], [0,0,1],
> [0,1,1], [1,1,1]], GF(2)));
x^3 + x^2 + x + 1
gap> CodeWeightEnumerator(HammingCode(3, GF(2)));
x^7 + 7*x^4 + 7*x^3 + 1

65.177 CodeDistanceEnumerator

CodeDistanceEnumerator(code, word)

CodeDistanceEnumerator returns a polynomial of the following form

f(x) =
n∑
i=0

Bix
i, (65.15)

where Bi is the number of codewords with distance i to word .

If word is a codeword, then CodeDistanceEnumerator returns the same polynomial as
CodeWeightEnumerator.

gap> CodeDistanceEnumerator(HammingCode(3, GF(2)),[0,0,0,0,0,0,1]);
x^6 + 3*x^5 + 4*x^4 + 4*x^3 + 3*x^2 + x
gap> CodeDistanceEnumerator(HammingCode(3, GF(2)),[1,1,1,1,1,1,1]);
x^7 + 7*x^4 + 7*x^3 + 1 # [1,1,1,1,1,1,1] ∈ HammingCode(3, GF(2))

65.178. CODEMACWILLIAMSTRANSFORM 1217

65.178 CodeMacWilliamsTransform

CodeMacWilliamsTransform(code)

CodeMacWilliamsTransform returns a polynomial of the following form

f(x) =
n∑
i=0

Cix
i, (65.16)

where Ci is the number of codewords with weight i in the dual code of code.

gap> CodeMacWilliamsTransform(HammingCode(3, GF(2)));
7*x^4 + 1

65.179 IsSelfComplementaryCode

IsSelfComplementaryCode(code)

IsSelfComplementaryCode returns true if

v ∈ code⇒ 1− v ∈ code, (65.17)

where 1 is the all-one word of length n.

gap> IsSelfComplementaryCode(HammingCode(3, GF(2)));
true
gap> IsSelfComplementaryCode(EvenWeightSubcode(
> HammingCode(3, GF(2))));
false

65.180 IsAffineCode

IsAffineCode(code)

IsAffineCode returns true if code is an affine code. A code is called affine if it is an affine
space. In other words, a code is affine if it is a coset of a linear code.

gap> IsAffineCode(HammingCode(3, GF(2)));
true
gap> IsAffineCode(CosetCode(HammingCode(3, GF(2)),
> [1, 0, 0, 0, 0, 0, 0]));
true
gap> IsAffineCode(NordstromRobinsonCode());
false

65.181 IsAlmostAffineCode

IsAlmostAffineCode(code)

IsAlmostAffineCode returns true if code is an almost affine code. A code is called almost
affine if the size of any punctured code of code is qr for some r, where q is the size of the
alphabet of the code. Every affine code is also almost affine, and every code over GF(2) and
GF(3) that is almost affine is also affine.

1218 CHAPTER 65. GUAVA

gap> code := ElementsCode([[0,0,0], [0,1,1], [0,2,2], [0,3,3],
> [1,0,1], [1,1,0], [1,2,3], [1,3,2],
> [2,0,2], [2,1,3], [2,2,0], [2,3,1],
> [3,0,3], [3,1,2], [3,2,1], [3,3,0]],
> GF(4));;
gap> IsAlmostAffineCode(code);
true
gap> IsAlmostAffineCode(NordstromRobinsonCode());
false

65.182 IsGriesmerCode

IsGriesmerCode(code)

IsGriesmerCode returns true if code, which must be a linear code, is Griesmer code, and
false otherwise.

A code is called Griesmer if its length satisfies

n = g[k, d] =
k−1∑
i=0

d d
qi
e. (65.18)

gap> IsGriesmerCode(HammingCode(3, GF(2)));
true
gap> IsGriesmerCode(BCHCode(17, 2, GF(2)));
false

65.183 CodeDensity

CodeDensity(code)

CodeDensity returns the density of code. The density of a code is defined as

M · Vq(n, t)
qn

, (65.19)

where M is the size of the code, Vq(n, t) is the size of a sphere of radius t in qn, t is the
covering radius of the code and n is the length of the code.

gap> CodeDensity(HammingCode(3, GF(2)));
1
gap> CodeDensity(ReedMullerCode(1, 4));
14893/2048

Chapter 66

KBMAG

KBMAG (pronounced “Kay-bee-mag”) stands for Knuth–Bendix on Monoids, and Au-
tomatic Groups. It is a stand-alone package written in C, for use under UNIX, with an
interface to GAP. This chapter describes its use as an external share library from within
GAP. The current interface is restricted to finitely presented groups. Interfaces for the use
of KBMAG with monoids and semigroups will be released as soon as these categories exist
as established types inGAP.

To use this package effectively, some knowledge of the underlying theory and algorithms
is advisable. The Knuth-Bendix algorithm is described in various places in the literature.
Good general references that deal with the applications to groups and monoids are [LeC86]
and the first few chapters of [Sim94]. For the theory of automatic groups see the multi-author
book [ECH+92]. The algorithms employed by KBMAG are described more specifically in
[HER91] and [Holar].

The manual for the stand-alone KBMAG package (which can be found in the doc directory of
the package) provides more detailed information on the external C programs that are called
from GAP. The stand-alone also includes a number of general programs for manipulating
finite state automata, which could easily be made accessible from GAP. This, and other
possible extensions, such as the provision of more orderings on words, may be made in the
future, depending to some extent on user-demand.

The overall objective of KBMAG is to construct a normal form for the elements of a finitely
presented groupG in terms of the given generators, together with a word reduction algorithm
for calculating the normal form representation of an element in G, given as a word in the
generators. If this can be achieved, then it is also possible to enumerate the words in normal
form up to a given length, and to determine the order of the group, by counting the number
of words in normal form. In most serious applications, this will be infinite, since finite groups
are (with some exceptions) usually handled better by Todd-Coxeter related methods. In
fact a finite state automaton W is calculated that accepts precisely the language of words
in the group generators that are in normal form, and W is used for the enumeration and
counting functions. It is possible to inspect W directly if required; for example, it is often
possible to use W to determine whether an element in G has finite or infinite order. (See
Example 4 below.)

1219

1220 CHAPTER 66. KBMAG

The normal form for an element g ∈ G is defined to be the least word in the group generators
(and their inverses) that represents G, with respect to a specified ordering on the set of all
words in the group generators. The available orderings are described in 66.3 below.
KBMAG offers two possible means of achieving these objectives. The first is to apply the
Knuth-Bendix algorithm to the group presentation, with one of the available orderings on
words, and hope that the algorithm will complete with a finite confluent presentation. (If
the group is finite, then it is guaranteed to complete eventually but, like the Todd-Coxeter
procedure, it may take a long time, or require more space than is available.) The second
is to use the automatic group program. This also uses the Knuth-Bendix procedure as one
component of the algorithm, but it aims to compute certain finite state automata rather
than to obtain a finite confluent rewriting system, and it completes successfully on many
examples for which such a finite system does not exist. In the current implementation,
its use is restricted to the shortlex ordering on words. That is, words are ordered first by
increasing length, and then words of equal length are ordered lexicographically, using the
specified ordering of the generators.
For both of the above procedures, the first step is to create a GAP record known as a
rewriting system R from the finitely presented group G. Some of the fields of this record
can be used to specify the input parameters for the external programs, such as the ordering
on words to be used by the Knuth-Bendix procedure. One of the two external programs is
then run on R. If successful, it updates some of the fields of R, which can then be used
to reduce words in the group generators to normal form, and to count and enumerate the
words in normal form.
In fact, the relationship of a rewriting system to that of the group from which it is con-
structed is in many ways similar to that between a Presentation Record and its associated
finitely presented group, as described in 23.8. In particular, the rewriting rules, which can
be thought of as (a highly redundant) set of defining relations for the group, can be changed,
whereas the defining relators of a finitely presented group cannot be altered without effec-
tively changing the group itself.
In the descriptions of the functions that follow, it is important to distinguish between
irreducible words, and words in normal form. As already stated, a word is in normal form if
it is the least word under the ordering of the rewriting system that defines a particular group
element. So there is always a unique word in normal form for each group element, and it is
determined by the group generators and the ordering on words in the group generators. A
word in a rewriting system is said to be irreducible if it does not contain the left hand side
of any of the reduction rules in the system as a subword. Words in normal form are always
irreducible, but the converse is true if and only if the rewriting system is confluent. The
automatic groups programs provide a method of reducing words to normal form without
obtaining a finite confluent rewriting system (which may not even exist).
Diagnostic output from the GAP procedures can be turned on by setting the global variable
InfoRWS to Print. Diagnostic output from the external programs is controlled by setting
the silent, verbose or veryVerbose flags of the rewriting system. See 66.4 below.

66.1 Creating a rewriting system

FpGroupToRWS(G [,case change])
FpGroupToRWS constructs and returns a rewriting system R from a finitely presented group
G . The generators of R are the generators of G together with inverses for those generators

66.2. ELEMENTARY FUNCTIONS ON REWRITING SYSTEMS 1221

which are not obviously involutory. Normally, if a generator of G prints as a, say, then
its inverse will print, as might be expected, as a−1. However, if the optional argument
case change is set to true, then its printing string will be derived by changing the case of
the letters in the original generator; so, the inverse of a will print as A. One advantage of
this is that it can save space in the temporary files used by the external programs.

R is a GAP record. However, its internal storage does not correspond precisely to the way
in which it is displayed, and so the user is strongly advised not to attempt to modify its
fields directly. (To convince yourself of this, try examining some of the fields individually.)
In particular, the ordering on words to be used by the Knuth-Bendix procedure should be
changed, if desired, by using the functions SetOrderingRWS and ReorderGeneratorsRWS
described in 66.3 below. However, the control fields that are described in 66.4 below are
designed to be set directly.

66.2 Elementary functions on rewriting systems

IsRWS(rws)

Returns true if rws is a rewriting system.

IsConfluentRWS(rws)

Returns true if rws is a rewriting system that is known to be confluent.

IsAvailableNormalForm(rws)

Returns true if rws is a rewriting system with an associated normal form. When this is the
case, the word-reduction, counting and enumeration functions may be applied to rws and
are guaranteed to give the correct answer.

The normal form can only be created by applying one of the two functions KB or Automata
to rws.

IsAvailableReductionRWS(rws)

Returns true if rws is a rewriting system for which words can be reduced. When this is the
case, the word-reduction, counting and enumeration functions may be applied to rws, but
are NOT guaranteed to give the correct answer.

The result of ReduceWordRWS will always be equal to its argument in the underlying group of
rws, but it may not be the correct normal form. The counting and enumeration algorithms
may return answers that are too large (never too small). This situation results when KB is
run and exits, for some reason, with a non-confluent system of equations.

ResetRWS(rws)

This function resets the rewriting system rws back to its form as it was before the application
of KB or Automata. However, the current ordering and values of control parameters will not
be changed. The normal form and reduction algorithms will be unavailable after this call.

AddOriginalEqnsRWS(rws)

Occasionally, as a result of a call of KB on the rewriting system rws, some rewriting rules can
be lost, which means that the underlying group of rws is changed. This function appends
the original defining relations of the group to the rewriting system, which ensures that the
underlying group is made correct again. It is advisable to call this function in between two
calls of KB on the same rewriting system.

1222 CHAPTER 66. KBMAG

66.3 Setting the ordering

SetOrderingRWS(rws, ordering [,list])
ReorderGeneratorsRWS(rws, p)

SetOrderingRWS changes the ordering on the words of the rewriting system rws to ordering ,
which must be one of the strings “shortlex”, “recursive”, “wtlex” and “wreathprod”. The de-
fault is “shortlex”, and this is the ordering of rewriting systems returned by FpGroupToRWS.
The orderings “wtlex” and “wreathprod” require the third parameter, list , which must be
a list of non-negative integers in one-one correspondence with the generators of rws, in the
order that they are displayed in the generatorOrder field. They have the effect of attaching
weights or levels to the generators, in the cases “wtlex” and “wreathprod”, respectively.

Each of these orderings depends on the order of the generators, The current ordering of
generators is displayed under the generatorOrder field when rws is printed. This ordering
can be changed by the function ReorderGeneratorsRWS. The second parameter p to this
function should be a permutation that moves at most ng points, where ng is the number of
generators. This permutation is applied to the current list of generators.

In the “shortlex” ordering, shorter words come before longer ones, and, for words of equal
length, the lexicographically smaller word comes first, using the ordering of generators
specified by the generatorOrder field. The “wtlex” ordering is similar, but instead of
using the length of the word as the first criterion, the total weight of the word is used; this
is defined as the sum of the weights of the generators in the word. So “shortlex” is the
special case of “wtlex” in which all generators have the same nonzero weight.

The “recursive” ordering is the special case of “wreathprod” in which the levels of the ng
generators are 1, 2, . . . , ng, in the order defined by the generatorOrder field. We shall not
attempt to give a complete definition of these orderings here, but refer the reader instead
to pages 46–50 of [Sim94]. The “recursive” ordering is the one appropriate for a power-
conjugate presentation of a polycyclic group, but where the generators are ordered in the
reverse order from the usual convention for polycyclic groups. The confluent presentation
will then be the same as the power-conjugate presentation. For example, for the Heisenberg
group 〈x, y, z | [x, z] = [y, z] = 1, [y, x] = z〉, a good ordering is “recursive” with the order
of generators [z−1, z, y−1, y, x−1, x]. This example is included in 67.17 below.

66.4 Control parameters

The Knuth-Bendix procedure is unusually sensitive to the settings of a number of parameters
that control its operation. In some examples, a small change in one of these parameters
can mean the difference between obtaining a confluent rewriting system fairly quickly on
the one hand, and the procedure running on until it uses all available memory on the other
hand.

Unfortunately, it is almost impossible to give even very general guidelines on these settings,
although the “wreathproduct” orderings appear to be more sensitive than the “shortlex” and
“wtlex” orderings. The user can only acquire a feeling for the influence of these parameters
by experimentation on a large number of examples.

The control parameters are defined by the user by setting values of certain fields of a
rewriting system rws directly. These fields will now be listed.

66.4. CONTROL PARAMETERS 1223

rws.maxeqns
A positive integer specifying the maximum number of rewriting rules allowed in rws.
The default is 32767. If this number is exceeded, then KB or Automata will abort.

rws.tidyint
A positive integer, 100 by default. During the Knuth-Bendix procedure, the search
for overlaps is interrupted periodically to tidy up the existing system by removing
and/or simplifying rewriting rules that have become redundant. This tidying is done
after finding rws.tidyint rules since the last tidying.

rws.confnum
A positive integer, 500 by default. If rws.confnum overlaps are processed in the
Knuth-Bendix procedure but no new rules are found, then a fast test for confluence
is carried out. This saves a lot of time if the system really is confluent, but usually
wastes time if it is not.

rws.maxstoredlen
This is a list of two positive integers, maxlhs and maxrhs; the default is that both
are infinite. Only those rewriting rules for which the left hand side has length at
most maxlhs and the right hand side has length at most maxrhs are stored; longer
rules are discarded. In some examples it is essential to impose such limits in order to
obtain a confluent rewriting system. Of course, if the Knuth-Bendix procedure halts
with such limits imposed, then the resulting system need not be confluent. However,
the confluence can then be tested be re-running KB with the limits removed. (To
remove the limits, unbind the field.) It is advisable to call AddOriginalEqnsRWS on
rws before re-running KB.

rws.maxoverlaplen
This is an integer, which is infinite by default (when not set). Only those overlaps of
total length rws.maxoverlaplen are processed. Similar remarks apply to those for
maxstoredlen.

rws.sorteqns
This should be true or false, and false is the default. When it is true, the rewriting
rules are output in order of increasing length of left hand side. (The default is that
they are output in the order that they were found).

rws.maxoplen
This is an integer, which is infinite by default (when not set). When it is set,
the rewriting rules are output in order of increasing length of left hand side (as
if rws.sorteqns were true), and only those rules having left hand sides of length
up to rws.maxoplen are output at all. Again, similar remarks apply to those for
maxstoredlen.

rws.maxreducelen
A positive integer, 32767 by default. This is the maximum length that a word is
allowed to have during the reduction process. It is only likely to be exceeded when
using the “wreathproduct” or “recursive” ordering.

rws.silent, rws.verbose, rws.veryVerbose
These should be true or false, and are false by default. It only makes sense to set one
of them to be true. They control the amount of diagnostic output that is printed by
KB and Automata. By default there is a small amount of such output.

1224 CHAPTER 66. KBMAG

rws.maxstates, rws.maxwdiffs
These are positive integers, controlling the maximum number of states of the word-
reduction automaton used by KB, and the maximum number of word-differences al-
lowed when running Automata, respectively. These numbers are normally increased
automatically when required, so it unusual to want to set these flags. They can be
set when either it is desired to limit these parameters (and prevent them being in-
creased automatically), or (as occasionally happens), the number of word-differences
increases too rapidly for the program to cope - when this happens, the run is usually
doomed to failure anyway.

66.5 The Knuth-Bendix program

KB(rws)

Run the external Knuth-Bendix program on the rewriting system rws. KB returns true if it
finds a confluent rewriting system and otherwise false. In either case, if it halts normally,
then it will update rws by changing the equations field, which contains a list of the rewriting
rules, and by appending a finite state automaton rws.reductionFSA that can be used for
word reduction, and the counting and enumeration of irreducible words.

All control parameters (as defined in the preceding section) should be set before calling
KB. In the author’s experience, it is usually most helpful to run KB with the verbose flag
rws.verbose set, in order to follow what is happening. KB will halt either when it finds
a finite confluent system of rewriting rules, or when one of the control parameters (such
as rws.maxeqns) requires it to stop. The program can also be made to halt and output
manually at any time by hitting the interrupt key (normally ctr -C) once. (Hitting it twice
has unpredictable consequences, since GAP may intercept the signal.)

If KB halts without finding a confluent system, but still manages to output the current
system and update rws, then it is possible to use the resulting rewriting system to reduce
words, and count and enumerate the irreducible words; it cannot be guaranteed that the
irreducible words are all in normal form, however. It is also possible to re-run KB on the
current system, usually after altering some of the control parameters. In fact, is some more
difficult examples, this seems to be the only means of finding a finite confluent system.

66.6 The automatic groups program

Automata(rws, [large], [filestore], [diff1])

Run the external automatic groups program on the rewriting system rws. Autgroup returns
true if successful and false otherwise. If successful, it appends two finite state automata
rws.diff1c and rws.wa to rws. The first of these can be used for word-reduction, and the
second for counting and enumeration of irreducible words (i.e. words in normal form). In
fact, the second is the word-acceptor of the automatic structure. (The multiplier automata
of the automatic structure are not currently saved when using the GAP interface. To access
these, the user should either use KBMAG as a stand-alone, or complain to the author.)

The three optional parameters to Automata are all boolean, and false by default. Setting
large true results in some of the control parameters (such as rws.maxeqns and rws.tidyint)
being set larger than they would be otherwise. This is necessary for examples that require
a large amount of space. Setting filestore true results in more use being made of temporary

66.7. WORD REDUCTION 1225

files than would be otherwise. This makes the program run slower, but it may be necessary
if you are short of core memory. Setting diff1 to be true is a more technical option, which
is explained more fully in the documentation for the stand-alone KBMAG package. It is not
usually necessary or helpful, but it enables one or two examples to complete that would
otherwise run out of space.

The ordering field of rws must currently be equal to “shortlex” for Automata to be applicable.
The control parameters for rws that are likely to be relevant are maxeqns and maxwdiffs.

66.7 Word reduction

IsReducedWordRWS(rws,w)

Test whether the word w in the generators of the rewriting system rws (or, equivalently, in
the generators of the underlying group of rws) is reduced or not, and return true or false.

IsReducedWordRWS can only be used after KB or Automata has been run successfully on rws.
In the former case, if KB halted without a confluent set of rules, then irreducible words are
not necessarily in normal form (but reducible words are definitely not in normal form). If
KB completes with a confluent rewriting system or Automata completes successfully, then it
is guaranteed that all irreducible words are in normal form.

ReduceWordRWS(rws,w)

Reduce the word w in the generators of the rewriting system rws (or, equivalently, in the
generators of the underlying group of rws), and return the result.

ReduceWordRWS can only be used after KB or Automata has been run successfully on rws.
In the former case, if KB halted without a confluent set of rules, then the irreducible word
returned is not necessarily in normal form. If KB completes with a confluent rewriting system
or Automata completes successfully, then it is guaranteed that all irreducible words are in
normal form.

66.8 Counting and enumerating irreducible words

SizeRWS(rws)

Returns the number of irreducible words in the rewriting system rws. If this is infinite, then
the string “infinite” is returned.

SizeRWS can only be used after KB or Automata has been run successfully on rws. In the
former case, if KB halted without a confluent set of rules, then the number of irreducible
words may be greater than the number of words in normal form (which is equal to the
order of the underlying group of rws). If KB completes with a confluent rewriting system or
Automata completes successfully, then it is guaranteed that SizeRWS will return the correct
order of the underlying group.

EnumerateRWS(rws, min, max)

Enumerate all irreducible words in the rewriting system rws that have lengths between min
and max (inclusive), which should be non-negative integers. The result is returned as a list

1226 CHAPTER 66. KBMAG

of words. The enumeration is by depth-first search of a finite state automaton, and so the
words in the list returned are ordered lexicographically (not by shortlex).

EnumerateRWS can only be used after KB or Automata has been run successfully on rws. In
the former case, if KB halted without a confluent set of rules, then not all irreducible words
in the list returned will necessarily be in normal form. If KB completes with a confluent
rewriting system or Automata completes successfully, then it is guaranteed that all words in
the list will be in normal form.

SortEnumerateRWS(rws, min, max)

This is the same as EnumerateRWS but the list returned contains the words in shortlex order;
so shorter words come before longer ones. It is slightly slower than EnumerateRWS.

SizeEnumerateRWS(rws, min, max)

This returns the length of the list that would be returned by EnumerateRWS(rws, min,
max); that is, the number of irreducible words of rws that have lengths between min and
max inclusive. It is faster than EnumerateRWS, since it does not need to store the words
enumerated.

66.9 Rewriting System Examples

Example 1

We start with a easy example - the alternating group A4.
gap> G:=FreeGroup("a","b");;
gap> a:=G.1;; b:=G.2;;
gap> G.relators:=[a^2, b^3, (a*b)^3];;
gap> R:=FpGroupToRWS(G);
rec(

isRWS := true,
generatorOrder := [a,b,b^-1],

inverses := [a,b^-1,b],
ordering := "shortlex",

equations := [
[b^2,b^-1],
[a*b*a,b^-1*a*b^-1]

]
)
gap> KB(R);
System is confluent.
Halting with 11 equations.
true
gap> R;
rec(

isRWS := true,
isConfluent := true,

generatorOrder := [a,b,b^-1],

66.9. REWRITING SYSTEM EXAMPLES 1227

inverses := [a,b^-1,b],
ordering := "shortlex",
equations := [
[a^2,IdWord],
[b*b^-1,IdWord],
[b^-1*b,IdWord],
[b^2,b^-1],
[b^-1*a*b^-1,a*b*a],
[b^-2,b],
[b*a*b,a*b^-1*a],
[b^-1*a*b*a,b*a*b^-1],
[a*b*a*b^-1,b^-1*a*b],
[b*a*b^-1*a,b^-1*a*b],
[a*b^-1*a*b,b*a*b^-1]

]
)
The equations field of R is now a complete system of rewriting rules
gap> SizeRWS(R);
12
gap> SortEnumerateRWS(R,0,12);
[IdWord, a, b, b^-1, a*b, a*b^-1, b*a, b^-1*a, a*b*a, a*b^-1*a,
b*a*b^-1, b^-1*a*b]

We have enumerated all of the elements of the group

Example 2

The Heisenberg group - that is, the free 2-generator nilpotent group of class 2. For this to
complete, we need to use the recursive ordering, and reverse our initial order of generators.
(Alternatively, we could avoid this reversal, by using a wreathproduct ordering, and setting
the levels of the generators to be 6,5,4,3,2,1.)

gap> G:=FreeGroup("x","y","z");;
gap> x:=G.1;; y:=G.2;; z:=G.3;;
gap> G.relators:=[Comm(y,x)*z^-1, Comm(z,x), Comm(z,y)];;
gap> R:=FpGroupToRWS(G);
rec(

isRWS := true,
generatorOrder := [x,x^-1,y,y^-1,z,z^-1],

inverses := [x^-1,x,y^-1,y,z^-1,z],
ordering := "shortlex",
equations := [
[y^-1*x^-1*y,z*x^-1],
[z^-1*x^-1,x^-1*z^-1],
[z^-1*y^-1,y^-1*z^-1]

]
)
gap> SetOrderingRWS(R,"recursive");
gap> ReorderGeneratorsRWS(R,(1,6)(2,5)(3,4));
gap> R;
rec(

1228 CHAPTER 66. KBMAG

isRWS := true,
generatorOrder := [z^-1,z,y^-1,y,x^-1,x],

inverses := [z,z^-1,y,y^-1,x,x^-1],
ordering := "recursive",

equations := [
[y^-1*x^-1*y,z*x^-1],
[z^-1*x^-1,x^-1*z^-1],
[z^-1*y^-1,y^-1*z^-1]

]
)
gap> KB(R);
System is confluent.
Halting with 18 equations.
true
gap> R;
rec(

isRWS := true,
isConfluent := true,

generatorOrder := [z^-1,z,y^-1,y,x^-1,x],
inverses := [z,z^-1,y,y^-1,x,x^-1],
ordering := "recursive",

equations := [
[z^-1*z,IdWord],
[z*z^-1,IdWord],
[y^-1*y,IdWord],
[y*y^-1,IdWord],
[x^-1*x,IdWord],
[x*x^-1,IdWord],
[z^-1*x^-1,x^-1*z^-1],
[z^-1*y^-1,y^-1*z^-1],
[y^-1*x^-1,x^-1*y^-1*z],
[z*x^-1,x^-1*z],
[z^-1*x,x*z^-1],
[z*y^-1,y^-1*z],
[z^-1*y,y*z^-1],
[y*x,x*y*z],
[y^-1*x,x*y^-1*z^-1],
[y*x^-1,x^-1*y*z^-1],
[z*x,x*z],
[z*y,y*z]

]
)
gap> SizeRWS(R);
"infinity"
gap> IsReducedWordRWS(R,z*y*x);
false
gap> ReduceWordRWS(R,z*y*x);
x*y*z^2

66.9. REWRITING SYSTEM EXAMPLES 1229

gap> IsReducedWordRWS(R,x*y*z^2);
true

Example 3

This is an example of the use of the Knuth-Bendix algorithm to prove the nilpotence of a
finitely presented group. (The method is due to Sims, and is described in Chapter 11.8 of
[Sim94].) This example is of intermediate difficulty, and demonstrates the necessity of using
the maxstoredlen control parameter.

The group is
〈a, b | [b, a, b], [b, a, a, a, a], [b, a, a, a, b, a, a]〉

with left-normed commutators. The first step in the method is to check that there is a
maximal nilpotent quotient of the group, for which we could use, for example, the GAP
NilpotentQuotient command, from the shared-library “nq”. We find that there is a max-
imal such quotient, and it has class 7, and the layers going down the lower central series
have the abelian structures [0,0], [0], [0], [0], [0], [2], [2].

By using the stand-alone C nilpotent quotient program, it is possible to find a power-
commutator presentation of this maximal quotient. We now construct a new presentation
of the same group, by introducing the generators in this power-commutator presentation,
together with their definitions as powers or commutators of earlier generators. It is this
new presentation that we use as input for the Knuth-Bendix program. Again we use the
recursive ordering, but this time we will be careful to introduce the generators in the correct
order in the first place!

gap> G:=FreeGroup("h","g","f","e","d","c","b","a");;
gap> h:=G.1;;g:=G.2;;f:=G.3;;e:=G.4;;d:=G.5;;c:=G.6;;b:=G.7;;a:=G.8;;
gap> G.relators:=[Comm(b,a)*c^-1, Comm(c,a)*d^-1, Comm(d,a)*e^-1,
> Comm(e,b)*f^-1, Comm(f,a)*g^-1, Comm(g,b)*h^-1,
> Comm(g,a), Comm(c,b), Comm(e,a)];;
gap> R:=FpGroupToRWS(G);
rec(

isRWS := true,
generatorOrder := [h,h^-1,g,g^-1,f,f^-1,e,e^-1,d,d^-1,c,c^-1,

b,b^-1,a,a^-1],
inverses := [h^-1,h,g^-1,g,f^-1,f,e^-1,e,d^-1,d,c^-1,c,

b^-1,b,a^-1,a],
ordering := "shortlex",

equations := [
[b^-1*a^-1*b,c*a^-1],
[c^-1*a^-1*c,d*a^-1],
[d^-1*a^-1*d,e*a^-1],
[e^-1*b^-1*e,f*b^-1],
[f^-1*a^-1*f,g*a^-1],
[g^-1*b^-1*g,h*b^-1],
[g^-1*a^-1,a^-1*g^-1],
[c^-1*b^-1,b^-1*c^-1],
[e^-1*a^-1,a^-1*e^-1]

]
)

1230 CHAPTER 66. KBMAG

gap> SetOrderingRWS(R,"recursive");

A little experimentation reveals that this example works best when only those equations
with left and right hand sides of lengths at most 10 are kept.

gap> R.maxstoredlen:=[10,10];;
gap> R.verbose:=true;;
gap> KB(R);

60 eqns; total len: lhs, rhs = 129, 143; 25 states; 0 secs.
68 eqns; total len: lhs, rhs = 364, 326; 28 states; 0 secs.
77 eqns; total len: lhs, rhs = 918, 486; 45 states; 0 secs.
91 eqns; total len: lhs, rhs = 728, 683; 58 states; 0 secs.
102 eqns; total len: lhs, rhs = 1385, 1479; 89 states; 0 secs.
. . . .
310 eqns; total len: lhs, rhs = 4095, 4313; 489 states; 1 secs.
200 eqns; total len: lhs, rhs = 2214, 2433; 292 states; 1 secs.
194 eqns; total len: lhs, rhs = 835, 922; 204 states; 1 secs.
157 eqns; total len: lhs, rhs = 702, 723; 126 states; 1 secs.
151 eqns; total len: lhs, rhs = 553, 444; 107 states; 1 secs.
101 eqns; total len: lhs, rhs = 204, 236; 19 states; 1 secs.
No new eqns for some time - testing for confluence
System is not confluent.
172 eqns; total len: lhs, rhs = 616, 473; 156 states; 1 secs.
171 eqns; total len: lhs, rhs = 606, 472; 156 states; 1 secs.
No new eqns for some time - testing for confluence
System is not confluent.
151 eqns; total len: lhs, rhs = 452, 453; 92 states; 1 secs.
151 eqns; total len: lhs, rhs = 452, 453; 92 states; 1 secs.
No new eqns for some time - testing for confluence
System is not confluent.
101 eqns; total len: lhs, rhs = 200, 239; 15 states; 1 secs.
101 eqns; total len: lhs, rhs = 200, 239; 15 states; 1 secs.
No new eqns for some time - testing for confluence

System is confluent.
Halting with 101 equations.
WARNING: The monoid defined by the presentation may have changed,

since equations have been discarded.
If you re-run, include the original equations.

true
We re-run with the maxstoredlen limit removed and the original
equations added, to check that the system really is confluent.
gap> Unbind(R.maxstoredlen);
gap> AddOriginalEqnsRWS(R);
gap> KB(R);

101 eqns; total len: lhs, rhs = 200, 239; 15 states; 0 secs.
No new eqns for some time - testing for confluence

System is confluent.
Halting with 101 equations.
true

66.9. REWRITING SYSTEM EXAMPLES 1231

In fact, in this case, we did have a confluent set already.

Inspection of the confluent set now reveals it to be precisely a power-commutator presen-
tation of a nilpotent group, and so we have proved that the group we started with really
is nilpotent. Of course, this means also that it is equal to its largest nilpotent quotient, of
which we already know the structure.

Example 4

Our final example illustrates the use of the Automata command, which runs the automatic
groups programs. The group has a balanced symmetrical presentation with 3 generators
and 3 relators, and was originally proposed by Heineken as a possible example of a finite
group with such a presentation. In fact, the Automata command proves it to be infinite.

This example is of intermediate difficulty, but there is no need to use any special options.
It takes about 20 minutes to run on a fast WorkStation.

We will not attempt to explain all of the output in detail here; the interested user should
consult the documentation for the stand-alone KBMAG package. Roughly speaking, it first
runs the Knuth-Bendix program, which does not halt with a confluent rewriting system, but
is used instead to construct a word-difference finite state automaton. This in turn is used to
construct the word-acceptor and multiplier automata for the group. Sometimes the initial
constructions are incorrect, and part of the procedure consists in checking for this, and
making corrections. In fact, in this example, the correct automata are considerably smaller
than the ones first constructed. The final stage is to run an axiom-checking program,
which essentially checks that the automata satisfy the group relations. If this completes
successfully, then the correctness of the automata has been proved, and they can be used
for correct word-reduction and enumeration in the group.

gap> G:=FreeGroup("a","b","c");;
gap> a:=G.1;;b:=G.2;;c:=G.3;;
gap> G.relators:=[Comm(a,Comm(a,b))*c^-1, Comm(b,Comm(b,c))*a^-1,
> Comm(c,Comm(c,a))*b^-1];
[a^-1*b^-1*a^-1*b*a*b^-1*a*b*c^-1, b^-1*c^-1*b^-1*c*b*c^-1*b*c*a^-1,
c^-1*a^-1*c^-1*a*c*a^-1*c*a*b^-1]

gap> R:=FpGroupToRWS(G);
rec(

isRWS := true,
generatorOrder := [a,a^-1,b,b^-1,c,c^-1],

inverses := [a^-1,a,b^-1,b,c^-1,c],
ordering := "shortlex",

equations := [
[a^-1*b^-1*a^-1*b*a,c*b^-1*a^-1*b],
[b^-1*c^-1*b^-1*c*b,a*c^-1*b^-1*c],
[c^-1*a^-1*c^-1*a*c,b*a^-1*c^-1*a]

]
)
gap> Automata(R);
Running Knuth-Bendix Program
Maximum number of equations exceeded.
Halting with 200 equations.
First word-difference machine with 161 states computed.

1232 CHAPTER 66. KBMAG

Second word-difference machine with 175 states computed.
Re-running Knuth-Bendix Program
Halting with 7672 equations.
First word-difference machine with 259 states computed.
Second word-difference machine with 269 states computed.
System is confluent, or halting factor condition holds.
Running program to construct word-acceptor and multiplier automata
Word-acceptor with 5488 states computed.
General multiplier with 6806 states computed.
Multiplier incorrect with generator number 2.
Equation found between two words accepted by word-acceptor.
Word-acceptor with 1106 states computed.
General multiplier with 2428 states computed.
Validity test on general multiplier succeeded.
Running program to verify axioms on the automatic structure
General length-2 multiplier with 2820 states computed.
Checking inverse and short relations.
Checking relation: a^-1*b^-1*a^-1*b*a = c*b^-1*a^-1*b
Checking relation: b^-1*c^-1*b^-1*c*b = a*c^-1*b^-1*c
Checking relation: c^-1*a^-1*c^-1*a*c = b*a^-1*c^-1*a
Axiom checking succeeded.
Minimal reducible word acceptor with 1058 states computed.
Minimal Knuth-Bendix equation fsa with 1891 states computed.
Minimal diff1 fsa with 271 states computed.
true
gap> SizeRWS(R);
"infinity"

We have proved that the group is infinite, but it would also be interesting to know whether
the group generators have infinite order. This can often be shown by inspecting the word-
acceptor automaton directly.

The GAP interface to KBMAG includes a number of (currently undocumented) functions for
manipulating finite state automata. The calculation below illustrates the use of one or two
of these. In this example, it turns out that all powers of the generators are accepted by the
word-acceptor automaton R.wa. The accepted language of this automaton is precisely the
set of words in normal form, and so this proves that each of these powers is in normal form
- so, in particular, no such power is equal to the identity, and the generators have infinite
order.

The comments in the example below were added after the run.
gap> IsFSA(R.wa);
true # R.wa is a finite-state automaton.
gap> RecFields(R.wa);
["isFSA", "alphabet", "states", "flags", "initial",
"accepting", "table", "denseDTable", "operations",
"isInitializedFSA"]

gap> R.wa.states.size;
1106 # The number of states of the automaton R.wa
gap> R.wa.initial;

66.9. REWRITING SYSTEM EXAMPLES 1233

[1] # The initial state of R.wa is state number 1.
gap> R.wa.flags;
["BFS", "DFA", "accessible", "minimized", "trim"]
The flags fields list properties that are known to be true in the
automaton. For example, “DFA” means that it is deterministic.
The alphabet of the automaton is the set of integers {1, . . . , 6},
the integer i in this set corresponds to the i-th generator of
R, as listed in R.generatorOrder.
To inspect transitions, we use the function TargetDFA.
gap> TargetDFA(R.wa,1,1);
2 # The first generator, a, maps the initial state 1 to state 2.
gap> TargetDFA(R.wa,1,2);
8 # It maps state 2 to state 8 -
gap> TargetDFA(R.wa,1,8);
8 # and state 8 to itself.
gap> 8 in R.wa.accepting;
true

We now know that all powers of the first generator, a, map the initial state of the word-
acceptor to an accepting state, which establishes our claim that all powers of a are in normal
form. In fact, the same can be verified for all 6 generators.

1234 CHAPTER 66. KBMAG

Chapter 67

The Matrix Package

This chapter describes functions which may be used to construct and investigate the struc-
ture of matrix groups defined over finite fields.

67.1 Aim of the matrix package

The aim of the matrix package is to provide integrated and comprehensive access to a
collection of algorithms, developed primarily over the past decade, for investigating the
structure of matrix groups defined over finite fields. We sought to design a package which
provides easy access to existing algorithms and implementations, and which both allows
new algorithms to be developed easily using existing components, and to update existing
ones readily.

Some of the facilities provided are necessarily limited, both on theoretical and practical
grounds; others are experimental and developmental in nature; we welcome criticism of
their performance. One motivation for its release is to encourage input from others.

67.2 Contents of the matrix package

We summarise the contents of the package and provide references for the relevant algorithms.

(a) Irreducibility and absolutely irreducibility for G-modules; isomorphism testing for ir-
reducible G-modules; see Holt and Rees [5]. The corresponding functions are described in
67.8, 67.9, 67.14, 67.15, 67.16, 67.25, 67.26.

(b) Decide whether a matrix group has certain decompositions with respect to a normal
subgroup; see Holt, Leedham-Green, O’Brien and Rees [6]. The corresponding functions are
described in 67.10, 67.13, 67.28, 67.29, 67.30, and 67.31.

(c) Decide whether a matrix group is primitive; see Holt, Leedham-Green, O’Brien and Rees
[7]. The corresponding functions are described in 67.11, 67.32.

(d) Decide whether a given group contains a classical group in its natural representation.
Here we provide access to the algorithms of Celler and Leedham-Green [3] and those of
Niemeyer and Praeger [11, 12]. The corresponding function is described in 67.19, the asso-
ciated lower-level functions in 67.22 and 67.23.

1235

1236 CHAPTER 67. THE MATRIX PACKAGE

(e) A constructive recognition process for the special linear group developed by Celler and
Leedham-Green [4] and described in 67.20.

(e) Random element selection; see Celler, Leedham-Green, Murray, Niemeyer and O’Brien
[1]. The corresponding functions are described in 67.48, 67.49.

(f) Matrix order calculation; see Celler and Leedham-Green [2]. The corresponding functions
are described in 67.47.

(g) Base point selection for the Random Schreier-Sims algorithm for matrix groups; see
Murray and O’Brien [10]. The corresponding function is described in 67.45.

(h) Decide whether a matrix group preserves a tensor decomposition; see Leedham-Green
and O’Brien [8, 9]. The corresponding function is described in 67.12.

(i) Recursive exploration of reducible groups; see Pye [13]. The corresponding function is
described in 67.21.

The algorithms make extensive use of Aschbacher’s classification of the maximal subgroups
of the general linear group. Possible classes of subgroups mentioned below refer to this
classification; see [14, 15] for further details.

In order to access the functions, you must use the command RequirePackage to load them.

gap> RequirePackage("matrix");

67.3 The Developers of the matrix package

The development and organisation of this package was carried out in Aachen by Frank
Celler, Eamonn O’Brien and Anthony Pye.

In addition to the new material, this package combines, updates, and replaces material from
various contributing sources. These include:

1. Classic package – originally developed by Celler;

2. Smash package – originally developed by Holt, Leedham-Green, O’Brien, and Rees;

3. Niemeyer/Praeger classical recognition algorithm – originally developed by Niemeyer;

4. Recursive code – originally developed by Pye.

As part of the preparation of this package, much of the contributed code was revised (some-
times significantly) and streamlined, in cooperation with the original developers.

Comments and criticisms are welcome and should be directed to:

Eamonn O’Brien
obrien@math.auckland.ac.nz

67.4 Basic conventions employed in matrix package

A G-module is defined by the action of a group G, generated by a set of matrices, on a
d-dimensional vector space over a field, F = GF (q).

The function GModule returns a G-module record, where the component .field is set to F ,
.dimension to d, .generators to the set of generating matrices for G, and .isGModule to
true. These components are set for every G-module record constructed using GModule.

67.5. ORGANISATION OF THIS MANUAL 1237

Many of the functions described below return or update a G-module record. Additional
components which describe the nature of the action of the underlying group G on the G-
module are set by these functions. Some of these carry information which may be of general
use. These components are described briefly in 67.34. They need not appear in a G-module
record, or may have the value "unknown".

A component .component of a G-module record is accessed by ComponentFlag and its
value is set by SetComponentFlag, where the first letter of the component is capitalised
in the function names. For example, the component .tensorBasis of module is set by
SetTensorBasisFlag(module, boolean) and its value accessed by TensorBasisFlag(
module). Such access functions and conventions also apply to other records constructed
by all of these functions.

If a function listed below takes as input a matrix group G, it also usually accepts a G-
module.

67.5 Organisation of this manual

Sections 67.6 and 67.7 describe how to construct a G-module from a set of matrices or a
group and how to test for a G-module.

Sections 67.8, 67.9, 67.10, 67.11, and 67.12 describe high-level functions which provide access
to some of the algorithms mentioned in 67.2; these are tests for reducibility, semi-linearity,
primitivity, and tensor decomposition, respectively.

Section 67.13 describes SmashGModule which can be used to explore whether a matrix group
preserves certain decompositions with respect to a normal subgroup.

Sections 67.14, 67.15, and 67.16 consider homomorphisms between and composition factors
of G-modules.

Sections 67.18, 67.19, and 67.20 describe functions for exploring classical groups.

Section 67.21 describes the experimental function RecogniseMatrixGroup.

Sections 67.22 and 67.23 describe the low-level classical recognition functions.

Sections 67.24, 67.25, 67.26, and 67.27 describe the low-level Meataxe functions.

Sections 67.28, 67.29, 67.30, 67.31, 67.32, 67.33, and 67.34 describe the low-level SmashGModule
functions.

Sections 67.35, 67.36, 67.37, and 67.38 describe the low-level functions for the function
RecogniseMatrixGroup.

Sections 67.39, 67.40, 67.41, 67.42, 67.43, and 67.44 describe functions to construct new
G-modules from given ones.

Sections 67.45 to 67.52 describe functions which are somewhat independent of G-modules;
these include functions to compute the order of a matrix, construct a permutation repre-
sentation for a matrix group, and construct pseudo-random elements of a group.

Section 67.53 provides a bibliography.

1238 CHAPTER 67. THE MATRIX PACKAGE

67.6 GModule

GModule(matrices, [F])
GModule(G, [F])

GModule constructs a G-module record from a list matrices of matrices or from a matrix
group G . The underlying field F may be specified as an optional argument; otherwise, it is
taken to be the field generated by the entries of the given matrices.

The G-module record returned contains components .field, .dimension, .generators
and .isGModule.

In using many of the functions described in this chapter, other components of the G-module
record may be set, which describe the nature of the action of the group on the module. A
description of these components is given in 67.34.

67.7 IsGModule

IsGModule(module)

If module is a record with component .isGModule set to true, IsGModule returns true,
otherwise false .

67.8 IsIrreducible for GModules

IsIrreducible(module)

module is a G-module. IsIrreducible tests module for irreducibility, and returns true
or false. If module is reducible, a sub- and quotient-module can be constructed using
InducedAction (see 67.24).

The algorithm is described in [5].

67.9 IsAbsolutelyIrreducible

IsAbsolutelyIrreducible(module)

The G-module module is tested for absolute irreducibility, and true or false is returned. If
the result is false, then the dimension e of the centralising field of module can be accessed
by DegreeFieldExtFlag(module). A matrix which centralises module (that is, it centralises
the generating matrices GeneratorsFlag(module)) and which has minimal polynomial of
degree e over the ground field can be accessed as CentMatFlag(module). If such a matrix
is required with multiplicative order qe − 1, where q is the order of the ground field, then
FieldGenCentMat (see 67.25) can be called.

The algorithm is described in [5].

67.10 IsSemiLinear

IsSemiLinear(G)

IsSemiLinear takes as input a matrix group G over a finite field and seeks to decide whether
or not G acts semilinearly.

67.11. ISPRIMITIVE FOR GMODULES 1239

The function returns a list containing two values: a boolean and a G-module record, module,
for G. If the boolean is true, then G is semilinear and information about the decomposition
can be obtained using SemiLinearPartFlag (module), LinearPartFlag (module), and
FrobeniusAutomorphismsFlag (module). See 67.34 for an explanation of these.

If IsSemiLinear discovers that G acts imprimitively, it cannot decide whether or not G
acts semilinearly and returns "unknown".

SmashGModule is called by IsSemiLinear.

The algorithm is described in [6].

67.11 IsPrimitive for GModules

IsPrimitive(G [, factorisations])

IsPrimitive takes as input a matrix group G over a finite field and seeks to decide whether
or not G acts primitively. The function returns a list containing two values: a boolean and
a G-module record, module, for G. If the boolean is false, then G is imprimitive and
BlockSystemFlag (module) returns a block system (described in 67.32).

If IsPrimitive discovers that G acts semilinearly, then it cannot decide whether or not G
acts primitively and returns "unknown".

The second optional argument is a list of possible factorisations of d, the dimension of G.
For each [r, s] in this list where rs = d, the function seeks to decide whether G preserves a
non-trivial system of imprimitivity having r blocks of size s.

SmashGModule is called by IsPrimitive.

The algorithm is described in [7].

67.12 IsTensor

IsTensor(G [, factorisations])

IsTensor takes as input a matrix group G and seeks to decide whether or not G preserves
a non-trivial tensor decomposition of the underlying vector space.

The implementation currently demands that G acts irreducibly, although this is not an
inherent requirement of the algorithm.

The second optional argument is a list of possible factorisations of d, the dimension of G.
For each [r, s] in this list where rs = d, the function seeks to decide whether G preserves a
non-trivial tensor decomposition of the underlying space as the tensor product of two spaces
of dimensions r and s.

The function returns a list containing three values: a boolean, a G-module record, module,
for G, and a change-of-basis matrix which exhibits the decomposition (if one is found). If
the boolean is false, then G is not a tensor product. If the boolean is true, then G is a
tensor product and the second argument in the list are the two tensor factors.

If IsTensor cannot decide whether G or not preserves a tensor decomposition, then it
returns "unknown". The second entry returned is now the list of unresolved tensor factori-
sations.

gap> ReadDataPkg ("matrix", "data", "a5xa5d25.gap");

1240 CHAPTER 67. THE MATRIX PACKAGE

gap> x:=IsTensor (G);;
gap> x[1];
true
gap> # Hence we have found a tensor decomposition.

gap> # Set up the two factors
gap> U := x[2][1];;
gap> W := x[2][2];;

gap> DisplayMat (GeneratorsFlag (U));
4 1 5 2 4
5 4 3 6 2
2 2 4 5 6
. 1 5 6 4
5 2 6 3 .

. 5 1 4 2
1 4 4 5 .
3 3 6 5 4
6 5 6 3 3
. 4 1 2 1

3 1 3 2 6
1 4 2 6 3
. . 4 . .
5 4 2 3 2
4 1 6 4 4

6 3 1 6 6
6 3 5 1 4
3 3 5 1 .
2 6 2 1 2
4 4 . 4 6

gap> ReadDataPkg ("matrix", "data", "a5d4.gap");

gap> x := IsTensor (G);
[false, [], "undefined"]
gap> # Hence not a tensor product

The algorithm is described in [8, 9]. Since a complete implementation requires basic tools
which are not yet available in GAP, the performance of this function is currently seriously
limited.

KroneckerFactors(g, d1, d2 [,F])

KroneckerFactors decides whether or not a matrix g can be written as the Kronecker
product of two matrices A and B of dimension d1 and d2 , respectively. If the field F is not
supplied, it is taken to be Field (Flat (g)). The function returns either the pair [A, B]
or false.

67.13. SMASHGMODULE 1241

67.13 SmashGModule

SmashGModule(module, S [,flag])

SmashGModule seeks to find a decomposition of a G-module with respect to a normal sub-
group of G.

module is a module for a finite group G of matrices over a finite field and S is a set of
matrices, generating a subgroup of G.

SmashGModule attempts to find some way of decomposing the module with respect to the
normal subgroup 〈S〉G. It returns true if some decomposition is found, false otherwise.

It first ensures that G acts absolutely irreducibly and that S contain at least one non-scalar
matrix. If either of these conditions fails, then it returns false. The function returns
true if it succeeds in verifying that either G acts imprimitively, or semilinearly, or preserves
a tensor product, or preserves a symmetric tensor product (that is, permutes the tensor
factors) or G normalises a group which is extraspecial or a 2-group of symplectic type.
Each of these decompositions, if found, involves 〈S〉G in a natural way. Components are
added to the record module which indicate the nature of a decomposition. Details of these
components can be found in 67.34. If no decomposition is found, the function returns false.
In general, the answer false indicates that there is no such decomposition with respect to
〈S〉G. However, SmashGModule may fail to find a symmetric tensor product decomposition,
since the detection of such a decomposition relies on the choice of random elements.

SmashGModule adds conjugates to S until a decomposition of the underlying vector space
as a sum of irreducible 〈S〉-modules is found. The functions SemiLinearDecomposition,
TensorProductDecomposition, SymTensorProductDecomposition, and ExtraSpecialDe-
composition now search for decompositions.

At the end of the call to SmashGModule, S may be larger than at the start (but its normal
closure has not changed).

The only permitted value for the optional parameter flag is the string "PartialSmash". If
"PartialSmash" is supplied, SmashGModule returns false as soon as it is clear that G is not
the normaliser of a p-group nor does it preserve a symmetric tensor product decomposition
with respect to 〈S〉G.

The algorithm is described in [6].

67.14 HomGModule

HomGModule(module1, module2)

This function can only be run if IsIrreducible(module1) has returned true. module1 and
module2 are assumed to be G-modules for the same group G, and a basis of the space of G-
homomorphisms from module1 to module2 is calculated and returned. Each homomorphism
in this list is given as a d1× d2 matrix, where d1 and d2 are the dimensions of module1 and
module2 ; the rows of the matrix are the images of the standard basis of module1 in module2
under the homomorphism.

67.15 IsomorphismGModule

IsomorphismGModule(module1, module2)

1242 CHAPTER 67. THE MATRIX PACKAGE

This function tests the G-modules module1 and module2 for isomorphism. Both G-modules
must be defined over the same field with the same number of defining matrices, and at
least one of them must be known to be irreducible (that is, IsIrreducible(module) has
returned true). Otherwise the function will exit with an error. If they are not isomorphic,
then false is returned. If they are isomorphic, then a d× d matrix is returned (where d is
the dimension of the modules) whose rows give the images of the standard basis vectors of
module1 in an isomorphism to module2 .

The algorithm is described in [5].

67.16 CompositionFactors

CompositionFactors(module)

module is a G-module. This function returns a list, each element of which is itself a 2-
element list [mod , int], where mod is an irreducible composition factor of module, and int is
the multiplicity of this factor in module. The elements mod correspond to non-isomorphic
irreducible modules.

67.17 Examples

Example 1

gap> # First set up the natural permutation module for the
gap> # alternating group A5 over the field GF (2).
gap> P := Group ((1,2,3), (3,4,5));;
gap> M := PermGModule (P, GF(2));
rec(
field := GF(2),
dimension := 5,
generators := [[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]],
[[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]]],

isGModule := true)
gap> # Now test for irreducibility, and calculate a proper submodule.
gap> IsIrreducible (M);
false
gap> SM := SubGModule (M, SubbasisFlag (M));;
gap> DimensionFlag (SM);
4
gap> DSM := DualGModule (SM);;
gap> # Test to see if SM is self-dual. We must prove irreducibility first.
gap> IsIrreducible (SM);

67.17. EXAMPLES 1243

true
gap> IsAbsolutelyIrreducible (SM);
true
gap> IsomorphismGModule (SM, DSM);
[[0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)],
[Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)],
[Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]]

gap> # This is an explicit isomorphism.
gap> # Now form a tensor product and decompose it into composition factors.
gap> TM := TensorProductGModule (SM, SM);;
gap> cf := CompositionFactors (TM);;
gap> Length (cf);
3
gap> DimensionFlag(cf[1][1]); cf[1][2];
1
4
gap> DimensionFlag(cf[2][1]); cf[2][2];
4
2
gap> DimensionFlag(cf[3][1]); cf[3][2];
4
1
gap> # This tells us that TM has three composition factors, of dimensions
gap> # 1, 4 and 4, with multiplicities 4, 2 and 1, respectively.
gap> # Is one of the 4-dimensional factors isomorphic to TM?
gap> IsomorphismGModule (SM, cf[2][1]);
false
gap> IsomorphismGModule (SM, cf[3][1]);
[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]]

gap> IsAbsolutelyIrreducible (cf[2][1]);
false
gap> DegreeFieldExtFlag(cf[2][1]);
2
gap> # If we extend the field of cf[2][1] to GF (4), it should
gap> # become reducible.
gap> MM := GModule (GeneratorsFlag (cf[2][1]), GF(4));;
gap> CF2 := CompositionFactors (MM);;
gap> Length (CF2);
2
gap> DimensionFlag (CF2[1][1]); CF2[1][2];
2
1
gap> DimensionFlag (CF2[2][1]); CF2[2][2];
2

1244 CHAPTER 67. THE MATRIX PACKAGE

1
gap> # It reduces into two non-isomorphic 2-dimensional factors.

In the next example, we investigate the structure of a matrix group using SmashGModule
and access some of the stored information about the computed decomposition.

Example 2

gap> a := [
> [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]] * Z(2)^0;;
gap> b := [
> [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
> [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
> [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]] * Z(2)^0;;
gap> c := [
> [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]] * Z(2)^0;;
gap> gens := [a, b, c];;
gap> # Next we define the module.
gap> M := GModule (gens);;

67.17. EXAMPLES 1245

gap> # So far only the basic components have been set.
gap> RecFields (M);
["field", "dimension", "generators"", "isGModule"]
gap>
gap> # First we check for irreducibility and absolute irreducibility.
gap> IsIrreducible (M);
true
gap> IsAbsolutelyIrreducible (M);
true
gap> # A few more components have been set during these two function calls.
gap> RecFields(M);
["field", "dimension", "generators"", "isGModule", "algEl", "algElMat",
"algElCharPol", "algElCharPolFac", "algElNullspaceVec",
"algElNullspaceDim",
"reducible", "degreeFieldExt", "absolutelyReducible"]

gap> # The function Commutators forms the list of commutators of generators.
gap> S := Commutators(gens);;
gap> InfoSmash := Print;;
gap> # Setting InfoSmash to Print means that SmashGModule prints out
gap> # intermediate output to tell us what it is doing. If we
gap> # read this output it tells us what kind of decomposition SmashGModule
gap> # has found. Otherwise the output is only a true or false.
gap> # All the relevant information is contained in the components of M.
gap> SmashGModule (M, S);
Starting call to SmashGModule.
At top of main SmashGModule loop, S has 2 elements.
Translates of W are not modules.
At top of main SmashGModule loop, S has 3 elements.
Translates of W are not modules.
At top of main SmashGModule loop, S has 4 elements.
Translates of W are not modules.
At top of main SmashGModule loop, S has 5 elements.
Group embeds in GammaL(4, GF(2)^3).
SmashGModule returns true.
true
gap> # Additional components are set during the call to SmashGModule.
gap> RecFields(M);
["field", "dimension", "generators", "isGModule", "algEl", "algElMat",
"algElCharPol", "algElCharPolFac", "algElNullspaceVec",
"algElNullspaceDim",
"reducible", "degreeFieldExt", "absolutelyReducible",
"semiLinear", "linearPart",
"centMat", "frobeniusAutomorphisms"]

gap> SemiLinearFlag (M);
true
gap> # This flag tells us G that acts semilinearly.
gap> DegreeFieldExtFlag (M);
3

1246 CHAPTER 67. THE MATRIX PACKAGE

gap> # This flag tells us the relevant extension field is GF(2ˆ3)
gap> Length (LinearPartFlag (M));
5
gap> # LinearPartFlag (M) is a set of normal subgroup generators for the
gap> # intersection of G with GL(4, GF(2ˆ3)). It is also the contents of S
gap> # at the end of the call to SmashGModule and is bigger than the set S
gap> # which was input since conjugates have been added.
gap> FrobeniusAutomorphismsFlag (M);
[0, 0, 1]
gap> # The first two generators of G act linearly, the last induces the field
gap> # automorphism which maps x to xˆ2 (= xˆ(2ˆ1)) on GF(2ˆ3)

In our final example, we demonstrate how to test whether a matrix group is primitive and
also how to select pseudo-random elements.

Example 3

gap> # Read in 18-dimensional representation of L(2, 17) over GF(41).
gap> ReadDataPkg ("matrix", "data", "l217.gap");
gap> # Initialise a seed for random element generation.
gap> InitPseudoRandom (G, 10, 100);;
gap> # Now select a pseudo-random element.
gap> g := PseudoRandom (G);;
gap> OrderMat (g);
3
gap> h := ElementOfOrder (G, 8, 10);;
gap> OrderMat (h);
8
gap> # Is the group primitive?
gap> R := IsPrimitive(G);;
gap> # Examine the boolean returned.
gap> R[1];
false
gap> M := R[2];;
gap> # What is the block system found?
gap> BlockSystemFlag (M);
rec(
nmrBlocks := 18,
block :=
[[0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41),

0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41),
0*Z(41), Z(41)^0, 0*Z(41), 0*Z(41)]],

maps := [1, 2, 3],
permGroup := Group((1, 2)(3, 7)(5,11)(6,12)(8,10)(13,14)(15,17)

(16,18), (1, 3, 8,11,15, 9,13, 7,12,16, 6, 2, 5, 4,10,14,17),
(1, 4, 2, 6, 3, 9, 7,12)(5, 8,10,11,13,17,15,14)),

isBlockSystem := true)
gap> v :=
[0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41),

0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41),

67.18. CLASSICALFORMS 1247

0*Z(41), Z(41)^0, 0*Z(41), 0*Z(41)];;
gap> # Illustrate use of MinBlocks
gap> B := MinBlocks (M, [v]);;
gap> B;
rec(
nmrBlocks := 18,
block :=
[[0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41),

0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41), 0*Z(41),
0*Z(41), Z(41)^0, 0*Z(41), 0*Z(41)]],

maps := [1, 2, 3],
permGroup := Group((1, 2)(3, 7)(5,11)(6,12)(8,10)(13,14)(15,17)

(16,18), (1, 3, 8,11,15, 9,13, 7,12,16, 6, 2, 5, 4,10,14,17),
(1, 4, 2, 6, 3, 9, 7,12)(5, 8,10,11,13,17,15,14)),

isBlockSystem := true)

67.18 ClassicalForms

ClassicalForms(G)

Given as input, a classical, irreducible group G , ClassicalForms will try to find an invariant
classical form for G (that is, an invariant symplectic or unitary bilinear form or an invariant
symmetric bilinear form together with an invariant quadratic form, invariant modulo scalars
in each case) or try to prove that no such form exists. The dimension of the underlying
vector space must be at least 3.

The function may find a form even if G is a proper subgroup of a classical group; however,
it is likely to fail for subgroups of ΓL. In these cases ”unknown”(see below) is returned.

The results ”linear”, ”symplectic”, ”unitary”, ”orthogonal...”and ”absolutely reducible”are
always correct, but ”unknown”can either imply that the algorithm failed to find a form and
it could not prove the linear case or that G is not a classical group.

[”unknown”]
it is not known if G fixes a form.

[”unknown”, ”absolutely reducible”]
G acts absolutely reducible on the underlying vector space. The function does not
apply in this case.

[”linear”]
it is known that G does not fix a classical form modulo scalars.

[”symplectic”, form, scalars]
G fixes a symplectic form modulo scalars. The form is only unique up to scalar
multiplication. In characteristic two this also implies that no quadratic form is fixed.

[”unitary”, form, scalars]
G fixes a unitary form modulo scalars. The form is only unique up to scalar multi-
plication.

[”orthogonalcircle”, form, scalars, quadratic, ...]
[”orthogonalplus”, form, scalars, quadratic, ...]
[”orthogonalminus”, form, scalars, quadratic, ...]

1248 CHAPTER 67. THE MATRIX PACKAGE

G fixes a orthogonal form with corresponding quadratic form modulo scalars. The
forms are only unique up to scalar multiplication.

The function might return more than one list. However, in characteristic 2 it will not
return ”symplectic”if G fixes a quadratic form.

A bilinear form is returned as matrix F such that gFgtr equals F modulo scalars for all
elements g of G . A quadratic form is returned as upper triangular matrix Q such that gQgtr

equals Q modulo scalars after gQgtr has been normalized into an upper triangular matrix.
See the following example.

gap> G := O(0, 9, 9);
gap> f := ClassicalForms(G);;
gap> Q := f[1][4];;
gap> DisplayMat(Q);
. 1
.
. . 1
. . . 1
. . . . 1
. 1 . . .
. 1 . .
. 1 .
. 1
gap> DisplayMat(G.1 * Q * TransposedMat(G.1));
. 1
.
. . 1
. . . 1
. . . . 1
. 1 . . .
. 1 . .
. 1 .
. 1
gap> DisplayMat(G.2 * Q * TransposedMat(G.2));
.
1 1
. . 1
. . . 1
. . . . 1
. 1 . . .
. 1 . .
. 1 .
. 2 1

Note that in general g * Q * TransposedMat(g) is not equal to Q for an element of
an orthogonal group because you have to normalise the quadratic form such that it is an
upper triangular matrix. In the above example for G.1 you have to move the 1 in position
(9, 2) to position (2, 9) adding it to the 2 which gives a 0, and you have to move the 2 in
position (1, 2) to position (2, 1) thus obtaining the original quadratic form.

Examples

67.18. CLASSICALFORMS 1249

gap> G := SP(4, 2);
SP(4,2)
gap> ClassicalForms(G);
[["symplectic",
[[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)]],

[Z(2)^0, Z(2)^0]]]

In this case G leaves a symplectic (and symmetric) form invariant but does not fix a
quadratic form.

gap> G := O(-1, 4, 2);
O(-1,4,2)
gap> ClassicalForms(G);
[["orthogonalminus",

[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]],

[Z(2)^0, Z(2)^0],
[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]]]]

In this case G leaves a symplectic and symmetric form invariant and there exists also an
invariant quadratic form.

gap> m1 :=
[[Z(2^2), Z(2)^0, 0*Z(2), Z(2^2)],
[Z(2^2)^2, Z(2^2), Z(2^2)^2, Z(2^2)],
[0*Z(2), Z(2^2)^2, Z(2^2)^2, Z(2)^0],
[Z(2^2), Z(2^2)^2, Z(2^2), Z(2^2)^2]];;

gap> m2 :=
[[0*Z(2), 0*Z(2), 0*Z(2), Z(2^2)],
[0*Z(2), 0*Z(2), Z(2^2)^2, 0*Z(2)],
[0*Z(2), Z(2^2)^2, 0*Z(2), Z(2^2)],
[Z(2^2), 0*Z(2), Z(2^2)^2, 0*Z(2)]];;

gap> G := Group(m1, m2);;
gap> ClassicalForms(G);
[["unknown"],
["symplectic",
[[0*Z(2), Z(2)^0, Z(2)^0, Z(2^2)^2],
[Z(2)^0, 0*Z(2), Z(2^2), Z(2)^0],
[Z(2)^0, Z(2^2), 0*Z(2), Z(2)^0],
[Z(2^2)^2, Z(2)^0, Z(2)^0, 0*Z(2)]],

[Z(2)^0, Z(2)^0]]]

The ”symplectic”indicates that an invariant symplectic form exists, the ”unknown”indicates
that an invariant ”unitary”form might exist. Using the test once more, one gets:

1250 CHAPTER 67. THE MATRIX PACKAGE

gap> ClassicalForms(G);
[["symplectic",

[[0*Z(2), Z(2^2)^2, Z(2^2)^2, Z(2^2)],
[Z(2^2)^2, 0*Z(2), Z(2)^0, Z(2^2)^2],
[Z(2^2)^2, Z(2)^0, 0*Z(2), Z(2^2)^2],
[Z(2^2), Z(2^2)^2, Z(2^2)^2, 0*Z(2)]],

[Z(2)^0, Z(2)^0]],
["unitary",
[[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)]],

[Z(2)^0, Z(2)^0]]]

So G indeed fixes both a symplectic and unitary form but no quadratic form.

gap> ReadDataPkg ("matrix", "data", "a5d4.gap");
gap> ClassicalForms(G);
[["unknown", "absolutely reducible"]]

G acts irreducibly, however ClassicalForms is not able to check if an invariant bilinear or
quadratic form exists.

gap> ReadDataPkg ("matrix", "data", "a5d5.gap");
gap> ClassicalForms(G);
[["unknown"]]
gap> IsAbsolutelyIrreducible(GModule(G));
true

Although G fixes a symmetric form, ClassicalForms is not able to find an invariant form
because G is not a classical group.

67.19 RecogniseClassical

RecogniseClassical(G [,strategy] [,case] [,N])

RecogniseClassical takes as input a group G , which is a subgroup of GL(d, q) with d > 1,
and seeks to decide whether or not G contains a classical group in its natural representation
over a finite field.

strategy is one of the following:

”clg”
use the algorithm of Celler and Leedham-Green [3].

”np”
use the algorithm of Niemeyer and Praeger [11, 12].

The default strategy is ”clg”.

The parameter case is used to supply information about the specific non-degenerate bilinear,
quadratic or sesquilinear forms on the underlying vector space V preserved by G modulo
scalars. The value of case must be one of the following:

”all”
RecogniseClassical will try to determine the case of G . This is the default.

67.19. RECOGNISECLASSICAL 1251

”linear”
G ≤ GL(d, q), and preserves no non-degenerate bilinear, quadratic or sesquilinear
form on V. Set Ω := SL(d, q).

”symplectic”
G ≤ GSp(d, q), with d even, and if q is also even we assume that G preserves no
non-degenerate quadratic form on V. Set Ω := Sp(d, q).

”orthogonalplus”
G ≤ GO+(d, q) and d is even. Set Ω := Ω+(d, q).

”orthogonalminus”
G ≤ GO−(d, q) and d is even. Set Ω := Ω−(d, q).

”orthogonalcircle”
G ≤ GO◦(d, q) and d is odd. Set Ω := Ω◦(d, q).

”unitary”
G ≤ GU(d, q), where q is a square. Set Ω := SU(d, q).

N is a positive integer which determines the number of random elements selected. Its default
value depends on the strategy and case; see 67.22 and 67.23 for additional details.
In summary, the aim of RecogniseClassical is to test whether G contains the subgroup
Ω corresponding to the value of case.
The function returns a record whose contents depends on the strategy chosen. Detailed
information about components of this record can be found in 67.22 and 67.23. However,
the record has certain common components independent of the strategy and these can
be accessed using the following flag functions.
ClassicalTypeFlag

returns ”linear”, ”symplectic”, ”orthogonalplus”, ”orthogonalminus”, ”orthogonal-
circle”or ”unitary”if G is known to be a classical group of this type modulo scalars,
otherwise ”unknown”. Note that Sp(2, q) is isomorphic to SL(2, q); ”linear”not ”sym-
plectic”is returned in this case.

IsSLContainedFlag
returns true if G contains the special linear group SL(d, q).

IsSymplecticGroupFlag
returns true if G is contained in GSp(d, q) modulo scalars and contains Sp(d, q).

IsOrthogonalGroupFlag
returns true if G is contained in an orthogonal group modulo scalars and contains
the corresponding Ω.

IsUnitaryGroupFlag
returns true if G is contained in an unitary group modulo scalars and contains the
corresponding Ω.

These last four functions return true, false, or ”unknown”. Both true and false are
conclusive. The answer ”unknown”indicates either that the algorithm failed to determine
whether or not G is a classical group or that the algorithm is not applicable to the supplied
group; see 67.22 and 67.23 for additional details.
If RecogniseClassical failed to prove that G is a classical group, additional information
about the possible Aschbacher categories of G might have been obtained. See 67.22 for
details.

1252 CHAPTER 67. THE MATRIX PACKAGE

Example 1

gap> G := SL(7, 5);
SL(7,5)
gap> r := RecogniseClassical(G, "clg");;
gap> ClassicalTypeFlag(r);
"linear"
gap> IsSLContainedFlag(r);
true
gap> r := RecogniseClassical(G, "np");;
gap> ClassicalTypeFlag(r);
"linear"
gap> IsSLContainedFlag(r);
true

Example 2

gap> ReadDataPkg ("matrix", "data", "j1.gap");
gap> DisplayMat(GeneratorsFlag(G));

9 1 1 3 1 3 3
1 1 3 1 3 3 9
1 3 1 3 3 9 1
3 1 3 3 9 1 1
1 3 3 9 1 1 3
3 3 9 1 1 3 1
3 9 1 1 3 1 3

. 1

. . 1

. . . 10 . . .

. . . . 1 . .

. 10 .

. 10
10

gap> r := RecogniseClassical(G, "clg");;
gap> ClassicalTypeFlag(r);
"unknown"

The algorithms are described in [3, 11, 12].

67.20 ConstructivelyRecogniseClassical

In this section, we describe functions developed by Celler and Leedham-Green (see [4] for
details) to recognise constructively classical groups in their natural representation over finite
fields.

ConstructivelyRecogniseClassical(G, "linear")

computes both a standard generating set for a matrix group G which contains the special
linear group and expressions for the new generators in terms of G.generators. This

67.21. RECOGNISEMATRIXGROUP 1253

generating set will allow you to write an element of G as a word in the given generating
set of G .

The algorithm is of polynomial complexity in the dimension and field size. However, it is
a Las Vegas algorithm, i.e. there is a chance that the algorithm fails to complete in the
expected time. It will run indefinitely if G does not contain the special linear group.

The following functions can be applied to the record sl returned.

SizeFlag(sl)

returns the size of G .

Rewrite(sl, elm)

returns an expression such that Value(Rewrite(sl, elm), G.generators) is equal
to the element elm.

Example

gap> m1 := [[0*Z(17), Z(17), Z(17)^10, Z(17)^12, Z(17)^2],
[Z(17)^13, Z(17)^10, Z(17)^15, Z(17)^8, Z(17)^0],
[Z(17)^10, Z(17)^6, Z(17)^9, Z(17)^8, Z(17)^10],
[Z(17)^13, Z(17)^5, Z(17)^0, Z(17)^12, Z(17)^5],
[Z(17)^14, Z(17)^13, Z(17)^5, Z(17)^10, Z(17)^0]];;

gap> m2 := [[0*Z(17), Z(17)^10, Z(17)^2, 0*Z(17), Z(17)^10],
[0*Z(17), Z(17)^6, Z(17)^0, Z(17)^4, Z(17)^15],
[Z(17)^7, Z(17)^6, Z(17)^10, Z(17), Z(17)^2],
[Z(17)^3, Z(17)^10, Z(17)^5, Z(17)^4, Z(17)^6],
[Z(17)^0, Z(17)^8, Z(17)^0, Z(17)^5, Z(17)]];;

gap> G := Group(m1, m2);;
gap> sl := ConstructivelyRecogniseClassical(G, "linear");;
gap> SizeFlag(sl);
338200968038818404584356577280
gap> w := Rewrite(sl, m1^m2);;
gap> Value(w, [m1,m2]) = m1^m2;
true

The algorithm is described in [4].

67.21 RecogniseMatrixGroup

RecogniseMatrixGroup(G)

RecogniseMatrixGroup attempts to recognise at least one of the Aschbacher categories in
which the matrix group G lies. It then attempts to use features of this category to determine
the order of G and provide a membership test for G .

The algorithm is described in [13]. This implementation is experimental and limited in
its application; its inclusion in the package at this time is designed primarily to illustrate
the basic features of the approach.

Currently the function attempts to recognise groups that are reducible, imprimitive, tensor
products or classical in their natural representation.

The function returns a record whose components store detailed information about the de-
composition of G that it finds. The record contents can be viewed using DisplayMatRecord.

1254 CHAPTER 67. THE MATRIX PACKAGE

The record consists of layers of records which are the kernels at the various stages of the
computation. Individual layers are accessed via the component .kernel. We number these
layers 1 to n where layer 0 is G . The n-th layer is a p-group generated by lower uni-triangular
matrices. Information about this p-group is stored in the component .pGroup. At the i-th
layer (1 ≤ i ≤ n) we have a group generated by matrices with at most i− 1 identity blocks
down the diagonal, followed by a non-singular block. Below the blocks we have non-zero
entries and above them we have zero entries. Call this group Gi and the group generated by
the non-singular block on the diagonal Ti. In the i-th layer we have a component .quotient.
If the module for Ti is irreducible, then .quotient is Ti. If the module for Ti is reducible, then
it decomposes into an irreducible submodule and a quotient module. In this case .quotient
is the restriction of Ti to the submodule.

The central part of RecogniseMatrixGroup is the recursive function GoDownChain which
takes as arguments a record and a list of matrices. RecogniseMatrixGroup initialises this
record and then calls GoDownChain with the record and a list of the generators of G .

Assume we pass GoDownChain the i-th layer of our record and a list of matrices (possibly
empty) in the form described above.

If the i-th layer is the last, then we construct a power-commutator presentation for the
group generated by the list of matrices.

Otherwise, we now check if we have already decomposed Ti. If not, we split the module for
Ti using IsIrreducible. We set .quotient to be the trivial group of dimension that of the
irreducible submodule, and we store the basis-change matrix. We also initialise the next
layer of our record, which will correspond to the kernel of the homomorphism from Gi to
.quotient. Then we call GoDownChain with the layer and the list of matrices we started with.

If we have a decomposition for Ti, then we apply the basis-change stored in our record to
the list of matrices and decide whether the new matrices preserve the decomposition. If
they do not, then we discard the current decomposition of Ti and all the layers below the
i-th, and recall GoDownChain.

If the matrices preserve the decomposition, then we extract the blocks in the matrices which
correspond to .quotient. We decide if these blocks lie in .quotient.

If the blocks lie in .quotient, then the next step is to construct relations on .quotient
which we will then evaluate on the generators of Gi to put into the next layer. There are two
approaches to constructing relations on .quotient. Let F be the free group on the number
of generators of .quotient. We construct a permutation representation on .quotient. The
first approach is to take the image of an element of .quotient in the permutation group
and then pull it back to the permutation group. The second approach is to take a random
word in F , map it into the permutation group and then pull the permutation back into F .
The relations from approach one are ”generator relations”and those from approach two are
”random relations”. If .quotient contains SL, then we use special techniques.

If the list of matrices with which we called GoDownChain is empty, then we construct random
relations on .quotient, evaluate these in Gi to get a new list of matrices and then call
GoDownChain with this list and the next layer of our record. We use parameters similar to
those in the Random Schreier-Sims algorithm to control how hard we work.

If the list of matrices is non-empty, then we take generator relations on the list of blocks
and evaluate these in Gi. This gives us a new list of matrices and we call GoDownChain with
the list and the next layer of our record.

67.21. RECOGNISEMATRIXGROUP 1255

If, in evaluating the relations in Gi, we get a non-identity block, then we deduce that our
permutation representation is not faithful. In this case, the next layer corresponds to the
kernel of the action that provided the representation.

If these blocks do not lie in .quotient, then we have to enlarge it. We then try to find out
the Aschbacher category in which .quotient lies, and its size. After applying these tests
and computing the size we then construct generator relations on the list of generators of
.quotient and put them into the kernel. We then call GoDownChain with our record and
an empty list of matrices.

We first test whether .quotient is a classical group in its natural representation using
RecogniseClassicalNP. If .quotient contains SL, we use ConstructivelyRecognise-
Classical to obtain both its size and a membership test; if .quotient contains one
of the other classical groups, we simply report this. If .quotient contains a classical
group, we terminate the testing. If RecogniseClassicalNP returns false, then we call
RecogniseClassicalCLG. If .quotient contains one of the classical groups, then we be-
have as before. If .quotient is not a classical group, then we obtain a list of possibilities
for .quotient. This list may help to rule out certain Aschbacher categories and will give
pointers to the ones which we should investigate further.

If .quotient might be imprimitive, then we test this using IsPrimitive. If .quotient is
imprimitive, then we obtain a permutation representation for the action on the blocks and
we store this in .quotient. We set the size of .quotient to be the size of the permutation
group. If the action is not faithful, then we compute the kernel of the action at the next
layer and then we have the correct size for .quotient. If .quotient is imprimitive, then the
testing ends here. If IsPrimitive returns unknown or true, then we store this in .quotient.
We then reprocess .quotient using RecogniseClassicalCLG.

If .quotient might be a tensor product, then we test this using IsTensor. If .quotient is a
tensor product, then we store the tensor factors in .quotient. Currently, we do not exploit
this conclusion . If IsTensor returns unknown or false then we store this in .quotient.
We then reprocess .quotient using RecogniseClassicalCLG.

By default, we obtain the size of .quotient using PermGroupRepresentation. We advise
the user if the list returned by RecogniseClassicalCLG suggests that the group contains
an almost simple group or an alternating group. PermGroupRepresentation constructs a
faithful permutation representation for .quotient and we store this in .quotient.

We illustrate some of these features in the following example. Additional examples can be
found in matrix/reduce/examples.tex.

gap> # Construct the group SL(2, 3) x SP(4, 3)
gap> G1 := SL(2, 3);;
gap> G2 := SP(4, 3);;
gap> m1 := DiagonalMat(GF(3), G1.1, G2.1);;
gap> m2 := DiagonalMat(GF(3), G1.2, G2.2);;
gap> # Put something in the bottom left hand corner to give us a p-group
gap> m1[3][1] := Z(3)^0;;
gap> m2[5][2] := Z(3);;
gap> G := Group([m1, m2], m1^0);;
gap> # Apply RecogniseMatrixGroup to G
gap> x := RecogniseMatrixGroup(G);;

1256 CHAPTER 67. THE MATRIX PACKAGE

#I Input group has dimension 6 over GF(3)
#I Layer number 1: Type = "Unknown"
#I Size = 1, # of matrices = 2
#I Computing the next quotient
#I <new> acts non-trivially on the block of dim 6

#I Found a quotient of dim 2
#I Restarting after finding a decomposition
#I Layer number 1: Type = "Perm"
#I Size = 1, # of matrices = 2
#I Submodule is invariant under <new>
#I Enlarging quotient, old size = 1

#I Is quotient classical?
#I Dimension of group is <= 2, you must supply form
#I The quotient contains SL
#I New size = 24
#I Adding generator relations to the kernel
#I Layer number 2: Type = "Unknown"
#I Size = 1, # of matrices = 2
#I Computing the next quotient
#I <new> acts non-trivially on the block of dim 4

#I Found a quotient of dim 4
#I Restarting after finding a decomposition
#I Layer number 2: Type = "Perm"
#I Size = 1, # of matrices = 2
#I Submodule is invariant under <new>
#I Enlarging quotient, old size = 1

#I Is quotient classical?
#I The case is symplectic
#I This algorithm does not apply in this case.
#I The quotient contains SP
#W Applying Size to (matrix group) quotient
#I New size = 51840
#I Adding generator relations to the kernel
#I Restarting after enlarging the quotient
#I Layer number 2: Type = "Perm"
#I Size = 51840, # of matrices = 0
#I Using a permutation representation
#I Adding random relations at layer number 2
#I Adding a random relation at layer number 2
#I Layer number 3: Type = "PGroup"
#I Size = 1, # of matrices = 3
#I Reached the p-group case
#I New size = 27
#I Adding a random relation at layer number 2

67.21. RECOGNISEMATRIXGROUP 1257

#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 27
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 2
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Kernel is finished, size = 340122240
#I Restarting after enlarging the quotient
#I Layer number 1: Type = "SL"
#I Size = 8162933760, # of matrices = 0
#I Using the SL recognition
#I Adding random relations at layer number 1
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1

1258 CHAPTER 67. THE MATRIX PACKAGE

#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1

67.21. RECOGNISEMATRIXGROUP 1259

#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Adding a random relation at layer number 1
#I Layer number 2: Type = "Perm"
#I Size = 340122240, # of matrices = 3
#I Submodule is invariant under <new>
#I Using a permutation representation
#I Adding generator relations to the kernel
#I Kernel p-group, old size = 6561
#I Kernel p-group, new size = 6561
#I Kernel is finished, size = 8162933760
gap> # Let us look at what we have found
gap> DisplayMatRecord(x);
#I Matrix group over field GF(3) of dimension 6 has size 8162933760
#I Number of layers is 3
gap> DisplayMatRecord(x, 1);
#I Layer Number = 1
#I Type = SL
#I Dimension = 2
#I Size = 24
gap> # The module for G splits into an irreducible submodule of dimension
gap> # 2 and a quotient module of dimension 4. The restriction of G to
gap> # the submodule contains SL(2, 3). Call this group G1.
gap> DisplayMatRecord(x, 2);
#I Layer Number = 2
#I Type = Perm
#I Dimension = 4
#I Size = 51840
gap> # We have now taken relations on G1 and evaluated them in G to get
gap> # a group H, which is the kernel of the homomorphism from G to G1.
gap> # The group generated by the last 4x4 block on the diagonal of the
gap> # matrices of H has an irreducible module and we have computed
gap> # a permutation representation on it. Call this group H1.
gap> DisplayMatRecord(x, 3);
#I Layer Number = 3

1260 CHAPTER 67. THE MATRIX PACKAGE

#I Type = PGroup
#I Dimension = 6
#I Size = 6561
gap> # We have now taken relations on H1 and evaluated them in H to get the
gap> # kernel of the homomorphism from H to H1. This kernel consists of
gap> # lower uni-triangular matrices. It is a p-group of size 6561.

67.22 RecogniseClassicalCLG

In this section, we describe functions developed by Celler and Leedham-Green (see [3] for
details) to recognise classical groups in their natural representation over finite fields.

RecogniseClassicalCLG(G [,case] [,N])

This is the top-level function, taking as input a group G , which is a subgroup of GL(d, q)
with d > 1. The other optional arguments have the same meaning as those supplied to
RecogniseClassical. The default value of N , the number of random elements to consider,
depends on the case; it is 40 for small fields and dimensions, but decreases to 10 for larger
dimensions.

Constraints

In the case of an orthogonal group, the dimension of the underlying vector space must be at
least 7, since there are exceptional isomorphisms between the orthogonal groups in dimen-
sions 6 or less and other classical groups which are not dealt with in RecogniseClassical-
CLG. In dimension 8, RecognizeSO will not rule out the possibility of O7(q) embedded as
irreducible subgroup of O+

8 (q). Since G must also act irreducibly, RecogniseClassicalCLG
does not recognise O0

2n+1(2k).

The record returned by this function is similar to that described in 67.19. In particular, the
flag functions described there and below can be applied to the record. You should ignore
undocumented record components.

Additional information

DualFormFlag
if G has been proved to be a symplectic or orthogonal group, DualFormFlag returns
the symplectic or orthogonal form.

QuadraticFormFlag
if G has been proved to be an orthogonal group, QuadraticFormFlag returns the
quadratic form.

UnitaryFormFlag
if G has been proved to be a unitary group, DualFormFlag returns the symplectic or
orthogonal form.

If RecogniseClassical failed to prove that G is a classical group, additional information
about the possible Aschbacher categories of G might have been obtained.

In particular, the following flag functions may be applied to the record. If one of these
functions returns a list, it has the following meaning: if G belongs to the corresponding
Aschbacher category, then G is determined by one of the possibilities returned; it does not
imply that G is a member of this category. However, an empty list indicates that G does
not belong to this category. Each of these functions may also return ”unknown”.

67.22. RECOGNISECLASSICALCLG 1261

A group G is almost simple if G contains a non-abelian simple group T and is contained
in the automorphism group of T . If G is almost simple, then G is either an almost sporadic
group, an almost alternating group, or an almost Chevalley group.

PossibleAlmostSimpleFlag
if G is not a classical group, this function returns a list of possible almost sporadic
groups modulo scalars. This function deals only with sporadic groups T . The names
of the corresponding non-abelian simple groups are returned. Possible names are:
”M11”, ”M12”, ”M22”, ”M23”, ”M24”, ”J2”, ”Suz”, ”HS”, ”McL”, ”Co3”, ”Co2”,
”Co1”, ”He”, ”Fi22”, ”Fi23”, ”F3+”, ”HN”, ”Th”, ”B”, ”M”, ”J1”, ”ON”, ”J3”,
”Ly”, ”Ru”, ”J4”.

PossibleAlternatingGroupsFlag
if G is not a classical group, this function returns a list of possible almost alternating
groups modulo scalars. This list contains the possible degrees as integers.

PossibleChevalleyGroupsFlag
if G is not a classical group, this function returns a list of possible almost Cheval-
ley groups modulo scalars. The various Chevalley groups are described by tuples
[type, rank, p, k], where type is a string giving the type (e.g. ”2A”, see [15, p. 170] for
details), rank is the rank of the Chevalley group, and pk is the size of the underlying
field.

IsPossibleImprimitiveFlag
returns true if G might be imprimitive.

PossibleImprimitiveDimensionsFlag
returns the possible block dimensions (IsPossibleImprimitiveFlag must be true).

IsPossibleTensorProductFlag
returns true if G might be a tensor product.

PossibleTensorDimensionsFlag
returns the possible tensor product dimensions; note that this entry is only valid
if IsPossibleTensorProductFlag is true or IsPossibleTensorPowerFlag is true
and the dimension is a square.

IsPossibleTensorPowerFlag
returns true if G might be a tensor power.

IsPossibleSmallerFieldFlag
retuns true if G could be defined (modulo scalars) over a smaller field.

PossibleSmallerFieldFlag
returns the the least possible field (IsPossibleSmallerFieldFlag must be true).

IsPossibleSemiLinearFlag
the natural module could be isomorphic to a module of smaller dimension over a
larger field on which this extension field acts semi-linearly.

IsPossibleNormalizerPGroupFlag
the dimension of the underlying vector space must be rm for some prime r and G
could be an extension of a r-group of symplectic type and exponent r · gcd(2, r) by
a subgroup of Sp(m, r), modulo scalars. A r-group is of symplectic type if every
characteristic abelian subgroup is cyclic.

Examples

1262 CHAPTER 67. THE MATRIX PACKAGE

gap> m1 :=
[[0*Z(17), Z(17), Z(17)^10, Z(17)^12, Z(17)^2],
[Z(17)^13, Z(17)^10, Z(17)^15, Z(17)^8, Z(17)^0],
[Z(17)^10, Z(17)^6, Z(17)^9, Z(17)^8, Z(17)^10],
[Z(17)^13, Z(17)^5, Z(17)^0, Z(17)^12, Z(17)^5],
[Z(17)^14, Z(17)^13, Z(17)^5, Z(17)^10, Z(17)^0]];;

gap> m2 :=
[[0*Z(17), Z(17)^10, Z(17)^2, 0*Z(17), Z(17)^10],
[0*Z(17), Z(17)^6, Z(17)^0, Z(17)^4, Z(17)^15],
[Z(17)^7, Z(17)^6, Z(17)^10, Z(17), Z(17)^2],
[Z(17)^3, Z(17)^10, Z(17)^5, Z(17)^4, Z(17)^6],
[Z(17)^0, Z(17)^8, Z(17)^0, Z(17)^5, Z(17)]];;

gap> G := Group(m1, m2);;
gap> sl := RecogniseClassicalCLG(G, "all", 1);;
gap> IsSLContainedFlag(sl);
"unknown"

Since the algorithm has a random component, it may fail to prove that a group contains
the special linear group even if the group does. As a reminder, IsSLContainedFlag may
return true, false, or "unknown".

Here we chose only one random element. If RecogniseClassicalCLG fails but you suspect
that the group contains the special linear group, you can restart it using more random
elements. You should, however, not change the case. If you don’t already know the case,
then call RecogniseClassicalCLG either without a case parameter or ”all”.

gap> sl := RecogniseClassicalCLG(G, 5);;
gap> IsSLContainedFlag(sl);
true

The following is an example where G is not an classical group but additional information
has been obtained.

gap> ReadDataPkg ("matrix", "data", "j1.gap");
gap> DisplayMat(GeneratorsFlag(G));

9 1 1 3 1 3 3
1 1 3 1 3 3 9
1 3 1 3 3 9 1
3 1 3 3 9 1 1
1 3 3 9 1 1 3
3 3 9 1 1 3 1
3 9 1 1 3 1 3

. 1

. . 1

. . . 10 . . .

. . . . 1 . .

. 10 .

. 10
10

67.23. RECOGNISECLASSICALNP 1263

gap> r := RecogniseClassical(G, "clg");;
gap> ClassicalTypeFlag(r);
"unknown"
gap> IsPossibleImprimitiveFlag(r);
false
gap> IsPossibleTensorProductFlag(r);
false
gap> IsPossibleTensorPowerFlag(r);
false
gap> PossibleAlmostSimpleFlag(r);
["J1"]
gap> PossibleAlternatingGroupsFlag(r);
[]
gap> PossibleChevalleyGroupsFlag(r);
[["A", 1, 11, 3], ["A", 2, 11, 2], ["A", 3, 11, 1],
["G", 2, 11, 1]]

67.23 RecogniseClassicalNP

In this section, we describe functions developed by Niemeyer and Praeger (see [11, 12] for
details) to recognise classical groups in their natural representation over finite fields.

RecogniseClassicalNP(G [,case] [,N])

This is the top-level function taking as input a group G , which is a subgroup of GL(d, q)
with d > 2. The other optional arguments have the same meaning as those supplied to
RecogniseClassical.

The aim of RecogniseClassicalNP is to test whether G contains the subgroup Ω corre-
sponding to the value of case. The algorithm employed is Monte-Carlo based on random
selections of elements from G . RecogniseClassicalNP returns either true or false or
"does not apply". If it returns true and G satisfies the constraints listed for case (see
RecogniseClassical) then we know with certainty that G contains the corresponding clas-
sical subgroup Ω. It is not checked whether G satisfies all these conditions. If it returns
"does not apply" then either the theoretical background of this algorithm does not allow
us to decide whether or not G contains Ω (because the parameter values are too small) or G
is not a group of type case. If it returns false then there is still a possibility that G contains
Ω. The probability that G contains Ω and RecogniseClassicalNP returns false can be
controlled by the parameter N, which is the number of elements selected from G. The larger
N is, the smaller this probability becomes. If N is not passed as an argument, the default
value for N is 15 if case is "linear" and 25 otherwise. These values were experimentally
determined over a large number of trials. But if d has several distinct prime divisors, larger
values of N may be required (see [12]).

The complexity of the function for small fields (q < 216) and for a given value of N is
O(d3 loglogd) bit operations.

Assume InfoRecog1 is set to Print; if RecogniseClassicalNP returns true, it prints

"Proved that the group contains a classical group of type <case>
in <n> selections\",

1264 CHAPTER 67. THE MATRIX PACKAGE

where n is the actual number of elements used; if RecogniseClassicalNP returns false, it
prints "The group probably does not contain a classical group" and possibly also
a statement suggesting what the group might be.

If case is not supplied, then ClassicalForms seeks to determine which form is preserved.
If ClassicalForms fails to find a form, then RecogniseClassicalNP returns false.

Details of the computation, including the identification of the classical group type, are
stored in the component G.recognise. Its contents can be accessed using the following flag
functions.

ClassicalTypeFlag
returns one of "linear", "symplectic", "orthogonalplus", "orthogonalminus",
"orthogonalcircle" or "unitary" if G is known to be a classical group of this type
modulo scalars, otherwise "unknown".

IsSLContainedFlag
returns true if G contains the special linear group SL(d, q).

IsSymplecticGroupFlag
returns true if G is contained in GSp(d, q) modulo scalars and contains Sp(d, q).

IsOrthogonalGroupFlag
returns true if G is contained in an orthogonal group modulo scalars and contains
the corresponding Ω.

IsUnitaryGroupFlag
returns true if G is contained in an unitary group modulo scalars and contains the
corresponding Ω.

These last four functions return true, false, or ”unknown”. Both true and false are
conclusive. The answer ”unknown”indicates either that the algorithm failed to determine
whether or not G is a classical group or that the algorithm is not applicable to the supplied
group.

If RecogniseClassicalNP returns true, then G.recognise contains all the information
that proves that G contains the classical group having type G.recognise.type. The record
components d, p, a and q identify G as a subgroup of GL(d, q), where q = pa. For each
e in G.recognise.E the group G contains a ppd(d, q; e)-element (see IsPpdElement) and
for each e in G.recognise.LE it contains a large ppd(d, q; e)-element. Further, it con-
tains a basic ppd(d, q; e)-element if e is in G.recognise.basic. Finally, the component
G.recognise.isReducible is false, indicating that G is now known to act irreducibly.

If RecogniseClassicalNP returns "does not apply", then G has no record G.recognise.

If RecogniseClassicalNP returns false, then G.recognise gives some indication as to
why the algorithm failed to prove that G contains a classical group. Either G could
not be shown to be generic and G.recognise.isGeneric is false and G.recognise.E,
G.recognise.LE and G.recognise.basic will indicate which kinds of ppd-elements could
not be found; or G.recognise.isGeneric is true and the algorithm failed to rule out that
G preserves an extension field structure and G.recognise.possibleOverLargerField is
true; or G.isGeneric is true and G.possibleOverLargerField is false and the possibil-
ity that G is nearly simple could not be ruled out and G.recognise.possibleNearlySimple
contains a list of names of possible nearly simple groups; or ClassicalForms failed to
find a form and G.recognise.noFormFound is true; or finally G.isGeneric is true and

67.23. RECOGNISECLASSICALNP 1265

G.possibleOverLargerField is false and G.possibleNearlySimple is empty and G was
found to act reducibly and G.recognise.isReducible is true.
If RecogniseClassicalNP returns false, then a recall to RecogniseClassicalNP for the
given group uses the previously computed facts about the group stored in G.recognise.

gap> RecogniseClassicalNP(GL(10,5), "linear", 10);
true
gap> RecogniseClassicalNP(SP(6,2), "symplectic", 10);
I This algorithm does not apply in this case
"does not apply"

gap> G := SL(20, 5);;
gap> RecogniseClassicalNP(G);
true
gap> G.recognise;
rec(
d := 20,
p := 5,
a := 1,
q := 5,
E := [11, 12, 16, 18],
LE := [11, 12, 16, 18],
basic := 12,
isReducible := false,
isGeneric := true,
type := "linear")

gap> InfoRecog1 := Print;; InfoRecog2 := Print;;
gap> G := GeneralUnitaryMatGroup(7,2);;
gap> RecogniseClassicalNP(G);
I The case is unitary
I G acts irreducibly, block criteria failed
I The group is generic in 4 selections
I The group is not an extension field group
I The group does not preserve an extension field
I The group is not nearly simple
I The group acts irreducibly
I Proved that group contains classical group of type unitary
I in 6 random selections.
true
gap > G.recognise;
rec(
d := 7,
p := 2,
a := 2,
q := 4,
E := [5, 7],
LE := [5, 7],
basic := 7,
isReducible := false,

1266 CHAPTER 67. THE MATRIX PACKAGE

isGeneric := true,
type := "unitary")

gap> InfoRecog1 := Print;; InfoRecog2 := Print;;
gap> G := Group (
[[0,1,0,0],
[1,1,0,0],
[0,0,0,1],
[0,0,1,1]] * GF(2).one,
[[0,0,1,0],
[0,1,1,0],
[1,0,1,1],
[0,1,1,1]] * GF(2).one);
gap> RecogniseClassicalNP (G);
I The case is linear
I G acts irreducibly, block criteria failed
I The group is generic in 8 selections
I The group is not an extension field group
I The group does not preserve an extension field
I G’ might be A 7;
I G’ is not a Mathieu group;
I G’ is not PSL(2,r)
I The group could be a nearly simple group.
false
gap> G.recognise;
rec(
d := 4,
p := 2,
a := 1,
q := 2,
E := [3, 4],
LE := [3],
basic := 4,
isReducible := false,
isGeneric := true,
possibleNearlySimple := ["A7"],
dimsReducible := [0, 4],
possibleOverLargerField := false)

We now describe some of the lower-level functions used.

GenericParameters(G, case)

This function takes as input a subgroup G of GL(d, q) and a string case, one of the list given
under RecogniseClassicalGroup. The group G has generic parameters if the subgroup Ω
of GL(d, q) contains two different ppd-elements (see IsPpdElement), that is a ppd(d, q; e1)-
element and a ppd(d, q; e2)-element for d/2 < e1 < e2 ≤ d such that at least one of them
is a large ppd-element and one is a basic ppd-element. The function GenericParameters
returns true if G has generic parameters. In this case RecogniseClassicalNP can be
applied to G and case. If G does not have generic parameters, the function returns false.

67.23. RECOGNISECLASSICALNP 1267

gap> GenericParameters(SP(6,2), "symplectic");
false
gap> GenericParameters(SP(12,2), "symplectic");
true

[Comment: In the near future we propose to extend and modify our algorithm to deal with
cases where the group Ω does not contain sufficient ppd-elements.]

IsGeneric(G, N)

This function takes as input a subgroup G of GL(d, q) and an integer N . The group G is
generic if it is irreducible and contains two different ppd-elements (see IsPpdElement), that
is a ppd(d, q; e1)-element and a ppd(d, q; e2)-element for d/2 < e1 < e2 ≤ d such that at
least one of them is a large ppd-element and one is a basic ppd-element. It chooses up
to N elements in G and increases G.recognise.n by the number of random selections it
made. If among these it finds the two required different ppd-elements, which is established
by examining the sets G.recognise.E, G.recognise.LE, and G.recognise.basic, then
it sets G.recognise.isGeneric to true and returns true. If after N random selections it
fails to find two different ppd-elements, the function returns false. It is not tested whether
G actually is irreducible.

gap> IsGeneric(SP(12,2), 20);
true

IsExtensionField(G, case, N)

This function takes as input a subgroup G of GL(d, q), a string case, one of the list given
under RecogniseClassicalGroup, and an integer N . It assumes, but does not test that G is
generic (see IsGeneric). We say that the group G can be defined over an extension field if
there is a prime b dividing d such that G is conjugate to a subgroup of Z.GL(d/b, qb).b, where
Z is the group of scalar matrices in GL(d, q). Then IsExtensionField returns m if certain
elements are found inm random selections which together prove that G cannot be a subgroup
of an extension field group. In this case G.recognise.possibleOverLargerField is set to
false. If, after N random selections of elements from G , this could not be established, then
IsExtensionField returns true. Hence, if it returns true, then either G is an extension
field group or one needs to select more elements of G to establish that this is not the case.
The component G.recognise.possibleOverLargerField is set to true.

gap> IsExtensionField(GL(12,2), "linear", 30);
8

IsGenericNearlySimple(G, case, N)

The subgroup G of GL(d, q) is said to be nearly simple if there is some nonabelian simple
group S such that S ≤ G/(G∩Z) ≤ Aut(S), where Z denotes the subgroup of nonsingular
scalar matrices of GL(d, q). This function takes as input a subgroup G of GL(d, q), a string
case, one of the list given under RecogniseClassicalGroup, and an integer N . It assumes
but does not test that G is irreducible on the underlying vector space, is generic (see
IsGeneric), and is not contained in an extension field group (see IsExtensionField).
This means that G is known to contain two different ppd-elements (see IsPpdElement),
that is a ppd(d, q; e1)-element and a ppd(d, q; e2)-element for d/2 < e1 < e2 ≤ d such that
at least one of them is a large ppd-element and one is a basic ppd-element, and the values
e1 and e2 for the elements are stored in G.recognise.E. At this stage, the theoretical
analysis in [12] tells us that either G contains Ω, or the string case is "linear" and G is an

1268 CHAPTER 67. THE MATRIX PACKAGE

absolutely irreducible generic nearly simple group. All possibilities for the latter groups are
known explicitly, and IsGenericNearlySimple tries to establish that G is not one of these
groups. Thus it first checks that case is "linear", and if so performs further tests.

IsGenericNearlySimple returns false if certain elements are found which together prove
that G cannot be a generic nearly simple group. If, after N random selections of elements
from G , this could not be shown, then IsGenericNearlySimple returns true and G might
be a generic nearly simple group. It increases G.recognise.n by the number of elements
selected. In this case either G is nearly simple or there is a small chance that the output
true is incorrect. In fact the probability with which the algorithm will return the statement
true when G is not nearly simple can be made arbitrarily small depending on the number
N of random selections performed. The list of irreducible generic nearly simple groups is
very short. The name of each nearly simple group which might be isomorphic to G is stored
as a string in G.recognise.possibleNearlySimple. If InfoRecog2 is set to Print, then
in the case that G is such a group IsGeneric will print the isomorphism type of the nearly
simple group.

gap> IsGenericNearlySimple(GL(12,2), "symplectic", 30);
11

67.24 InducedAction

InducedAction(module, basis)
SubGModule(module, basis)
QuotientGModule(module, basis)

These functions take a G-module module as input, together with a basis basis for a proper
submodule, which is assumed to be normalised, in the weak sense that the first non-zero
component of each vector in the basis is 1, and no two vectors in the basis have their first
nonzero components in the same position. The basis is given as an r× n matrix, where r is
the length of the basis.

Normally, one runs IsIrreducible(module) first, and (assuming it returns false) then
runs these functions using SubbasisFlag(module) as the second argument. InducedAction
returns a 4-element list containing the submodule, the quotient module, the original ma-
trices rewritten with respect to a basis in which a basis for the submodule comes first,
and the change-of-basis matrix; SubGModule returns the submodule having basis as basis;
QuotientGModule the corresponding quotient module.

RandomIrreducibleSubGModule(module)

Find a basis for an irreducible submodule of module.

67.25 FieldGenCentMat

FieldGenCentMat(module)

This function should only be applied if the function IsIrreducible(module) has returned
true, and if IsAbsolutelyIrreducible(module) has returned false. A matrix which
centralises the G-module module and which has multiplicative order qe − 1, where q is
the order of the ground field and e is the dimension of the centralising field of module, is
calculated and stored. It can be accessed as CentMatFlag(module).

67.26. MINIMALSUBGMODULES 1269

67.26 MinimalSubGModules

MinimalSubGModules(module1, module2 [, max])

This function should only be applied if IsIrreducible(module1) has returned true. mod-
ule1 and module2 are assumed to beG-modules for the same groupG. MinimalSubGModules
computes and returns a list of the normalised bases of all of the minimal submodules of
module2 that are isomorphic to module1 . (These can then be constructed as G-modules, if
required, by calling SubGModule(module2, basis) where basis is one of these bases.) The
optional parameter max should be a positive integer. If the number of submodules exceeds
max , then the procedure is aborted.

67.27 SpinBasis

SpinBasis(vector, matrices)

The input is a vector, vector , and a list of n × n matrices, matrices, where n is the length
of the vector. A normalised basis of the submodule generated by the action of the matrices
(acting on the right) on the vector is calculated and returned. It is returned as an r × n
matrix, where r is the dimension of this submodule.

SpinBasis is called by IsIrreducible.

67.28 SemiLinearDecomposition

SemiLinearDecomposition(module, S, C, e)

module is a module for a matrix group G over a finite field GF (q). The function returns
true if G is found to act semilinearly.

G is assumed to act absolutely irreducibly. S is a set of invertible matrices, generating a sub-
group of G, and assumed to act irreducibly but not absolutely irreducibly on the underlying
vector space of module. The matrix C centralises the action of S on the underlying vector
space and so acts as multiplication by a field generator x of GF (qe) for some embedding of
a d/e-dimensional vector space over GF (qe) in the d-dimensional space. If C centralises the
action of the normal subgroup 〈S〉G of G, then 〈S〉G embeds in GL(d/e, qe), and G embeds
in ΓL(d/e, qe), the group of semilinear automorphisms of the d/e-dimensional space. This
is verified by the construction of a map from G to Aut(GF (qe)). If the construction is
successful, the function returns true. Otherwise a conjugate of an element of S is found
which does not commute with C . This conjugate is added to S and the function returns
false.

SemiLinearDecomposition is called by SmashGModule.

The algorithm is described in [6].

67.29 TensorProductDecomposition

TensorProductDecomposition(module, basis, d1, d2)

module is a module for a matrix group G over a finite field, basis is a basis of the underlying
vector space, d1 and d2 are two integers whose product is the dimension of that space.

1270 CHAPTER 67. THE MATRIX PACKAGE

TensorProductDecomposition returns true if module can be decomposed as a tensor prod-
uct of spaces of dimensions d1 and d2 with respect to the given basis, and false otherwise.
The matrices which represent the action of the generators of G with respect to the appro-
priate basis are computed.

TensorProductDecomposition is called by SmashGModule.

The algorithm is described in [6].

67.30 SymTensorProductDecomposition

SymTensorProductDecomposition(module, HM)

module is a module for a matrix group G over a finite field. HM is the module corresponding
to the action of a subgroup H of G on the same vector space. Both G and H are assumed to
act absolutely irreducibly. The function returns true if HM can be decomposed as a tensor
product of two or more H-modules, all of the same dimension, where these tensor factors
are permuted by the action of G. In this case, components of module record the tensor
decomposition and the action of G in permuting the factors. If no such decomposition is
found, SymTensorProductDecomposition returns false.

A negative answer is not reliable, since we try to find a decomposition of HM as a tensor
product only by considering some pseudo-random elements.

SymTensorProductDecomposition is called by SmashGModule.

The algorithm is described in [6].

67.31 ExtraSpecialDecomposition

ExtraSpecialDecomposition(module, S)

module is a module for a matrix group G over a finite field where G is assumed to act
absolutely irreducibly.

S is a set of invertible matrices, assumed to act absolutely irreducibly on the underlying
vector space of module.

ExtraSpecialDecomposition returns true if (modulo scalars) 〈S〉 is an extraspecial r-
group, for some prime r, or a 2-group of symplectic type (that is, the central product of an
extraspecial 2-group with a cyclic group of order 4), normalised by G. Otherwise it returns
false.

ExtraSpecialDecomposition attempts to prove that 〈S〉 is extraspecial or of symplectic
type by construction. It tries to find generators x1, . . . , xk, y1, . . . , yk, z for 〈S〉, with z central
of order r, each xi commuting with all other generators except yi, each yi commuting with
all other generators except xi, and [xi, yi] = z. If it succeeds, it checks that conjugates of
these generators are also in S .

ExtraSpecialDecomposition is called by SmashGModule.

The algorithm is described in [6].

67.32. MINBLOCKS 1271

67.32 MinBlocks

MinBlocks(module, B)

MinBlocks finds the smallest block containing the echelonised basis B under the action of
the G-module module. The block system record returned has four components: the number
of blocks, a block containing the supplied basis B , a permutation group P which describes
the action of G on the blocks, and a list which identifies the images of the generators of G
as generators of P . For an explanation of this last component, see ApproximateKernel.

MinBlocks is called by IsPrimitive.

The algorithm is described in [7].

67.33 BlockSystemFlag

BlockSystemFlag(module)

If the record for the G-module module has a block system component, then BlockSystem-
Flag returns this component, which has the structure described in MinBlocks, else it returns
false.

67.34 Components of a G-module record

The component .reducible is set to true if module is known to be reducible, and to
false if it is known not to be. This component is set by IsIrreducible which may also
set the components .subbasis, .algEl, .algElMat, .algElCharPol, .algElCharPolFac,
.algElNullspaceVec and .algElNullspaceDim. If module has been proved reducible,
.subbasis is a basis for a submodule. Alternatively, if module has been proved to be
irreducible, .algEl is set to the random element el of the group algebra which has been
successfully used by the algorithm to prove irreducibility, represented abstractly, essentially
as a sum of words in the generators, and .algElMat to the actual matrix X that represents
that element. The component .algElCharPol is set to the characteristic polynomial p of
X and .algElCharPolFac to the factor f of X used by the algorithm. (Essentially irre-
ducibility is proved by applying Norton’s irreducibility criterion to the matrix f(X); see [5]
for further details.) The component .algElNullspaceVec is set to an arbitrary vector of
the nullspace N of f(X), and .algElNullspaceDim to the dimension of N .

The component .absolutelyReducible is set to false if module is known to be absolutely
irreducible, and to true if it is known not to be. It is set by IsAbsolutelyIrreducible,
which also sets the components .degreeFieldExt, .centMat, .centMatMinPoly if module
is not absolutely irreducible. In that case, .degreeFieldExt is set to the dimension e of
the centralising field of module. The component .centMat is set to a matrix C, which both
centralises each of the matrices in module.generators generating the group action of module
and has minimal polynomial f of degree e. The component .centMatMinPoly is set equal
to f .

The component .semiLinear is set to true in SemiLinearDecomposition if G acts abso-
lutely irreducibly on module but embeds in a group of semilinear automorphisms over an
extension field of degree e over the field F . Otherwise it is not set. At the same time,
.degreeFieldExt is set to e, .linearPart is set to a list of matrices S which are normal
subgroup generators for the intersection of G with the general linear group in dimension

1272 CHAPTER 67. THE MATRIX PACKAGE

d/e over GF (qe), and .centMat is set to a matrix C which commutes with each of those
matrices. Here, C corresponds to scalar multiplication in the module by an element of the
extension field GF (qe). The component .frobeniusAutomorphisms is set to a list of inte-
gers i, one corresponding to each of the generating matrices g for G in the list .generators,
such that Cg = gCq

i(g)
. Thus the generator g acts on the field GF (qe) as the Frobenius

automorphism x→ xq
i(g)

.
The component .tensorProduct is set to true in TensorProductDecomposition if mod-
ule can be written as a tensor product of two G-modules with respect to an appropriate
basis. Otherwise it is not set. At the same time, .tensorBasis is set to the appropriate
basis of that space, and .tensorFactors to the pair of G-modules whose tensor product is
isomorphic to module written with respect to that basis.
The component .symTensorProduct is set to true in SymTensorProductDecomposition if
module can be written as a symmetric tensor product whose factors are permuted by the
action of G. Otherwise it is not set. At the same time, .symTensorBasis is set to the basis
with respect to which this decomposition can be found, .symTensorFactors to the list of
tensor factors, and .symTensorPerm to the list of permutations corresponding to the action
of each of the generators of G on those tensor factors.
The component .extraSpecial is set to true in the function ExtraSpecialDecomposition
if G has been shown to have a normal subgroup H which is an extraspecial r-group for an
odd prime r or a 2-group of symplectic type, modulo scalars. Otherwise it is not set. At
the same time, .extraSpecialGroup is set to the subgroup H, and .extraSpecialPrime
is set to r.
The component .imprimitive is set to true if G has been shown to act imprimitively and
to false if G is primitive. Otherwise it is not set. This component is set in IsPrimitive. If
G has been shown to act imprimitively, then module has a component .blockSystem which
has the structure described in BlockSystemFlag.

67.35 ApproximateKernel

ApproximateKernel(G, P, m, n [,maps])

G is an irreducible matrix group. P is a permutation representation of G .
ApproximateKernel returns a generating set for a subgroup of the kernel of a homo-
morphism from G to P . The parameter m is the maximum number of random relations
constructed in order to obtain elements of the kernel. If n successive relations provide no
new elements of the kernel, then we terminate the construction. These two parameters
determine the time taken to construct the kernel; n can be used to increase the probability
that the whole of the kernel is constructed. The suggested values of m and n are 100 and
30, respectively.
Assume that G has r generators and P has s generators. The optional argument maps
is a list of length r containing integers between 0 and s. We use maps to specify the
correspondence between the generators of G and the generators of P . An entry 0 in position
i indicates that G .i maps to the identity of P ; an entry j in position i indicates that G .i
maps to P .j. By default, we assume that G .i maps to P .i.
The function is similar to RecogniseMatrixGroup but here we already know .quotient is G
and we have a permutation representation P for G . The function returns a record containing
information about the kernel. The record contents can be viewed using DisplayMatRecord.

67.36. RANDOMRELATIONS 1273

The algorithm is described in [13]; the implementation is currently experimental.

67.36 RandomRelations

RandomRelation(G, P [,maps])

G is a matrix group. P is a permutation representation of G . The optional argument maps
has the same meaning as in ApproximateKernel.

RandomRelation returns a relation for G . We set up a free group on the number of generators
of G and we also set up a mapping from P to this free group. We then take a random word
in the free group and evaluate this in P . Our relation is the product of the original word
and the inverse of the image of the permutation under the mapping we have constructed.

EvaluateRelation(reln, G)

reln is the word returned by an application of RandomRelation. EvaluateRelation evalu-
ates reln on the generators of G .

67.37 DisplayMatRecord

DisplayMatRecord(rec [, layer])
SetPrintLevelFlag(rec, i)
PrintLevelFlag(rec)

rec is the record returned either by RecogniseMatrixGroup or ApproximateKernel. The
optional argument layer is an integer between 1 and the last layer reached by the compu-
tation and i is an integer between 1 and 3.

DisplayMatRecord prints the information contained in rec according to three different
print level settings. The print level is initially set to 1. This can be changed using
SetPrintLevelFlag. We can also examine the current print level using PrintLevelFlag.

At print level 1, we get basic information about the group; the field over which it is written,
its dimension and possibly its size. If layer is specified, then we get this basic information
about .quotient at that layer .

At print level 2, we get the same basic information about the group as we did at level 1
along with the basic information about .quotient at each level. If layer is specified, then
we get the same information as we did at level 1.

At print level 3, we print the entire contents of rec. If layer is specified, then we print the
part of rec that corresponds to layer .

67.38 The record returned by RecogniseMatrixGroup

Both RecogniseMatrixGroup and ApproximateKernel return a record whose components
tell us information about the group and the various kernels which we compute.

Each layer of the record contains basic information about its corresponding group; the field
over which it is written, its identity, its dimension and its generators. These are stored in
components .field, .identity, .dimension and .generators respectively.

Each layer also has components .layerNumber, .type, .size and .printLevel. .layer-
Number is an integer telling us which layer of the record we are in. The top layer is layer 1,
.kernel is layer 2, etc.

1274 CHAPTER 67. THE MATRIX PACKAGE

The component .type is one of the following strings: ”Unknown”, ”Perm”, ”SL”, ”Im-
primitive”, ”Trivial”and ”PGroup”. If .type is ”Unknown”then we have not yet computed
.quotient. If .type is ”Perm”then we have computed .quotient; if .quotient does not
contain SL then we compute a permutation representation for it. If .quotient contains SL
then .type is ”SL”. If .quotient is imprimitive then .type is ”Imprimitive”. If .quotient
is trivial then .type is ”Trivial”. If we are in the last layer then .type is ”PGroup”.

The component .size is the size of the group generated by .generators; .printLevel is
the current print level (see DisplayMatRecord).

All layers except the last have components .sizeQuotient, .dimQuotient, .basisSub-
module and .basis. Here .sizeQuotient is the size of .quotient. If we have a permu-
tation representation for .quotient which is not faithful, then .sizeQuotient is the size
of the permutation group. We compute the kernel of the action in the next layer and thus
obtain the correct size of .quotient. .dimQuotient is the dimension of .quotient. The
component .basisSubmodule is a matrix consisting of standard basis vectors for the quo-
tient module. We use it to check that the .quotient block structure is preserved. .basis
is the basis-change matrix returned when we split the group.

The .quotient record may have .permDomain, .permGroupP, .fpGroup, .abstractGen-
erators, .fpHomomorphism and .isFaithful as components. If we have a permutation
representation on the group .quotient, then .permDomain is either a list of vectors or
subspaces on which the group acts to provide a permutation group. .permGroupP is the
permutation group. .fpGroup is a free group on the number of generators of .quotient.
.abstractGenerators is the generators of .fpGroup. .fpHomomorphism is a mapping from
.permGroupP to .fpGroup. .isFaithful tells us whether we have learned that the repre-
sentation is not faithful.

The .pGroup record has components .field, .size, .prime, .dimension, .identity,
.layers and .layersVec. Here .field is the field over which the group is written; .size is
the size of the group; .prime is the characteristic of the field; .dimension is the dimension
of the group; .identity is the identity for the group; .layers and .layersVec are lists of
lists of matrices and vectors respectively which we use to compute the exponents of relations
to get the size of the p-group.

67.39 DualGModule

DualGModule(module)

module is a G-module. The dual module (obtained by inverting and transposing the gener-
ating matrices) is calculated and returned.

67.40 InducedGModule

InducedGModule(G, module)

G is a transitive permutation group , and module an H-module, where H is the subgroup of
G returned by Stabilizer(group, 1). (That is, the matrix generators for module should
correspond to the permutations generators for H returned by this function call.) The
induced G-module is calculated and returned. If the action of H on module is trivial, then
PermGModule should be used instead.

67.41. PERMGMODULE 1275

67.41 PermGModule

PermGModule(G, field [, point])

G is a permutation group, and field a finite field. If point is supplied, it should be an integer
in the permutation domain of G ; by default, it is 1. The permutation module of G on the
orbit of point over the field field is calculated and returned.

67.42 TensorProductGModule

TensorProductGModule(module1, module2)

The tensor product of the G-modules module1 and module2 is calculated and returned.

WedgeGModule(module)

The wedge product of the G-module module – that is, the action on anti-symmetric tensors
– is calculated and returned.

67.43 ImprimitiveWreathProduct

ImprimitiveWreathProduct(G, perm-group)

G is a matrix group, a G-module, a list of matrices, a permutation group or a list of
permutations, and perm-group can be a permutation group or a list of permutations. Let
G be the permutation or matrix group specified or generated by the first argument, P the
permutation group specified or generated by the second argument. The wreath product of
G and P is calculated and returned. This is a matrix group or a permutation group of
dimension or degree dt, where d is the dimension or degree of G and t the degree of P . If
G is a permutation group, this function has the same effect as WreathProduct(G, P).

67.44 WreathPower

PowerWreathProduct(G, perm-group)

G is a matrix group, a G-module, a list of matrices, a permutation group or a list of
permutations, and perm-group can be a permutation group or a list of permutations. Let
G be the permutation or matrix group specified or generated by the first argument, and P
the permutation group specified or generated by the second argument. The wreath power
of G and P is calculated and returned. This is a matrix group or a permutation group of
dimension or degree dt, where d is the dimension or degree of G and t the degree of P .

67.45 PermGroupRepresentation

PermGroupRepresentation(G, limit)

PermGroupRepresentation tries to find a permutation representation of G of degree at most
limit . The function either returns a permutation group or false if no such representation
was found.

Note that false does not imply that no such permutation representation exists. If a
permutation representation for G is already known it will be returned independent of its
degree.

1276 CHAPTER 67. THE MATRIX PACKAGE

The function tries to find a set of vectors of size at most limit closed under the operation
of G such that the set spans the whole vector space; it implements parts of the base-point
selection algorithm described in [10].

gap> m1 := [[0,1],[1,0]] * Z(9);;
gap> m2 := [[1,1],[1,0]] * Z(9);;
gap> G := Group(m1, m2);;
gap> P := PermGroupRepresentation(G, 100);
Group((1,15, 4,21, 2,24, 7,30)(3,18, 5,12, 6,27, 8, 9)
(10,16,19,22,14,26,29,32)(11,25,20,31,13,17,28,23),
(1,15,19,31)(2,24,29,23)(3,18,22,11)(4,21,14,17)(5,12,26,20)
(6,27,32,13)(7,30,10,25)(8, 9,16,28))

note that limit is ignored if a representation is known
gap> P := PermGroupRepresentation(G, 2);
Group((1,15, 4,21, 2,24, 7,30)(3,18, 5,12, 6,27, 8, 9)
(10,16,19,22,14,26,29,32)(11,25,20,31,13,17,28,23),
(1,15,19,31)(2,24,29,23)(3,18,22,11)(4,21,14,17)(5,12,26,20)
(6,27,32,13)(7,30,10,25)(8, 9,16,28))

OrbitMat(G, vec, base, limit)

OrbitMat computes the orbit of vec under the operation of G . The function will return
false if this orbit is larger then limit . Otherwise the orbit is return as list of vectors and
base, which must be supplied as an empty list, now contains a list of basis vectors spanning
the vector space generated by the orbit.

67.46 GeneralOrthogonalGroup

GeneralOrthogonalGroup(s, d, q)
O(s, d, q)

This function returns the group of isometries fixing a non-degenerate quadratic form as
matrix group. d specifies the dimension, q the size of the finite field, and s the sign of
the quadratic form Q. If the dimension is odd, the sign must be 0. If the dimension is
even the sign must be −1 or +1. The quadratic form Q used is returned in the compo-
nent quadraticForm, the corresponding symmetric form β is returned in the component
symmetricForm.

Given the standard basis B = {e1, ..., ed} then symmetricForm is the matrix (f(ei, ej)),
quadraticForm is an upper triangular matrix (qij) such that qij = f(ei, ej) for i < j,
qii = Q(ei), and qij = 0 for j < i, and the equations 2Q(ei) = f(ei, ei) hold.

There are precisely two isometry classes of geometries in each dimension d . If d is even then
the geometries are distinguished by the dimension of the maximal totally singular subspaces.
If the sign s is +1, then the Witt defect of the underlying vector space is 0, i. e. the maximal
totally singular subspaces have dimension d/2; if the sign is −1, the defect is 1, i.e. the
dimension is d/2− 1.

If d is odd then the geometries are distinguished by the discriminant of the quadratic form
Q which is defined as the determinant of (f(ei, ej)) modulo (GF (q)?)2. The determinant of

67.47. ORDERMAT – ENHANCED 1277

(f(ei, ej)) is not independent of B, whereas modulo squares it is. However, the two geome-
tries are similar and give rise to isomorphic groups of isometries. GeneralOrthogonalGroup
uses a quadratic form Q with discriminant −2d−2 modulo squares.

In case of odd dimension, q must also be odd because the group O(0, 2d+1, 2k) is
isomorphic to the symplectic group Sp(2d, 2k) and you can use SP to construct it.

gap> G := GeneralOrthogonalGroup(0,5,3);
O(0,5,3)
gap> Size(G);
103680
gap> Size(SP(4,3));
51840
gap> DeterminantMat(G.1);
Z(3)^0
gap> DeterminantMat(G.2);
Z(3)
gap> DisplayMat(G.symmetricForm);
. 1 . . .
1
. . 2 . .
. . . 2 .
. . . . 2
gap> DisplayMat(G.quadraticForm);
. 1 . . .
.
. . 1 . .
. . . 1 .
. . . . 1

You can evaluate the quadratic form on a vector by multiplying it from both sides.

gap> v1 := [1,2,0,1,2] * Z(3);
[Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0]
gap> v1 * G.quadraticForm * v1;
Z(3)^0
gap> v1 * G.symmetricForm * v1;
Z(3)

67.47 OrderMat – enhanced

OrderMat(g)

This function works as described in the GAP manual but uses the algorithm of [2] for matrices
over finite fields.

gap> OrderMat([[Z(17)^4, Z(17)^12, Z(17)^4, Z(17)^7],
> [Z(17)^10, Z(17), Z(17)^11, 0*Z(17)],
> [Z(17)^8, Z(17)^13, Z(17)^0, Z(17)^14],
> [Z(17)^14, Z(17)^10, Z(17), Z(17)^10]]);
5220

ProjectiveOrderMat(g)

1278 CHAPTER 67. THE MATRIX PACKAGE

This function computes the least positive integer n such that gn is scalar; it returns, as a
list, n and z, where gn is scalar in z.

gap> ProjectiveOrderMat([[Z(17)^4, Z(17)^12, Z(17)^4, Z(17)^7],
> [Z(17)^10, Z(17), Z(17)^11, 0*Z(17)],
> [Z(17)^8, Z(17)^13, Z(17)^0, Z(17)^14],
> [Z(17)^14, Z(17)^10, Z(17), Z(17)^10]]);
[1305, Z(17)^12]

67.48 PseudoRandom

PseudoRandom(G)
PseudoRandom(module)

It takes as input either a matrix group G , or a G-module module and returns a pseudo-
random element. If the supplied record has no seed stored as a component, then it constructs
one (as in InitPseudoRandom).

The algorithm is described in [1].

67.49 InitPseudoRandom

InitPseudoRandom(G, length, n)
InitPseudoRandom(module, length, n)

InitPseudoRandom takes as input either a matrix group G , or a G-module module. It
constructs a list (or seed) of elements which can be used to generate pseudo-random elements
of the matrix group or G-module. This seed is stored as a component of the supplied record
and can be accessed using RandomSeedFlag.

InitPseudoRandom generates a seed of length elements containing copies of the generators
of G and performs a total of n matrix multiplications to initialise this list.

The quality of the seed is determined by the value of n. For many applications, length =
10 and n = 100 seem to suffice; these are the defaults used by PseudoRandom.

The algorithm is described in [1].

67.50 IsPpdElement

IsPpdElement(F, m, d, s, c)

For natural numbers b and e greater than 1 a primitive prime divisor of be − 1 is a prime
dividing be − 1 but not dividing bi − 1 for any 1 ≤ i < e. If r is a primitive prime divisor
of be − 1 then r = ce + 1 for some positive integer c and in particular r ≥ e + 1. If either
r ≥ e+ 2, or r = e+ 1 and r2 divides be − 1 then r is called a large primitive prime divisor
of be − 1.

Let e be a positive integer greater than 1, such that d/2 < e ≤ d. Let p be a prime and
q = pa. An element g of GL(d, q) whose order is divisible a primitive prime divisor of qe− 1
is a ppd-element, or ppd(d, q; e)-element. An element g of GL(d, q) whose order is divisible
by a primitive prime divisor of pae − 1 is a basic ppd-element, or basic ppd(d, q; e)-element.
An element g of GL(d, q) is called a large ppd-element if there exists a large primitive prime
divisor r of qe−1 such that the order of g is divisible by r, if r ≥ e+2, or by r2, if r = e+1.

67.51. SPINORNORM 1279

The function IsPpdElement takes as input a field F , and a parameter m, and integers d ,
s and c, where sc is the size q = pa of the field F . For the recognition algorithm, (s,c) is
either (q, 1) or (p, a). The parameter m is either an element of GL(d, F) or a characteristic
polynomial of such an element. If m is not (the characteristic polynomial of) a ppd(dc, s;
ec)-element for some e such that d/2 < e ≤ d then IsPpdElement returns false. Otherwise
it returns a list of length 2, whose first entry is the integer e and whose second entry is true
if m is (the characteristic polynomial of) a large ppd(dc, s; ec)-element or false if it is
not large. When c is 1 and s is q this function decides whether m is (the characteristic
polynomial of) a ppd(d , q ; e)-element whereas when s is the characteristic p of F and c is
such that a then it decides whether m is (the characteristic polynomial of) a basic ppd(d ,
q ; e)-element.

gap> G := GL (6, 3);;
gap> g := [[2, 2, 2, 2, 0, 2],
> [1, 0, 0, 0, 0, 1],
> [2, 2, 1, 0, 0, 0],
> [2, 0, 2, 0, 2, 0],
> [1, 2, 0, 1, 1, 0],
> [1, 2, 2, 1, 2, 0]] * Z(3)^0;;
gap> IsPpdElement(G.field, g, 6, 3, 1);
[5, true]
gap> Collected(Factors(3^5 - 1));
[[2, 1], [11, 2]]
gap> Order (G, g) mod 11;
0

The algorithm is described in [2] and [11].

67.51 SpinorNorm

SpinorNorm(form, mat)

computes the spinor norm of mat with respect to the symmetric bilinear form.

The underlying field must have odd characteristic.

gap> z := GF(9).root;;
gap> m1 := [[0,1,0,0,0,0,0,0,0],[1,2,2,0,0,0,0,0,0],
> [0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],
> [0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1],
> [0,2,1,0,0,0,0,0,0]]*z^0;;
gap> m2 := [[z,0,0,0,0,0,0,0,0],[0,z^7,0,0,0,0,0,0,0],
> [0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],
> [0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],
> [0,0,0,0,0,0,0,0,1]]*z^0;;
gap> form := IdentityMat(9, GF(9));;
gap> form{[1,2]}{[1,2]} := [[0,2],[2,0]] * z^0;;
gap> m1 * form * TransposedMat(m1) = form;
true
gap> m2 * form * TransposedMat(m2) = form;
true

1280 CHAPTER 67. THE MATRIX PACKAGE

gap> SpinorNorm(form, m1);
Z(3)^0
gap> SpinorNorm(form, m2);
Z(3^2)^5

67.52 Other utility functions

Commutators(matrix-list)

It returns a set containing the non-trivial commutators of all pairs of matrices in matrix
list .

IsDiagonal(matrix)

If a matrix, matrix , is diagonal, it returns true, else false.

IsScalar(matrix)

If a matrix, matrix , is scalar, it returns true, else false.

DisplayMat(matrix-list)
DisplayMat(matrix)

It converts the entries of a matrix defined over a finite field into integers and “pretty-prints”
the result. All matrices in matrix list must be defined over the same finite field.

ChooseRandomElements(G, NmrElts)
ChooseRandomElements(module, NmrElts)

It takes as input either a matrix group G , or a G-module module, and returns NmrElts
pseudo-random elements.

ElementOfOrder(G, RequiredOrder, NmrTries)
ElementOfOrder(module, RequiredOrder, NmrTries)

It takes as input either a matrix group G , or a G-module module, and searches for an
element of order RequiredOrder . It examines at most NmrTries elements before returning
false.

ElementWithCharPol(G, order, pol, NmrTries)
ElementWithCharPol(module, order, pol, NmrTries)

It takes as input either a matrix group G , or a G-module module. It searches for an element
of order order and characteristic polynomial pol . It examines at most NmrTries pseudo-
random elements before returning false.

LargestPrimeOrderElement(G, NmrTries)
LargestPrimeOrderElement(module, NmrTries)

It takes as input either a matrix group G , or a G-module module. It generates NmrTries
pseudo-random elements and determines which elements of prime order can be obtained
from powers of each; it returns the largest found and its order as a list.

LargestPrimePowerOrderElement(G, NmrTries)
LargestPrimePowerOrderElement(module, NmrTries)

It takes as input either a matrix group G , or a G-module module. It generates NmrTries
pseudo-random elements and determines which elements of prime-power order can be ob-
tained from powers of each; it returns the largest found and its order as a list.

67.53. REFERENCES 1281

67.53 References

[1] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and E.A.
O’Brien, “Generating random elements of a finite group”, Comm. Algebra 23, 4931–4948,
1995.

[2] Frank Celler and C.R. Leedham-Green, “Calculating the Order of an Invertible Matrix”,
“Groups and Computation II”, Amer. Math. Soc. DIMACS Series 28, 1997.

[3] Frank Celler and C.R. Leedham-Green, “A Non-Constructive Recognition Algorithm
for the Special Linear and Other Classical Groups”, “Groups and Computation II”, Amer.
Math. Soc. DIMACS Series 28, 1997.

[4] Frank Celler and C.R. Leedham-Green, “A constructive recognition algorithm for the
special linear group”, preprint.

[5] Derek F. Holt and Sarah Rees, “Testing modules for irreducibility”, J. Austral. Math.
Soc. Ser. A, 57, 1–16, 1994.

[6] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees, “Computing Matrix
Group Decompositions with Respect to a Normal Subgroup”, J. Algebra 184, 818–838, 1996.

[7] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees, “Testing Matrix
Groups for Imprimitivity”, J. Algebra 184, 795–817, 1996.

[8] C.R. Leedham-Green and E.A. O’Brien, “Tensor Products are Projective Geometries”,
to appear J. Algebra.

[9] C.R. Leedham-Green and E.A. O’Brien, “Recognising tensor products of matrix groups”,
to appear Internat. J. Algebra Comput.

[10] Scott H. Murray and E.A. O’Brien, “Selecting Base Points for the Schreier-Sims Algo-
rithm for Matrix Groups”, J. Symbolic Comput. 19, 577–584, 1995.

[11] Alice C. Niemeyer and Cheryl E. Praeger “A Recognition Algorithm for Classical Groups
over Finite Fields”, submitted to Proceedings of the London Mathematical Society.

[12] Alice C. Niemeyer and Cheryl E. Praeger “Implementing a Recognition Algorithm for
Classical Groups”, “Groups and Computation II”, Amer. Math. Soc. DIMACS Series 28,
1997.

[13] Anthony Pye, “Recognising reducible matrix groups”, in preparation.

The following sources provide additional theoretical background to the algorithms.

[14] M. Aschbacher (1984), “On the maximal subgroups of the finite classical groups”, Invent.
Math. 76, 469–514, 1984.

[15] Peter Kleidman and Martin Liebeck, “The Subgroup Structure of the Finite Classical
Groups”, Cambridge University Press, London Math. Soc. Lecture Note Series 129, 1990.

1282 CHAPTER 67. THE MATRIX PACKAGE

Chapter 68

The MeatAxe

This chapter describes the main functions of the MeatAxe (Version 2.0) share library for
computing with finite field matrices, permutations, matrix groups, matrix algebras, and
their modules.

For the installation of the package, see 56.9.

The chapter consists of seven parts.

First the idea of using the MeatAxe via GAP is introduced (see 68.1, 68.2), and an example
shows how the programs can be used (see 68.3).

The second part describes functions and operations for single MeatAxe matrices (see 68.4,
68.5, 68.6, 68.7, 68.8).

The third part describes functions and operations for single MeatAxe permutations (see
68.9, 68.10, 68.11, 68.12).

The fourth part describes functions and operations for groups of MeatAxe matrices (see
68.13, 68.14).

(Groups of MeatAxe permutations are not yet supported.)

The fifth part describes functions and operations for algebras of MeatAxe matrices (see
68.15, 68.16).

The sixth part describes functions and operations for modules for MeatAxe matrix algebras
(see 68.17, 68.18, 68.19, 68.20).

The last part describes the data structures (see 68.22).

If you want to use the functions in this package you must load it using

gap> RequirePackage("meataxe");
#I The MeatAxe share library functions are available now.
#I All files will be placed in the directory
#I ’/var/tmp/tmp.017545’
#I Use ’MeatAxe.SetDirectory(<path>)’ if you want to change.

1283

1284 CHAPTER 68. THE MEATAXE

68.1 More about the MeatAxe in GAP

The MeatAxe can be used to speed up computations that are possible also using ordinary
GAP functions. But more interesting are functions that are not (or not yet) available in the
GAP library itself, such as that for the computation of submodule lattices (see 68.20).

The syntax of the functions is the usual GAP syntax, so it might be useful to read the
chapters about algebras and modules in GAP (see chapters 38, 41) if you want to work with
MeatAxe modules.

The main idea is to let the MeatAxe functions do the main work, and use GAP as a shell.
Since in MeatAxe philosophy, each object is contained in its own file, GAP’s task is mainly
to keep track of these files. For example, for GAP a MeatAxe matrix is a record containing
at least information about the file name, the underlying finite field, and the dimensions of
the matrix (see 68.4). Multiplying two such matrices means to invoke the multiplication
program of MeatAxe, to store the result in a new file, and notify this to GAP.

This idea is used not only for basic calculations but also to access elaborate and powerful
algorithms, for example the program to compute the composition factors of a module, or
the submodule lattice (see 68.20).

In order to avoid conversion overhead the MeatAxe matrices are read into GAP only if the
user explicitly applies GapObject (see 68.2), or applies an operator (like multiplication) to
a MeatAxe matrix and an ordinary GAP object.

Some of the functions, mainly CompositionFactors, print useful information if the variable
InfoMeatAxe is set to the value Print. The default of InfoMeatAxe is Print, if you want
to suppress the information you should set InfoMeatAxe to Ignore.

For details about the implementation of the standalone functions, see [Rin93].

68.2 GapObject

GapObject(mtxobj)

returns the GAP object corresponding to the MeatAxe object mtxobj which may be a MeatAxe
matrix, a MeatAxe permutation, a MeatAxe matrix algebra, or a MeatAxe module.

Applied to an ordinary GAP object, GapObject simply returns this object.

gap> m:= [[0, 1, 0], [0, 0, 1], [1, 0, 0]] * GF(2).one;;
gap> mam:= MeatAxeMat(m, "file2");;
#I calling ’maketab’ for field of size 2
gap> GapObject(mam);
[[0*Z(2), Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), Z(2)^0],
[Z(2)^0, 0*Z(2), 0*Z(2)]]

gap> map:= MeatAxePerm((1,2,3), 3);;
gap> perm:= GapObject(map);
(1,2,3)
gap> GapObject(perm);
(1,2,3)

68.3. USING THE MEATAXE IN GAP. AN EXAMPLE 1285

68.3 Using the MeatAxe in GAP. An Example

In this example we compute the 2-modular irreducible representations and Brauer characters
of the alternating group A5. Perhaps it will raise the question whether one uses the MeatAxe
in GAP or GAP for the MeatAxe.

First we take a permutation representation of A5 and convert the generators into MeatAxe
matrices over the field GF (2).

gap> a5:= Group((1,2,3,4,5), (1,2,3));;
gap> Size(a5);
60
gap> f:= GF(2);;
gap> m1:= MeatAxeMat(a5.1, f, [5,5]);
MeatAxeMat("/var/tmp/tmp.017545/a", GF(2), [5, 5])
gap> m2:= MeatAxeMat(a5.2, f, [5,5]);;

m1 and m2 are records that know about the files where the matrices are stored. Let’s look
at such a matrix (without reading the file into GAP).

gap> Display(m1);
MeatAxe.Matrix := [
[0,1,0,0,0],
[0,0,1,0,0],
[0,0,0,1,0],
[0,0,0,0,1],
[1,0,0,0,0]
]*Z(2);

Next we inspect the 5 dimensional permutation module over GF (2). It contains a trivial
submodule fix, its quotient is called quot.

gap> a:= UnitalAlgebra(f, [m1, m2]);;
gap> nat:= NaturalModule(a);;
gap> fix:= FixedSubmodule(nat);;
gap> Dimension(fix);
1
gap> quot:= nat / fix;;

The action on quot is described by an algebra of 4× 4 matrices, the corresponding module
turns out to be absolutely irreducible. Of course the action on fix would yield 1×1 matrices,
the generators being the identity. So we found already two of the four absolutely irreducible
representations.

gap> op:= Operation(a, quot);
UnitalAlgebra(GF(2),
[MeatAxeMat("/var/tmp/tmp.017545/t/g.1", GF(2), [4, 4], a.1),
MeatAxeMat("/var/tmp/tmp.017545/t/g.2", GF(2), [4, 4], a.2)])

gap> nm:= NaturalModule(op);;
gap> IsIrreducible(nm);
true
gap> IsAbsolutelyIrreducible(nm);
true

1286 CHAPTER 68. THE MEATAXE

gap> deg4:= nm.ring;;

Now we form the tensor product of the 4 dimensional module with itself, and compute the
composition factors.

gap> tens:= KroneckerProduct(nm, nm);;
gap> comp:= CompositionFactors(tens);;
#I Name Mult SF
#I 1a 4 1
#I 4a 1 1
#I 4b 2 2
#I
#I Ascending composition series:
#I 4a 1a 4b 1a 1a 4b 1a
gap> IsIrreducible(comp[3]);
true
gap> IsAbsolutelyIrreducible(comp[3]);
false

The information printed by CompositionFactors told that there is an irreducible but not
absolutely irreducible factor 4b of dimension 4, and we will enlarge the field in order to split
this module.

gap> sf:= SplittingField(comp[3]);
GF(2^2)
gap> new:= UnitalAlgebra(sf, [comp[3].ring.1, comp[3].ring.2]);;
#I calling ’maketab’ for field of size 4
gap> nat:= NaturalModule(new);;
gap> comp:= CompositionFactors(nat);;
#I Name Mult SF
#I 2a 1 1
#I 2b 1 1
#I
#I Ascending composition series:
#I 2a 2b
gap> deg2:= List(comp, x -> x.ring);;

Now the representations are known. Let’s calculate the Brauer characters. For that, we
need representatives of the 2-regular conjugacy classes of A5.

gap> repres:= [a.1^0, a.1 * a.2 * a.1^3, a.1, a.1^2];;
gap> List(repres, OrderMeatAxeMat);
[1, 3, 5, 5]

The expression of the representatives of each irreducible representation in terms of the
generators can be got using MappedExpression.

gap> abstracts:= List(repres, x -> x.abstract);
[a.one, a.1*a.2*a.1^3, a.1, a.1^2]
gap> mapped:= List([1 .. 4],
> x-> MappedExpression(abstracts[x],
> a.freeAlgebra.generators, deg4.generators));;
gap> List(mapped, OrderMeatAxeMat);

68.4. MEATAXE MATRICES 1287

[1, 3, 5, 5]
gap> List(mapped, BrauerCharacterValue);
[4, 1, -1, -1]
gap> mapped:= List([1 .. 4],
> x-> MappedExpression(abstracts[x],
> a.freeAlgebra.generators, deg2[1].generators));;
gap> List(mapped, BrauerCharacterValue);
[2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4]

The Brauer character of the trivial module is well-known, and that of the other 2-dimensional
module is a Galois conjugate of the computed one, so we computed the 2-modular Brauer
character table of A5.

It is advisable to remove all the MeatAxe files before leaving GAP. Call MeatAxe.Unbind();
(see 68.21).

68.4 MeatAxe Matrices

MeatAxe matrices behave similar to lists of lists that are regarded as matrices by GAP, e.g.,
there are functions like Rank or Transposed that work for both types, and one can multiply
or add two MeatAxe matrices, the result being again a MeatAxe matrix. But one cannot
access rows or single entries of a MeatAxe matrix mat , for example mat[1] will cause an
error message.

MeatAxe matrices are constructed or notified by 68.5 MeatAxeMat.

IsMeatAxeMat(obj)

returns true if obj is a MeatAxe matrix, and false otherwise.

68.5 MeatAxeMat

MeatAxeMat(mat [, F] [, abstract] [, filename])

returns a MeatAxe matrix corresponding to the matrix mat , viewed over the finite field F ,
or over the field of all entries of mat .

If mat is already a MeatAxe matrix then the call means that it shall now be viewed over the
field F which may be smaller or larger than the field mat was viewed over.

The optional argument abstract is an element of a free algebra (see chapter 39) that repre-
sents the matrix in terms of generators.

If the optional argument filename is given, the MeatAxe matrix is written to the file with
this name; a matrix constructed this way will not be removed by a call to MeatAxe.Unbind.
Otherwise GAP creates a temporary file under the directory MeatAxe.direc.

MeatAxeMat(perm, F, dim [,abstract][,filename])

does the same for a permutation perm that shall be converted into a permutation matrix
over the field F , with dim[1] rows and dim[2] columns.

MeatAxeMat(file, F, dim [, abstract])

1288 CHAPTER 68. THE MEATAXE

is the MeatAxe matrix stored on file file, viewed over the field F , with dimensions dim, and
representation abstract . This may be used to make a shallow copy of a MeatAxe matrix, or
to notify MeatAxe matrices that were not produced by GAP. Such matrices are not removed
by calls to MeatAxe.Unbind.

Note: No field change is allowed here.

gap> f:= GF(2);;
gap> m:= [[0, 1, 0], [0, 0, 1], [1, 0, 0]] * f.one;;
gap> m1:= MeatAxeMat(m, "file2");
MeatAxeMat("/var/tmp/tmp.005046/file2", GF(2), [3, 3])
gap> p:= (1,2,3);;
gap> m2:= MeatAxeMat(p, f, [3, 3], "file");
MeatAxeMat("/var/tmp/tmp.005046/file", GF(2), [3, 3])
gap> Display(m2);
MeatAxe.Matrix := [
[0,1,0],
[0,0,1],
[1,0,0]
]*Z(2);
gap> n:= MeatAxeMat("file", f, [3, 3]);; # just notify a matrix

68.6 Operations for MeatAxe Matrices

Comparisons of MeatAxe Matrices

m1 = m2
evaluates to true if the two MeatAxe matrices have the same entries and are viewed
over the same field, and to false otherwise. The test for equality uses a shell script
that is produced when it is needed for the first time.

m1 < m2
evaluates to true if and only if this relation holds for the file names of the two MeatAxe
matrices.

Arithmetic Operations of MeatAxe Matrices

The following arithmetic operations are admissible for MeatAxe matrices.

m1 + m2
sum of the two MeatAxe matrices m1 , m2

m1 - m2
difference of the two MeatAxe matrices m1 , m2

m1 * m2
product of the two MeatAxe matrices m1 , m2

m1 ^ m2
conjugation of the MeatAxe matrix m1 by m2

m1 ^ n
n-th power of the MeatAxe matrix m1 , for an integer n

68.7. FUNCTIONS FOR MEATAXE MATRICES 1289

68.7 Functions for MeatAxe Matrices

The following functions that work for ordinary matrices in GAP also work for MeatAxe
matrices.
UnitalAlgebra(F, gens)

returns the unital F -algebra generated by the MeatAxe matrices in the list gens.
Base(mtxmat)

returns a MeatAxe matrix whose rows form a vector space basis of the row space; the
basis is in semi-echelon form.

BaseNullspace(mtxmat)
returns a MeatAxe matrix in semi-echelon form whose rows are a basis of the nullspace
of the MeatAxe matrix mtxmat .

CharacteristicPolynomial(mtxmat)
returns the characteristic polynomial of the MeatAxe matrix mtxmat . The factoriza-
tion of this polynomial is stored.

Dimensions(mtxmat)
returns the list [nrows, ncols] where nrows is the number of rows, ncols is the
number of columns of the MeatAxe matrix mtxmat .

Display(mtxmat)
displays the MeatAxe matrix mtxmat (without reading into GAP).

Group(m1, m2, ...mn)
Group(gens, id)
returns the group generated by the MeatAxe matrices m1 , m2 , . . . mn, resp. the
group generated by the MeatAxe matrices in the list gens, where id is the appropriate
identity MeatAxe matrix.

InvariantForm(mtxmats)
returns a MeatAxe matrix M such that XtrMX = M for all MeatAxe matrices in
the list mtxmats if such a matrix exists, and false otherwise. Note that the algebra
generated by mtxmats must act irreducibly, otherwise an error is signalled.

KroneckerProduct(m1, m2)
returns a MeatAxe matrix that is the Kronecker product of the MeatAxe matrices m1 ,
m2 .

Order(MeatAxeMatrices, mtxmat)
returns the multiplicative order of the MeatAxe matrix mtxmat , if this exists. This
can be computed also by OrderMeatAxeMat(mtxmat).

Rank(mtxmat)
returns the rank of the MeatAxe matrix mtxmat .

SumIntersectionSpaces(mtxmat1, mtxmat2)
returns a list of two MeatAxe matrices, both in semi-echelon form, whose rows are
a basis of the sum resp. the intersection of row spaces generated by the MeatAxe
matrices m1 and m2 , respectively.

Trace(mtxmat)
returns the trace of the MeatAxe matrix mtxmat .

Transposed(mtxmat)
returns the transposed matrix of the MeatAxe matrix mtxmat .

1290 CHAPTER 68. THE MEATAXE

68.8 BrauerCharacterValue

BrauerCharacterValue(mtxmat)

returns the Brauer character value of the MeatAxe matrix mtxmat , which must of course be
an invertible matrix of order relatively prime to the characteristic of its entries.

gap> g:= MeatAxeMat((1,2,3,4,5), GF(2), [5, 5]);;
gap> BrauerCharacterValue(g);
0

(This program was originally written by Jürgen Müller.)

68.9 MeatAxe Permutations

MeatAxe permutations behave similar to permutations in GAP, e.g., one can multiply two
MeatAxe permutations, the result being again a MeatAxe permutation. But one cannot map
single points by a MeatAxe permutation using the exponentiation operator ^.

MeatAxe permutations are constructed or notified by 68.10 MeatAxePerm.

IsMeatAxePerm(obj)

returns true if obj is a MeatAxe permutation, and false otherwise.

68.10 MeatAxePerm

MeatAxePerm(perm, maxpoint)
MeatAxePerm(perm, maxpoint, filename)

return a MeatAxe permutation corresponding to the permutation perm, acting on the points
[1 .. maxpoint]. If the optional argument filename is given, the MeatAxe permutation
is written to the file with this name; a permutation constructed this way will not be removed
by a call to MeatAxe.Unbind. Otherwise GAP creates a temporary file under the directory
MeatAxe.direc.

MeatAxePerm(file, maxpoint)

is the MeatAxe permutation stored on file file. This may be used to notify MeatAxe per-
mutations that were not produced by GAP. Such permutations are not removed by calls to
MeatAxe.Unbind.

gap> p1:= MeatAxePerm((1,2,3), 3);
MeatAxePerm("/var/tmp/tmp.005046/a", 3)
gap> p2:= MeatAxePerm((1,2), 3, "perm2");
MeatAxePerm("/var/tmp/tmp.005046/perm2", 3);
gap> p:= p1 * p2;
MeatAxePerm("/var/tmp/tmp.005046/b", 3)
gap> Display(p);
MeatAxe.Perms := [

(2,3)
];

68.11. OPERATIONS FOR MEATAXE PERMUTATIONS 1291

68.11 Operations for MeatAxe Permutations

Comparisons of MeatAxe Permutations

m1 = m2
evaluates to true if the two MeatAxe permutations are equal as permutations, and
to false otherwise. The test for equality uses a shell script that is produced when it
is needed for the first time.

m1 < m2
evaluates to true if and only if this relation holds for the file names of the two MeatAxe
permutations.

Arithmetic Operations of MeatAxe Permutations

The following arithmetic operations are admissible for MeatAxe permutations.

m1 * m2
product of the two MeatAxe permutations m1 , m2

m1 ^ m2
conjugation of the MeatAxe permutation m1 by m2

m1 ^ n
n-th power of the MeatAxe permutation m1 , for an integer n

68.12 Functions for MeatAxe Permutations

The following functions that work for ordinary permutations in GAP also work for MeatAxe
permutations.

Display(mtxperm)
displays the MeatAxe permutation mtxperm (without reading the file into GAP).

Order(MeatAxePermutations, mtxperm)
returns the multiplicative order of the MeatAxe permutation mtxperm. This can be
computed also by OrderMeatAxePerm(mtxperm).

68.13 MeatAxe Matrix Groups

Groups of MeatAxe matrices are constructed using the usual Group command.

Only very few functions are available for MeatAxe matrix groups. For most of the appli-
cations one is interested in matrix algebras, e.g., matrix representations as computed by
Operation when applied to an algebra and a module. For a permutation representation of
a group of MeatAxe matrices, however, it is necessary to call Operation with a group as
first argument (see 68.14).

68.14 Functions for MeatAxe Matrix Groups

The following functions are overlaid in the operations record of MeatAxe matrix groups.

Operation(G, M)
Let M a MeatAxe module acted on by the group G of MeatAxe matrices. Operation(

1292 CHAPTER 68. THE MEATAXE

G, M) returns a permutation group with action on the points equivalent to that
of G on the vectors of the module M .

RandomOrders(G)
returns a list with the orders of 120 random elements of the MeatAxe matrix group
G .

It should be noted that no set theoretic functions (such as Size) are provided for MeatAxe
matrix groups, and also group theoretic functions (such as SylowSubgroup) will not work.

68.15 MeatAxe Matrix Algebras

Algebras of MeatAxe matrices are constructed using the usual Algebra or UnitalAlgebra
commands.

Note that all these algebras are regarded to be unital, that is, also if you construct an
algebra by calling Algebra you will get a unital algebra.

MeatAxe matrix algebras are used to construct and describe MeatAxe modules and their
structure (see 68.17).

For functions for MeatAxe matrix algebras see 68.16.

68.16 Functions for MeatAxe Matrix Algebras

The following functions are overlaid in the operations record of MeatAxe matrix algebras.

Fingerprint(A)
Fingerprint(A, list)
returns the fingerprint of A, i.e., a list of nullities of six “standard” words in A (for
2-generator algebras only) or of the words with numbers in list .

gap> f:= GF(2);;
gap> a:= UnitalAlgebra(f, [MeatAxeMat((1,2,3,4,5), f, [5,5]),
> MeatAxeMat((1,2) , f, [5,5])]);;
gap> Fingerprint(a);
[1, 1, 1, 3, 0, 1]

Module(matalg, gens)
returns the module generated by the rows of the MeatAxe matrix gens, and acted
on by the MeatAxe matrix algebra matalg . Such a module will usually contain the
vectors of a basis in the base component.

NaturalModule(matalg)
returns the n-dimensional space acted on by the MeatAxe matrix algebra matalg
which consists of n× n MeatAxe matrices.

Operation(A, M)
Let M be a MeatAxe module acted on by the MeatAxe matrix algebra A. Operation(
A, M) returns a MeatAxe matrix algebra of n×n matrices (where n is the dimension
of M), with action on its natural module equivalent to that of A on M .
Note: If M is a quotient module, it must be a quotient of the entire space.

RandomOrders(A)
returns a list with the orders of 120 random elements of the MeatAxe matrix algebra
A, provided that the generators of A are invertible.

68.17. MEATAXE MODULES 1293

It should be noted that no set theoretic functions (such as Size) and vector space functions
(such as Base) are provided for MeatAxe matrix algebras, and also algebra functions (such
as Centre) will not work.

68.17 MeatAxe Modules

MeatAxe modules are vector spaces acted on by MeatAxe matrix algebras. In the MeatAxe
standalone these modules are described implicitly because the matrices contain all the nec-
essary information there. In GAP the modules are the concrete objects whose properties are
inspected (see 68.20).

Note that most of the usual set theoreic and vector space functions are not provided for
MeatAxe modules (see 68.18, 68.19).

68.18 Set Theoretic Functions for MeatAxe Modules

Size(M)
returns the size of the MeatAxe module M .

Intersection(M1, M2)
returns the intersection of the two MeatAxe modules M1 , M2 as a MeatAxe module.

68.19 Vector Space Functions for MeatAxe Modules

Base(M)
returns a MeatAxe matrix in semi-echelon form whose rows are a vector space basis
of the MeatAxe module M .

Basis(M , mtxmat)
returns a basis record for the MeatAxe module M with basis vectors equal to the rows
of mtxmat .

Dimension(M)
returns the dimension of the MeatAxe module M .

SemiEchelonBasis(M)
returns a basis record of the MeatAxe module M that is semi-echelonized (see 33.18).

68.20 Module Functions for MeatAxe Modules

CompositionFactors(M)
For a MeatAxe module M that is acted on by the algebra A, this returns a list of
MeatAxe modules which are the actions of A on the factors of a composition series of
M . The factors occur with same succession (and multiplicity) as in the composition
series. The printed information means the following (for this example, see 68.3).

gap> tens:= KroneckerProduct(nm, nm);;
gap> comp:= CompositionFactors(tens);;
#I Name Mult SF
#I 1a 4 1
#I 4a 1 1
#I 4b 2 2

1294 CHAPTER 68. THE MEATAXE

#I
#I Ascending composition series:
#I 4a 1a 4b 1a 1a 4b 1a

The column with header Name lists the different composition factors by a name
consisting of the dimension and a letter to distinguish different modules of same
dimension, the Mult columns lists the multiplicities of the composition factor in the
module, and the SF columns lists the exponential indices of the fields of definition in
the splitting fields. In this case there is one 1-dimensional module 1a with multiplicity
4 that is absolutely irreducible, also one 4-dimensional absolutely irreducible module
4a of dimension 4, and with multiplicity 2 we have a 4-dimensional module 4b that is
not absolutely irreducible, with splitting field of order p2n when the field of definition
had order pn.

FixedSubmodule(M)
returns the submodule of fixed points in the MeatAxe module M under the action of
the generators of M .ring.

GeneratorsSubmodule(L, nr)
returns a MeatAxe matrix whose rows are a vector space basis of the nr -th basis of
the module with submodule lattice L. The lattice can be computed using the Lattice
command (see below).

GeneratorsSubmodules(M)
returns a list of MeatAxe matrices, one for each submodule of the MeatAxe module
M , whose rows are a vector space basis of the submodule. This works only if M is a
natural module.

IsAbsolutelyIrreducible(M)
returns true if the MeatAxe module M is absolutely irreducible, false otherwise.

IsEquivalent(M1, M2)
returns true if the irreducible MeatAxe modules M1 and M2 are equivalent, and
false otherwise. If both M1 and M2 are reducible, an error is signalled.

IsIrreducible(M)
returns true if the MeatAxe module M is irreducible, false otherwise.

KroneckerProduct(M1, M2)
returns the Kronecker product of the MeatAxe modules M1 , M2 . It is not checked
that the acting rings are compatible.

Lattice(M)
returns a list of records, each describing a component of the submodule lattice of M ;
it has the components dimensions (a list, at position i the dimension of the i -th
submodule), maxes (a list, at position i the list of indices of the maximal submodules
of submodule no. i), weights (a list of edge weights), and XGAP (a list used to display
the submodule lattice in XGAP). Note that M must be a natural module.

SplittingField(M)
returns the splitting field of the MeatAxe module M .

StandardBasis(M , seed)
returns a standard basis record for the MeatAxe module M .

68.21. MEATAXE.UNBIND 1295

68.21 MeatAxe.Unbind

MeatAxe.Unbind(obj1, obj2, ..., objn)
MeatAxe.Unbind(listofobjects)

Called without arguments, this removes all files and directories constructed by calls of
MeatAxeMat and Group, provided they are still notified in MeatAxe.files, MeatAxe.dirs
and MeatAxe.fields.

Otherwise all those files in MeatAxe.files, MeatAxe.dirs and MeatAxe.fields are re-
moved that are specified in the argument list.

Before leaving GAP after using the MeatAxe functions you should always call

gap> MeatAxe.Unbind();

68.22 MeatAxe Object Records

MeatAxe matrix records

A MeatAxe matrix in GAP is a record that has necessarily the components

isMeatAxeMat
always true,

isMatrix
always true,

domain
the record MeatAxeMatrices,

file
the name of the file that contains the matrix in MeatAxe format,

field
the (finite) field the matrix is viewed over,

dimensions
list containing the numbers of rows and columns,

operations
the record MeatAxeMatOps.

Optional components are

structure
algebra or group that contains the matrix,

abstract
an element of a free algebra (see 39.2) representing the construction of the matrix in
terms of generators.

Furthermore the record is used to store information whenever it is computed, e.g., the rank,
the multiplicative order, and the inverse of a MeatAxe matrix.

MeatAxe permutation records

A MeatAxe permutation in GAP is a record that has necessarily the components

1296 CHAPTER 68. THE MEATAXE

isMeatAxePerm
always true,

isPermutation
always true,

domain
the record MeatAxePermutations,

file
the name of the file that contains the permutation in MeatAxe format,

maxpoint
an integer n that means that the permutation acts on the point set [1 .. n]

operations
the record MeatAxePermOps.

Optional components are

structure
group that contains the permutation, and

abstract
an element of a free algebra (see 39.2) representing the construction of the permutation
in terms of generators.

Furthermore the record is used to store information whenever it is computed, e.g., the
multiplicative order, and the inverse of a MeatAxe permutation.

MeatAxe

MeatAxe is a record that contains information about the usage of the MeatAxe with GAP.
Currently it has the following components.

PATH
the path name of the directory that contains the MeatAxe executables ,

fields
a list where position i is bound if and only if the field of order i has already been con-
structed by the maketab command; in this case it contains the name of the pxxx.zzz
file,

files
a list of all file names that were constructed by calls to MeatAxe (for allowing to make
clean),

dirs
a list of all directory names that were constructed by calls to MeatAxe (for allowing
to make clean),

gennames
list of strings that are used as generator names in abstract components of MeatAxe
matrices,

alpha
alphabet over which gennames entries are formed,

68.22. MEATAXE OBJECT RECORDS 1297

direc
directory that contains all the files that are constructed using MeatAxe functions,

EXEC
function of arbitrary many string arguments that calls Exec for the concatenation of
these arguments in the directory MeatAxe.direc.

Maketab
function that produces field information files,

SetDirecory
function that sets the direc component,

TmpName
function of zero arguments that produces file names in the directory MeatAxe.direc,

Unbind
function to delete files (see 68.21).

Furthermore some components are bound intermediately when MeatAxe output files are
read. So you should better not use the MeatAxe record to store your own objects.

Field information

The correspondence between the MeatAxe numbering and the GAP numbering of the ele-
ments of a finite field F is given by the function FFList (see 38.29). The element of F
corresponding to MeatAxe number n is FFList(F)[n+1], and the MeatAxe number of
the field element z is Position(FFList(F), z) -1.

1298 CHAPTER 68. THE MEATAXE

Chapter 69

The Polycyclic Quotient
Algorithm Package

This package is written by Eddie Lo. The original program is available for anonymous ftp
at math.rutgers.edu. The program is an implementation of the Baumslag-Cannonito-Miller
polycyclic quotient algorithm and is written in C. For more details read [BCM81b],[BCM81a],
Section 11.6 of [Sim94]and [Lo96].

This package contains functions to compute the polycyclic quotients which appear in the
derived series of a finitely presented group.

Currently, there are five functions implemented in this package
CallPCQA (see 69.3),
ExtendPCQA (see 69.4),
AbelianComponent (see 69.5),
HirschLength (see 69.6),
ModuleAction (see 69.7).

Eddie Lo
email:hlo@math.rutgers.edu

69.1 Installing the PCQA Package

The PCQA is written in C and the package can only be installed under UNIX. It has been
tested on SUNs running SunOS and on IBM PCs running FreeBSD 2.1.0. It requires the
GNU multiple precision arithmetic. Make sure that this library is installed before trying to
install the PCQA.

If you got a complete binary and source distribution for your machine, nothing has to be
done if you want to use the PCQA for a single architecture. If you want to use the PCQA
for machines with different architectures skip the extraction and compilation part of this
section and proceed with the creation of shell scripts described below.

If you got a complete source distribution, skip the extraction part of this section and proceed
with the compilation part below.

1299

1300 CHAPTER 69. THE POLYCYCLIC QUOTIENT ALGORITHM PACKAGE

In the example we will assume that you, as user gap, are installing the PCQA package for use
by several users on a network of two SUNs, called bert and tiffy, and a NeXTstation, called
bjerun. We assume that GAP is also installed on these machines following the instructions
given in 55.3.

Note that certain parts of the output in the examples should only be taken as rough outline,
especially file sizes and file dates are not to be taken literally.

First of all you have to get the file pcqa.zoo (see 55.1). Then you must locate the GAP
directories containing lib/ and doc/, this is usually gap3r4p? where ? is to be be replaced
by the patch level.

gap@tiffy:~ > ls -l
drwxr-xr-x 11 gap gap 1024 Nov 8 15:16 gap3r4p3
-rw-r--r-- 1 gap gap 106307 Jan 24 15:16 pcqa.zoo

Unpack the package using unzoo (see 55.3). Note that you must be in the directory con-
taining gap3r4p? to unpack the files. After you have unpacked the source you may remove
the archive-file.

gap@tiffy:~ > unzoo -x pcqa.zoo
gap@tiffy:~ > ls -l gap3r4p3/pkg/pcqa
-rw-r--r-- 1 gap gap 3697 Dec 14 15:58 Makefile
drwxr-xr-x 2 gap gap 1024 Dec 14 15:57 bin/
drwxr-xr-x 2 gap gap 1024 Dec 14 16:12 doc/
drwxr-xr-x 2 gap gap 1024 Dec 15 18:28 examples/
-rw-r--r-- 1 gap gap 11819 Dec 14 13:31 init.g
drwxr-xr-x 2 gap gap 3072 Dec 14 16:03 src/

Switch into the directory src/ and type make to compile the PCQA. If the header files
for the GNU multiple precision arithmetic are not in /usr/local/include you must set
GNUINC to the correct directory. If the library for the GNU multiple precision arithmetic is
not /usr/local/lib/libgmp.a you must set GNULIB. In our case we first compile the SUN
version.

gap@tiffy:~ > cd gap3r4p3/pkg/pcqa/src
gap@tiffy:../src > make GNUINC=/usr/gnu/include \

GNULIB=/usr/gnu/lib/libmp.a
you will see a lot of messages

If you want to use the PCQA on multiple architectures you have to move the executable to
unique name.

gap@tiffy:../pcqa > mv bin/pcqa bin/pcqa-sun-sparc-sunos

Now repeat the compilation for the NeXTstation. Do not forget to clean up.

gap@tiffy:../pcqa > rlogin bjerun
gap@bjerun:~ > cd gap3r4p3/pkg/pcqa/src
gap@bjerun:../src > make clean
gap@bjerun:../src > make
you will see a lot of messages
gap@bjerun:../src > mv bin/pcqa ../bin/pcqa-next-m68k-mach
gap@bjerun:../src > exit
gap@tiffy:../src >

69.1. INSTALLING THE PCQA PACKAGE 1301

Switch into the subdirectory bin/ and create a script which will call the correct binary for
each machine. A skeleton shell script is provided in bin/pcqa.sh.

gap@tiffy:../src > cd ..
gap@tiffy:../pcqa > cat bin/pcqa.sh
#!/bin/csh
switch (‘hostname‘)
case ’bert’:
case ’tiffy’:
exec $0-dec-mips-ultrix $* ;
breaksw ;

case ’bjerun’:
exec $0-next-m68k-mach $* ;
breaksw ;

default:
echo "pcqa: sorry, no executable exists for this machine" ;
breaksw ;

endsw
ctr -D
gap@tiffy:../pcqa > chmod 755 bin/pcqa

Now it is time to test the package.

gap> RequirePackage("pcqa");
gap> f := FreeGroup(2);
Group(f.1, f.2)
gap> ds := CallPCQA(g, 2);
rec(
isDerivedSeries := true,
DerivedLength := 2,
QuotientStatus := 0,
PolycyclicPresentation := rec(

Generators := 3,
ExponentList := [0, 0, 0],
ppRelations := [[[0, 1, -1], [0, 1, 0]],

[[0, 0, 1]]],
pnRelations := [[[0, -1, 1], [0, -1, 0]],

[[0, 0, -1]]],
npRelations := [[[0, 0, 1], [0, -1, 1]],

[[0, 0, 1]]],
nnRelations := [[[0, 0, -1], [0, 1, -1]],

[[0, 0, -1]]],
PowerRelations := []),

Homomorphisms := rec(
Epimorphism := [[1, 1, 0], [1, 0, 0]],
InverseMap := [[[2, 1]], [[3, -1], [1, 1]],

[[1, 1], [3, -1]]]),
MembershipArray := [1, 3])

gap> ExtendPCQA(g, ds.PolycyclicPresentation, ds.Homomorphisms);
rec(

1302 CHAPTER 69. THE POLYCYCLIC QUOTIENT ALGORITHM PACKAGE

QuotientStatus := 5)

69.2 Input format

This package uses the finitely presented group data structure defined in GAP (see Finitely
Presented Groups). It also defines and uses two types of data structures. One data
structure defines a consistent polycyclic presentation of a polycyclic group and the other
defines a homomorphism and an inverse map between the finitely presented group and its
quotient.

69.3 CallPCQA

CallPCQA(G, n)

This function attempts to compute the quotient of a finitely presented group G by the n+1-
st term of its derived series. A record made up of four fields is returned. The fields are
DerivedLength, QuotientStatus , PolycyclicPresentation and Homomorphisms .
If the quotient is not polycyclic then the field QuotientStatus will return a positive num-
ber. The group element represented by the module element with that positive number
generates normally a subgroup which cannot be finitely generated. In this case the field
DerivedLength will denote the biggest integer k such that the quotient of G by the k+ 1-
st term in the derived series is polycyclic. The appropriate polycyclic presentation and maps
will be returned. If the field QuotientStatus returns -1, then for some number k < n, the
k-th term of the derived series is the same as the k + 1-st term of the derived series. In the
remaining case QuotientStatus returns 0.

The field PolycyclicPresentation is a record made up of seven fields. The various con-
jugacy relations are stored in the fields ppRelations , pnRelations, npRelations and
nnRelations. Each of these four fields is an array of exponent sequences which correspond
to the appropriate left sides of the conjugacy relations . If a1, a2, ..., an denotes the polycyclic
generators and A1, A2, ..., An their respective inverses, then the field ppRelations stores
the relations of the form aaij with i < j, pnRelations stores the relations of the form Aaij ,
npRelations stores the relations of the form aAij and nnRelations stores the relations of
the form AAij . The positive and negative power relations are stored together similarly in
the field PowerRelations. The field Generators denotes the number of polycyclic gener-
ators in the presentation and the field ExponentList contains the exponent of the power
relations. If there is no power relation involving a generator,then the corresponding entry
in the ExponentList is equal to 0.

The field Homomorphisms consists of a homomorphism from the finitely presented group
to the polycyclic group and an inverse map backward. The field Epimorphism stores
the image of the generators of the finitely presented group as exponent sequences of the
polycyclic group . The field InverseMap stores a preimage of the polycyclic generators as
a word in the finitely presented group.

gap> F := FreeGroup(2);
Group(f.1, f.2)
gap> G := F/[F.1*F.2*F.1*F.2^-1*F.1^-1*F.2^-1];
Group(f.1, f.2)

69.4. EXTENDPCQA 1303

gap> ans := CallPCQA(G,2);
rec(
DerivedLength := 2,
QuotientStatus := 0,
PolycyclicPresentation := rec(

Generators := 3,
ExponentList := [0, 0, 0],
ppRelations := [[[0, 1, -1], [0, 1, 0]],

[[0, 0, 1]]],
pnRelations := [[[0, -1, 1], [0, -1, 0]],

[[0, 0, -1]]],
npRelations := [[[0, 0, 1], [0, -1, 1]],

[[0, 0, 1]]],
nnRelations := [[[0, 0, -1], [0, 1, -1]],

[[0, 0, -1]]],
PowerRelations := []),

Homomorphisms := rec(
Epimorphism := [[1, 1, 0], [1, 0, 0]],
InverseMap := [[[2, 1]], [[3, -1], [1, 1]],

[[1, 1], [3, -1]]]),
MembershipArray := [1, 3])

69.4 ExtendPCQA

ExtendPCQA(G, CPP, HOM, m, n)

This function takes as input a finitely presented groupG, a consistent polycyclic presentation
CPP (69.3) of a polycyclic quotient G/N of G, an epimorphism and an inverse map as in the
field Homomorphisms in 69.3. It determines whether the quotient G/[N,N] is polycyclic
and returns the flag QuotientStatus . It also returns the polycyclic presentation and the
appropriate homomorphism and map if the quotient is polycyclic.

When the parameter m is a positive number the quotient G/[N,N]Nm is computed. When
it is a negative number, and if K/[N,N] is the torsion part of N/[N,N], then the quotient
G/[N,N]K is computed. The default case is when m = 0. If there are only three arguments
in the function call, m will be taken to be zero.

When the parameter n is a nonzero number, the quotient G/[N,G] is computed instead.
Otherwise the quotient G/[N,N] is computed. If this argument is not assigned by the
user, then n is set to zero. Different combinations of m and n give different quotients. For
example, when ExtendPCQA is called with m = 6 and n = 1,the quotient G/[N,G]N6 is
computed.

gap> ExtendPCQA(G,ans.PolycyclicPresentation,ans.Homomorphisms);
rec(

QuotientStatus := 5)
gap> ExtendPCQA(G,ans.PolycyclicPresentation,ans.Homomorphisms,6,1);
rec(
QuotientStatus := 0,
PolycyclicPresentation := rec(

1304 CHAPTER 69. THE POLYCYCLIC QUOTIENT ALGORITHM PACKAGE

Generators := 4,
ExponentList := [0, 0, 0, 6],
ppRelations := [[[0, 1, -1, 0],[0, 1, 0, 0],[0, 0, 0, 1]],

[[0, 0, 1, 1],[0, 0, 0, 1]],
[[0, 0, 0, 1]]],

pnRelations := [[[0, -1, 1, 5],[0, -1, 0, 0],[0, 0, 0, 5]],
[[0, 0, -1, 5],[0, 0, 0, 5]],
[[0, 0, 0, 5]]],

npRelations := [[[0, 0, 1, 0],[0, -1, 1, 0],[0, 0, 0, 1]],
[[0, 0, 1, 5],[0, 0, 0, 1]],
[[0, 0, 0, 1]]],

nnRelations := [[[0, 0, -1, 0],[0, 1, -1, 5],[0, 0, 0, 5]],
[[0, 0, -1, 1],[0, 0, 0, 5]],
[[0, 0, 0, 5]]],

PowerRelations := [,,,,,, [0, 0, 0, 0], [0, 0, 0, 5]]),
Homomorphisms := rec(
Epimorphism := [[1, 1, 0, 0], [1, 0, 0, 0]],
InverseMap :=
[[[2, 1]], [[3, -1],[1, 1]], [[1, 1],[3, -1]],
[[5, -1],[4, -1],[5, 1],[4, 1]]]),

Next := 4)

69.5 AbelianComponent

AbelianComponent(QUOT)

This function takes as input the output of a CallPCQA function call (see 69.3) or an
ExtendPCQA function call (see 69.4) and returns the structure of the abelian groups
which appear as quotients in the derived series. The structure of each of these quotients
is given by an array of nonnegative integers.Read the section on ElementaryDivisors for
details.

gap> F := FreeGroup(3);
Group(f.1, f.2, f.3)
gap> G := F/[F.1*F.2*F.1*F.2,F.2*F.3^2*F.2*F.3,F.3^6];
Group(f.1, f.2, f.3)
gap> quot := CallPCQA(G,2);;
gap> AbelianComponent(quot);
[[1, 2, 12], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

69.6 HirschLength

HirschLength(CPP)

This function takes as input a consistent polycyclic presentation (see 69.3) and returns the
Hirsch length of the group presented.

gap> HirschLength(quot.PolycyclicPresentation);
11

69.7. MODULEACTION 1305

69.7 ModuleAction

ModuleAction(QUOT)

This function takes as input the output of a CallPCQA function call (see 69.3) or an
ExtendPCQA function call (see 69.4). If the quotient G/[N,N] returned by the function
call is polycyclic then ModuleAction computes the action of the polycyclic generators
corresponding to G/N on the polycyclic generators of N/[N,N]. The result is returned as
an array of matrices. Notice that the Smith normal form of G/[N,N] is returned by the
function CallPCQA as part of the polycyclic presentation.

gap> ModuleAction(quot);
[[[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0],

[0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1],
[0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0]],

[[-1, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]],

[[1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]]]

1306 CHAPTER 69. THE POLYCYCLIC QUOTIENT ALGORITHM PACKAGE

Chapter 70

Sisyphos

This chapter describes the GAP accessible functions of the Sisyphos (Version 0.6) share
library package for computing with modular group algebras of p-groups, namely a func-
tion to convert a p-group into Sisyphos readable format (see 70.2), several functions that
compute automorphism groups of p-groups (see 70.4), functions that compute normalized
automorphism groups as polycyclically presented groups (see 70.5, 70.6), functions that test
two p-groups for isomorphism (see 70.7) and compute isomorphisms between p-groups (see
70.8), and a function to compute the element list of an automorphism group that is given
by generators (see 70.10).

The Sisyphos functions for group rings are not yet available, with the only exception of a
function that computed the group of normalized units (see 70.11).

The algorithms require presentations that are compatible with a characteristic series of
the group with elementary abelian factors, e.g. the p-central series. If necessary such a
presentation is computed secretly using the p-central series, the computations are done
using this presentation, and then the results are carried back to the original presentation.
The check of compatibility is done by the function IsCompatiblePCentralSeries (see 70.3).
The component isCompatiblePCentralSeries of the group will be either true or false
then. If you know in advance that your group is compatible with a series of the kind required,
e.g. the Jennings-series, you can avoid the check by setting this flag to true by hand.

Before using any of the functions described in this chapter you must load the package by
calling the statement

gap> RequirePackage("sisyphos");

70.1 PrintSISYPHOSWord

PrintSISYPHOSWord(P, a)

For a polycyclically presented group P and an element a of P , PrintSISYPHOSWord(P ,a
) prints a string that encodes a in the input format of the Sisyphos system.

The string "1" means the identity element, the other elements are products of powers of
generators, the i -th generator is given the name gi .

gap> g := SolvableGroup ("D8");;

1307

1308 CHAPTER 70. SISYPHOS

gap> PrintSISYPHOSWord (g, g.2*g.1); Print("\n");
g1*g2*g3

70.2 PrintSisyphosInputPGroup

PrintSisyphosInputPGroup(P, name, type)

prints the presentation of the finite p-group P in a format readable by the Sisyphos system.
P must be a polycyclically or freely presented group.

In Sisyphos, the group will be named name. If P is polycyclically presented the i -th
generator gets the name gi . In the case of a free presentation the names of the generators
are not changed; note that Sisyphos accepts only generators names beginning with a letter
followed by a sequence of letters, digits,underscores and dots.

type must be either "pcgroup" or the prime dividing the order of P . In the former case
the Sisyphos object has type pcgroup, P must be polycyclically presented for that. In the
latter case a Sisyphos object of type group is created. For avoiding computations in freely
presented groups, is neither checked that the presentation describes a p-group, nor that
the given prime really divides the group order.

See the Sisyphos manual [Wur93] for details.

gap> g:= SolvableGroup("D8");;
gap> PrintSisyphosInputPGroup(g, "d8", "pcgroup");
d8 = pcgroup(2,
gens(
g1,
g2,
g3),
rels(
g1^2 = 1,
g2^2 = 1,
g3^2 = 1,
[g2,g1] = g3));
gap> q8 := FreeGroup (2);;
gap> q8.relators := [q8.1^4,q8.2^2/q8.1^2,Comm(q8.2,q8.1)/q8.1^2];;
gap> PrintSisyphosInputPGroup (q8, "q8", 2);
#I PQuotient: class 1 : 2
#I PQuotient: Runtime : 0
q8 = group (minimal,
2,
gens(
f.1,
f.2),
rels(
f.1^4,
f.2^2*f.1^-2,
f.2^-1*f.1^-1*f.2*f.1^-1));

70.3. ISCOMPATIBLEPCENTRALSERIES 1309

70.3 IsCompatiblePCentralSeries

IsCompatiblePCentralSeries(G)

If the component G.isCompatiblePCentralSeries of the polycyclically presented p-group
G is bound, its value is returned, otherwise the exponent-p-central series of G is computed
and compared to the given presentation. If the generators of each term of this series form
a subset of the generators of G the component G.isCompatiblePCentralSeries is set to
true, otherwise to false. This value is then returned by the function.

gap> g:= SolvableGroup("D8");;
gap> IsCompatiblePCentralSeries (g);
true
gap> a := AbstractGenerators ("a", 5);;
gap> h := AgGroupFpGroup (rec (
> generators := a,
> relators :=
> [a[1]^2/(a[3]*a[5]),a[2]^2/a[3],a[3]^2/(a[4]*a[5]),a[4]^2,a[5]^2]));;
gap> h.name := "H";;
gap> IsCompatiblePCentralSeries (h);
false
gap> PCentralSeries (h, 2);
[H, Subgroup(H, [a3, a4, a5]), Subgroup(H, [a4*a5]),

Subgroup(H, [])]

70.4 Automorphisms

Automorphisms(P)
OuterAutomorphisms(P)
NormalizedAutomorphisms(P)
NormalizedOuterAutomorphisms(P)

all return a record with components

sizeOutG
the size of the group of outer automorphisms of P ,

sizeInnG
the size of the group of inner automorphisms of P ,

sizeAutG
the size of the full automorphism group of P ,

generators
a list of group automorphisms that generate the group of all, outer, normalized or
normalized outer automorphisms of the polycyclically presented p-group P , respec-
tively. In the case of outer or normalized outer automorphisms, this list consists of
preimages in Aut(P) of a generating set for Aut(P)/Inn(P) or Autn(P)/Inn(P),
respectively.

gap> g:= SolvableGroup("Q8");;
gap> Automorphisms(g);
rec(

1310 CHAPTER 70. SISYPHOS

sizeAutG := 24,
sizeInnG := 4,
sizeOutG := 6,
generators :=
[GroupHomomorphismByImages(Q8, Q8, [a, b, c], [b, a, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*b, b, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a, b*c, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*c, b, c])])

gap> OuterAutomorphisms(g);
rec(
sizeAutG := 24,
sizeInnG := 4,
sizeOutG := 6,
generators :=
[GroupHomomorphismByImages(Q8, Q8, [a, b, c], [b, a, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*b, b, c])])

Note: If the component P.isCompatiblePCentralSeries is not bound it is computed
using IsCompatiblePCentralSeries.

70.5 AgNormalizedAutomorphisms

AgNormalizedAutomorphisms(P)

returns a polycyclically presented group isomorphic to the group of all normalized automor-
phisms of the polycyclically presented p-group P .

gap> g:= SolvableGroup("D8");;
gap> aut:= AgNormalizedAutomorphisms(g);
Group(g0, g1)
gap> Size(aut);
4

Note: If the component P.isCompatiblePCentralSeries is not bound it is computed
using IsCompatiblePCentralSeries.

70.6 AgNormalizedOuterAutomorphisms

AgNormalizedOuterAutomorphisms(P)

returns a polycyclically presented group isomorphic to the group of normalized outer auto-
morphisms of the polycyclically presented p-group P .

gap> g:= SolvableGroup("D8");;
gap> aut:= AgNormalizedOuterAutomorphisms(g);
Group(IdAgWord)

Note: If the component P.isCompatiblePCentralSeries is not bound it is computed
using IsCompatiblePCentralSeries.

70.7 IsIsomorphic

IsIsomorphic(P1, P2)

70.8. ISOMORPHISMS 1311

returns true if the polycyclically or freely presented p-group P1 and the polycyclically
presented p-group P2 are isomorphic, false otherwise.

gap> g:= SolvableGroup("D8");;
gap> nonab:= AllTwoGroups(Size, 8, IsAbelian, false);
[Group(a1, a2, a3), Group(a1, a2, a3)]
gap> List(nonab, x -> IsIsomorphic(g, x));
[true, false]

(The function Isomorphisms returns isomorphisms in case the groups are isomorphic.)
Note: If the component P2.isCompatiblePCentralSeries is not bound it is computed
using IsCompatiblePCentralSeries.

70.8 Isomorphisms

Isomorphisms(P1, P2)

If the polycyclically or freely presented p-groups P1 and the polycyclically presented p-group
P2 are not isomorphic, Isomorphisms returns false. Otherwise a record is returned that
encodes the isomorphisms from P1 to P2 ; its components are
epimorphism

a list of images of P1.generators that defines an isomorphism from P1 to P2 ,
generators

a list of image lists which encode automorphisms that together with the inner auto-
morphisms generate the full automorphism group of P2

sizeOutG
size of the group of outer automorphisms of P2 ,

sizeInnG
size of the group of inner automorphisms of P2 ,

sizeOutG
size of the full automorphism group of P2 .

gap> g:= SolvableGroup("Q8");;
gap> nonab:= AllTwoGroups(Size, 8, IsAbelian, false);
[Group(a1, a2, a3), Group(a1, a2, a3)]
gap> nonab[2].name:= "im";;
gap> Isomorphisms(g, nonab[2]);
rec(
sizeAutG := 24,
sizeInnG := 4,
sizeOutG := 6,
epimorphism := [a1, a2, a3],
generators :=
[GroupHomomorphismByImages(im, im, [a1, a2, a3], [a2, a1, a3]),
GroupHomomorphismByImages(im, im, [a1, a2, a3], [a1*a2, a2, a3

])])

(The function IsIsomorphic tests for isomorphism of p-groups.)
Note: If the component P2.isCompatiblePCentralSeries is not bound it is computed
using IsCompatiblePCentralSeries.

1312 CHAPTER 70. SISYPHOS

70.9 CorrespondingAutomorphism

CorrespondingAutomorphism(G, w)

If G is a polycyclically presented group of automorphisms of a group P as returned by
AgNormalizedAutomorphisms (see 70.5) or AgNormalizedOuterAutomorphisms (see 70.6),
and w is an element of G then the automorphism of P corresponding to w is returned.

gap> g:= TwoGroup(64, 173);;
gap> g.name := "G173";;
gap> autg := AgNormalizedAutomorphisms (g);
Group(g0, g1, g2, g3, g4, g5, g6, g7, g8)
gap> CorrespondingAutomorphism (autg, autg.2*autg.1^2);
GroupHomomorphismByImages(G173, G173, [a1, a2, a3, a4, a5, a6],
[a1, a2*a4, a3*a6, a4*a6, a5, a6])

70.10 AutomorphismGroupElements

AutomorphismGroupElements(A)

A must be an automorphism record as returned by one of the automorphism routines or a
list consisting of automorphisms of a p-group P .

In the first case a list of all elements of Aut(P) or Autn(P) is returned, if A has been
created by Automorphisms or NormalizedAutomorphisms (see 70.4), respectively, or a list
of coset representatives of Aut(P) or Autn(P) modulo Inn(P), if A has been created by
OuterAutomorphisms or NormalizedOuterAutomorphisms (see 70.4), respectively.

In the second case the list of all elements of the subgroup of Aut(P) generated by A is
returned.

gap> g:= SolvableGroup("Q8");;
gap> outg:= OuterAutomorphisms(g);;
gap> AutomorphismGroupElements(outg);
[GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a, b, c]),

GroupHomomorphismByImages(Q8, Q8, [a, b, c], [b, a, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*b, b, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*b*c, a, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [b, a*b, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a, a*b*c, c])]

gap> l:= [outg.generators[2]];
[GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*b, b, c])]
gap> AutomorphismGroupElements(l);
[GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a, b, c]),

GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*b, b, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*c, b, c]),
GroupHomomorphismByImages(Q8, Q8, [a, b, c], [a*b*c, b, c])]

70.11 NormalizedUnitsGroupRing

NormalizedUnitsGroupRing(P)
NormalizedUnitsGroupRing(P, n)

70.11. NORMALIZEDUNITSGROUPRING 1313

When called with a polycyclicly presented p-group P , the group of normalized units of the
group ring FP of P over the field F with p elements is returned.

If a second argument n is given, the group of normalized units of FP/In is returned, where
I denotes the augmentation ideal of FP .

The returned group is represented as polycyclicly presented group.

gap> g:= SolvableGroup("D8");;
gap> NormalizedUnitsGroupRing(g, 1);
#D use multiplication table
Group(IdAgWord)
gap> NormalizedUnitsGroupRing(g, 2);
#D use multiplication table
Group(g1, g2)
gap> NormalizedUnitsGroupRing(g, 3);
#D use multiplication table
Group(g1, g2, g3, g4)
gap> NormalizedUnitsGroupRing(g);
#D use multiplication table
Group(g1, g2, g3, g4, g5, g6, g7)

1314 CHAPTER 70. SISYPHOS

Chapter 71

The Specht Share Package

This package contains functions for computing the decomposition matrices for Iwahori–
Hecke algebras of the symmetric groups. As the (modular) representation theory of these
algebras closely resembles that of the (modular) representation theory of the symmetric
groups — indeed, the later is a special case of the former — many of the combinatorial tools
from the representation theory of the symmetric group are included in the package.

These programs grew out of the attempts by Gordon James and myself [JM1] to understand
the decomposition matrices of Hecke algebras of type A when q = −1. The package is now
much more general and its highlights include:

1 Specht provides a means of working in the Grothendieck ring of a Hecke algebra
H using the three natural bases corresponding to the Specht modules, projective
indecomposable modules, and simple modules.

2 For Hecke algebras defined over fields of characteristic zero we have implemented
the algorithm of Lascoux, Leclerc, and Thibon [LLT] for computing decomposition
numbers and “crystallized decomposition matrices”. In principle, this gives all of the
decomposition matrices of Hecke algebras defined over fields of characteristic zero.

3 We provide a way of inducing and restricting modules. In addition, it is possible
to “induce” decomposition matrices; this function is quite effective in calculating the
decomposition matrices of Hecke algebras for small n.

4 The q–analogue of Schaper’s theorem [JM2] is included, as is Kleshchev’s [K] al-
gorithm of calculating the Mullineux map. Both are used extensively when inducing
decomposition matrices.

5 Specht can be used to compute the decomposition numbers of q–Schur algebras
(and the general linear groups), although there is less direct support for these al-
gebras. The decomposition matrices for the q–Schur algebras defined over fields of
characteristic zero for n < 11 and all e are included in Specht.

6 The Littlewood–Richard rule, its inverse, and functions for many of the standard op-
erations on partitions (such as calculating cores, quotients, and adding and removing
hooks), are included.

7 The decomposition matrices for the symmetric groups Sn are included for n < 15
and for all primes.

1315

1316 CHAPTER 71. THE SPECHT SHARE PACKAGE

The modular representation theory of Hecke algebras

The “modular” representation theory of the Iwahori–Hecke algebras of type A was pioneered
by Dipper and James [DJ1,DJ2]; here we briefly outline the theory, referring the reader to
the references for details. The definition of the Hecke algebra can be found in Chapter 81;
see also 81.1.

Given a commutative integral domain R and a non–zero unit q in R, let H = H R,q be the
Hecke algebra of the symmetric group Sn on n symbols defined over R and with parameter
q . For each partition µ of n, Dipper and James defined a Specht module S(µ). Let rad
S(µ) be the radical of S(µ) and define D(µ)=S(µ)/rad S(µ). When R is a field, D(µ) is either
zero or absolutely irreducible. Henceforth, we will always assume that R is a field.

Given a non–negative integer i, let [i]q = 1 + q + . . . + qi−1. Define e to be the smallest
non–negative integer such that [e]q = 0; if no such integer exists, we set e equal to 0. Many
of the functions in this package depend upon e; the integer e is the Hecke algebras analogue
of the characteristic of the field in the modular representation theory of finite groups.

A partition µ = (µ1, µ2, . . .) is e–singular if there exists an integer i such that µi =
µi+1 = · · · = µi+e−1 > 0; otherwise, µ is e–regular. Dipper and James [DJ1] showed that
D(ν)6= (0) if and only if ν is e–regular and that the D(ν) give a complete set of non–isomorphic
irreducible H –modules as ν runs over the e–regular partitions of n. Further, S(µ) and S(ν)
belong to the same block if and only if µ and ν have the same e-core [DJ2,JM2]. Note that
these results depend only on e and not directly on R or q .

Given two partitions µ and ν, where ν is e–regular, let dµν be the composition multiplicity
of D(ν) in S(µ). The matrix D = (dµν) is the decomposition matrix of H. When the rows
and columns are ordered in a way compatible with dominance, D is lower unitriangular.

The indecomposable H -modules P(ν) are indexed by e-regular partitions ν. By general ar-
guments, P(ν) has the same composition factors as

∑
µ dµνS(µ); so these linear combinations

of modules become identified in the Grothendieck ring of H. Similarly, D(ν) =
∑
µ d
−1
νµS(µ)

in the Grothendieck ring. These observations are the basis for many of the computations in
Specht.

Two small examples

Because of the algorithm of [LLT], in principle, all of decomposition matrices for all Hecke
algebras defined over fields of characteristic zero are known and available using Specht.
The algorithm is recursive; however, it is quite quick and, as with a car, you need never look
at the engine:

gap> H:=Specht(4); # e=4, R a field of characteristic 0
Specht(e=4, S(), P(), D(), Pq())
gap> InducedModule(H.P(12,2));
P(13,2)+P(12,3)+P(12,2,1)+P(10,3,2)+P(9,6)

The [LLT] algorithm was applied 24 times during this calculation.

For Hecke algebras defined over fields of positive characteristic the major tool provided
by Specht, apart from the decomposition matrices contained in the libraries, is a way of
“inducing” decomposition matrices. This makes it fairly easy to calculate the associated
decomposition matrices for “small” n. For example, the Specht libraries contain the de-
composition matrices for the symmetric groups Sn over fields of characteristic 3 for n < 15.
These matrices were calculated by Specht using the following commands:

1317

gap> H:=Specht(3,3); # e=3, R field of characteristic 3
Specht(e=3, p=3, S(), P(), D())
gap> d:=DecompositionMatrix(H,5); # known for n < 2e
5 | 1
4,1 | . 1
3,2 | . 1 1
3,1^2| . . . 1
2^2,1| 1 . . . 1
2,1^3| 1
1^5 | . . 1 . .
gap> for n in [6..14] do
> d:=InducedDecompositionMatrix(d); SaveDecompositionMatrix(d);
> od;

The function InducedDecompositionMatrix contains almost every trick that I know for
computing decomposition matrices. I would be very happy to hear of any improvements.

Specht can also be used to calculate the decomposition numbers of the q–Schur algebras;
although, as yet, here no additional routines for calculating the projective indecomposables
indexed by e–singular partitions. Such routines will probably be included in a future release,
together with the (conjectural) algorithm [LT] for computing the decomposition matrices of
the q–Schur algebras over fields of characteristic zero.

In the next release of Specht, I will also include functions for computing the decomposition
matrices of Hecke algebras of type B, and more generally those of the Ariki–Koike algebras.
As with the Hecke algebra of type A, there is an algorithm for computing the decomposition
matrices of these algebras when R is a field of characteristic zero [M].

Credits

I would like to thank Gordon James, Johannes Lipp, and Klaus Lux for their comments and
suggestions.

If you find Specht useful please let me know. I would also appreciate hearing any sug-
gestions, comments, or improvements. In addition, if Specht does play a significant role
in your research, please send me a copy of the paper(s) and please cite Specht in your
references.

Andrew Mathas (Supported in part by SERC grant GR/J37690)
a.mathas@ic.ac.uk
Imperial College, 1996.

References

[A] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), preprint (1996).

[B] J. Brundan, Modular branching rules for quantum GLn and the Hecke algebra of type
A, preprint 1996.

[DJ1] R. Dipper and G. James, Representations of Hecke algebras of general linear groups,
Proc. London Math. Soc. (3), 52 (1986), 20–52.

[DJ2] R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear
groups, Proc. London Math. Soc. (3), 54 (1987), 57–82.

1318 CHAPTER 71. THE SPECHT SHARE PACKAGE

[G] M. Geck, Brauer trees of Hecke algebras, Comm. Alg., 20 (1992), 2937–2973.

[Gr] I. Grojnowski, Affine Hecke algebras (and affine quantum GLn) at roots of unity ,
IMRN 5 (1994), 215–217.

[J] G. James, The decomposition matrices of GLn(q) for n ≤ 10, Proc. London Math.
Soc., 60 (1990), 225–264.

[JK] G. James and A. Kerber, The representation theory of the symmetric group, 16, En-
cyclopedia of Mathematics, Addison–Wesley, Massachusetts (1981).

[JM1] G. James and A. Mathas, Hecke algebras of type A at q = −1, J. Algebra (to appear).

[JM2] G. James and A. Mathas, A q–analogue of the Jantzen–Schaper Theorem, Proc.
London Math. Soc. (to appear).

[K] A. Kleshchev, Branching rules for modular representations III , J. London Math. Soc.
(to appear).

[LLT] A. Lascoux, B. Leclerc, and J-Y. Thibon, Hecke algebras at roots of unity and crystal
bases of quantum affine algebras, Comm. Math. Phys. (to appear).

[LT] B. Leclerc and J-Y. Thibon, Canonical bases and q–deformed Fock spaces, Int. Research
Notices (to appear).

[M] A. Mathas, Canonical bases and the decomposition matrices of Ariki–Koike algebras,
preprint 1996.

71.1 Specht

Specht(e)
Specht(e, p)
Specht(e, p, val [,HeckeRing])

Let R be a field of characteristic 0, q a non–zero element of R, and let e be the smallest
positive integer such that

1 + q + . . .+ qe−1 = 0

(we set e = 0 if no such integer exists). The record returned by Specht(e) allows calcu-
lations in the Grothendieck rings of the Hecke algebras H of type A which are defined over
R and have parameter q . (The Hecke algebra is described in Chapter 81; see also Hecke
81.1.) Below we also describe how to consider Hecke algebras defined over fields of positive
characteristic.

Specht returns a record which contains, among other things, functions S , P, and D which
correspond to the Specht modules, projective indecomposable modules, and the simple mod-
ules for the family of Hecke algebras determined by R and q . Specht allows manipulation
of arbitrary linear combinations of these “modules”, as well as a way of inducing and re-
stricting them, “multiplying” them, and converting between these three natural bases of the
Grothendieck ring. Multiplication of modules corresponds to taking a tensor product, and
then inducing (thus giving a module for a larger Hecke algebra).

gap> RequirePackage("specht"); H:=Specht(5);
Specht(e=5, S(), P(), D(), Pq())
gap> H.D(3,2,1);
D(3,2,1)

71.1. SPECHT 1319

gap> H.S(last);
S(6)-S(4,2)+S(3,2,1)
gap> InducedModule(H.P(3,2,1));
P(4,2,1)+P(3,3,1)+P(3,2,2)+2*P(3,2,1,1)
gap> H.S(last);
S(4,2,1)+S(3,3,1)+S(3,2,2)+2*S(3,2,1,1)+S(2,2,2,1)+S(2,2,1,1,1)
gap> H.D(3,1)*H.D(3);
D(7)+2*D(6,1)+D(5,2)+D(5,1,1)+2*D(4,3)+D(4,2,1)+D(3,3,1)
gap> RestrictedModule(last);
4*D(6)+3*D(5,1)+5*D(4,2)+2*D(4,1,1)+2*D(3,3)+2*D(3,2,1)
gap> H.S(last);
S(6)+3*S(5,1)+3*S(4,2)+2*S(4,1,1)+2*S(3,3)+2*S(3,2,1)
gap> H.P(last);
P(6)+3*P(5,1)+2*P(4,2)+2*P(4,1,1)+2*P(3,3)

The way in which the partitions indexing the modules are printed can be changed using
SpechtPrettyPrint 71.63.

There is also a function Schur 71.4 for doing calculations with the q–Schur algebra. See
DecompositionMatrix 71.5, and CrystalDecompositionMatrix 71.6.

This function requires the package “specht” (see 56.1).

The functions H.S, H.P, and H.D

The functions H.S, H.P, and H.D return records which correspond to Specht modules, projec-
tive indecomposable modules, and simple modules respectively. Each of these three functions
can be called in four different ways, as we now describe.

H.S(µ) H.P(µ) H.D(µ)

In the first form, µ is a partition (either a list, or a sequence of integers), and the corre-
sponding Specht module, PIM, or simple module (respectively), is returned.

gap> H.P(4,3,2);
P(4,3,2)

H.S(x) H.P(x) H.D(x)

Here, x is an H –module. In this form, H.S rewrites x as a linear combination of Specht
modules, if possible. Similarly, H.P and H.D rewrite x as a linear combination of PIMs and
simple modules respectively. These conversions require knowledge of the relevant decompo-
sition matrix of H ; if this is not known then false is returned (over fields of characteristic
zero, all of the decomposition matrices are known via the algorithm of [LLT]; various other
decomposition matrices are included with Specht). For example, H.S(H.P(µ)) returns∑

ν

dνµS(ν),

or false if some of these decomposition multiplicities are not known.

gap> H.D(H.P(4,3,2));
D(5,3,1)+2*D(4,3,2)+D(2,2,2,2,1)

1320 CHAPTER 71. THE SPECHT SHARE PACKAGE

gap> H.S(H.D(H.S(1,1,1,1,1)));
-S(5)+S(4,1)-S(3,1,1)+S(2,1,1,1)

As the last example shows, Specht does not always behave as expected. The reason for this
is that Specht modules indexed by e–singular partitions can always be written as a linear
combination of Specht modules which involve only e–regular partitions. As such, it is not
always clear when two elements are equal in the Grothendieck ring. Consequently, to test
whether two modules are equal you should first rewrite both modules in the D–basis; this is
not done by Specht because it would be very inefficient.

H.S(d , µ) H.P(d , µ) H.D(d , µ)

In the third form, d is a decomposition matrix and µ is a partition. This is useful when you
are trying to calculate a new decomposition matrix d because it allows you to do calculations
using the known entries of d to deduce information about the unknown ones. When used in
this way, H.P and H.D use d to rewrite P(µ) and D(µ) respectively as a linear combination
of Specht modules, and H.S uses d to write S(µ) as a linear combination of simple modules.
If the values of the unknown entries in d are needed, false is returned.

gap> H:=Specht(3,3); # e = 3, p = 3 = characteristic of R
Specht(e=3, p=3, S(), P(), D())
gap> d:=InducedDecompositionMatrix(DecompositionMatrix(H,14));;
Inducing....
The following projectives are missing from <d>:

[15] [8, 7]
gap> H.P(d,4,3,3,2,2,1);
S(4,3,3,2,2,1)+S(4,3,3,2,1,1,1)+S(4,3,2,2,2,1,1)+S(3,3,3,2,2,1,1)
gap> H.S(d,7, 3, 3, 2);
D(11,2,1,1)+D(10,3,1,1)+D(8,5,1,1)+D(8,3,3,1)+D(7,6,1,1)+D(7,3,3,2)
gap> H.D(d,14,1);
false

The final example returned false because the partitions (14,1) and (15) have the same
3–core (and P(15) is missing from d).

H.S(d , x) H.P(d , x) H.D(d , x)

In the final form, d is a decomposition matrix and x is a module. All three functions rewrite
x in their respective basis using d . Again this is only useful when you are trying to calculate
a new decomposition matrix because, for any “known” decomposition matrix d , H.S(x) and
H.S(d , x) are equivalent (and similarly for H.P and H.D).

gap> H.S(d, H.D(d,10,5));
-S(13,2)+S(10,5)

71.2 Hecke algebras over fields of positive characteristic

The last example looked at Hecke algebras with parameter q=1 and R a field of char-
acteristic 3 (so e=3); that is, the group algebra of the symmetric group over a field of
characteristic 3. More, generally, the command Specht(p, p) can be used to consider the
group algebras of the symmetric groups over fields of characteristic p (ie. e=p, and R a field
of characteristic p).

71.3. THE FOCK SPACE AND HECKE ALGEBRAS OVER FIELDS OF CHARACTERISTIC ZERO1321

To consider Hecke algebras defined over arbitrary fields Specht must also be supplied with
a valuation map val as an argument. The function val is a map from some PID into
the natural numbers; at present it is needed only by functions which rely (at least implic-
itly), upon the q–analogue of Schaper’s theorem. In general, val depends upon q and the
characteristic of R; full details can be found in [JM2].

Over fields of characteristic zero, and in the symmetric group case, the function val is
automatically defined by Specht. When R is a field of characteristic zero, val([i]q) is 1 if
e divides i and 0 otherwise (this is the valuation map associated to the prime ideal in C[v]
generated by the e–th cyclotomic polynomial). When q = 1 and R is a field of characteristic
p, val is the usual p–adic valuation map.

As another example, if q = 4 and R is a field of characteristic 5 (so e = 2), then the
valuation map sends the integer x to ν5([4]x) where [4]x is interpreted as an integer and ν5

is the usual 5–adic valuation. To consider this Hecke algebra one could proceed as follows:

gap> val:=function(x) local v;
> x:=Sum([0..x-1],v->4^v); # x->[x] q
> v:=0; while x mod 5=0 do x:=x/5; v:=v+1; od;
> return v;
> end;;
gap> H:=Specht(2,5,val,"e2q4");
Specht(e=2, p=5, S(), P(), D(), HeckeRing="e2q4")

Notice the string “e2q4” which was also passed to Specht in this example. Although it
is not strictly necessary, it is a good idea when using a “non–standard” valuation map
val to specify the value of H.HeckeRing=HeckeRing . This string is used for internal
bookkeeping by Specht; in particular, it is used to determine filenames when reading
and saving decomposition matrices. If a “standard” valuation map is used then HeckeR-
ing is set to the string “e<e>p<p>”; otherwise it defaults to “unknown”. The function
SaveDecompositionMatrix will not save any decomposition matrix for any Hecke algebra
H with H.HeckeRing=“unknown”.

71.3 The Fock space and Hecke algebras over fields of
characteristic zero

For Hecke algebras H defined over fields of characteristic zero Lascoux, Leclerc and Thi-
bon [LLT] have described an easy, inductive, algorithm for calculating the decomposition
matrices of H . Their algorithm really calculates the canonical basis, or (global) crystal
basis of the Fock space; results of Grojnowski–Lusztig [Gr] show that computing this basis
is equivalent to computing the decomposition matrices of H (see also [A]).

The Fock space F is an (integrable) module for the quantum group Uq(ŝle) of the affine
special linear group. F is a free C[v]–module with basis the set of all Specht modules S(µ)
for all partitions µ of all integers

F =
⊕
n≥0

⊕
µ`n

C[v] S(µ);

here v=H.info.Indeterminate is an indeterminate over the integers (or strictly, C). The
canonical basis elements Pq(µ) for the Uq(ŝle)–submodule of F generated by the 0–partition

1322 CHAPTER 71. THE SPECHT SHARE PACKAGE

are indexed by e–regular partitions µ. Moreover, under specialization, Pq(µ) maps to P(µ).
An eloquent description of the algorithm for computing H.Pq(µ) can be found in [LLT].
To access the elements of the Fock space Specht provides the functions:
H.Pq(µ) H.Sq(µ)
Notice that, unlike H.P and H.S the only arguments which H.Pq and H.Sq accept are parti-
tions. (Given that our indeterminate is v these functions should really be called H.Pv and
H.Sv; here “q” stands for “quantum.)
The function H.Pq computes the canonical basis element Pq(µ) of the Fock space corre-
sponding to the e–regular partition µ (there is a canonical basis for the whole of the Fock
space [LT]; conjecturally, this basis can be used to compute the decomposition matrices
for the q–Schur algebra over fields of characteristic zero). The second function returns a
standard basis element S(µ) of F .
gap> H:=Specht(4);
Specht(e=4, S(), P(), D(), Pq())
gap> H.Pq(6,2);
S(6,2)+v*S(5,3)
gap> RestrictedModule(last);
S(6,1)+(v + v^(-1))*S(5,2)+v*S(4,3)
gap> H.P(last);
P(6,1)+(v + v^(-1))*P(5,2)
gap> Specialized(last);
P(6,1)+2*P(5,2)
gap> H.Sq(5,3,2);
S(5,3,2)
gap> InducedModule(last,0);
v^(-1)*S(5,3,3)

The modules returned by H.Pq and H.Sq behave very much like elements of the Grothendieck
ring of H ; however, they should be considered as elements of the Fock space. The key dif-
ference is that when induced or restricted “quantum” analogues of induction and restriction
are used. These analogues correspond to the action of Uq(ŝle) on F [LLT].
In effect, the functions H.Pq and H.Sq allow computations in the Fock space, using the
functions InducedModule 71.10 and RestrictedModule 71.12. The functions H.S, H.P,
and H.D can also be applied to elements of the Fock space, in which case they have the
expected effect. In addition, any element of the Fock space can be specialized to give the
corresponding element of the Grothendieck ring of H (it is because of this correspondence
that we do not make a distinction between elements of the Fock space and the Grothendieck
ring of H).
When working over fields of characteristic zero Specht will automatically calculate any
canonical basis elements that it needs for computations in the Grothendieck ring of H .
If you are not interested in the canonical basis elements you need never work with them
directly. If, for some reason, you do not want Specht to use the canonical basis elements
to calculate decomposition numbers then all you need to do is Unbind(H.Pq).

71.4 Schur

Schur(e)

71.5. DECOMPOSITIONMATRIX 1323

Schur(e, p)
Schur(e, p, val [,HeckeRing])
This function behaves almost identically to the function Specht (see 71.1), the only dif-
ference being that the three functions in the record S returned by Schur are called S.W,
S.P, and S.F and that they correspond to the q-Weyl modules, the projective decomposable
modules, and the simple modules of the q–Schur algebra respectively. Note that our labeling
of these modules is non–standard, following that used by James in [J]. The standard labeling
can be obtained from ours by replacing all partitions by their conjugates.
Almost all of the functions in Specht which accept a Specht record H will also accept a
record S returned by Schur

In the current version of Specht the decomposition matrices of q–Schur algebras are not
fully supported. The InducedDecompositionMatrix function can be applied to these ma-
trices; however there are no additional routines available for calculating the columns cor-
responding to e–singular partitions. The decomposition matrices for the q–Schur algebras
defined over a field of characteristic 0 for n ≤ 10 are in the Specht libraries.
gap> S:=Schur(2);
Schur(e=2, W(), P(), F(), Pq())
gap> InducedDecompositionMatrix(DecompositionMatrix(S,3));
The following projectives are missing from d
[2, 2]
4 | 1 # DecompositionMatrix(S,4) returns the
3,1 | 1 1 # full decomposition matrix. The point
2^2 | . 1 . # of this example is to emphasize the
2,1^2 | 1 1 . 1 # limitations of Schur.
1^4 | 1 . . 1 1

Note that when S is defined over a field of characteristic zero then it contains a function S.Pq
for calculating canonical basis elements (see Specht 71.1); currently S.Pq(µ) is implemented
only for e–regular partitions. There is also a function H.Wq.
See also Specht 71.1. This function requires the package “specht” (see 56.1).

71.5 DecompositionMatrix

DecompositionMatrix(H , n [,Ordering])
DecompositionMatrix(H , filename [,Ordering])
The function DecompositionMatrix returns the decomposition matrix D of H(Sn) where H is
a Hecke algebra record returned by the function Specht (or Schur). DecompositionMatrix
first checks to see whether the required decomposition matrix exists as a library file (checking
first in the current directory, next in the directory specified by SpechtDirectory, and finally
in the Specht libraries). If H.Pq exists, DecompositionMatrix next looks for crystallized
decomposition matrices (see CrystalDecompositionMatrix 71.6). If the decomposition
matrix d is not stored in te library DecompositionMatrix will calculate d when H is a Hecke
algebra with a base field R of characteristic zero, and will return false otherwise (in which
case the function CalculateDecompositionMatrix 71.20 can be used to force Specht to
try and calculate this matrix).
For Hecke algebras defined over fields of characteristic zero, Specht uses the algorithm
of [LLT] to calculate decomposition matrices (this feature can be disabled by unbinding

1324 CHAPTER 71. THE SPECHT SHARE PACKAGE

H.Pq). The decomposition matrices for the q–Schur algebras for n ≤ 10 are contained in the
Specht library, as are those for the symmetric group over fields of positive characteristic
when n < 15.
Once a decomposition matrix is known, Specht keeps an internal copy of it which is used
by the functions H.S, H.P, and H.D; these functions also read decomposition matrix files as
needed.
If you set the variable SpechtDirectory, then Specht will also search for decomposi-
tion matrix files in this directory. The files in the current directory override those in
SpechtDirectory and those in the Specht libraries.
In the second form of the function, when a filename is supplied, DecompositionMatrix will
read the decomposition matrix in the file filename, and this matrix will become Specht’s
internal copy of this matrix.
By default, the rows and columns of the decomposition matrices are ordered lexicographi-
cally. This can be changed by supplying DecompositionMatrix with an ordering function
such as LengthLexicographic or ReverseDominance. You do not need to specify the or-
dering you want every time you call DecompositionMatrix; Specht will keep the same
ordering until you change it again. This ordering can also be set “by hand” using the
variable H.Ordering.
gap> DecompositionMatrix(Specht(3),6,LengthLexicographic);
6 | 1
5,1 | 1 1
4,2 | . . 1
3^2 | . 1 . 1
4,1^2 | . 1 . . 1
3,2,1 | 1 1 . 1 1 1
2^3 | 1 1
3,1^3 | 1 1
2^2,1^2| 1
2,1^4 | . . . 1 . 1 .
1^6 | . . . 1 . . .

Once you have a decomposition matrix it is often nice to be able to print it. The on screen
version is often good enough; there is also a TeX command which generates a LATEX version.
There are also functions for converting Specht decomposition matrices into GAP matrices
and visa versa (see MatrixDecompositionMatrix 71.21 and DecompositionMatrixMatrix
71.22).
Using the function InducedDecompositionMatrix (see 71.15), it is possible to induce a de-
composition matrix. See also SaveDecompositionMatrix 71.19 and IsNewIndecomposable
71.16, Specht 71.1, Schur 71.4, and CrystalDecompositionMatrix 71.6. This function
requires the package “specht” (see 56.1).

71.6 CrystalDecompositionMatrix

CrystalDecompositionMatrix(H , n [,Ordering])
CrystalDecompositionMatrix(H , filename [,Ordering])
This function is similar to DecompositionMatrix, except that it returns a crystallized
decomposition matrix. The columns of decomposition matrices correspond to projective

71.7. DECOMPOSITIONNUMBER 1325

indecomposables; the columns of crystallized decomposition matrices correspond to the
canonical basis elements of the Fock space (see 71.1). Consequently, the entries in these
matrices are polynomials (in v), and by specializing (ie. setting v equal to 1; see 71.58), the
decomposition matrices of H are obtained (see 71.1).

Crystallized decomposition matrices are defined only for Hecke algebras over a base field
of characteristic zero. Unlike “normal” decomposition matrices, crystallized decomposition
matrices cannot be induced.

gap> CrystalDecompositionMatrix(Specht(3), 6);
6 | 1
5,1 | v 1
4,2 | . . 1
4,1^2 | . v . 1
3^2 | . v . . 1
3,2,1 | v v^2 . v v 1
3,1^3 | . . . v^2 . v
2^3 | v^2 v
2^2,1^2| 1
2,1^4 | v v^2 .
1^6 | v^2 . .
gap> Specialized(last); # set v equal to 1.
6 | 1
5,1 | 1 1
4,2 | . . 1
4,1^2 | . 1 . 1
3^2 | . 1 . . 1
3,2,1 | 1 1 . 1 1 1
3,1^3 | . . . 1 . 1
2^3 | 1 1
2^2,1^2| 1
2,1^4 | 1 1 .
1^6 | 1 . .

See also Specht 71.1, Schur 71.4, DecompositionMatrix 71.5, and Specialized 71.58.
This function requires the package “specht” (see 56.1).

71.7 DecompositionNumber

DecompositionNumber(H , µ, ν)
DecompositionNumber(d, µ, ν)

This function attempts to calculate the decomposition multiplicity of D(ν) in S(µ) (equiva-
lently, the multiplicity of S(µ) in P(ν)). If P(ν) is known, we just look up the answer; if not
DecompositionNumber tries to calculate the answer using “row and column removal” (see
[J,Theorem 6.18]).

gap> H:=Specht(6);;
gap> DecompositionNumber(H,[6,4,2],[6,6]);
0

This function requires the package “specht” (see 56.1).

1326 CHAPTER 71. THE SPECHT SHARE PACKAGE

71.8 Partitions in Specht

Many of the functions in Specht take partitions as arguments. Partitions are usually
represented by lists in GAP. In Specht, all the functions which expect a partition will
accept their argument either as a list or simply as a sequence of numbers. So, for example:

gap> H:=Specht(4);; H.S(H.P(6,4));
S(6,4)+S(6,3,1)+S(5,3,1,1)+S(3,3,2,1,1)+S(2,2,2,2,2)
gap> H.S(H.P([6,4]));
S(6,4)+S(6,3,1)+S(5,3,1,1)+S(3,3,2,1,1)+S(2,2,2,2,2)

Some functions require more than one argument, but the convention still applies.

gap> ECore(3, [6,4,2]);
[6, 4, 2]
gap> ECore(3, 6,4,2);
[6, 4, 2]
gap> GoodNodes(3, 6,4,2);
[false, false, 3]
gap> GoodNodes(3, [6,4,2], 2);
3

Basically, it never hurts to put the extra brackets in, and they can be omitted so long as this
is not ambiguous. One function where the brackets are needed is DecompositionNumber;
this is clear because the function takes two partitions as its arguments.

71.9 Inducing and restricting modules

Specht provides four functions InducedModule, RestrictedModule, SInducedModule and
SRestrictedModule for inducing and restricting modules. All functions can be applied to
Specht modules, PIMs, and simple modules. These functions all work by first rewriting all
modules as a linear combination of Specht modules (or q–Weyl modules), and then inducing
and restricting. Whenever possible the induced or restricted module will be written in the
original basis.

All of these functions can also be applied to elements of the Fock space (see 71.1); in which
case they correspond to the action of the generators Ei and Fi of Uq(ŝle) on F . There is
also a function InducedDecompositionMatrix 71.15 for inducing decomposition matrices.

71.10 InducedModule

InducedModule(x)
InducedModule(x, r1 [,r2, ...])

There is an natural embedding of H(Sn) in H(Sn+1) which in the usual way lets us define an
induced H(Sn+1)–module for every H(Sn)–module. The function InducedModule returns
the induced modules of the Specht modules, principal indecomposable modules, and simple
modules (more accurately, their image in the Grothendieck ring).

There is also a function SInducedModule (see 71.11) which provides a much faster way of
r–inducing s times (and inducing s times).

71.10. INDUCEDMODULE 1327

Let µ be a partition. Then the induced module InducedModule(S(µ)) is easy to describe: it
has the same composition factors as

∑
S(ν) where ν runs over all partitions whose diagrams

can be obtained by adding a single node to the diagram of µ.

gap> H:=Specht(2,2);
Specht(e=2, p=2, S(), P(), D())
gap> InducedModule(H.S(7,4,3,1));
S(8,4,3,1)+S(7,5,3,1)+S(7,4,4,1)+S(7,4,3,2)+S(7,4,3,1,1)
gap> InducedModule(H.P(5,3,1));
P(6,3,1)+2*P(5,4,1)+P(5,3,2)
gap> InducedModule(H.D(11,2,1));
D(x), unable to rewrite x as a sum of simples
S(12,2,1)+S(11,3,1)+S(11,2,2)+S(11,2,1,1)

When inducing indecomposable modules and simple modules, InducedModule first rewrites
these modules as a linear combination of Specht modules (using known decomposition ma-
trices), and then induces this linear combination of Specht modules. If possible Specht then
rewrites the induced module back in the original basis. Note that in the last example above,
the decomposition matrix for S15 is not known by Specht; this is why InducedModule was
unable to rewrite this module in the D–basis.

r–Induction

InducedModule(x , r1 [, r2, ...])

Two Specht modules S(µ) and S(ν) belong to the same block if and only if the corre-
sponding partitions µ and ν have the same e–core [JM2] (see 71.44). Because the e–core
of a partition is determined by its (multiset of) e–residues, if S(µ) and S(ν) appear in
InducedModule(S(τ)), for some partition τ , then S(µ) and S(ν) belong to the same block if
and only if µ and ν can be obtained by adding a node of the same e–residue to the diagram
of τ . The second form of InducedModule allows one to induce “within blocks” by only
adding nodes of some fixed e–residue r ; this is known as r-induction. Note that 0 ≤ r < e.

gap> H:=Specht(4); InducedModule(H.S(5,2,1));
S(6,2,1)+S(5,3,1)+S(5,2,2)+S(5,2,1,1)
gap> InducedModule(H.S(5,2,1),0);
0*S()
gap> InducedModule(H.S(5,2,1),1);
S(6,2,1)+S(5,3,1)+S(5,2,1,1)
gap> InducedModule(H.S(5,2,1),2);
0*S()
gap> InducedModule(H.S(5,2,1),3);
S(5,2,2)

The function EResidueDiagram (71.39), prints the diagram of µ, labeling each node with
its e–residue. A quick check of this diagram confirms the answers above.

gap> EResidueDiagram(H,5,2,1);
0 1 2 3 0
3 0
2

“Quantized” induction

1328 CHAPTER 71. THE SPECHT SHARE PACKAGE

When InducedModule is applied to the canonical basis elements H.Pq(µ) (or more generally
elements of the Fock space; see 71.1), a “quantum analogue” of induction is applied. More
precisely, the function InducedModule(*,i) corresponds to the action of the generator Fi
of the quantum group Uq(ŝle) on F [LLT].

gap> H:=Specht(3);; InducedModule(H.Pq(4,2),1,2);
S(6,2)+v*S(4,4)+v^2*S(4,2,2)
gap> H.P(last);
P(6,2)

See also SInducedModule 71.11, RestrictedModule 71.12, and SRestrictedModule 71.13.
This function requires the package “specht” (see 56.1).

71.11 SInducedModule

SInducedModule(x, s)
SInducedModule(x, s, r)

The function SInducedModule, standing for “string induction”, provides a more efficient
way of r–inducing s times (and a way of inducing s times if the residue r is omitted);
r–induction is explained in 71.10.

gap> H:=Specht(4);; SInducedModule(H.P(5,2,1),3);
P(8,2,1)+3*P(7,3,1)+2*P(7,2,2)+6*P(6,3,2)+6*P(6,3,1,1)+3*P(6,2,1,1,1)
+2*P(5,3,3)+P(5,2,2,1,1)
gap> SInducedModule(H.P(5,2,1),3,1);
P(6,3,1,1)
gap> InducedModule(H.P(5,2,1),1,1,1);
6*P(6,3,1,1)

Note that the multiplicity of each summand of InducedModule(x,r,...,r) is divisible by
s! and that SInducedModule divides by this constant.

As with InducedModule this function can also be applied to elements of the Fock space (see
71.1), in which case the quantum analogue of induction is used.

See also InducedModule 71.10. This function requires the package “specht” (see 56.1).

71.12 RestrictedModule

RestrictedModule(x)
RestrictedModule(x, r1 [, r2, ...])

Given a module x for H(Sn) RestrictedModule returns the corresponding module for
H(Sn−1). The restriction of the Specht module S(µ) is the linear combination of Specht
modules

∑
S(ν) where ν runs over the partitions whose diagrams are obtained by deleting

a node from the diagram of µ. If only nodes of residue r are deleted then this corresponds
to first restricting S(µ) and then taking one of the block components of the restriction; this
process is known as r-restriction (cf. r–induction in 71.10).

There is also a function SRestrictedModule (see 71.13) which provides a faster way of
r–restricting s times (and restricting s times).

71.13. SRESTRICTEDMODULE 1329

When more than one residue if given to RestrictedModule it returns

RestrictedModule(x , r1, r2, ..., rk) = RestrictedModule(RestrictedModule(x , r1), r2, ..., rk)

(cf. InducedModule 71.10).

gap> H:=Specht(6);; RestrictedModule(H.P(5,3,2,1),4);
2*P(4,3,2,1)
gap> RestrictedModule(H.D(5,3,2),1);
D(5,2,2)

“Quantized” restriction

As with InducedModule, when RestrictedModule is applied to the canonical basis elements
H.Pq(µ) a quantum analogue of restriction is applied; this time, RestrictedModule(*,i)
corresponds to the action of the generator Ei of Uq(ŝle) on F [LLT].

See also InducedModule 71.10, SInducedModule 71.11, and SRestrictedModule 71.13. This
function requires the package “specht” (see 56.1).

71.13 SRestrictedModule

SRestrictedModule(x, s)
SRestrictedModule(x, s, r)

As with SInducedModule this function provides a more efficient way of r–restricting s times,
or restricting s times if the residue r is omitted (cf. SInducedModule 71.11).

gap> H:=Specht(6);; SRestrictedModule(H.S(4,3,2),3);
3*S(4,2)+2*S(4,1,1)+3*S(3,3)+6*S(3,2,1)+2*S(2,2,2)
gap> SRestrictedModule(H.P(5,4,1),2,4);
P(4,4)

See also InducedModule 71.10, SInducedModule 71.11, and RestrictedModule 71.12. This
function requires the package “specht” (see 56.1).

71.14 Operations on decomposition matrices

Specht is a package for computing decomposition matrices; this section describes the func-
tions available for accessing these matrices directly. In addition to decomposition matrices,
Specht also calculates the “crystallized decomposition matrices” of [LLT], and the “adjust-
ment matrices” introduced by James [J] (and Geck [G]).

Throughout Specht we place an emphasis on calculating the projective indecomposable
modules, and hence upon the columns of decomposition matrices. This approach seems
more efficient than the traditional approach of calculating decomposition matrices by rows;
ideally both approaches should be combined (as is done by IsNewIndecomposable).

In principle, all decomposition matrices for all Hecke algebras defined over a field of char-
acteristic zero are available from within Specht. In addition, the decomposition matrices
for all q–Schur algebras with n ≤ 10 and all values of e and the p–modular decomposition
matrices of the symmetric groups Sn for n < 15 are in the Specht library files.

If you are using Specht regularly to do calculations involving certain values of e it would
be advantageous to have Specht calculate and save the first 20 odd decomposition matrices
that you are interested in. So, for e = 4 use the commands:

1330 CHAPTER 71. THE SPECHT SHARE PACKAGE

gap> H:=Specht(4);; for n in [8..20] do
> SaveDecompositionMatrix(DecompositionMatrix(H,n));
> od;

Alternatively, you could save the crystallized decomposition matrices. Note that for n < 2e
the decomposition matrices are known (by Specht) and easy to compute.

71.15 InducedDecompositionMatrix

InducedDecompositionMatrix(d)

If d is the decomposition matrix of H(Sn), then InducedDecompositionMatrix(d) attempts
to calculate the decomposition matrix of H(Sn+1). It does this by extracting each projec-
tive indecomposable from d and inducing these modules to obtain projective modules for
H(Sn+1). InducedDecompositionMatrix then tries to decompose these projectives using
the function IsNewIndecomposable (see 71.16). In general there will be columns of the
decomposition matrix which InducedDecompositionMatrix is unable to decompose and
these will have to be calculated “by hand”. InducedDecompositionMatrix prints a list of
those columns of the decomposition matrix which it is unable to calculate (this list is also
printed by the function MissingIndecomposables(d)).

gap> gap> d:=DecompositionMatrix(Specht(3,3),14);;
gap> InducedDecompositionMatrix(d);;
Inducing....
The following projectives are missing from <d>:

[15] [8, 7]

Note that the missing indecomposables come in “pairs” which map to each other under the
Mullineux map (see Mullineux 71.32).

Almost all of the decomposition matrices included in Specht were calculated directly by
InducedDecompositionMatrix. When n is “small” InducedDecompositionMatrix is usu-
ally able to return the full decomposition matrix for H(Sn+1).

Finally, although the InducedDecompositionMatrix can also be applied to the decompo-
sition matrices of the q–Schur algebras (see Schur 71.4), InducedDecompositionMatrix is
much less successful in inducing these decomposition matrices because it contains no spe-
cial routines for dealing with the indecomposable modules of the q–Schur algebra which
are indexed by e–singular partitions. Note also that we use a non–standard labeling of the
decomposition matrices of q–Schur algebras; see 71.4.

71.16 IsNewIndecomposable

IsNewIndecomposable(d, x [,µ])

IsNewIndecomposable is the function which does all of the hard work when the function
InducedDecompositionMatrix is applied to decomposition matrices (see 71.15). Given a
projective module x , IsNewIndecomposable returns true if it is able to show that x is
indecomposable (and this indecomposable is not already listed in d), and false otherwise.
IsNewIndecomposable will also print a brief description of its findings, giving an upper and
lower bound on the first decomposition number µ for which it is unable to determine the
multiplicity of S(µ) in x .

71.16. ISNEWINDECOMPOSABLE 1331

IsNewIndecomposable works by running through all of the partitions ν such that P(ν) could
be a summand of x and it uses various results, such as the q-Schaper theorem of [JM2] (see
Schaper 71.30), the Mullineux map (see Mullineux 71.32), and inducing simple modules,
to determine if P(ν) does indeed split off. In addition, if d is the decomposition matrix for
H(Sn) then IsNewIndecomposable will probably use some of the decomposition matrices of
H(Sm) for m ≤ n, if they are known. Consequently it is a good idea to save decomposition
matrices as they are calculated (see 71.19).

For example, in calculating the 2–modular decomposition matrices of Sr the first projective
which InducedDecompositionMatrix is unable to calculate is P(10).

gap> H:=Specht(2,2);;
gap> d:=InducedDecompositionMatrix(DecompositionMatrix(H,9));;
Inducing.
The following projectives are missing from d
[10]

(In fact, given the above commands, Specht will return the full decomposition matrix for
S10 because this matrix is in the library; these were the commands that I used to calculate
the decomposition matrix in the library.)

By inducing P(9) we can find a projective H –module which contains P(10). We can then
use IsNewIndecomposable to try and decompose this induced module into a sum of PIMs.

gap> SpechtPrettyPrint(); x:=InducedModule(H.P(9),1);
S(10)+S(9,1)+S(8,2)+2S(8,1^2)+S(7,3)+2S(7,1^3)+3S(6,3,1)+3S(6,2^2)
+4S(6,2,1^2)+2S(6,1^4)+4S(5,3,2)+5S(5,3,1^2)+5S(5,2^2,1)+2S(5,1^5)
+2S(4^2,2)+2S(4^2,1^2)+2S(4,3^2)+5S(4,3,1^3)+2S(4,2^3)+5S(4,2^2,1^2)
+4S(4,2,1^4)+2S(4,1^6)+2S(3^3,1)+2S(3^2,2^2)+4S(3^2,2,1^2)
+3S(3^2,1^4)+3S(3,2^2,1^3)+2S(3,1^7)+S(2^3,1^4)+S(2^2,1^6)+S(2,1^8)
+S(1^10)
gap> IsNewIndecomposable(d,x);
The multiplicity of S(6,3,1) in P(10) is at least 1 and at most 2.
false
gap> x;
S(10)+S(9,1)+S(8,2)+2S(8,1^2)+S(7,3)+2S(7,1^3)+2S(6,3,1)+2S(6,2^2)
+3S(6,2,1^2)+2S(6,1^4)+3S(5,3,2)+4S(5,3,1^2)+4S(5,2^2,1)+2S(5,1^5)
+2S(4^2,2)+2S(4^2,1^2)+2S(4,3^2)+4S(4,3,1^3)+2S(4,2^3)+4S(4,2^2,1^2)
+3S(4,2,1^4)+2S(4,1^6)+2S(3^3,1)+2S(3^2,2^2)+3S(3^2,2,1^2)
+2S(3^2,1^4)+2S(3,2^2,1^3)+2S(3,1^7)+S(2^3,1^4)+S(2^2,1^6)+S(2,1^8)
+S(1^10)

Notice that some of the coefficients of the Specht modules in x have changed; this is because
IsNewIndecomposable was able to determine that the multiplicity of S(6,3,1) was at most
2 and so it subtracted one copy of P(6,3,1) from x .

In this case, the multiplicity of S(6,3,1) in P(10) is easy to resolve because general theory says
that this multiplicity must be odd. Therefore, x− P(6, 3, 1) is projective. After subtracting
P(6,3,1) from x we again use IsNewIndecomposable to see if x is now indecomposable. We
can tell IsNewIndecomposable that all of the multiplicities up to and including S(6,3,1)
have already been checked by giving it the addition argument µ=[6,3,1].

gap> x:=x-H.P(d,6,3,1);; IsNewIndecomposable(d,x,6,3,1);

1332 CHAPTER 71. THE SPECHT SHARE PACKAGE

true

Consequently, x = P(10) and we add it to the decomposition matrix d (and save it).

gap> AddIndecomposable(d,x); SaveDecompositionMatrix(d);

A full description of what IsNewIndecomposable does can be found by reading the com-
ments in specht.g. Any suggestions or improvements on this function would be especially
welcome.

See also DecompositionMatrix 71.5 and InducedDecompositionMatrix 71.15. This func-
tion requires the package “specht” (see 56.1).

71.17 InvertDecompositionMatrix

InvertDecompositionMatrix(d)

Returns the inverse of the (e–regular part of) d , where d is a decomposition matrix, or
crystallized decomposition matrix, of a Hecke algebra or q–Schur algebra. If part of the
decomposition matrix d is unknown then InvertDecompositionMatrix will invert as much
of d as possible.

gap> H:=Specht(4);; d:=CrystalDecompositionMatrix(H,5);;
gap> InvertDecompositionMatrix(d);
5 | 1
4,1 | . 1
3,2 | -v . 1
3,1^2| . . . 1
2^2,1| v^2 . -v . 1
2,1^3| 1

See also DecompositionMatrix 71.5, and CrystalDecompositionMatrix 71.6. This func-
tion requires the package “specht” (see 56.1).

71.18 AdjustmentMatrix

AdjustmentMatrix(dp, d)

James [J] noticed, and Geck [G] proved, that the decomposition matrices dp for Hecke
algebras defined over fields of positive characteristic admit a factorization

dp = d ∗ a

where d is a decomposition matrix for a suitable Hecke algebra defined over a field of
characteristic zero, and a is the so–called adjustment matrix. This function returns the
adjustment matrix a.

gap> H:=Specht(2);; Hp:=Specht(2,2);;
gap> d:=DecompositionMatrix(H,13);; dp:=DecompositionMatrix(Hp,13);;
gap> a:=AdjustmentMatrix(dp,d);
13 | 1
12,1 | . 1
11,2 | 1 . 1
10,3 | . . . 1

71.19. SAVEDECOMPOSITIONMATRIX 1333

10,2,1 | 1
9,4 | 1 . 1 . . 1
9,3,1 | 2 1
8,5 | . 1 1
8,4,1 | 1 1
8,3,2 | . 2 1 . 1
7,6 | 1 1 1
7,5,1 | 1 1
7,4,2 | 1 . 1 . . 1 1 . 1
7,3,2,1| 1
6,5,2 | . 1 1 . 1 1
6,4,3 | 2 . . . 1 1
6,4,2,1| . 2 . 1 1
5,4,3,1| 4 . 2 1
gap> MatrixDecompositionMatrix(dp)=
> MatrixDecompositionMatrix(d)*MatrixDecompositionMatrix(a);
true

In the last line we have checked our calculation.

See also DecompositionMatrix 71.5, and CrystalDecompositionMatrix 71.6. This func-
tion requires the package “specht” (see 56.1).

71.19 SaveDecompositionMatrix

SaveDecompositionMatrix(d)
SaveDecompositionMatrix(d, filename)

The function SaveDecompositionMatrix saves the decomposition matrix d . After a decom-
position matrix has been saved, the functions H.S, H.P, and H.D will automatically access
it as needed. So, for example, before saving d in order to retrieve the indecomposable P(µ)
from d it is necessary to type H.P(d, µ); once d has been saved, the command H.P(µ)
suffices.

Since InducedDecompositionMatrix(d) consults the decomposition matrices for smaller n,
if they are available, it is advantageous to save decomposition matrices as they are calculated.
For example, over a field of characteristic 5, the decomposition matrices for the symmetric
groups Sn with n ≤ 20 can be calculated as follows:

gap> H:=Specht(5,5);;
gap> d:=DecompositionMatrix(H,9);;
gap> for r in [10..20] do
> d:=InducedDecompositionMatrix(d);
> SaveDecompositionMatrix(d);
> od;

If your Hecke algebra record H is defined using a non–standard valuation map (see 71.1)
then it is also necessary to set the string “H.HeckeRing”, or to supply the function with
a filename before it will save your matrix. SaveDecompositionMatrix will also save ad-
justment matrices and the various other matrices that appear in Specht (they can be read
back in using DecompositionMatrix). Each matrix has a default filename which you can

1334 CHAPTER 71. THE SPECHT SHARE PACKAGE

over ride by supplying a filename. Using non–standard file names will stop Specht from
automatically accessing these matrices in future.

See also 71.5 DecompositionMatrix 71.5 and CrystalDecompositionMatrix 71.6. This
function requires the package “specht” (see 56.1).

71.20 CalculateDecompositionMatrix

CalculateDecompositionMatrix(H,n)

CalculateDecompositionMatrix(H,n) is similar to the function DecompositionMatrix
71.5 in that both functions try to return the decomposition matrix d of H(Sn); the difference
is that this function tries to calculate this matrix whereas the later reads the matrix from the
library files (in characteristic zero both functions apply the algorithm of [LLT] to compute d).
In effect this function is only needed when working with Hecke algebras defined over fields
of positive characteristic (or when you wish to avoid the libraries).

For example, if you want to do calculations with the decomposition matrix of the symmetrix
group S15 over a field of characteristic two, DecompositionMatrix returns false whereas
CalculateDecompositionMatrix; returns a part of the decomposition matrix.

gap> H:=Specht(2,2);
Specht(e=2, p=2, S(), P(), D())
gap> d:=DecompositionMatrix(H,15);
This decomposition matrix is not known; use CalculateDecompositionMatrix()
or InducedDecompositionMatrix() to calculate with this matrix.
false
gap> d:=CalculateDecompositionMatrix(H,15);;
Projective indecomposable P(6,4,3,2) not known.
Projective indecomposable P(6,5,3,1) not known.
...
gap> MissingIndecomposables(d);
The following projectives are missing from <d>:

[15] [14, 1] [13, 2] [12, 3] [12, 2, 1] [11, 4]
[11, 3, 1] [10, 5] [10, 4, 1] [10, 3, 2] [9, 6] [9, 5, 1]
[9, 4, 2] [9, 3, 2, 1] [8, 7] [8, 6, 1] [8, 5, 2] [8, 4, 3]
[8, 4, 2, 1] [7, 6, 2] [7, 5, 3] [7, 5, 2, 1] [7, 4, 3, 1]
[6, 5, 4] [6, 5, 3, 1] [6, 4, 3, 2]

Actually, you are much better starting with the decompositon matrix of S14 and then
applying InducedDecompositionMatrix to this matrix.

See also 71.5 DecompositionMatrix. This function requires the package “specht” (see 56.1).

71.21 MatrixDecompositionMatrix

MatrixDecompositionMatrix(d)

qqqqReturns the GAP matrix corresponding to the Specht decomposition matrix d . The
rows and columns of d are ordered by H.Ordering.

gap> MatrixDecompositionMatrix(DecompositionMatrix(Specht(3),5));
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 1, 0, 0],

71.22. DECOMPOSITIONMATRIXMATRIX 1335

[0, 0, 0, 1, 0], [1, 0, 0, 0, 1], [0, 0, 0, 0, 1],
[0, 0, 1, 0, 0]]

See also DecompositionMatrix 71.5 and DecompositionMatrixMatrix 71.22. This function
requires the package “specht” (see 56.1).

71.22 DecompositionMatrixMatrix

DecompositionMatrixMatrix(H , m, n)

Given a Hecke algebra H , a GAP matrix m, and an integer n this function returns the
Specht decomposition matrix corresponding to m. If p is the number of partitions of n
and r the number of e–regular partitions of n, then m must be either r × r , p× r , or p× p.
The rows and columns of m are assumed to be indexed by partitions ordered by H.Ordering
(see 71.1).

gap> H:=Specht(3);;
gap> m:=[[1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 1, 0],
> [0, 0, 0, 1], [0, 0, 1, 0]];;
gap> DecompositionMatrixMatrix(H,m,4);
4 | 1
3,1 | . 1
2^2 | 1 . 1
2,1^2| . . . 1
1^4 | . . 1 .

See also DecompositionMatrix 71.5 and MatrixDecompositionMatrix 71.21. This function
requires the package “specht” (see 56.1).

71.23 AddIndecomposable

AddIndecomposable(d, x)

AddIndecomposable(d, x) inserts the indecomposable module x into the decomposition
matrix d . If d already contains the indecomposable x then a warning is printed. The function
AddIndecomposable also calculates Mullineux(x) (see 71.32) and adds this indecomposable
to d (or checks to see that it agrees with the corresponding entry of d if this indecomposable
is already by d).

See IsNewIndecomposable 71.16 for an example. See also DecompositionMatrix 71.5 and
CrystalDecompositionMatrix 71.6. This function requires the package “specht” (see 56.1).

71.24 RemoveIndecomposable

RemoveIndecomposable(d, µ)

The function RemoveIndecomposable removes the column from d which corresponds to
P(µ). This is sometimes useful when trying to calculate a new decomposition matrix using
Specht and want to test a possible candidate for a yet to be identified PIM.

See also DecompositionMatrix 71.5 and CrystalDecompositionMatrix 71.6. This function
requires the package “specht” (see 56.1).

1336 CHAPTER 71. THE SPECHT SHARE PACKAGE

71.25 MissingIndecomposables

MissingIndecomposables(d)

The function MissingIndecomposables prints the list of partitions corresponding to the
indecomposable modules which are not listed in d .

See also DecompositionMatrix 71.5 and CrystalDecompositionMatrix 71.6. This function
requires the package “specht” (see 56.1).

71.26 Calculating dimensions

Specht has two functions for calculating the dimensions of modules of Hecke algebras;
SimpleDimension and SpechtDimension. As yet, Specht does not know how to calculate
the dimensions of modules for q–Schur algebras (these depend upon q).

71.27 SimpleDimension

SimpleDimension(d)
SimpleDimension(H , n)
SimpleDimension(H |d, µ)

In the first two forms, SimpleDimension prints the dimensions of all of the simple modules
specified by d or for the Hecke algebra H(Sn) respectively. If a partition µ is supplied, as
in the last form, then the dimension of the simple module D(µ) is returned. At present the
function is not implemented for the simple modules of the q–Schur algebras.

gap> H:=Specht(6);;
gap> SimpleDimension(H,11,3);
272
gap> d:=DecompositionMatrix(H,5);; SimpleDimension(d,3,2);
5
gap> SimpleDimension(d);
5 : 1
4,1 : 4
3,2 : 5
3,1^2 : 6
2^2,1 : 5
2,1^3 : 4
1^5 : 1

This function requires the package “specht” (see 56.1).

71.28 SpechtDimension

SpechtDimension(µ)

Calculates the dimension of the Specht module S(µ), which is equal to the number of stan-
dard µ-tableaux; the answer is given by the hook length formula (see [JK]).

gap> SpechtDimension(6,3,2,1);
5632

See also SimpleDimension 71.27. This function requires the package “specht”(see 56.1).

71.29. COMBINATORICS ON YOUNG DIAGRAMS 1337

71.29 Combinatorics on Young diagrams

These functions range from the representation theoretic q–Schaper theorem and Kleshchev’s
algorithm for the Mullineux map through to simple combinatorial operations like adding
and removing rim hooks from Young diagrams.

71.30 Schaper

Schaper(H , µ)

Given a partition µ, and a Hecke algebra H , Schaper returns a linear combination of
Specht modules which have the same composition factors as the sum of the modules in the
“Jantzen filtration” of S(µ); see [JM2]. In particular, if ν strictly dominates µ then D(ν) is
a composition factor of S(µ) if and only if it is a composition factor of Schaper(µ).

Schaper uses the valuation map H.valuation attached to H (see 71.1 and [JM2]).

One way in which the q–Schaper theorem can be applied is as follows. Suppose that we have
a projective module x , written as a linear combination of Specht modules, and suppose that
we are trying to decide whether the projective indecomposable P(µ) is a direct summand
of x . Then, providing that we know that P(ν) is not a summand of x for all (e–regular)
partitions ν which strictly dominate µ (see 71.53), P(µ) is a summand of x if and only if
InnerProduct(Schaper(H,µ),x) is non–zero (note, in particular, that we don’t need to
know the indecomposable P(µ) in order to perform this calculation).

The q–Schaper theorem can also be used to check for irreduciblity; in fact, this is the basis
for the criterion employed by IsSimpleModule.

gap> H:=Specht(2);;
gap> Schaper(H,9,5,3,2,1);
S(17,2,1)-S(15,2,1,1,1)+S(13,2,2,2,1)-S(11,3,3,2,1)+S(10,4,3,2,1)-S(9,8,3)
-S(9,8,1,1,1)+S(9,6,3,2)+S(9,6,3,1,1)+S(9,6,2,2,1)
gap> Schaper(H,9,6,5,2);
0*S(0)

The last calculation shows that S(9,6,5,2) is irreducible when R is a field of characteristic 0
and e=2 (cf. IsSimpleModule(H,9,6,5,2)).

This function requires the package “specht” (see 56.1).

71.31 IsSimpleModule

IsSimpleModule(H , µ)

µ an e–regular partition.

Given an e–regular partition µ, IsSimpleModule(H , µ) returns true if S(µ) is simple and
false otherwise. This calculation uses the valuation function H.valuation; see 71.1. Note
that the criterion used by IsSimpleModule is completely combinatorial; it is derived from
the q–Schaper theorem [JM2].

gap> H:=Specht(3);;
gap> IsSimpleModule(H,45,31,24);
false

See also Schaper 71.30. This function requires the package “specht” (see 56.1).

1338 CHAPTER 71. THE SPECHT SHARE PACKAGE

71.32 Mullineux

Mullineux(e|H , µ)
Mullineux(d, µ)
Mullineux(x)

Given an integer e, or a Specht record H , and a partition µ, Mullineux(e, µ) returns the
image of µ under the Mullineux map; which we now explain.

The sign representation D(1n) of the Hecke algebra is the (one dimensional) representation
sending Tw to (−1)`(w). The Hecke algebra H is not a Hopf algebra so there is no well
defined action of H upon the tensor product of two H –modules; however, there is an outer
automorphism # of H which corresponds to tensoring with D(1n). This sends an irreducible
module D(µ) to an irreducible D(µ)# ∼= D(µ#) for some e–regular partition µ#. In the sym-
metric group case, Mullineux gave a conjectural algorithm for calculating µ#; consequently
the map sending µ to µ# is known as the Mullineux map.

Deep results of Kleshchev [K] for the symmetric group give another (proven) algorithm
for calculating the partition µ# (Ford and Kleshchev have deduced Mullineux’s conjecture
from this). Using the canonical basis, it was shown by [LLT] that the natural generalization
of Kleshchev’s algorithm to H gives the Mullineux map for Hecke algebras over fields of
characteristic zero. The general case follows from this, so the Mullineux map is now known
for all Hecke algebras.

Kleshchev’s map is easy to describe; he proved that if gns is any good node sequence for
µ, then the sequence obtained from gns by replacing each residue r by −r mod e is a good
node sequence for µ# (see GoodNodeSequence 71.34).

gap> Mullineux(Specht(2),12,5,2);
[12, 5, 2]
gap> Mullineux(Specht(4),12,5,2);
[4, 4, 4, 2, 2, 1, 1, 1]
gap> Mullineux(Specht(6),12,5,2);
[4, 3, 2, 2, 2, 2, 2, 1, 1]
gap> Mullineux(Specht(8),12,5,2);
[3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1]
gap> Mullineux(Specht(10),12,5,2);
[3, 3, 3, 3, 2, 1, 1, 1, 1, 1]

Mullineux(d , µ)

The Mullineux map can also be calculated using a decomposition matrix. To see this
recall that “tensoring” a Specht module S(µ) with the sign representation yields a module
isomorphic to the dual of S(λ), where λ is the partition conjugate to µ. It follows that dµν =
dλν# for all e–regular partitions ν. Therefore, if µ is the last partition in the lexicographic
order such that dµν 6= 0 then we must have ν# = λ. The second form of Mullineux uses d
to calculate µ# rather than the Kleshchev–[LLT] result.

Mullineux(x)

In the third form, x is a module, and Mullineux returns x#, the image of x under #. Note
that the above remarks show that P(µ) is mapped to P(µ#) via the Mullineux map; this
observation is useful when calculating decomposition matrices (and is used by the function
InducedDecompositionMatrix).

71.33. GOODNODES 1339

See also GoodNodes 71.33 and GoodNodeSequence 71.34 . This function requires the package
“specht” (see 56.1).

71.33 GoodNodes

GoodNodes(e|H , µ)
GoodNodes(e|H , µ, r)

Given a partition and an integer e, Kleshchev [K] defined the notion of good node for each
residue r (0 ≤ r < e). When e is prime and µ is e–regular, Kleshchev showed that the good
nodes describe the restriction of the socle of D(µ) in the symmetric group case. Brundan [B]
has recently generalized this result to the Hecke algebra.

By definition, there is at most one good node for each residue r , and this node is a removable
node (in the diagram of µ). The function GoodNodes returns a list of the rows of µ which
end in a good node; the good node of residue r (if it exists) is the (r+1)–st element in this
list. In the second form, the number of the row which ends with the good node of residue r
is returned; or false if there is no good node of residue r .

gap> GoodNodes(5,[5,4,3,2]);
[false, false, 2, false, 1]
gap> GoodNodes(5,[5,4,3,2],0);
false
gap> GoodNodes(5,[5,4,3,2],4);
1

The good nodes also determine the Kleshchev–Mullineux map (see GoodNodeSequence 71.34
and Mullineux 71.32). This function requires the package “specht” (see 56.1).

71.34 GoodNodeSequence

GoodNodeSequence(e|H , µ)
GoodNodeSequences(e|H , µ)

µ an e–regular partition.

Given an e–regular partition µ of n, a good node sequence for µ is a sequence gns of n
residues such that µ has a good node of residue r , where r is the last residue in gns, and
the first n − 1 residues in gns are a good node sequence for the partition obtained from
µ by deleting its (unique) good node with residue r (see GoodNodes 71.33). In general, µ
will have more than one good node sequence; however, any good node sequence uniquely
determines µ (see PartitionGoodNodeSequence 71.35).

gap> H:=Specht(4);; GoodNodeSequence(H,4,3,1);
[0, 3, 1, 0, 2, 2, 1, 3]
gap> GoodNodeSequence(H,4,3,2);
[0, 3, 1, 0, 2, 2, 1, 3, 3]
gap> GoodNodeSequence(H,4,4,2);
[0, 3, 1, 0, 2, 2, 1, 3, 3, 2]
gap> GoodNodeSequence(H,5,4,2);
[0, 3, 1, 0, 2, 2, 1, 3, 3, 2, 0]

The function GoodNodeSequences returns the list of all good node sequences for µ.

1340 CHAPTER 71. THE SPECHT SHARE PACKAGE

gap> GoodNodeSequences(H,5,2,1);
[[0, 1, 2, 3, 3, 2, 0, 0], [0, 3, 1, 2, 2, 3, 0, 0],
[0, 1, 3, 2, 2, 3, 0, 0], [0, 1, 2, 3, 3, 0, 2, 0],
[0, 1, 2, 3, 0, 3, 2, 0], [0, 1, 2, 3, 3, 0, 0, 2],
[0, 1, 2, 3, 0, 3, 0, 2]]

The good node sequences determine the Mullineux map (see GoodNodes 71.33 and Mullineux
71.32). This function requires the package “specht” (see 56.1).

71.35 PartitionGoodNodeSequence

PartitionGoodNodeSequence(e|H , gns)

Given a good node sequence gns (see GoodNodeSequence 71.34), this function returns the
unique e–regular partition corresponding to gns (or false if in fact gns is not a good node
sequence).

gap> H:=Specht(4);;
gap> PartitionGoodNodeSequence(H,0, 3, 1, 0, 2, 2, 1, 3, 3, 2);
[4, 4, 2]

See also GoodNodes 71.33, GoodNodeSequence 71.34 and Mullineux 71.32. This function
requires the package “specht” (see 56.1).

71.36 GoodNodeLatticePath

GoodNodeLatticePath(e|H , µ)
GoodNodeLatticePaths(e|H , µ)
LatticePathGoodNodeSequence(e|H , gns)

The function GoodNodeLatticePath returns a sequence of partitions which give a path in
the e–good partition lattice from the empty partition to µ. The second function returns
the list of all paths in the e–good partition lattice which end in µ, and the third function
returns the path corresponding to a given good node sequence gns.

gap> GoodNodeLatticePath(3,3,2,1);
[[1], [1, 1], [2, 1], [2, 1, 1], [2, 2, 1], [3, 2, 1]]
gap> GoodNodeLatticePaths(3,3,2,1);
[[[1], [1, 1], [2, 1], [2, 1, 1], [2, 2, 1], [3, 2, 1]],
[[1], [1, 1], [2, 1], [2, 2], [2, 2, 1], [3, 2, 1]]]

gap> GoodNodeSequence(4,6,3,2);
[0, 3, 1, 0, 2, 2, 3, 3, 0, 1, 1]
gap> LatticePathGoodNodeSequence(4,last);
[[1], [1, 1], [2, 1], [2, 2], [3, 2], [3, 2, 1], [4, 2, 1],
[4, 2, 2], [5, 2, 2], [6, 2, 2], [6, 3, 2]]

See also GoodNodes 71.33. This function requires the package “specht” (see 56.1).

71.37 LittlewoodRichardsonRule

LittlewoodRichardsonRule(µ, ν)
LittlewoodRichardsonCoefficient(µ, ν, τ)

71.38. INVERSELITTLEWOODRICHARDSONRULE 1341

Given partitions µ of n and ν of m the module S(µ)⊗S(ν) is naturally an H(Sn×Sm)-module
and, by inducing, we obtain an H(Sn+m)-module. This module has the same composition
factors as ∑

ν

aλµνS(λ),

where the sum runs over all partitions λ of n+m and the integers aλµν are the Littlewood–
Richardson coefficients. The integers aλµν can be calculated using a straightforward combi-
natorial algorithm known as the Littlewood–Richardson rule (see [JK]).

The function LittlewoodRichardsonRule returns an (unordered) list of partitions of n+m
in which each partition λ occurs aλµν times. The Littlewood-Richardson coefficients are
independent of e; they can be read more easily from the computation S(µ)*S(ν).

gap> H:=Specht(0);; # the generic Hecke algebra with R=C[q]
gap> LittlewoodRichardsonRule([3,2,1],[4,2]);
[[4, 3, 2, 2, 1],[4, 3, 3, 1, 1],[4, 3, 3, 2],[4, 4, 2, 1, 1],
[4, 4, 2, 2],[4, 4, 3, 1],[5, 2, 2, 2, 1],[5, 3, 2, 1, 1],
[5, 3, 2, 2],[5, 4, 2, 1],[5, 3, 2, 1, 1],[5, 3, 3, 1],
[5, 4, 1, 1, 1],[5, 4, 2, 1],[5, 5, 1, 1],[5, 3, 2, 2],
[5, 3, 3, 1],[5, 4, 2, 1],[5, 4, 3],[5, 5, 2],[6, 2, 2, 1, 1],
[6, 3, 1, 1, 1],[6, 3, 2, 1],[6, 4, 1, 1],[6, 2, 2, 2],
[6, 3, 2, 1],[6, 4, 2],[6, 3, 2, 1],[6, 3, 3],[6, 4, 1, 1],
[6, 4, 2], [6, 5, 1], [7, 2, 2, 1], [7, 3, 1, 1], [7, 3, 2],
[7, 4, 1]]

gap> H.S(3,2,1)*H.S(4,2);
S(7,4,1)+S(7,3,2)+S(7,3,1,1)+S(7,2,2,1)+S(6,5,1)+2*S(6,4,2)+2*S(6,4,1,1)
+S(6,3,3)+3*S(6,3,2,1)+S(6,3,1,1,1)+S(6,2,2,2)+S(6,2,2,1,1)+S(5,5,2)
+S(5,5,1,1)+S(5,4,3)+3*S(5,4,2,1)+S(5,4,1,1,1)+2*S(5,3,3,1)+2*S(5,3,2,2)
+2*S(5,3,2,1,1)+S(5,2,2,2,1)+S(4,4,3,1)+S(4,4,2,2)+S(4,4,2,1,1)+S(4,3,3,2)
+S(4,3,3,1,1)+S(4,3,2,2,1)
gap> LittlewoodRichardsonCoefficient([3,2,1],[4,2],[5,4,2,1]);
3

The function LittlewoodRichardsonCoefficient returns a single Littlewood–Richardson
coefficient (although you are really better off asking for all of them, since they will all be
calculated anyway).

See also InducedModule 71.10 and InverseLittlewoodRichardsonRule 71.38. This func-
tion requires the package “specht” (see 56.1).

71.38 InverseLittlewoodRichardsonRule

InverseLittlewoodRichardsonRule(τ)

Returns a list of all pairs of partitions [µ, ν] such that the Littlewood-Richardson coefficient
aτµν is non-zero (see 71.37). The list returned is unordered and [µ, ν] will appear aτµν times
in it.

gap> InverseLittlewoodRichardsonRule([3,2,1]);
[[[],[3, 2, 1]],[[1],[3, 2]],[[1],[2, 2, 1]],
[[1],[3, 1, 1]],[[1, 1],[2, 2]],[[1, 1],[3, 1]],

1342 CHAPTER 71. THE SPECHT SHARE PACKAGE

[[1, 1],[2, 1, 1]],[[1, 1, 1],[2, 1]],[[2],[2, 2]],
[[2],[3, 1]],[[2],[2, 1, 1]],[[2, 1],[3]],
[[2, 1],[2, 1]],[[2, 1],[2, 1]],[[2, 1],[1, 1, 1]],
[[2, 1, 1],[2]],[[2, 1, 1],[1, 1]],[[2, 2],[2]],
[[2, 2],[1, 1]],[[2, 2, 1],[1]],[[3],[2, 1]],
[[3, 1],[2]],[[3, 1],[1, 1]],[[3, 1, 1],[1]],
[[3, 2],[1]],[[3, 2, 1],[]]]

See also LittlewoodRichardsonRule 71.37.

This function requires the package “specht” (see 56.1).

71.39 EResidueDiagram

EResidueDiagram(H |e, µ)
EResidueDiagram(x)

The e–residue of the (i, j)–th node in the diagram of a partition µ is (j − i) mod e.
EResidueDiagram(e, µ) prints the diagram of the partition µ replacing each node with
its e-residue.

If x is a module then EResidueDiagram(x) prints the e–residue diagrams of all of the e–
regular partitions appearing in x (such diagrams are useful when trying to decide how to
restrict and induce modules and also in applying results such as the “Scattering theorem”
of [JM1]). It is not necessary to supply the integer e in this case because x “knows” the
value of e.

gap> H:=Specht(2);; EResidueDiagram(H.S(H.P(7,5)));
[7, 5]

0 1 0 1 0 1 0
1 0 1 0 1

[6, 5, 1]
0 1 0 1 0 1
1 0 1 0 1
0

[5, 4, 2, 1]
0 1 0 1 0
1 0 1 0
0 1
1

There are 3 2-regular partitions.

This function requires the package “specht” (see 56.1).

71.40 HookLengthDiagram

HookLengthDiagram(µ)

Prints the diagram of µ, replacing each node with its hook length (see [JK]).

gap> HookLengthDiagram(11,6,3,2);
14 13 11 9 8 7 5 4 3 2 1
8 7 5 3 2 1

71.41. REMOVERIMHOOK 1343

4 3 1
2 1

This function requires the package “specht” (see 56.1).

71.41 RemoveRimHook

RemoveRimHook(µ, row, col)

Returns the partition obtained from µ by removing the (row , col)–th rim hook from (the
diagram of) µ.

gap> RemoveRimHook([6,5,4],1,2);
[4, 3, 1]
gap> RemoveRimHook([6,5,4],2,3);
[6, 3, 2]
gap> HookLengthDiagram(6,5,4);

8 7 6 5 3 1
6 5 4 3 1
4 3 2 1

See also AddRimHook 71.42. This function requires the package “specht” (see 56.1).

71.42 AddRimHook

AddRimHook(µ, r, h);

Returns a list [ν, l] where ν is the partition obtained from µ by adding a rim hook of length h
with its “foot” in the r–th row of (the diagram of) µ and l is the leg length of the wrapped
on rim hook (see, for example, [JK]). If the resulting diagram ν is not the diagram of a
partition then false is returned.

gap> AddRimHook([6,4,3],1,3);
[[9, 4, 3], 0]
gap> AddRimHook([6,4,3],2,3);
false
gap> AddRimHook([6,4,3],3,3);
[[6, 5, 5], 1]
gap> AddRimHook([6,4,3],4,3);
[[6, 4, 3, 3], 0]
gap> AddRimHook([6,4,3],5,3);
false

See also RemoveRimHook 71.41. This function requires the package “specht” (see 56.1).

71.43 Operations on partitions

This section contains functions for manipulating partitions and also several useful orderings
on the set of partitions.

1344 CHAPTER 71. THE SPECHT SHARE PACKAGE

71.44 ECore

ECore(H |e, µ)

The e-core of a partition µ is what remains after as many rim e-hooks as possible have been
removed from the diagram of µ (that this is well defined is not obvious; see [JK]). Thus,
ECore(µ) returns the e–core of the partition µ,

gap> H:=Specht(6);; ECore(H,16,8,6,5,3,1);
[4, 3, 1, 1]

The e–core is calculated here using James’ notation of an abacus; there is also an EAbacus
function; but it is more “pretty” than useful.

See also IsECore 71.45, EQuotient 71.46, and EWeight 71.48. This function requires the
package “specht” (see 56.1).

71.45 IsECore

IsECore(H |e, µ)

Returns true if µ is an e–core and false otherwise; see ECore 71.44.

See also ECore 71.44. This function requires the package “specht” (see 56.1).

71.46 EQuotient

EQuotient(H |e, µ)

Returns the e-quotient of µ; this is a sequence of e partitions whose definition can be found
in [JK].

gap> H:=Specht(8);; EQuotient(H,22,18,16,12,12,1,1);
[[1, 1], [], [], [], [], [2, 2], [], [1]]

See also ECore 71.44 and CombineEQuotientECore 71.47. This function requires the package
“specht” (see 56.1).

71.47 CombineEQuotientECore

CombineEQuotientECore(H |e, Q, C)

A partition is uniquely determined by its e-quotient and its e-core (see 71.46 and 71.44).
CombineEQuotientECore(e, Q, C) returns the partition which has e–quotient Q and e–
core C . The integer e can be replaced with a record H which was created using the function
Specht.

gap> H:=Specht(11);; mu:=[100,98,57,43,12,1];;
gap> Q:=EQuotient(H,mu);
[[9], [], [], [], [], [], [3], [1], [9], [], [5]]
gap> C:=ECore(H,mu);
[7, 2, 2, 1, 1, 1]
gap> CombineEQuotientECore(H,Q,C);
[100, 98, 57, 43, 12, 1]

See also ECore 71.44 and EQuotient 71.46. This function requires the package “specht”
(see 56.1).

71.48. EWEIGHT 1345

71.48 EWeight

EWeight(H |e, µ)

The e–weight of a partition is the number of e–hooks which must be removed from the
partition to reach the e–core (see ECore 71.44).

gap> EWeight(6,[16,8,6,5,3,1]);
5

This function requires the package “specht” (see 56.1).

71.49 ERegularPartitions

ERegularPartitions(H |e, n)

A partition µ = (µ1, µ2, . . .) is e–regular if there is no integer i such that µi = µi+1 =
· · · = µi+e−1 > 0. The function ERegularPartitions(e, n) returns the list of e–regular
partitions of n, ordered reverse lexicographically (see 71.55).

gap> H:=Specht(3);
Specht(e=3, S(), P(), D(), Pq());
gap> ERegularPartitions(H,6);
[[2, 2, 1, 1], [3, 2, 1], [3, 3], [4, 1, 1], [4, 2],
[5, 1], [6]]

This function requires the package “specht” (see 56.1).

71.50 IsERegular

IsERegular(H |e, µ)

Returns true if µ is e–regular and false otherwise.

This functions requires the package “specht” (see 56.1).

71.51 ConjugatePartition

ConjugatePartition(µ)

Given a partition µ, ConjugatePartition(µ) returns the partition whose diagram is ob-
tained by interchanging the rows and columns in the diagram of µ.

gap> ConjugatePartition(6,4,3,2);
[4, 4, 3, 2, 1, 1]

This function requires the package “specht” (see 56.1).

71.52 ETopLadder

ETopLadder(H |e, µ)

The ladders in the diagram of a partition are the lines connecting nodes of constant e–
residue, having slope e − 1 (see [JK]). A new partition can be obtained from µ by sliding
all nodes up to the highest possible rungs on their ladders. ETopLadder(e, µ) returns the

1346 CHAPTER 71. THE SPECHT SHARE PACKAGE

partition obtained in this way; it is automatically e–regular (this partition is denoted µR in
[JK]).

gap> H:=Specht(4);;
gap> ETopLadder(H,1,1,1,1,1,1,1,1,1,1);
[4, 3, 3]
gap> ETopLadder(6,1,1,1,1,1,1,1,1,1,1);
[2, 2, 2, 2, 2]

This function requires the package “specht” (see 56.1).

71.53 Dominates

Dominates(µ, ν)

The dominance ordering is an important partial order in the representation theory of Hecke
algebra because dµν = 0 unless ν dominates µ. Dominates(µ, ν) returns true if either
µ=ν or for all i ≥ 1,

∑i
j=1 µj ≥

∑i
j=1 νj , and false otherwise.

gap> Dominates([5,4],[4,4,1]);
true

This function requires the package “specht” (see 56.1).

71.54 LengthLexicographic

LengthLexicographic(µ, ν)

LengthLexicographic returns true if the length of µ is less than the length of ν or if the
length of µ equals the length of ν and Lexicographic(µ, ν).

gap> p:=Partitions(6);;Sort(p,LengthLexicographic); p;
[[6],[5, 1],[4, 2],[3, 3],[4, 1, 1],[3, 2, 1],[2, 2, 2],
[3, 1, 1, 1],[2, 2, 1, 1],[2, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1]]

This function requires the package “specht” (see 56.1).

71.55 Lexicographic

Lexicographic(µ, ν)

Lexicographic(µ, ν) returns true if µ is lexicographically greater than or equal to ν.

gap> p:=Partitions(6);;Sort(p,Lexicographic); p;
[[6],[5, 1],[4, 2],[4, 1, 1],[3, 3],[3, 2, 1],
[3, 1, 1, 1],[2, 2, 2],[2, 2, 1, 1],[2, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1]]

This function requires the package “specht” (see 56.1).

71.56 ReverseDominance

ReverseDominance(µ, ν)

71.57. MISCELLANEOUS FUNCTIONS ON MODULES 1347

This is another total order on partitions which extends the dominance ordering (see 71.53).
Here µ is greater than ν if for all i > 0∑

j≥i

µj >
∑
j≥i

νj .

gap> p:=Partitions(6);;Sort(p,ReverseDominance); p;
[[6], [5, 1], [4, 2], [3, 3], [4, 1, 1], [3, 2, 1],
[2, 2, 2], [3, 1, 1, 1], [2, 2, 1, 1], [2, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1]]

This is the ordering used by James in the appendix of his Springer lecture notes book.

This function requires the package “specht” (see 56.1).

71.57 Miscellaneous functions on modules

This section contains some functions for looking at the partitions in a given module for the
Hecke algebras. Most of them are used internally by Specht.

71.58 Specialized

Specialized(x [,q]);
Specialized(d [,q]);

Given an element of the Fock space x (see 71.1), or a crystallized decomposition matrix
(see 71.6), Specialized returns the corresponding element of the Grothendieck ring or
the corresponding decomposition matrix of the Hecke algebra respectively. By default the
indeterminate v is specialized to 1; however v can be specialized to any (integer) q by
supplying a second argument.

gap> H:=Specht(2);; x:=H.Pq(6,2);
S(6,2)+v*S(6,1,1)+v*S(5,3)+v^2*S(5,1,1,1)+v*S(4,3,1)+v^2*S(4,2,2)
+(v^3 + v)*S(4,2,1,1)+v^2*S(4,1,1,1,1)+v^2*S(3,3,1,1)+v^3*S(3,2,2,1)
+v^3*S(3,1,1,1,1,1)+v^3*S(2,2,2,1,1)+v^4*S(2,2,1,1,1,1)
gap> Specialized(x);
S(6,2)+S(6,1,1)+S(5,3)+S(5,1,1,1)+S(4,3,1)+S(4,2,2)
+2*S(4,2,1,1)+S(4,1,1,1,1)+S(3,3,1,1)+S(3,2,2,1)+S(3,1,1,1,1,1)
+S(2,2,2,1,1)+S(2,2,1,1,1,1)
gap> Specialized(x,2);
S(6,2)+2*S(6,1,1)+2*S(5,3)+4*S(5,1,1,1)+2*S(4,3,1)+4*S(4,2,2)+10*S(4,2,1,1)
+4*S(4,1,1,1,1)+4*S(3,3,1,1)+8*S(3,2,2,1)+8*S(3,1,1,1,1,1)+8*S(2,2,2,1,1)
+16*S(2,2,1,1,1,1)

An example of Specialize being applied to a crystallized decomposition matrix can be
found in 71.6. This function requires the package “specht” (see 56.1).

71.59 ERegulars

ERegulars(x)
ERegulars(d)
ListERegulars(x)

1348 CHAPTER 71. THE SPECHT SHARE PACKAGE

ERegulars(x) prints a list of the e–regular partitions, together with multiplicities, which
occur in the module x . ListERegulars(x) returns an actual list of these partitions rather
than printing them.

gap> H:=Specht(8);;
gap> x:=H.S(InducedModule(H.P(8,5,3)));
S(9,5,3)+S(8,6,3)+S(8,5,4)+S(8,5,3,1)+S(6,5,3,3)+S(5,5,4,3)+S(5,5,3,3,1)
gap> ERegulars(x);
[9, 5, 3] [8, 6, 3] [8, 5, 4] [8, 5, 3, 1]
[6, 5, 3, 3] [5, 5, 4, 3] [5, 5, 3, 3, 1]
gap> H.P(x);
P(9,5,3)+P(8,6,3)+P(8,5,4)+P(8,5,3,1)

This example shows why these functions are useful: given a projective module x , as above,
and the list of e–regular partitions in x we know the possible indecomposable direct sum-
mands of x .

Note that it is not necessary to specify what e is when calling this function because x
“knows” the value of e.

The function ERegulars can also be applied to a decomposition matrix d ; in this case
it returns the unitriangular submatrix of d whose rows and columns are indexed by the
e–regular partitions.

These function requires the package “specht” (see 56.1).

71.60 SplitECores

SplitECores(x)
SplitECores(x, µ)
SplitECores(x, y)

The function SplitECores(x) returns a list [b1,...,bk] where the Specht modules in each
bi all belong to the same block (ie. they have the same e-core). Similarly, SplitECores(x,
µ) returns the component of x which is in the same block as µ, and SplitECores(x, y)
returns the component of x which is in the same block as y .

gap> H:=Specht(2);;
gap> SplitECores(InducedModule(H.S(5,3,1)));
[S(6,3,1)+S(5,3,2)+S(5,3,1,1), S(5,4,1)]
gap> InducedModule(H.S(5,3,1),0);
S(5,4,1)
gap> InducedModule(H.S(5,3,1),1);
S(6,3,1)+S(5,3,2)+S(5,3,1,1)

See also ECore 71.44, InducedModule 71.10, and RestrictedModule 71.12.

This function requires the package “specht” (see 56.1).

71.61 Coefficient for Sums of Modules

Coefficient(x, µ)

71.62. INNERPRODUCT 1349

If x is a sum of Specht (resp. simple, or indecomposable) modules, then Coefficient(x,
µ) returns the coefficient of S(µ) in x (resp. D(µ), or P(µ)).

gap> H:=Specht(3);; x:=H.S(H.P(7,3));
S(7,3)+S(7,2,1)+S(6,2,1^2)+S(5^2)+S(5,2^2,1)+S(4^2,1^2)+S(4,3^2)+S(4,3,2,1)
gap> Coefficient(x,5,2,2,1);
1

This function requires the package “specht” (see 56.1).

71.62 InnerProduct

InnerProduct(x, y)

Here x and y are some modules of the Hecke algebra (ie. Specht modules, PIMS, or simple
modules). InnerProduct(x, y) computes the standard inner product of these elements.
This is sometimes a convenient way to compute decomposition numbers (for example).

gap> InnerProduct(H.S(2,2,2,1), H.P(4,3));
1
gap> DecompositionNumber(H,[2,2,2,1],[4,3]);
1

This function requires the package “specht” (see 56.1).

71.63 SpechtPrettyPrint

SpechtPrettyPrint(true)
SpechtPrettyPrint(false)
SpechtPrettyPrint()

This function changes the way in which Specht prints modules. The first two forms turn
pretty printing on and off respectively (by default it is off), and the third form toggles the
printing format.

gap> H:=Specht(2);; x:=H.S(H.P(6));;
gap> SpechtPrettyPrint(true); x;
S(6)+S(5,1)+S(4,1^2)+S(3,1^3)+S(2,1^4)+S(1^6)
gap> SpechtPrettyPrint(false); x;
S(6)+S(5,1)+S(4,1,1)+S(3,1,1,1)+S(2,1,1,1,1)+S(1,1,1,1,1,1)
gap> SpechtPrettyPrint(); x;
S(6)+S(5,1)+S(4,1^2)+S(3,1^3)+S(2,1^4)+S(1^6)

This function requires the package “specht” (see 56.1).

71.64 Semi–standard and standard tableaux

These functions are not really part of Specht proper; however they are related and may
well be of use to someone. Tableaux are represented as lists, where the first element of the
list is the first row of the tableaux and so on.

1350 CHAPTER 71. THE SPECHT SHARE PACKAGE

71.65 SemiStandardTableaux

SemiStandardTableaux(µ, ν)

µ a partition, ν a composition.

Returns a list of the semistandard µ–tableaux of type ν [JK]. Tableaux are represented as
lists of lists, with the first element of the list being the first row of the tableaux and so on.

gap> SemiStandardTableaux([4,3],[1,1,1,2,2]);
[[[1, 2, 3, 4], [4, 5, 5]], [[1, 2, 3, 5], [4, 4, 5]],
[[1, 2, 4, 4], [3, 5, 5]], [[1, 2, 4, 5], [3, 4, 5]],
[[1, 3, 4, 4], [2, 5, 5]], [[1, 3, 4, 5], [2, 4, 5]]]

See also StandardTableaux 71.66. This function requires the package “specht” (see 56.1).

71.66 StandardTableaux

StandardTableaux(µ)

µ a partition.

Returns a list of the standard µ–tableaux.

gap> StandardTableaux(4,2);
[[[1, 2, 3, 4], [5, 6]], [[1, 2, 3, 5], [4, 6]],
[[1, 2, 3, 6], [4, 5]], [[1, 2, 4, 5], [3, 6]],
[[1, 2, 4, 6], [3, 5]], [[1, 2, 5, 6], [3, 4]],
[[1, 3, 4, 5], [2, 6]], [[1, 3, 4, 6], [2, 5]],
[[1, 3, 5, 6], [2, 4]]]

See also SemiStandardTableaux 71.65. This function requires the package “specht” (see
56.1).

71.67 ConjugateTableau

ConjugateTableau(tab)

Returns the tableau obtained from tab by interchangings its rows and columns.

gap> ConjugateTableau([[1, 3, 5, 6], [2, 4]]);
[[1, 2], [3, 4], [5], [6]]

This function requires the package “specht” (see 56.1).

Chapter 72

Vector Enumeration

This chapter describes the Vector Enumeration (Version 3) share library package for com-
puting matrix representations of finitely presented algebras. See 56.15 for the installation of
the package, and the Vector Enumeration manual [Lin93] for details of the implementation.

The default application of Vector Enumeration, namely the function Operation for finitely
presented algebras (see chapter 39), is described in 72.1.

The interface between GAP and Vector Enumeration is described in 72.2.

In 72.3 the examples given in the Vector Enumeration manual serve as examples for the use
of Vector Enumeration with GAP.

Finally, section 72.4 shows how the MeatAxe share library (see chapter 68) and Vector
Enumeration can work hand in hand.

The functions of the package can be used after loading the package with

gap> RequirePackage("ve");

The package is also loaded automatically when Operation is called for the action of a
finitely presented algebra on a quotient module.

72.1 Operation for Finitely Presented Algebras

Operation(F, Q)

This is the default application of Vector Enumeration. F is a finitely presented algebra
(see chapter 39), Q is a quotient of a free F -module, and the result is a matrix algebra
representing a faithful action on Q .

If Q is the zero module then the matrices have dimension zero, so the result is a null algebra
(see 40.9) consisting only of a zero element.

The algebra homomorphism, the isomorphic module for the matrix algebra, and the module
homomorphism can be constructed as described in chapters 38 and 41.

gap> a:= FreeAlgebra(GF(2), 2);
UnitalAlgebra(GF(2), [a.1, a.2])
gap> a:= a / [a.1^2 - a.one, # group algebra of V4 over GF (2)

1351

1352 CHAPTER 72. VECTOR ENUMERATION

> a.2^2 - a.one,
> a.1*a.2 - a.2*a.1];
UnitalAlgebra(GF(2), [a.1, a.2])
gap> op:= Operation(a, a^1);
UnitalAlgebra(GF(2),
[[[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2),

Z(2)^0], [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]],

[[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]]])

gap> Size(op);
16

72.2 More about Vector Enumeration

As stated in the introduction to this chapter, Vector Enumeration is a share library package.
The computations are done by standalone programs written in C.

The interface between Vector Enumeration and GAP consists essentially of two parts, namely
the global variable VE, and the function FpAlgebraOps.OperationQuotientModule.

The VE record

VE is a record with components

Path
the full path name of the directory that contains the executables of the standalones
me, qme, zme,

options
a string with command line options for Vector Enumeration; it will be appended to
the command string of CallVE (see below), so the default options chosen there can
be overwritten. This may be useful for example in case of the -v option to enable
the printing of comments (see section 4.3 of [Lin93]), but you should not change the
output file (using -o) when you simply call Operation for a finitely presented algebra.
options is defaulted to the empty string.

FpAlgebraOps.OperationQuotientModule

This function is called automatically by FpAlgebraOps.Operation (see 72.1), it can also be
called directly as follows.

FpAlgebraOps.OperationQuotientModule(A, Q, opr)
FpAlgebraOps.OperationQuotientModule(A, Q, "mtx")

It takes a finitely presented algebra A and a list of submodule generators Q , that is, the
entries of Q are list of equal length, with entries in A, and returns the matrix representation
computed by the Vector Enumeration program.

72.2. MORE ABOUT VECTOR ENUMERATION 1353

The third argument must be either one of the operations OnPoints, OnRight, or the string
"mtx". In the latter case the output will be an algebra of MeatAxe matrices, see 72.4 for
further explanation.

Accessible Subroutines

The following three functions are used by FpAlgebraOps.OperationQuotientModule. They
are the real interface that allows to access Vector Enumeration from GAP.

PrintVEInput(A, Q, names)

takes a finitely presented algebra A, a list of submodule generators Q , and a list names of
names the generators shall have in the presentation that is passed to Vector Enumeration,
and prints a string that represents the input presentation for Vector Enumeration. See
section 3.1 of the Vector Enumeration manual [Lin93] for a description of the syntax.

gap> PrintVEInput(a, [[a.zero]], ["A", "B"]);
2.
A B .
.
.
{1}(0).
A*A, B*B, :
A*B+B*A = 0, .

CallVE(commandstr, infile, outfile, options)

calls Vector Enumeration with command string commandstr , presentation file infile, and
command line options options, and prescribes the output file outfile.

If not overwritten in the string options, the default options "-i -P -v0 -Y VE.out -L# "
are chosen.

Of course it is not necessary that infile was produced using PrintVEInput, and also the
output is independent of GAP.

gap> PrintTo("infile.pres",
> PrintVEInput(a, [[a.zero]], ["A", "B"]));
gap> CallVE("me", "infile", "outfile", " -G -vs2");

(The option -G sets the output format to GAP, -vs2 chooses a more verbose mode.)

VEOutput(A, Q, names, outfile)
VEOutput(A, Q, names, outfile, "mtx")

returns the output record produced by Vector Enumeration that was written to the file
outfile. A component operation is added that contains the information for the construction
of the operation homomorphisms.

The arguments A, Q , names describe the finitely presented algebra, the quotient module
it acts on, and the chosen generators names, i.e., the original structures for that Vector
Enumeration was called.

gap> out:= VEOutput(a, [[a.zero]], ["A", "B"], "outfile");;

1354 CHAPTER 72. VECTOR ENUMERATION

gap> out.dim; out.operation.moduleinfo.preimagesBasis;
4
[[a.one], [a.2], [a.1], [a.1*a.2]]

If the optional fifth argument "mtx" is present, the output is regarded as an algebra of
MeatAxe matrices (see section 72.4). For that, an appropriate command string had to be
passed to CallVE.

72.3 Examples of Vector Enumeration

We consider those of the examples given in chapter 8 of the Vector Enumeration manual
that can be used in GAP.

8.1 The natural permutation representation of S3

The symmetric group S3 is also the dihedral group D6, and so is presented by two involutions
with product of order 3. Taking the permutation action on the cosets of the cyclic group
generated by one of the involutions we obtain the following presentation.

gap> a:= FreeAlgebra(Rationals, 2);;
gap> a:= a / [a.1^2 - a.one, a.2^2 - a.one,
> (a.1*a.2)^3 - a.one];
UnitalAlgebra(Rationals, [a.1, a.2])
gap> a.name:= "a";;

We choose as module q the quotient of the regular module for a by the submodule generated
by a.1 - 1, and compute the action of a on q.

gap> m:= a^1;;
gap> q:= m / [[a.1 - a.one]];
Module(a, [[a.one]]) / [[-1*a.one+a.1]]
gap> op:= Operation(a, q);
UnitalAlgebra(Rationals,
[[[1, 0, 0], [0, 0, 1], [0, 1, 0]],
[[0, 1, 0], [1, 0, 0], [0, 0, 1]]])

gap> op.name:= "op";;

8.2 A Quotient of a Permutation Representation

The permutation representation constructed in example 8.1 fixes the all-ones vector (as do
all permutation representations). This is the image of the module element [a.one + a.2
+ a.2*a.1] in the corresponding module for the algebra op.

gap> ophom:= OperationHomomorphism(a, op);;
gap> opmod:= OperationModule(op);
Module(op, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
gap> modhom:= OperationHomomorphism(q, opmod);;
gap> pre:= PreImagesRepresentative(modhom, [1, 1, 1]);;
gap> pre:= pre.representative;
[a.one+a.2+a.2*a.1]

We could have computed such a preimage also by computing a matrix that maps the image
of the submodule generator of q to the all-ones vector, and applying a preimage to the
submodule generator. Of course the we do not necessarily get the same representatives.

72.3. EXAMPLES OF VECTOR ENUMERATION 1355

gap> images:= List(Generators(q), x -> Image(modhom, x));
[[1, 0, 0]]
gap> rep:= RepresentativeOperation(op, images[1], [1, 1, 1]);
[[1, 1, 1], [1, 1, 1], [1, 1, 1]]
gap> PreImagesRepresentative(ophom, rep);
a.one+a.1*a.2+a.2*a.1

Now we factor out the fixed submodule by enlarging the denominator of the module q. (Note
that we could also compute the action of the matrix algebra if we were only interested in
the 2-dimensional representation.)

Accordingly we can write down the following presentation for the quotient module.

gap> q:= m / [[a.1 - a.one], pre];;
gap> op:= Operation(a, q);
UnitalAlgebra(Rationals,
[[[1, 0], [-1, -1]], [[0, 1], [1, 0]]])

8.3 A Non-cyclic Module

If we take the direct product of two copies of the permutation representation constructed in
example 8.1, we can identify the fixed vectors in the two copies in the following presentation.

gap> m:= a^2;;
gap> q:= m / [[a.zero, a.1 - a.one], [a.1 - a.one, a.zero],
> [a.one+a.2+a.2*a.1, -a.one-a.2-a.2*a.1]];
Module(a, [[a.one, a.zero], [a.zero, a.one]]) /
[[a.zero, -1*a.one+a.1], [-1*a.one+a.1, a.zero],
[a.one+a.2+a.2*a.1, -1*a.one+-1*a.2+-1*a.2*a.1]]

We compute the matrix representation.

gap> op:= Operation(a, q);
UnitalAlgebra(Rationals,
[[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],

[0, 0, 1, 0, 0], [1, -1, 1, 1, -1]],
[[0, 0, 1, 0, 0], [0, 0, 0, 0, 1], [1, 0, 0, 0, 0],

[0, 0, 0, 1, 0], [0, 1, 0, 0, 0]]])

In this case it is interesting to look at the images of the module generators and pre-images of
the basis vectors. Note that these preimages are elements of a factor module, corresponding
elements of the free module are again found as representatives.

gap> ophom:= OperationHomomorphism(a, op);;
gap> opmod:= OperationModule(op);;
gap> opmod.name:= "opmod";;
gap> modhom:= OperationHomomorphism(q, opmod);;
gap> List(Generators(q), x -> Image(modhom, x));
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]]
gap> basis:= Basis(opmod);
CanonicalBasis(opmod)
gap> preim:= List(basis.vectors, x ->
> PreImagesRepresentative(modhom, x));;

1356 CHAPTER 72. VECTOR ENUMERATION

gap> preim:= List(preim, Representative);
[[a.one, a.zero], [a.zero, a.one], [a.2, a.zero],
[a.2*a.1, a.zero], [a.zero, a.2]]

8.4 A Monoid Representation

The Coxeter monoid of type B2 has a transformation representation on four points. This
can be constructed as a matrix representation over GF(3), from the following presentation.

gap> a:= FreeAlgebra(GF(3), 2);;
gap> a:= a / [a.1^2 - a.1, a.2^2 - a.2,
> (a.1*a.2)^2 - (a.2*a.1)^2];;
gap> q:= a^1 / [[a.1 - a.one]];;
gap> op:= Operation(a, q);
UnitalAlgebra(GF(3),
[[[Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3)], [0*Z(3), 0*Z(3), Z(3)^0,

0*Z(3)], [0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0]],

[[0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3)],
[0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0],
[0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0]]])

8.7 A Quotient of a Polynomial Ring

The quotient of a polynomial ring by the ideal generated by some polynomials will be finite-
dimensional just when the polynomials have finitely many common roots in the algebraic
closure of the ground ring. For example, three polynomials in three variables give us the
following presentation for the quotient of their ideal.

Define a to be the polynomial algebra on three variables.

gap> a:= FreeAlgebra(Rationals, 3);;
gap> a:= a / [a.1 * a.2 - a.2 * a.1,
> a.1 * a.3 - a.3 * a.1,
> a.2 * a.3 - a.3 * a.2];;

Define the quotient module by the polynomials A+B+C, AB+BC+CA, ABC-1.

gap> q:= a^1 / [[a.1+a.2+a.3],
> [a.1*a.2+a.2*a.3+a.3*a.1],
> [a.1*a.2*a.3-a.one]];;

Compute the representation.

gap> op:= Operation(a, q);
UnitalAlgebra(Rationals,
[[[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0],

[-1, 0, 0, 0, 0, -1], [0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0], [0, -1, 0, -1, 0, 0]],

[[0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1],
[0, 0, -1, 0, -1, 0], [-1, 0, 0, 0, 0, -1],
[0, 1, 0, 0, 0, 0]],

72.4. USING VECTOR ENUMERATION WITH THE MEATAXE 1357

[[0, -1, 0, -1, 0, 0], [0, 0, -1, 0, -1, 0],
[1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0]]])

72.4 Using Vector Enumeration with the MeatAxe

One can deal with the matrix representation constructed by Vector Enumeration also using
the MeatAxe share library. This way the matrices are not read into GAP but written to files
and converted into internal MeatAxe format. See chapter 68 for details.

gap> a:= FreeAlgebra(GF(2), 2);;
gap> a:= a / [a.1^2 - a.one, a.2^2 - a.one,
> (a.1*a.2)^3 - a.one];;
gap> RequirePackage("meataxe");
#I The MeatAxe share library functions are available now.
#I All files will be placed in the directory
#I ’/var/tmp/tmp.006103’
#I Use ’MeatAxe.SetDirectory(<path>)’ if you want to change.
gap> op:= Operation(a, a^1, "mtx");
UnitalAlgebra(GF(2),
[MeatAxeMat("/var/tmp/tmp.006103/a/g.1", GF(2), [6, 6], a.1),
MeatAxeMat("/var/tmp/tmp.006103/a/g.2", GF(2), [6, 6], a.2)])

gap> Display(op.1);
#I calling ’maketab’ for field of size 2
MeatAxe.Matrix := [
[0,0,1,0,0,0],
[0,0,0,1,0,0],
[1,0,0,0,0,0],
[0,1,0,0,0,0],
[0,0,0,0,0,1],
[0,0,0,0,1,0]
]*Z(2);
gap> MeatAxe.Unbind();

1358 CHAPTER 72. VECTOR ENUMERATION

Chapter 73

XMOD

73.1 About XMOD

This document describes a package for the GAP group theory langauge which enables com-
putations with the equivalent notions of finite, permutation crossed modules and cat1-groups.

The package divides into six parts, each of which has its own introduction:

• for constructing crossed modules and their morphisms in section 73.2: About crossed
modules;

• for cat1-groups, their morphisms, and for converting between crossed modules and
cat1-groups, in section 73.47: About cat1-groups;

• for derivations and sections and the monoids which they form under the Whitehead
multiplication, in section 73.77: About derivations and sections;

• for actor crossed modules, actor cat1-groups and the actors squares which they form,
in section 73.113: About actors;

• for the construction of induced crossed modules and induced cat1-groups, in section
73.127: About induced constructions;

• for a collection of utility functions in section 73.131: About utilities.

These seven About... sections are collected together in a separate LATEXfile, xmabout.tex,
which forms a short introduction to the package.

The package may be obtained as a compressed file by ftp from one of the sites with a GAP
archive. After decompression, instructions for installing the package may be found in the
README file.

The following constructions are planned for the next version of the package. Firstly, although
sub-crossed module functions have been included, the equivalent set of sub-cat1-groups
functions is not complete. Secondly, functions for pre-crossed modules, the Peiffer subgroup
of a pre-crossed module and the associated crossed modules, will be added. Group-graphs
provide examples of pre-crossed modules and their implementation will require interaction

1359

1360 CHAPTER 73. XMOD

with graph-theoretic functions in GAP. Crossed squares and the equivalent cat2-groups are
the structures which arise as ”three-dimensional groups”. Examples of these are implicitly
included already, namely inclusions of normal sub-crossed modules, and the inner morphism
from a crossed module to its actor (section 73.123).

73.2 About crossed modules

The term crossed module was introduced by J. H. C. Whitehead in [Whi48], [Whi49]. In
[Lod82] Loday reformulated the notion of a crossed module as a cat1-group. Norrie [Nor90],
[Nor87] and Gilbert [Gil90] have studied derivations, automorphisms of crossed modules
and the actor of a crossed module, while Ellis [Ell84] has investigated higher dimensional
analogues. Properties of induced crossed modules have been determined by Brown, Higgins
and Wensley in [BH78], [BW95] and [BW96]. For further references see [AW97] where we
discuss some of the data structures and algorithms used in this package, and also tabulate
isomorphism classes of cat1-groups up to size 30.

We first recall the descriptions of three equivalent categories: XMod, the category of
crossed modules and their morphisms; Cat1, the category of cat1-groups and their mor-
phisms; and GpGpd, the subcategory of group objects in the category Gpd of groupoids.
We also include functors between these categories which exhibit the equivalences. Most
papers on crossed modules use left actions, but we give the alternative right action axioms
here, which are more suitable for use in computational group theory programs.

A crossed module X = (∂ : S → R) consists of a group homomorphism ∂, called the boundary
of X , with source S and range R, together with an action α : R→ Aut(S) satisfying, for all
s, s1, s2 ∈ S and r ∈ R,

XMod 1: ∂(sr) = r−1(∂s)r
XMod 2: s∂s21 = s−1

2 s1s2.

The kernel of ∂ is abelian.

The standard constructions for crossed modules are as follows

1. A conjugation crossed module is an inclusion of a normal subgroup S � R, where R
acts on S by conjugation.

2. A central extension crossed module has as boundary a surjection ∂ : S → R with
central kernel, where r ∈ R acts on S by conjugation with ∂−1r.

3. An automorphism crossed module has as range a subgroup R of the automorphism
group Aut(S) of S which contains the inner automorphism group of S. The boundary
maps s ∈ S to the inner automorphism of S by s.

4. A trivial action crossed module ∂ : S → R has sr = s for all s ∈ S, r ∈ R, the source
is abelian and the image lies in the centre of the range.

5. An R-Module crossed module has an R-module as source and the zero map as boundary.

6. The direct product X1×X2 of two crossed modules has source S1×S2, range R1×R2

and boundary ∂1 × ∂2, with R1, R2 acting trivially on S2, S1 respectively.

73.2. ABOUT CROSSED MODULES 1361

A morphism between two crossed modules X1 = (∂1 : S1 → R1) and X2 = (∂2 : S2 → R2)
is a pair (σ, ρ), where σ : S1 → S2 and ρ : R1 → R2 are homomorphisms satisfying

∂2σ = ρ∂1, σ(sr) = (σs)ρr.

When X1 = X2 and σ, ρ are automorphisms then (σ, ρ) is an automorphism of X1. The
group of automorphisms is denoted by Aut(X1).

In this implementation a crossed module X is a record with fields
X.source, the source S of ∂,
X.boundary, the homomorphsim ∂,
X.range, the range R of ∂,
X.aut, a group of automorphisms of S,
X.action, a homomorphism from R to X.aut,
X.isXMod, a boolean flag, normally true,
X.isDomain, always true,
X.operations, special set of operations XModOps (see 73.15),
X.name, a concatenation of the names of the source and range.

Here is a simple example of an automorphism crossed module, the holomorph of the cyclic
group of size five.

gap> c5 := CyclicGroup(5);; c5.name := "c5";;
gap> X1 := AutomorphismXMod(c5);
Crossed module [c5->PermAut(c5)]
gap> XModPrint(X1);
Crossed module [c5->PermAut(c5)] :-
: Source group c5 has generators:
[(1,2,3,4,5)]

: Range group = PermAut(c5) has generators:
[(1,2,4,3)]

: Boundary homomorphism maps source generators to:
[()]

: Action homomorphism maps range generators to automorphisms:
(1,2,4,3) --> { source gens --> [(1,3,5,2,4)] }
This automorphism generates the group of automorphisms.

Implementation of the standard constructions is described in sections ConjugationXMod,
CentralExtensionXMod, AutomorphismXMod, TrivialActionXMod and RModuleXMod. With
these building blocks, sub-crossed modules SubXMod, quotients of normal sub-crossed mod-
ules FactorXMod and direct products XModOps.DirectProduct may be constructed. An
extra function XModSelect is used to call these constructions using groups of order up to
47 and data from file in Cat1List.

A morphism from a crossed module X1 to a crossed module X2 is a pair of homomorphisms
(σ, ρ), where σ, ρ are respectively homomorphisms between the sources and ranges of X1

and X2, which commute with the two boundary maps and which are morphisms for the two
actions. In the following code we construct a simple automorphism of X1.

gap> sigma1 := GroupHomomorphismByImages(c5, c5, [(1,2,3,4,5)]
[(1,5,4,3,2)]);;

gap> rho1 := InclusionMorphism(X1.range, X1.range);;

1362 CHAPTER 73. XMOD

gap> mor1 := XModMorphism(X1, X1, [sigma1, rho1]);
Morphism of crossed modules [c5->PermAut(c5)] >-> [c5->PermAut(c5)]>
gap> IsXModMorphism(mor1);
true
gap> XModMorphismPrint(mor1);
Morphism of crossed modules :-
: Source = Crossed module [c5->PermAut(c5)] with generating sets:
[(1,2,3,4,5)]
[(1,2,4,3)]

: Range = Source
: Source Homomorphism maps source generators to:
[(1,5,4,3,2)]

: Range Homomorphism maps range generators to:
[(1,2,4,3)]

: isXModMorphism? true
gap> IsAutomorphism(mor1);
true

The functors between XMod and Cat1, are implemented as functions XModCat1 and
Cat1XMod.

An integer variable XModPrintLevel is set initially equal to 1. If it is increased, additional
information is printed out during the execution of many of the functions.

73.3 The XMod Function

XMod(f, a)

A crossed module is determined by its boundary and action homomorphisms, f and a. All
the standard constructions described below call this function after constructing the two
homomorphisms. In the following example we construct a central extension crossed module
s3 × c4 → s3 directly by defining the projection on to the first factor to be the boundary
map, and constructing the automorphism group by taking two inner automorphisms as
generators.

gap> s3c4 := Group((1,2),(2,3),(4,5,6,7));;
gap> s3c4.name := "s3c4";;
gap> s3 := Subgroup(s3c4, [(1,2), (2,3)]);;
gap> s3.name := "s3";;
gap> # construct the boundary
gap> gen := s3c4.generators;;
gap> imb := [(1,2), (2,3), ()];;
gap> bX := GroupHomomorphismByImages(s3c4, s3, gen, imb);;
gap> # construct the inner automorphisms by (1,2) and (2,3)
gap> im1 := List(gen, g -> g^(1,2));;
gap> a1 := GroupHomomorphismByImages(s3c4, s3c4, gen, im1);;
gap> im2 := List(gen, g -> g^(2,3));;
gap> a2 := GroupHomomorphismByImages(s3c4, s3c4, gen, im2);;
gap> A := Group(a1, a2);;

73.4. ISXMOD 1363

gap> # construct the action map from s3 to A
gap> aX := GroupHomomorphismByImages(s3, A, [(1,2),(2,3)], [a1,a2]);;
gap> X := XMod(bX, aX);
Crossed module [s3c4->s3]

73.4 IsXMod

IsXMod(X)

This Boolean function checks that the five main fields of X exist and that the crossed module
axioms are satisfied.

gap> IsXMod(X);
true

73.5 XModPrint

XModPrint(X)

This function is used to display the main fields of a crossed module.

gap> XModPrint(X);
Crossed module [s3c4->s3] :-
: Source group s3c4 has generators:
[(1,2), (2,3), (4,5,6,7)]

: Range group has parent (s3c4) and has generators:
[(1,2), (2,3)]

: Boundary homomorphism maps source generators to:
[(1,2), (2,3), ()]

: Action homomorphism maps range generators to automorphisms:
(1,2) --> { source gens --> [(1,2), (1,3), (4,5,6,7)] }
(2,3) --> { source gens --> [(1,3), (2,3), (4,5,6,7)] }
These 2 automorphisms generate the group of automorphisms.

73.6 ConjugationXMod

ConjugationXMod(R [,S])

This construction returns the crossed module whose source S is a normal subgroup of the
range R, the boundary is the inclusion map, the group of automorphisms is the inner
automorphism group of S, and the action maps an element of r ∈ R to conjugation of S by
r. The default value for S is R.

gap> s4 := Group((1,2,3,4), (1,2));;
gap> a4 := Subgroup(s4, [(1,2,3), (2,3,4)]);;
gap> k4 := Subgroup(a4, [(1,2)(3,4), (1,3)(2,4)]);;
gap> s4.name := "s4";; a4.name := "a4";; k4.name := "k4";;
gap> CX := ConjugationXMod(a4, k4);
Crossed module [k4->a4]

1364 CHAPTER 73. XMOD

73.7 XModName

XModName(X)

Whenever the names of the source or range of X are changed, this function may be used to
produce the new standard form [X.source.name->X.range.name] for the name of X. This
function is called automatically by XModPrint.

gap> k4.name := "v4";;
gap> XModName(CX);
"[v4->a4]"

73.8 CentralExtensionXMod

CentralExtensionXMod(f)

This construction returns the crossed module whose boundary f is a surjection from S to
R having as kernel a subgroup of the centre of S. The action maps an element of r ∈ R to
conjugation of S by f−1r.

gap> d8 := Subgroup(s4, [(1,2,3,4), (1,3)]);; d8.name := "d8";;
gap> gend8 := d8.generators;; genk4 := k4.generators;;
gap> f := GroupHomomorphismByImages(d8, k4, gend8, genk4);;
gap> EX := CentralExtensionXMod(f);
Crossed module [d8->v4]
gap> XModPrint(EX);
Crossed module [d8->v4] :-
: Source group d8 has parent s4 and generators:
[(1,2,3,4), (1,3)]

: Range group k4 has parent s4 and generators:
[(1,2)(3,4), (1,3)(2,4)]

: Boundary homomorphism maps source generators to:
[(1,2)(3,4), (1,3)(2,4)]

: Action homomorphism maps range generators to automorphisms:
(1,2)(3,4) --> { source gens --> [(1,2,3,4), (2,4)] }
(1,3)(2,4) --> { source gens --> [(1,4,3,2), (1,3)] }

These 2 automorphisms generate the group of automorphisms.

73.9 AutomorphismXMod

AutomorphismXMod(S [, A])

This construction returns the crossed module whose range R is a permutation representation
of a group A which is a group of automorphisms of the source S and which contains the inner
automorphism group of S as a subgroup. When A is not specified the full automorphism
group is used. The boundary morphism maps s ∈ S to the representation of the inner
automorphism of S by s. The action is the isomorphism R→ A.

In the following example, recall that the automorphism group of the quaternion group is
isomorphic to the symmetric group of degree 4 and that the inner automorphism group is
isomorphic to k4. The group A is a subgroup of Aut(q8) isomorphic to d8.

73.10. INNERAUTOMORPHISMXMOD 1365

gap> q8 := Group((1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8));;
gap> q8.name := "q8";; genq8 := q8.generators;;
gap> iaq8 := InnerAutomorphismGroup(q8);;
gap> a := GroupHomomorphismByImages(q8, q8, genq8,

[(1,5,3,7)(2,6,4,8),(1,4,3,2)(5,6,7,8)]);;
gap> genA := Concatenation(iaq8.generators, [a]);
[InnerAutomorphism(q8, (1,2,3,4)(5,8,7,6)),
InnerAutomorphism(q8, (1,5,3,7)(2,6,4,8)),
GroupHomomorphismByImages(q8, q8, [(1,2,3,4)(5,8,7,6),
(1,5,3,7)(2,6,4,8)], [(1,5,3,7)(2,6,4,8), (1,4,3,2)(5,6,7,8)])]

gap> id := IdentityMapping(q8);;
gap> A := Group(genA, id);;
gap> AX := AutomorphismXMod(q8, A);
Crossed module [q8->PermSubAut(q8)]
gap> RecFields(AX);
["isDomain", "isParent", "source", "range", "boundary", "action",
"aut", "isXMod", "operations", "name", "isAutomorphismXMod"]

73.10 InnerAutomorphismXMod

InnerAutomorphismXMod(S)

This function is equivalent to AutomorphismXMod(S,A) in the case when A is the inner
automorphism group of S.

gap> IX := InnerAutomorphismXMod(q8);
Crossed module [q8->PermInn(q8)]

73.11 TrivialActionXMod

TrivialActionXMod(f)

For a crossed module to have trivial action, the axioms require the source to be abelian and
the image of the boundary to lie in the centre of the range. A homomorphism f can act as
the boundary map when these conditions are satisfied.

gap> imf := [(1,3)(2,4), (1,3)(2,4)];;
gap> f := GroupHomomorphismByImages(k4, d8, genk4, imf);;
gap> TX := TrivialActionXMod(f);
Crossed module [v4->d8]
gap> XModPrint(TX);

Crossed module [v4->d8] :-
: Source group has parent (s4) and has generators:
[(1,2)(3,4), (1,3)(2,4)]

: Range group has parent (s4) and has generators:
[(1,2,3,4), (1,3)]

: Boundary homomorphism maps source generators to:
[(1,3)(2,4), (1,3)(2,4)]
The automorphism group is trivial

1366 CHAPTER 73. XMOD

73.12 IsRModule for groups

IsRModule(Rmod)

IsRModuleRecord(Rmod)

An R-module consists of a permutation group R with an action α : R → A where A is
a group of automorphisms of an abelian group M . When R is not specified, the function
AutomorphismPair is automatically called to construct it.

This structure is implemented here as a record Rmod with fields

Rmod.module, the abelian group M ,
Rmod.perm, the group R,
Rmod.auto, the action group A,
Rmod.isRModule, set true.

The IsRModule distributor calls this function when the parameter is a record but not a
crossed module.

gap> k4gen := k4.generators;;
gap> k4im := [(1,3)(2,4), (1,4)(2,3)];;
gap> a := GroupHomomorphismByImages(k4, k4, k4gen, k4im);;
gap> Ak4 := Group(a);;
gap> R := rec();;
gap> R.module := k4;;
gap> R.auto := Ak4;;
gap> IsRModule(R);
true
gap> RecFields(R);
["module", "auto", "perm", "isRModule"]
gap> R.perm;
PermSubAut(v4)

73.13 RModuleXMod

RModuleXMod(Rmod)

The crossed module RX obtained from an R-module has the abelian group M as source, the
zero map as boundary, the group R which acts on M as range, the group A of automorphisms
of M as RX.aut and α : R → A as RX.action. An appropriate name for RX is chosen
automatically. Continuing the previous example, M is k4 and R is cyclic of order 3.

gap> RX := RModuleXMod(R);
Crossed module [v4->PermSubAut(v4)]
gap> XModPrint(RX);

Crossed module [v4->PermSubAut(v4)]
: Source group has parent s4 and has generators:
[(1,2)(3,4), (1,3)(2,4)]

: Range group = PermSubAut(v4) has generators:
[(1,2,3)]

: Boundary homomorphism maps source generators to:

73.14. XMODSELECT 1367

[()]
: Action homomorphism maps range generators to automorphisms:
(1,2,3) --> { source gens --> [(1,3)(2,4), (1,4)(2,3)] }
This automorphism generates the group of automorphisms.

73.14 XModSelect

XModSelect(size [, gpnum, type, norm])

Here the parameter size may take any value up to 47, gpnum refers to the isomorphism
class of groups of order size as ordered in the GAP library. The norm parameter is only
used in the case "conj" and specifies the position of the source group in the list of normal
subgroups of the range R. The list Cat1List is used to store the data for these groups. The
allowable types are "conj" for normal inclusions with conjugation, "aut" for automorphism
groups and "rmod" for Rmodules. If type is not specified the default is "conj". If norm is
not specified, then the AutomorphismXMod of R is returned.

In the following example the fourteenth class of groups of size 24 is a special linear group
sl(2,3) and a double cover of a4. The third normal subgroup of sl(2,3) is a quaternion
group, and a conjugation crossed module is returned.

gap> SX := XModSelect(24, 14, "conj", 3);
Crossed module [N3->sl(2,3)]
gap> XModPrint(SX);

Crossed module [N3->sl(2,3)] :-
: Source group has parent (sl(2,3)) and has generators:
[(1,2,3,4)(5,8,7,6), (1, 5, 3, 7)(2, 6, 4, 8)]

: Range group = sl(2,3) and has generators:
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8), (2,5,6)(4,7,8)(9,10,11)]

: Boundary homomorphism maps source generators to:
[(1,2,3,4)(5,8,7,6), (1, 5, 3, 7)(2, 6, 4, 8)]

: Action homomorphism maps range generators to automorphisms:
(1,2,3,4)(5,8,7,6) --> { source gens -->

[(1,2,3,4)(5,8,7,6), (1, 7, 3, 5)(2, 8, 4, 6)] }
(1,5,3,7)(2,6,4,8) --> { source gens -->

[(1,4,3,2)(5,6,7,8), (1, 5, 3, 7)(2, 6, 4, 8)] }
(2, 5, 6)(4, 7, 8)(9,10,11) --> { source gens -->

[(1, 5, 3, 7)(2, 6, 4, 8), (1, 6, 3, 8)(2, 7, 4, 5)] }
These 3 automorphisms generate the group of automorphisms.

73.15 Operations for crossed modules

Special operations defined for crossed modules are stored in the record structure XModOps.
Every crossed module X has X.operations := XModOps;.

gap> RecFields(XModOps);
["name", "operations", "Elements", "IsFinite", "Size", "=", "<",
"in", "IsSubset", "Intersection", "Union", "IsParent", "Parent",
"Difference", "Representative", "Random", "Print", "Kernel",

1368 CHAPTER 73. XMOD

"IsAspherical", "IsSimplyConnected", "IsConjugation",
"IsTrivialAction", "IsCentralExtension", "DirectProduct",
"IsAutomorphismXMod", "IsZeroBoundary", "IsRModule",
"InclusionMorphism", "WhiteheadPermGroup", "Whitehead", "Norrie",
"Lue", "Actor", "InnerMorphism", "Centre", "InnerActor",
"AutomorphismPermGroup", "IdentityMorphism", "InnerAutomorphism",]

Crossed modules X,Y are considered equal if they have the same source, boundary, range,
and action. The remaining functions are discussed below and following section 73.113.

73.16 Print for crossed modules

XModOps.Print(X)

This function is the special print comΥmand for crossed modules, producing a single line
of output, and is called automatically when a crossed module is displayed. For more detail
use XModPrint(X).

gap> CX;
Crossed module [v4->a4]

73.17 Size for crossed modules

XModOps.Size(X)

This function returns a 2-element list containing the sizes of the source and the range of X.

gap> Size(CX);
[4, 12]

73.18 Elements for crossed modules

XModOps.Elements(X)

This function returns a 2-element list of lists of elements of the source and range of X.

gap> Elements(CX);
[[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)],
[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),
(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3)]]

73.19 IsConjugation for crossed modules

XModOps.IsConjugation(X)

This Boolean function checks that the source is a normal subgroup of the range and that
the boundary is an inclusion.

gap> IsConjugation(CX);
true

73.20. ISASPHERICAL 1369

73.20 IsAspherical

XModOps.IsAspherical(X)

This Boolean function checks that the boundary map is monomorphic.

gap> IsAspherical(CX);
true

73.21 IsSimplyConnected

XModOps.IsSimplyConnected(X)

This Boolean function checks that the boundary map is surjective. The corresponding
groupoid then has a single connected component.

gap> IsSimplyConnected(EX);
true

73.22 IsCentralExtension

XModOps.IsCentralExtension(X)

This Boolean function checks that the boundary is surjective with kernel central in the
source.

gap> IsCentralExtension(EX);
true

73.23 IsAutomorphismXMod

XModOps.IsAutomorphismXMod(X)

This Boolean function checks that the range group is a subgroup of the automorphism group
of the source group containing the group of inner automorphisms, and that the boundary
and action homomorphisms are of the correct form.

gap> IsAutomorphismXMod(AX);
true

73.24 IsTrivialAction

XModOps.IsTrivialAction(X)

This Boolean function checks that the action is the zero map.

gap> IsTrivialAction(TX);
true

73.25 IsZeroBoundary

XModOps.IsZeroBoundary(X)

This Boolean function checks that the boundary is the zero map.

gap> IsZeroBoundary(EX);
false

1370 CHAPTER 73. XMOD

73.26 IsRModule for crossed modules

XModOps.IsRModule(X)

This Boolean function checks that the boundary is the zero map and that the source is
abelain.

gap> IsRModule(RX);
true

73.27 WhatTypeXMod

WhatTypeXMod(X)

This function checks whether the crossed module X is one or more of the six standard type
listed above.

gap> WhatTypeXMod(EX);
[" extn, "]

73.28 DirectProduct for crossed modules

XModOps.DirectProduct(X,Y)

The direct product of crossed modules X,Y has as source and range the direct products of
the sources and ranges of X and Y. The boundary map is the product of the two boundaries.
The range of X acts trivially on the source of Y and conversely. Because the standard
DirectProduct function requires the two parameters to be groups, the XModOps. prefix
must be used (at least for GAP3.4.3).

gap> DX := XModOps.DirectProduct(CX, CX);
Crossed module [v4xv4->a4xa4]
gap> XModPrint(DX);

Crossed module [v4xv4->a4xa4] :-
: Source group v4xv4 has generators:
[(1,2)(3,4), (1,3)(2,4), (5,6)(7,8), (5,7)(6,8)]

: Range group = a4xa4 has generators:
[(1,2,3), (2,3,4), (5,6,7), (6,7,8)]

: Boundary homomorphism maps source generators to:
[(1,2)(3,4), (1,3)(2,4), (5,6)(7,8), (5,7)(6,8)]

: Action homomorphism maps range generators to automorphisms:
(1,2,3) --> { source gens -->

[(1,4)(2,3), (1,2)(3,4), (5,6)(7,8), (5,7)(6,8)] }
(2,3,4) --> { source gens -->

[(1,3)(2,4), (1,4)(2,3), (5,6)(7,8), (5,7)(6,8)] }
(5,6,7) --> { source gens -->

[(1,2)(3,4), (1,3)(2,4), (5,8)(6,7), (5,6)(7,8)] }
(6,7,8) --> { source gens -->

[(1,2)(3,4), (1,3)(2,4), (5,7)(6,8), (5,8)(6,7)] }
These 4 automorphisms generate the group of automorphisms.

73.29. XMODMORPHISM 1371

73.29 XModMorphism

XModMorphism(X, Y, homs)

A morphism of crossed modules is a pair of homomorphisms [sourceHom, rangeHom],
where sourceHom, rangeHom are respectively homomorphisms between the sources and
ranges of X and Y , which commute with the two boundary maps and which are morphisms
for the two actions.

In this implementation a morphism of crossed modules mor is a record with fields

mor.source, the source crossed module X,
mor.range, the range crossed module Y,
mor.sourceHom, a homomorphism from X.source to Y.source,
mor.rangeHom, a homomorphism from X.range to Y.range,
mor.isXModMorphism, a Boolean flag, normally true,
mor.operations, a special set of operations XModMorphismOps (see 73.33),
mor.name, a concatenation of the names of X and Y.

The function XModMorphism requires as parameters two crossed modules and a two-element
list containing the source and range homomorphisms. It sets up the required fields for
mor, but does not check the axioms. The IsXModMorphism function should be used to
perform these checks. Note that the XModMorphismPrint function is needed to print out
the morphism in detail.

gap> smor := GroupHomomorphismByImages(q8, k4, genq8, genk4);
GroupHomomorphismByImages(q8, v4,
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)], [(1,2)(3,4), (1,3)(2,4)])
gap> IsHomomorphism(smor);
true
gap> sl23 := SX.range;;
gap> gensl23 := sl23.generators;
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8), (2,5,6)(4,7,8)(9,10,11)]
gap> images := [(1,2)(3,4), (1,3)(2,4), (2,3,4)];;
gap> rmor := GroupHomomorphismByImages(sl23, a4, gensl23, images);;
gap> IsHomomorphism(rmor);
true
gap> mor := XModMorphism(SX, CX, [smor, rmor]);
Morphism of crossed modules <[N3->sl(2,3)] >-> [v4->a4]>

73.30 IsXModMorphism

IsXModMorphism(mor)

This Boolean function checks that mor includes homomorphisms between the corresponding
source and range crossed modules, and that these homomorphisms commute with the two
actions. In the example we increase the value of XModPrintLevel to show the effect of such
an increase in a simple case.

gap> XModPrintLevel := 3;;
gap> IsXModMorphism(mor);
Checking that the diagram commutes :-

1372 CHAPTER 73. XMOD

Y.boundary(morsrc(x)) = morrng(X.boundary(x))
Checking: morsrc(x2^x1) = morsrc(x2)^(morrng(x1))
true
gap> XModPrintLevel := 1;;

73.31 XModMorphismPrint

XModMorphismPrint(mor)

This function is used to display the main fields of a crossed module.
gap> XModMorphismPrint(mor);
Morphism of crossed modules :-
: Source = Crossed module [N3->sl(2,3)] with generating sets

[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8), (2,5,6)(4,7,8)(9,10,11)]

: Range = Crossed module [v4->a4] with generating sets
[(1,2)(3,4), (1,3)(2,4)]]
[(1,2,3), (2,3,4)]

: Source homomorphism maps source generators to:
[(1,2)(3,4), (1,3)(2,4)]

: Range homomorphism maps range generators to:
[(1,2)(3,4), (1,3)(2,4), (2,3,4)]

: isXModMorphism? true

73.32 XModMorphismName

XModMorphismName(mor)

Whenever the names of the source or range crossed module are changed, this function may
be used to produce the new standard form <mor.source.name >-> mor.range.name> for
the name of mor . This function is automatically called by XModMorphismPrint.

gap> k4.name := "k4";; XModName(CX);;
gap> XModMorphismName(mor);
<[N3->sl(2,3)] >-> [k4->a4]>

73.33 Operations for morphisms of crossed modules

Special operations defined for morphisms of crossed modules are stored in the record struc-
ture XModMorphismOps which is based on MappingOps. Every crossed module morphism mor
has field mor.operations set equal to XModMorphismOps;.

gap> IsMonomorphism(mor);
false
gap> IsEpimorphism(mor);
true
gap> IsIsomorphism(mor);
false
gap> IsEndomorphism(mor);
false
gap> IsAutomorphism(mor);
false

73.34. IDENTITYSUBXMOD 1373

73.34 IdentitySubXMod

IdentitySubXMod(X)

Every crossed module X has an identity sub-crossed module whose source and range are the
identity subgroups of the source and range.

gap> IdentitySubXMod(CX);
Crossed module [Id[k4->a4]]

73.35 SubXMod

SubXMod(X, subS, subR)

A sub-crossed module of a crossed module X has as source a subgroup subS of X.source
and as range a subgroup subR of X.range. The boundary map and the action are the
appropriate restrictions. In the following example we construct a sub-crossed module of SX
with range q8 and source a cyclic group of order 4.

gap> q8 := SX.source;; genq8 := q8.generators;;
gap> q8.name := "q8";; XModName(SX);;
gap> c4 := Subgroup(q8, [genq8[1]]);
Subgroup(sl(2,3), [(1,2,3,4)(5,8,7,6)])
gap> c4.name := "c4";;
gap> subSX := SubXMod(SX, c4, q8);
Crossed module [c4->q8]
gap> XModPrint(subSX);
Crossed module [c4->q8] :-
: Source group has parent (sl(2,3)) and has generators:
[(1,2,3,4)(5,8,7,6)]

: Range group has parent (sl(2,3)) and has generators:
[(1,2,3,4)(5,8,7,6), (1, 5, 3, 7)(2, 6, 4, 8)]

: Boundary homomorphism maps source generators to:
[(1, 2, 3, 4)(5, 8, 7, 6)]

: Action homomorphism maps range generators to automorphisms:
(1,2,3,4)(5,8,7,6) --> {source gens --> [(1,2,3,4)(5,8,7,6)]}
(1,5,3,7)(2,6,4,8) --> {source gens --> [(1,4,3,2)(5,6,7,8)]}
These 2 automorphisms generate the group of automorphisms.

73.36 IsSubXMod

IsSubXMod(X,S)

This boolean function checks that S is a sub-crossed module of X.

gap> IsSubXMod(SX, subSX);
true

73.37 InclusionMorphism for crossed modules

InclusionMorphism(S,X)

1374 CHAPTER 73. XMOD

This function constructs the inclusion of a sub-crossed module S of X. When S = X the
identity morphism is returned.

gap> inc := InclusionMorphism(subSX, SX);
Morphism of crossed modules <[c4->q8] >-> [q8->sl(2,3)]>
gap> IsXModMorphism(inc);
true
gap> XModMorphismPrint(inc);
Morphism of crossed modules :-
: Source = Crossed module [c4->q8] with generating sets:

[(1,2,3,4)(5,8,7,6)]
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]

: Range = Crossed module [q8->sl(2,3)] with generating sets:
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8), (2,5,6)(4,7,80(9,10,11)]

: Source Homomorphism maps source generators to:
[(1,2,3,4)(5,8,7,6)]

: Range Homomorphism maps range generators to:
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]

: isXModMorphism? true

73.38 IsNormalSubXMod

IsNormalSubXMod(X,Y)

A sub-crossed module Y=(N->M) is normal in X=(S->R) when

• N,M are normal subgroups of S,R respectively,

• nr ∈ N for all n ∈ N, r ∈ R,

• s−1 sm ∈ N for all m ∈M, s ∈ S.

These axioms are sufficient to ensure that M ×N is a normal subgroup of R×S. They also
ensure that the inclusion morphism of a normal sub-crossed module forms a conjugation
crossed square, analogous to the construction of a conjugation crossed module.

gap> IsNormalSubXMod(SX, subSX);
false

73.39 NormalSubXMods

NormalSubXMods(X)

This function takes pairs of normal subgroups from the source and range of X and constructs
a normal sub-crossed module whenever the axioms are satisfied. Appropriate names are
chosen where possible.

gap> NSX := NormalSubXMods(SX);
[Crossed module [Id[q8->sl(2,3)]], Crossed module [I->?],
Crossed module [Sub[q8->sl(2,3)]], Crossed module [?->q8],
Crossed module [?->q8], Crossed module [q8->sl(2,3)]]

73.40. FACTOR CROSSED MODULE 1375

73.40 Factor crossed module

FactorXMod(X, subX)

The quotient crossed module of a crossed module by a normal sub-crossed module has
quotient groups as source and range, with the obvious action.

gap> Size(NSX[3]);
[2, 2]
gap> FX := FactorXMod(SX, NSX[3]);
Crossed module [?->?]
gap> Size(FX);
[4, 12]

73.41 Kernel of a crossed module morphism

Kernel(mor)

The kernel of a morphism mor : X → Y of crossed modules is the normal sub-crossed
module of X whose source is the kernel of mor.sourceHom and whose range is the kernel
of mor.rangeHom. An appropriate name for the kernel is chosen automatically. A field
.kernel is added to mor.

gap> XModMorphismName(mor);;
gap> KX := Kernel(mor);
Crossed module Ker<[q8->sl(2,3)] >-> [k4->a4]>
gap> XModPrint(KX);
Crossed module Ker<[q8->SL(2,3)] >-> [k4->a4]> :-
: Source group has parent (sl(2,3)) and has generators:
[(1,3)(2,4)(5,7)(6,8)]

: Range group has parent (sl(2,3)) and has generators:
[(1, 3)(2, 4)(5, 7)(6, 8)]

: Boundary homomorphism maps source generators to:
[(1,3)(2,4)(5,7)(6,8)]

: The automorphism group is trivial.
gap> IsNormalSubXMod(SX, KX);
true

73.42 Image for a crossed module morphism

ImageXModMorphism(mor, S)

The image of a sub-crossed module S of X under a morphism mor : X → Y of crossed modules
is the sub-crossed module of Y whose source is the image of S.source under mor.sourceHom
and whose range is the image of S.range under mor.rangeHom. An appropriate name for
the image is chosen automatically. A field .image is added to mor. Note that thjis function
should be named XModMorphismOps.Image, but the command J := Image(mor, S);
does not work with version 3 of GAP.

gap> subSX;
Crossed module [c4->q8]
gap> JX := ImageXModMorphism(mor, subSX);

1376 CHAPTER 73. XMOD

Crossed module [Im([c4->q8]) by <[q8->sl(2,3)] >-> [k4->a4]>]
gap> RecFields(mor);
["sourceHom", "rangeHom", "source", "range", "name", "isXModMorphism",

"domain", "kernel", "image", "isMonomorphism", "isEpimorphism",
"isIsomorphism", "isEndomorphism", "isAutomorphism", "operations"]

gap> XModPrint(JX);

Crossed module [Im([c4->q8]) by <[q8->sl(2,3)] >-> [k4->a4]>] :-
: Source group has parent (s4) and has generators:
[(1,2)(3,4)]

: Range group has parent (s4) and has generators:
[(1,2)(3,4), (1,3)(2,4)]

: Boundary homomorphism maps source generators to:
[(1,2)(3,4)]

: The automorphism group is trivial.

73.43 InnerAutomorphism of a crossed module

InnerAutomorphism(X, r)

Each element r of X.range determines an automorphism of X in which the automorphism
of X.source is given by the image of X.action on r and the automorphism of X.range
is conjugation by r. The command InnerAutomorphism(X, r); does not work with
version 3 of GAP.

gap> g := Elements(q8)[8];
(1,8,3,6)(2,5,4,7)
gap> psi := XModOps.InnerAutomorphism(subSX, g);
Morphism of crossed modules <[c4->q8] >-> [c4->q8]>
gap> XModMorphismPrint(psi);
Morphism of crossed modules :-
: Source = Crossed module [c4->q8] with generating sets:
[(1,2,3,4)(5,8,7,6)]
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]

: Range = Crossed module [c4->q8] with generating sets:
[(1,2,3,4)(5,8,7,6)]
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]

: Source Homomorphism maps source generators to:
[(1,4,3,2)(5,6,7,8)]

: Range Homomorphism maps range generators to:
[(1,4,3,2)(5,6,7,8), (1,7,3,5)(2,8,4,6)]
isXModMorphism? true

73.44 Order of a crossed module morphism

XModMorphismOps.Order(mor)

This function calculates the order of an automorphism of a crossed module.

gap> XModMorphismOps.Order(psi);
2

73.45. COMPOSITEMORPHISM FOR CROSSED MODULES 1377

73.45 CompositeMorphism for crossed modules

CompositeMorphism(mor1, mor2)

Morphisms µ1 : X → Y and µ2 : Y → Z have a composite µ = µ2 ◦ µ1 : X → Z whose
source and range homomorphisms are the composites of those of µ1 and µ2.

In the following example we compose psi with the inc obtained previously.

gap > xcomp := XModMorphismOps.CompositeMorphism(psi, inc);
Morphism of crossed modules <[c4->q8] >-> [q8->sl(2,3)]>
gap> XModMorphismPrint(xcomp);
Morphism of crossed modules :-
: Source = Crossed module [c4->q8] with generating sets:
[(1,2,3,4)(5,8,7,6)]
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]

: Range = Crossed module [q8->sl(2,3)] with generating sets:
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8)]
[(1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8), (2,5,6)(4,7,8)(9,10,11)]

: Source Homomorphism maps source generators to:
[(1,4,3,2)(5,6,7,8)]

: Range Homomorphism maps range generators to:
[(1,4,3,2)(5,6,7,8), (1,7,3,5)(2,8,4,6)]

: isXModMorphism? true

73.46 SourceXModXPModMorphism

SourceXModXPModMorphism(mor)

When crossed modules X,Y have a common range P and mor is a morphism from X to
Y whose range homomorphism is the identity homomorphism, then mor.sourceHom :
X.source -> Y.source) is a crossed module.

gap> c2 := Subgroup(q8, [genq8[1]^2]);
Subgroup(sl(2,3), [(1,3)(2,4)(5,7)(6,8)])
gap> c2.name := "c2";;
gap> sub2 := SubXMod(subSX, c2, q8);
Crossed module [c2->q8]
gap >inc2 := InclusionMorphism(sub2, subSX);
Morphism of crossed modules <[c2->q8] >-> [c4->q8]>
gap> PX := SourceXModXPModMorphism(inc2);
Crossed module [c2->c4]
gap > IsConjugation(PX);
true

1378 CHAPTER 73. XMOD

73.47 About cat1-groups

In [Lod82] Loday reformulated the notion of a crossed module as a cat1-group, namely
a group G with a pair of homomorphisms t, h : G → G having a common image R and
satisfying certain axioms. We find it convenient to define a cat1-group C = (e; t, h : G→ R)
as having source group G, range group R, and three homomorphisms: two surjections t, h :
G→ R and an embedding e : R→ G satisfying:

Cat 1: te = he = idR,
Cat 2: [ker t, kerh] = {1G}.

It follows that teh = h, het = t, tet = t, heh = h.

The maps t, h are often referred to as the source and target, but we choose to call them the
tail and head of C, because source is the GAP term for the domain of a function.

A morphism C1 → C2 of cat1-groups is a pair (γ, ρ) where γ : G1 → G2 and ρ : R1 → R2

are homomorphisms satisfying

h2γ = ρh1, t2γ = ρt1, e2ρ = γe1,

(see 73.61 and subsequent sections).

In this implementation a cat1-group C is a record with the following fields:

C.source, the source G,
C.range, the range R,
C.tail, the tail homomorphism t,
C.head, the head homomorphism h,
C.embedRange, the embedding of R in G,
C.kernel, a permutation group isomorphic to the kernel of t,
C.embedKernel, the inclusion of the kernel in G,
C.boundary, the restriction of h to the kernel,
C.isDomain, set true,
C.operations, a special set of operations Cat1Ops (see 73.53,
C.name, a concatenation of the names of the source and range.
C.isCat1 a boolean flag, normally true.

The following listing shows a simple example:

gap> s3c4gen := s3c4.generators;
[(1,2), (2,3), (4,5,6,7)]
gap> t1 := GroupHomomorphismByImages(s3c4, s3, s3c4gen,

[(1,2), (2,3), ()]);;
gap> C1 := Cat1(s3c4, t1, t1);
cat1-group [s3c4 ==> s3]
gap> Cat1Print(C1);
cat1-group [s3c4 ==> s3] :-
: source group has generators:
[(1,2), (2,3), (4,5,6,7)]

: range group has generators:
[(1,2), (2,3)]

: tail homomorphism maps source generators to:

73.48. CAT1 1379

[(1, 2), (2, 3), ()]
: head homomorphism maps source generators to:
[(1, 2), (2, 3), ()]

: range embedding maps range generators to:
[(1,2), (2,3)]

: kernel has generators:
[(4,5,6,7)]

: boundary homomorphism maps generators of kernel to:
[()]

: kernel embedding maps generators of kernel to:
[(4,5,6,7)]

The category of crossed modules is equivalent to the category of cat1-groups, and the func-
tors between these two categories may be described as follows.
Starting with the crossed module X = (∂ : S → R) the group G is defined as the semidirect
product G = R× S using the action from X . The structural morphisms are given by

t(r, s) = r, h(r, s) = r(∂s), er = (r, 1).

On the other hand, starting with a cat1-group C = (e; t, h : G→ R) we define S = ker t, the
range R remains unchanged and ∂ = h |S . The action of R on S is conjugation in S via the
embedding of R in G.

gap> X1;
Crossed module [c5->PermAut(c5)]
gap> CX1 := Cat1XMod(X1);
cat1-group [Perm(PermAut(c5) |X c5) ==> PermAut(c5)]
gap> CX1.source.generators;
[(2,3,5,4), (1,2,3,4,5)]
gap>
gap> XC1 := XModCat1(C1);
Crossed module [ker([s3c4 ==> s3])->s3]
gap> WhatTypeXMod(XC1);
[" triv, ", " zero, ", " RMod, "]

73.48 Cat1

Cat1(G, t, h)

This function constructs a cat1-group C from a group G and a pair of endomorphisms, the
tail and head of C. The example uses the holomorph of c5, a group of size 20, which was
the source group in XC1 in 73.47. Note that when t = h the boundary is the zero map.

gap> h20 := Group((1,2,3,4,5), (2,3,5,4));;
gap> h20.name := "h20";;
gap> genh20 := h20.generators;;
gap> imh20 := [(), (2,3,5,4)];;
gap> h := GroupHomomorphismByImages(h20, h20, genh20, imh20);;
gap> t := h;;
gap> C := Cat1(h20, t, h);
cat1-group [h20 ==> R]

1380 CHAPTER 73. XMOD

73.49 IsCat1

IsCat1(C)

This function checks that the axioms of a cat1-group are satisfied and that the main fields
of a cat1-group record exist.

gap> IsCat1(C);
true

73.50 Cat1Print

Cat1Print(C)

This function is used to display the main fields of a cat1-group.

gap> Cat1Print(C);

cat1-group [h20 ==> R] :-
: source group has generators:
[(1,2,3,4,5), (2,3,5,4)]

: range group has generators:
[(2, 3, 5, 4)]

: tail homomorphism maps source generators to:
[(), (2, 3, 5, 4)]

: head homomorphism maps source generators to:
[(), (2, 3, 5, 4)]

: range embedding maps range generators to:
[(2, 3, 5, 4)]

: kernel has generators:
[(1,2,3,4,5)]

: boundary homomorphism maps generators of kernel to:
[()]

: kernel embedding maps generators of kernel to:
[(1, 2, 3, 4, 5)]

73.51 Cat1Name

Cat1Name(C)

Whenever the names of the source or the range of C are changed, this function may be
used to produce the new standard form [<C.source.name> ==> <C.range.name>] for
the name of C. This function is called automatically by Cat1Print. Note the use of =, rather
than - in the arrow shaft, to indicate the pair of maps.

gap> C.range.name := "c4";; Cat1Name(C);
"[h20 ==> c4]"

73.52. CONJUGATIONCAT1 1381

73.52 ConjugationCat1

ConjugationCat1(R, S)

When S is a normal subgroup of a group R form the semi-direct product G = R × S to R
and take this as the source, with R as the range. The tail and head homomorphisms are
defined by t(r, s) = r(∂s), h(r, s) = r. In the example h20 is the range, rather than the
source.

gap> c5 := Subgroup(h20, [(1,2,3,4,5)]);;
gap> c5.name := "c5";;
gap> CC := ConjugationCat1(h20, c5);
cat1-group [Perm(h20 |X c5) ==> h20]
gap> Cat1Print(CC);

cat1-group [Perm(h20 |X c5) ==> h20] :-
: source group has generators:
[(6, 7, 8, 9,10), (2, 3, 5, 4)(7, 8,10, 9), (1,2,3,4,5)]

: range group has generators:
[(1,2,3,4,5), (2,3,5,4)]

: tail homomorphism maps source generators to:
[(1, 2, 3, 4, 5), (2, 3, 5, 4), ()]

: head homomorphism maps source generators to:
[(1, 2, 3, 4, 5), (2, 3, 5, 4), (1, 2, 3, 4, 5)]

: range embedding maps range generators to:
[(6, 7, 8, 9,10), (2, 3, 5, 4)(7, 8,10, 9)]

: kernel has generators:
[(1,2,3,4,5)]

: boundary homomorphism maps generators of kernel to:
[(1, 2, 3, 4, 5)]

: kernel embedding maps generators of kernel to:
[(1, 2, 3, 4, 5)]

: associated crossed module is Crossed module [c5->h20]

gap> ct := CC.tail;;
gap> ch := CC.head;;
gap> CG := CC.source;;
gap> genCG := CG.generators;;
gap> x := genCG[2] * genCG[3];
(1, 2, 4, 3)(7, 8,10, 9)
gap> tx := Image(ct, x);
(2, 3, 5, 4)
gap> hx := Image(ch, x);
(1, 2, 4, 3)

gap> RecFields(CC);
["source", "range", "tail", "head", "embedRange", "kernel",
"boundary", "embedKernel", "isDomain", "operations", "isCat1",
"name", "xmod"]

1382 CHAPTER 73. XMOD

73.53 Operations for cat1-groups

Special operations defined for crossed modules are stored in the record structure Cat1Ops
based on DomainOps. Every cat1-group C has C.operations := Cat1Ops;.

gap> RecFields(Cat1Ops);
["name", "operations", "Elements", "IsFinite", "Size", "=", "<",
"in", "IsSubset", "Intersection", "Union", "IsParent", "Parent",
"Difference", "Representative", "Random", "Print", "Actor",
"InnerActor", "InclusionMorphism", "WhiteheadPermGroup"]

Cat1-groups are considered equal if they have the same source, range, tail, head and em-
bedding. The remaining functions are described below.

73.54 Size for cat1-groups

Cat1Ops.Size(C)

This function returns a two-element list containing the sizes of the source and range of C.

gap> Size(C);
[20, 4]

73.55 Elements for cat1-groups

Cat1Ops.Elements(C)

This function returns the two-element list of lists of elements of the source and range of C.

gap> Elements(C);
[[(), (2,3,5,4), (2,4,5,3), (2,5)(3,4), (1,2)(3,5), (1,2,3,4,5),

(1,2,4,3), (1,2,5,4), (1,3,4,2), (1,3)(4,5), (1,3,5,2,4),
(1,3,2,5), (1,4,5,2), (1,4,3,5), (1,4)(2,3), (1,4,2,5,3),
(1,5,4,3,2), (1,5,3,4), (1,5,2,3), (1,5)(2,4)],

[(), (2,3,5,4), (2,4,5,3), (2,5)(3,4)]]

73.56 XModCat1

XModCat1(C)

This function acts as the functor from the category of cat1-groups to the category of crossed
modules.

gap> XC := XModCat1(C);
Crossed module [ker([h20 ==> c4])->c4]
gap> XModPrint(XC);

Crossed module [ker([h20 ==> c4])->c4] :-
: Source group has parent (h20) and has generators:
[(1,2,3,4,5)]

: Range group has parent (h20) and has generators:
[(2, 3, 5, 4)]

: Boundary homomorphism maps source generators to:

73.57. CAT1XMOD 1383

[()]
: Action homomorphism maps range generators to automorphisms:
(2,3,5,4) --> { source gens --> [(1,3,5,2,4)] }
This automorphism generates the group of automorphisms.

: Associated cat1-group = cat1-group [h20 ==> c4]

73.57 Cat1XMod

Cat1XMod(X)

This function acts as the functor from the category of crossed modules to the category of
cat1-groups. A permutation representation of the semidirect product R × S is constructed
for G. See section 73.58 for a version where G is a semidirect product group. The example
uses the crossed module CX constructed in section 73.6.

gap> CX;
Crossed module [k4->a4]
gap> CCX := Cat1XMod(CX);
cat1-group [a4.k4 ==> a4]
gap> Cat1Print(CCX);

cat1-group [a4.k4 ==> a4] :-
: source group has generators:
[(2,4,3)(5,6,7), (2,3,4)(6,7,8), (1,2)(3,4), (1,3)(2,4)]

: range group has generators:
[(1,2,3), (2,3,4)]

: tail homomorphism maps source generators to:
[(1, 2, 3), (2, 3, 4), (), ()]

: head homomorphism maps source generators to:
[(1, 2, 3), (2, 3, 4), (1, 2)(3, 4), (1, 3)(2, 4)]

: range embedding maps range generators to:
[(2, 4, 3)(5, 6, 7), (2, 3, 4)(6, 7, 8)]

: kernel has generators:
[(1,2)(3,4), (1,3)(2,4)]

: boundary homomorphism maps generators of kernel to:
[(1,2)(3,4), (1,3)(2,4)]

: kernel embedding maps generators of kernel to:
[(1,2)(3,4), (1,3)(2,4)]

: associated crossed module is Crossed module [k4->a4]

73.58 SemidirectCat1XMod

SemidirectCat1XMod(X)

This function is similar to the previous one, but a permutation representation for R × S is
not constructed.

gap> Unbind(CX.cat1);
gap> SCX := SemidirectCat1XMod(CX);
cat1-group [a4 |X k4 ==> a4]

1384 CHAPTER 73. XMOD

gap> Cat1Print(SCX);

cat1-group [a4 |X k4 ==> a4] :-
: source group has generators:
[SemidirectProductElement((1,2,3), GroupHomomorphismByImages(k4,

k4, [(1,3)(2,4), (1,4)(2,3)], [(1,2)(3,4), (1,3)(2,4)]), ()),
SemidirectProductElement((2,3,4), GroupHomomorphismByImages(k4,
k4, [(1,4)(2,3), (1,2)(3,4)], [(1,2)(3,4), (1,3)(2,4)]), ()),

SemidirectProductElement((), IdentityMapping(k4), (1,2)(3,4)),
SemidirectProductElement((), IdentityMapping(k4), (1,3)(2,4))]

: range group has generators:
[(1,2,3), (2,3,4)]

: tail homomorphism maps source generators to:
[(1,2,3), (2,3,4), (), ()]

: head homomorphism maps source generators to:
[(1,2,3), (2,3,4), (1,2)(3,4), (1,3)(2,4)]

: range embedding maps range generators to:
[SemidirectProductElement((1,2,3), GroupHomomorphismByImages(k4,

k4, [(1,3)(2,4), (1,4)(2,3)], [(1,2)(3,4), (1,3)(2,4)]), ()),
SemidirectProductElement((2,3,4), GroupHomomorphismByImages(k4,
k4, [(1,4)(2,3), (1,2)(3,4)], [(1,2)(3,4), (1,3)(2,4)]), ())]

: kernel has generators:
[(1,2)(3,4), (1,3)(2,4)]

: boundary homomorphism maps generators of kernel to:
[(1,2)(3,4), (1,3)(2,4)]

: kernel embedding maps generators of kernel to:
[SemidirectProductElement((), IdentityMapping(k4), (1,2)(3,4)),
SemidirectProductElement((), IdentityMapping(k4), (1,3)(2,4))]

: associated crossed module is Crossed module [k4->a4]

73.59 Cat1List

Cat1List is a list containing data on all cat1-structures on groups of size up to 47. The list
is used by Cat1Select to construct these small examples of cat1-groups.

gap> Length(Cat1List);
198
gap> Cat1List[8];
[6, 2, [(1,2), (2,3)], "s3",

[[[(2,3), (2,3)], "c3", "c2", [(2,3), (2,3)],
[(2,3), (2,3)]]]]

73.60 Cat1Select

Cat1Select(size, [gpnum, num])

All cat-structures on groups of order up to 47 are stored in a list Cat1List and may be
obtained from the list using this function. Global variables Cat1ListMaxSize :=
47 and NumbersOfIsomorphismClasses are also stored. The example illustrated is the first

73.60. CAT1SELECT 1385

case in which t 6= h and the associated conjugation crossed module is given by the normal
subgroup c3 of s3.

gap> Cat1ListMaxSize;
47
gap> NumbersOfIsomorphismClasses[18];
5
gap> Cat1Select(18);
Usage: Cat1Select(size, gpnum, num)
["c6c3", "c18", "d18", "s3c3", "c3^2|Xc2"]

gap> Cat1Select(18, 5);
There are 4 cat1-structures for the group c3^2|Xc2.
[[range generators], [tail.genimages], [head.genimages]] :-
[[(1,2,3), (4,5,6), (2,3)(5,6)], tail = head = identity mapping]
[[(2,3)(5,6)], "c3^2", "c2", [(), (), (2,3)(5,6)],

[(), (), (2,3)(5,6)]]
[[(4,5,6), (2,3)(5,6)], "c3", "s3", [(), (4,5,6), (2,3)(5,6)],

[(), (4,5,6), (2,3)(5,6)]]
[[(4,5,6), (2,3)(5,6)], "c3", "s3", [(4,5,6),(4,5,6),(2,3)(5,6)],

[(), (4,5,6), (2,3)(5,6)]]
Usage: Cat1Select(size, gpnum, num)
Group has generators [(1,2,3), (4,5,6), (2,3)(5,6)]

gap> SC := Cat1Select(18, 5, 4);
cat1-group [c3^2|Xc2 ==> s3]
gap> Cat1Print(SC);

cat1-group [c3^2|Xc2 ==> s3] :-
: source group has generators:
[(1,2,3), (4,5,6), (2,3)(5,6)]

: range group has generators:
[(4,5,6), (2,3)(5,6)]

: tail homomorphism maps source generators to:
[(4, 5, 6), (4, 5, 6), (2, 3)(5, 6)]

: head homomorphism maps source generators to:
[(), (4, 5, 6), (2, 3)(5, 6)]

: range embedding maps range generators to:
[(4, 5, 6), (2, 3)(5, 6)]

: kernel has generators:
[(1, 2, 3)(4, 6, 5)]

: boundary homomorphism maps generators of kernel to:
[(4, 6, 5)]

: kernel embedding maps generators of kernel to:
[(1, 2, 3)(4, 6, 5)]

gap> XSC := XModCat1(SC);
Crossed module [c3->s3]

1386 CHAPTER 73. XMOD

For each group G the first cat1-structure is the identity cat1-structure (id;id,id : G ->
G) with trivial kernel. The corresponding crossed module has as boundary the inclusion
map of the trivial subgroup.

gap> AC := Cat1Select(12, 5, 1);
cat1-group [a4 ==> a4]

73.61 Cat1Morphism

Cat1Morphism(C, D, L)

A morphism of cat1-groups is a pair of homomorphisms [sourceHom, rangeHom], where
sourceHom, rangeHom are respectively homomorphisms between the sources and ranges of C
andD, which commute with the two tail homomorphisms with the two head homomorphisms
and with the two embeddings.

In this implementation a morphism of cat1-groups mu is a record with fields:
mu.source, the source cat1-group C,
mu.range, the range cat1-group D,
mu.sourceHom, a homomorphism from C.source to D.source,
mu.rangeHom, a homomorphism from C.range to D.range,
mu.isCat1Morphism, a Boolean flag, normally true,
mu.operations, a special set of operations Cat1MorphismOps,
mu.name, a concatenation of the names of C and D.

The function Cat1Morphism requires as parameters two cat1-groups and a two-element list
containing the source and range homomorphisms. It sets up the required fields for mu, but
does not check the axioms. The IsCat1Morphism function should be used to perform these
checks. Note that the Cat1MorphismPrint function is needed to print out the morphism in
detail.

gap> GCCX := CCX.source;
Perm(a4 |X k4)
gap> GAC := AC.source;
a4
gap> genGAC := GAC.generators;
[(1,2,3), (2,3,4)]
gap> im := Sublist(GCCX.generators, [1..2]);
[(2,4,3)(5,6,7), (2,3,4)(6,7,8)]

gap> musrc := GroupHomomorphismByImages(genGAC, GCCX, gen, im);;
gap> murng := InclusionMorphism(a4, a4);;
gap> mu := Cat1Morphism(AC, CCX, [musrc, murng]);
Morphism of cat1-groups <[a4 ==> a4]-->[Perm(a4 |X k4) ==> a4]>

73.62 IsCat1Morphism

IsCat1Morphism(mu)

This Boolean function checks that µ includes homomorphisms between the corresponding
source and range groups, and that these homomorphisms commute with the pairs of tail
and head homomorphisms.

73.63. CAT1MORPHISMNAME 1387

gap> IsCat1Morphism(mu);
true

73.63 Cat1MorphismName

Cat1MorphismName(mu)

This function concatenates the names of the source and range of a morphism of cat1-groups.

gap> CCX.source.name := "a4.k4";; Cat1Name(CCX);
"[a4.k4 ==> a4]"
gap> Cat1MorphismName(mu);
"<[a4 ==> a4]-->[a4.k4 ==> a4]>"

73.64 Cat1MorphismPrint

Cat1MorphismPrint(mu)

This printing function for cat1-groups is one of the special functions in Cat1MorphismOps.

gap> Cat1MorphismPrint(mu);
Morphism of cat1-groups :=
: Source = cat1-group [a4 ==> a4]
: Range = cat1-group [a4.k4 ==> a4]
: Source homomorphism maps source generators to:
[(2,4,3)(5,6,7), (2,3,4)(6,7,8)]

: Range homomorphism maps range generators to:
[(1,2,3), (2,3,4)]

73.65 Operations for morphisms of cat1-groups

Special operations defined for morphisms of cat1-groups are stored in the record structure
Cat1MorphismOps which is based on MappingOps. Every morphism of cat1-groups mor has
field mor.operations set equal to Cat1MorphismOps;.

gap> IsMonomorphism(mu);
true
gap> IsEpimorphism(mu);
false
gap> IsIsomorphism(mu);
false
gap> IsEndomorphism(mu);
false
gap> IsAutomorphism(mu);
false

73.66 Cat1MorphismSourceHomomorphism

Cat1MorphismSourceHomomorphism (C, D, phi)

Given a homomorphism from the source of C to the source of D, this function defines the
corresponding cat1-group morphism.

1388 CHAPTER 73. XMOD

gap> GSC := SC.source;;
gap> homsrc := GroupHomomorphismByImages(a4, GSC,

[(1,2,3),(2,3,4)],[(4,5,6),(4,6,5)]);;
gap> musrc := Cat1MorphismSourceHomomorphism(AC, SC, homsrc);
Morphism of cat1-groups <[a4 ==> a4]-->[c3^2|Xc2 ==> s3]>
gap> IsCat1Morphism(musrc);
true
gap> Cat1MorphismPrint(musrc);
Morphism of cat1-groups :=
: Source = cat1-group [a4 ==> a4]
: Range = cat1-group [c3^2|Xc2 ==> s3]
: Source homomorphism maps source generators to:

[(4,5,6), (4,6,5)]
: Range homomorphism maps range generators to:

[(4,5,6), (4,6,5)]

73.67 ReverseCat1

ReverseCat1(C)

The reverse of a cat1-group is an isomorphic cat1-group with the same source, range and
embedding, but with the tail and head interchanged (see [AW97], section 2).

gap> revCC := ReverseCat1(CC);
cat1-group [h20 |X c5 ==> h20]

73.68 ReverseIsomorphismCat1

ReverseIsomorphismCat1(C)

gap> revmu := ReverseIsomorphismCat1(CC);
Morphism of cat1-groups

<[Perm(h20 |X c5) ==> h20]-->[h20 |X c5 ==> h20]>
gap> IsCat1Morphism(revmu);
true

73.69 Cat1MorphismXModMorphism

Cat1MorphismXModMorphism(mor)

If C1, C2 are the cat1-groups produced from X1, X2 by the function Cat1XMod, then for
any mor : X1 -> X2 there is an associated mu :
C1 -> C2. The result is stored as mor.cat1Morphism.

gap> CX.Cat1 := CCX;;
gap> CSX := Cat1XMod(SX);
cat1-group [Perm(sl(2,3) |X q8) ==> sl(2,3)]
gap> mor;
Morphism of crossed modules <[q8->sl(2,3)] >-> [k4->a4]>
gap> catmor := Cat1MorphismXModMorphism(mor);
Morphism of cat1-groups

73.70. XMODMORPHISMCAT1MORPHISM 1389

<[Perm(sl(2,3) |X q8) ==> sl(2,3)]-->[Perm(a4 |X k4) ==> a4]>
gap> IsCat1Morphism(catmor);
true
gap> Cat1MorphismPrint(catmor);
Morphism of cat1-groups :=
: Source = cat1-group [Perm(sl(2,3) |X q8) ==> sl(2,3)]
: Range = cat1-group [Perm(a4 |X k4) ==> a4]
: Source homomorphism maps source generators to:
[(5,6)(7,8), (5,7)(6,8), (2,3,4)(6,7,8), (1,2)(3,4), (1,3)(2,4)]

: Range homomorphism maps range generators to:
[(1,2)(3,4), (1,3)(2,4), (2,3,4)]

73.70 XModMorphismCat1Morphism

XModMorphismCat1Morphism (mu)

If X1,X2 are the two crossed modules produced from C1,C2 by the function XModCat1, then
for any mu : C1 -> C2 there is an associated morphism of crossed modules from X1 to
X2. The result is stored as mu.xmodMorphism.

gap> mu;
Morphism of cat1-groups <[a4 ==> a4]-->[a4.k4 ==> a4]>
gap> xmu := XModMorphismCat1Morphism(mu);
Morphism of crossed modules <[a4->a4] >-> [k4->a4]>

73.71 CompositeMorphism for cat1-groups

Cat1MorphismOps.CompositeMorphism(mu1,mu2)

Morphisms µ1 : C → D and µ2 : D → E have a composite µ = µ2 ◦ µ1 : C → E whose
source and range homomorphisms are the composites of those of µ1 and µ2. The example
corresponds to that in 73.45.

gap> psi;
Morphism of crossed modules <[c4->q8] >-> [c4->q8]>
gap> inc;
Morphism of crossed modules <[c4->q8] >-> [q8->sl(2,3)]>
gap> mupsi := Cat1MorphismXModMorphism(psi);
Morphism of cat1-groups

<[Perm(q8 |X c4) ==> q8]-->[Perm(q8 |X c4) ==> q8]>
gap> muinc := Cat1MorphismXModMorphism(inc);
Morphism of cat1-groups

<[Perm(q8 |X c4) ==> q8]-->[Perm(sl(2,3) |X q8) ==> sl(2,3)]>
gap> mucomp := Cat1MorphismOps.CompositeMorphism(mupsi, muinc);
Morphism of cat1-groups

<[Perm(q8 |X c4) ==> q8]-->[Perm(sl(2,3) |X q8) ==> sl(2,3)]>
gap> muxcomp := Cat1MorphismXModMorphism(xcomp);;
gap> mucomp = muxcomp;
true

1390 CHAPTER 73. XMOD

73.72 IdentitySubCat1

IdentitySubCat1(C)

Every cat1-group C has an identity sub-cat1-group whose source and range are the identity
subgroups of the source and range of C.

gap> IdentitySubCat1(SC);
cat1-group [Id[c3^2|Xc2 ==> s3]]

73.73 SubCat1

SubCat1(C, H)

When H is a subgroup of C.source and the restrictions of C.tail and C.head to H have a
common image, these homomorphisms determine a sub-cat1-group of C.

gap> d20 := Subgroup(h20, [(1,2,3,4,5), (2,5)(3,4)]);;
gap> subC := SubCat1(C, d20);
cat1-group [Sub[h20 ==> c4]]
gap> Cat1Print(subC);

cat1-group [Sub[h20 ==> c4]] :-
: source group has generators:
[(1,2,3,4,5), (2,5)(3,4)]

: range group has generators:
[(2, 5)(3, 4)]

: tail homomorphism maps source generators to:
[(), (2, 5)(3, 4)]

: head homomorphism maps source generators to:
[(), (2, 5)(3, 4)]

: range embedding maps range generators to:
[(2, 5)(3, 4)]

: kernel has generators:
[(1,2,3,4,5)]

: boundary homomorphism maps generators of kernel to:
[()]

: kernel embedding maps generators of kernel to:
[(1, 2, 3, 4, 5)]

73.74 InclusionMorphism for cat1-groups

InclusionMorphism(S, C)

This function constructs the inclusion morphism S -> C of a sub-cat1-group S of a
cat1-group C.

gap> InclusionMorphism(subC, C);
Morphism of cat1-groups <[Sub[h20 ==> c4]]-->[h20 ==> c4]>

73.75. NORMALSUBCAT1S 1391

73.75 NormalSubCat1s

NormalSubCat1s(C)

This function takes pairs of normal subgroups from the source and range of C and constructs
a normal sub-cat1-group whenever the axioms are satisfied.

gap> NormalSubCat1s(SC);
[cat1-group [Sub[c3^2|Xc2 ==> s3]] ,
cat1-group [Sub[c3^2|Xc2 ==> s3]] ,
cat1-group [Sub[c3^2|Xc2 ==> s3]] ,
cat1-group [Sub[c3^2|Xc2 ==> s3]]]

73.76 AllCat1s

AllCat1s(G)

By a cat1-structure on G we mean a cat1-group C where R is a subgroup of G and e is
the inclusion map. For such a structure to exist, G must contain a normal subgroup S
with G/S ∼= R. Furthermore, since t, h are respectively the identity and zero maps on
S, we require R ∩ S = {1G}. This function uses EndomorphismClasses(G, 3) (see
73.134, 73.136) to construct idempotent endomorphisms of G as potential tails and heads.
A backtrack procedure then tests to see which pairs of idempotents give cat1-groups. A
non-documented function AreIsomorphicCat1s is called in order that the function returns
representatives for isomorphism classes of cat1-structures on G. See [AW97] for all cat1-
structures on groups of order up to 30.

gap> AllCat1s(a4);
There are 1 endomorphism classes.
Calculating idempotent endomorphisms.
idempotents mapping to lattice class representatives
[1, 0, 1, 0, 1]
Isomorphism class 1
: kernel of tail = ["2x2"]
: range group = ["3"]
Isomorphism class 2
: kernel of tail = ["1"]
: range group = ["A4"]
[cat1-group [a4 ==> a4.H3] , cat1-group [a4 ==> a4]]

The first class has range c3 and kernel k4. The second class contails all cat1-groups C =
(α−1;α, α : G→ G) where α is an automorphism of G.

1392 CHAPTER 73. XMOD

73.77 About derivations and sections

The Whitehead monoid Der(X) of X was defined in [Whi48] to be the monoid of all deriva-
tions from R to S, that is the set of all maps R→ S, with composition ◦ , satisfying

Der 1: χ(qr) = (χq)r (χr)
Der 2: (χ1 ◦ χ2)(r) = (χ1r)(χ2r)(χ1∂χ2r).

The zero map is the identity for this composition. Invertible elements in the monoid are
called regular. The Whitehead group of X is the group of regular derivations in Der(X).
In section 73.113 the actor of X is defined as a crossed module whose source and range are
permutation representations of the Whitehead group and the automorphism group of X .

The construction for cat1-groups equivalent to the derivation of a crossed module is the
section. The monoid of sections of C is the set of group homomorphisms ξ : R → G, with
composition ◦ , satisfying:

Sect 1: tξ = idR,
Sect 2: (ξ1 ◦ ξ2)(r) = (ξ2r)(ehξ2r)−1(ξ1hξ2r).

The embedding e is the identity for this composition, and h(ξ1 ◦ ξ2) = (hξ1)(hξ2). A section
is regular when hξ is an automorphism and, of course, the group of regular sections is
isomorphic to the Whitehead group.

Derivations are stored like group homomorphisms by specifying the images of a generating
set. Images of the remaining elements may then be obtained using axiom Der 1. The
function IsDerivation is automatically called to check that this procedure is well-defined.

gap> X1;
Crossed module [c5->PermAut(c5)]
gap> chi1 := XModDerivationByImages(X1, [()]);
XModDerivationByImages(PermAut(c5), c5, [(1,2,4,3)], [()])
gap> IsDerivation(chi1);
true

A derivation is stored as a record chi with fields:
chi.source, the range group R of X ,
chi.range, the source group S of X ,
chi.generators, a fixed generating set for R,
chi.genimages, the chosen images of the generators,
chi.xmod, the crossed module X ,
chi.operations, special set of operations XModDerivationByImagesOps,
chi.isDerivation, a boolean flag, normally true.

Sections are group homomorphisms, and are stored as such, but with a modified set of opera-
tions Cat1SectionByImagesOps which includes a special .Print function to display the sec-
tion in the manner shown below. Functions SectionDerivation and DerivationSection
convert derivations to sections, and vice-versa, calling Cat1XMod and XModCat1 automati-
cally.

The equation ξr = (er)(χr) determines a section ξ of C, given a derivation χ of X , and
conversely.

73.77. ABOUT DERIVATIONS AND SECTIONS 1393

gap> xi1 := SectionDerivation(chi1);
Cat1SectionByImages(PermAut(c5), Perm(PermAut(c5) |X c5),

[(1,2,4,3)], [(2,3,5,4)])
gap> xi1.cat1;
cat1-group [Perm(PermAut(c5) |X c5) ==> PermAut(c5)]

There are two functions to determine all the elements of the Whitehead group and the
Whitehead monoid of X , namely RegularDerivations and AllDerivations. If the whole
monoid is needed at some stage, then the latter function should be used. A field D =
X.derivations is created which stores all the required information:

D.areDerivations, a boolean flag, normally true,
D.isReg, true when only the regular derivations are known,
D.isAll, true when all the derivations have been found,
D.generators, a copy of R.generators,
D.genimageList, a list of .genimages lists for the derivations,
D.regular, the number of regular derivations (if known),
D.xmod, the crossed module X ,
D.operations, a special set of operations XModDerivationsOps.

Using our standard example X1 we find that there are just five derivations, all of them
regular, so the associated group is cyclic of size 5.

gap> RegularDerivations(X1);
RegularDerivations record for crossed module [c5->PermAut(c5)],
: 5 regular derivations, others not found.
gap> AllDerivations(X1);
AllDerivations record for crossed module [c5->PermAut(c5)],
: 5 derivations found but unsorted.
gap> DerivationsSorted(X1);
true
gap> imder1 := X1.derivations.genimageList;
[[()], [(1,2,3,4,5)], [(1,3,5,2,4)], [(1,4,2,5,3)], [(1,5,4,3,2)]]

The functions RegularSections and AllSections perform corresponding tasks for a cat1-
group. Two strategies for calculating derivations and sections are implemented, see [AW97].
The default method for AllDerivations is to search for all possible sets of images using
a backtracking procedure, and when all the derivations are found it is not known which
are regular. The function DerivationsSorted sorts the .genImageList field, placing the
regular ones at the top of the list and adding the .regular field. The default method for
AllSections(C) computes all endomorphisms on the range group R of C as possibilities
for the composite hξ. A backtrack method then finds possible images for such a section.
When either the set of derivations or the set of sections already exists, the other set is
computed using SectionDerivation or DerivationSection.

gap> CX1 := Cat1XMod(X1);
cat1-group [Perm(PermAut(c5) |X c5) ==> PermAut(c5)]
gap> CX1.source.name := "Hol(c5)";; Cat1Name(CX1);
gap> RegularSections(CX1);
RegularSections record for cat1-group [Hol(c5) ==> PermAut(c5)],
: 5 regular sections, others not found.
gap> CX1.sections.genimageList;

1394 CHAPTER 73. XMOD

[[(2,3,5,4)], [(1,2,4,3)], [(1,3,2,5)], [(1,4,5,2)], [(1,5,3,4)]]

The derivation images and the composition table may be listed as follows.

gap> chi2 := XModDerivationByImages(X1, imder1[2]);
XModDerivationByImages(PermAut(c5), c5, [(1,2,4,3)], [(1,2,3,4,5)])
gap> DerivationImage(chi2, (1,4)(2,3));
(1, 4, 2, 5, 3)
gap> DerivationImages(chi2);
[1, 2, 3, 4]
gap> PrintList(DerivationTable(X1))
[1, 1, 1, 1]
[1, 2, 3, 4]
[1, 3, 5, 2]
[1, 4, 2, 5]
[1, 5, 4, 3]
gap> PrintList(WhiteheadGroupTable(X1));
[1, 2, 3, 4, 5]
[2, 3, 4, 5, 1]
[3, 4, 5, 1, 2]
[4, 5, 1, 2, 3]
[5, 1, 2, 3, 4]

Each χ or ξ determines endomorphisms of R, S,G,X and C, namely:

ρ : R→ R, r 7→ r(∂χr) = hξr,
σ : S → S, s 7→ s(χ∂s),
γ : G→ G, g 7→ (ehξtg)(ξtg−1)g(ehg−1)(ξhg),

(σ, ρ) : X → X ,
(γ, ρ) : C → C.

When these endomorphisms are automorphisms, the derivation is regular. When the bound-
ary of X is the zero map, both σ and ρ are identity homomorphisms, and every derivation
is regular, which is the case in this example.

gap> sigma2 := SourceEndomorphismDerivation(chi2);
GroupHomomorphismByImages(c5, c5, [(1,2,3,4,5)], [(1,2,3,4,5)])
gap> rho2 := RangeEndomorphismDerivation(chi2);
GroupHomomorphismByImages(PermAut(c5), PermAut(c5), [(1,2,4,3)],

[(1,2,4,3)])
gap> xi2 := SectionDerivation(chi2);;
gap> gamma2 := SourceEndomorphismSection(xi2);
GroupHomomorphismByImages(Hol(c5), Hol(c5), [(2,3,5,4),(1,2,3,4,5)],

[(2,3,5,4),(1,2,3,4,5)])
gap> mor2 := XModMorphism(X1, X1, [sigma2,rho2]);
Morphism of crossed modules <[c5->PermAut(c5)] >-> [c5->PermAut(c5)]>
gap> mu2 := Cat1Morphism(CX1, CX1, [gamma2,rho2]);
Morphism of cat1-groups <[Hol(c5) ==> PermAut(c5)]-->

[Hol(c5) ==> PermAut(c5)]>

73.78. XMODDERIVATIONBYIMAGES 1395

73.78 XModDerivationByImages

XModDerivationByImages(X, im)

This function takes a list of images in S = X.source for the generators of R = X.range
and constructs a map χ : R → S which is then tested to see whether the axioms of a
derivation are satisfied.

gap> XSC;
Crossed module [c3->s3]
gap> imchi := [(1,2,3)(4,6,5), (1,2,3)(4,6,5)];;
gap> chi := XModDerivationByImages(XSC, imchi);
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(1,2,3)(4,6,5), (1,2,3)(4,6,5)])

73.79 IsDerivation

IsDerivation(X, im)

IsDerivation(chi)

This function may be called in two ways, and tests that the derivation given by the images
of its generators is well-defined.

gap> im0 := [(1,3,2)(4,5,6), ()];;
gap> IsDerivation(XSC, im0);
true

73.80 DerivationImage

DerivationImage(chi, r)

This function returns χ(r) ∈ S when χ is a derivation.

gap> DerivationImage(chi, (4,6,5));
(1,3,2)(4,5,6)

73.81 DerivationImages

DerivationImages(chi)

All the images of the elements of R are found using DerivationImage and their positions
in S.elements is returned as a list.

gap> XSC.source.elements;
[(), (1, 2, 3)(4, 6, 5), (1, 3, 2)(4, 5, 6)]
gap> DerivationImages(chi);
[1, 2, 3, 2, 3, 1]

73.82 InnerDerivation

InnerDerivation(X, s)

1396 CHAPTER 73. XMOD

When S,R are respectively the source and range of X, each s ∈ S defines a derivation
ηs : R→ S, r 7→ srs−1. These inner derivations are often called principal derivations in the
literature.

gap> InnerDerivation(XSC, (1,2,3)(4,6,5));
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(), (1,2,3)(4,6,5)])

73.83 ListInnerDerivations

ListInnerDerivations(X)

This functions applies InnerDerivation to every element of X.source and outputs a list
of genimages for the resulting derivations. This list is stored as .innerImageList in the
derivations record.

gap> Printlist(ListInnerDerivations(XSC));
[(), ()]
[(), (1, 2, 3)(4, 6, 5)]
[(), (1, 3, 2)(4, 5, 6)]

73.84 Operations for derivations

The operations record for derivations is XModDerivationByImagesOps.

gap> RecFields(chi.operations);
["name", "operations", "IsMapping", "IsInjective", "IsSurjective",
"IsBijection", "IsHomomorphism", "IsMonomorphism", "IsEpimorphism",
"IsIsomorphism", "IsEndomorphism", "IsAutomorphism", "=", "<", "*",
"/", "mod", "Comm", "^", "ImageElm", "ImagesElm", "ImagesSet",
"ImagesSource", "ImagesRepresentative", "PreImageElm",
"PreImagesSet", "PreImagesRange", "PreImagesRepresentative",
"PreImagesElm", "CompositionMapping", "PowerMapping",
"IsGroupHomomorphism", "KernelGroupHomomorphism",
"IsFieldHomomorphism", "KernelFieldHomomorphism",
"InverseMapping", "Print", "IsRegular"]

73.85 Cat1SectionByImages

Cat1SectionByImages(C, im)

This function takes a list of images in G = C.source for the generators of R = C.range
and constructs a homomorphism ξ : R→ G which is then tested to see whether the axioms
of a section are satisfied.

gap> SC;
cat1-group [c3^2|Xc2 ==> s3]
gap> imxi := [(1,2,3), (1,2)(4,6)];;
gap> xi := Cat1SectionByImages(SC, imxi);
Cat1SectionByImages(s3, c3^2|Xc2, [(4,5,6), (2,3)(5,6)],

[(1,2,3), (1,2)(4,6)])

73.86. ISSECTION 1397

73.86 IsSection

IsSection(C, im)

IsSection(xi)

This function may be called in two ways, and tests that the section given by the images of
its generators is well-defined.

gap> im0 := [(1,2,3), {2,3)(4,5)];;
gap> IsSection(SC, im0);
false

73.87 IsRegular for Crossed Modules

IsRegular(chi)

This function tests a derivation or a section to see whether it is invertible in the Whitehead
monoid.

gap> IsRegular(chi);
false
gap> IsRegular(xi);
false

73.88 Operations for sections

The operations record for sections is Cat1SectionByImagesOps.

gap> RecFields(xi.operations);
["name", "operations", "IsMapping", "IsInjective", "IsSurjective",
"IsBijection", "IsHomomorphism", "IsMonomorphism", "IsEpimorphism",
"IsIsomorphism", "IsEndomorphism", "IsAutomorphism", "=", "<", "*",
"/", "mod", "Comm", "^", "ImageElm", "ImagesElm", "ImagesSet",
"ImagesSource","ImagesRepresentative", "PreImageElm", "PreImagesElm",
"PreImagesSet", "PreImagesRange", "PreImagesRepresentative",
"CompositionMapping", "PowerMapping", "InverseMapping",
"IsGroupHomomorphism", "CoKernel", "KernelGroupHomomorphism",
"MakeMapping", "Print", "IsRegular"]

73.89 RegularDerivations

RegularDerivations(X [,”back”or ”cat1”])

By default, this function uses a backtrack search to find all the regular derivations of X .
The result is stored in a derivations record. The alternative strategy, for which ”cat1”option
should be specified is to calculate the regular sections of the associated cat1-group first, and
convert these to derivations.

gap> regXSC := RegularDerivations(XSC);
RegularDerivations record for crossed module [c3->s3],
: 6 regular derivations, others not found.
gap> PrintList(regXSC.genimageList);

1398 CHAPTER 73. XMOD

[(), ()]
[(), (1, 2, 3)(4, 6, 5)]
[(), (1, 3, 2)(4, 5, 6)]
[(1, 3, 2)(4, 5, 6), ()]
[(1, 3, 2)(4, 5, 6), (1, 2, 3)(4, 6, 5)]
[(1, 3, 2)(4, 5, 6), (1, 3, 2)(4, 5, 6)]
gap> RecFields(regXSC);
["areDerivations", "isReg", "isAll", "genimageList", "operations",
"xmod", "generators", "regular"]

73.90 AllDerivations

AllDerivations(X [,”back”or ”cat1”])

This function calculates all the derivations of X and overwrites any existing subfields of
X.derivations.

gap> allXSC := AllDerivations(XSC);
AllDerivations record for crossed module [c3->s3],
: 9 derivations found but unsorted.

73.91 DerivationsSorted

DerivationsSorted(D)

This function tests the derivations in the derivation record D to see which are regular; sorts
the list D.genimageList, placing the regular images first; and stores the number of regular
derivations in D.regular. The function returns true on successful completion.

gap> DerivationsSorted(allXSC);
true
gap> PrintList(allXSC.genimageList);
[(), ()]
[(), (1, 2, 3)(4, 6, 5)]
[(), (1, 3, 2)(4, 5, 6)]
[(1, 3, 2)(4, 5, 6), ()]
[(1, 3, 2)(4, 5, 6), (1, 2, 3)(4, 6, 5)]
[(1, 3, 2)(4, 5, 6), (1, 3, 2)(4, 5, 6)]
[(1, 2, 3)(4, 6, 5), ()]
[(1, 2, 3)(4, 6, 5), (1, 2, 3)(4, 6, 5)]
[(1, 2, 3)(4, 6, 5), (1, 3, 2)(4, 5, 6)]

73.92 DerivationTable

DerivationTable(D)

The function DerivationImages in 73.81 is applied to each derivation in the current deriva-
tions record and a list of positions of images in S is returned.

gap> PrintList(DerivationTable(allXSC));
[1, 1, 1, 1, 1, 1]
[1, 1, 1, 2, 2, 2]

73.93. AREDERIVATIONS 1399

[1, 1, 1, 3, 3, 3]
[1, 3, 2, 1, 3, 2]
[1, 3, 2, 2, 1, 3]
[1, 3, 2, 3, 2, 1]
[1, 2, 3, 1, 2, 3]
[1, 2, 3, 2, 3, 1]
[1, 2, 3, 3, 1, 2]

73.93 AreDerivations

AreDerivations(D)

This function checks that the record D has the correct fields for a derivations record (regular
or all).

gap> AreDerivations(regXSC);
true

73.94 RegularSections

RegularSections(C [,”endo”or ”xmod”])

By default, this function computes the set of idempotent automorphisms from R→ R and
takes these as possible choices for hξ. A backtrack procedure then calculates possible images
for such a section. The result is stored in a sections record C.sections with fields similar to
those of a serivations record. The alternative strategy, for which ”xmod”option should be
specified is to calculate the regular derivations of the associated crossed module first, and
convert the resulting derivations to sections.

gap> Unbind(XSC.derivations);
gap> regSC := RegularSections(SC);
RegularSections record for cat1-group [c3^2|Xc2 ==> s3],
: 6 regular sections, others not found.

73.95 AllSections

AllSections(C [,”endo”or ”xmod”])

By default, this function computes the set of idempotent endomorphisms from R→ R (see
sections 73.134, 73.136) and takes these as possible choices for the composite homomorphism
hξ. A backtrack procedure then calculates possible images for such a section. This function
calculates all the sections of C and overwrites any existing subfields of C.sections.

gap> allSC := AllSections(SC);
AllSections record for cat1-group [c3^2|Xc2 ==> s3],
: 6 regular sections, 3 irregular ones found.
gap> RecFields(allSC);
["areSections", "isReg", "isAll", "regular", "genimageList",
"generators", "cat1", "operations"]

gap> PrintList(allSC.genimageList);
[(4, 5, 6), (2, 3)(5, 6)]
[(4, 5, 6), (1, 3)(4, 5)]

1400 CHAPTER 73. XMOD

[(4, 5, 6), (1, 2)(4, 6)]
[(1, 3, 2)(4, 6, 5), (2, 3)(5, 6)]
[(1, 3, 2)(4, 6, 5), (1, 3)(4, 5)]
[(1, 3, 2)(4, 6, 5), (1, 2)(4, 6)]
[(1, 2, 3), (2, 3)(5, 6)]
[(1, 2, 3), (1, 2)(4, 6)]
[(1, 2, 3), (1, 3)(4, 5)]
gap> allXSC := AllDerivations(XSC, "cat1");
AllDerivations record for crossed module [c3->s3],
: 6 regular derivations, 3 irregular ones found.

73.96 AreSections

AreSections(S)

This function checks that the record S has the correct fields for a sections record (regular
or all).

gap> AreSections(allSC);
true

73.97 SectionDerivation

SectionDerivation(D, i)

This function converts a derivation of X to a section of the associated cat1-group C. This
function is inverse to DerivationSection. In the following examples we note that allXSC
has been obtained using allSC, so the derivations and sections correspond in the same order.

gap> chi8 := XModDerivationByImages(XSC, allXSC.genimageList[8]);
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(1,2,3)(4,6,5), (1,2,3)(4,6,5)])
gap> xi8 := SectionDerivation(chi8);
GroupHomomorphismByImages(s3, c3^2|Xc2,

[(4,5,6), (2,3)(5,6)], [(1,2,3), (1,2)(4,6)])

73.98 DerivationSection

DerivationSection(C, xi)

This function converts a section of C to a derivation of the associated crossed module X.
This function is inverse to SectionDerivation.

gap> xi4 := Cat1SectionByImages(SC, allSC.genimageList[4]);
Cat1SectionByImages(s3, c3^2|Xc2, [(4,5,6), (2,3)(5,6)],

[(1,3,2)(4,6,5), (2,3)(5,6)])
gap> chi4 := DerivationSection(xi4);
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(1,3,2)(4,5,6), ()])

73.99. COMPOSITEDERIVATION 1401

73.99 CompositeDerivation

CompositeDerivation(chi, chj)

This function applies the Whitehead product to two derivations and returns the composite.
In the example, derivations chi4, chi8 correspond to sections xi4 and xi8.

gap> chi48 := CompositeDerivation(chi4, chi8);
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(1,2,3)(4,6,5), (1,3,2)(4,5,6)])

73.100 CompositeSection

CompositeSection(xi, xj)

This function applies the Whitehead composition to two sections and returns the composite.

gap> xi48 := CompositeSection(xi4, xi8);
Cat1SectionByImages(s3, c3^2|Xc2, [(4,5,6), (2,3)(5,6)],

[(1,2,3), (1,3)(4,5)])
gap> SectionDerivation(chi48) = xi48;
true

73.101 WhiteheadGroupTable

WhiteheadGroupTable(X)

This function applies CompositeDerivation to all pairs of regular derivations, producing
the Whitehead group multiplication table. A field .groupTable is added to D.

gap> WGT := WhiteheadGroupTable(XSC);; PrintList(WGT);
returning existing ALL derivations
[1, 2, 3, 4, 5, 6]
[2, 3, 1, 5, 6, 4]
[3, 1, 2, 6, 4, 5]
[4, 6, 5, 1, 3, 2]
[5, 4, 6, 2, 1, 3]
[6, 5, 4, 3, 2, 1]

73.102 WhiteheadMonoidTable

WhiteheadMonoidTable(X)

The derivations of X form a monoid with the first derivation as identity. This function
applies CompositeDerivation to all pairs of derivations and produces the multiplication
table as a list of lists. A field .monoidTable is added to D. In our example there are 9
derivations and the three irregular ones, numbers 7,8,9, are all left zeroes.

gap> WMT := WhiteheadMonoidTable(XSC);; PrintList(WMT);
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[2, 3, 1, 5, 6, 4, 9, 7, 8]
[3, 1, 2, 6, 4, 5, 8, 9, 7]
[4, 6, 5, 1, 3, 2, 7, 9, 8]

1402 CHAPTER 73. XMOD

[5, 4, 6, 2, 1, 3, 9, 8, 7]
[6, 5, 4, 3, 2, 1, 8, 7, 9]
[7, 7, 7, 7, 7, 7, 7, 7, 7]
[8, 8, 8, 8, 8, 8, 8, 8, 8]
[9, 9, 9, 9, 9, 9, 9, 9, 9]

73.103 InverseDerivations

InverseDerivations(X, i)

When T[i] is a regular derivation, this function returns the position j such that T[j] is
the inverse of T[i] in the Whitehead group. When T[i] is not regular, a list of values j
is returned such that the inverse semigroup condition xyx = x, yxy = y is satisfied, where
x = T [i], y = T [j]. Notice that derivation 8 has order 3 and derivation 15 as inverse.

gap> inv4 := InverseDerivations(chi4);
[4]
gap> inv8 := InverseDerivations(chi8);
[7, 8, 9]

73.104 ListInverseDerivations

ListInverseDerivations(X)

This function applies InverseDerivations to all the derivations. A field .inverses is
added to D.

gap> inv := ListInverseDerivations(XSC);
[[1], [3], [2], [4], [5], [6],
[7, 8, 9], [7, 8, 9], [7, 8, 9]]

73.105 SourceEndomorphismDerivation

SourceEndomorphismDerivation(chi)

Each derivation χ determines an endomorphism σ of S such that σs = s(χ∂s). This con-
struction defines a homomorphism from the Whitehead group to Aut(S) which forms the
action homomorphism of the Whitehead crossed module described in section 73.116.

gap> sigma8 := SourceEndomorphismDerivation(chi8);
GroupHomomorphismByImages(c3, c3, [(1,2,3)(4,6,5)], [()])
gap> sigma4 := SourceEndomorphismDerivation(chi4);
GroupHomomorphismByImages(c3, c3, [(1,2,3)(4,6,5)],

[(1,3,2)(4,5,6)])

73.106 TableSourceEndomorphismDerivations

TableSourceEndomorphismDerivations(X)

Applying SourceEndomorphismDerivation to every derivation produces a list of endomor-
phisms of S = X.source. This function returns a list of .genimages for these endomor-
phisms. Note that, in this example, S = c3 and the irregular derivations produce zero
maps.

73.107. RANGEENDOMORPHISMDERIVATION 1403

gap> TSE := TableSourceEndomorphismDerivations(XSC);;
gap> PrintList(TSE);
[(1, 2, 3)(4, 6, 5)]
[(1, 2, 3)(4, 6, 5)]
[(1, 2, 3)(4, 6, 5)]
[(1, 3, 2)(4, 5, 6)]
[(1, 3, 2)(4, 5, 6)]
[(1, 3, 2)(4, 5, 6)]
[()]
[()]
[()]

73.107 RangeEndomorphismDerivation

RangeEndomorphismDerivation(chi)

Each derivation χ determines an endomorphism ρ of R such that ρr = r(∂χr). This con-
struction defines a homomorphism from the Whitehead group to Aut(R).

gap> rho8 := RangeEndomorphismDerivation(chi8);
GroupHomomorphismByImages(s3, s3, [(4,5,6), (2,3)(5,6)],
[(), (2,3)(4,6)])

gap> rho4 := RangeEndomorphismDerivation(chi4);
GroupHomomorphismByImages(s3, s3, [(4,5,6), (2,3)(5,6)],
[(4,6,5), (2,3)(5,6)])

73.108 TableRangeEndomorphismDerivations

TableRangeEndomorphismDerivations(X)

Applying RangeEndomorphismDerivation to every derivation produces a list of endomor-
phisms of R = X.range. This function returns a list of .genimages for these endomor-
phisms. Note that, in this example, the 3 irregular derivations map onto the 3 cyclic
subgroups of order 2.

gap> TRE := TableRangeEndomorphismDerivations(XSC);;
gap> PrintList(TRE);
[(4,5,6), (2,3)(5,6)]
[(4,5,6), (2,3)(4,5)]
[(4,5,6), (2,3)(4 6)]
[(4,6,5), (2,3)(5,6)]
[(4,6,5), (2,3)(4,5)]
[(4,6,5), (2,3)(4,6)]
[(), (2,3)(5,6)]
[(), (2,3)(4,6)]
[(), (2,3)(4,5)]

73.109 XModEndomorphismDerivation

XModEndomorphismDerivation(chi)

1404 CHAPTER 73. XMOD

The endomorphisms sigma4, rho4 together determine a pair which may be used to construct
an endomorphism of X . When the derivation is regular, the resulting morphism is an
automorphism, and this construction determines a homomorphism from the Whitehead
group to the automorphism group of X.

gap> phi4 := XModEndomorphismDerivation(chi4);
Morphism of crossed modules <[c3->s3]->[c3->s3]>

73.110 SourceEndomorphismSection

SourceEndomorphismSection(xi)

Each section ξ determines an endomorphism γ of G such that

γg = (ehξtg)(ξtg−1)g(ehg−1)(ξhg).

gap> gamma4 := SourceEndomorphismDerivation(xi4);
GroupHomomorphismByImages(c3^2|Xc2, c3^2|Xc2,
[(1,2,3), (4,5,6), (2,3)(5,6)], [(1,3,2), (4,6,5), (2,3)(5,6)])

73.111 RangeEndomorphismSection

RangeEndomorphismDerivation(xi)

Each derivation ξ determines an endomorphism ρ of R such that ρr = hξr.

gap> rho4 := RangeEndomorphismDerivation(XSC, 4);
GroupHomomorphismByImages(s3, s3, [(4,5,6), (2,3)(5,6)],
[(4,6,5), (2,3)(5,6)])

73.112 Cat1EndomorphismSection

Cat1EndomorphismSection(xi)

The endomorphisms gamma4, rho4 together determine a pair which may be used to con-
struct an endomorphism of C. When the derivation is regular, the resulting morphism is
an automorphism, and this construction determines a homomorphism from the Whitehead
group to the automorphism group of C.

gap> psi4 := Cat1EndomorphismSection(xi4);
Morphism of cat1-groups <[c3^2|Xc2 ==> s3]-->[c3^2|Xc2 ==> s3]>

73.113. ABOUT ACTORS 1405

73.113 About actors

The actor of X is a crossed module (∆ : W(X) → Aut(X)) which was shown by Lue and
Norrie, in [Nor87] and [Nor90] to give the automorphism object of a crossed module X . The
source of the actor is a permutation representation W of the Whitehead group of regular
derivations and the range is a permutation representation A of the automorphism group
Aut(X) of X .

An automorphism (σ, ρ) of X acts on the Whitehead monoid by χ(σ,ρ) = σ−1χρ, and this
action determines the action for the actor.

In fact the four groups R, S,W,A, the homomorphisms between them and the various ac-
tions, form five crossed modules:

X : S → R the initial crossed module,
W(X) : S →W the Whitehead crossed module of X ,
L(X) : S → A the Lue crossed module of X ,
N (X) : R→ A the Norrie crossed module of X , and

Act(X) : W → A the actor crossed module of X .

These 5 crossed modules, together with the evaluation W × R → S, (χ, r) 7→ χr, form a
crossed square:

S ------ WX ------> W
: \ :
: \ :
X LX ActX
: \ :
: \ :
V \ V
R ------ NX ------> A

in which pairs of boundaries or identity mappings provide six morphisms of crossed modules.
In particular, the boundaries of WX and NX form the inner morphism of X, mapping source
elements to inner derivations and range elements to inner automorphisms. The image of X
under this morphism is the inner actor of X, while the kernel is the centre of X.

In the example which follows, using the usual (X1 : c5 -> Aut(c5)), Act(X1) is isomor-
phic to X1 and to LX1 while the Whitehead and Norrie boundaries are identity homomor-
phisms.

gap> X1;
Crossed module [c5->PermAut(c5)]
gap> WGX1 := WhiteheadPermGroup(X1);
WG([c5->PermAut(c5)])
gap> WGX1.generators;
[(1,2,3,4,5)]
gap> AX1 := AutomorphismPermGroup(X1);
PermAut([c5->PermAut(c5)])
gap> AX1.generators;
[(1,2,4,3)]
gap> XModMorphismAutoPerm(X1, AX1.generators[1]);
Morphism of crossed modules <[c5->PermAut(c5)] >-> [c5->PermAut(c5)]>

1406 CHAPTER 73. XMOD

gap> WX1 := Whitehead(X1);
Crossed module Whitehead[c5->PermAut(c5)]
gap> NX1 := Norrie(X1);
Crossed module Norrie[c5->PermAut(c5)]
gap> LX1 := Lue(X1);
Crossed module Lue[c5->PermAut(c5)]
gap> ActX1 := Actor(X1);;
gap> XModPrint(ActX1);
Crossed module Actor[c5->PermAut(c5)] :-
: Source group WG([c5->PermAut(c5)]) has generators:
[(1,2,3,4,5)]

: Range group has parent (PermAut(c5)xPermAut(PermAut(c5)))
and has generators: [(1,2,4,3)]

: Boundary homomorphism maps source generators to:
[()]

: Action homomorphism maps range generators to automorphisms:
(1,2,4,3) --> { source gens --> [(1,3,5,2,4)] }
This automorphism generates the group of automorphisms.

gap> InActX1 := InnerActor(X1);
Crossed module Actor[c5->PermAut(c5)]
gap> InActX1 = ActX1;
true
gap> InnerMorphism(X1);
Morphism of crossed modules

<[c5->PermAut(c5)] >-> Actor[c5->PermAut(c5)]>
gap> Centre(X1);
Crossed module Centre[c5->PermAut(c5)]

All of these constructions are stored in a sub-record X1.actorSquare.

73.114 ActorSquareRecord

ActorSquareRecord(X)

ActorSquareRecord(C)

This function creates a new field .actorSquare for the crossed module or cat1-group, ini-
tially containing .isActorSquare := true and .xmod or .cat1 as appropriate. Compo-
nents for the actor of X or C are stored here when constructed.

gap> ActorSquareRecord(X1);
rec(
isActorSquare := true,
xmod := Crossed module [c5->PermAut(c5)],
WhiteheadPermGroup := WG([c5->PermAut(c5)]),
automorphismPermGroup := PermAut([c5->PermAut(c5)]),
Whitehead := Crossed module Whitehead[c5->PermAut(c5)],
Norrie := Crossed module Norrie[c5->PermAut(c5)],
Lue := Crossed module Lue[c5->PermAut(c5)],

73.115. WHITEHEADPERMGROUP 1407

actor := Crossed module Actor[c5->PermAut(c5)],
innerMorphism := Morphism of crossed modules

<[c5->PermAut(c5)] >-> Actor[c5->PermAut(c5)]>,
innerActor := Crossed module Actor[c5->PermAut(c5)])

73.115 WhiteheadPermGroup

WhiteheadPermGroup(X)

This function first calls WhiteheadGroupTable, see 73.101. These lists are then converted to
permutations, producing a permutation group which is effectively a regular representation
of the group. A field .WhiteheadPermGroup is added to X.actorSquare and a field .genpos
is added to D =
X.derivations. The latter is a list of the positions in D.genimageList corresponding to
the chosen generating elements. The group is given the name WG(<name of X>).

For an example, we return to the crossed module XSC = [c3->s3] obtained from the cat1-
group SC in section 73.60 which has Whitehead group and automorphism group isomorphic
to s3.

gap> WG := WhiteheadPermGroup(XSC);
WG([c3->s3])
gap> XSC.derivations.genpos;
[2, 4]
gap> Elements(WG);
[(), (1,2,3)(4,6,5), (1,3,2)(4,5,6), (1,4)(2,5)(3,6),
(1,5)(2,6)(3,4), (1,6)(2,4)(3,5)]

73.116 Whitehead crossed module

Whitehead(X)

This crossed module has the source of X as source, and the Whitehead group WX as range.
The boundary maps each element to the inner derivation which it defines. The action uses
SourceEndomorphismDerivation.

gap> WXSC := Whitehead(XSC);
Crossed module Whitehead[c3->s3]
gap> XModPrint(WXSC);
Crossed module Whitehead[c3->s3] :-
: Source group has parent (c3^2|Xc2) and has generators:
[(1,2,3)(4,6,5)]

: Range group = WG([c3->s3]) has generators:
[(1,2,3)(4,6,5), (1,4)(2,5)(3,6)]

: Boundary homomorphism maps source generators to:
[(1,3,2)(4,5,6)]

: Action homomorphism maps range generators to automorphisms:
(1,2,3)(4,6,5) --> { source gens --> [(1,2,3)(4,6,5)] }
(1,4)(2,5)(3,6) --> { source gens --> [(1,3,2)(4,5,6)] }
These 2 automorphisms generate the group of automorphisms.

1408 CHAPTER 73. XMOD

73.117 AutomorphismPermGroup for crossed modules

XModOps.AutomorphismPermGroup(X)

This function constructs a permutation group PermAut(X) isomorphic to the group of au-
tomorphisms of the crossed module X. First the automorphism groups of the source and
range of X are obtained and AutomorphismPair used to obtain permutation representa-
tions of these. The direct product of these permutation groups is constructed, and the
required automorphism group is a subgroup of this direct product. The result is stored as
X.automorphismPermGroup which has fields defining the various embeddings and projec-
tions.

gap> autXSC := AutomorphismPermGroup(XSC);
PermAut([c3->s3])
gap> autXSC.projsrc;
GroupHomomorphismByImages(PermAut([c3->s3]), PermAut(c3),
[(5,6,7), (1,2)(3,4)(6,7)], [(), (1,2)])
gap> autXSC.projrng;
GroupHomomorphismByImages(PermAut([c3->s3]), PermAut(s3),
[(5,6,7), (1,2)(3,4)(6,7)], [(3,4,5), (1,2)(4,5)])
gap> autXSC.embedSourceAuto;
GroupHomomorphismByImages(PermAut(c3), PermAut(c3)xPermAut(s3),

[(1,2)], [(1,2)])
gap> autXSC.embedRangeAuto;
GroupHomomorphismByImages(PermAut(s3), PermAut(c3)xPermAut(s3),
[(3,5,4), (1,2)(4,5)], [(5,7,6), (3,4)(6,7)])
gap> autXSC.autogens;
[[GroupHomomorphismByImages(c3, c3, [(1,2,3)(4,6,5)],

[(1,2,3)(4,6,5)]), GroupHomomorphismByImages(s3, s3,
[(4,5,6), (2,3)(5,6)], [(4,5,6), (2,3)(4,5)])],

[GroupHomomorphismByImages(c3, c3, [(1,2,3)(4,6,5)],
[(1,3,2)(4,5,6)]), GroupHomomorphismByImages(s3, s3,
[(4,5,6), (2,3)(5,6)], [(4,6,5), (2,3)(5,6)])]]

73.118 XModMorphismAutoPerm

XModMorphismAutoPerm(X, perm)

Given the isomorphism between the automorphism group of X and its permutation repre-
sentation PermAut(X), an element of the latter determines an automorphism of X.

gap> XModMorphismAutoPerm(XSC, (1,2)(3,4)(6,7));
Morphism of crossed modules <[c3->s3] >-> [c3->s3]>

73.119 ImageAutomorphismDerivation

ImageAutomorphismDerivation(mor, chi)

An automorphism (σ, ρ) of X acts on the left on the Whitehead monoid by (σ,ρ)χ = σχρ−1.
This is converted to a right action on the WhiteheadPermGroup. In the example we see that
phi4 maps chi8 to chi9.

73.120. NORRIE CROSSED MODULE 1409

gap> chi8im := ImageAutomorphismDerivation(phi4, chi8);
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(1,2,3)(4,6,5), (1,3,2)(4,5,6)])
gap> Position(allXSC.genimageList, chi8im.genimages);
9

73.120 Norrie crossed module

Norrie(X)

This crossed module has the range of X as source and the automorphism permutation group
of X as range.

gap> NXSC := Norrie(XSC);
Crossed module Norrie[c3->s3]
gap> XModPrint(NXSC);

Crossed module Norrie[c3->s3] :-
: Source group has parent (c3^2|Xc2) and has generators:
[(4,5,6), (2,3)(5,6)]

: Range group has parent (PermAut(c3)xPermAut(s3)) and has
generators: [(5,6,7), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:
[(5,7,6), (1,2)(3,4)(6,7)]

: Action homomorphism maps range generators to automorphisms:
(5,6,7) --> { source gens --> [(4,5,6), (2,3)(4,5)] }
(1,2)(3,4)(6,7) --> { source gens --> [(4,6,5), (2,3)(5,6)] }
These 2 automorphisms generate the group of automorphisms.

73.121 Lue crossed module

Lue(X)

This crossed module has the source of X as source, and the automorphism permutation
group of X as range.

gap> LXSC := Lue(XSC);
Crossed module Lue[c3->s3]
gap> XModPrint(LXSC);

Crossed module Lue[c3->s3] :-
: Source group has parent (c3^2|Xc2) and has generators:
[(1,2,3)(4,6,5)]

: Range group has parent (PermAut(c3)xPermAut(s3)) and has
generators: [(5,6,7), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:
[(5,6,7)]

: Action homomorphism maps range generators to automorphisms:
(5,6,7) --> { source gens --> [(1,2,3)(4,6,5)] }
(1,2)(3,4)(6,7) --> { source gens --> [(1,3,2)(4,5,6)] }
These 2 automorphisms generate the group of automorphisms.

1410 CHAPTER 73. XMOD

73.122 Actor crossed module

Actor(X)

The actor of a crossed module X is a crossed module Act(X) which has the Whitehead group
(of regular derivations) as source group and the automorphism group PermAut(X) of X as
range group. The boundary of Act(X) maps each derivation to the automorphism provided
by XModEndomorphismDerivation. The action of an automorphism on a derivation is that
provided by ImageAutomorphismDerivation.

gap> ActXSC := Actor(XSC);
Crossed module Actor[c3->s3]
gap> XModPrint(ActXSC);

Crossed module Actor[c3->s3] :-
: Source group WG([c3->s3]) has generators:
[(1,2,3)(4,6,5), (1,4)(2,5)(3,6)]

: Range group has parent (PermAut(c3)xPermAut(s3)) and has
generators: [(5,6,7), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:
[(5,7,6), (1,2)(3,4)(6,7)]

: Action homomorphism maps range generators to automorphisms:
(5,6,7) --> { source gens --> [(1,2,3)(4,6,5), (1,6)(2,4)(3,5)] }
(1,2)(3,4)(6,7) -->

{ source gens --> [(1,3,2)(4,5,6), (1,4)(2,5)(3,6)] }
These 2 automorphisms generate the group of automorphisms.

73.123 InnerMorphism for crossed modules

InnerMorphism(X)

The boundary maps of WX and NX form a morphism from X to its actor.

gap> innXSC := InnerMorphism(XSC);
Morphism of crossed modules <[c3->s3] >-> Actor[c3->s3]>
gap> XModMorphismPrint(innXSC);
Morphism of crossed modules :-
: Source = Crossed module [c3->s3] with generating sets:
[(1,2,3)(4,6,5)]
[(4,5,6), (2,3)(5,6)]

: Range = Crossed module Actor[c3->s3]
with generating sets:

[(1,2,3)(4,6,5), (1,4)(2,5)(3,6)]
[(5,6,7), (1,2)(3,4)(6,7)]

: Source Homomorphism maps source generators to:
[(1,3,2)(4,5,6)]

: Range Homomorphism maps range generators to:
[(5,7,6), (1,2)(3,4)(6,7)]

: isXModMorphism? true

73.124. CENTRE FOR CROSSED MODULES 1411

73.124 Centre for crossed modules

XModOps.Centre(X)

The kernel of the inner morphism X -> ActX is called the centre of X, generalising the centre
of a group G, which is the kernel of G→ Aut(G), g 7→ (h 7→ hg). In this example the centre
is trivial.

gap> ZXSC := Centre(XSC);
Crossed module Centre[c3->s3]

73.125 InnerActor for crossed modules

InnerActor(X)

The inner actor of X is the image of the inner morphism.

gap> InnActXSC := InnerActor(XSC);
Crossed module InnerActor[c3->s3]
gap> XModPrint(InnActXSC);

Crossed module InnerActor[c3->s3] :-
: Source group has parent (WG([c3->s3])) and has generators:
[(1,3,2)(4,5,6)]

: Range group has parent (PermAut(c3)xPermAut(s3)) and has
generators: [(5,7,6), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:
[(5,6,7)]

: Action homomorphism maps range generators to automorphisms:
(5,7,6) --> { source gens --> [(1,3,2)(4,5,6)] }
(1,2)(3,4)(6,7) --> { source gens --> [(1,2,3)(4,6,5)] }
These 2 automorphisms generate the group of automorphisms.

73.126 Actor for cat1-groups

Actor(C)

The actor of a cat1-group C is the cat1-group associated to the actor crossed module of the
crossed module X associated to C. Its range is the automorphism group A and its source is
A×W where W is the Whitehead group.

gap> ActSC := Actor(SC);;
gap> Cat1Print(ActSC);
cat1-group Actor[c3^2|Xc2 ==> s3] :-
: source group has generators:

[(4,6,5), (2,3)(5,6), (1,2,3)(4,6,5), (1,4)(2,5)(3,6)]
: range group has generators:

[(5,6,7), (1,2)(3,4)(6,7)]
: tail homomorphism maps source generators to:

[(5,6,7), (1,2)(3,4)(6,7), (), ()]
: head homomorphism maps source generators to:

[(5,6,7), (1,2)(3,4)(6,7), (5,7,6), (1,2)(3,4)(6,7)]

1412 CHAPTER 73. XMOD

: range embedding maps range generators to:
[(4,6,5), (2,3)(5,6)]

: kernel has generators:
[(1,2,3)(4,6,5), (1,4)(2,5)(3,6)]

: boundary homomorphism maps generators of kernel to:
[(5,7,6), (1,2)(3,4)(6,7)]

: kernel embedding maps generators of kernel to:
[(1,2,3)(4,6,5), (1,4)(2,5)(3,6)]

: associated crossed module is Crossed module Actor[c3->s3]

73.127. ABOUT INDUCED CONSTRUCTIONS 1413

73.127 About induced constructions

A morphism of crossed modules (σ, ρ) : X1 → X2 factors uniquely through an induced crossed
module ρ∗X1 = (δ : ρ∗S1 → R2). Similarly, a morphism of cat1-groups factors through an
induced cat1-group. Calculation of induced crossed modules of X also provides an algebraic
means of determining the homotopy 2-type of homotopy pushouts of the classifying space
of X . For more background from algebraic topology see references in [BH78], [BW95],
[BW96]. Induced crossed modules and induced cat1-groups also provide the building blocks
for constructing pushouts in the categories XMod and Cat1.

Data for the cases of algebraic interest is provided by a conjugation crossed module X = (∂ :
S → R) and a homomorphism ι from R to a third group Q. The output from the calculation
is a crossed module ι∗X = (δ : ι∗S → Q) together with a morphism of crossed modules
X → ι∗X . When ι is a surjection with kernel K then ι∗S = [S,K] (see [BH78]). When ι
is an inclusion the induced crossed module may be calculated using a copower construction
[BW95] or, in the case when R is normal in Q, as a coproduct of crossed modules ([BW96],
not yet implemented). When ι is neither a surjection nor an inclusion, ι is written as the
composite of the surjection onto the image and the inclusion of the image in Q, and then
the composite induced crossed module is constructed.

Other functions required by the induced crossed module construction include a function to
produce a common transversal for the left and right cosets of a subgroup (see 73.150 and
73.149). Also, modifications to some of the Tietze transformation routines in fptietze.g
are required. These have yet to be released as part of the GAP library and so are made
available in this package in file felsch.g, but are not documented here.

As a simple example we take for X the conjugation crossed module (∂ : c4→ d8) and for ι
the inclusion of d8 in d16. The induced crossed module has c4× c4 as source.

gap> d16 := DihedralGroup(16); d16.name := "d16";;
Group((1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6))
gap> d8 := Subgroup(d16, [(1,3,5,7)(2,4,6,8), (1,3)(4,8)(5,7)]);;
gap> c4 := Subgroup(d8, [(1,3,5,7)(2,4,6,8)]);;
gap> d8.name := "d8";; c4.name := "c4";;
gap> DX := ConjugationXMod(d8, c4);
Crossed module [c4->d8]
gap> iota := InclusionMorphism(d8, d16);;
gap> IDXincl := InducedXMod(DX, iota);
Action of RQ on generators of I :-
(1,2,3,4,5,6,7,8) : (1,4)(2,3)
(2,8)(3,7)(4,6) : (1,2)(3,4)

#I Protecting the first 1 generators.
#I there are 2 generators and 3 relators of total length 12
partitioning the generators: [[2], [1]]
Simplified presentation for I :-
#I generators: [fI.1, fI.3]
#I relators:
#I 1. 4 [1, 1, 1, 1]
#I 2. 4 [2, 2, 2, 2]
#I 3. 4 [2, -1, -2, 1]

1414 CHAPTER 73. XMOD

I has Size: 16

Group is abelian
factor 1 is abelian with invariants: [4]
factor 2 is abelian with invariants: [4]
Image of I has index 4 in RQ and is generated by :
[(1, 3, 5, 7)(2, 4, 6, 8), (1, 7, 5, 3)(2, 8, 6, 4)]

gap> XModPrint(IDXincl);
Crossed module [i*(c4)->d16] :-
: Source group i*(c4) has generators:
[(1, 2, 4, 7)(3, 5, 8,11)(6, 9,12,14)(10,13,15,16),
(1, 3, 6,10)(2, 5, 9,13)(4, 8,12,15)(7,11,14,16)]

: Range group = d16 has generators:
[(1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6)]

: Boundary homomorphism maps source generators to:
[(1, 3, 5, 7)(2, 4, 6, 8), (1, 7, 5, 3)(2, 8, 6, 4)]

: Action homomorphism maps range generators to automorphisms:
(1,2,3,4,5,6,7,8) --> { source gens -->

[(1,10, 6, 3)(2,13, 9, 5)(4,15,12, 8)(7,16,14,11),
(1, 7, 4, 2)(3,11, 8, 5)(6,14,12, 9)(10,16,15,13)] }
(2,8)(3,7)(4,6) --> { source gens -->

[(1, 7, 4, 2)(3,11, 8, 5)(6,14,12, 9)(10,16,15,13),
(1,10, 6, 3)(2,13, 9, 5)(4,15,12, 8)(7,16,14,11)] }
These 2 automorphisms generate the group of automorphisms.

: Kernel of the crossed module has generators:
[(1, 5,12,16)(2, 8,14,10)(3, 9,15, 7)(4,11, 6,13)]

: Induced XMod from Crossed module [c4->d8] with source morphism:
[(1,3,5,7)(2,4,6,8)]
--> [(1, 2, 4, 7)(3, 5, 8,11)(6, 9,12,14)(10,13,15,16)]

In some of the sections which follow the output is very lengthy and so has been pruned.

73.128 InducedXMod

InducedXMod(X, iota)

InducedXMod(Q, P, M)

This function requires as data a conjugation crossed module X = (∂ : M → P) and a
homomorphism ι : P → Q. This data may be specified using either of the two forms shown,
where the latter form required Q ≥ P ≥M .

In the first example, ι is a surjection from d8 to k4.

gap> d8gen := d8.generators;
[(1,3,5,7)(2,4,6,8), (1,3)(4,8)(5,7)]
gap> k4gen := k4.generators;
[(1,2)(3,4), (1,3)(2,4)]

73.128. INDUCEDXMOD 1415

gap> DX;
Crossed module [c4->d8]
gap> iota := GroupHomomorphismByImages(d8, k4, d8gen, k4gen);;
gap> IDXsurj := InducedXMod(DX, iota);
Crossed module [c4/ker->k4
gap> XModPrint(IDXsurj);
Crossed module [c4/ker->k4] :-
: Source group c4/ker has generators:
[(1,2,3,4)]

: Range group has parent (s4) and has generators:
[(1,2)(3,4), (1,3)(2,4)]

: Boundary homomorphism maps source generators to:
[(1, 2)(3, 4)]

: Action homomorphism maps range generators to automorphisms:
(1,2)(3,4) --> { source gens --> [(1,2,3,4)] }
(1,3)(2,4) --> { source gens --> [(1,4,3,2)] }
These 2 automorphisms generate the group of automorphisms.

: Induced XMod from Crossed module [c4->d8] with source morphism:
[(1,3,5,7)(2,4,6,8)]
--> [(1,2,3,4)]

In a second example we take (c3 -> s3) as the initial crossed module and s3 -> s4 as the
inclusion. The induced group turns out to be the special linear group sl(2,3).

gap> s3 := Subgroup(s4, [(2,3), (1,2,3)]);;
gap> c3 := Subgroup(s3, [(1,2,3)]);
gap> s3.name := "s3";; c3.name := "c3";;
gap> InducedXMod(s4, s3, c3);

Action of RQ on generators of I :-
(1,2,3,4) : (1,7,6,3)(2,8,5,4)
(1,2) : (1,2)(3,4)(5,8)(6,7)

#I Protecting the first 1 generators.
#I there are 2 generators and 3 relators of total length 12
Simplified presentation for I :-
#I generators: [fI.1, fI.5]
#I relators:
#I 1. 3 [2, 2, 2]
#I 2. 3 [1, 1, 1]
#I 3. 6 [2, -1, -2, 1, -2, -1]

I has Size: 24

Searching Solvable Groups Library:
GroupId =
rec(
catalogue := [24, 14],
names := ["SL(2,3)"],
size := 24)

1416 CHAPTER 73. XMOD

Image of I has index 2 in RQ and is generated by :
[(1,2,3), (1,2,4), (1,4,3), (2,3,4)]

Crossed module [i*(c3)->s4]

73.129 AllInducedXMods

AllInducedXMods(Q)

This function calculates InducedXMod(Q, P, M) where P runs over all conjugacy classes
of subgroups of Q and M runs over all normal subgroups of P.

gap> AllInducedXMods(d8);
...

Number of induced crossed modules calculated = 11

73.130 InducedCat1

InducedCat1(C, iota)

When C is the induced cat1-group associated to X the induced cat1-group may be obtained
by construction the induced crossed module and then using the Cat1XMod function. An
experimental, alternative procedure is to calculate the induced cat1-group ι∗G = G ∗R Q
directly. This has been implemented for the case when C = (e; t, h : G→ R) and ι : R→ Q
is an inclusion.

The output from the calculation is a cat1-group C∗ = (e∗; t∗, h∗ : ι∗G→ Q) together with a
morphism of crossed modules C → C∗.
In the example an induced cat1-group is constructed whose associated crossed module has
source c4× c4 and range d16, so the source of the cat1-group is d16× (c4× c4).

gap> CDX := Cat1XMod(DX);
cat1-group [Perm(d8 |X c4) ==> d8]
gap> inc := InclusionMorphism(d8, d16);;
gap> ICDX := InducedCat1(CDX, inc);

...
new perm group size 256
cat1-group <ICG([Perm(d8 |X c4) ==> d8])>
gap> XICDX := XModCat1(ICDX);
Crossed module [ker(<ICG([Perm(d8 |X c4) ==> d8])>)->d16]
gap> AbelianInvariants(XICDX.source);
[4, 4]

73.131. ABOUT UTILITIES 1417

73.131 About utilities

By a utility function we mean a GAP function which is:

• needed by other functions in this package,

• not (as far as we know) provided by the standard GAP library,

• more suitable for inclusion in the main library than in this package.

The first two utilities give particular group homomorphisms, InclusionMorphism(H,G) and
ZeroMorphism(G,H). We often prefer

gap> incs3 := InclusionMorphism(s3, s3);
IdentityMapping(s3)
gap> incs3.genimages;
[(1,2), (2,3)]

to IdentityMapping(s3) because the latter does not provide the fields .generators and
the .genimages which many of the functions in this package expect homomorphisms to
possess.

The second set of utilities involve endomorphisms and automorphisms of groups. For ex-
ample:

gap> end8 := EndomorphismClasses(d8);;
gap> RecFields(end8);
["isDomain", "isEndomorphismClasses", "areNonTrivial", "classes",
"intersectionFree", "group", "latticeLength", "latticeReps"]

gap> Length(end8.classes);
11
gap> end8.classes[3];
rec(
quotient := d8.Q3,
projection := OperationHomomorphism(d8, d8.Q3),
autoGroup := Group(IdentityMapping(d8.Q3)),
rangeNumber := 2,
isomorphism := GroupHomomorphismByImages(d8.Q3, d8.H2, [(1,2)],
[(1,5)(2,6)(3,7)(4,8)]),

conj := [()])
gap> innd8 := InnerAutomorphismGroup(d8);
Inn(d8)
gap> innd8.generators;
[InnerAutomorphism(d8, (1,3,5,7)(2,4,6,8)),
InnerAutomorphism(d8, (1,3)(4,8)(5,7))]

gap> IsAutomorphismGroup(innd8);
true

The third set of functions construct isomorphic pairs of groups, where a faithful permuta-
tion representation of a given type of group is constructed. Types covered include finitely
presented groups, groups of automorphisms and semidirect products. A typical pair record
includes the following fields:

1418 CHAPTER 73. XMOD

.type the given group G,

.perm the permutation representation P ,

.t2p the isomorphism G→ P ,

.p2t the inverse isomorphism P → G,

.isTypePair a boolean flag, normally true.

The inner automorphism group of the dihedral group d8 is isomorphic to k4:

gap> Apair := AutomorphismPair(innd8);
rec(
auto := Inn(d8),
perm := PermInn(d8),
a2p := OperationHomomorphism(Inn(d8), PermInn(d8)),
p2a := GroupHomomorphismByImages(PermInn(d8), Inn(d8),
[(1,3), (2,4)],
[InnerAutomorphism(d8, (1,3,5,7)(2,4,6,8)),
InnerAutomorphism(d8, (1,3)(4,8)(5,7))]),

isAutomorphismPair := true)
gap> IsAutomorphismPair(Apair);
true

The final set of functions deal with lists of subsets of [1..n] and construct systems of
distinct and common representatives using simple, non-recursive, combinatorial algorithms.
The latter function returns two lists: the set of representatives, and a permutation of the
subsets of the second list. It may also be used to provide a common transversal for sets of
left and right cosets of a subgroup H of a group G, although a greedy algorithm is usually
quicker.

gap> L := [[1,4], [1,2], [2,3], [1,3], [5]];;
gap> DistinctRepresentatives(L);
[4, 2, 3, 1, 5]
gap> M := [[2,5], [3,5], [4,5], [1,2,3], [1,2,3]];;
gap> CommonRepresentatives(L, M);
[[4, 1, 3, 1, 5], [3, 5, 2, 4, 1]]
gap> CommonTransversal(s4, c3);
[(), (3,4), (2,3), (1,3)(2,4), (1,2)(3,4), (2,4), (1,4), (1,4)(2,3)]

73.132 InclusionMorphism

InclusionMorphism(H, G)

This gives the inclusion map of a subgroup H of a group G. In the case that H = G the
IdentityMapping(G) is returned, with fields .generators and .genimages added.

gap> s4 := Group((1,2,3,4), (1,2));; s4.name:="s4";;
gap> a4 := Subgroup(s4, [(1,2,3), (2,3,4)]);; a4.name:="a4";;
gap> InclusionMorphism(a4, s4);
GroupHomomorphismByImages(a4, s4, [(1,2,3), (2,3,4)],
[(1,2,3), (2,3,4)])

73.133. ZEROMORPHISM 1419

73.133 ZeroMorphism

ZeroMorphism(G, H)

This gives the zero map from G to the identity subgroup of H.

gap> ZeroMorphism(s4, a4);
GroupHomomorphismByImages(s4, a4, [(1,2,3,4), (1,2)], [(), ()])

73.134 EndomorphismClasses

EndomorphismClasses(G, case)

The monoid of endomorphisms is required when calculating the monoid of derivations of
a crossed module and when determining all the cat1-structures on a group G (see sections
73.90 and 73.95).

An endomorphism ε of R with image H ′ is determined by

• a normal subgroup N of R and a permutation representation θ : R/N → Q of the
quotient, giving a projection θ ◦ ν : R → Q, where ν : R → R/N is the natural
homomorphism;

• an automorphism α of Q;

• a subgroup H ′ in a conjugacy class [H] of subgroups of R isomorphic to Q having
representative H, an isomorphism φ : Q ∼= H, and a conjugating element c ∈ R such
that Hc = H ′,

and takes values
εr = (φαθνr)c.

Endomorphisms are placed in the same class if they have the same choice of N and [H], so
the number of endomorphisms is

|End(R)|=
∑
classes |Aut(Q)| |[H]|.

The function returns records E = R.endomorphismClasses and subfield .classes as shown
below. Three cases are catered for as indicated in the example.

gap> Ea4 := EndomorphismClasses(a4 , 7);
Usage: EndomorphismClasses(G [, case]);
choose case = 1 to include automorphisms and zero,
default case = 2 to exclude automorphisms and zero,

case = 3 when N meet H is trivial,
false
gap> Ea4 := EndomorphismClasses(a4);
rec(
isDomain := true,
isEndomorphismClasses := true,
areNonTrivial := true,
intersectionFree := false,
classes := [rec(

1420 CHAPTER 73. XMOD

quotient := a4.Q2,
projection := OperationHomomorphism(a4, a4.Q2),
autoGroup := Group(GroupHomomorphismByImages(a4.Q2, a4.Q2,
[(1,3,2)], [(1,2,3)])),

rangeNumber := 3,
isomorphism := GroupHomomorphismByImages(a4.Q2, a4.H3,
[(1,3,2)], [(2,3,4)]),

conj := [(), (1,3,2), (1,2)(3,4), (1,4,2)])],
group := a4,
latticeLength := 5,
latticeReps := [a4.id, a4.H2, a4.H3, a4.H4, a4])

73.135 EndomorphismImages

EndomorphismImages(G)

This returns the lists of images of the generators under the endomorphisms, using the data in
G.endomorphismClasses. In this example two trivial normal subgroups have been excluded.
The remaining normal subgroup of a4 is k4, with quotient c3 and a4 has 8 elements of order
3 with which to generate a c3, and hence 8 endomorphisms in this class.

gap> EndomorphismImages(a4);
[[(2,3,4), (2,4,3)], [(2,4,3), (2,3,4)], [(1,2,4), (1,4,2)],
[(1,4,2), (1,2,4)], [(1,4,3), (1,3,4)], [(1,3,4), (1,4,3)],
[(1,3,2), (1,2,3)], [(1,2,3), (1,3,2)]]

73.136 IdempotentImages

IdempotentImages(G)

This return the images of idempotent endomorphisms. Various options are allowed.

gap> IdempotentImages(a4, 7);
Usage: IdempotentImages(G [, case]);
where case = 1 for ALL idempotent images,

case = 2 for all non-trivial images,
case = 3 for case 2 and one group per conj class,
case = 4 for case 3 and sorted into images.

false
gap> IdempotentImages(a4, 2);
[[(2,4,3), (2,3,4)], [(1,4,2), (1,2,4)], [(1,3,4), (1,4,3)],
[(1,2,3), (1,3,2)]]

gap> IdempotentImages(a4, 3);
[[(2,4,3), (2,3,4)]]

73.137 InnerAutomorphismGroup

InnerAutomorphismGroup(G)

73.138. ISAUTOMORPHISMGROUP 1421

This creates the inner automorphism group of G as the group generated by the inner auto-
morphisms by generators of G. If a field G.automorphismGroup exists, it is specified as the
parent of Inn(G).

gap> inna4 := InnerAutomorphismGroup(a4);
Inn(a4)
gap> inna4.generators;
[InnerAutomorphism(a4, (1,2,3)), InnerAutomorphism(a4, (2,3,4))]

73.138 IsAutomorphismGroup

IsAutomorphismGroup(A)

This tests to see whether A is a group of automorphisms.

gap> IsAutomorphismGroup(inna4);
true

73.139 AutomorphismPair

AutomorphismPair(A)

This returns a record pairA containing a permutation group isomorphic to the group A ob-
tained using the OperationHomomorphism function. The record contains A and pairA.auto,
P as pairA.perm. Isomorphisms in each direction are saved as pairA.p2a and pairA.a2p.

gap> ac3 := AutomorphismGroup(c3);
Group(GroupHomomorphismByImages(c3, c3, [(1,2,3)], [(1,3,2)]))
gap> pairc3 := AutomorphismPair(ac3);
rec(
auto := Aut(c3),
perm := PermAut(c3),
a2p := OperationHomomorphism(Aut(c3), PermAut(c3)),
p2a := GroupHomomorphismByImages(PermAut(c3), Aut(c3), [(1,2)],
[GroupHomomorphismByImages(c3, c3, [(1,2,3)], [(1,3,2)])]),

isAutomorphismPair := true)
gap> pc3 := pairc3.perm;
PermAut(c3)

73.140 IsAutomorphismPair

IsAutomorphismPair(pair)

This tests to see whether pair is an (automorphism group, perm group) pair.

gap> IsAutomorphismPair(pairc3);
true

73.141 AutomorphismPermGroup

AutomorphismPermGroup(G)

1422 CHAPTER 73. XMOD

This combines AutomorphismGroup(G) with the function AutomorphismPair and returns
G.automorphismGroup.automorphismPair.perm. The name PermAut(<G.name>) is given
automatically.

gap> P := AutomorphismPermGroup(a4);
PermAut(a4)
gap> P.generators;
[(1,8,4)(2,6,7), (3,6,7)(4,5,8), (1,2)(3,8)(4,7)(5,6)]

73.142 FpPair

FpPair(G)

When G is a finitely presented group, this function finds a faithful permutation represen-
tation P , which may be the regular representation, and sets up a pairing between G and
P .

gap> f := FreeGroup(2);;
gap> rels := [f.1^3, f.2^3, (f.1*f.2)^2];;
gap> g := f/rels;;
gap> pairg := FpPair(g);
rec(

perm := Group((2,4,3), (1,3,2)),
fp := Group(f.1, f.2),
f2p := GroupHomomorphismByImages(Group(f.1, f.2),
Group((2,4,3), (1,3,2)), [f.1, f.2], [(2,4,3), (1,3,2)]),

p2f := GroupHomomorphismByImages(Group((2,4,3), (1,3,2)),
Group(f.1, f.2), [(2,4,3), (1,3,2)], [f.1, f.2]),

isFpPair := true,
isMinTransitivePair := true,
generators := [(2,4,3), (1,3,2)],
degree := 4,
position := 3)

When G is a permutation group, the function PresentationViaCosetTable is called to find
a presentation for G and hence a finitely presented group F isomorphic to G. When G has
a name, the name <name of G>Fp is given automatically to F and <name of G>Pair to the
pair.

gap> h20.generators;
[(1,2,3,4,5), (2,3,5,4)]
gap> pairh := FpPair(h20);
rec(

perm := h20,
fp := h20Fp,
f2p := GroupHomomorphismByImages(h20Fp, h20, [f.1, f.2],
[(1,2,3,4,5), (2,3,5,4)]),

p2f := GroupHomomorphismByImages(h20, h20Fp,
[(1,2,3,4,5), (2,3,5,4)], [f.1, f.2]),

isFpPair := true,
degree := 5,

73.143. ISFPPAIR 1423

presentation := << presentation with 2 gens and 3 rels
of total length 14 >>,

name := [’h’, ’2’, ’0’, ’P’, ’a’, ’i’, ’r’])
gap> pairh.fp.relators;
[f.2^4, f.1^5, f.1*f.2*f.1*f.2^-1*f.1]

73.143 IsFpPair

IsFpPair(pair)

This tests to see whether pair is an (Fp-group, perm group) pair.

gap> IsFpPair(pairh);
true

73.144 SemidirectPair

SemidirectPair(S)

When S is a semidirect product, this function finds a faithful permutation representation P
and sets up a pairing between S and P . The example illustrates c2|Xc3∼=s3.

gap> agen := ac3.generators;; pgen := pc3.generators;;
gap> a := GroupHomomorphismByImages(pc3, ac3, pgen, agen);
GroupHomomorphismByImages(PermAut(c3), Aut(c3), [(1,2)],
[GroupHomomorphismByImages(c3, c3, [(1,2,3)], [(1,3,2)])])
gap> G := SemidirectProduct(pc3, a, c3);;
gap> G.name := "G";; PG := SemidirectPair(G);
rec(
perm := Perm(G),
sdp := G,
s2p := OperationHomomorphism(G, Perm(G)),
p2s := GroupHomomorphismByImages(Perm(G), G, [(1,2)(4,5), (3,5,4)],
[SemidirectProductElement((1,2), GroupHomomorphismByImages

(c3, c3, [(1,3,2)], [(1,2,3)]), ()),
SemidirectProductElement((), IdentityMapping(c3), (1,2,3))]))

73.145 IsSemidirectPair

IsSemidirectPair(pair)

This tests to see whether pair is a (semidirect product, perm group) pair.

gap> IsSemidirectPair(PG);
true

73.146 PrintList

PrintList(L)

This functions prints each of the elements of a list L on a separate line.

gap> J := [[1,2,3], [3,4], [3,4], [1,2,4]];; PrintList(J);

1424 CHAPTER 73. XMOD

[1, 2, 3]
[3, 4]
[3, 4]
[1, 2, 4]

73.147 DistinctRepresentatives

DistinctRepresentatives(L)

When L is a set of n subsets of [1..n] and the Hall condition is satisfied (the union of any k
subsets has at least k elements), a standard algorithm for systems of distinct representatives
is applied. (A backtrack algorithm would be more efficient.) If the elements of L are lists,
they are converted to sets.

gap> DistinctRepresentatives(J);
[1, 3, 4, 2]

73.148 CommonRepresentatives

CommonRepresentatives(J, K)

When J and K are both lists of n sets, the list L is formed where L[i] := {j : J [i]∩K[j] 6= ∅}.
A system of distinct represetatives reps for L provides a permutation of the elements of K
such that J[i] and K[i] have non-empty intersection. Taking the first element in each
of these intersections determines a system of common representatives com. The function
returns the pair [com, reps]. Note that there is no requirement for the representatives
to be distinct. See also the next section.

gap> K := [[3,4], [1,2], [2,3], [2,3,4]];;
gap> CommonRepresentatives(J, K);
[[3, 3, 3, 1], [1, 3, 4, 2]]

This has produced 3 ∈ J [1] ∩K[1], 3 ∈ J [2] ∩K[3], 3 ∈ J [3] ∩K[4] and 1 ∈ J [4] ∩K[2].

73.149 CommonTransversal

CommonTransversal(G, H)

The existence of a common transversal for the left and right cosets of a subgroup H of G is
a special case of systems of common representatives.

gap> T := CommonTransversal(a4, c3);
[(), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3)]

73.150 IsCommonTransversal

IsCommonTransversal(G, H, T)

gap> IsCommonTransversal(a4, c3, T);
true

Chapter 74

CHEVIE Version 3 – a short
introduction

CHEVIE is a joint project of Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, Jean
Michel, and Götz Pfeiffer. The GAP–part of CHEVIE is a package, written entirely in the
GAP language, which consists of

• functions implementing algorithms for finite reflection groups and their root systems,
braid groups, and Iwahori-Hecke algebras, including normal forms for the elements
in these objects and, for example, special functions for computing Kazhdan-Lusztig
polynomials and lefts cells;

• library files containing pre-stored information about conjugacy classes of finite Coxeter
groups, fake degrees and generic degrees of the irreducible characters, and character
tables of finite Coxeter groups and the associated Iwahori-Hecke algebras.

The files containing these programs and data are built up in a similar way as the files in
GAP. In particular, each file contains a copyright notice and the name(s) of the CHEVIE
authors who wrote that file.

This package replaces the former weyl package. A number of functions have got new names
(mathematically more correct, we hope). For example, one can now work systematically
with non-crystallographic Coxeter groups, and so the former function Weyl has become
CoxeterGroup. Elements in these groups are systematically permutations on the under-
lying root system, and reduced expressions in the generators of the group will be called
CoxeterWords. For the convenience of the user we have provided a file which contains just
assignments of the form Weyl:=CoxeterGroup etc., so that many functions written with
the old system should still work. This file can be read into the system using the command
ReadChv("compatib"), but we do not guarantee that this file will survive in future releases.
The package itself is loaded using the command RequirePackage("chevie") (see 56.1).

The overall logical structure of this package is as follows. The basic input datum is a Cartan
matrix associated with a finite reduced root system in some Euclidean space. The function
CoxeterGroup computes from such a matrix a record which contains basic information and
upon which all further applications are based. This is described in detail in chapter 75.

1425

1426 CHAPTER 74. CHEVIE VERSION 3 – A SHORT INTRODUCTION

There are extensions to this basic construction allowing, more generally, inputs like root
data and automorphisms acting on the ingredients of such root data. This is described in
more detail in chapter 84.

But it is important to keep in mind that the whole system is structured bottom-up. This
means that, if one is only interested in the finite Coxeter groups themselves then one can
just stick to the simplest form of the function CoxeterGroup and one does not have to worry
about any of the more elaborate concepts which can be build upon this. Any higher order
application just adds new components to the original record and increases its functionality.

A similar remark applies to braid groups and Iwahori–Hecke algebras: they are constructed
by applying the functions Braid and Hecke to a Coxeter group record which had already
been constructed before using the function CoxeterGroup. Again, all the functionality of
the original record remains valid.

The files containing the most basic functions implementing these structures are coxeter.g,
braid.g and hecke.g. There are more files containing functions for special purposes like
kl.g (for Kazhdan-Lusztig polynomials).

The record computed by CoxeterGroup is, in the first place, a permutation group record in
GAP. Thus, all GAP functions for dealing with finite groups and, in particular, permutation
groups can be applied to such a record, like Elements, Size, CharTable to mention but a
few. These are generic GAP functions in the usual sense that they first look at the operations
record of CoxeterGroup to see which algorithm has to be taken. Another important feature
of the design of the CHEVIE package is that many of these functions admit more efficient
versions by taking into account the particular structure of finite Coxeter groups.

Many objects constructed in or associated with finite Coxeter groups admit some canonical
labeling which carries additional information. It is precisely this labeling which is very often
important to know for the application of results on Coxeter groups in Lie theory or related
areas.

For example, the generic GAP function ConjugacyClasses applied to a Coxeter group record
does not invoke the general algorithm for computing conjugacy classes of permutation groups
in GAP, but first decomposes the given Coxeter group into irreducible components, and then
reads canonical representatives of minimal length in the various classes of these irreducible
components from library files. These canonical representatives also come with some addi-
tional information, for example Carter’s admissible diagrams (see 76.14). In a similar way,
the function CharTable does not invoke the Dixon–Schneider algorithm but proceeds in a
similar way as described above. Moreover, the resulting character table comes with addi-
tional labelings of the classes and characters, like partitions of n in the case of the symmetric
group Sn, i.e., the Coxeter group of type An−1 (see 77.10).

Thus, roughly 2/3 of the total memory space required by the CHEVIE files is occupied by
the files containing the basic information about the finite irreducible Coxeter groups. These
files are called weyla.g, weylb.g etc. up to the biggest file weyle8.g whose size is about
500 KBytes. These data files are structured in a uniform manner so that any piece of
information can be extracted separately from them. (For example, it is not necessary to
first compute the character table in order to have labels for the characters and classes.)

The conventions that we use about normal forms of elements, labeling of classes and char-
acters for the individual types are explained in detail in the introductions to chapters 75
and 77.

1427

Several computations in the literature concerning the irreducible characters of finite Coxeter
groups and Iwahori–Hecke algebras can now be checked or re-computed by anyone who is
willing to use GAP and CHEVIE. Re-doing such computations and comparing with existing
tables has sometimes lead to the discovery of bugs in the programs or to misprints in
the literature. We believe that having the possibility of repeating such computations and
experimenting with the results has increased the reliability of the data (and the programs).
For example, it is now a trivial matter to re-compute the tables of induce/restrict matrices
(with the appropriate labeling of the characters) for exceptional finite Weyl groups (see
Section 78.1). These matrices have various applications in the representation theory of
finite reductive groups, see Lusztig’s book [Lus85, Ch.4].
We ourselves have used these programs to prove results about the existence of elements with
special properties in the conjugacy classes of finite Coxeter groups (see [GP93], [GM97]),
and to compute character tables of Iwahori–Hecke algebras of exceptional type (see [Gec94],
[GM97]). For a survey, see also [GHL+96].
Of course, our hope is that more applications will be added in the future! For contributions
to CHEVIE from outside (or one or several among us) we have created a directory contr in
which the corresponding files are distributed with CHEVIE. However, they do remain under
the authorship and the responsibility of their authors. Files from that directory can be
read into GAP using the command ReadChv("contr/filename"). At present, the directory
contr contains the following files:

murphy by A. Mathas; it contains programs which allow calculations with the Murphy basis
of the Hecke algebra of type A.

minrep by M. Geck and G. Pfeiffer; it contains programs (used in [GP93]) for computing
representatives of minimal length in the conjugacy classes of finite Coxeter groups.

brbase by M. Geck and S. Kim; it contains programs for computing bi-grassmannians and
the base for the Bruhat–Chevalley order on finite Coxeter groups (see [GK96]).

braidsup by J. Michel; it contains some supplementary programs for working with braids.

chargood by M. Geck and J. Michel; it contains functions (used in [GM97]) implementing
algorithms to compute character tables of Iwahori–Hecke algebras, especially that of type
E8.

Finally, it should be mentioned that there is also a MAPLE-part of CHEVIE which contains
generic character tables of finite groups of Lie type and tables of Green functions. The
conventions about data related to the associated finite Weyl groups are compatible with
those in the present package. It is planned that, in the not too far future, the MAPLE-part
will be re-written in GAP.

Acknowledgments. We wish to thank the Aachen GAP team for general support over the
last years.
We also gratefully acknowledge financial support by the DFG in the framework of the
Forschungsschwerpunkt ”Algorithmische Zahlentheorie und Algebra” since 1992.
We are indebted to Andrew Mathas for contributing a package with functions for calculating
the various Kazhdan-Lusztig bases in Iwahori–Hecke algebras. (These functions have now
become a part of the file kl.g.)

St. Andrews, Paris and Heidelberg, December 1996

1428 CHAPTER 74. CHEVIE VERSION 3 – A SHORT INTRODUCTION

Chapter 75

Root systems and finite Coxeter
groups

In this chapter we describe functions for dealing with root systems and finite Coxeter groups.

A suitable reference for the general theory is, for example, the volume of Bourbaki [Bou68];
an English reference is the book of Humphreys [Hum90].

A Coxeter group is a group defined by a presentation of the form〈
s1, . . . , sn | (sisj)m(i,j) = 1 for all i, j

〉
for some integers m(i, j), where m(i, j) > 1 for i 6= j and m(i, i) = 1 for all i. The
matrix {m(i, j)}i,j is called the Coxeter matrix; the set of Coxeter matrices such that
the defined group is finite have been completely classified. A Coxeter group has a natural
representation on a real vector space V of dimension the number of generators, its reflection
representation, where the si act as reflections (a reflection in a vector space V is an
element of GL(V) of order 2 which leaves fixed a hyperplane). It turns out that finite
Coxeter groups are the same as finite real reflection groups, i.e., finite groups generated by
reflections in a real vector space. The set of reflecting hyperplanes of a finite Coxeter group
is in fact related to the notion of a root system, and this carries slightly more information
than just the set of integers m(i, j) used in the definition of Coxeter groups (by taking into
account relative lengths of the roots, see below). It is this underlying geometric structure
by which Coxeter groups appear in various areas of mathematics such as Lie algebras and
linear algebraic groups. In GAP, the objects we will actually deal with are the Coxeter
groups, together with their action on a root system.

Let us now give the precise definitions. Let V be a vector space, V ∨ its dual. We will
denote by (,) the natural pairing between V ∨ and V . A root system in V is a finite set
of vectors R (the roots), together with a map r 7→ r∨ from R to a subset R∨ of V ∨ (the
coroots) such that:

For any r ∈ R, we have (r∨, r) = 2, so that the map V → V , x 7→ x − (r∨, x)r defines a
reflection in V (that we will call the reflection with root r), and this reflection stabilizes
R. If R does not span V we also have to impose the condition that the map V ∨ → V ∨,
y 7→ y − (y, r)r∨ stabilizes R∨.

1429

1430 CHAPTER 75. ROOT SYSTEMS AND FINITE COXETER GROUPS

We will only consider reduced root systems, i.e., such that the only elements of R colinear
with a root r are r and −r.
A root system R is called crystallographic if (r∨, r) is an integer, for any r ∈ R, r∨ ∈ R∨.

The dimension of the subspace VR of V spanned by R will be called the semi-simple rank
of R.

Remark. For the study of Coxeter groups it would be sufficient to consider root systems
as certain subsets of Euclidean spaces which contain a basis of that space. Our definition is
motivated by the notion of root data, which allow to describe connected reductive algebraic
groups over algebraically closed fields (see for example [Spr81, Ch.9]).

The subgroup W = W (R) of GL(V) generated by the reflections with roots in R is a finite
Coxeter group given by a presentation as above. (Below, we will describe explicitly how to
obtain the set of generators from the root system.) We call W a crystallographic Coxeter
group (or a Weyl group) if the underlying root system is crystallographic. This condition
is equivalent to the property that the reflection representation of W is defined over the
rational numbers. Weyl groups can be characterized amongst finite Coxeter groups by the
fact that all numbers m(i, j) are in {2, 3, 4, 6}. It turns out that all other finite-dimensional
(complex) representations of a Weyl group W can also be realized over the rational numbers.

We identify V with V ∨ by choosing a W -invariant bilinear form (;); then we have r∨ =
2r/(r; r). A root system R is irreducible if it is not the union of two orthogonal subsets. If R
is reducible then the corresponding Coxeter group is the direct product of the Coxeter groups
associated with the irreducible components of R. The irreducible root systems, and also the
finite irreducible Coxeter groups, are classified by the following list of Dynkin diagrams. The
labeling of the nodes is exactly the same labeling as in the function CartanMat described
below.

1 2 3 n 1 2 3 n
A_n o---o---o-- . . . --o B_n o=<=o---o-- . . . --o

1 o
\ 4 n 1 2 3 n

D_n 3 o---o--- . . . --o C_n o=>=o---o-- . . . --o
/

2 o

1 2 1 2 3 4 1 3 4 5 6
G_2 0->-0 F_4 o---o=>=o---o E_6 o---o---o---o---o

6 |
o 2

1 3 4 5 6 7 1 3 4 5 6 7 8
E_7 o---o---o---o---o---o E_8 o---o---o---o---o---o---o

| |
o 2 o 2

1 2 1 2 3 1 2 3 4
I_2(m) o---o H_3 o---o---o H_4 o---o---o---o

m 5 4

1431

These diagrams encode the presentations for Coxeter groups as follows: the vertices represent
the si; an edge is drawn between si and sj if m(i, j) > 2; the edge is represented as a single
bond if m(i, j) = 3, a double bond if m(i, j) = 4, a triple bond if m(i, j) = 6 and as a
single bond with the value m(i, j) written above if m(i, j) 6∈ {2, 3, 4, 6}. (We see that we
can ignore the arrows indicating relative root lengths; thus, the diagrams of type Bn and
Cn lead to identical presentations for Coxeter groups.) The last three diagrams correspond
to non-crystallographic groups, excepted for the special cases I2(3) = A2, I2(4) = B2 and
I2(6) = G2.

Let us now describe how the root systems are encoded in these diagrams. Let R be a
root system in V . Then we can choose a linear form on V which vanishes on no element
of R. According to the sign of the value of this linear form on a root r ∈ R we call
r positive or negative. Then there exists a unique subset of the set of positive roots,
called the set of fundamental roots, such that any positive root is a linear combination
with non-negative coefficients of fundamental roots. It can be shown that any two sets
of fundamentals roots (corresponding to different choices of linear forms as above) can be
transformed into each other by a unique element of W (R), hence the relative lengths and
the angles between fundamental roots are independent of any choice. Hence, if {r1, . . . , rn}
is a set of fundamental roots and if we define the Cartan matrix as being the n times n
matrix C = ((r∨i , rj)ij) then this matrix is in fact unique up to simultaneous permutation
of rows and columns. It is precisely this matrix which is encoded in a Dynkin diagram, as
follows.

The indices for the rows of C label the nodes of the diagram. The edges, for i 6= j, are given
as follows. If Cij and Cji are integers such that |Cij | ≥ |Cji| the vertices are connected by
|Cij | lines, and if |Cij | > 1 then we put an additional arrow on the lines pointing towards
the node with label i. In all other cases, we simply put a single line equipped with the
unique integer pij ≥ 1 such that CijCji = cos2(π/pij).

It is now important to note that, conversely, the whole root system can be recovered from
the set of fundamental roots. The reflections in W (R) corresponding to the fundamental
roots are called fundamental (or simple) reflections. They are precisely the generators for
which the above Dynkin diagrams encode the defining relations of W (R). It can be shown
that for each r ∈ R there exist fundamental reflections si1 , . . . , sim such that si1 · · · sim(r)
is a fundamental root. Thus, all of R is obtained by applying repeatedly simple reflections
to a set of roots (starting with the set of fundamental roots). The restriction of the simple
reflections to VR is determined by the Cartan matrix, so R is determined by the Cartan
matrix and the set of fundamental roots.

In GAP the Cartan matrix corresponding to one of the above irreducible root systems (with
the specified labeling) is returned by the command CartanMat which takes as input a string
giving the type (e.g., "A", "B", . . ., "I") and a positive integer giving the rank. For type
I2(m), we give as a third argument the integer m. This function returns a matrix (i.e., a
list of lists in GAP) with entries in Z or in a cyclotomic extension of the rationals. Given
two Cartan matrices, their matrix direct sum (corresponding to the orthogonal direct sum
of the root systems) can be produced by the function DirectSumMat.

The function CoxeterGroup takes as input some data which determine the roots and the
coroots and produces a GAP permutation group record, where the Coxeter group is repre-
sented by its faithful action on the root system R, with additional components containing
basic information about R (a system of fundamental roots etc...).

1432 CHAPTER 75. ROOT SYSTEMS AND FINITE COXETER GROUPS

The function CoxeterGroup has several forms; in the first form, it is assumed that the
simple roots are the basis of V (the matrix of the coroots expressed in the dual basis of V ∨

is then equal to the Cartan matrix); the argument is the Cartan matrix of the root system
(irreducible or not, and with any ordering of the simple roots).

If one only wants to work with Cartan matrices with a labeling as specified by the above
list, the function call can be simplified. Instead of CoxeterGroup(CartanMat("D", 4))
the following is also possible.

gap> W := CoxeterGroup("D", 4); # Coxeter group of type D4

CoxeterGroup("D", 4)
gap> PrintArray(W.cartan);
[[2, 0, -1, 0],
[0, 2, -1, 0],
[-1, -1, 2, -1],
[0, 0, -1, 2]]

(The matrix printed is the Cartan matrix.)

Also, the Coxeter group record associated to a direct sum of irreducible root systems with the
above standard labeling can be obtained by listing the types of the irreducible components:

gap> W := CoxeterGroup("A", 2, "B", 2);; PrintArray(W.cartan);
[[2, -1, 0, 0],

[-1, 2, 0, 0],
[0, 0, 2, -2],
[0, 0, -1, 2]]

(The same record is constructed by applying CoxeterGroup to the matrix CartanMat("A",
2, "B", 2) or to DirectSumMat(CartanMat("A", 2), CartanMat("B", 2)).)

In the second more general form, one gives as argument to CoxeterGroup two matrices,
one whose lines are the roots expressed in a basis of V , and the second whose lines are the
coroots expressed in the corresponding dual basis of V ∨. In this form, the roots need not
generate V .

gap> W := CoxeterGroup([[-1, 1, 0], [0, -1, 1]],
> [[-1, 1, 0], [0, -1, 1]]);
CoxeterGroup([[-1, 1, 0], [0, -1, 1]],
[[-1, 1, 0], [0, -1, 1]])
gap> MatXPerm(W, W.generators[1]);
[[0, 1, 0], [1, 0, 0], [0, 0, 1]]

(here we have represented the symmetric group on 3 letters as the permutation of the basis
vectors of V — the semi-simple rank is 2).

The definition of root systems implies that every w ∈ W induces a permutation of the ele-
ments in R, and that the corresponding permutation representation of W on R is faithful.
If we label the positive roots by [1 .. N], and the negative roots by [N+1 .. 2*N],
then we can represent each fundamental reflection by the permutation of [1 .. 2*N]
which it induces on the root vectors. The representation of W in GAP is as the permutation
group defined by this faithful permutation representation. All this is done by the com-
mand CoxeterGroup which produces a permutation group record containing the relevant
information (see the precise description in Section 75.5). This record is all that the follow-
ing programs and commands need. See the following chapter for more details on how to

75.1. CARTANMAT 1433

work with the elements in W and different representations for them (permutations, reduced
expressions, matrices).

We close this informal introduction with some remarks.

• Since, in the first place, the Coxeter group record is a group record with the component
isPermGroup set to true, all GAP functions defined for permutation groups work for Coxeter
groups, but sometimes there are improvements, exploiting the particular nature of these
groups.

• There is a function InfoChevie which is set equal to the GAP function Ignore when you
load CHEVIE. If you redefine it by InfoChevie:=Print; then the CHEVIE functions will
print some additional information in the course of their computations.

• The user should observe limitations on storage for working with these programs, e.g., the
command Elements applied to a Weyl group of type E8 will try to compute all elements as
words in the fundamental reflections. Every computer will run out of memory!

75.1 CartanMat

CartanMat(type, n)

returns the Cartan matrix of Dynkin type type and rank n. Admissible types are the strings
"A", "B", "C", "D", "E", "F", "G", "H", "I".

gap> C := CartanMat("F", 4);;
gap> PrintArray(C);
[[2, -1, 0, 0],
[-1, 2, -1, 0],
[0, -2, 2, -1],
[0, 0, -1, 2]]

For type I2(m), which is in fact an infinity of types depending on the number m, a third
argument is needed specifying the integer m so the syntax is in fact CartanMat("I", 2,
m):

gap> CartanMat("I", 2, 5);
[[2, E(5)^2+E(5)^3], [E(5)^2+E(5)^3, 2]]

CartanMat(type1, n1, ... , typek, nk)

returns the direct sum of CartanMat(type1, n1), . . ., CartanMat(typek, nk). One
can use as argument a computed list of types by ApplyFunc(CartanMat, [type1, n1,
... , typek, nk]).

This function requires the package ”chevie”(see 56.1).

75.2 CartanType

CartanType(C)

CartanType(D)

returns the type of the Cartan Matrix C . The result is a list each element of which describes
an irreducible component of C , as pair [type,indices] where type is the type ("A", "B",
"D", etc. . .) of the component and indices the indices in C where it sits, so that

1434 CHAPTER 75. ROOT SYSTEMS AND FINITE COXETER GROUPS

C{indices}{indices} = CartanMat(type, Length(indices))

A triple [type, indices, m] is actually returned for a component of type I2(m). The
indices are arranged in the standard order in which we give Dynkin diagrams.

gap> C := [[2, 0, -1], [0, 2, 0], [-1, 0, 2]];;
gap> CartanType(C);
[["A", [1, 3]], ["A", [2]]]

The argument to CartanType can also be a domain (i.e., D should be a record with a field
operations.CartanType, and that function is then called with D as argument — this is
used for Coxeter groups and Coxeter cosets).

This function requires the package ”chevie”(see 56.1).

75.3 CartanName

CartanName(type)

CartanName(D)

takes as argument a type type as returned by CartanType. Returns the name of the root
system with that type, which is the concatenation of the names of its irreducible components,
with x added in between.

gap> C := [[2, 0, -1], [0, 2, 0], [-1, 0, 2]];;
gap> CartanName(CartanType(C));
"A2xA1"
gap> CartanName(CartanType(CartanMat("I", 2, 7)));
"I2(7)"

The argument to CartanName can also be a domain (i.e., D should be a record with a field
operations.CartanName, and that function is then called with D as argument — this is
used for Coxeter groups and Coxeter cosets).

This function requires the package ”chevie”(see 56.1).

75.4 PrintDynkinDiagram

PrintDynkinDiagram(type)

PrintDynkinDiagram(D)

This is a purely descriptive routine, which, by printing the Dynkin diagram of a type type
(the result of CartanType) shows how the generators of the corresponding group are labeled
on its Dynkin diagram.

gap> C := [[2, 0, -1], [0, 2, 0], [-1, 0, 2]];;
gap> t := CartanType(C);
[["A", [1, 3]], ["A", [2]]]
gap> PrintDynkinDiagram(t);
A2 1 - 3
A1 2
gap> PrintDynkinDiagram(CartanType(CartanMat("E", 8)));
E8 2

|

75.5. COXETERGROUP 1435

1 - 3 - 4 - 5 - 6 - 7 - 8

The argument to PrintDynkinDiagram can also be a domain (i.e., D should be a record
with a field operations.PrintDynkinDiagram, and that function is then called with D as
argument — this is used for Coxeter groups and Coxeter cosets).

This function requires the package ”chevie”(see 56.1).

75.5 CoxeterGroup

CoxeterGroup(simpleRoots, simpleCoroots[, omega])

CoxeterGroup(C[, "sc"][, omega])

CoxeterGroup(type1, n1, ... , typek, nk[, "sc"][, omega])

CoxeterGroup(rec)

This function returns a permutation group record containing the basic information about
the Coxeter group and the root system determined by its arguments. In the first form a set
of roots is given explicitly as the lines of the matrix simpleRoots, representing vectors in a
vector space V , as well as a set of coroots as the lines of the matrix simpleCoroots expressed
in the dual basis of V ∨. The product C=simpleCoroots*TransposedMat(simpleRoots) must
be a valid Cartan matrix. The dimension of V can be greater than Length(C). The length
of C is called the semisimple rank of the Coxeter datum, while the dimension of V is
called its rank.

In the second form C is a Cartan matrix, and the call CoxeterGroup(C) is equivalent to

CoxeterGroup(IdentityMat(Length(C)),C).

In this case, the root system is embedded in the lattice of integral vectors of V like the
root system of an adjoint algebraic reductive group in the lattice of characters of a maximal
torus.

If the optional "sc" argument is given, the situation is reversed: the simple coroots are given
by the identity matrix, and the simple roots by the transposed of C (this corresponds to the
embedding of the root system in the lattice of characters of a maximal torus in a simply
connected algebraic group).

The third form is equivalent to

CoxeterGroup(CartanMat(type1, n1, ..., typek, nk) [, "sc"][, omega]).

The resulting record, that we will call a Coxeter datum, has additional entries describing
various information on the root system and Coxeter group that we describe below.

The argument omega in one of the first three forms can be used to specify a group of
automorphisms of the Coxeter datum, that is, a group of invertible linear transformations
of V which preserve the set of roots and whose adjoint maps preserve the set of coroots.
When the rank is equal to the semisimple rank (we then say that the Coxeter datum is
semisimple), this can be given as a permutation group (on the roots). Otherwise it must be
given as a matrix group.

The last form takes as an argument a record which has a field coxeter and returns the
value of this field. This is used to return the Coxeter group of objects derived from Coxeter
groups, such as Coxeter cosets, Hecke algebras and braid elements.

1436 CHAPTER 75. ROOT SYSTEMS AND FINITE COXETER GROUPS

We document the following entries in a Coxeter datum record which are guaranteed to
remain present in future versions of the package. Other undocumented entries should not
be relied upon, they may change without notice.

isCoxeterGroup, isDomain, isGroup, isPermGroup, isFinite
true

cartan
the Cartan matrix C

simpleRoots
the matrix of simple roots

simpleCoroots
the matrix of simple coroots

semisimpleRank
the length of C

rank
the length of TransposedMat(.simpleRoots)

N
the number of positive roots

roots
the root vectors, given as linear combinations of fundamental roots (note that in a
former version of the package only the positive roots were stored). The first N roots
are positive, the next N are the corresponding negative roots. Moreover, the first
semisimpleRank roots are the fundamental roots corresponding to the rows of C .
The positive roots are ordered by increasing height.

coroots
the same information for the coroots. The coroot corresponding to a given root is in
the same relative position in the list of coroots as the root in the list of roots.

rootLengths
the vector of length of roots. The shortest roots in an irreducible subsystem are given
the length 1, the others length 2 (or 3 in type G2).

orbitRepresentative
this is a list of same length as roots, which for each root, gives the smallest index of
a root in the same W -orbit.

orbitRepresentativeElements
a list of same length as roots, which for the i-th root, gives an element w of W of
minimal length such that i=orbitRepresentative[i]^w.

matgens
the matrices (in row convention) of the simple reflections of the Coxeter group with
respect to the basis consisting of the fundamental root vectors.

generators
the generators as permutations of the root vectors. They are given in the same order
as the first semisimpleRank roots.

omega
the value of the argument omega if it has been specified. Otherwise unbound.

75.6. OPERATIONS AND FUNCTIONS FOR COXETER GROUPS 1437

gap> W := CoxeterGroup("A", 4);;
gap> PrintArray(W.cartan);
[[2, -1, 0, 0],
[-1, 2, -1, 0],
[0, -1, 2, -1],
[0, 0, -1, 2]]

gap> W.matgens;
[[[-1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[1, 1, 0, 0], [0, -1, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1]],
[[1, 0, 0, 0], [0, 1, 1, 0], [0, 0, -1, 0], [0, 0, 1, 1]],
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, -1]]

]
gap> W.roots;
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1],
[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1], [1, 1, 1, 0],
[0, 1, 1, 1], [1, 1, 1, 1], [-1, 0, 0, 0], [0, -1, 0, 0],
[0, 0, -1, 0], [0, 0, 0, -1], [-1, -1, 0, 0],
[0, -1, -1, 0], [0, 0, -1, -1], [-1, -1, -1, 0],
[0, -1, -1, -1], [-1, -1, -1, -1]]

This function requires the package ”chevie”(see 56.1).

75.6 Operations and functions for Coxeter groups

All permutation group operations are defined on Coxeter groups. However, the following
operations and functions have been rewritten or added, respectively, to take advantage of
the particular structure of real reflection groups:
=

Two Coxeter data are equal if they are equal as permutation groups and the fields
simpleRoots and simpleCoroots agree (independently of the value of any other
bound fields). Also the fields .omega should be equal (if the field is absent — omega
not specified — this is considered specifying the trivial group).

Print
prints a Coxeter group in a form that can be input back in GAP as a Coxeter group.

Size
uses the classification of Coxeter groups to work faster (specifically, uses the function
ReflectionDegrees).

Elements
returns the set of elements. They are computed using 76.11. (Note that in an earlier
version of the package the elements were sorted by length. You can still get such a list
by Concatenation(List([1..W.N], i -> CoxeterElementsLength(W, i))))

CartanType
returns CartanType of the Cartan matrix.

PrintDynkinDiagram
prints the Dynkin diagram corresponding to the Cartan matrix.

CartanName
returns the CartanName of the CartanType.

1438 CHAPTER 75. ROOT SYSTEMS AND FINITE COXETER GROUPS

ConjugacyClasses
Uses classification of Coxeter groups to work faster, and the resulting list is given in
the same order as the result of ChevieClassInfo (see 76.14).

CharTable
Uses the classification of Coxeter groups to work faster, and the result has better
labeling than the default (see Chapter 77).

ChevieClassInfo
Is part of the Coxeter groups operations record in order to have versions for Coxeter
groups and Coxeter cosets. This function returns additional information on the classes
which is contained in the character table, but this function returns it without first
computing CharTable(W). See the explicit description in 76.14.

CharParams
Is part of the Coxeter groups operations record in order to have versions for Coxeter
groups and Coxeter cosets. This function returns the list of parameters for the ir-
reducible characters of W : partitions for type A, double partitions for type B, etc...
This is used by functions which return information for individual characters, like
FakeDegree, SchurElement, etc...

CharName
Is part of the Coxeter groups operations record in order to have versions for Coxeter
groups and Coxeter cosets. This function takes as argument a parameter for a char-
acter (see CharParams) and returns a string which is used to label the character is
various displayed tables.

ChevieCharInfo
This function returns additional information on the irreducible characters, see 77.10
for more details.

PositionClass, ClassInvariants, FusionConjugacyClasses
Use the classification of Coxeter groups to work faster. PositionClass(W,x) returns
the index of the conjugacy class of x in the list of the classes of W , see 86.3.

These functions require the package ”chevie”(see 56.1).

Chapter 76

Elements in finite Coxeter
groups

Let (W,S) be a finite Coxeter system as in the previous chapter. For a given element
w ∈W , the length l(w) is defined to be the smallest integer k such that w can be written
as a product of k fundamental reflections. Such an expression of shortest possible length
will be called a reduced word for w. A user might be interested to think of the elements
of W as such words in the generating fundamental reflections. For these programs, we
represent a word simply as a list of integers corresponding to the fundamental roots, e.g.,
[] is the identity element, and [1], [2], etc. represent the reflection along the first, the
second etc. fundamental root vector. For computational purposes, it might be better to
use the permutation of an element w on the root vectors. The functions CoxeterWord and
PermCoxeterWord will do the conversion of one form into the other.

gap> W := CoxeterGroup("D", 4);;
gap> p := PermCoxeterWord(W, [1, 3, 2, 1, 3]);
(1,14,13, 2)(3,17, 8,18)(4,12)(5,20, 6,15)(7,10,11, 9)(16,24)
(19,22,23,21)
gap> CoxeterWord(W, p);
[1, 3, 1, 2, 3]

We notice that the word we started with and the one that we ended up with, are not the same.
But of course, they represent the same element of W . The reason for this difference is that
the function CoxeterWord always computes a reduced word which is the lexicographically
smallest among all possible expressions of an element of W as a word in the fundamental
reflections! The function ReducedCoxeterWord does the same but with an arbitrary word as
input (and not with a permutation). In particular, the element used in the above example
has length 5. Sometimes, it is not necessary to compute a reduced word for an element w
and one is only interested in the length l(w); this can be computed very effectively from
the permutation, since it is also given by the number of positive roots mapped to negative
roots by w, i.e., by the number of i ∈ {1, . . . , N} such that iw > N . This is what does the
function CoxeterLength in the following example where we also show how to compute the
unique element of maximal length in W .

gap> LongestCoxeterWord(W); # the (unique) longest element in W

1439

1440 CHAPTER 76. ELEMENTS IN FINITE COXETER GROUPS

[1, 2, 3, 1, 2, 3, 4, 3, 1, 2, 3, 4]
gap> w0 := LongestCoxeterElement(W); # = PermCoxeterWord(W, last)
(1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)
(11,23)(12,24)
gap> CoxeterLength(W, w0);
12

There is another way of computing a reduced word which is more canonical for some pur-
poses. For any set I of generators, let wI be the unique element of maximal length which
can be made in the generators I. (Note that this element is an involution.) Now take any
w ∈W and compute the set L(w) of all generators s such that l(sw) < l(w). In GAP this is
done by the function LeftDescentSet. Brieskorn [Bri71] has noticed that wL(w) divides w,
in the sense that l(wL(w)) + l(wL(w)w) = l(w). We can now divide w by wL(w) and continue
this process with the quotient. In this way, we obtain a reduced expression w = wL1 · · ·wLr
where Li = L(wLi · · ·wLr) for all i, which we call the Brieskorn normal form of w (and
where we use the lexicographically smallest expression for each wLi). The CHEVIE pack-
age will use this form if you set CHEVIE.BrieskornNormalForm:= true;. When you load
CHEVIE this variable is initialized with false (see also 76.2).

We give an example of some other commands:

gap> List(Reflections(W), i -> CoxeterWord(W, i));
[[1], [2], [3], [4], [1, 3, 1], [2, 3, 2], [3, 4, 3],

[1, 2, 3, 1, 2], [1, 3, 4, 3, 1], [2, 3, 4, 3, 2],
[1, 2, 3, 4, 3, 1, 2], [3, 1, 2, 3, 4, 3, 1, 2, 3], [1],
[2], [3], [4], [1, 3, 1], [2, 3, 2], [3, 4, 3],
[1, 2, 3, 1, 2], [1, 3, 4, 3, 1], [2, 3, 4, 3, 2],
[1, 2, 3, 4, 3, 1, 2], [3, 1, 2, 3, 4, 3, 1, 2, 3]]

gap> l := List([1 .. W.N+1], x -> CoxeterElementsLength(W, x-1));;
gap> List(l, Length);
[1, 4, 9, 16, 23, 28, 30, 28, 23, 16, 9, 4, 1]

The last line tells us that there is 1 element of length 0, there are 4 elements of length 4,
etc.

For many basic functions (like CoxeterElementsLength, Reflections, Bruhat, etc.) we
have chosen the convention that if the input is an element of a Coxeter group, then this
element should by given as a permutation (and similarly for the output). As a rule of thumb
one should keep in mind that, if in some application one has to do a lot of computations with
Coxeter group elements then using the low level GAP functions for permutations is usually
much faster than manipulating lists of reduced expressions. For example, suppose we are
given an element w ∈W and a generator si and we want to check if l(siw) < l(w). Then it
is more efficient to represent w by a permutation and to check the condition i^w>W.N than
to work with a reduced expression and check the condition

Length(ReducedCoxeterWord(W, Concatenation([i], w)))<Length(w);

76.1 PermCoxeterWord

PermCoxeterWord(W , w)

returns the permutation on the root vectors determined by an element which is given as a
list w of integers representing the standard generators of the Coxeter group W .

76.2. COXETERWORD 1441

gap> W := CoxeterGroup("G", 2);;
gap> PermCoxeterWord(W, [1,2,1]);
(1,12)(2, 4)(3, 9)(6, 7)(8,10)

See also 76.2.

This function requires the package ”chevie”(see 56.1).

76.2 CoxeterWord

CoxeterWord(W , w)

returns a reduced word in the standard generators of the Coxeter group W determined by
the permutation w on the root vectors.

gap> W := CoxeterGroup("A", 3);;
gap> w := (1,11)(3,10)(4, 9)(5, 7)(6,12);;
gap> w in W;
true;
gap> CHEVIE.BrieskornNormalForm := true;;
gap> CoxeterWord(W, w);
[1, 3, 2, 1, 3]
gap> CHEVIE.BrieskornNormalForm := false;;
gap> CoxeterWord(W, w);
[1, 2, 3, 2, 1]

For the definition of the Brieskorn normal form, see the introduction to this chapter. If the
global variable CHEVIE.BrieskornNormalForm is set to false (which is automatically the
case when you load CHEVIE), the result of CoxeterWord is the lexicographically smallest
reduced word for w .

See also 76.1 and 76.4.

This function requires the package ”chevie”(see 56.1).

76.3 CoxeterLength

CoxeterLength(W , w)

returns the length of the permutation w , which corresponds to an element in the Coxeter
group W , as a reduced expression in the standard generators.

gap> W := CoxeterGroup("F", 4);;
gap> p := PermCoxeterWord(W, [1, 2, 3, 4, 2]);
(1,44,38,25,20,14)(2, 5,40,47,48,35)(3, 7,13,21,19,15)
(4, 6,12,28,30,36)(8,34,41,32,10,17)(9,18)(11,26,29,16,23,24)
(27,31,37,45,43,39)(33,42)
gap> CoxeterLength(W, p);
5
gap> CoxeterWord(W, p);
[1, 2, 3, 2, 4]

This function requires the package ”chevie”(see 56.1).

1442 CHAPTER 76. ELEMENTS IN FINITE COXETER GROUPS

76.4 ReducedCoxeterWord

ReducedCoxeterWord(W , w)

returns a reduced expression for an element of the Coxeter group W , which is given as a list
w of integers where each entry i in this list represents the i-th standard generator of W .

gap> W := CoxeterGroup("E", 6);;
gap> ReducedCoxeterWord(W, [1, 1, 1, 1, 1, 2, 2, 2, 3]);
[1, 2, 3]

This function requires the package ”chevie”(see 56.1).

76.5 LeftDescentSet

LeftDescentSet(W , w)

The set of generators s such that l(sw) < l(w), given as a list of integers.

gap> W := CoxeterGroup("A", 2);;
gap> w := PermCoxeterWord(W, [1, 2]);;
gap> LeftDescentSet(W, w);
[1]

See also 76.6.

This function requires the package ”chevie”(see 56.1).

76.6 RightDescentSet

RightDescentSet(W , w)

The set of generators s such that l(ws) < l(w), given as a list of integers.

gap> W := CoxeterGroup("A", 2);;
gap> w := PermCoxeterWord(W, [1, 2]);;
gap> RightDescentSet(W, w);
[2]

See also 76.5.

This function requires the package ”chevie”(see 56.1).

76.7 Reflections

Reflections(W)

returns the set of reflections in the Coxeter group W (as permutations). The i-th entry in
this list is the reflection along the i-th root in W .roots.

gap> W := CoxeterGroup("B", 2);; W.roots;
[[1, 0], [0, 1], [1, 1], [2, 1], [-1, 0], [0, -1],
[-1, -1], [-2, -1]]

gap> Reflections(W);
[(1,5)(2,4)(6,8), (1,3)(2,6)(5,7), (2,8)(3,7)(4,6), (1,7)(3,5)(4,8),
(1,5)(2,4)(6,8), (1,3)(2,6)(5,7), (2,8)(3,7)(4,6), (1,7)(3,5)(4,8)]

This function requires the package ”chevie”(see 56.1).

76.8. LONGESTCOXETERELEMENT 1443

76.8 LongestCoxeterElement

LongestCoxeterElement(W)

returns the unique element of maximal length of the Coxeter group W as a permutation.

gap> LongestCoxeterElement(CoxeterGroup("A", 4));
(1,14)(2,13)(3,12)(4,11)(5,17)(6,16)(7,15)(8,19)(9,18)(10,20)

This function requires the package ”chevie”(see 56.1).

76.9 LongestCoxeterWord

LongestCoxeterWord(W)

returns a reduced expression in the standard generators for the unique element of maximal
length of the Coxeter group W .

gap> LongestCoxeterWord(CoxeterGroup("A", 4));
[1, 2, 1, 3, 2, 1, 4, 3, 2, 1]

This function requires the package ”chevie”(see 56.1).

76.10 HighestShortRoot

HighestShortRoot(W)

Let W be an irreducible Coxeter group. HighestShortRoot computes the unique short root
of maximal height of W . Note that if all roots have the same length then this is the unique
root of maximal height, which can also be obtained by W.roots[W.N]. An error message is
returned for W not irreducible.

gap> W := CoxeterGroup("G", 2);; W.roots;
[[1, 0], [0, 1], [1, 1], [1, 2], [1, 3], [2, 3],

[-1, 0], [0, -1], [-1, -1], [-1, -2], [-1, -3],
[-2, -3]]

gap> HighestShortRoot(W);
4
gap> W1 := CoxeterGroup("A", 1, "B", 3);;
gap> HighestShortRoot(W1);
Error, group is not irreducible
in
HighestShortRoot(W1) called from
main loop
brk>

This function requires the package ”chevie”(see 56.1).

76.11 CoxeterElementsLength

CoxeterElementsLength(W , l)

returns as a list of permutations the list of all elements of W of length l .

gap> W := CoxeterGroup("G", 2);;

1444 CHAPTER 76. ELEMENTS IN FINITE COXETER GROUPS

gap> e := CoxeterElementsLength(W, 6);
[(1, 7)(2, 8)(3, 9)(4,10)(5,11)(6,12)]
gap> e[1] = LongestCoxeterElement(W);
true

The result of the computation of elements of a given length is stored in the component elts
of the record of W . Thus W.elts[lw+1] contains the list of all elements of length lw in W .
There are a number of programs (like criticalPairs, see Chapter 83) which refer to the
ordering of the elements in these lists in W.elts.

This function requires the package ”chevie”(see 56.1).

76.12 CoxeterWords

CoxeterWords(W)

returns the list of all elements in the Coxeter group W . The ordering is the same as that
given by concatenating the lists of elements of length 0, 1, . . . obtained by the function
CoxeterElementsLength.

gap> CoxeterWords(CoxeterGroup("G", 2));
[[], [2], [1], [2, 1], [1, 2], [2, 1, 2], [1, 2, 1],
[2, 1, 2, 1], [1, 2, 1, 2], [2, 1, 2, 1, 2],
[1, 2, 1, 2, 1], [1, 2, 1, 2, 1, 2]]

This function requires the package ”chevie”(see 56.1).

76.13 CoxeterConjugacyClasses

CoxeterConjugacyClasses(W)

returns a list of representatives of the conjugacy classes of the Coxeter group W . Each
element in this list is given as a word in the standard generators, where the generator si
is represented by the number i in a list. Each representative has the property that it is of
minimal length in its conjugacy class.

gap> CoxeterConjugacyClasses(CoxeterGroup("F", 4));
[[],

[1, 2, 1, 3, 2, 1, 3, 2, 3, 4, 3, 2, 1, 3, 2, 3, 4, 3, 2, 1, 3, 2,
3, 4], [2, 3, 2, 3], [2, 1],

[2, 3, 2, 3, 4, 3, 2, 1, 3, 4],
[3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 2, 1], [4, 3],
[1, 2, 1, 4, 3, 2, 1, 3, 2, 3],
[3, 2, 1, 4, 3, 2, 1, 3, 2, 3, 4, 3, 2, 1, 3, 2],
[3, 2, 4, 3, 2, 1, 3, 2], [4, 3, 2, 1], [1],
[2, 3, 2, 3, 4, 3, 2, 3, 4], [1, 4, 3], [4, 3, 2],
[2, 3, 2, 1, 3], [3], [1, 2, 1, 3, 2, 1, 3, 2, 3],
[2, 1, 4], [3, 2, 1], [2, 4, 3, 2, 3], [1, 3], [3, 2],
[2, 3, 2, 3, 4, 3, 2, 1, 3, 2, 4, 3, 2, 1], [2, 4, 3, 2, 1, 3]]

See also 76.14.

This function requires the package ”chevie”(see 56.1).

76.14. CHEVIECLASSINFO 1445

76.14 ChevieClassInfo

ChevieClassInfo(W)

returns information about the conjugacy classes of the finite Coxeter group W . The re-
sult is a record with three components: classtext contains CoxeterConjugacyClass(W),
classnames contains corresponding names for the classes, and classparams gives corre-
sponding parameters for the classes (see also Chapter 77).

gap> W := CoxeterGroup("D", 4);;
gap> ChevieClassInfo(W);
rec(
classtext :=
[[], [1, 2], [1, 2, 3, 1, 2, 3, 4, 3, 1, 2, 3, 4], [1],

[1, 2, 3], [1, 2, 4], [1, 4], [2, 4],
[1, 3, 1, 2, 3, 4], [1, 3], [1, 2, 3, 4], [1, 3, 4],
[2, 3, 4]],

classparams :=
[[[[1, 1, 1, 1], []]], [[[1, 1], [1, 1]]],

[[[], [1, 1, 1, 1]]], [[[2, 1, 1], []]],
[[[1], [2, 1]]], [[[2], [1, 1]]],
[[[2, 2], ’+’]], [[[2, 2], ’-’]],
[[[], [2, 2]]], [[[3, 1], []]],
[[[], [3, 1]]], [[[4], ’+’]], [[[4], ’-’]]]

,
classnames := ["1111.", "11.11", ".1111", "211.", "1.21", "2.11",

"22.+", "22.-", ".22", "31.", ".31", "4.+", "4.-"])

For a general description of the conjugacy classes in the Weyl groups, see [Car72]. The
relevance of taking representatives of minimal length is explained in [GP93].

See also 77.10.

This function requires the package ”chevie”(see 56.1).

76.15 Bruhat

Bruhat(W , y, w[, ly, lw])

returns true, if the element y is less than or equal to the element w of the Coxeter group
W for the Bruhat order, and false otherwise (y is less than w if a reduced expression for
y can be extracted from one for w). Both y and w must be given as permutations on the
root vectors of W . The optional arguments ly , lw can contain the length of the elements y
and w . (In a computation with many calls to Bruhat this may speed up the computation
considerably.) See [Hum90, (5.9) and (5.10)] for further properties of the Bruhat order.

gap> W := CoxeterGroup("H", 3);;
gap> w := PermCoxeterWord(W, [1, 2, 1, 3]);;
gap> b := Filtered(Elements(W), i -> Bruhat(W, i, w,
> CoxeterLength(W, i), 4));;
gap> List(b, x -> CoxeterWord(W, x));
[[], [3], [2], [2, 1], [2, 3], [2, 1, 3], [1],

1446 CHAPTER 76. ELEMENTS IN FINITE COXETER GROUPS

[1, 3], [1, 2], [1, 2, 1], [1, 2, 3], [1, 2, 1, 3]]

This function requires the package ”chevie”(see 56.1).

76.16 MatXPerm

MatXPerm(W , w)

Let w be a permutation of the roots of the Coxeter datum W acting on the vector space
V . MatXPerm returns the matrix of a linear transformation of V which acts trivially on the
orthogonal of the coroots and has same effect as w on the simple roots. Only the image of
the simple roots by w is used.

gap> W := CoxeterGroup(
> [[2, 0,-1, 0, 0, 0, 1], [0, 2, 0,-1, 0, 0, 0],
> [-1, 0, 2,-1, 0, 0,-1], [0,-1,-1, 2,-1, 0, 0],
> [0, 0, 0,-1, 2,-1, 0], [0, 0, 0, 0,-1, 2, 0]],
> [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0],
> [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]]);;
gap> w0 := LongestCoxeterElement(W);;
gap> mx := MatXPerm(W, w0);
[[0, 0, 0, 0, 0, -1, 1], [0, -1, 0, 0, 0, 0, 2],
[0, 0, 0, 0, -1, 0, 3], [0, 0, 0, -1, 0, 0, 4],
[0, 0, -1, 0, 0, 0, 3], [-1, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1]]

This function requires the package ”chevie”(see 56.1).

76.17 MatYPerm

MatYPerm(W , w)

Let w be a permutation of the roots of the Coxeter datum W acting on the vector space
V ∨. MatYPerm returns the matrix of a linear transformation of V ∨ which acts trivially on
the orthogonal of the roots and has same effect as w on the simple coroots. Only the image
of the simple coroots by w is used.
We continue the example from MatXPerm and obtain:

gap> my := MatYPerm(W, w0);
[[0, 0, 0, 0, 0, -1, 0], [0, -1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, -1, 0, 0], [0, 0, 0, -1, 0, 0, 0],
[0, 0, -1, 0, 0, 0, 0], [-1, 0, 0, 0, 0, 0, 0],
[1, 2, 3, 4, 3, 1, 1]]

This function requires the package ”chevie”(see 56.1).

76.18 PermMatX

PermMatX(W , M)

Let M be a linear transformation of the vector space V on which the Coxeter datum W
acts which preserves the set of roots. PermMatX returns the corresponding permutation of
the roots; it signals an error if M does not normalize the set of roots.

76.19. PERMMATY 1447

We continue the example from MatXPerm and obtain:

gap> PermMatX(W, mx) = w0;
true

This function requires the package ”chevie”(see 56.1).

76.19 PermMatY

PermMatX(W , M)

Let M be a linear transformation of the vector space V ∨ on which the Coxeter datum W
acts which preserves the set of coroots. PermMatY returns the corresponding permutation
of the coroots; it signals an error if M does not normalize the set of coroots.

We continue the example from MatYPerm and obtain:

gap> PermMatY(W, my) = w0;
true

This function requires the package ”chevie”(see 56.1).

1448 CHAPTER 76. ELEMENTS IN FINITE COXETER GROUPS

Chapter 77

Character tables for Coxeter
groups

The ordinary complex character table of any finite Coxeter group is computed in CHEVIE
using the function CharTable. This command first checks whether or not W is irreducible.
For each irreducible Coxeter group a character table record is computed either using re-
cursive formulas (for the classical types: these functions are part of GAP and described in
detail in [Pfe94a]) or read into the system from a library file (for the exceptional types: the
tables can be found in the Cambridge ATLAS [CCN+85], for example). Thus, character
tables can be obtained quickly even for very large groups (e.g., E8) since they are obtained
via the classification and special algorithms or stored tables for irreducible groups. The
above record is a usual character table record as defined in GAP, but with some additional
components.

It is important to note that the conjugacy classes and the irreducible characters of a finite
Coxeter group each have a canonical labeling by certain combinatorial objects, and that
such labelings are contained in a consistent way in the tables of CHEVIE. For the classes,
these are partitions, pairs of partitions, or Carter’s admissible diagrams [Car72]. For the
characters, these are again partitions, pairs of partitions, or pairs of two integers (n, e)
where n is the degree of the character and e is the smallest symmetric power of the natural
reflection representation containing the given character as a constituent. This information
is obtained by using the functions ChevieClassInfo and ChevieCharInfo. It is printed
automatically when you display the character table in GAP.

The prototype for this is the symmetric group Sn+1 (type An) where the classes and char-
acters are parametrized by partitions of n+ 1.

gap> W := CoxeterGroup("A", 3);;
gap> Display(CharTable(W));
W(A3)

2 3 2 3 . 2
3 1 . . 1 .

1111 211 22 31 4

1449

1450 CHAPTER 77. CHARACTER TABLES FOR COXETER GROUPS

2P 1111 1111 1111 31 22
3P 1111 211 22 1111 4

1111 1 -1 1 1 -1
211 3 -1 -1 . 1
22 2 . 2 -1 .
31 3 1 -1 . -1
4 1 1 1 1 1

Recall that our Coxeter groups acts a reflection group on the real vector space V (we do
not assume that V is spanned by the roots, i.e., that W.rank = W.semisimpleRank). This
reflection representation and its character contain some further useful information about W .

Let SV be the symmetric algebra of V . The invariants of W in SV are called the polyno-
mial invariants of W . They are generated as a polynomial ring by dimV homogeneous
algebraically independent polynomials f1, . . . , fdimV . The polynomials fi are not uniquely
determined but their degrees are. The fi are called the basic invariants of W , and their
degrees the reflection degrees of W . Let I be the ideal generated by the homogeneous
invariants of positive degree in SV . Then SV/I is isomorphic to the regular representation
of W as a W -module. It is thus a graded (by the degree of elements of SV) version of
the regular representation of W . The polynomial which gives the graded multiplicity of a
character χ of W in the graded module SV/I is called the fake degree of χ. (See 77.2,
77.3 and 77.5.)

Using these constructions and the generic degrees of the corresponding one-parameter generic
Iwahori–Hecke algebra, one can associate four integers a,A, b, B with each irreducible char-
acter of W (see the functions 77.8, 77.9, 77.6, 77.7, and [Car85, Ch.11] for more details).
These will also be used in the operations of truncated inductions in chapter 78.

Iwahori-Hecke algebras associated with finite Coxeter groups also have character tables, see
Chapter 81.

We now describe, for each type of irreducible finite Coxeter groups, our conventions about
labeling the classes and characters. Assume that the Dynkin diagram of W is labeled as in
chapter 75.

Type An (n ≥ 0). In this case we have W ∼= Sn+1. The classes and characters are labeled by
partitions of n + 1. The partition corresponding to a class describes the cycle type for the
elements in that class. The partition corresponding to a character describes the type of the
Young subgroup such that the trivial character induced from this subgroup contains that
character with multiplicity 1 and every other character occuring in this induced character
has a higher a-value. Thus, the sign character corresponds to the partition (1n+1) and the
trivial character to the partition (n + 1). The character of the reflection representation of
W is labeled by (n, 1).

Type Bn (n ≥ 2). In this case W = W (Bn) is isomorphic to the wreath product of the
cyclic group of order 2 with the symmetric group Sn. Hence the classes and characters are
parametrized by pairs of partitions such that the total sum of their parts equals n. The
pair corresponding to a class describes the signed cycle type for the elements in that class,
as in [Car72]. We use the convention that if (λ, µ) is such a pair then λ corresponds to
the positive and µ to the negative cycles. Thus, (1n,−) and (−, 1n) label the trivial class

1451

and the class containing the longest element, respectively. The pair corresponding to an
irreducible character is determined via Clifford theory, as follows.

We have a semidirect product decomposition W (Bn) = N.Sn where N is the standard n-
dimensional Fn2 -vector space. For a, b ≥ 0 such that n = a + b let ηa,b be the irreducible
character of N which takes value 1 on the first a standard basis vectors and value −1 on the
next b standard basis vectors of N . Then the inertia subgroup of ηa,b has the form Ta,b :=
N.(Sa×Sb) and we can extend ηa,b trivially to an irreducible character η̃a,b of Ta,b. Let α and
β be partitions of a and b, respectively. We take the tensor product of the corresponding
irreducible characters of Sa and Sb and regard this as an irreducible character of Ta,b.
Multiplying this character with η̃a,b and inducing to W (Bn) yields an irreducible character
χ = χ(α,β) of W (Bn). This defines the correspondence between irreducible characters and
pairs of partitions as above.

For example, the pair ((n),−) labels the trivial character and (−, (1n)) labels the sign
character. The character of the natural reflection representation is labeled by ((n− 1), (1)).

Type Dn (n ≥ 4). In this case W = W (Dn) can be embedded as a subgroup of index 2
into the Coxeter group W (Bn). The intersection of a class of W (Bn) with W (Dn) is either
empty or a single class in W (Dn) or splits up into two classes in W (Dn). This also leads
to a parametrization of the classes of W (Dn) by pairs of partitions (λ, µ) as before but
where the number of parts of µ is even and where there are two classes of this type if µ is
empty and all parts of λ are even. In the latter case we denote the two classes in W (Dn)
by (λ,+) and (λ,−), where we use the convention that the class labeled by (λ,+) contains
a representative which can be written as a word in {s1, s3, . . . , sn} and (λ,−) contains a
representative which can be written as a word in {s2, s3, . . . , sn}.
By Clifford theory the restriction of an irreducible character of W (Bn) to W (Dn) is either
irreducible or splits up into two irreducible components. Let (α, β) be a pair of partitions
with total sum of parts equal to n. If α 6= β then the restrictions of the irreducible characters
of W (Bn) labeled by (α, β) and (β, α) are irreducible and equal. If α = β then the restriction
of the character labeled by (α, α) splits into two irreducible components which we denote by
(α,+) and (α,−). Note that this can only happen if n is even. In order to fix the notation
we use a result of [Ste89] which describes the value of the difference of these two characters
on a class of the form (λ,+) in terms of the character values of the symmetric group Sn/2.
Recall that it is implicit in the notation (λ,+) that all parts of λ are even. Let λ′ be the
partition of n/2 obtained by dividing each part by 2. Then the value of

χ(α,−) − χ(α,+)

on an element in the class (λ,+) is given by 2k(λ) times the value of the irreducible character
of Sn/2 labeled by α on the class of cycle type λ′. (Here, k(λ) denotes the number of non-zero
parts of λ.)

The labels for the trivial, the sign and the natural reflection character are the same as for
W (Bn), since these characters are restrictions of the corresponding characters of W (Bn).

Types G2 and F4. The matrices of character values and the orderings and labelings of the
irreducible characters are exactly the same as in [Car85, p.412/413]. Note, however, that in
CHEVIE we have reversed the labeling of the Dynkin diagrams to be in accordance with the
conventions in [Lus85, (4.8) and (4.10)].

1452 CHAPTER 77. CHARACTER TABLES FOR COXETER GROUPS

The classes are labeled by Carter’s admissible diagrams [Car72]. A character is labeled by
a pair (n, b) where n denotes the degree and b the corresponding b-invariant. If there are
several characters with the same pair (n, b) we attach a prime to them, as in [Car85].

For type F4 the result of ChevieCharInfo contains an additional component kondo which
contains the labels originally given by Kondo (and which are also used in [Lus85, (4.10)]).
The reflection character is labeled by (4, 1) or 42 (Kondo).

Types E6, E7, E8. The character tables are re-constructed from the compound tables in the
Cambridge ATLAS [CCN+85], p.26, p.46 and p.85, respectively (or, they can be recomputed
with GAP by the general Dixon-Schneider algorithm). The classes are labeled by Carter’s
admissible diagrams [Car72]. A character is labeled by the pair (n, b) where n denotes the
degree and b is the corresponding b-invariant. For these types, this gives a unique labeling
of the characters. The result of ChevieCharInfo contains an additional component frame
which contains the labels originally given by Frame (and which are used in [Lus85], (4.11),
(4.12), and (4.13)). For type E6, E7, E8, respectively, the reflection character is the one
with label (6, 1), (7, 1), (8, 1) or 6p, 7′a, 8z (Frame).

Non-crystallographic types I2(m), H3, H4. In these cases we do not have canonical labelings
for the classes.

Each character for type H3 is uniquely determined by the pair (n, b) where n is the degree
and b the corresponding b-invariant. For type H4 there are just two characters (those
of degree 30) for which the corresponding pairs are the same. These two characters are
nevertheless distinguished by their fake degrees: the first of these (in the CHEVIE-table) has
fake degree q10 + q12+ higher terms, while the second has fake degree q12 + q14+ higher
terms. The characters in the CHEVIE-table for type H4 are ordered in the same way as in
[AL82].

Finally, the characters of degree 2 for type I2(m) are ordered as follows. Let ε be a primitive
m-th root of unity. Then matrix representations affording the characters of degree 2 are
given by:

ϕj : s1s2 7→
(
εj 0
0 ε−j

)
, s1 7→

(
0 1
1 0

)
,

where 1 ≤ j ≤ (m − 1)/2 for m odd, and 1 ≤ j ≤ (m − 2)/2 for m even. The natural
reflection representation determined by the root system is ρ = ϕ1.

In GAP we take ε as E(m). Then the characters in the CHEVIE-table are ordered as
ϕ1, ϕ2,

77.1 CharTable for Coxeter groups

CharTable(W)

returns the character table of the Coxeter group W . This is a character table record as
defined in GAP. It is assigned to the record component charTable of W . The function
CharTable checks if this component is already bound. The (variable) record components
classtext, classnames and irredinfo contain the following information.

classtext
a list of reduced expressions for minimal length representatives in the conjugacy
classes of W

77.2. REFLECTIONCHARVALUE 1453

classnames
a list of Carter’s admissible diagrams (for exceptional, irreducible types) or partitions
resp. pairs of partitions (for classical, irreducible types). If the Coxeter group is not
irreducible tuples of such labels are given.

irredinfo
a list of records with a component charname which contains a string with a label
for an irreducible character. For an irreducible Coxeter group this label can either
be a partition or a pair of partitions, or it is a pair (n, e) where n is the degree of
the character and e is the smallest symmetric power of the character of the natural
reflection representation which contains the given character as a component. The
optional second component, charparam, contains this label as a list of numbers (if
it is possible to give it in this way). The labels for the group is a list of labels
corresponding to the irreducible components (as given by CartanType).

gap> W := CoxeterGroup("G", 2);;
gap> ct := CharTable(W);
CharTable("W(G2)")
gap> ct.classtext;
[[], [2], [1], [1, 2], [1, 2, 1, 2], [1, 2, 1, 2, 1, 2]]
gap> ct.classnames;
[" ", "~A_1", "A_1", "G_2", "A_2", "A_1 + ~A_1"]
gap> ct.irredinfo;
[rec(

charparam := [[1, 0]],
charname := "phi_{1,0}"), rec(
charparam := [[1, 6]],
charname := "phi_{1,6}"), rec(
charparam := [[1, 3, "’"]],
charname := "phi_{1,3}’"), rec(
charparam := [[1, 3, "’’"]],
charname := "phi_{1,3}’’"), rec(
charparam := [[2, 1]],
charname := "phi_{2,1}"), rec(
charparam := [[2, 2]],
charname := "phi_{2,2}")]

These functions require the package ”chevie”(see 56.1).

77.2 ReflectionCharValue

ReflectionCharValue(W , w)

Let V be the vector space on which the Coxeter group W acts, and let w be the linear
automorphism of V induced by a permutation of the roots (acting trivially on the orthogonal
of the roots if W.rankW.semisimpleRank). ReflectionCharValue returns the trace of w on
V .

gap> W := CoxeterGroup("A", 3);
CoxeterGroup("A", 3)
gap> List(Elements(W), x -> ReflectionCharValue(W, x));

1454 CHAPTER 77. CHARACTER TABLES FOR COXETER GROUPS

[3, 1, -1, 0, -1, -1, 0, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, -1, 0, -1,
1, 0, -1, 0]

This function requires the package ”chevie”(see 56.1).

77.3 ReflectionDegrees

ReflectionDegrees(W)

returns a list holding the degrees of W as a reflection group on the vector space V on which
it acts. These are the degrees d1, . . . , ddimV of the basic invariants of W in SV , written in
increasing order. They reflect various properties of W ; in particular, their product is the
size of W .

gap> W := CoxeterGroup("H", 4);
CoxeterGroup("H", 4)
gap> ReflectionDegrees(W);
[2, 12, 20, 30]
gap> Size(W);
14400

This function requires the package ”chevie”(see 56.1).

77.4 FakeDegrees

FakeDegrees(W , q)

returns a list holding the fake degrees of W as a reflection group on the vector space V
on which it acts, evaluated at q . These are the graded multiplicities of the irreducible
characters of W in the quotient SV/I where SV is the symmetric algebra of V and I is the
ideal generated by the homogeneous invariants of positive degree in SV . The ordering of
the result corresponds to the ordering of the characters in CharTable(W).

gap> q := X(Rationals);; q.name := "q";;
gap> FakeDegrees(CoxeterGroup("A", 2), q);
[q^3, q^2 + q, q^0]

This function requires the package ”chevie”(see 56.1).

77.5 FakeDegree

FakeDegree(W , phi, q)

returns the fake degree of the character labelled by phi of the Coxeter group W as a reflection
group on the vector space V on which it acts, evaluated at q . The label phi should be the
parameter given as a result of CharParams (see section 75.6).

gap> q := X(Rationals);; q.name := "q";;
gap> FakeDegree(CoxeterGroup("A", 2), [[2, 1]], q);
q^2 + q

This function requires the package ”chevie”(see 56.1).

77.6. LOWESTPOWERFAKEDEGREES 1455

77.6 LowestPowerFakeDegrees

LowestPowerFakeDegrees(W)

return a list holding the b-function for all irreducible characters of W , that is, for each
character χ, the valuation of the fake degree of χ. The ordering of the result corresponds
to the ordering of the characters in CharTable(W).

gap> LowestPowerFakeDegrees(CoxeterGroup("D", 4));
[6, 6, 7, 12, 4, 3, 6, 2, 2, 4, 1, 2, 0]

This function requires the package ”chevie”(see 56.1).

77.7 HighestPowerFakeDegrees

HighestPowerFakeDegrees(W)

returns a list holding the B-function for all irreducible characters of W , that is, for each
character χ, the degree of the fake degree of χ. The ordering of the result corresponds to
the ordering of the characters in CharTable(W).

gap> HighestPowerFakeDegrees(CoxeterGroup("D", 4));
[10, 10, 11, 12, 8, 9, 10, 6, 6, 8, 5, 6, 0]

This function requires the package ”chevie”(see 56.1).

77.8 LowestPowerGenericDegrees

LowestPowerGenericDegrees(W)

returns a list holding the a-function for all irreducible characters of the Coxeter group W ,
that is, for each character χ, the valuation of the generic degree of χ (in the one-parameter
Iwahori-Hecke algebra Hecke(W,X(Rationals)) corresponding to W). The ordering of the
result corresponds to the ordering of the characters in CharTable(W).

gap> LowestPowerGenericDegrees(CoxeterGroup("D", 4));
[6, 6, 7, 12, 3, 3, 6, 2, 2, 3, 1, 2, 0]

This function requires the package ”chevie”(see 56.1).

77.9 HighestPowerGenericDegrees

HighestPowerGenericDegrees(W)

returns a list holding the A-function for all irreducible characters of the Coxeter group W ,
that is, for each character χ, the degree of the generic degree of χ (in the one-parameter
Iwahori-Hecke algebra Hecke(W,X(Rationals)) corresponding to W). The ordering of the
result corresponds to the ordering of the characters in CharTable(W).

gap> HighestPowerGenericDegrees(CoxeterGroup("D", 4));
[10, 10, 11, 12, 9, 9, 10, 6, 6, 9, 5, 6, 0]

This function requires the package ”chevie”(see 56.1).

1456 CHAPTER 77. CHARACTER TABLES FOR COXETER GROUPS

77.10 ChevieCharInfo

ChevieCharInfo(W)

returns information about the irreducible characters of the finite Coxeter group W . The
result is a record with the components: charparams contains the result of CharParams(W),
charnames contains the corresponding names returned by CharName, and a, A, b, B, con-
tain the results of LowestPowerGenericDegrees(W), HighestPowerGenericDegrees(W),
LowestPowerFakeDegrees(W), HighestPowerFakeDegrees(W), respectively. Moreover,
the components positionId and positionSgn contain the position of the trivial and the
sign character, respectively, in the character table of W . If W is irreducible, there is an
additional component positionRefl which contains the position of the character of the
reflection representation.

gap> ChevieCharInfo(CoxeterGroup("G", 2));
rec(

charparams := [[[1, 0]], [[1, 6]], [[1, 3, "’"]],
[[1, 3, "’’"]], [[2, 1]], [[2, 2]]],

charnames :=
["phi_{1,0}", "phi_{1,6}", "phi_{1,3}’", "phi_{1,3}’’",

"phi_{2,1}", "phi_{2,2}"],
a := [0, 6, 1, 1, 1, 1],
A := [0, 6, 5, 5, 5, 5],
b := [0, 6, 3, 3, 1, 2],
B := [0, 6, 3, 3, 5, 4],
positionId := 1,
positionSgn := 2,
positionRefl := 5)

If W is irreducible of type F4 or of type En (n = 6, 7, 8) then there is an additional compo-
nent kondo or frame, respectively, which gives the labeling of the characters as determined
by Kondo and Frame.

gap> W := CoxeterGroup("E", 6);;
gap> ChevieCharInfo(W).frame;
["1_p", "1_p’", "10_s", "6_p", "6_p’", "20_s", "15_p", "15_p’",
"15_q", "15_q’", "20_p", "20_p’", "24_p", "24_p’", "30_p", "30_p’",
"60_s", "80_s", "90_s", "60_p", "60_p’", "64_p", "64_p’", "81_p",
"81_p’"]

See also 76.14.

This function requires the package ”chevie”(see 56.1).

77.11 PositionId and PositionSgn

PositionId(W)

PositionSgn(W)

return the position of the trivial and the sign character, respectively, in the character table
of the group W .

gap> W := CoxeterGroup("D", 4);;

77.11. POSITIONID AND POSITIONSGN 1457

gap> PositionId(W);
13
gap> PositionSgn(W);
4

For PositionId, one could also give an arbitrary finite group or its character table as
argument.

See also 76.14.

This function requires the package ”chevie”(see 56.1).

1458 CHAPTER 77. CHARACTER TABLES FOR COXETER GROUPS

Chapter 78

Reflection subgroups

Let W be a finite Coxeter group, corresponding to a root system R in an Euclidean space V .
Let S be the set of generators corresponding to some system of fundamental roots in R. Then
{wsw−1 | w ∈W, s ∈ S} is the set of all reflections in W . A reflection subgroup H of W
is a subgroup generated by the reflections it contains. If H is generated by reflections with
respect to a subset of the fundamental roots it is called a standard parabolic subgroup
of W . A parabolic subgroup is a subgroup H of W which is conjugate to some standard
parabolic subgroup. A parabolic subgroup H is characterized among all reflection subgroups
of W by the fact that the set of all roots in R for which the corresponding reflection lies in
H is closed under (real) linear combinations.

It is a theorem discovered by Deodhar [Deo89] and Dyer [Dye90] independently at the same
time that a reflection subgroup H has a canonical set of fundamental roots even if it is not
parabolic: Let Q be the set of all roots for which the corresponding reflection lies in H; then
a fundamental system of roots for H is given by the positive roots t ∈ Q such that the set
of roots whose sign is changed by the reflection with root t meets Q in the single element
t. This is used by the routine ReflectionSubgroup to determine the root system Q of a
reflection subgroup H. This function takes the original record for W and a list of indices
for the roots as input.

gap> W := CoxeterGroup("G", 2);
CoxeterGroup("G", 2)
gap> W.roots[4];
[1, 2]
gap> H := ReflectionSubgroup(W, [2, 4]);
ReflectionSubgroup(CoxeterGroup("G", 2), [2, 3])
gap> PrintDynkinDiagram(H);
~A2 2 - 3 # not a parabolic subgroup

We also see that the result of the above algorithm is that W.roots[2] and W.roots[3] form
a system of simple roots in H.

The line containing the Dynkin diagram of H introduces a convention: we use the notation
"~A" to denote a root subsystem of type "A" generated by short roots.

The record for the subgroup contains additional components the most important of which
is rootInclusion which gives the positions of the roots in Q in the original root system R:

1459

1460 CHAPTER 78. REFLECTION SUBGROUPS

gap> H.rootInclusion;
[2, 3, 4, 8, 9, 10]

The inverse map is stored in H.rootRestriction. If H is a standard parabolic subgroup of
W then the length function on H (with respect to its set of generators) is the restriction of
the length function on W . This need not no longer be true for arbitrary reflection subgroups
of W :

gap> CoxeterLength(W, H.generators[2]);
3
gap> CoxeterLength(H, H.generators[2]);
1

In GAP, the Coxeter group W is represented as a permutation group on R. Consequently, a
reflection subgroup H ⊆W is a permutation subgroup, i.e., its elements are represented as
permutations of the roots of the parent group. This has to be kept in mind when working
with reduced expressions and functions like CoxeterWord, and PermCoxeterWord.

Reduced words in simple reflections of H:

gap> el := CoxeterWords(H);
[[], [2], [3], [2, 3], [3, 2], [2, 3, 2]]

Reduced words in the generators of H:

gap> el1 := List(el, x -> H.rootRestriction{ x });
[[], [1], [2], [1, 2], [2, 1], [1, 2, 1]]

Permutations on the roots of W :

gap> el2 := List(el, x -> PermCoxeterWord(H, x));
[(), (1, 5)(2, 8)(3, 4)(7,11)(9,10),
(1,12)(2, 4)(3, 9)(6, 7)(8,10),
(1, 5,12)(2,10, 3)(4, 9, 8)(6, 7,11),
(1,12, 5)(2, 3,10)(4, 8, 9)(6,11, 7),
(2, 9)(3, 8)(4,10)(5,12)(6,11)]

Reduced words in the generators of W :

gap> List(el2, x -> CoxeterWord(W, x));
[[], [2], [1, 2, 1], [2, 1, 2, 1], [1, 2, 1, 2],
[2, 1, 2, 1, 2]]

Another basic result about reflection subgroups is that each coset of H in W contains a
unique element of minimal length. Since a coset is a subset of W , the length of elements is
taken with respect to the roots of W .) See 78.4.

In many applications it is useful to know the decomposition of the irreducible characters of
W when we restrict them from W to a reflection subgroup H (defined as in Section 78). In
order to apply the usual GAP functions for inducing and restricting characters and computing
scalar products, we need to know the fusion map for the conjugacy classes of H into those
of W . This is done, as usual, with the GAP function FusionConjugacyClasses, which calls
a special implementation for Coxeter groups. The decomposition of induced characters into
irreducibles then is a simple matter of combining some functions which already exist in GAP.
There is an additional function, InductionTable, which performs this job.

gap> W := CoxeterGroup("G", 2);;

78.1. REFLECTIONSUBGROUP 1461

gap> W.roots[4];
[1, 2]
gap> H := ReflectionSubgroup(W, [2, 4]);;
gap> Display(InductionTable(H, W));
Induction from ~A2 into G2

| 111 21 3

phi_{1,0} | . . 1
phi_{1,6} | 1 . .
phi_{1,3}’ | . . 1
phi_{1,3}’’ | 1 . .
phi_{2,1} | . 1 .
phi_{2,2} | . 1 .

We have similar functions for the j-induction and the J-induction of characters. These
operations are obtained by truncating the induced characters by using the a-invariants and
b-invariants associated with the irreducible characters of W (see 78.6 and 78.7).

78.1 ReflectionSubgroup

ReflectionSubgroup(W , r)

Returns the reflection subgroup of the real reflection group W generated by the reflections
with roots specified by r . r is a list of indices specifying a subset of the roots of W .

A reflection subgroup H of W is a permutation subgroup, and otherwise has the same fields
as a Coxeter group, with some new ones added which express the relationship with the
parent W :

rootInclusion
the indices of the roots in the roots of W

parentN
the number of positive roots of W

rootRestriction
a list of length 2*H.parentN with entries in positions H.rootInclusion bound to
[1..2*H.N].

A Coxeter group which is not a subgroup actually also contains these fields, set to the trivial
values:rootInclusion = [1 .. 2*W.N], parentN = W.N and rootRestriction = [1
.. 2*W.N].

With these fields, you can, e.g., test if the i-th fundamental root of H root is left positive
by the element w of H (given as a permutation of the roots of the parent) with

H.rootInclusion[i] ^w <= H.parentN

Programs dealing with Coxeter groups should be written this way to work for Coxeter
subgroups (instead of just writing i^w <= H.N).

ReflectionSubgroup returns a subgroup of the parent group of the argument (like the GAP
function Subgroup).

gap> W := CoxeterGroup("F", 4);;
gap> H := ReflectionSubgroup(W, [1, 2, 11, 20]);

1462 CHAPTER 78. REFLECTION SUBGROUPS

ReflectionSubgroup(CoxeterGroup("F", 4), [1, 2, 9, 16])
gap> CartanName(H);
"D4" # not a parabolic subgroup
gap> H.rootRestriction;
[1, 2,,, 5,,,, 3,, 6,,, 8,, 4,, 7,, 9,, 10, 11, 12, 13, 14,,, 17,,,,
15,, 18,,, 20,, 16,, 19,, 21,, 22, 23, 24]

gap> ReflectionSubgroup(H, [1, 2, 6]);
ReflectionSubgroup(CoxeterGroup("F", 4), [1, 2, 3])

This function requires the package ”chevie”(see 56.1).

78.2 Functions for reflection subgroups

All functions for Coxeter groups are actually defined for reflection subgroups. The genera-
tors for the subgroups are labeled according to the corresponding number of the root they
represent in the parent group. This affects the labeling given by all functions dealing with
words and generators, e.g., PrintDynkinDiagram or PermCoxeterWord.

gap> W := CoxeterGroup("F", 4);
CoxeterGroup("F", 4)
gap> H := ReflectionSubgroup(W, [10, 11, 12]);
ReflectionSubgroup(CoxeterGroup("F", 4), [10, 11, 12])
gap> PrintDynkinDiagram(H);
C2 11 > 10
~A1 12
gap> LongestCoxeterWord(H);
[10, 11, 10, 11, 12]

Also, as one may notice in the example above, there is one particularity of the functions
CartanType, CartanName and PrintDynkinDiagram for Coxeter subgroups: an irreducible
subsystem which consists of short roots in a system which has longer roots (i.e., type "B",
"C", "G" or "F") is labeled as type "~A".

These functions require the package ”chevie”(see 56.1).

78.3 ReducedInCoxeterCoset

ReducedInCoxeterCoset(W , w)

w is an automorphism of the Coxeter group W or of a parent group of W , given as a
permutation of the roots. ReducedInCoxeterCoset returns the unique element in the right
coset W.w which sends all roots of W to positive roots.

gap> W := CoxeterGroup("F", 4);;
gap> H := ReflectionSubgroup(W, [1, 2, 9, 16]);;
gap> PrintDynkinDiagram(H);
D4 9

\
1 - 16
/
2

gap> w := PermCoxeterWord(W, [3, 2, 3, 4, 3, 2]);;

78.4. REDUCEDRIGHTCOSETREPRESENTATIVES 1463

gap> f := ReducedInCoxeterCoset(H, w);;
gap> CoxeterWord(W, f);
[4, 3]
gap> H.rootInclusion{[1 ..4]};
[1, 2, 9, 16]

The triality automorphism of D4:

gap> OnTuples(H.rootInclusion{[1 .. 4]}, f);
[1, 9, 16, 2]

This function requires the package ”chevie”(see 56.1).

78.4 ReducedRightCosetRepresentatives

ReducedRightCosetRepresentatives(W , H)

returns a list of reduced elements in the Coxeter group W which are distinguished rep-
resentatives for the right cosets of the reflection subgroup H in W . The distinguished
representative in the coset H.w is the unique element in the coset which sends all roots of
H to positive roots (the element returned by ReducedInCoxeterCoset). It is also the ele-
ment of minimal length in the coset. The representatives are returned in order of increasing
length.

gap> W := CoxeterGroup("B", 3);;
gap> H := ReflectionSubgroup(W, [2, 3]);;
gap> List(ReducedRightCosetRepresentatives(W, H),
> x-> CoxeterWord(W, x));
[[], [1], [1, 2], [1, 2, 1], [1, 2, 3], [1, 2, 1, 3],
[1, 2, 1, 3, 2], [1, 2, 1, 3, 2, 1]]

This function requires the package ”chevie”(see 56.1).

78.5 PermCosetsSubgroup

PermCosetsSubgroup(W , H)

returns the list of permutations induced by the standard generators of the Coxeter group
W on the cosets of the Coxeter subgroup H . The cosets are in the order determined by the
result of the function ReducedRightCosetRepresentatives(W , H).

gap> W := CoxeterGroup("F", 4);;
gap> PermCosetsSubgroup(W, ReflectionSubgroup(W, [1, 2, 3]));
[(4, 5)(6, 7)(8,10)(16,18)(17,20)(19,21),
(3, 4)(7, 9)(10,12)(14,16)(15,17)(21,22),
(2, 3)(4, 6)(5, 7)(9,11)(12,14)(13,15)(17,19)(20,21)(22,23),
(1, 2)(6, 8)(7,10)(9,12)(11,13)(14,15)(16,17)(18,20)(23,24)]

This function requires the package ”chevie”(see 56.1).

78.6 jInductionTable for Macdonald-Lusztig-Spaltenstein
induction

jInductionTable(H , W)

1464 CHAPTER 78. REFLECTION SUBGROUPS

computes the decomposition into irreducible characters of W of the j-induced of the irre-
ducible characters of H . The j-induced of χ is the sum of the irreducible components of the
induced of χ which have same b-function (see 77.6) as χ. In the table the rows correspond to
the characters of the parent group, the columns to those of the subgroup. What is returned
is actually a record with several fields:scalar contains the induction table proper, and there
is a Display method. The other fields contain labeling information taken from the character
tables of H and W when it exists.

gap> W := CoxeterGroup("D", 4);;
gap> H := ReflectionSubgroup(W, [1, 3]);;
gap> Display(jInductionTable(H, W));
j-Induction from A2 into D4

| 111 21 3

11.+ | . . .
11.- | . . .
1.111 | . . .
.1111 | . . .
11.2 | . . .
1.21 | 1 . .
.211 | . . .
2.+ | . . .
2.- | . . .
.22 | . . .
1.3 | . 1 .
.31 | . . .
.4 | . . 1

This function requires the package ”chevie”(see 56.1).

78.7 JInductionTable

JInductionTable(H , W)

JInductionTable computes the decomposition into irreducible characters of W of the J-
induced of the irreducible characters of H . The J-induced of χ is the sum of the irreducible
components of the induced of χ which have same a-function (see 77.8) as χ. In the table the
rows correspond to the characters of the parent group, the columns to those of the subgroup.
What is returned is actually a record with several fields:scalar contains the induction table
proper, and there is a Display method. The other fields contain labeling information taken
from the character tables of H and W when it exists.

gap> W := CoxeterGroup("D", 4);;
gap> H := ReflectionSubgroup(W, [1, 3]);;
gap> Display(JInductionTable(H, W));
J-Induction from A2 into D4

| 111 21 3

11.+ | . . .
11.- | . . .
1.111 | . . .

78.7. JINDUCTIONTABLE 1465

.1111 | . . .
11.2 | 1 . .
1.21 | 1 . .
.211 | . . .
2.+ | . . .
2.- | . . .
.22 | . . .
1.3 | . 1 .
.31 | . . .
.4 | . . 1

This function requires the package ”chevie”(see 56.1).

1466 CHAPTER 78. REFLECTION SUBGROUPS

Chapter 79

Artin-Tits braid groups

Let W be a Coxeter group, with presentation

〈s1, . . . , sn | s2
i = 1, sisjsi · · ·︸ ︷︷ ︸

m(i,j) factors

= sjsisj · · ·︸ ︷︷ ︸
m(i,j) factors

for all i, j with i 6= j〉

for some Coxeter matrix M = {m(i, j)}i,j such that the Coxeter group is finite. The braid
group B = B(M) associated to W is the group defined by the presentation

〈s1, . . . , sn | sisjsi · · ·︸ ︷︷ ︸
m(i,j) factors

= sjsisj · · ·︸ ︷︷ ︸
m(i,j) factors

for all i, j with i 6= j〉

Usually, we will use the same symbols for generators and elements of W and of B, except that
we will use bold letters for elements of B. This is justified by the fact that there is a canonical
section to the natural quotient map B → W given as follows. Let w ∈ W and choose a
reduced expression w = s1 · · · sm. Then the corresponding product w = s1 · · · sm ∈ B is
independent of the chosen minimal expression. Let B+ be the submonoid of B consisting
of all words in the generators si of B (words with no inverses); in this way, we can identify
W with the subset B+

red of B+ which consists of the elements of B+ of the same length as
their image in W .

If W is a real reflection group in the vector space V with root system R, then B has also a
topological definition as the fundamental group Π1 of the space ((V −

⋃
r∈RHr) ⊗C)/W ,

where Hr is the hyperplane orthogonal to the root r; however, we will not use this here.

We will represent in GAP words of the braid group associated to the Coxeter group W
using a normal form based on theorems of Deligne [Del72] (which extend previous work of
Brieskorn, Saito [BS72] and Garside [Gar69]):

(i) Let w0 be the element in B+ which lifts the longest element of W , as explained above.
Then, given any element b ∈ B, there is some power wi

0 such that wi
0b ∈ B+.

(ii) Let b ∈ B+. Then there is a unique longest element α(b) of B+

red which divides b on
the left (which means that b = α(b)y for some y ∈ B+).

1467

1468 CHAPTER 79. ARTIN-TITS BRAID GROUPS

We use (i) and (ii) to represent an element b ∈ B: we first compute the smallest power of
w0 such that wi

0b ∈ B+, and we represent b by the couple (i,wi
0b). We are thus reduced

to the case where b ∈ B+. We then represent b by the sequence of elements of the Coxeter
group α(b), α(α(b)−1b), Given a Coxeter group W , the function Braid(W) constructs
an element of the associated braid group from a list of generators. Here is an example:

gap> W := CoxeterGroup("A", 4);;
gap> w := Braid(W)(1, 2, 3, 4);
1234
gap> w ^ 3;
121321432.343
gap> w ^ 4;
w0^1.232432
gap> w ^ -1;
w0^-1.232432

How the element is printed exactly is controlled by the variable PrintBraid. This variable
is a component of the global file CHEVIE, and the user can change its value whenever he or
she wants during a GAP session. When you load the CHEVIE package, CHEVIE.PrintBraid
is initialized to the string "Deligne", as in the above examples. If it is set to "GAP", then
the element is printed in a form which after assigning B:=Braid(W); can be input back into
GAP:

gap> CHEVIE.PrintBraid;
"Deligne"
gap> CHEVIE.PrintBraid := "GAP";
"GAP"
gap> w;
B([1, 2, 3, 4])
gap> w ^ 3;
B([1, 2, 1, 3, 2, 1, 4, 3, 2, 3, 4, 3])
gap> w ^ -1;
B([2, 3, 2, 4, 3, 2],-1)

The third possible value "Charney" for CHEVIE.PrintBraid is based on an idea of Ruth
Charney [Cha92] to find the smallest element y ∈ B+ such that y.b ∈ B+, and print b by
printing (y)−1 followed by the Deligne normal form of y.b :

gap> CHEVIE.PrintBraid := "Charney";
"Charney"
gap> w ^ -1;
(1234)^-1.

79.1 Construction of braid elements

Braid(W)(s1, .., sn)

Braid(W)(list [, pw0])

Braid(W)(p [, pw0])

79.2. OPERATIONS FOR BRAID ELEMENTS 1469

Let W be a Coxeter group and let w be an element of W , represented as a permutation p
of the roots, or as a sequence s1, .., sn of integers representing a (non necessarily reduced)
word in the generators of W . The calls above return the element of the braid monoid of
W defined by w . If pw0 (a positive or negative integer) is given, the resulting element is
multiplied in the braid group by wpw0

0 . The result of Braid(W) is a braid-making function,
which can be assigned to make conveniently braid elements as in the example below.

A braid element b corresponding to the Coxeter group W is represented as a record with
fields pw0, elm and operations. elm represents an element x ∈ B+, and elm and pw0 are
such that b = wpw0

0 x and w−1
0 x /∈ B+. elm is a sequence of elements of W (permutations

of the roots), which are the image in W of α(b), α(α(b)−1b), operations contains the
operations described in the section 79.2.

gap> CHEVIE.PrintBraid := "Deligne";;
gap> W := CoxeterGroup("A", 3);;
gap> B := Braid(W);
function (arg) ... end
gap> B(W.generators[1]);
1
gap> B(2, 1, 2, 1, 1);
121.1.1
gap> B([2, 1, 2, 1, 1], -1);
w0^-1.121.1.1

This function requires the package ”chevie”(see 56.1).

79.2 Operations for braid elements

A braid element b corresponding to the Coxeter group W is represented as a record with
fields pw0, elm and operations which contains the operations described below. All examples
below are with CHEVIE.PrintBraid="Deligne".

b1 * b2

The multiplication of two braid elements is defined, if they are braid elements of the same
group, returning a braid element.

gap> W := CoxeterGroup("A", 2);;
gap> a := Braid(W)([1]);
1
gap> b := Braid(W)([2]);
2
gap> a * b;
12

b1 ^ i

A braid element can be raised to an integral, positive or negative, power, returning a braid
element.

gap> (a * b) ^ 4;
w0^2.12
gap> (a * b) ^ -1;

1470 CHAPTER 79. ARTIN-TITS BRAID GROUPS

w0^-1.2

b1 ^ b2

This returns b−1
1 b2b1.

gap> a ^ b;
w0^-1.21.12

b1 / b2

This returns b1b−1
2 .

gap> a / b;
w0^-1.2.21

CoxeterGroup(b)

This function returns the Coxeter group for which b is a braid element.

gap> CoxeterGroup(a);
CoxeterGroup("A", 2)

String(b)

Print(b)

String returns a display form of the element b, and Print prints the result of String.
The way elements are printed depends on the global variable CHEVIE.PrintBraid. If set
to "GAP", the elements are printed in a form which can be read in back by the function
Braid(W). If set to "Deligne" (resp. "Charney") the Deligne (resp. Charney) normal form
(as explained in the introduction) is printed:

gap> CHEVIE.PrintBraid := "GAP";;
gap> (a * b) ^ -1;
B([2],-1)
gap> CHEVIE.PrintBraid := "Charney";;
gap> (a * b) ^ -1;
(12)^-1.
gap> CHEVIE.PrintBraid := "Deligne";;
gap> (a * b) ^ -1;
w0^-1.2

Frobenius(WF)(b)

The Frobenius of a Coxeter coset associated to CoxeterGroup(b) can be applied to b. See
the Chapter on Coxeter cosets.

This function requires the package ”chevie”(see 56.1).

79.3 PermBraid

PermBraid(b)

Returns the image of the braid element b in the Coxeter group CoxeterGroup(b) of which
b is a braid element.

gap> W := CoxeterGroup("A", 3);;
gap> b := Braid(W)([2, 1, 2, 1, 1]);
121.1.1

79.4. WORDBRAID 1471

gap> p := PermBraid(b);
(1, 8)(2, 7)(3, 6)(4,10)(9,12)
gap> CoxeterWord(W, p);
[1, 2, 1]

This function requires the package ”chevie”(see 56.1).

79.4 WordBraid

WordBraid(b)

b is a braid element which must be in the braid monoid. WordBraid returns as a list of
indices the list of generators of the braid monoid B(W) of which b is an element (the group
W can be obtained by CoxeterGroup(b)).

gap> W := CoxeterGroup("A", 3);;
gap> b := Braid(W)([2, 1, 2, 1, 1]);
121.1.1
gap> WordBraid(b);
[1, 2, 1, 1, 1]

This function requires the package ”chevie”(see 56.1).

79.5 GoodCoxeterWord

GoodCoxeterWord(W , w)

Let W be a Coxeter group with associated braid monoid B+. GoodCoxeterWord checks if
the element w of W (given as sequence of generators of W) represents a “good element”
in the sense of Geck-Michel [GM97] of the braid monoid, i.e., if wd (where d is the order of
the element w in W , and w is the element of B+

red with image w) is a product of (the braid
elements corresponding to) longest elements in a decreasing chain of parabolic subgroups of
W . If this is true, then a list of couples, the corresponding subsets of the generators with
their multiplicities in the chain, is returned. Otherwise, false is returned.

Good elements have nice properties with respect to their eigenvalues in irreducible represen-
tations of the Hecke-Iwahori algebra associated to W . The representatives in the component
classtext of ChevieClassInfo(W) are all good elements of minimal length in their class.

gap> W := CoxeterGroup("F", 4);;
gap> w:=[2, 3, 2, 3, 4, 3, 2, 1, 3, 4];;
gap> GoodCoxeterWord(W, w);
[[[1 .. 4], 2], [[3, 4], 4]]
gap> OrderPerm(PermCoxeterWord(W, w));
6
gap> Braid(W)(w) ^ 6;
w0^2.343.343.343.343
gap> GoodCoxeterWord(W, [3, 2, 3, 4, 3, 2, 1, 3, 4, 2]);
false

This function requires the package ”chevie”(see 56.1).

1472 CHAPTER 79. ARTIN-TITS BRAID GROUPS

Chapter 80

Complex reflection groups,
cyclotomic algebras

Preliminary support for complex reflection groups and cyclotomic Hecke algebras has been
added to the CHEVIE package. A complex reflection group is a group W acting on a vector
space V , and generated by pseudo-reflections in V . The field of definition of W is defined
to be the field of definition of V . It turns out that, as for rational reflection groups (Weyl
groups), all representations of a complex reflection group W are defined over the field of
definition of W (cf. [Ben76] and D. Bessis thesis). Similarly to Coxeter groups, complex
reflection groups are represented by the permutation representation on a set of roots in V
invariant by W and such that all reflections in W are reflections with respect to some root
(see 80.1). However there is no general theory on how to construct a nice set of roots for
an arbitrary reflection group; the roots given in GAP where obtained case-by-case in an ad
hoc way.
Irreducible complex reflection groups have been classified by Shephard and Todd. They
contain one infinite family depending on 3 parameters, and 34 “exceptional”groups (which
have been given by Shephard and Todd a number which actually varies from 4 to 37, and
covers also the exceptional Coxeter groups, e.g., CoxeterGroup("E",8) is the group of
Shephard-Todd number 37).
The cyclotomic Hecke algebra (see 80.3) corresponding to a complex reflection group is
defined in a similar way as the Iwahori–Hecke algebra; for details see [BM93]. G. Malle has
computed character tables for some of these algebras, including all 2-dimensional groups,
see [BM93] and [Mal96]; CHEVIE contains those of type G(e, 1, 1), G4, G5, G6, G8, G9, G12

and G25 in the Shephard-Todd classification.

80.1 ComplexReflectionGroup

ComplexReflectionGroup(STnumber)

ComplexReflectionGroup(p, q, r)

The first form of ComplexReflectionGroup returns the complex reflection group which has
Shephard-Todd number STnumber , see [ST54]. The second form returns the imprimitive
complex reflection group G(p, q, r).

1473

1474CHAPTER 80. COMPLEX REFLECTION GROUPS, CYCLOTOMIC ALGEBRAS

gap> G := ComplexReflectionGroup(4);
ComplexReflectionGroup(4)
gap> ReflectionDegrees(G);
[4, 6]
gap> Size(G);
24
gap> q := X(Cyclotomics);; q.name := "q";;
gap> FakeDegrees(G, q);
[q^0, q^8, q^4, q^7 + q^5, q^3 + q, q^5 + q^3, q^6 + q^4 + q^2]

Complex reflection groups are represented as permutation group records with the following
additional fields

roots
a set of complex roots in V , given as a matrix, on which W has a faithful permutation
representation. roots[1..semisimpleRank] should be linearly independent. Roots
are not always of same length, and sometimes the number of roots may be greater
than the order of W !

semisimpleRank
the dimension of the subspace of V generated by the roots (for an irreducible group,
equal to the dimension of V).

80.2 Operations for complex reflection groups

All permutation group operations are defined on complex reflection groups. The following
operations and functions have been rewritten to take advantage of the particular structure
of reflection groups:

Print
prints a complex reflection group in a form that can be input back in GAP.

ReflectionDegrees
the list of reflection degrees.

Size
Uses the product of the ReflectionDegrees to work faster.

FakeDegrees(W,q)
The list of fake degrees as polynomials in q .

ReflectionCharValue(W,w)
The value of the reflection character on the element w of W , given as a permutation
of the roots.

These functions require the package ”chevie”(see 56.1).

80.3 Hecke for complex reflection groups

Hecke(G, para)

returns the cyclotomic Hecke algebra corresponding to the complex reflection group G . The
parameters of this algebra are specified in the variable para, which may be either a single
value or a list of parameters.

80.4. OPERATIONS FOR CYCLOTOMIC HECKE ALGEBRAS 1475

gap> G := ComplexReflectionGroup(4, 2, 3);
ComplexReflectionGroup(4,2,3)
gap> v := X(Cyclotomics);; v.name := "v";;
gap> CH := Hecke(G, v);
Hecke(ComplexReflectionGroup(4,2,3),v)

This function requires the package ”chevie”(see 56.1).

80.4 Operations for cyclotomic Hecke algebras

Group
returns the complex reflection group from which the cyclotomic Hecke algebra was
generated.

Print
prints the cyclotomic Hecke algebra in a form which can be read back into GAP.

SchurElements
returns Schur elements (analogously defined as for Iwahori–Hecke algebras) for some
types of exceptional cyclotomic Hecke algebras.

CharTable
returns the character table for some types of cyclotomic Hecke algebras, namely those
of type G(e, 1, 1), G4, G5, G6, G8, G9, G12 and G25 in the Shephard-Todd classifi-
cation. This is a record with exactly the same components as for the corresponding
complex reflection group but where the component irreducibles contains the values
of the irreducible characters of the algebra on certain basis elements Tw where w runs
over the elements in the component classtext. Thus, the value are now polynomials
in the parameters of the algebra.

gap> G := ComplexReflectionGroup(4);
ComplexReflectionGroup(4)
gap> v := X(Cyclotomics);; v.name := "v";;
gap> CH := Hecke(G, v);
Hecke(ComplexReflectionGroup(4),v)
gap> Display(CharTable(CH));
H(G4)

2 3 3 1 1 2 1 1
3 1 1 1 1 . 1 1

1a 2a 3a 3b 4a 6a 6b
2P 1a 1a 3b 3a 2a 3a 3b
3P 1a 2a 1a 1a 4a 2a 2a

phi_{1,0} 1 v^6 v v^2 v^3 v^2 v^10
phi_{1,4} 1 1 A /A 1 /A A
phi_{1,8} 1 1 /A A 1 A /A
phi_{2,1} 2 (-2)v^3 v+(E(3)) v^2+(E(3)^2) . (E(3))v (E(3)^2)v^5
phi_{2,3} 2 (-2)v^3 v+(E(3)^2) v^2+(E(3)) . (E(3)^2)v (E(3))v^5
phi_{2,5} 2 -2 -1 -1 . 1 1

1476CHAPTER 80. COMPLEX REFLECTION GROUPS, CYCLOTOMIC ALGEBRAS

phi_{3,2} 3 (3)v^2 v-1 v^2-1 -v . .

A = E(3)
= (-1+ER(-3))/2 = b3

This function requires the package ”chevie”(see 56.1).

Chapter 81

Iwahori-Hecke algebras

In this chapter we describe functions for dealing with Iwahori-Hecke algebras associated to
finite Coxeter groups.

Let W be a finite Coxeter group, with generators S = {s1, . . . , sn}. As before, let m(i, j)
denote the order of the product sisj . Let R be a commutative ring with 1 and q1, . . . , qn be
elements in R such that qi = qj whenever m(i, j) is odd. Thus, we have qi = qj whenever
si and sj are conjugate in W . The corresponding Iwahori-Hecke algebra with parameters
{qi} is a deformation of the group algebra of W over R where the multiplication of basis
elements involves the parameters qi and where the deformation is trivial if all qi are equal
to 1.

More precisely, the Iwahori-Hecke algebra H = H(W,R, {qi}) is the associative R-algebra
with 1 = T1 generated by elements Ts1 , . . . , Tsn subject to the following relations.

(Tsi − qi)(Tsi + 1) = 0 for all i
TsiTsjTsi · · · = TsjTsiTsj · · · for i 6= j and with m(i, j) factors on each side.

Since the generators Tsi satisfy the braid relations, the algebra H is in fact a quotient of
the group algebra of the braid group associated with W . It follows that, if w = si1 · · · sim =
sj1 · · · sjm are two reduced expressions of w ∈W as products of fundamental reflections then
the corresponding products of the generators Tsi respectively Tsj will give the same element
of H, which we may therefore denote by Tw. Then the elements {Tw | w ∈W} actually form
a free R-basis of H. The multiplication of two arbitrary basis elements Tv, Tw (for v, w ∈W)
is then performed as follows. Choose a reduced expression for v, say v = si1 · · · sik . Then Tv
is the product of the corresponding generators Tsi hence we are reduced to the case where
v = si for some i. In this case, we have

TsiTw =
{

Tsiw if l(siw) = l(w) + 1
qiTsiw + (qi − 1)Tw if l(siw) = l(w)− 1.

There is a universal choice for R and {qi}: Let u1, . . . , un be indeterminates over Q such
that ui = uj whenever m(i, j) is odd, and let A0 = Z[u1, . . . , un] be the corresponding
polynomial ring. Then H0 := H(W,A0, {ui}) is called the generic Iwahori-Hecke al-
gebra associated with W . If R and {qi} are given as above then H(W,R, {qi}) can be

1477

1478 CHAPTER 81. IWAHORI-HECKE ALGEBRAS

obtained by specialization from H0: There is a unique ring homomorphism f : A0 → R such
that f(ui) = qi for all i. Then we can view R as an A0-module via f and we can identify
H(W,R, {qi}) = R⊗A0 H0.

If all ui are equal we call the corresponding algebra the one-parameter Iwahori-Hecke algebra
associated with W . Certain invariants associated with the irreducible characters of this
algebra play a special role in the representation theory of the underlying finite Coxeter
groups, namely the a- and A-invariants which were already used in chapter 77 (see 77.8,
78.7).

For basic properties of Iwahori-Hecke algebras and their relevance to the representation
theory of finite groups of Lie type, we refer to [CR87], Sections 67 and 68.

In the following example, we compute the multiplication table for the 0-Iwahori–Hecke
algebra associated with the Coxeter group of type A2.

gap> W := CoxeterGroup("A", 2);
CoxeterGroup("A", 2)

Algebra with all parameters equal to 0:

gap> H := Hecke(W, 0);
Hecke(CoxeterGroup("A", 2),[0, 0],[])

Create the T -basis:

gap> T := Basis(H, "T");
function (arg) ... end
gap> el := CoxeterWords(W);
[[], [2], [1], [2, 1], [1, 2], [1, 2, 1]]

Multiply any two T -basis elements:

gap> mat := []; for i in [1..6] do mat[i]:=[]; for j in [1..6] do
> Add(mat[i], T(el[i]) * T(el[j])); od; od;
gap> PrintArray(mat);
[[T(), T(2), T(1), T(2,1), T(1,2), T(1,2,1)],
[T(2), -T(2), T(2,1), -T(2,1), T(1,2,1), -T(1,2,1)],
[T(1), T(1,2), -T(1), T(1,2,1), -T(1,2), -T(1,2,1)],
[T(2,1), T(1,2,1), -T(2,1), -T(1,2,1), -T(1,2,1), T(1,2,1)],
[T(1,2), -T(1,2), T(1,2,1), -T(1,2,1), -T(1,2,1), T(1,2,1)],
[T(1,2,1), -T(1,2,1), -T(1,2,1), T(1,2,1), T(1,2,1), -T(1,2,1)]]

Thus, we can not only work with generic algebras where the parameters are indeterminates.
In the following chapter we will see that this also works on the level of characters and
representations.

81.1 Hecke

Hecke(W , [parameter(s), [sqrtparameter(s)]])

Hecke(rec)

Constructs the Iwahori-Hecke algebra H of the given Coxeter group. parameters can be
either a vector of length W.semisimpleRank, giving the parameter for each fundamental
reflection, or a single value which is taken as the common parameter. Similarly, if given,

81.2. HECKESUBALGEBRA 1479

sqrtparameter specifies the list of the roots of the parameters, or is a single value which
specifies the root of the single value given as a parameter. If parameters are not given, they
are assumed to be equal to 1. The Iwahori-Hecke algebra then degenerates to the group
algebra of the Coxeter group.

The reason sqrtparameter may have to be given is that certain operations on the algebra
require taking such square roots (like the character values of algebras of type E7, E8, or
two-parameter G2). Moreover, even if we had wanted to make a standard choice of a square
root this would have been impossible because GAP is unable to take the square root of an
arbitrary value (such as an indeterminate).

The second form takes as an argument a record which has a field hecke and returns the
value of this field. This is used to return the Hecke algebra of objects derived from Hecke
algebras, such as Hecke elements in various bases.

gap> W := CoxeterGroup("B", 3);
CoxeterGroup("B", 3)
gap> u := X(Rationals);; u.name := "u";;

One parameter algebra without and with specifying square roots:

gap> H := Hecke(W, u);
Hecke(CoxeterGroup("B", 3),[u, u, u],[])
gap> H := Hecke(W, u^2, u);
Hecke(CoxeterGroup("B", 3),[u^2, u^2, u^2],[u, u, u])
gap> H := Hecke(W, [u^6, u^4, u^4], [u^3, -u^2, -u^2]);
Hecke(CoxeterGroup("B", 3),[u^6, u^4, u^4],[u^3, -u^2, -u^2])

The parameters do not have to be indeterminates:

gap> H := Hecke(W, 9, 3);
Hecke(CoxeterGroup("B", 3),[9, 9, 9],[3, 3, 3])
gap> H := Hecke(W, [u^6, u^4, u^8]);
Error, Hecke algebra parameters should be equal for conjugate

reflections in Hecke(W, [u^6, u^4, u^8])) called from main loop
brk>

This function requires the package ”chevie”(see 56.1).

81.2 HeckeSubAlgebra

HeckeSubAlgebra(H , r)

Given an Hecke Algebra H and a set of roots of Group(H) given as their index in the roots,
return the Hecke sub-algebra generated by the Ts corresponding to these roots. The roots
must be simple roots if any parameter is not 1.

As for Subgroup, a subalgebra of a subalgebra is given as a subalgebra of the parent algebra.

gap> u := X(Rationals);; u.name := "u";;
gap> H := Hecke(CoxeterGroup("B", 2), u);
Hecke(CoxeterGroup("B", 2),[u, u],[])
gap> HeckeSubAlgebra(H, [1, 4]);
Hecke(ReflectionSubgroup(CoxeterGroup("B", 2), [1, 2]),[u, u],
[])

1480 CHAPTER 81. IWAHORI-HECKE ALGEBRAS

gap> HeckeSubAlgebra(H, [1, 7]);
Error, Generators of a sub-Hecke algebra should be simple reflections
in HeckeSubAlgebra(H, [1, 7]) called from main loop
brk>

This function requires the package ”chevie”(see 56.1).

81.3 Operations and functions for Hecke algebras

Group
returns the Coxeter group from which the Hecke algebra was generated.

Print
prints the Hecke algebra in a form which can be read back into GAP.

SchurElements
see the explicit description in Sections 82.8 and 82.7.

CharTable
returns the character table of the Hecke algebra. This is a record with exactly the same
components as for the corresponding finite Coxeter group but where the component
irreducibles contains the values of the irreducible characters of the algebra on basis
elements Tw where w runs over the elements in the component classtext. Thus, the
value are now polynomials in the parameters of the algebra. For more details see the
chapter 82.

Basis
the T basis is described in the section below. Other bases are described in chapter 83.

81.4 Construction of Hecke elements of the T basis

Basis(H , "T")

Let H be a Iwahori-Hecke algebra. The function Basis(H,"T") returns a function which
can be used to make elements of the usual T basis of the algebra. It is convenient to assign
this function with a shorter name when computing with elements of the Hecke algebra. In
what follows we assume that we have done the assignment:

gap> T := Basis(H, "T");
function (arg) ... end

T(perm)

Let perm be a permutation which is an element w of the Coxeter group Group(H). This call
returns the basis element Tw of H .

T(perms, coeffs)

In this form, perms is a vector of permutations and coeffs a vector of coefficients which
should be of the same length k. The element coeffs[1]Tperms[1] + . . .+ coeffs[k]Tperms[k] of
H is returned.

T(list)

T(s1, .., sn)

81.5. OPERATIONS FOR HECKE ELEMENTS OF THE T BASIS 1481

In the above two forms, s1, . . . , sn is a sequence of integers representing generators of the
Coxeter group attached to H , or list is a GAP list of such integers. The element Ts1Ts2 . . . Tsn
is returned.

gap> W := CoxeterGroup("B", 3);;
gap> u := X(Rationals);; u.name := "u";;
gap> H := Hecke(W, u);;
gap> T := Basis(H, "T");
function (arg) ... end
gap> T(1, 2) = T([1, 2]);
true
gap> T(1, 2) = T(PermCoxeterWord(W, [1, 2]));
true
gap> l := [[], [1, 2, 3], [1], [2], [3]];;
gap> pl := List(l, i -> PermCoxeterWord(W, i));;
gap> h := T(pl, [u^100, 1/u^20, 1, -5, 0]);
u^100T()+T(1)-5T(2)+0T(3)+u^-20T(1,2,3)
gap> h.elm;
[(), (1,16,13,10, 7, 4)(2, 8,12,11,17, 3)(5, 9, 6,14,18,15),
(1,10)(2, 6)(5, 8)(11,15)(14,17),
(1, 4)(2,11)(3, 5)(8, 9)(10,13)(12,14)(17,18),
(2, 5)(3,12)(4, 7)(6, 8)(11,14)(13,16)(15,17)]

gap> h.coeff;
[u^100, u^(-20), 1, -5, 0]

The last two lines show that a Hecke element is represented internally by a list of elements
of W and the corresponding list of coefficients of the basis elements in H.

Note that the function T just creates a Hecke element. In order to have a fast function
which does this, the resulting element is not normalized in any way, nor is it even checked
if some coefficients are zero or not (see the last line in the above example). A normal form
is computed by applying the function Normalize to such an element (see below).

The way elements of the Iwahori-Hecke algebra are printed depends on the global variable
PrintHecke which is a component of the global variable CHEVIE (see the analogous remarks
in chapter 79). If set to "GAP", they are printed in a way which can be input back in GAP.
When you load CHEVIE, the variable is initially set to the string "".

gap> CHEVIE.PrintHecke := "GAP";
"GAP"
gap> T(pl, [u^100, 1/u^20, 1, -5, 0]);
u^100*T()+T(1)-5*T(2)+0*T(3)+u^-20*T(1,2,3)
gap> CHEVIE.PrintHecke := "";
""

81.5 Operations for Hecke elements of the T basis

All examples below are with CHEVIE.PrintHecke="".

Hecke(a)

returns the Hecke algebra of which a is an element.

1482 CHAPTER 81. IWAHORI-HECKE ALGEBRAS

a * b

The multiplication of two elements given in the T basis of the same Iwahori-Hecke algebra
is defined, returning a Hecke element expressed in the T basis.

gap> q := X(Rationals);; q.name := "q";;
gap> H := Hecke(CoxeterGroup("A", 2), q);
Hecke(CoxeterGroup("A", 2),[q, q],[])
gap> T := Basis(H, "T");
function (arg) ... end
gap> (T() + T(1)) * (T() + T(2));
T()+T(1)+T(2)+T(1,2)
gap> T(1) * T(1);
qT()+(q-1)T(1)
gap> T(1, 1); # the same
qT()+(q-1)T(1)

a ^ i

A element of the T basis with a coefficient whose inverse is still a Laurent polynomial in q
can be raised to an integral, positive or negative, power, returning another element of the
algebra. An arbitrary element of the algebra can only be raised to a positive power.

gap> (q * T(1, 2)) ^ -1;
(q^-1-2q^-2+q^-3)T()+(-q^-2+q^-3)T(1)+(-q^-2+q^-3)T(2)+q^-3T(2,1)
gap> (T(1) + T(2)) ^ -1;
Error, negative exponent implemented only for single T_w in
<rec1> ^ <rec2> called from
main loop
brk>
gap> (T(1) + T(2)) ^ 2;
2qT()+(q-1)T(1)+(q-1)T(2)+T(1,2)+T(2,1)

a / b

This is equivalent to a ∗ b−1.

a + b

a - b

Elements of the algebra expressed in the T basis can be added or subtracted, giving other
elements of the algebra.

gap> T(1) + T();
T()+T(1)
gap> T(1) - T(1);
0

Normalize(a)

normalizes the element a; in particular, terms with zero coefficient are removed.

gap> h := T([PermCoxeterWord(CoxeterGroup(H), [1]),()],
> [0, q^100]);
q^100T()+0T(1)
gap> Normalize(h);

81.6. CREATEHECKEBASIS 1483

gap> h;
q^100T()

Print(a)

prints the element a, using the form initialized in CHEVIE.PrintHecke.

String(a)

provides a string containing the same result that is printed with Print.

Coefficient(a, w)

Returns the coefficient of the Hecke element a on the basis element Tw. Here w can be given
either as a Coxeter word or as a permutation.

AlphaInvolution(a)

This implements the involution on the algebra defined by Tw 7→ Tw−1 .

gap> AlphaInvolution(T(1, 2));
T(2,1)

BetaInvolution(a)

This is only defined if all the parameters of the Iwahori-Hecke algebra are equal, and they
are either equal to 1 or all sqrtParameters are bound. If v is the square root of the first
parameter, it implements the involution on the algebra defined by v 7→ v−1 and Tw 7→
v−l(w0)Tw0w.

AltInvolution(a)

This is only defined if all the parameters of the Iwahori-Hecke algebra are equal, and they
are either equal to 1 or all sqrtParameters are bound. If v is the square root of the first
parameter, it implements the involution on the algebra defined by v 7→ −v−1 and Tw 7→
(−v−2)l(w)Tw. Essentially it corresponds to tensoring with the sign representation.

Frobenius(WF)(a)

The Frobenius of a Coxeter Coset associated to CoxeterGroup(Hecke(a)) can be applied
to a. For more details see chapter 84.

These functions require the package ”chevie”(see 56.1).

81.6 CreateHeckeBasis

CreateHeckeBasis(basis, ops)

creates a new basis for Hecke algebras in which to do computations. (The design of this
function has benefited from conversation with Andrew Mathas, the author of the package
Specht).

The first argument basis must be a unique (different from that used for other bases) character
string. The second argument ops is a record which should contain at least two fields, ops.T
and ops.(basis) which should contain :

ops.T a function which takes an element in the basis basis and converts it to the T
basis.

ops.(basis) a function which takes an element in the T basis and converts it to the
basis basis.

1484 CHAPTER 81. IWAHORI-HECKE ALGEBRAS

After the call to CreateHeckeBasis, a new field (basis) is added to HeckeAlgebraOps
which contains a function to create elements of the basis basis. These elements will have
the standard operations for Hecke elements: +, -, *, ^, =, Print, Coefficient, plus all
extra operations that the user may have specified in ops. It is thus possible to create a
new basis which has extra operations. In addition, for any already created basis y of the
algebra, the function (y) will have the added capability to convert elements from the basis
basis to the y basis. If the user has provided a field ops.(y) , the function found there will
be used. Otherwise, the function ops.T will be used to convert our basis element to the T
basis, followed by calling the function (y) which was given in ops at the time the y basis
was created, to convert to the y basis. The following forms of the Basis function will be
accepted (as for the T basis):

Basis(H , basis)(perm)

Basis(H , basis)(perms, coeffs)

Basis(H , basis)(list)

Basis(H , basis)(s1, .. , sn)

One should note, however that for the last two forms only reduced expressions will be
accepted in general.

Below is an example where the basis tw = ql(x)/2Tw is created and used. Here we have
set v = q1/2. As an example of an extra operation in ops, we have given a method for
BetaInvolution. If methods for one of BetaInvolution, AltInvolution are given they
will be automatically called by the generic functions with the same name. Here we have set
BetaInvolution to use the same method as used by T basis elements.

In order to understand the following code, one has to recall that an arbitrary Hecke element
is a record; the basis elements are labeled by the Coxeter group elements in the component
elm and the corresponding coefficients in the component coeff. For efficiency reasons, it
is necessary to describe the conversion functions on such arbitrary Hecke elements and not
just for one basis element Tw or tw.

gap> CreateHeckeBasis("t", rec(
> T := h->Basis(Hecke(h), "T")(h.elm, List([1 .. Length(h.elm)],
> i->Hecke(h).sqrtParameter[1]^CoxeterLength(
> CoxeterGroup(Hecke(h)), h.elm[i]) * h.coeff[i])),
>
> t := h->Basis(Hecke(h), "t")(h.elm, List([1 .. Length(h.elm)],
> i->Hecke(h).sqrtParameter[1]^-CoxeterLength(
> CoxeterGroup(Hecke(h)), h.elm[i]) * h.coeff[i])),
>
> BetaInvolution := h->Basis(Hecke(h),"t")(
> HeckeAlgebraOps.T.BetaInvolution(
> Basis(Hecke(h), "T")(h)))));
gap> v := X(Rationals);; v.name := "v";;
gap> H := Hecke(CoxeterGroup("A", 3), v ^ 2, v);;
gap> h := Basis(H, "t")(3, 1, 2);
t(1,3,2)
gap> h1 := Basis(H, "T")(h);
v^3T(1,3,2)

81.6. CREATEHECKEBASIS 1485

gap> h2 := Basis(H, "t")(h1);
t(1,3,2)
gap> BetaInvolution(h2);
v^-12t(2,1,3)

This function requires the package ”chevie”(see 56.1).

1486 CHAPTER 81. IWAHORI-HECKE ALGEBRAS

Chapter 82

Representations of
Iwahori-Hecke algebras

Let W be a finite Coxeter group with generators {s1, . . . , sn}, and H = H(W,R, {qi}) a
corresponding Iwahori-Hecke algebra over the ring R as defined in chapter 81. We shall now
describe functions for dealing with representations and characters of H.

The fact that the algebra H is given by a presentation makes it particularly easy to work
with representations. Assume we are given any set of matrices M1, . . . ,Mn ∈ Rd×d. The
fact that H is given by generators and defining relations immediately implies that there is
a (unique) representation ρ : H → Rd×d such that ρ(Tsi) = Mi for all i, if and only if the
matrices Mi satisfy the same relations as those for the generators Tsi of H.

A general approach for the construction of representations is in terms of W -graphs, see
[KL79, p.165]. Any such W -graph carries a representation of H. Note that, for these
purposes, it is necessary to assume that the parameters of H are squares of some elements
of the ground ring. The simplest example, the standard W -graph defined in [KL79, Ex. 6.2]
yields a “deformation of the natural reflection representation of W . This can be produced
in CHEVIE using the function HeckeReflectionRepresentation.

Another possibility to construct W -graphs is by using the Kazhdan-Lusztig theory of left
cells (see [KL79]); see the following chapter for more details.

In a similar way as the ordinary character table of the finite Coxeter group W is defined,
one also has a character table for the Iwahori-Hecke algebra H in the case when the ground
ring A is a field such H is split and semisimple. The generic choice for such a ground ring
is the rational function field K = Q(v1, . . . , vn) where the parameters of the corresponding
algebra HK are given by qi = v2

i for all i.

By Tits’ Deformation Theorem (see [CR87, Sec. 68], for example), the algebra HK is (ab-
stractly) isomorphic to the group algebra of W over K. Moreover, we have a bijection
between the irreducible characters of HK and W , given as follows. Let χ be an irreducible
character of HK . Then we have χ(Tw) ∈ A where A = Z[v1, . . . , vn] and Z denotes the
ring of algebraic integers in Q. We can find a ring homomorphism f : A → Q such that
f(a) = a for all a ∈ Z and f(vi) = 1 for i = 1, . . . , n. Then it turns out that the function

1487

1488 CHAPTER 82. REPRESENTATIONS OF IWAHORI-HECKE ALGEBRAS

χf : w 7→ f(χ(Tw)) is an irreducible character of W , and the assignment χ 7→ χf defines a
bijection between the irreducible characters of HK and W .

Now this bijection does depend on the choice of f . But one should keep in mind that this
only plays a role in the case where W is a non-crystallographic Coxeter group. In all other
cases, as is well-known, the character table of W is rational; moreover, the values of the
irreducible characters of HK at basis elements Tw lie in the ring Z[v1, . . . , vn].

The character table of HK is defined to be the square matrix (χ(Tw)) where χ runs over
the irreducible characters of HK and w runs over a set of representatives of minimal length
in the conjugacy classes of W . The character tables of Iwahori-Hecke algebras (in this
sense) are known for all types: the table for type A was first computed by Starkey (see the
description of his work in [Car86]); then different descriptions with different proofs were
given in [Ram91] and [Pfe94b]. The tables for the non crystallographic types I2(m), H3,
H4 can be constructed from the explicit matrix representations given in [CR87, Sec. 67C],
[Lus81] and [AL82], respectively. For the classical types B and D see [HR94] and [Pfe96].
The tables for the remaining exceptional types were computed in [Gec94], [Gec95] and
[GM97].

If H is an Iwahori-Hecke algebra over an arbitrary ground ring R as above, then the GAP
function CharTable applied to the corresponding record returns a character table record
which is build up in exactly the same way as for the finite Coxeter group W itself but where
the record component irreducibles contains the character values which are obtained from
those of the generic multi-parameter algebra HK by specializing the indeterminates vi to
the variables in sqrtParameters.

82.1 HeckeReflectionRepresentation

HeckeReflectionRepresentation(W)

returns a list of matrices which give the reflection representation of the Iwahori-Hecke algebra
corresponding to the Coxeter group W . The function Hecke must have been applied to the
record W .

gap> v:= X(Rationals);; v.name := "v";;
gap> H := Hecke(CoxeterGroup("B", 2) , v^2, v);
Hecke(CoxeterGroup("B", 2),[v^2, v^2],[v, v])
gap> ref:= HeckeReflectionRepresentation(H);
[[[-v^0, 0*v^0], [-v^2, v^2]],

[[v^2, -2*v^0], [0*v^0, -v^0]]]

gap> H := Hecke(CoxeterGroup("H", 3));;
gap> HeckeReflectionRepresentation(H);
[[[-1, 0, 0], [-1, 1, 0], [0, 0, 1]],

[[1, E(5)+2*E(5)^2+2*E(5)^3+E(5)^4, 0], [0, -1, 0],
[0, -1, 1]], [[1, 0, 0], [0, 1, -1], [0, 0, -1]]]

This function requires the package ”chevie”(see 56.1).

82.2 CheckHeckeDefiningRelations

CheckHeckeDefiningRelations(H , t)

82.3. CHARTABLE FOR HECKE ALGEBRAS 1489

returns true or false, according to whether a given set t of matrices corresponding to the
standard generators of the Coxeter group Group(H) defines a representation of the Iwahori-
Hecke algebra H or not.

gap> H := Hecke(CoxeterGroup("F", 4));;
gap> r := HeckeReflectionRepresentation(H);;
gap> CheckHeckeDefiningRelations(H, r);
true

This function requires the package ”chevie”(see 56.1).

82.3 CharTable for Hecke algebras

CharTable(H)

CharTable returns the character table record of the Iwahori-Hecke algebra H . This is basi-
cally the same as the character table of a Coxeter group described earlier with the exception
that the component irreducibles contains the matrix of the values of the irreducible char-
acters of the generic Iwahori-Hecke algebra specialized at the parameters in the component
parameter of H . Thus, if all these parameters are equal to 1 ∈ Q then the component
irreducibles just contains the ordinary character table of the underlying Coxeter group.

The function CharTable first recognizes the type of H , then calls special functions for each
type involved in H and finally forms the direct product of all these tables.

gap> W := CoxeterGroup("G", 2);;
gap> u := X(Rationals);; u.name := "u";;
gap> v := X(LaurentPolynomialRing(Rationals));; v.name := "v";;
gap> u := u * v^0;;
gap> H := Hecke(W, [u^2, v^2], [u, v]);
Hecke(CoxeterGroup("G", 2),[u^2*v^0, v^2],[u*v^0, v])
gap> Display(CharTable(H));
H(G2)

2 2 2 2 1 1 2
3 1 . . 1 1 1

~A_1 A_1 G_2 A_2 A_1 + ~A_1
2P A_2 A_2
3P ~A_1 A_1 A_1 + ~A_1 A_1 + ~A_1

phi_{1,0} 1 v^2 (u^2) (u^2)v^2 (u^4)v^4 (u^6)v^6
phi_{1,6} 1 -1 -1 1 1 1
phi_{1,3}’ 1 v^2 -1 -v^2 v^4 -v^6
phi_{1,3}’’ 1 -1 (u^2) (-u^2) (u^4) (-u^6)
phi_{2,1} (2) v^2+(-1) (u^2-1) (u)v (-u^2)v^2 (-2u^3)v^3
phi_{2,2} (2) v^2+(-1) (u^2-1) (-u)v (-u^2)v^2 (2u^3)v^3

As mentioned before, the record components classparam, classnames and irredinfo con-
tain canonical labels and parameters for the classes and the characters (see the introduction
to chapter 77 and also 77.10). For direct products, sequences of such canonical labels of the
individual types are given.

1490 CHAPTER 82. REPRESENTATIONS OF IWAHORI-HECKE ALGEBRAS

We can also have character tables for algebras where the parameters are not necessarily
indeterminates:

gap> H1 := Hecke(W, [E(6)^2, E(6)^4],[E(6), E(6)^2]);
Hecke(CoxeterGroup("G", 2),[E(3), E(3)^2],[-E(3)^2, E(3)])
gap> ct := CharTable(H1);
CharTable("H(G2)")
gap> Display(ct);
H(G2)

2 2 2 2 1 1 2
3 1 . . 1 1 1

~A_1 A_1 G_2 A_2 A_1 + ~A_1
2P A_2 A_2
3P ~A_1 A_1 A_1 + ~A_1 A_1 + ~A_1

phi_{1,0} 1 A /A 1 1 1
phi_{1,6} 1 -1 -1 1 1 1
phi_{1,3}’ 1 A -1 -A /A -1
phi_{1,3}’’ 1 -1 /A -/A A -1
phi_{2,1} 2 B /B -1 -1 2
phi_{2,2} 2 B /B 1 -1 -2

A = E(3)^2
= (-1-ER(-3))/2 = -1-b3

B = E(3)+2*E(3)^2
= (-3-ER(-3))/2 = -2-b3

gap> RankMat(ct.irreducibles);
5

The last result tells us that the specialized character table is no more invertible.

Character tables of Iwahori–Hecke algebras were introduced in [GP93]; see also the intro-
duction to this chapter for further information about the origin of the various tables.

This function requires the package ”chevie”(see 56.1).

82.4 HeckeCharValues

HeckeCharValues(T [,irreds])

T is an element of an Iwahori-Hecke algebra (expressed in any basis) and irreds is a set
of irreducible characters of the algebra (given as vectors). HeckeCharValues returns the
values of irreds on the element T (the method used is to convert to the T basis, and then
use HeckeClassPolynomials). If irreds is not given, all character values are returned.

gap> q := X(Rationals);; q.name := "q";;
gap> H := Hecke(CoxeterGroup("B", 2), q ^ 2, q);;
gap> HeckeCharValues(Basis(H, "C’")(1, 2, 1));
[0*q^0, q + q^(-1), 0*q^0, q^3 + 2*q + 2*q^(-1) + q^(-3),
-q - q^(-1)]

See also 82.5.

82.5. HECKECLASSPOLYNOMIALS 1491

This function requires the package ”chevie”(see 56.1).

82.5 HeckeClassPolynomials

HeckeClassPolynomials(h [, reps])

returns the class polynomials of the Hecke element h of the Hecke algebra H with respect
to representatives reps of minimal length in the conjugacy classes of the Coxeter group
Group(H).

If absent, reps is taken as CoxeterConjugacyClasses(Group(H)). These polynomials have
the following property. Given the class polynomials p corresponding to h and the matrix
X of the values of the irreducible characters of the Iwahori-Hecke algebra on Tw (for w in
reps), then the product X*p is the list of values of the irreducible characters on the element
h of the Iwahori-Hecke algebra.

gap> u := X(Rationals);; u.name := "u";;
gap> W := CoxeterGroup("A", 3);
CoxeterGroup("A", 3)
gap> H := Hecke(W, u);;
gap> h := Basis(H, "T")(LongestCoxeterElement(W));
T(1,2,1,3,2,1)
gap> cp := HeckeClassPolynomials(h);
[0*u^0, 0*u^0, u^2, u^3 - 2*u^2 + u, u^3 - u^2 + u - 1]
gap> CharTable(H).irreducibles * cp;
[u^0, -u^2, 2*u^3, -u^4, u^6]

So, the entries in this list are the values of the irreducible characters on the basis element
corresponding to the longest element in the Coxeter group.

The class polynomials were introduced in [GP93].

This function requires the package ”chevie”(see 56.1).

82.6 PoincarePolynomial

PoincarePolynomial(H)

The Poincaré polynomial of the Hecke algebra H , which is equal to SchurElements(H)[ind]
where ind is the position of the 1-dimensional index representation in the character table of
H , that is, the representation which maps Tsi to the corresponding parameter qi.

gap> q := X(Rationals);; q.name := "q";;
gap> W := CoxeterGroup("G", 2);; H := Hecke(W, q);
Hecke(CoxeterGroup("G", 2),[q, q],[])
gap> PoincarePolynomial(H);
q^6 + 2*q^5 + 2*q^4 + 2*q^3 + 2*q^2 + 2*q + 1

This function requires the package ”chevie”(see 56.1).

82.7 SchurElements

SchurElements(H)

1492 CHAPTER 82. REPRESENTATIONS OF IWAHORI-HECKE ALGEBRAS

returns the list of constants arising from the Schur relations for the irreducible characters
of the Iwahori-Hecke algebra H .
The Schur element corresponding to an irreducible character χ is also equal to P/Dχ where
P is the Poincare polynomial and Dχ is the generic degree of χ. Note, however, that
this only works if Dχ 6= 0. (We can have Dχ = 0 if the parameters of H are suitably
chosen roots of unity, for example.) The ordering of the degrees corresponds to the ordering
of the characters as returned by the function CharTable. Note that the Schur element
corresponding to the ind-character is the Poincare polynomial P .

gap> u := X(Rationals);; u.name := "u";;
gap> v := X(LaurentPolynomialRing(Rationals));; v.name := "v";;
gap> schur := SchurElements(Hecke(CoxeterGroup("G", 2),
> [u ^ 2, v ^ 2], [u, v]));
[(u^6 + u^4)*v^6 + (u^6 + 2*u^4 + u^2)*v^4 + (u^4 + 2*u^2 + 1)*v^

2 + (u^2 + 1), (1 + u^(-2)) + (1 + 2*u^(-2) + u^(-4))*v^(
-2) + (u^(-2) + 2*u^(-4) + u^(-6))*v^(-4) + (u^(-4) + u^(-6))*v^(
-6), (u^(-4) + u^(-6))*v^6 + (u^(-2) + 2*u^(-4) + u^(-6))*v^4 + (
1 + 2*u^(-2) + u^(-4))*v^2 + (1 + u^(-2)),

(u^2 + 1) + (u^4 + 2*u^2 + 1)*v^(-2) + (u^6 + 2*u^4 + u^2)*v^(
-4) + (u^6 + u^4)*v^(-6), (2*u^0)*v^2 + (2*u - 2*u^(-1))*v + (2*u^
2 - 2 + 2*u^(-2)) + (-2*u + 2*u^(-1))*v^(-1) + (2*u^0)*v^(-2),

(2*u^0)*v^2 + (-2*u + 2*u^(-1))*v + (2*u^2 - 2 + 2*u^(-2)) + (2*u -
2*u^(-1))*v^(-1) + (2*u^0)*v^(-2)]

The Poincaré polynomial is just the Schur element corresponding to the trivial (or index)
representation:

gap> schur[1];
(u^6 + u^4)*v^6 + (u^6 + 2*u^4 + u^2)*v^4 + (u^4 + 2*u^2 + 1)*v^
2 + (u^2 + 1)

(But note that the trivial character is not always the first character!) For further information
about generic degrees and connections with the representation theory of finite groups of Lie
type, see [BC72] and [Car85].
This function requires the package ”chevie”(see 56.1).

82.8 SchurElement

SchurElement(H , phi)

returns the constants arising from the Schur relations for the irreducible character phi of
the Iwahori-Hecke algebra H . phi should be specified by its parameter (see CharParams in
section 75.6) .

gap> u := X(Rationals);; u.name := "u";;
gap> v := X(LaurentPolynomialRing(Rationals));; v.name := "v";;
gap> H := Hecke(CoxeterGroup("G", 2), [u ^ 2, v ^ 2], [u, v]);
Hecke(CoxeterGroup("G", 2),[u^2, v^2],[u, v])
gap> SchurElement(H, [[1, 3, "’"]]);
(u^(-4) + u^(-6))*v^6 + (u^(-2) + 2*u^(-4) + u^(-6))*v^4 + (1 + 2*u^(
-2) + u^(-4))*v^2 + (1 + u^(-2))

This function requires the package ”chevie”(see 56.1).

82.9. GENERICDEGREES 1493

82.9 GenericDegrees

We do not have a function for the generic degrees of an Iwahori-Hecke algebra since they
are not always defined (for example, if the parameters of the algebra are roots of unity). If
we have a generic multi-parameter Iwahori-Hecke algebra H then the generic degrees are
certainly defined, and they can be computed with the command:

List(SchurElements(H), x -> PoincarePolynomial(H) / x);

(See 82.6 and 82.8.)

82.10 HeckeCentralMonomials

HeckeCentralMonomials(HW)

Returns the scalars by which the central element T 2
w0

acts on irreducible representations of
HW .

gap> v := X(Cyclotomics);; v.name := "v";;
gap> H := Hecke(CoxeterGroup("H", 3), v ^ 2, v);;
gap> HeckeCentralMonomials(H);
[v^0, v^60, v^24, v^36, v^20, v^20, v^40, v^40, v^30, v^30]

This function requires the package ”chevie”(see 56.1).

82.11 HeckeCharValuesGood

HeckeCharValuesGood(HW , w)

Let HW be a Hecke algebra for the Coxeter group CoxeterGroup(HW), let w be a good
element of CoxeterGroup(HW) in the sense of [GM97], and let d be the order of w.

HeckeCharValuesGood computes the values of the irreducible characters of the Iwahori-
Hecke algebra HW on T dw. The point is that the character table of the Hecke algebra is
not used, and that all the eigenvalues of T dw are monomials in HW.parameters, so this can
be used to find the absolute value of the eigenvalues of Tw, a step towards computing the
character table of the Hecke algebra.

We continue the example in HeckeCentralMonomial:

gap> HeckeCharValuesGood(H, [1, 2, 3]);
[v^0, v^60, 5*v^24, 5*v^36, 3*v^20, 3*v^20, 3*v^40, 3*v^40, 4*v^30,
4*v^30]

This function requires the package ”chevie”(see 56.1).

1494 CHAPTER 82. REPRESENTATIONS OF IWAHORI-HECKE ALGEBRAS

Chapter 83

Kazhdan-Lusztig polynomials
and bases

There is a number of programs in CHEVIE for computing Kazhdan-Lusztig polynomials, left
cells, and the various Kazhdan-Lusztig bases of Iwahori-Hecke algebras (see [KL79]).

From a computational point of view, Kazhdan-Lusztig polynomials are quite a challenge. It
seems that the best approach still is by using the recursion formula in the original article
[KL79]. One can first run a number of standard checks on a given pair of elements to see if
the computation of the corresponding polynomial can be reduced to a similar computation
for elements of smaller length, for example. One such check involves the notion of critical
pairs (cf. [Alv87]):We say that a pair of elements w1, w2 ∈ W such that w1 ≤ w2 is critical
if L(w∈) ⊆ L(w∞) and R(w∈) ⊆ R(w∞), where L and R denote the left and right descent
set, respectively.

Now if y, w ∈ W are arbitrary elements with y ≤ w then there always exists a critical pair
(w1, w2) such that the Kazhdan-Lusztig polynomials Py,w and Pw1,w2 are equal. Given two
elements y and w, such a critical pair is found by the function CriticalPair.

The CHEVIE programs for computing Kazhdan-Lusztig polynomials are organized in such
a way that whenever the polynomial corresponding to a critical pair is computed then this
pair and the polynomial are stored in the component criticalPairs of the record of the
underlying Coxeter group. (This is different to earlier versions of CHEVIE.)

A good example to see how long the programs will take for computations in big Coxeter
groups is the following:

LeftCells(CoxeterGroup("F", 4));

which takes 20 minutes cpu time on a SPARCstation 5 computer. The computation of all
Kazhdan-Lusztig polynomials for type F4 takes a bit more than 1 hour.

However, it still seems to be out of range to re-do Alvis’ computation of the Kazhdan–
Lusztig polynomials of the Coxeter group of type H4 in a computer algebra system like
GAP. For such applications, it is probably more efficient to use a special purpose program
like the one provided by F. DuCloux [DuC91].

1495

1496 CHAPTER 83. KAZHDAN-LUSZTIG POLYNOMIALS AND BASES

The code for the Kazhdan-Lusztig bases C, D and their primed versions has been written
by Andrew Mathas. Some other bases (e.g., the Murphy basis) can be found in his package
Specht.

83.1 KazhdanLusztigPolynomial

KazhdanLusztigPolynomial(W , y, w [, ly, lw])

returns the Kazhdan-Lusztig polynomial in the indeterminate X(Rationals) corresponding
to the elements y and w (given as permutations) of the Coxeter group W . The optional
variables ly and lw contain the length of y and w , respectively. The above form for the
input has been chosen for efficiency reasons. If one prefers to give as input just two reduced
expressions, one can define a new function as follows (for example):

gap> klpol := function(W, x, y)
> return KazhdanLusztigPolynomial(W, PermCoxeterWord(W, x),
> PermCoxeterWord(W, y), Length(x), Length(y));
> end;
function (W, x, y) ... end

We use this function in the following example where we compute the polynomials P1,w for
all elements w in the Coxeter group of type A3.

gap> q := X(Rationals);; q.name := "q";;
gap> W := CoxeterGroup("B", 3);;
gap> el := CoxeterWords(W);
[[], [3], [2], [1], [3, 2], [2, 1], [2, 3], [1, 3],
[1, 2], [2, 1, 2], [3, 2, 1], [2, 3, 2], [2, 1, 3],
[1, 2, 1], [1, 3, 2], [1, 2, 3], [3, 2, 1, 2],
[2, 1, 2, 3], [2, 3, 2, 1], [2, 1, 3, 2], [1, 2, 1, 2],
[1, 3, 2, 1], [1, 2, 1, 3], [1, 2, 3, 2], [3, 2, 1, 2, 3],
[2, 1, 2, 3, 2], [2, 3, 2, 1, 2], [2, 1, 3, 2, 1],
[1, 3, 2, 1, 2], [1, 2, 1, 2, 3], [1, 2, 1, 3, 2],
[1, 2, 3, 2, 1], [2, 3, 2, 1, 2, 3], [2, 1, 2, 3, 2, 1],
[2, 1, 3, 2, 1, 2], [1, 3, 2, 1, 2, 3], [1, 2, 1, 2, 3, 2],
[1, 2, 1, 3, 2, 1], [1, 2, 3, 2, 1, 2], [2, 1, 2, 3, 2, 1, 2],
[2, 1, 3, 2, 1, 2, 3], [1, 2, 3, 2, 1, 2, 3],
[1, 2, 1, 2, 3, 2, 1], [1, 2, 1, 3, 2, 1, 2],
[2, 1, 2, 3, 2, 1, 2, 3], [1, 2, 1, 2, 3, 2, 1, 2],
[1, 2, 1, 3, 2, 1, 2, 3], [1, 2, 1, 2, 3, 2, 1, 2, 3]]

gap> List(el, w -> klpol(W, [], w));
[q^0, q^0, q^0, q^0, q^0, q^0, q^0, q^0, q^0, q^0, q^0, q^0, q^0,
q^0, q^0, q^0, q^0, q^0, q^0, q + 1, q^0, q^0, q^0, q^0, q + 1,
q^0, q^0, q + 1, q^0, q^0, q + 1, q + 1, q^0, q + 1, q^0, q + 1,
q^0, q^2 + 1, q + 1, q^2 + q + 1, q + 1, q + 1, q^0, q^0, q^2 + 1,
q^0, q + 1, q^0]

The set of Kazhdan–Lusztig polynomials that were found during this computation is con-
tained in the record component klpol (as lists of coefficients):

gap> W.klpol;
[[1, 1], [1], [1, 0, 1], [1, 1, 1]]

83.2. CRITICALPAIR 1497

Thus, we have found four different Kazhdan-Lusztig polynomials, namely 1 + q, 1, 1 + q2

and 1 + q + q2.

This function requires the package ”chevie”(see 56.1).

83.2 CriticalPair

CriticalPair(W , y, w, ly)

Given an element y of length ly in the Coxeter group W and an element w the function
CriticalPair returns a triple (z, w, lz) where (z, w) is a critical pair (i.e., we have L(w) ⊆
L(‡) and R(w) ⊆ R(‡) and lz is the length of z. This critical pair is chosen so that the
corresponding Kazhdan–Lusztig polynomials Pz,w and Py,w are equal.

gap> W := CoxeterGroup("F", 4);
CoxeterGroup("F", 4)
gap> w := LongestCoxeterElement(W) * W.generators[1];;
gap> CoxeterLength(W, w);
23
gap> y := PermCoxeterWord(W, [1, 2, 3, 4]);;
gap> cr := CriticalPair(W, y, w, 4);;
gap> CoxeterWord(W, cr[1]);
[2, 3, 2, 1, 3, 4, 3, 2, 1, 3, 2, 3, 4, 3, 2, 3]
gap> cr[3];
16
gap> KazhdanLusztigPolynomial(W, y, w, 4, 23);
q^3 + 1
gap> KazhdanLusztigPolynomial(W, cr[1], cr[2], 16, 23);
q^3 + 1

This function requires the package ”chevie”(see 56.1).

83.3 KazhdanLusztigCoefficient

KazhdanLusztigCoefficient(W , y, w, [ly, lw,] k)

returns the k -th coefficient of the Kazhdan-Lusztig polynomial corresponding to the elements
y and w , which must be given as permutations on the root vectors, of the Coxeter group
W . Again, the optional variables ly and lw contain the length of y and w , respectively.

gap> W := CoxeterGroup("B", 4);;
gap> y := [1, 2, 3, 4, 3, 2, 1];;
gap> py := PermCoxeterWord(W, y);
(1,28)(2,15)(4,27)(6,16)(7,24)(8,23)(11,20)(12,17)(14,30)(18,31)
(22,32)
gap> x := [1];;
gap> px := PermCoxeterWord(W, x);
(1,17)(2, 8)(6,11)(10,14)(18,24)(22,27)(26,30)
gap> Bruhat(W, px, py);
true
gap> List([0..3],i->KazhdanLusztigCoefficient(W, px, py, 1, 7, i));
[1, 2, 1, 0]

1498 CHAPTER 83. KAZHDAN-LUSZTIG POLYNOMIALS AND BASES

So the Kazhdan-Lusztig polynomial corresponding to x and y is 1 + 2u+ u2.

This function requires the package ”chevie”(see 56.1).

83.4 KazhdanLusztigMue

KazhdanLusztigMue(W , y, w [, ly, lw])

given elements y and w in the Coxeter group W , this function returns the coefficient of
degree (l(w) − l(y) − 1)/2 of the Kazhdan-Lusztig polynomial corresponding to y and w .
The optional variables ly and lw contain the length of y and w , respectively.

Of course, the result of this function could also be obtained by

KazhdanLusztigCoefficient(W , y, w, ly, lw, (lw - ly -1)/2)

but there are some speed-ups compared to this general function.

This function requires the package ”chevie”(see 56.1).

83.5 LeftCells

LeftCells(W)

returns a list of pairs. The first component of each pair consists of the reduced words in
the Coxeter group W which lie in one left cell C, the second component consists of the
corresponding matrix of highest coefficients µy,w, where y, w are in C.

gap> W := CoxeterGroup("G", 2);;
gap> LeftCells(W);
[[[[]], [[0]]],
[[[1], [2, 1], [1, 2, 1], [2, 1, 2, 1], [1, 2, 1, 2, 1]

],
[[0, 1, 0, 0, 0], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0],

[0, 0, 1, 0, 1], [0, 0, 0, 1, 0]]],
[[[1, 2, 1, 2, 1, 2]], [[0]]],
[[[2], [1, 2], [2, 1, 2], [1, 2, 1, 2], [2, 1, 2, 1, 2]

],
[[0, 1, 0, 0, 0], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0],

[0, 0, 1, 0, 1], [0, 0, 0, 1, 0]]]]

This function requires the package ”chevie”(see 56.1).

83.6 LeftCellRepresentation

LeftCellRepresentation(W , cell)

returns a list of matrices giving the left cell representation of the Iwahori-Hecke algebra
W . The argument cell is a pair with first component a list of reduced words which form
a left cell, and second component the corresponding matrix of highest coefficients of the
corresponding Kazhdan-Lusztig polynomials. Typically, cell is an entry from the result of
the function LeftCells.

gap> v := X(Cyclotomics) ;; v.name := "v";;
gap> W := Hecke(CoxeterGroup("H", 3), v^2, v);

83.7. HECKE ELEMENTS OF THE C BASIS 1499

Hecke(CoxeterGroup("H", 3),[v^2, v^2, v^2],[v, v, v])
gap> c := LeftCells(CoxeterGroup(W));;
gap> List(c, i -> Length(i[1]));
[1, 6, 5, 8, 5, 6, 1, 5, 8, 5, 5, 6, 6, 5, 8, 5, 5, 8, 5, 6, 6, 5]
gap> LeftCellRepresentation(W,c[3]);
[[[-v^0, v, 0*v^0, 0*v^0, 0*v^0],

[0*v^0, v^2, 0*v^0, 0*v^0, 0*v^0],
[0*v^0, v, -v^0, v, 0*v^0],
[0*v^0, 0*v^0, 0*v^0, v^2, 0*v^0],
[0*v^0, 0*v^0, 0*v^0, 0*v^0, v^2]],

[[v^2, 0*v^0, 0*v^0, 0*v^0, 0*v^0], [v, -v^0, v, 0*v^0, 0*v^0],
[0*v^0, 0*v^0, v^2, 0*v^0, 0*v^0],
[0*v^0, 0*v^0, v, -v^0, v],
[0*v^0, 0*v^0, 0*v^0, 0*v^0, v^2]],

[[-v^0, v, 0*v^0, 0*v^0, 0*v^0],
[0*v^0, v^2, 0*v^0, 0*v^0, 0*v^0],
[0*v^0, 0*v^0, v^2, 0*v^0, 0*v^0],
[0*v^0, 0*v^0, 0*v^0, v^2, 0*v^0],
[0*v^0, 0*v^0, 0*v^0, v, -v^0]]]

This function requires the package ”chevie”(see 56.1).

83.7 Hecke elements of the C basis

Basis(H , "C")

returns a function which gives the C-basis of the (one parameter generic) Iwahori-Hecke
algebra H . This is defined as follows (see [Lus85, (5.1)], for example). Let W be the
underlying finite Coxeter group. For x, y ∈ W let Px,y be the corresponding Kazhdan–
Lusztig polynomial. If {Tw | w ∈ W} denotes the usual T -basis and u = v2 the parameter
for H , then

Cx :=
∑
y≤x

(−1)l(x)−l(y)Px,y(v−2)vl(x)−2l(y)Ty for every x ∈W.

For example, we have Cs = v−1Ts−vT1 for s ∈ S. Thus, the transformation matrix between
the T -basis and the C-basis is lower unitriangular, with powers of v along the diagonal. The
multiplication rules for this new basis are given as follows.

Cs · Cx =
{
−(v + v−1)Cx , if sx < x
Csx +

∑
y µ(y, x)Cy , if sx > x

where the sum is over all y such that y < x, l(y) 6≡ l(x) mod 2 and sy < y. The coefficient
µ(y, x) is the coefficient of degree (l(x) − l(y) − 1)/2 in the Kazhdan–Lusztig polynomial
Px,y.

gap> W := CoxeterGroup("B", 3);;
gap> v := X(Rationals);; v.name := "v";;
gap> H := Hecke(W, v^2, v);
Hecke(CoxeterGroup("B", 3),[v^2, v^2, v^2],[v, v, v])
gap> T := Basis(H, "T");

1500 CHAPTER 83. KAZHDAN-LUSZTIG POLYNOMIALS AND BASES

function (arg) ... end
gap> C := Basis(H, "C");
function (arg) ... end
gap> T(C(1));
-vT()+v^-1T(1)
gap> C(T(1));
v^2C()+vC(1)

We can also compute character values on elements in the C-basis as follows:

gap> ref := HeckeReflectionRepresentation(H);;
gap> c := CharRepresentationWords(ref, CoxeterConjugacyClasses(W));
[3, 2*v^2 - 1, v^8 - 2*v^4, -3*v^12, 2*v^2 - 1, v^4, v^4 - 2*v^2,
-v^6, v^4 - v^2, 0*v^0]

gap> List(ChevieClassInfo(W).classtext, i ->
> HeckeCharValues(C(i), c));
[3*v^0, -v - v^(-1), 0*v^0, 0*v^0, -v - v^(-1), 2*v^0, 0*v^0, 0*v^0,
v^0, 0*v^0]

This function requires the package ”chevie”(see 56.1).

83.8 Hecke elements of the primed C basis

Basis(H , "C’")

returns a function which gives the C ′-basis of the (one parameter generic) Iwahori-Hecke
algebra H (see [Lus85, (5.1)]). This is defined by

C ′x :=
∑
y≤x

Px,y(v2)v−l(x)Ty for every x ∈W.

We have C ′x = Alt(Cx) for all x ∈W (see AltInvolution in section 81.5).

gap> v := X(Rationals);; v.name := "v";;
gap> H := Hecke(CoxeterGroup("B", 2), v ^ 2, v);;
gap> h := Basis(H, "C’")(1);
C’(1)
gap> h2 := h * h;
(v+v^-1)C’(1)
gap> Basis(H, "T")(h2);
(1+v^-2)T()+(1+v^-2)T(1)

This function requires the package ”chevie”(see 56.1).

83.9 Hecke elements of the D basis

Basis(H , "D")

returns a function which gives the D-basis of the (one parameter generic) Iwahori-Hecke
algebra H (see [Lus85, (5.1)]). This can be defined by

Dx := v−NC ′xw0
Tw0 for every x ∈W,

83.10. HECKE ELEMENTS OF THE PRIMED D BASIS 1501

where N denotes the number of positive roots in the root system of W and w0 is the longest
element of W . The D-basis is dual to the C-basis with respect to the non-degenerate form
H ×H → Z[v, v−1], (h1, h2) 7→ τ(h1 · h2) where τ : H → Z[v, v−1] is the linear form such
that τ(T1) = 1 and τ(Tx) = 0 for x 6= 1. We have Dx = β(C ′w0x) for all x ∈ W (see
BetaInvolution in section 81.5).

gap> W := CoxeterGroup("B", 2);;
gap> v := X(Rationals);; v.name := "v";;
gap> H := Hecke(W, v^2, v);
Hecke(CoxeterGroup("B", 2),[v^2, v^2],[v, v])
gap> T := Basis(H, "T");
function (arg) ... end
gap> D := Basis(H, "D");
function (arg) ... end
gap> D(T(1));
vD(1)-v^2D(1,2)-v^2D(2,1)+v^3D(1,2,1)+v^3D(2,1,2)-v^4D(1,2,1,2)
gap> BetaInvolution(D(1));
C’(2,1,2)

This function requires the package ”chevie”(see 56.1).

83.10 Hecke elements of the primed D basis

Basis(H , "D’")

returns a function which gives the D′-basis of the (one parameter generic) Iwahori-Hecke
algebra H (see [Lus85, (5.1)]). This can be defined by

D′x := v−NCxw0Tw0 for every x ∈W,

where N denotes the number of positive roots in the root system of W and w0 is the longest
element of W . The D′-basis is basis dual to the C ′-basis with respect to the non-degenerate
form H ×H → Z[v, v−1], (h1, h2) 7→ τ(h1 · h2) where τ : H → Z[v, v−1] is the linear form
such that τ(T1) = 1 and τ(Tx) = 0 for x 6= 1. We have D′x = Alt(Dx) for all x ∈ W (see
AltInvolution in section 81.5).

gap> W := CoxeterGroup("B", 2);;
gap> v := X(Rationals);; v.name := "v";;
gap> H := Hecke(W, v^2, v);
Hecke(CoxeterGroup("B", 2),[v^2, v^2],[v, v])
gap> T := Basis(H, "T");
function (arg) ... end
gap> Dp := Basis(H, "D’");
function (arg) ... end
gap> AltInvolution(Dp(1));
D(1)
gap> Dp(1)^3;
(v+2v^-1-5v^-5-9v^-7-8v^-9-4v^-11-v^-13)D’()+(v^2+2+v^-2)D’(1)

This function requires the package ”chevie”(see 56.1).

1502 CHAPTER 83. KAZHDAN-LUSZTIG POLYNOMIALS AND BASES

Chapter 84

Coxeter cosets

Let R be a root system in the real vector space V as in Chapter 75. Let F0 be an auto-
morphism of V . We say that F0 is an automorphism of R if it is of finite order, if F0

preserves the set of roots R ⊂ V and if the adjoint automorphism F ∗0 of V ∨ preserves the
set of coroots R∨ ⊂ V ∨.

An automorphism F0 of R normalizes the reflection group W := W (R). More precisely it
induces an automorphism F : W →W , defined by w 7→ F0wF

−1
0 . A Coxeter coset is the

coset WF0 in the group of automorphisms of V , generated by W and F0.

Let ∆ ⊂ R be a set of simple roots of R. Then the set ∆F0 is again a set of simple roots.
So there is a unique element w1 ∈W such that φ = w1F0 stabilizes ∆.

A subset C of a Coxeter coset WF0 is called a conjugacy class if one of the following three
equivalent conditions is fulfilled:

• C is the orbit of an element in WF0 under the conjugation action of W .

• C is a conjugacy class of 〈W,F0〉 contained in WF0.

• The set {w ∈ W | wF0 ∈ C} is an F -conjugacy class of W (two elements v, w ∈ W
are called F -conjugate, if and only if there exists x ∈W with v = xwF (x−1)).

Let us consider the map from the set of irreducible characters of 〈W,F0〉 to the set of
characters of W given by restriction. We get the following facts from Clifford theory: The
characters having a nonzero value on a class in the coset WF0 are exactly those characters
which restrict to irreducible ones on W . The irreducible characters of W in the image of
this map are exactly those which are fixed under the canonical action of F . Let χ ∈ Ŵ be
such a character and χ1, . . . , χr the characters of 〈W,F0〉 which restrict to χ. Then r is the
smallest positive integer such that F r0 ∈W and the restrictions of the χi, i = 1, . . . , r to the
conjugacy classes of WF0 are equal up to scalar multiplication with r-th roots of unity.

In CHEVIE we choose (following Lusztig) for each F -stable character of W a single (not
canonical) extension to a character of 〈W,F0〉, which we will call a preferred extension.
The table of the restrictions of the preferred extensions to the coset WF0 is called the
character table of the coset WF0. (See also the subsequent section on CharTable for
Coxeter cosets.)

1503

1504 CHAPTER 84. COXETER COSETS

We define a scalar product on the class functions of a Coxeter coset WF0 by

〈χ, ψ〉 :=
1
|W |

∑
w∈W

χ(wF0)ψ̄(wF0).

Then the character table of WF0 contains an orthonormal set of class functions on WF0.

A subcoset W1w0F0 of WF0 is given by a reflection subgroup W1 of W and an element w0

of W such that w0F0 is an automorphism of the root system R1 of W1.

We then have a natural notion of restriction of class functions on WF0 to class functions
on W1w0F0 as well as of induction in the other direction. These maps are adjoint with
respect to the scalar product defined above (see [BMM93a], p.15).

The question of finding the conjugacy classes and character table of a Coxeter coset can be
reduced to the case of irreducible root systems R: First we assume that F0 = φ, i.e., F0

fixes a chosen set ∆ of simple roots, and consider the canonical monomorphism 〈W,F0〉 →
W semidir 〈F 〉, where F is the automorphism of W defined above. It is clear that this
map induces a bijection from WF0 to WF ⊂ W semidir 〈F 〉 which preserves conjugacy
classes in the cosets. The preferred extensions are defined such that they factorize over this
map. Let W1,W2 ≤ W be F -stable reflection subgroups of W such that W = W1 ×W2

and let Fi the restriction of F on Wi, i = 1, 2. Here the preferred extension is defined via
restriction to the image of W semidir 〈F 〉 ↪→ (W1 semidir 〈F1〉)× (W2 semidir 〈F2〉). Thus
we can reduce the determination of conjugacy classes and the character table of WF0 to
the case were W is decomposed in irreducible components W = W1 × · · · ×Wk which are
cyclically permuted by F . In this case there are natural bijections from the F -conjugacy
classes of W to the F k-conjugacy classes of W1 as well as from the F -stable characters of
W to the F k-stable characters of W1. The definition of preferred extensions on WF can
be reduced to the definition of preferred extensions for W1F

k. So, we are reduced to the
case that W is the Coxeter group of an irreducible root system and F permutes the simple
roots, hence induces a graph automorphism on the corresponding Dynkin diagram. If F = 1
then conjugacy classes and characters coincide with those of the Coxeter group W . The
nontrivial cases to consider are (the order of F is written as left exponent to the type): 2An,
2Dn, 3D4, 2E6 and 2I2(2k+ 1). (Note that the exceptional automorphisms of order 2 which
permute the Coxeter generators of the Coxeter groups of type B2, G2, F4 or I2(2k) do not
come from automorphisms of the underlying root systems.)

In case 3D4 the group W semidir 〈F 〉 can be embedded into the Coxeter group of type F4,
which induces a labeling for the conjugacy classes of the coset. The preferred extension is
chosen as the (single) extension with rational values. In case 2Dn the group W semidir 〈F 〉
is isomorphic to a Coxeter group of type Bn. This induces a canonical labeling for the
conjugacy classes of the coset and allows to define the preferred extension in a combinatorial
way using the labels (pairs of partitions) for the characters of the Coxeter group of type Bn.
In the remaining cases the group W semidir 〈F 〉 is in fact isomorphic to a direct product
W × 〈w0F 〉 where w0 is the longest element of W . So, there is a canonical labeling of the
conjugacy classes and characters of the coset by those of W . The preferred extensions are
defined by describing the signs of the character values on w0F .

In GAP we construct the Coxeter coset by starting from a Coxeter datum specified by the
matrices of simpleRoots and simpleCoroots, and giving in addition the matrix F0Mat of
the map F0 : V → V (see the commands CoxeterCoset and CoxeterSubCoset). As it is true
for the Coxeter groups the elements of WF0 are uniquely determined by the permutation

1505

they induce on the set of roots R. We consider these permutations as Elements of the
Coxeter coset.

Coxeter cosets are implemented in GAP by a record which points to a Coxeter datum record
and has additional fields holding F0Mat, F0Perm and the corresponding reduced element
phi. Functions on the coset work with elements of the group coset WF0 (for example,
ChevieClassInfo); however, most definitions for elements of untwisted Coxeter groups
apply without change to elements in WF0: e.g., if we define the length of an element wφ ∈
WF0 as the number of positive roots it sends to negative ones, it is the same as the length
of w, i.e., φ is of length 0, since φ has been chosen to preserve the set of positive roots.
Similarly, the CoxeterWord describing wφ is the same as the one for w, etc. . .

We associate to a Coxeter coset WF0 a twisted Dynkin diagram, consisting of the
Dynkin diagram of W and the graph automorphism induced by φ on this diagram (this
specifies the group W semidir 〈F 〉, mentioned above, up to isomorphism). See the com-
mands CartanType, CartanName and PrintDynkinDiagram for Coxeter cosets.

The motivation for introducing this notion comes from the theory of Chevalley groups, or
more generally reductive algebraic groups over finite fields. Let G be a reductive algebraic
group over the algebraic closure Fq of a finite field Fq, which is defined over Fq, with
corresponding Frobenius endomorphism F , so the finite group of rational points G(Fq)
identifies to the subgroup GF of fixed points under F . Let T be an F -stable maximal torus
of G. The Weyl group of G with respect to T is the quotient W = NG(T)/T. Let X(T)
be the character group of T, that is the group of rational homomorphisms T → Fq. The
group W acts naturally on X(T), and thus also on the vector space V = R⊗X(T). It is a
fundamental fact in the theory of reductive groups that there is a canonical root system Φ
in V defined by (G,T) such that W is the Weyl group of that root system.

The Frobenius endomorphism F acts also naturally on X(T) and defines thus an endomor-
phism of V , which is of the form qF0, where F0 is an automorphism of finite order of V . We
get thus a Coxeter datum (V,W,F0).

To completely specify GF up to isomorphism, we need a little more information. Let
Y (T) be the group of cocharacters of T, that is of rational homomorphisms Fq → T.
The Z-modules X(T) and Y (T) are naturally dual to each other, and there is a canonical
root system Φ∨ in Y (T) dual to Φ. Let V ∨ = R ⊗ Y (T). The classification theorems
on reductive groups show that the isomorphism type of GF is completely determined by
the datum (V,Φ, V ∨,Φ∨, F0), and the integer q. Thus we can think of this datum as a
way of representing in GAP the essential information which determines a Chevalley group.
Indeed, all properties of Chevalley groups can be computed from its Weyl datum: symbols
representing unipotent characters, conjugacy classes, and finally the whole character table
of GF .

It turns out that an interesting part of the objects attached to this datum depends only
on (V,W,F0): the order of the maximal tori, the “fake degrees”, the order of GF , Deligne-
Lusztig induction in terms of “almost characters”, symbols representing unipotent characters
and Deligne-Lusztig induction, etc. . . (see, e.g., [BMM93a]). It is thus possible to extend
their construction to non-crystallographic groups (or even to more general complex reflection
groups); this is why we did not include Φ in the definition of a Coxeter coset.

However, in GAP we will always have the whole datum (V,Φ, V ∨,Φ∨, F0). We assume that
we have chosen a Borel subgroup of G containing T. This defines an order on the roots, and

1506 CHAPTER 84. COXETER COSETS

thus a basis Π of Φ as well as a basis Π∨ of Φ∨. Any element of WF0 induces a permutation
of the roots, and there is a unique element φ ∈WF0, which we call the reduced element in
the coset, which preserves the set of positive roots. This element is stored in the component
phi of the coset, and can be used to test isomorphism of cosets. The coset WF0 is completely
defined by the permutation F0Perm of the roots induced by F0 when G is semi-simple (in
which case Φ generates V). So in this case we just need to specify F0Perm when defining
the coset.

We should mention also a special case of Chevalley groups which does not exactly fit the
above description: the Ree and Suzuki groups. In these cases, the group is defined as GF

where F is not a Frobenius endomorphism, but an isogeny such that either F 2 or F 3 is a
Frobenius endomorphism. Here, F still defines an endomorphism of V which normalizes W
(and induces the automorphism of order 2 of W — W is of type G2, B2 or F4), but this
endomorphism is no longer q times an endomorphism of finite order; however, up to some
power of q, F0 still takes a form independent of q (but here, q is a power of a fixed prime p
equal to 2 or 3 depending on the group considered). This has not yet been implemented.

84.1 CoxeterCoset

CoxeterCoset(W [, F0Mat])

CoxeterCoset(W [, F0Perm])

This function returns a Coxeter coset as a GAP object. The argument W must be a Coxeter
group (created by CoxeterGroup or ReflectionSubgroup). In the first form the argument
F0Mat must be an invertible matrix with Rank(W) rows, representing an automorphism
F0 of the root system of the parent of W . In the second form F0Perm is a permutation
which describes the images of the simple roots under F0 (and only these images are used).
Of course this form is only allowed if the semisimple rank of W equals the rank (i.e., the
simple roots are a basis of V). If there is no second argument the default for F0Mat is the
identity matrix.

CoxeterCoset returns a record from which we document the following components:

isDomain, isFinite
true

coxeter
the Coxeter group W

F0Mat
the matrix acting on V which represents F0

F0Perm
the permutation on the roots of W induced by F0Mat

phi
the shortest element in the coset (as permutation)

w1
phi/F0Perm

In the first example we create a Coxeter coset corresponding to the general unitary groups
GU3(q) over finite fields with q elements.

84.2. COXETERSUBCOSET 1507

gap> W := CoxeterGroup([[1, -1, 0], [0, 1, -1]],
> [[1, -1, 0], [0, 1, -1]]);;
gap> gu3 := CoxeterCoset(W, -IdentityMat(3));
CoxeterCoset(CoxeterGroup([[1, -1, 0], [0, 1, -1]],
[[1, -1, 0], [0, 1, -1]]),
[[-1, 0, 0], [0, -1, 0], [0, 0, -1]])
gap> F4 := CoxeterGroup("F", 4);;
gap> D4 := ReflectionSubgroup(F4, [1, 2, 16, 48]);
ReflectionSubgroup(CoxeterGroup("F", 4), [1, 2, 9, 16])
gap> PrintDynkinDiagram(D4);
D4 9

\
1 - 16
/

2
gap> 3D4 := CoxeterCoset(D4, (2,9,16));
CoxeterCoset(ReflectionSubgroup(CoxeterGroup("F", 4),
[1, 2, 9, 16]), (2, 9,16))

These functions require the package ”chevie”(see 56.1).

84.2 CoxeterSubCoset

CoxeterSubCoset(WF, r, [w])

Returns the reflection subcoset of the Coxeter coset WF generated by the reflections with
roots specified by r . r is a list of indices specifying a subset of the roots of W where W is
the Coxeter group CoxeterGroup(WF). If specified, w must be an element of W such that
w*WF.F0Perm normalizes the subroot system generated by r . If absent, the default value for
w is (). It is an error, if w*WF.F0Perm does not normalize the subsystem.

gap> CoxeterSubCoset(CoxeterCoset(CoxeterGroup("A", 2), (1,2)),
> [1]);
Error, must give w, such that w * WF.F0Perm normalizes subroot system.
in
CoxeterSubCoset(CoxeterCoset(CoxeterGroup("A", 2), (1,2)), [1])
called from main loop
brk>
gap> f4coset := CoxeterCoset(CoxeterGroup("F", 4));
CoxeterCoset(CoxeterGroup("F", 4))
gap> w := RepresentativeOperation(CoxeterGroup(f4coset),
> [1, 2, 9, 16], [1, 9, 16, 2], OnTuples);;
gap> 3d4again := CoxeterSubCoset(f4coset, [1, 2, 9, 16], w);
CoxeterSubCoset(CoxeterCoset(CoxeterGroup("F", 4)), [1, 2, 9, 16],
(2, 9,16)(3, 4,31)(5,11,18)(6,13,10)(7,27,28)(8,15,12)(14,22,20)
(17,19,21)(26,33,40)(29,35,42)(30,37,34)(32,39,36)(38,46,44)
(41,43,45))
gap> PrintDynkinDiagram(3d4again);
phi acts as (2, 9,16) on the component below
D4 9

1508 CHAPTER 84. COXETER COSETS

\
1 - 2
/
16

This function requires the package ”chevie”(see 56.1).

84.3 Functions on Coxeter cosets

CoxeterGroup(WF)
returns the Coxeter group of which WF is a coset.

Quite a few functions defined for domains, permutation groups or Coxeter groups have been
implemented to work with Coxeter cosets.

Elements, Random, Representative, Size, in
these functions use the corresponding functions for CoxeterGroup(WF).

ConjugacyClasses(WF)
returns the conjugacy classes of the Coxeter coset WF (see also the introduction of
this Chapter). Let W be CoxeterGroup(WF). Then the classes are defined to be the
W -orbits on WF0, where W acts by conjugation (they coincide with the WF0-orbits,
WF0 acting by the conjugation); by the translation w 7→ wφ−1 they are sent to the
φ-conjugacy classes of W .

PositionClass(WF , x)
for any element x in WF this returns the number i such that x is an element of
ConjugacyClasses(WF)[i] (to work fast, the classification of Coxeter groups is
used).

FusionConjugacyClasses(WF1, WF)
works in the same way as for groups. See the section CoxeterSubCoset.

Print(WF)
if WF.name is bound then this is printed, else this function prints the coset in a form
which can be input back into GAP.

InductionTable(HF, WF)

works in the same way as for groups. It gives the induction table from the Coxeter subcoset
HF to the Coxeter coset WF . IfHwF0 is a Coxeter subcoset ofWF0, restriction of characters
is defined as restriction of functions from WF0 to HwF0, and induction as the adjoint map
for the natural scalar product 〈f, g〉 = 1

#W

∑
v∈W f(vF0)g(vF0).

If the Coxeter coset WF represents the reductive group G, and HF corresponds to a Levi
subgroup L, then the induction from HF to WF describes the Lusztig induction of uniform
unipotent almost characters from L to G.

Harish-Chandra induction in the basis of almost characters:

gap> WF := CoxeterCoset(CoxeterGroup("A", 4), (1,4)(2,3));
CoxeterCoset(CoxeterGroup("A", 4), (1,4)(2,3))
gap> Display(InductionTable(CoxeterSubCoset(WF, [2, 3]), WF));

| 111 21 3

84.3. FUNCTIONS ON COXETER COSETS 1509

11111 | 1 . .
2111 | . 1 .
221 | 1 . .
311 | 1 . 1
32 | . . 1
41 | . 1 .
5 | . . 1

Lusztig induction from a diagonal Levi:

gap> HF := CoxeterSubCoset(WF, [1, 2],
> LongestCoxeterElement(CoxeterGroup(WF)));;
gap> Display(InductionTable(HF, WF));

| 111 21 3

11111 | -1 . .
2111 | -2 -1 .
221 | -1 -2 .
311 | 1 2 -1
32 | . -2 1
41 | . 1 -2
5 | . . 1

A descent of scalars:

gap> W := CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3)(2,4));
CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3)(2,4))
gap> Display(InductionTable(CoxeterSubCoset(W, [1, 3]), W));

| 11 2

111 | 1 .
21 | 1 1
3 | . 1

CartanName(WF)
returns a string which describes the isomorphism type of the group W semidir 〈F 〉,
associated to WF , as described in the introduction of this Chapter. An orbit of
φ =WF .phi on the components is put in brackets if of length k greater than 1, and is
preceded by the order of phik on it, if this is not 1. For example "2(A2xA2)" denotes
2 components of type A2 permuted by F0, and such that phi2 induces the non-trivial
diagram automorphism on any of them, while 3D4 denotes an orbit of length 1 on
which phi is of order 3.

gap> W := CoxeterCoset(CoxeterGroup("A", 2, "G", 2, "A", 2),
> (1,5,2,6));
CoxeterCoset(CoxeterGroup("A", 2, "G", 2, "A", 2), (1,5,2,6))
gap> CartanName(W);
"2(A2xA2)xG2"

PrintDynkinDiagram(WF)
this is a purely descriptive routine (as was already the case for finite Coxeter groups

1510 CHAPTER 84. COXETER COSETS

themselves). It prints the Dynkin diagram of CoxeterGroup(WF) together with the
information how WF.phi acts on it.

gap> W := CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3,2,4));
CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3,2,4))
gap> PrintDynkinDiagram(W);
phi permutes the next 2 components
phi^2 acts as (1,2) on the component below
A2 1 - 2
A2 3 - 4

ChevieClassInfo(WF), see the explicit description in 84.5.

ChevieCharInfo
This function returns additional information on the irreducible characters, see 77.10
for more details.

CharParams(WF)

CharName(WF)

Note that some functions for elements of a Coxeter group work naturally for elements of a
Coxeter coset: CoxeterWord, PermCoxeterWord, CoxeterLength, ReducedInCoxeterCoset,
LeftDescentSet, RightDescentSet, etc. . .

84.4 CartanType for Coxeter cosets

CartanType(WF)

returns the type of the Coxeter coset WF . This consists of a list of records, one for each orbit
of WF.phi on the irreducible components of the Dynkin diagram of CoxeterGroup(WF),
which have two fields:

orbit
is a list of types of the irreducible components in the orbit. These types are the same
as returned by the function CartanType for an irreducible untwisted Coxeter group
(see CartanType in chapter 75): a couple [type,indices] (a triple for type I2(n)).
The components are ordered according to the action of WF.phi, so WF.phi maps
the generating permutations with indices in the first type to indices in the second
type in the same order as stored in the type, etc . . .
phi
if k is the number of irreducible components in the orbit, this is the permutation
which describes the action of WF.phik on the simple roots of the first irreducible
component in the orbit.

gap> W := CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3,2,4));
CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3,2,4))
gap> CartanType(W);
[rec(

orbit := [["A", [1, 2]], ["A", [3, 4]]],
phi := (1,2))]

This function requires the package ”chevie”(see 56.1).

84.5. CHEVIECLASSINFO FOR COXETER COSETS 1511

84.5 ChevieClassInfo for Coxeter cosets

ChevieClassInfo(WF)

returns information about the conjugacy classes of the Coxeter coset WF . The result is a
record with three components: classtext contains a list of reduced words for the repre-
sentatives in ConjugacyClasses(WF), classnames contains corresponding names for the
classes, and classparams gives corresponding parameters for the classes. Let W be the
Coxeter group CoxeterGroup(WF). In the case where −1 /∈ W , i.e., φ = −w0, they are
obtained by multiplying by w0 a set of representatives of maximal length of the classes of
W .

gap> W := CoxeterGroup("D", 4);;
gap> ChevieClassInfo(CoxeterCoset(W, (1,2,4)));
rec(
classtext := [[1], [], [1, 2, 3, 1, 2, 3], [3], [1, 3],

[1, 2, 3, 1, 2, 4, 3, 2], [1, 2, 3, 2]],
classparams :=
[["C_3"], ["~A_2"], ["C_3+A_1"], ["~A_2+A_1"], ["F_4"],

["~A_2+A_2"], ["F_4(a_1)"]],
classnames :=
["C_3", "~A_2", "C_3+A_1", "~A_2+A_1", "F_4", "~A_2+A_2",

"F_4(a_1)"])

This function requires the package ”chevie”(see 56.1).

84.6 CharTable for Coxeter cosets

CharTable(WF)

This function returns the character table of the Coxeter coset WF (see also the introduction
of this Chapter). We call “characters”of the Coxeter coset WF with corresponding Coxeter
group W the restriction to WF0 of a set containing one extension of each F0-invariant
character of W to the semidirect product of W with the cyclic group generated by F0. (We
choose, following Lusztig, in each case one non-canonical extension, called the preferred
extension.)

The returned record contains almost all components present in the character table of a
Coxeter group. But if F0 is not trivial then there are no components powermap (since
powers of elements in the coset need not be in the coset) and orders (if you really need
them, use MatXPerm to determine the order of elements in the coset).

gap> W := CoxeterCoset(CoxeterGroup("D", 4), (1,2,4));
CoxeterCoset(CoxeterGroup("D", 4), (1,2,4))
gap> Display(CharTable(W));
W(3D4)

2 2 2 2 2 2 3 3
3 1 1 1 . . 1 1

C_3 ~A_2 C_3+A_1 ~A_2+A_1 F_4 ~A_2+A_2 F_4(a_1)

1512 CHAPTER 84. COXETER COSETS

.4 1 1 1 1 1 1 1

.1111 -1 1 1 -1 1 1 1

.22 . 2 2 . -1 -1 -1
11.2 -1 3 3
1.3 1 1 -1 -1 . -2 2
1.111 -1 1 -1 1 . -2 2
1.21 . 2 -2 . . 2 -2

This function requires the package ”chevie”(see 56.1).

84.7 Frobenius

Frobenius(WF)(word)

Frobenius(WF)(permutation)

Frobenius(WF)(rec)

Given a Coxeter coset WF , Frobenius(WF) returns a function which makes WF.F0Perm
act on its argument which may be either a CoxeterWord, a permutation, a braid or a Hecke
element. For instance, if H is an Hecke algebra for CoxeterGroup(WF), to compute (TwF0)2

in that algebra one can do Basis(H,"T")(w)*Frobenius(WF)((Basis(H,"T")(w))).

This function requires the package ”chevie”(see 56.1).

84.8 PhiFactors

PhiFactors(WF)

Let W be the Coxeter group corresponding to the Coxeter coset WF , and let V be the
vector space of dimension W.rank on which W acts as a reflection group. Let f1, . . . , fn be
the basic invariants of W on the symmetric algebra SV of V . The matrix WF.F0Mat has
the fi as eigenvectors. The corresponding eigenvalues, sorted in order of increasing degrees
of the fi are called the factors of F0 acting on V .

gap> W := CoxeterGroup("E", 6);; WF := CoxeterCoset(W);
CoxeterCoset(CoxeterGroup("E", 6))
gap> phi := PermCoxeterWord(W,
> [6, 5, 4, 2, 3, 1, 4, 3, 5, 4, 2, 6, 5, 4, 3, 1]);;
gap> HF := CoxeterSubCoset(WF, [2..5], phi);;
gap> PrintDynkinDiagram(HF);
phi acts as (2,3,5) on the component below
D4 2

\
4 - 5
/
3

gap> PhiFactors(HF);
[E(3), E(3)^2, 1, E(3), E(3)^2, 1]
gap> ReflectionDegrees(CoxeterGroup(HF));
[1, 1, 2, 4, 4, 6]

This function requires the package ”chevie”(see 56.1).

Chapter 85

Hecke cosets

“Hecke cosets” are Hφ where H is a Hecke algebra of some Coxeter group W on which the
reduced element φ acts by φ(Tw) = Tφ(w). This corresponds to the action of the Frobenius
automorphism on the commuting algebra of the induced of the trivial representation from
the rational points of some F -stable Borel subgroup to GF .

gap> W := CoxeterGroup("A", 2);;
gap> q := X(Rationals);; q.name := "q";;
gap> HF := Hecke(CoxeterCoset(W, (1,2)), q^2, q);
Hecke(CoxeterCoset(CoxeterGroup("A", 2), (1,2)),[q^2, q^2],[q, q])
gap> Display(CharTable(HF));
H(2A2)

2 1 1 .
3 1 . 1

111 21 3
2P 111 111 3
3P 111 21 111

111 -1 1 -1
21 -2q^3 0 q
3 q^6 1 q^2

We do not yet have a satisfying theory of character tables for these cosets (the equivalent of
HeckeClassPolynomials has not yet been proven to exist). We hope that future releases
of CHEVIE will contain better versions of such character tables.

85.1 Hecke for Coxeter cosets

Hecke(WF, H)

Hecke(WF, params)

Construct a Hecke coset a Coxeter coset WF and an Hecke algebra associated to the Coxeter-
Group of WF . The second form is equivalent to Hecke(WF, Hecke(CoxeterGroup(WF),
params)).

1513

1514 CHAPTER 85. HECKE COSETS

This function requires the package ”chevie”(see 56.1).

85.2 Operations and functions for Hecke cosets

Hecke
returns the untwisted Hecke algebra corresponding to the Hecke coset.

CoxeterCoset
returns the Coxeter coset corresponding to the Hecke coset.

CoxeterGroup
returns the untwisted Coxeter group corresponding to the Hecke coset.

Print
prints the Hecke coset in a form which can be read back into GAP.

CharTable
returns the character table of the Hecke coset.

These functions require the package ”chevie”(see 56.1).

Chapter 86

Appendix – utility functions for
the CHEVIE package

The functions described below, used in various parts of the CHEVIE package, are of a general
nature and should really be included in other parts of the GAP library. We include them
here for the moment for the commodity of the reader.

86.1 InductionTable

InductionTable(W1, W)

InductionTable computes the decomposition of the induced characters from the subgroup
W1 into irreducible characters of W . The rows correspond to the characters of the parent
group, the columns to those of the subgroup. What is returned is actually a record with
several fields:scalar contains the induction table proper, and there is a Display method.
The other fields contain labeling information taken from the character tables of W1 and W
when it exists.

gap> W := Group([(1,2), (2,3), (3,4)], ());
Group((1,2), (2,3), (3,4))
gap> H:=Subgroup(W, [(1,2), (3,4)]);
Subgroup(Group((1,2), (2,3), (3,4)), [(1,2), (3,4)])
gap> W.name := "W";; H.name := "H";; # to avoid warnings
gap> Display(InductionTable(H, W));

| X.1 X.2 X.3 X.4

X.1 | 1 . . .
X.2 | . . . 1
X.3 | 1 . . 1
X.4 | . 1 1 1
X.5 | 1 1 1 .

gap> W := CoxeterGroup("G", 2);;
gap> H := ReflectionSubgroup(W, [1, 4]);
ReflectionSubgroup(CoxeterGroup("G", 2), [1, 4])

1515

1516CHAPTER 86. APPENDIX – UTILITY FUNCTIONS FOR THE CHEVIE PACKAGE

gap> CartanName(H);
"A1x~A1"
gap> t := InductionTable(H, W);
InductionTable(ReflectionSubgroup(CoxeterGroup("G", 2),
[1, 4]), CoxeterGroup("G", 2))
gap> Display(t);

| 11,11 11,2 2,11 2,2
__
phi_{1,0} | . . . 1
phi_{1,6} | 1 . . .
phi_{1,3}’ | . 1 . .
phi_{1,3}’’ | . . 1 .
phi_{2,1} | . 1 1 .
phi_{2,2} | 1 . . 1

If one does not want to see the whole induction table, one can specify the characters of the
subgroup and of the parent group by giving a second argument to Display. This second
argument is a record with optional components charsGroup and charsSubgroup, to which
one has to assign the lists of rows and columns which should be printed.

gap> Display(t,rec(charsGroup := [5], charsSubgroup := [2,3]));
Induction from A1x~A1 into G2

| 11,2 2,11

phi_{2,1} | 1 1

86.2 CharRepresentationWords

CharRepresentationWords(rep , elts)

given a list rep of matrices corresponding to generators and a list elts of words in the
generators it returns the list of traces of the corresponding representation on the elements
in elts.

gap> H := Hecke(CoxeterGroup("F", 4));;
gap> r := ChevieClassInfo(Group(H)).classtext;;
gap> t := HeckeReflectionRepresentation(H);;
gap> CharRepresentationWords(t, r);
[4, -4, 0, 1, -1, 0, 1, -1, -2, 2, 0, 2, -2, -1, 1, 0, 2, -2, -1, 1,

0, 0, 2, -2, 0]

86.3 PositionClass

PositionClass(G, c)

G must be a domain for which ConjugacyClasses is defined and c must be an element of
G . This functions returns a positive integer i such that c in ConjugacyClasses(G)[i].

gap> G := Group((1,2)(3,4), (1,2,3,4,5));;
gap> ConjugacyClasses(G);
[ConjugacyClass(Group((1,2)(3,4), (1,2,3,4,5)), ()),
ConjugacyClass(Group((1,2)(3,4), (1,2,3,4,5)), (3,4,5)),

86.4. POINTSANDREPRESENTATIVESORBITS 1517

ConjugacyClass(Group((1,2)(3,4), (1,2,3,4,5)), (2,3)(4,5)),
ConjugacyClass(Group((1,2)(3,4), (1,2,3,4,5)), (1,2,3,4,5)),
ConjugacyClass(Group((1,2)(3,4), (1,2,3,4,5)), (1,2,3,5,4))]

gap> g := Random(G);
(1,2,5,4,3)
gap> PositionClass(G, g);
5

86.4 PointsAndRepresentativesOrbits

PointsAndRepresentativesOrbits(G[, m])

returns a pair [orb, rep] where orb is a list of the orbits of the permutation group G
on [1..LargestMovedPoint(G)] and rep is a list of list of elements of G such that
rep[i][j] applied to orb[i][1] yields orb[i][j] for all i, j. If the optional argument m
is given, then LargestMovedPoint(G) is replaced by the integer m.

gap> G := Group((1,7)(2,3)(5,6)(8,9)(11,12),
> (1,5)(2,8)(3,4)(7,11)(9,10));;
gap> PointsAndRepresentativesOrbits(G);
[[[1, 7, 5, 11, 6, 12], [2, 3, 8, 4, 9, 10]],
[[(), (1, 7)(2, 3)(5, 6)(8, 9)(11,12),

(1, 5)(2, 8)(3, 4)(7,11)(9,10),
(1,11,12, 7, 5, 6)(2, 4, 3, 8,10, 9),
(1, 6, 5, 7,12,11)(2, 9,10, 8, 3, 4),
(1,12)(2, 4)(3, 9)(6, 7)(8,10)],

[(), (1, 7)(2, 3)(5, 6)(8, 9)(11,12),
(1, 5)(2, 8)(3, 4)(7,11)(9,10),
(1,11,12, 7, 5, 6)(2, 4, 3, 8,10, 9),
(1, 6, 5, 7,12,11)(2, 9,10, 8, 3, 4),
(1, 6)(2,10)(4, 8)(5,11)(7,12)]]]

86.5 DirectSumMat

DirectSumMat(mat1, ... , matn)

returns the block diagonal direct sum of the matrices mat1 , . . ., matn.

gap> C1 := [[2, -1, 0, 0],
> [-1, 2, -1, 0],
> [0, -1, 2, -1],
> [0, 0, -1, 2]];;
gap> C2 := [[2, 0, -1, 0],
> [0, 2, -1, 0],
> [-1, -1, 2, -1],
> [0, 0, -1, 2]];;
gap> d := DirectSumMat(C1, C2);;
gap> PrintArray(d);
[[2, -1, 0, 0, 0, 0, 0, 0],
[-1, 2, -1, 0, 0, 0, 0, 0],

1518CHAPTER 86. APPENDIX – UTILITY FUNCTIONS FOR THE CHEVIE PACKAGE

[0, -1, 2, -1, 0, 0, 0, 0],
[0, 0, -1, 2, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 0, -1, 0],
[0, 0, 0, 0, 0, 2, -1, 0],
[0, 0, 0, 0, -1, -1, 2, -1],
[0, 0, 0, 0, 0, 0, -1, 2]]

One can also use a computed list of matrices as an argument; the function call then reads
ApplyFunc(DirectSumMat, [mat1, ... , matn]).

86.6 DecomposedMat

DecomposedMat(mat)

finds if the square matrix mat admits a block decomposition.
Define a graph G with vertices [1..Length(mat)] and with an edge between i and j if
either mat[i][j] or mat[j][i] is non-zero. DecomposedMat return a list of lists l such that
l[1],l[2], etc.. are the vertices in each connected component of G. In other words, the
matrices mat{l[1]}{l[1]},mat{l[2]}{l[2]}, etc... are blocks of the matrix mat .

gap> m := [[0, 0, 0, 1],
> [0, 0, 1, 0],
> [0, 1, 0, 0],
> [1, 0, 0, 0]];;
gap> DecomposedMat(m);
[[1, 4], [2, 3]]
gap> PrintArray(m{[1, 4]}{[1, 4]});
[[0, 1],
[1, 0]]

86.7 IsDiagonalMat

IsDiagonalMat(mat)

mat must be a matrix. This function returns true if all entries mat[i][j] with i<>j are
equal to 0*mat[i][j] and false otherwise.

gap> a := [[1, 2], [3, 1]];;
gap> IsDiagonalMat(a);
false

86.8 IsLowerTriangularMat

IsLowerTriangularMat(mat)

mat must be a matrix. This function returns true if all entries mat[i][j] with j>i are
equal to 0*mat[i][j] and false otherwise.

gap> a := [[1, 2], [3, 1]];;
gap> IsLowerTriangularMat(a);
false
gap> a[1][2] := 0;;
gap> IsLowerTriangularMat(a);
true

86.9. ISNORMALIZING 1519

86.9 IsNormalizing

IsNormalizing(lst, mat)

returns true or false according to whether the matrix mat leaves the vectors in lst as a set
invariant, i.e., Set(l * M) = Set(l).

gap> a := [[1, 2], [3, 1]];;
gap> l := [[1, 0], [0, 1], [1, 1], [0, 0]];;
gap> l * a;
[[1, 2], [3, 1], [4, 3], [0, 0]]
gap> IsNormalizing(l, a);
false

86.10 SublistUnbnd

SublistUnbnd(l, ind)

Sublist of a list with possibly unbound entries.

The writing of this function was prompted by the fact that if l has some unbound entries,
l{ind} returns an error message instead of doing what is expected (which is what this
routine does).

gap> l := [1, , 2, , , 3];;
gap> SublistUnbnd(l, [1..4]);
[1,, 2]

If you use l{[1..4]}, you get an error message.

86.11 Coefficient

Coefficient(a, b)

generic routine which looks if a has a Coefficient method in its operations record and
then returns a.operations.Coefficient(a,b).

86.12 IntListToString

IntListToString(part, [brackets])

part must be a list of positive integers. If all of them are smaller than 10 then a string
of digits corresponding to the entries of part is returned. If an entry is ≥ 10 then the
elements of part are converted to strings, concatenated with separating commas and the
result surrounded by brackets. By default () brackets are used. This may be changed by
giving as second argument a length two string specifying another kind of brackets.

gap> IntListToString([4, 2, 2, 1, 1]);
"42211"
gap> IntListToString([14, 2, 2, 1, 1]);
"(14,2,2,1,1)"
gap> IntListToString([14, 2, 2, 1, 1], "{}");
"{14,2,2,1,1}"

1520CHAPTER 86. APPENDIX – UTILITY FUNCTIONS FOR THE CHEVIE PACKAGE

86.13 DoublePartitionToString

DoublePartitionToString(pair)

converts the double partition pair to a string where the two partitions are separated by a
point.

gap> d := DoublePartitions(3);
[[[1], [1, 1]], [[1], [2]], [[1, 1], [1]],

[[1, 1, 1], []], [[2], [1]], [[2, 1], []],
[[3], []], [[], [1, 1, 1]], [[], [2, 1]],
[[], [3]]]

gap> for i in d do
> Print(DoublePartitionToString(i)," ");
> od; Print("\n");
1.11 1.2 11.1 111. 2.1 21. 3. .111 .21 .3

Bibliography

[Abb89] J. A. Abbott. On the Factorization of Polynomials over Algebraic Fields. PhD
thesis, School of Mathematical Sciences, University of Bath, September 1989.

[AL82] D. Alvis and G. Lusztig. The representations and generic degrees of the Hecke
algebra of type H4. J. reine angew. Math., 336:201–212, 1982. Correction: ibid.
449, 217–218 (1994).

[Alv87] D. Alvis. The left cells of the Coxeter group of type H4. J. Algebra, 107:160–168,
1987.

[AMW82] D[avid] G. Arrell, S[anjiv] Manrai, and M[ichael] F. Worboys. A procedure for
obtaining simplified defining relations for a subgroup. In Campbell and Robertson
[CR82], pages 155–159.

[AR84] D[avid] G. Arrell and E[dmund] F. Robertson. A modified Todd-Coxeter algorithm.
In Atkinson [Atk84], pages 27–32.

[Art68] E[mil] Artin. Galoissche Theorie. Verlag Harri Deutsch, Frankfurt/Main, 1968.

[Atk84] Michael D. Atkinson, editor. Computational Group Theory, Proceedings LMS Sym-
posium on Computational Group Theory, Durham 1982. Academic Press, 1984.

[AW97] M. Alp and C. D. Wensley. Enumeration of cat1-groups of low order. U.W.Bangor
Preprint, 96.05:1–17, 1997.

[Bau91] Ulrich Baum. Existenz und effiziente Konstruktion schneller Fouriertransforma-
tionen überauflösbarer Gruppen. Dissertation, Rheinische Friedrich Wilhelm Uni-
versität Bonn, Bonn, Germany, 1991.

[BBN+78] Harold Brown, Rolf Bülow, Joachim Neubüser, Hans Wondratschek, and Hans
Zassenhaus. Crystallographic Groups of Four-Dimensional Space. John Wiley, New
York, 1978.

[BC72] C. T. Benson and C. W. Curtis. On the degrees and rationality of certain characters
of finite Chevalley groups. Trans. Amer. Math. Soc., 165:251–273, 1972.

[BC76] M[ichael] J. Beetham and C[olin] M. Campbell. A note on the Todd-Coxeter coset
enumeration algorithm. Proc. Edinburgh Math. Soc. (2), 20:73–79, 1976.

[BC89] Richard P. Brent and Graeme L. Cohen. A new lower bound for odd perfect
numbers. Math. Comput., 53:431–437, 1989.

1521

1522 BIBLIOGRAPHY

[BC92] Wieb Bosma and John [J.] Cannon. Handbook of Cayley functions. Technical
report, Department of Pure Mathematics, University of Sydney, Sydney, Australia,
1992.

[BCFS91] L[azlo] Babai, G[ene] Cooperman, L[arry] Finkelstein, and ’A[kos] Seress. Nearly
linear time algorithms for permutation groups with a small base. In Proceedings of
the International Symposium on Symbolic and Algebraic Computation (ISSAC’91),
Bonn 1991, pages 200–209. ACM Press, 1991.

[BCM81a] G. Baumslag, F.B. Cannonito, and C.F. Miller III. Computable algebra and
group embeddings. J. Algebra, 69:186–212, 1981.

[BCM81b] G. Baumslag, F.B. Cannonito, and C.F. Miller III. Some recognizable properties
of solvable groups. Math. Z., 178:289–295, 1981.

[BCN89] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs. Spinger,
Berlin and New York, 1989.

[Ben76] M. Benard. Schur indices and splitting fields of the unitary reflection groups. J.
Algebra, 38:318–342, 1976.

[BEN97] Franz G”ahler Bettina Eick and Werner Nickel. Computing maximal subgroups
and wyckoff positions of space groups. Acta Cryst A, 1997.

[Ber76] T. R. Berger. Characters and derived length in groups of odd order. J. Algebra,
39:199–207, 1976.

[BH78] R. Brown and P. J. Higgins. On the connection between the second relative ho-
motopy group and some related spaces. Proc. London Math. Soc., 36:193–212,
1978.

[Bis89] Thomas Bischops. Collectoren im Programmsystem GAP. Diplomarbeit, Lehrstuhl
D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Ger-
many, 1989.

[BM83] Gregory Butler and John McKay. The transitive groups of degree up to 11. Com-
munications in Algebra, 11:863–911, 1983.

[BM93] M. Broué and G. Malle. Zyklotomische Heckealgebren. In Représentations unipo-
tentes génériques et blocs des groupes réductifs fini [BMM93b], pages 119–189.

[BMM93a] M. Broué, G. Malle, and J. Michel. Generic blocks of finite reductive groups.
In Représentations unipotentes génériques et blocs des groupes réductifs fini
[BMM93b], pages 7–92.

[BMM93b] M. Broué, G. Malle, and J. Michel. Représentations unipotentes génériques et
blocs des groupes réductifs finis, volume 212 of Astérisque. Société Mathématique
de France, 1993.

[Bou68] N. Bourbaki. Groupes et algèbres de Lie, Ch. 4–6. Hermann, Paris, 1968. Masson,
Paris: 1981.

BIBLIOGRAPHY 1523

[Bra89] R. J. Bradford. On the computation of integral bases and defects of integrity. PhD
thesis, School of Mathematical Sciences, University of Bath, 1989.

[Bri71] E. Brieskorn. Die Fundamentalgruppe des Raumes der regulären Orbits einer
endlichen komplexen Spiegelungsgruppe. Invent. Math., 12:57–61, 1971.

[BS72] E. Brieskorn and K. Saito. Artin-Gruppen und Coxeter-Gruppen. Invent. Math.,
17:245–271, 1972.

[BTW93] Bernhard Beauzamy, Vilmar Trevisan, and Paul S. Wang. Polynomial factoriza-
tion: Sharp bounds, Efficient algorithms. J. Symbolic Computation, 15:393–413,
1993.

[Bur55] W[illiam S.] Burnside. Theory of Groups of Finite Order. Dover Publications, New
York, 1955. Unabridged republication of the second edition, published in 1911.

[But82] Gregory Butler. Computing in permutation and matrix groups II: Backtrack algo-
rithm. Math. Comput., 39:671–680, 1982.

[But85] Gregory Butler. Effective computation with group homomorphisms. J. Symbolic
Computation, 1:143–157, 1985.

[But93] Gregory Butler. The transitive groups of degree fourteen and fifteen. J. Symbolic
Computation, pages 413–422, 1993.

[BW95] R. Brown and C. D. Wensley. On finite induced crossed modules, and the homotopy
2-type of mapping cones. Theory and Applications of Categories, 1:54–71, 1995.

[BW96] R. Brown and C. D. Wensley. On the computation of induced crossed modules.
Theory and Applications of Categories, 2:3–16, 1996.

[Cab96] Marc Cabanes, editor. Finite Reductive Groups, Related Structures and Represen-
tations, volume 141 of Progress in Mathematics. Birkhäuser, Basel, 1996.

[Cam71] Harvey A. Campbell. An extension of coset enumeration. M. Sc. thesis, McGill
University, Montreal, Canada, 1971.

[Can73] John J. Cannon. Construction of defining relators for finite groups. Discrete Math.,
pages 105–129, 1973.

[Car72] R. W. Carter. Conjugacy classes in the Weyl group. Compositio Math., 25:1–59,
1972.

[Car85] R. W. Carter. Finite groups of Lie type: Conjugacy classes and complex characters.
Wiley, New York, 1985.

[Car86] R. W. Carter. Representation theory of the 0–Hecke algebra. J. Algebra, 104:89–
103, 1986.

[CCN+85] J[ohn] H. Conway, R[obert] T. Curtis, S[imon] P. Norton, R[ichard] A. Parker,
and R[obert] A. Wilson. Atlas of finite groups. Oxford University Press, 1985.

1524 BIBLIOGRAPHY

[Cel92] Frank Celler. Kohomologie und Normalisatoren in GAP. Diplomarbeit, Lehrstuhl
D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Ger-
many, 1992.

[Cha92] R. Charney. Artin groups of finite type are bi-automatic. Math. Ann., 292:671–683,
1992.

[CNW90] Frank Celler, Joachim Neubüser, and Charles R. B. Wright. Some remarks on the
computation of complements and normalizers in soluble groups. Acta Applicandae
Mathematicae, 21:57–76, 1990.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume 138
of Graduate Texts in Mathematics. Spinger, Berlin and New York, 1993.

[Con90a] S[am] B. Conlon. Calculating characters of p-groups. J. Symbolic Computation,
9(5 & 6):535–550, 1990.

[Con90b] S[am] B. Conlon. Computing modular and projective character degrees of soluble
groups. J. Symbolic Computation, 9(5 & 6):551–570, 1990.

[CR82] Colin M. Campbell and Edmund F. Robertson, editors. Groups-St. Andrews 1981,
Proceedings of a conference, St. Andrews 1981, volume 71 of London Math. Soc.
Lecture Note Series. Cambridge University Press, 1982.

[CR87] C. W. Curtis and I. Reiner. Methods of representation theory, vol. I, II. John
Wiley, New York, 1981/1987.

[Del72] P. Deligne. Les immeubles des groupes de tresses généralisés. Invent. Math.,
17:273–302, 1972.

[Deo89] V.V. Deodhar. A note on subgroups generated by reflections in Coxeter groups.
Arch. Math., 53:543–546, 1989.

[Dix67] J[ohn] D. Dixon. High speed computations of group characters. Num. Math.,
10:446–450, 1967.

[Dre69] Andreas [W. M.] Dress. A characterization of solvable groups. Math. Z., 110:213–
217, 1969.

[DuC91] F. DuCloux. Coxeter Version 1.0. Université de Lyon, France, 1991.

[Dye90] M. Dyer. Reflection subgroups of Coxeter systems. J. Algebra, 135:57–73, 1990.

[ECH+92] D.B.A. Epstein, J.W. Cannon, D.F. Holt, S. Levy, M.S. Paterson, and W.P.
Thurston. Word Processing and Group Theory. Jones and Bartlett, 1992.

[Ell84] G. Ellis. Crossed modules and their higher dimensional analogues. PhD thesis,
University of Wales, Bangor, 1984.

[FJNT95] V[olkmar] Felsch, D[avid] L. Johnson, J[oachim] Neubüser, and S[ergey] V.
Tsaranov. The structure of certain Coxeter groups. In C[olin] M. Campbell,
T[haddeus] C. Hurley, E[dmund] F. Robertson, S[ean] J. Tobin, and J[ames] J.
Ward, editors, Groups ’93 Galway / St. Andrews, Galway 1993, Volume 1, vol-
ume 211 of London Math. Soc. Lecture Note Series, pages 177–190. Cambridge
University Press, 1995.

BIBLIOGRAPHY 1525

[Fra82] J[ames] S. Frame. Recursive computation of tensor power components. Bayreuther
Math. Schr., 10:153–159, 1982.

[FS84] Volkmar Felsch and Günter Sandlöbes. An interactive program for computing
subgroups. In Atkinson [Atk84], pages 137–143.

[Gar69] F. A. Garside. The braid groups and other groups. Quart. J. Math. Oxford, 2nd

Ser, 20:235–254, 1969.

[Gec94] M. Geck. On the character values of Iwahori-Hecke algebras of exceptional type.
Proc. London Math. Soc., 68:51–76, 1994.

[Gec95] M. Geck. Beiträge zur Darstellungstheorie von Iwahori–Hecke Algebren, volume 11
of Aachener Beiträge zur Mathematik. Verlag der Augustinus Buchhandlung,
Aachen, 1995.

[GHL+96] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer. CHEVIE-a system for
computing and processing generic character tables for finite groups of lie type.
AAECC, 7:175–210, 1996.

[Gil90] N. D. Gilbert. Derivations, automorphisms and crossed modules. Comm. in Alge-
bra, 18:2703–2734, 1990.

[GK96] M. Geck and S. Kim. Bases for the Bruhat–Chevalley order on all finite Coxeter
groups. Preprint, 1996.

[GKP90] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathemat-
ics. Addison-Wesley, 1990.

[Gla87] S[tephan] P. Glasby. Computational Approaches to the Theory of Finite Soluble
Groups. Phd thesis, Department of Pure Mathematics, University of Sydney, Syd-
ney, Australia, 1987.

[GM97] M. Geck and J. Michel. On “good” elements in the conjugacy classes of finite
Coxeter groups and their eigenvalues on the irreducible representations of Iwahori-
Hecke algebras. Proc. London Math. Soc., 1997. to appear.

[GP93] M. Geck and G. Pfeiffer. On the irreducible characters of Hecke algebras. Advances
in Math., 102:79–94, 1993.

[GS90] S[tephan] P. Glasby and M[ichael] C. Slattery. Computing intersections and nor-
malizers in soluble groups. J. Symbolic Computation, 9:637–651, 1990.

[Hah83] Theo Hahn, editor. International Tables for Crystallography, Volume A, Space-
group Symmetry. Reidel, Dordrecht, Boston, 1983.

[Hav69] George Havas. Symbolic and algebraic calculation. Basser Computing Dept., Tech-
nical Report 89, Basser Department of Computer Science, University of Sydney,
Sydney, Australia, 1969.

[Hav74] George Havas. A Reidemeister-Schreier program. In M[ichael] F. Newman, edi-
tor, Proceedings of the Second International Conference on the Theory of Groups,
Canberra, 1973, volume 372 of Lecture Notes in Math., pages 347–356. Springer,
Berlin, 1974.

1526 BIBLIOGRAPHY

[HER91] D.F. Holt, D.B.A. Epstein, and S. Rees. The use of knuth-bendix methods to
solve the word problem in automatic groups. J. Symbolic Computation, 12:397–
414, 1991.

[HIÖ89] Trevor [O.] Hawkes, I. M[artin] Isaacs, and M. Özaydin. On the Möbius function
of a finite group. Rocky Mountain J. Math., 19:1003–1034, 1989.

[HKRR84] George Havas, P[eter] E. Kenne, J[ames] S. Richardson, and E[dmund] F.
Robertson. A Tietze transformation program. In Atkinson [Atk84], pages 67–71.

[HN80] George Havas and M[ichael] F. Newman. Application of computers to questions
like those of Burnside. In J[ens] L. Mennicke, editor, Burnside groups, Proceedings
of a workshop, Bielefeld, Germany, 1977, volume 806 of Lecture Notes in Math.,
pages 211–230. Springer, Berlin, 1980.

[Holar] Derek F. Holt. The warwick automatic groups software. In Proceedings of DIMACS
Conference on Computational Group Theory, Rutgers, March 1994., To appear.

[HP89] Derek F. Holt and W[ilhelm] Plesken. Perfect Groups. Oxford Math. Monographs.
Clarendon, Oxford, 1989.

[HR94] Derek [F.] Holt and Sarah Rees. Testing modules for irreducibility. J. Austral.
Math. Soc. Ser. A, 57:1–16, 1994.

[HS64] Marshall Hall, Jr. and James K. Senior. The Groups of Order 2n (n ≤ 6). The
Macmillan Company, New York, 1964.

[Hum90] J. E. Humphreys. Reflections groups and Coxeter groups, volume 29 of Cambridge
studies in advanced Math. Cambridge University Press, 1990.

[Hup67] B[ertram] Huppert. Endliche Gruppen I, volume 134 of Grundlehren Math. Wiss.
Springer, Berlin, 1967.

[JLPW95] Christoph Jansen, Klaus Lux, Richard [A.] Parker, and Robert [A.] Wilson.
An Atlas of Brauer Characters, volume 11 of London Math. Soc. Monographs.
Clarendon, Oxford, 1995.

[Ker91] Adalbert Kerber. Algebraic Combinatorics Via Finite Group Actions. BI-Wissen-
schaftsverlag, Mannheim, 1991.

[KL79] D. A. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke
algebras. Invent. Math., 53:165–184, 1979.

[Lau82] Reinhard Laue. Zur Konstruktion und Klassifikation endlicher auflösbarer Grup-
pen, volume 9 of Bayreuther Math. Schr. Universität Bayreuth, Bayreuth, Ger-
many, 1982.

[LeC86] P. LeChenadec. Canonical Forms in Finitely Presented Algebras. London Pitman
and New York, Wiley, 1986.

[Leh89a] Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany. SOGOS - A Program System for Handling Subgroups of Fi-
nite Soluble Groups, version 5.0, User’s reference manual, 1989.

BIBLIOGRAPHY 1527

[Leh89b] Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany. SPAS - Subgroup Presentation Algorithms System, version 2.5,
User’s reference manual, 1989.

[Leo80] Jeffrey S. Leon. On an algorithm for finding a base and a strong generating set for
a group given by generating permutations. Math. Comput., 35:941–974, 1980.

[LGS90] C[harles] R. Leedham-Green and L[eonard] H. Soicher. Collection from the left
and other strategies. J. Symbolic Computation, 9(5 & 6):665–675, 1990.

[Lin93] Steve Linton. Vector Enumeration Programs, version 3, 1993.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:513–534, 1982.

[LNS84] R[einhard] Laue, J[oachim] Neubüser, and U[lrich] Schoenwaelder. Algorithms for
finite soluble groups and the SOGOS system. In Atkinson [Atk84], pages 105–135.

[Lo96] E. Lo. A Polycyclic Quotient Algorithm. PhD thesis, Rutgers University, 1996.

[Lod82] J. L. Loday. Spaces with finitely many non-trivial homotopy groups. J. App.
Algebra, 24:179–202, 1982.

[LP91] Klaus Lux and Herbert Pahlings. Computational aspects of representation the-
ory of finite groups. In G. O. Michler and C. R. Ringel, editors, Representation
theory of finite groups and finite–dimensional algebras, volume 95 of Progress in
Mathematics, pages 37–64. Birkhäuser, Basel, 1991.

[Lus81] G. Lusztig. On a theorem of Benson and Curtis. J. Algebra, 71:490–498, 1981.

[Lus85] G. Lusztig. Characters of reductive groups over a finite field, volume 107 of Annals
of Math. Studies. Princeton University Press, 1985.

[Mal96] G. Malle. Degrés relatifs des algèbres cyclotomiques associées aux groupes de
réflexions complexes de dimension deux. In Cabanes [Cab96].

[McK90] B.D. McKay. nauty user’s guide (version 1.5), Technical report TR-CS-90-02.
Australian National University, Computer Science Department, ANU, 1990.

[McL77] D. H. McLain. An algorithm for determining defining relations of a subgroup.
Glasgow Math. J., 18:51–56, 1977.

[Mni92] Jürgen Mnich. Untergruppenverbände und auflösbare Gruppen in GAP. Diplomar-
beit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 1992.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Math. Com-
put., 44:519–521, 1985.

[MS85] John McKay and Leonard H. Soicher. Computing Galois groups over the rationals.
J. Number Theory, 20:273–281, 1985.

[Mur58] F[rancis] D. Murnaghan. The orthogonal and symplectic groups. Communications
Series A 13, Dublin Inst. Adv. Studies, 1958.

1528 BIBLIOGRAPHY

[Neb95] Gabriele Nebe. Endliche rationale Matrixgruppen vom Grad 24, volume 12 of Aach-
ener Beiträge zur Mathematik. 1995. Dissertation, Lehrstuhl B für Mathematik,
Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995.

[Neu67] Joachim Neubüser. Die Untergruppenverbände der Gruppen der Ordnungen ≤ 100
mit Ausnahme der Ordnungen 64 und 96. Habilitationsschrift, Universität Kiel,
Kiel, Germany, 1967.

[Neu82] Joachim Neubüser. An elementary introduction to coset table methods in compu-
tational group theory. In Campbell and Robertson [CR82], pages 1–45.

[New77] M[ichael] F. Newman. Determination of groups of prime-power order. In R. A.
Bryce, J. Cossey, and M[ichael] F. Newman, editors, Group theory, Proc. Miniconf.,
Austral. Nat. Univ., Canberra, 1975, volume 573 of Lecture Notes in Math., pages
73–84. Springer, Berlin, 1977.

[NO89] M[ichael] F. Newman and E[amonn] A. O´Brien. A CAYLEY library for the
groups of order dividing 128. In Group Theory, Proceedings of the 1987 Singapore
Conference, Singapore 1987, pages 437–442. Walter de Gruyter, Berlin, New York,
1989.

[NO96] M[ichael] F. Newman and E[amonn] A. O´Brien. Application of computers to
questions like those of Burnside, II. Internat. J. Algebra Comput., 6:593–605,
1996.

[Nor87] K. J. Norrie. Crossed modules and analogues of group theorems. PhD thesis, King’s
College, University of London, 1987.

[Nor90] K. J. Norrie. Actions and automorphisms of crossed modules. Bull. Soc. Math.
France, 118:129–146, 1990.

[NP95a] G[abriele] Nebe and W[ilhelm] Plesken. Finite rational matrix groups, volume 556
of AMS Memoirs. American Mathematical Society, 1995.

[NP95b] G[abriele] Nebe and W[ilhelm] Plesken. Finite rational matrix groups of degree 16,
pages 74–144. Volume 556 of AMS Memoirs [NP95a], 1995.

[NPP84] J[oachim] Neubüser, H[erbert] Pahlings, and W[ilhelm] Plesken. CAS; design and
use of a system for the handling of characters of finite groups. In Atkinson [Atk84],
pages 195–247.

[NPW81] J[oachim] Neubüser, W[ilhelm] Plesken, and H[ans] Wondratschek. An emenda-
tory discursion on defining crystal systems. Match, 10:77–96, 1981.

[O´Br90] E[amonn] A. O´Brien. The p-group generation algorithm. J. Symbolic Computa-
tion, 9:677–698, 1990.

[O´Br91] E[amonn] A. O´Brien. The groups of order 256. J. Algebra, 142, 1991.

[O´Br94] E[amonn] A. O´Brien. Isomorphism testing for p-groups. J. Symbolic Computa-
tion, 17 (1):133–147, 1994.

BIBLIOGRAPHY 1529

[O´Br95] E[amonn] A. O´Brien. Computing automorphism groups of p-groups. In Wieb
Bosma and Alf van der Poorten, editors, Computational Algebra Number and Num-
ber Theory, pages 83–90. (Sydney, 1992), Kluwer Academic Publishers, Dordrecht,
1995.

[Ost86] Th[omas] Ostermann. Charaktertafeln von Sylownormalisatoren sporadischer ein-
facher Gruppen. Vorlesungen aus dem Fachbereich Mathematik 14, Universität
Essen, Essen, Germany, 1986.

[Pah93] Herbert Pahlings. On the Möbius function of a finite group. Arch. Math., 60:7–14,
1993.

[Pfe94a] G. Pfeiffer. Character tables of Weyl groups in gap. Bayreuther Math. Schr.,
47:165–222, 1994.

[Pfe94b] G. Pfeiffer. Young characters on Coxeter basis elements of Iwahori-Hecke algebras
and a Murnaghan-Nakayama formula. J. Algebra, 168:525–535, 1994.

[Pfe96] G. Pfeiffer. Character values of Iwahori-Hecke algebras of type B. In Cabanes
[Cab96].

[Pil83] Günter Pilz. Near-Rings, volume 23 of North-Holland Mathematics Studies. North-
Holland Publishing Company, 1983.

[Ple85] W[ilhelm] Plesken. Finite unimodular groups of prime degree and circulants. J.
Algebra, 97:286–312, 1985.

[Ple90] W[ilhelm] Plesken. Additive decompositions of positive integral quadratic forms.
The paper is available at Lehrstuhl B für Mathematik, Rheinisch Westfälische
Technische Hochschule Aachen, may be it will be published in the near future,
1990.

[PN95] W[ilhelm] Plesken and G[abriele] Nebe. Finite rational matrix groups, pages 1–73.
Volume 556 of AMS Memoirs [NP95a], 1995.

[Poh87] M[ichael] Pohst. A modification of the lll reduction algorithm. J. Symbolic Com-
putation, 4:123–127, 1987.

[PP77] Wilhelm Plesken and Michael Pohst. On maximal finite irreducible subgroups of
gl(n,z). I. the five and seven dimensional cases, II. the six dimensional case. Math.
Comput., 31:536–576, 1977.

[PP80] Wilhelm Plesken and Michael Pohst. On maximal finite irreducible subgroups
of gl(n,z). III. the nine dimensional case, IV. remarks on even dimensions with
application to n = 8, V. the eight dimensional case and a complete description of
dimensions less than ten. Math. Comput., 34:245–301, 1980.

[Ram91] A. Ram. A Frobenius formula for the characters of the Hecke algebras. Invent.
Math., 106:461–488, 1991.

[Rin93] Michael Ringe. The C MeatAxe, Release 1.5. Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1993.

1530 BIBLIOGRAPHY

[Rob88] E[dmund] F. Robertson. Tietze transformations with weighted substring search.
J. Symbolic Computation, 6:59–64, 1988.

[Roy87] Gordon F. Royle. The transitive groups of degree twelve. J. Symbolic Computation,
pages 255–268, 1987.

[Sch90] Gerhard J. A. Schneider. Dixon’s character table algorithm revisited. J. Symbolic
Computation, 9:601–606, 1990.

[Sho92] Mark W. Short. The Primitive Soluble Permutation Groups of Degree less than
256, volume 1519 of Lecture Notes in Math. Springer, Berlin and Heidelberg, 1992.

[Sim70] Charles C. Sims. Computational methods in the study of permutation groups.
In John Leech, editor, Computational Problems in Abstract Algebra, Proc. Conf.
Oxford, 1967, pages 169–183. Pergamon Press, Oxford, 1970.

[Sim94] C.C. Sims. Computation with Finitely Presented Groups. Cambridge University
Press, 1994.

[Soi93] L[eonard] H. Soicher. GRAPE: a system for computing with graphs and groups. In
L. Finkelstein and B. Kantor, editors, Proceedings of the 1991 DIMACS Workshop
on Groups and Computation, volume 11 of DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, pages 287–291. American Mathematical
Society, 1993.

[Sou94] Bernd Souvignier. Irreducible finite integral matrix groups of degree 8 and 10.
Math. Comput., 63:335–350, 1994.

[Spr81] T. A. Springer. Linear algebraic groups. Birkhäuser, Basel, 1981.

[ST54] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. Canad. J. Math.,
6:274–304, 1954.

[Ste89] J. R. Stembridge. On the eigenvalues of representations of reflection groups and
wreath products. Pacific J. Math., 140:353–396, 1989.

[TH95] editor Theo Hahn. International Tables for Crystallography, Volume A, Space-
group Symmetry. Kluwer, Dordrecht, 4th edition, 1995.

[Thi87] Peter Thiemann. SOGOS III - Charaktere und Effizienzuntersuchung. Diplom-
arbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hoch-
schule, Aachen, Germany, 1987.

[vdW76] Robert W. van der Waall. On symplectic primitive modules and monomial groups.
Indagationes Math., 38:362–375, 1976.

[VL84] M[ichael] R. Vaughan-Lee. An aspect of the nilpotent quotient algorithm. In
Atkinson [Atk84], pages 75–84.

[VL90a] M[ichael] R. Vaughan-Lee. Collection from the left. J. Symbolic Computation,
9:725–733, 1990.

[VL90b] M[ichael] R. Vaughan-Lee. The restricted Burnside problem, volume 5 of London
Math. Soc. Monographs. Clarendon, Oxford, 1990.

BIBLIOGRAPHY 1531

[Whi48] J. H. C. Whitehead. On operators in relative homotopy groups. Ann. of Math.,
49:610–640, 1948.

[Whi49] J. H. C. Whitehead. Combinatorial homotopy ii. Bull. Amer. Math. Soc., 55:453–
496, 1949.

[Won95] Hans Wondratschek. Introduction to space-group symmetry. In Hahn [TH95],
pages 711–735.

[Wur93] Martin Wursthorn. SISYPHOS Computing in modular group algebras, Version
0.5. Math. Inst. B, 3. Lehrstuhl, Universität Stuttgart, 1993.

[Zum89] Matthias Zumbroich. Grundlagen einer Arithmetik in Kreisteilungskörpern und
ihre Implementation in CAS. Dimplomarbeit, Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1989.

Index

1532

Index

Dn lattices, 888
bN , 390
cN , 390
dN , 390
eN , 390
fN , 390
gN , 390
hN , 390
iN , 390
jN , 390
kN , 390
lN , 390
mN , 390
nk, 390
rN , 390
sN , 390
tN , 390
uN , 390
vN , 390
wN , 390
xN , 390
yN , 390
.gaprc, 958, 966, 974
/ for character tables, 827
2-groups, 671
3-groups, 673
4.2BSD, 953
4.3BSD, 953

Abbreviating Section Names, 223
AbelianComponent, 1300
AbelianGroup, 660

for ag groups, 532
AbelianInvariants, 289

for character tables, 826
for finitely presented groups, 484

AbelianInvariantsNormalClosureFpGroup,
485

AbelianInvariantsNormalClosureFpGroupRrs,
485

AbelianInvariantsSubgroupFpGroup, 484
AbelianInvariantsSubgroupFpGroupMtc,

485
AbelianInvariantsSubgroupFpGroupRrs,

484
About actors, 1401
About cat1-groups, 1374
About Character Tables, 140
About Constants and Operators, 80
About Conventions, 78
About crossed modules, 1356
About Defining New Domains, 170
About Defining New Group Elements,

182
About Defining New Parametrized

Domains, 178
About derivations and sections, 1388
About Domains and Categories, 127
About Fields, 122
About Finitely Presented Groups and

Presentations, 117
About First Steps, 79
About Functions, 84
About Further List Operations, 96
About GAP, 77
About Group Libraries, 155
About Groups, 101
About Help, 80
About Identical Lists, 87
About induced constructions, 1409
About Lists, 85
About Loops, 94
About Mappings and Homomorphisms,

135
About Matrix Groups, 126
About Operations of Groups, 109
About Ranges, 93

1533

1534 INDEX

About Records, 92
About Sets, 89
About Starting and Leaving GAP, 78
About Syntax Errors, 80
About the Implementation of Domains,

161
About utilities, 1413
About Variables and Assignments, 82
About Vectors and Matrices, 90
About Writing Functions, 97
About XMOD, 1355
AbsInt, 366
absolute value of an integer, 366
abstract word, 473
AbstractGenerator, 474
AbstractGenerators, 474
AbstractWordTietzeWord, 492
accessing

list elements, 583
record elements, 778

Accessing Record Elements, 778
Actor

for cat1-groups, 1407
for xmods, 1406

Actor crossed module, 1406
Actor for cat1-groups, 1407
ActorSquare

for cat1s, 1402
for xmods, 1402

ActorSquareRecord, 1402
Add, 586
add

an element to a list, 586
an element to a set, 607
elements to a list, 587
the elements of a list, 601

AddBase, 360
for vector space, 360

AddedElementsCode, 1178
AddEdgeOrbit, 1111
AddGenerator, 493
AddIndecomposable, 1331
AddOriginalEqnsRWS, 1217
AddRelator, 493
AddRimHook, 1339
AddSet, 607
AddTranslationsCrystGroup, 1038
Adjacency, 1115

AdjustmentMatrix, 1328
Advanced Methods for Dixon Schneider

Calculations, 832
AffineInequivalentSubgroups, 1043
AffineNormalizer, 1043
AffineOperation, 559
AG generating sequence, 517
ag group, 517
Ag Group Functions, 537
Ag Group Functions for Special Ag

Groups, 578
Ag Group Operations, 526
Ag Group Records, 527
Ag Groups, 525
AG system, 517
Ag Word Comparisons, 518
Ag Words, 517
Agemo, 276

for character tables, 826
AgGroup, 537

for Permutation Groups, 464
AgGroupFpGroup, 538
AgGroupQClass, 699
AgNormalizedAutomorphisms, 1306
AgNormalizedOuterAutomorphisms,

1306
AgOrbitStabilizer, 560
AgSubgroup, 549
Aim of the matrix package, 1231
Algebra, 712
Algebra Elements, 722
Algebra for MeatAxe Matrices, 1285
Algebra Functions for Algebras, 719
Algebra Functions for Matrix Algebras,

735
Algebra Homomorphisms, 721
Algebra Records, 723
Algebraic Extension Elements, 412
Algebraic Extension Records, 415
Algebraic extensions of fields, 411
Algebraic extensions of the Rationals,

415
AlgebraicExtension, 411
Algebras, 709
Algebras and Unital Algebras, 710
AllCat1s, 1387
AllDerivations, 1394
AllInducedXMods, 1412

INDEX 1535

AllIrreducibleSolvableGroups, 675
AllPrimitiveGroups, 666
AllSections, 1395
AllSolvableGroups, 670
AllThreeGroups, 673
AllTransitiveGroups, 668
AllTwoGroups, 671
Alpha, 942
AlternantCode, 1166
AlternatingGroup, 661
AmalgatedDirectSumCode, 1208
An example, 1131
An Example of a Computation in a

Domain, 232
An Example of Advanced Dixon

Schneider Calculations, 834
and, 774
AntiSymmetricParts, 873
ANU Pq, 1009
ANU pq Package, 983
ANU Sq Package, 990
Append, 587
append

elements to a list, 587
one string to another, 619
to a file, 226

Appendix – utility functions for the
CHEVIE package, 1511

AppendTo, 226
Apple, 969
ApplyFunc, 583
ApproximateKernel, 1268
AreDerivations, 1395
AreMOLS, 1197
AreSections, 1396
Arrangements, 794
Artin-Tits braid groups, 1463
AsAlgebra, 715
AsGroup, 275

for ag groups, 532
AsGroup for Ag Groups, 532
AsModule, 742
assignment

to a list, 585
to a record, 778
variable, 207

Assignments, 207
AssignVertexNames, 1112

AssociatedPartition, 800
Associates, 249

for gaussians, 398
associativity, 206
AsSpace, 637
AsSpace for Modules, 742
AsSubalgebra, 715
AsSubgroup, 276
AsSubmodule, 742
AsSubspace, 636
AsTransformation, 1072
AsUnitalAlgebra, 715
AsUnitalSubalgebra, 716
Atari ST, 969
ATLAS irrationalities, 390
ATLAS Tables, 916
atomic irrationalities, 390
augmented coset table, 496, 497
AugmentedCode, 1177
AutGroupConverted, 1026
AutGroupFactors, 1025
AutGroupGraph, 1130
AutGroupSagGroup, 1020
AutGroupSeries, 1026
AutGroupStructure, 1023
Authorship and Contact Information,

1048
Automata, 1220
automatic groups program, 1220
automorphism group

of a character table, 854
of a field, 262
of a matrix, 853
of an extension field, 413
of number fields, 406

Automorphism Group Elements, 1021
Automorphism Groups of Special Ag

Groups, 1019
AutomorphismGroup, 1156
AutomorphismGroupElements, 1308
AutomorphismPair, 1417
AutomorphismPermGroup, 1417

for groups, 1417
for xmods, 1404

AutomorphismPermGroup for crossed
modules, 1404

Automorphisms, 1305
for character tables, 826

1536 INDEX

automorphisms
of p groups, 1014, 1016

Automorphisms for groups, 1099
Automorphisms for near-rings, 1089
Automorphisms of p-groups, 1305
AutomorphismsPGroup, 1016
AutomorphismXMod, 1360

backslash, 617
Base, 359

of vector space, 359
base

of a number field, 408
of vector space, 627

Base for MeatAxe Modules, 1289
Base for Permutation Groups, 457
BaseMat, 651
Bases for Matrix Algebras, 734
Basic conventions employed in matrix

package, 1232
Basic Functions for Codes, 1147
Basis, 638
BCHCode, 1171
Bell, 792
BergerCondition, 943
Bernoulli, 802
BestKnownLinearCode, 1168
Bicomponents, 1121
BinaryGolayCode, 1170
Binomial, 792
BipartiteDouble, 1126
blank, 201
blist, 611
BlistList, 611
Blocks, 351

for Permutation Groups, 466
BlockSystemFlag, 1267
BlockwiseDirectSumCode, 1208
BNF, 213
body, 211
Boolean Lists, 611
Booleans, 773
bound, 203
Bounds

Elias, 1190
Griesmer, 1190
Hamming, 1188
Johnson, 1189

Plotkin, 1189
Singleton, 1188
Sphere packing bound, 1188
UpperBound, 1190

Bounds on codes, 1188
BoundsCoveringRadius, 1202
BoundsMinimumDistance, 1191
Brauer Table Records, 823
Brauer tables

format, 823
BrauerCharacterValue, 1286
BrauerTableOps, 826
Break Loops, 219
Browsing through the Sections, 222
Bruhat, 1441
BSD, 953

CalcPres, 1031
CalculateDecompositionMatrix, 1330
Calculating dimensions, 1332
CallPCQA, 1298
CallVE, 1348
candidates

for permutation characters, 878
Canonical basis, 1317
CanonicalAgWord, 521
CanonicalBasis, 638
Carmichaels lambda function, 376
Cartan matrices, 1429

type of, 1429
CartanMat, 1429
CartanName, 1430
CartanType, 1429
CartanType for Coxeter cosets, 1506
Cartesian, 596
Cartesian product, 837
CAS Tables, 923
CAS tables,CAS format,CAS, 860
Cat1, 1375
Cat1EndomorphismSection, 1400
Cat1List, 1380
Cat1Morphism, 1382
Cat1MorphismName, 1383
Cat1MorphismPrint, 1383
Cat1MorphismSourceHomomorphism,

1383
Cat1MorphismXModMorphism, 1384
Cat1Name, 1376

INDEX 1537

Cat1Print, 1376
Cat1SectionByImages, 1392
Cat1Select, 1380
Cat1XMod, 1379
CentralCompositionSeriesPPermGroup,

460
CentralExtensionXMod, 1360
Centralizer, 277

for ag groups, 529
for matrix groups, 656
for Permutation Groups, 461

centralizer
in GL(d, ZZ), 1042

CentralizerGL, 1042
CentralWeight, 519
Centre, 277

for character tables, 826
for xmods, 1407

Centre for class functions, 933
Centre for crossed modules, 1407
CF, 403
Cgs, 549
ChangeCollector, 540
Changing Presentations, 493
Character, 935
character

permutation, 299
character table

display, 848
Character Table Libraries, 913
Character Table Records, 819
Character Tables, 817
character tables, 828, 913

access to, 829
ATLAS, 916
calculate, 829
CAS, 919, 923
computation, 832
conventions, 827
format, 819
generic, 861, 862, 864
libraries of, 913
of groups, 829
sort, 850–852

Character tables for Coxeter groups,
1445

CharacterDegrees
for character tables, 826

characteristic
of a finite field element, 426

characteristic polynom
of a field element, 263

CharacteristicPolynomial for MeatAxe
matrices, 1285

Characters, 865
table of inductions, 1511

characters
induce from cyclic subgroups, 876
induced, 876
inflated, 875
irreducible differences of, 874
permutation, 878
reduced, 870, 871
restricted, 875
scalar product of, 865, 866
sort, 850
symmetrisations of, 872, 873
tensor products of, 871

Characters of Finite Polycyclic Groups,
844

CharDegAgGroup, 842
CharFFE, 426
CharPol, 263
CharRepresentationWords, 1512
CharTable, 829
CharTable for Coxeter cosets, 1507
CharTable for Coxeter groups, 1448
CharTable for Hecke algebras, 1485
CharTableCollapsedClasses, 842
CharTableDirectProduct, 837
CharTableFactorGroup, 835
CharTableIsoclinic, 839
CharTableNormalSubgroup, 836
CharTableOps, 826
CharTablePGroup, 844
CharTableQClass, 699
CharTableRegular, 839
CharTableSpecialized, 864
CharTableSplitClasses, 840
CharTableSSGroup, 843
CharTableWreathSymmetric, 838
CheckFixedPoints, 904
CheckHeckeDefiningRelations, 1484
CheckMat, 1150
CheckMatCode, 1165
CheckPermChar, 903

1538 INDEX

CheckPol, 1150
CheckPolCode, 1170
CheckTranslations, 1038
CHEVIE Version 3 – a short

introduction, 1421
ChevieCharInfo, 1452
ChevieClassInfo, 1441
ChevieClassInfo for Coxeter cosets, 1507
chinese remainder, 367
ChineseRem, 367
ChooseRandomElements, 1276
CHR, 1030
Class Function Records, 940
Class Functions, 929
class functions, 893
class multiplication coefficient, 846, 847
class names, 845
classes

collapse, 877
of cyclic subgroup, 847
real, 847
roots of, 847

ClassesNormalSubgroup, 940
ClassFunction, 934
ClassicalForms, 1243
ClassMultCoeffCharTable, 846
ClassNamesCharTable, 845
ClassNamesTom, 813
ClassOrbitCharTable, 847
ClassRootsCharTable, 847
ClassStructureCharTable, 847
ClassTypesTom, 813
clone

an object, 787, 788
Closure, 278
Code Records, 1185
CodeDensity, 1214
CodeDistanceEnumerator, 1212
CodeIsomorphism, 1156
CodeMacWilliamsTransform, 1213
CodeNorm, 1210
Codes, 1142
CodeWeightEnumerator, 1212
Codeword, 1137
CodewordNr, 1159
Codewords, 1136
Coefficient, 1515
coefficient

binomial, 792
Coefficient for Sums of Modules, 1344
Coefficients, 362

in vector space, 362
coefficients

for cyclotomics, 388
Coefficients for Number Fields, 408
Coefficients for Row Space Bases, 637
CoeffsCyc, 388
Cohomology, 1029
CollapsedAdjacencyMat, 1120
CollapsedCompleteOrbitsGraph, 1127
CollapsedIndependentOrbitsGraph, 1127
CollapsedMat, 877
Collected, 597
CollectorlessFactorGroup, 552
Color Groups, 1044
ColorCosets, 1045
ColorGroup, 1045
ColorHomomorphism, 1046
colorings

inequivalent
for space groups, 1046

ColorOfElement, 1045
ColorPermGroup, 1045
ColorSubgroup, 1045
Combinations, 794
Combinatorics, 791
Combinatorics on Young diagrams, 1333
CombinatoricSplit, 833
CombineEQuotientECore, 1340
Comm

for group elements, 271
for words, 475

comments, 201
CommonRepresentatives, 1420
CommonTransversal, 1420
CommutativeDiagram, 896
CommutatorFactorGroup, 285

for finitely presented groups, 484
Commutators, 1276
CommutatorSubgroup, 279

for ag groups, 529
CommutatorSubgroup for Ag Groups,

533
comparison

of double cosets, 318
of right cosets, 314

INDEX 1539

Comparisons, 205
comparisons

of booleans, 773
of finite field elements, 424
of integers, 364
of lists, 590
of polynomials, 434
of rationals, 383
of strings, 620

Comparisons of Booleans, 773
Comparisons of Codes, 1145
Comparisons of Codewords, 1138
Comparisons of Cyclotomics, 388
Comparisons of Domains, 234
Comparisons of Field Elements, 261
Comparisons of Finite Field Elements,

424
Comparisons of Gaussians, 395
Comparisons of Group Elements, 270
Comparisons of Integers, 364
Comparisons of Lists, 590
Comparisons of Mappings, 753
Comparisons of Permutations, 446
Comparisons of Polynomials, 434
Comparisons of Rationals, 383
Comparisons of Records, 781
Comparisons of Ring Elements, 245
Comparisons of Strings, 620
Comparisons of Unknowns, 421
Comparisons of Words, 475
Complement, 567
Complementclasses, 567
ComplementConjugatingAgWord, 568
ComplementGraph, 1123
Complements, 567
CompleteGraph, 1110
CompleteSubgraphs, 1129
CompleteSubgraphsOfGivenSize, 1129
Complex reflection groups, cyclotomic

algebras, 1469
ComplexReflectionGroup, 1469
Components of a G-module record, 1267
Composite

for derivations, 1397
for morphisms of cat1-groups, 1385
for morphisms of crossed modules,

1373
for sections, 1397

CompositeDerivation, 1397
CompositeMorphism for cat1-groups,

1385
CompositeMorphism for crossed

modules, 1373
CompositeSection, 1397
CompositionFactors, 1238
CompositionFactors for MeatAxe

Modules, 1289
CompositionLength, 519
CompositionMapping, 762

for Frobenius automorphisms, 429
for GroupHomomorphismByImages,

331
for GroupHomomorphismByImages

for permutation groups, 467
CompositionMaps, 894
CompositionSeries, 286

for Permutation Groups, 463
CompositionSubgroup, 553
Concatenation, 594
concatenation

of lists, 594
of strings, 619

ConcatenationString, 619
conductor, 404
ConferenceCode, 1161
Congruences, 901
Conjugacy Class Records, 301
Conjugacy Classes, 299
ConjugacyClass, 300
ConjugacyClasses, 300

for ag groups, 531
for matrix groups, 656

ConjugacyClassesMaximalSubgroups,
311

ConjugacyClassesSubgroups, 302
ConjugacyClassSubgroups, 309
conjugate

of a group, 333
of a group element, 270
of a word, 475

Conjugate Subgroup
of Permutation Group, 461

ConjugatedCrystGroup, 1038
ConjugatePartition, 1341
Conjugates, 265

for finite fields, 430

1540 INDEX

for gaussians, 398
conjugates

of a field element, Galois, 265
ConjugateSubgroup, 279

for ag groups, 529
ConjugateSubgroups, 312
ConjugateTableau, 1346
ConjugationCat1, 1377
ConjugationGroupHomomorphism, 328
ConjugationXMod, 1359
ConnectedComponent, 1120
ConnectedComponents, 1121
ConsiderKernels, 902
ConsiderSmallerPowermaps, 902
ConsiderTableAutomorphisms, 905
ConstantWeightSubcode, 1182
Construction of Ag Groups, 526
Construction of braid elements, 1464
Construction of Hecke elements of the T

basis, 1476
Construction of Special Ag Groups, 575
ConstructionBCode, 1180
ConstructivelyRecogniseClassical, 1248
ContainedCharacters, 890
ContainedDecomposables, 889
ContainedMaps, 895
ContainedPossibleCharacters, 891
ContainedPossibleVirtualCharacters, 891
ContainedSpecialVectors, 890
Contents of the matrix package, 1231
Contents of the Table Libraries, 913
Control parameters, 1218
Conventions for Character Tables, 827
ConversionFieldCode, 1181
convert

a finite field element to an integer,
427

to a list, 582
to a set, 606
to a string, 619
to an integer, 366

ConwayPolynomial, 439
CoordinateNorm, 1210
CoprimeComplement, 568
Copy, 787
copy

an object, 787, 788
Copyright of GAP for MacOS, 969

Copyright of GAP for MS-DOS, 961
Copyright of GAP for TOS, 970
CordaroWagnerCode, 1168
Core, 279
CorrespondingAutomorphism, 1308
Coset, 313

for Permutation Groups, 462
coset

double, 317, 318
left, 316
right, 313

CosetCode, 1182
Cosets

for Permutation Groups, 462
cosets

double, 317
left, 316
right, 312

Cosets of Subgroups, 312
CosetTableFpGroup, 486
Counting and enumerating irreducible

words, 1221
counting and enumerating irreducible

words, 1221
CoveringGroup, 1030
CoveringRadius, 1201
Coxeter cosets, 1499
Coxeter Groups

name of, 1430
CoxeterConjugacyClasses, 1440
CoxeterCoset, 1502
CoxeterElementsLength, 1439
CoxeterGroup, 1431
CoxeterLength, 1437
CoxeterSubCoset, 1503
CoxeterWord, 1437
CoxeterWords, 1440
CreateHeckeBasis, 1479
Creating a rewriting system, 1216
CriticalPair, 1493
cross product of lists, 596
CrystalDecompositionMatrix, 1320
Crystallographic Groups, 1035
crystallographic groups, 693
CrystGap–The Crystallographic Groups

Package, 1035
CrystGroup, 1037

conjugated, 1038

INDEX 1541

CrystGroups
other functions, 1043

Cycle, 339
CycleLength, 339
CycleLengths, 341
Cycles, 340
CyclicCodes, 1174
CyclicExtensionsTom, 813
CyclicGroup, 660

for ag groups, 532
CyclicGroup for Ag Groups, 534
cyclotomic field elements, 385
Cyclotomic Field Records, 403
Cyclotomic Integers, 386
CyclotomicCosets, 1199
CyclotomicPolynomial, 439
Cyclotomics, 385

DadeGroup, 704
DadeGroupNumbersZClass, 704
data type

unknown, 419
DCE, 1056
DCE Presentations, 1052
DCE Words, 1052
DCEColAdj, 1064
DCEColAdjSingle, 1065
DCEHOrbits, 1065
DCEPerm, 1057
DCEPerms, 1057
DCERead, 1057
DCESetup, 1057
DCEWrite, 1057
DEC, 866
Decode, 1157
DecodeTree, 513
DecomPoly, 416
DecomposedFixedPointVector, 809
DecomposedMat, 1514
Decomposition, 866
decomposition

of polynomials, 416
decomposition matrix, 866
DecompositionInt, 868
DecompositionMatrix, 1319

TeX, 1320
DecompositionMatrixMatrix, 1331
DecompositionNumber, 1321

Decreased, 887
DecreaseMinimumDistanceLowerBound,

1211
default field

for cyclotomics, 404
default functions, 230
default ring

for cyclotomic integers, 405
DefaultField, 260

for algebraic extensions, 414
DefaultField and Field for Cyclotomics,

404
DefaultRing, 244
DefaultRing and Ring for Cyclotomic

Integers, 405
defect, 416
DefectApproximation, 416
Defining near-rings with known

multiplication table, 1104
Degree, 437
degree

of a finite field element, 427
Degree for class functions, 933
DegreeFFE, 427
DegreeOperation, 343
Delta, 943
Denominator, 382
denominator

of a rational, 382
Depth, 519
Derangements, 797
DerivationImage, 1391
DerivationImages, 1391
Derivations

all, 1394
regular, 1393

DerivationSection, 1396
DerivationsSorted, 1394
DerivationTable, 1394
Derivative, 438
DerivedSeries, 285

for ag groups, 530
DerivedSubgroup, 280

for character tables, 826
Determinant for characters, 933
DeterminantMat, 649
DiagonalizeMat, 652
Diameter, 1116

1542 INDEX

Difference, 239
difference

of algebra elements, 722
of boolean lists, 614
of gaussians, 396
of list and algebra element, 722
of records, 783

DifferenceAgWord, 521
DifferenceBlist, 614
DihedralGroup, 661
Dimension, 361

of vector space, 361
dimension

of vector space, 627
Dimension for MeatAxe Modules, 1289
Dimensions for MeatAxe matrices, 1285
DimensionsLoewyFactors, 289
DimensionsMat, 649
direct product, 837
DirectedEdges, 1115
DirectProduct, 320

for ag groups, 532
for groups, 321
for Permutation Groups, 465
for xmods, 1366

DirectProduct for Ag Groups, 535
DirectProduct for crossed modules, 1366
DirectProduct for Groups, 321
DirectProductCode, 1184
DirectProductPermGroupCentralizer,

465
DirectProductPermGroupCentre, 465
DirectProductPermGroupSylowSubgroup,

465
DirectSumCode, 1183
DirectSumMat, 1513
discrete logarithm

of a finite field element, 428
dispatcher functions, 230
Dispatchers, 230
Display, 1159

for character tables, 826
Display for MeatAxe matrices, 1285
Display for MeatAxe Permutations, 1287
DisplayCayleyTable for groups, 1098
DisplayCayleyTable for near-rings, 1088
DisplayCayleyTable for semigroups, 1078
DisplayCharTable, 848

DisplayCrystalFamily, 696
DisplayCrystalSystem, 697
DisplayImfInvariants, 686
DisplayInformationPerfectGroups, 679
DisplayMat, 1276
DisplayMatRecord, 1269
DisplayQClass, 697
DisplaySpaceGroupGenerators, 705
DisplaySpaceGroupType, 705
DisplayTom, 810
DisplayTransformation, 1075
DisplayZClass, 701
Distance, 1116
DistanceCodeword, 1141
DistanceGraph, 1123
DistancesDistribution, 1154
DistanceSet, 1121
DistanceSetInduced, 1122
DistinctRepresentatives, 1420
DistributiveElements, 1092
Distributors, 1092
divisors

of an integer, 372
DivisorsInt, 372
Dixon Schneider, 829
DixonInit, 832
DixonSplit, 833
DixontinI, 833
DnLattice, 888
DnLatticeIterative, 888
do, 210
Domain, 233
Domain Functions for Codes, 1147
Domain Functions for Number Fields,

409
domain record

for right cosets, 315
Domain Records, 230
Domains, 229
Dominates, 1342
Double Coset Enumeration, 1047
Double Coset Enumeration and

Symmetric Presentations, 1066
Double Coset Records, 319
DoubleCoset, 317
DoubleCosetGroupOps, 318
DoubleCosets, 317
DoublePartitionToString, 1516

INDEX 1543

doublequotes, 617
DualCode, 1181
DualGModule, 1270
DualMatGroupSagGroup, 578
Dynkin Diagrams, 1430

E, 385
EAbacus, 1340
EB, 390
EC, 390
ECore, 1340
ED, 390
EdgeGraph, 1124
EdgeOrbitsGraph, 1109
Edit, 228
EE, 390
EF, 390
EG, 390
EH, 390
EI, 390
Eigenvalues, 869
EJ, 390
EK, 390
EL, 390
ElementAlgebra, 731
Elementary functions on rewriting

systems, 1217
ElementaryAbelianGroup, 660

for ag groups, 532
ElementaryAbelianGroup for Ag Groups,

535
ElementaryAbelianSeries, 286

for ag groups, 530
for character tables, 826
for Permutation Groups, 463

ElementaryDivisorsMat, 652
ElementOfOrder, 1276
ElementOrdersPowermap, 910
ElementRowSpace, 640
Elements, 234

for ag groups, 527
for cat1-groups, 1378
for Conjugacy Classes, 301
for conjugacy classes of subgroups,

310
for double cosets, 318
for finite fields, 429
for finitely presented groups, 483

for groups, 331
for Permutation Groups, 461
for right cosets, 314
for vector spaces, 359
for xmods, 1364

elements
of a domain, 234

Elements for Ag Groups, 528
Elements for cat1-groups, 1378
Elements for crossed modules, 1364
Elements for Groups, 332
Elements for near-rings, 1088
Elements for semigroups, 1078
Elements in finite Coxeter groups, 1435
Elements of Finitely Presented Algebras,

729
ElementsCode, 1160
ElementWithCharPol, 1276
elif, 208
EliminatedWord, 478
else, 208
EM, 390
Embedding

into direct products, 320
into semidirect products, 321

embeddings of lattices, 884
end, 211
EndomorphismClasses, 1415
EndomorphismImages, 1416
Endomorphisms for groups, 1099
Endomorphisms for near-rings, 1089
Enlarging Lists, 589
EnumerateRWS, 1221
Environment, 217
environment, 211
equality

for field homomorphisms, 267
of ag words, 518
of algebra elements, 722
of gaussians, 395
of group elements, 270
of group homomorphisms, 326
of records, 781

EQuotient, 1340
ER, 390
ERegularPartitions, 1341
ERegulars, 1343
EResidueDiagram, 1338

1544 INDEX

Error, 219
errors

syntax, 217
ES, 390
ET, 390
ETopLadder, 1341
EU, 390
EuclideanDegree, 251

for gaussians, 398
for polynomials, 441, 443

EuclideanQuotient, 252
for gaussians, 398
for polynomials, 441

EuclideanRemainder, 251
for gaussians, 398
for polynomials, 441

EulerianFunction, 290
Eulers totient function, 376
EV, 390
EvaluateRelation, 1269
evaluation, 202
EvenWeightSubcode, 1176
EW, 390
EWeight, 1341
EX, 390
Example Functions, 664
Example of DCE Functions, 1057
Example of DCEColAdj, 1065
Example of Double Coset Enumeration

Strategies, 1060
Example, normal closure, 569
Examples, 1238
Examples of DCE and Symmetric

Presentations, 1067
Examples of Double Coset Enumeration,

1053
Examples of Generic Character Tables,

862
Examples of the ATLAS format for GAP

tables, 919
Examples of Vector Enumeration, 1350
Exec, 228
execution, 206
ExhaustiveSearchCoveringRadius, 1203
Exponent, 290

for character tables, 826
exponent

of the prime residue group, 376

ExponentAgWord, 523
Exponents, 558
ExponentsAgWord, 523
ExponentsPermSolvablePermGroup, 464
ExponentSumWord, 477
Expressions, 202
ExpurgatedCode, 1177
ExtendedBinaryGolayCode, 1166
ExtendedCode, 1175
ExtendedDirectSumCode, 1207
ExtendedIntersectionSumAgGroup, 561
ExtendedTernaryGolayCode, 1166
ExtendPCQA, 1299
ExtendStabChain, 456
Extension Element Records, 415
ExtensionAutomorphism, 414
Extensions to GUAVA, 1200
Extract, 886
Extraction Functions, 665
ExtraSpecialDecomposition, 1266
EY, 390

Factor
for xmods, 1371

Factor crossed module, 1371
factor group

table of, 835
Factor Groups of Ag Groups, 551
FactorArg, 552
FactorGroup, 283

for ag groups, 552
FactorGroup for AgGroups, 552
FactorGroupElement, 284
FactorGroupNormalSubgroupClasses,

940
Factorial, 791
Factorization, 290
factorization

of an integer, 372
Factorization for PQp, 545
Factors, 250

for gaussians, 398
for polynomials, 442, 444

FactorsAgGroup, 558
FactorsInt, 372
Faithful Permutation Characters, 881
FakeDegree, 1450
FakeDegrees, 1450

INDEX 1545

features
under MS-DOS, 966
under TOS, 974
under UNIX, 958

Features of GAP for MacOS, 969
Features of GAP for MS-DOS, 966
Features of GAP for TOS, 974
Features of GAP for UNIX, 958
FFList, 724
fi, 208
Fibonacci, 801
Field, 260

for algebraic extensions, 414
field

cyclotomic, 403
finite, 423
for cyclotomics, 404
galois, 423
number, 402

Field Extensions, 411
Field functions for Algebraic Extensions,

414
Field Functions for Finite Fields, 430
Field Functions for Gaussian Rationals,

398
Field Functions for Rationals, 384
Field Homomorphisms, 266
field homomorphisms

Frobenius, 429
of algebraic extensions, 414

Field Records, 268
FieldGenCentMat, 1264
Fields, 259
Fields over Subfields, 261
file

append to a, 226
load a, 224
load a library, 225
log input to a, 226
log to a, 226
print to a, 225
read a, 224
read a library, 225

FileNameCharTable, 926
Filtered, 597
find

an element in a list, 592
an element in a sorted list, 593

FindGroup, 1090
Fingerprint, 736
Fingerprint for MeatAxe Matrix

Algebras, 1288
Finite Field Elements, 423
Finite Fields, 423
Finite Polycyclic Groups, 525
Finitely Presented Algebras, 725
Finitely Presented Groups, 481
finiteness test

for domains, 236
FireCode, 1173
First, 598
FirstClassPQp, 544
FirstCohomologyDimension, 1030
FirstNameCharTable, 926
FittingSubgroup, 280

for character tables, 826
FixedSubmodule, 745
Flat, 595
Fock space, 1317
For, 210
for, 210
for loop, 210
ForAll, 597
ForAny, 598
Format of Sections, 221
FpAlgebra, 727
FpAlgebraOps.OperationQuotientModule,

1348
FpGroup

for ag groups, 532
for CrystGroups, 1039
for point groups, 1039
for space groups, 707

FpGroup for Ag Groups, 537
FpGroup for CrystGroups, 1039
FpGroup for point groups, 1039
FpGroupPresentation, 490
FpGroupQClass, 698
FpGroupToRWS, 1216
FpPair, 1418
Frame, 873
FrattiniSubgroup, 281

for character tables, 826
Free Modules, 740
FreeAlgebra, 726
FreeGroup, 482

1546 INDEX

Frobenius, 1508
Frobenius group, 667
Frobenius Schur indicator, 869
FrobeniusAutomorphism, 429
ftp, 951
function, 211
Function Calls, 204
Functions, 211
Functions depending on nauty, 1130
Functions for Analyzing Double Coset

Tables, 1064
Functions for Character Tables, 826
Functions for Class Functions, 933
Functions for Finitely Presented

Algebras, 728
Functions for Matrix Algebras, 734
Functions for MeatAxe Matrices, 1285
Functions for MeatAxe Matrix Algebras,

1288
Functions for MeatAxe Matrix Groups,

1287
Functions for MeatAxe Permutations,

1287
Functions for Quotient Spaces, 642
Functions for reflection subgroups, 1458
Functions for Row Modules, 744
Functions for Row Space Cosets, 641
Functions for Row Spaces, 635
Functions on Coxeter cosets, 1504
Functions to construct and modify

graphs, 1108
Functions to construct new graphs from

old, 1122
Functions to determine regularity

properties of graphs, 1118
Functions to inspect graphs, vertices and

edges, 1113
Functions to test finiteness and

integrality, 1133
Further Information, 1032
fusion

store, 856
fusion map

get, 855
fusion of classes, 842
FusionCharTableTom, 812
FusionConjugacyClasses, 857

for character tables, 826

fusions, 899
FusionsAllowedByRestrictions, 906

Gabidulin codes, 1209
Gain Group Representation, 1051
Galois, 416
galois automorphism, 389
galois conjugate

unique, 391
galois conjugate characters, 392
Galois conjugates

of a field element, 265
galois conjugation, 389
galois field, 423
Galois group

of a field, 262
of an extension field, 413

GaloisCyc, 389
GaloisField, 428
GaloisGroup, 262

for finite fields, 430
GaloisGroup for Extension Fields, 413
GaloisGroup for Number Fields, 406
GaloisMat, 392
GaloisType, 416
GAP for MacOS, 969
GAP for MS-DOS, 960
GAP for TOS, 969
GAP for UNIX, 953
gap.rc, 966, 974
GAPChars, 858
GapObject, 1280
Gaussians, 395
Gcd, 254

for polynomials, 442, 443
GcdRepresentation, 255
GeneralizedCodeNorm, 1211
GeneralizedSrivastavaCode, 1167
GeneralLinearGroup, 662
GeneralLowerBoundCoveringRadius,

1203
GeneralOrthogonalGroup, 1272
GeneralUnitaryGroup, 662
GeneralUpperBoundCoveringRadius,

1203
Generating Cyclic Codes, 1169
Generating Linear Codes, 1164
Generating Systems of Ag Groups, 548

INDEX 1547

Generating Unrestricted Codes, 1160
generator

of the prime residue group, 377, 378
GeneratorMat, 1149
GeneratorMatCode, 1164
GeneratorPol, 1150
GeneratorPolCode, 1169
generators

of Galois group, 405
GeneratorsPrimeResidues, 405
Generic Character Tables, 861
generic character tables, 828, 913
GenericDegrees, 1489
GenericParameters, 1259
GeodesicsGraph, 1126
GetFusionMap, 855
Getting and Installing GAP, 951
Getting Character Tables, 828
Getting GAP, 951
GF, 428
Girth, 1117
GLISSANDO, 1071
GlobalParameters, 1119
GModule, 1234
GoodCoxeterWord, 1467
GoodNodeLatticePath, 1336
GoodNodes, 1335
GoodNodeSequence, 1335
GoodNodeSequences, 1335
GoppaCode, 1166
Grape, 1107
GRAPE Package, 994
Graph, 1108
GrayMat, 1193
GreedyCode, 1163
Green, 1081
GRIM (Groups of Rational and Integer

Matrices), 1133
Group, 274

for ag groups, 529
Group Constructions, 320
Group Elements, 270
Group for Ag Groups, 533
Group for MeatAxe Matrices, 1285
Group Functions for Ag Groups, 529
Group Functions for Finitely Presented

Groups, 483
Group Functions for Matrix Groups, 656

Group Functions for Permutation
Groups, 461

Group Homomorphisms, 324
group homomorphisms

by images, 329
conjugation, 328
inner, 329
natural, 327
operation, 350

Group Libraries, 659
Group Presentations, 493
Group Records, 334
GroupHomomorphismByImages, 329
GroupHomomorphismsByImages

for permutation groups, 466
GroupId, 296
Groups, 269
GUAVA, 1135

H.Ordering
Specht, 1320

HadamardCode, 1160
HadamardMat, 1193
HallConjugatingWordAgGroup, 569
HallSubgroup, 554
HammingCode, 1165
Hecke, 1474

Specht, 1314
Hecke algebras

crystal decomposition matrix, 1320
decomposition matrix, 1319

Hecke algebras over fields of positive
characteristic, 1316

Hecke cosets, 1509
Hecke elements of the C basis, 1495
Hecke elements of the D basis, 1496
Hecke elements of the primed C basis,

1496
Hecke elements of the primed D basis,

1497
Hecke for complex reflection groups, 1470
Hecke for Coxeter cosets, 1509
HeckeCentralMonomials, 1489
HeckeCharValues, 1486
HeckeCharValuesGood, 1489
HeckeClassPolynomials, 1487
HeckeReflectionRepresentation, 1484
HeckeSubAlgebra, 1475

1548 INDEX

Help, 221
help

abbreviating, 223
browsing, 222
format, 221
index, 223
redisplaying, 223
scrolling, 221

Help Index, 223
Hermann-Mauguin symbol, 697
HighestPowerFakeDegrees, 1451
HighestPowerGenericDegrees, 1451
HighestShortRoot, 1439
HirschLength, 1300
HomGModule, 1237
Homomorphisms, 767
homomorphisms

by images, group, 329
conjugation, group, 328
Frobenius, field, 429
inner, group, 329
natural, group, 327
of algebras, 721
of fields, 266
of groups, 324
operation, group, 350

Homomorphisms for Permutation
Groups, 466

HookLengthDiagram, 1338
HorizontalConversionFieldMat, 1196
How to Extend a Table Library, 925
How to find near-rings with certain

properties, 1101
HP-UX, 953

ideal decomposition, 416
IdempotentElements for near-rings, 1093
IdempotentElements for semigroups,

1079
IdempotentImages, 1416
IdempotentsTom, 813
Identical Lists, 587
Identical Records, 779
Identifiers, 202
Identity for near-rings, 1091
Identity for semigroups, 1079
IdentityMapping, 764
IdentityMat, 648

IdentitySubCat1, 1386
IdentitySubXMod, 1369
IdentityTransformation, 1073
IdWord, 473
If, 208
if, 208
if statement, 208
Igs, 550
Image, 756

for a derivation, 1391
for blocks homomorphisms, 468
for field homomorphisms, 267
for Frobenius automorphisms, 429
for group homomorphisms, 327
for GroupHomomorphismByImages,

331
for GroupHomomorphismByImages

for permutation groups, 467
for OperationHomomorphism, 350
for transitive constituent

homomorphisms, 467
for xmod morphisms, 1371

Image for a crossed module morphism,
1371

ImageAutomorphismDerivation, 1404
Images, 758

for a derivation, 1391
for field homomorphisms, 267
for group homomorphisms, 327

ImagesRepresentative, 759
for GroupHomomorphismByImages,

331
ImfInvariants, 688
ImfMatGroup, 689
ImfNumberQClasses, 685
ImfNumberQZClasses, 685
ImfNumberZClasses, 685
ImprimitiveWreathProduct, 1271
In, 591
in

for ag groups, 527
for algebraic Elements, 412
for Conjugacy Classes, 301
for conjugacy classes of subgroups,

310
for domains, 236
for finite fields, 429
for finitely presented groups, 483

INDEX 1549

for gaussians, 397
for matrix groups, 655
for records, 784

In for Records, 784
IncludeIrreducibles, 833
InclusionMorphism, 1414

for cat1-groups, 1386
for groups, 1414
for xmods, 1369

InclusionMorphism for cat1-groups, 1386
InclusionMorphism for crossed modules,

1369
IncreaseCoveringRadiusLowerBound,

1202
IndependentSet, 1122
Indeterminate, 433
Indeterminateness, 898
Index, 291

for finitely presented groups, 484
Indicator, 869
Indirected, 909
Induced, 876

for character tables, 827
InducedAction, 1264
InducedCat1, 1412
InducedCyclic, 876
InducedDecompositionMatrix, 1326
InducedGModule, 1270
InducedModule, 1322
InducedSubgraph, 1122
InducedXMod, 1410
Inducing and restricting modules, 1322
InductionTable, 1511
Inequalities, 879
Inequivalent colorings of space groups,

1046
InertiaSubgroup, 937
Inflated, 875
InfoLattice1, 308
Informational Messages from DCE, 1056
InitClassesCharTable, 845
InitFusion, 903
initialize classlengths, 845
InitPowermap, 900
InitPQp, 544
InitPseudoRandom, 1274
InitSQ, 547
InnerActor

for xmods, 1407
InnerActor for crossed modules, 1407
InnerAutomorphism, 329

for xmods, 1361, 1372
InnerAutomorphism of a crossed module,

1372
InnerAutomorphismGroup, 1416

for groups, 1416
InnerAutomorphisms, 1100
InnerAutomorphismXMod, 1361
InnerDerivation, 1391
InnerDerivations list, 1392
InnerDistribution, 1153
InnerMorphism

for xmods, 1406
InnerMorphism for crossed modules, 1406
InnerProduct, 1345
Input format, 1298
installation, 951

under MS-DOS, 962
under TOS, 970
under UNIX, 953
under Windows, 962

Installation of GAP for MacOS, 969
Installation of GAP for MS-DOS, 962
Installation of GAP for TOS, 970
Installation of GAP for UNIX, 953
Installing the ANU pq Package, 984
Installing the ANU Sq Package, 992
Installing the DCE Package, 1048
Installing the Glissando Package, 1071
Installing the GRAPE Package, 995
Installing the MeatAxe Package, 999
Installing the NQ Package, 1001
Installing the PCQA Package, 1295
Installing the SISYPHOS Package, 1003
Installing the Vector Enumeration

Package, 1006
Int, 366
IntCyc, 387
integer part of a quotient, 365
Integers, 363
Integral Bases for Number Fields, 407
IntegralizedMat, 868
InterpolatedPolynomial, 439
IntersectBlist, 614
Intersection, 237

for ag groups, 528

1550 INDEX

for double cosets, 319
for finite fields, 429
for finitely presented groups, 483
for groups, 331
for matrix groups, 655
for Permutation Groups, 461
for right cosets, 314
of vector spaces, 359

intersection
of boolean lists, 613, 614
of domains, 237
of sets, 608, 609

Intersection for Ag Groups, 528
Intersection for Groups, 333
Intersection for MeatAxe Modules, 1289
IntersectionBlist, 613
IntersectionCode, 1184
Intersections of Ag Groups, 561
IntersectionsTom, 811
IntersectionSumAgGroup, 562
IntersectSet, 608
IntFFE, 427
IntListToString, 1515
InvariantLattice for rational matrix

groups, 1134
InvariantSubnearrings, 1090
InverseClassesCharTable, 845
InverseDerivations, 1398
InverseLittlewoodRichardsonRule, 1337
InverseMap, 894
InverseMapping, 764

for GroupHomomorphismByImages,
331

InverseMatMod, 868
InvertDecompositionMatrix, 1328
Irr, 937
irrationalities, 385
Irreducible Maximal Finite Integral

Matrix Groups, 684
irreducible maximal finite integral matrix

groups, 684
IrreducibleDifferences, 874
IrreducibleSolvableGroup, 676
IsAbelian, 291

for character tables, 827
IsAbsolutelyIrreducible, 1234
IsAbsolutelyIrreducible for MeatAxe

Modules, 1289

IsAbstractAffineNearring, 1093
IsAffineCode, 1213
IsAgGroup, 537
IsAgWord, 520
IsAlgebra, 713
IsAlgebraElement, 723
IsAlgebraicElement, 415
IsAlgebraicExtension, 412
IsAlmostAffineCode, 1213
IsAspherical, 1365
IsAssociated, 248

for gaussians, 398
IsAutomorphism, 770

for crossed modules, 1368
IsAutomorphismGroup, 1417
IsAutomorphismPair, 1417
IsAutomorphismXMod, 1365
IsAvailableNormalForm, 1217
IsAvailableReductionRWS, 1217
IsBijection, 752
IsBipartite, 1117
IsBlist, 612
IsBool, 775
IsBooleanNearring, 1093
IsBound, 786
IsCat1, 1376
IsCat1Morphism, 1382
IsCentral, 291
IsCentralExtension, 1365
IsCharacter, 936
IsCharTable, 825
IsClassFunction, 936
IsCode, 1144
IsCodeword, 1138
IsColorGroup, 1045
IsCommonTransversal, 1420
IsCommutative for near-rings, 1094
IsCommutative for semigroups, 1079
IsCommutativeRing, 246
IsCompatiblePCentralSeries, 1305
IsCompleteGraph, 1118
IsConfluentRWS, 1217
IsConjugacyClass, 301
IsConjugacyClassSubgroups, 309
IsConjugate, 292
IsConjugation for crossed modules, 1364
IsConnectedGraph, 1117
IsConsistent, 538

INDEX 1551

IsCoordinateAcceptable, 1211
IsCoset, 313
IsCrystGroup, 1037
IsCyc, 387
IsCycInt, 387
IsCyclic, 292

for ag groups, 531
for character tables, 827

IsCyclic for Ag Groups, 533
IsCyclicCode, 1145
IsCyclicTom, 812
IsCyclotomicField, 402
IsDerivation, 1391
IsDgNearring, 1094
IsDiagonal, 1276
IsDiagonalMat, 1514
IsDistanceRegular, 1119
IsDistributiveNearring, 1092
IsDoubleCoset, 318
IsECore, 1340
IsEdge, 1115
IsElementAgSeries, 557
IsElementaryAbelian, 292
IsElementaryAbelianAgSeries, 539
IsEndomorphism, 770

for crossed modules, 1368
IsEpimorphism, 769

for crossed modules, 1368
IsEqualSet, 606
IsEquivalent, 1156
IsEquivalent for MeatAxe Modules, 1289
IsEquivalent for Row Modules, 744
IsEquivalentOperation, 355
IsERegular, 1341
IsEuclideanRing, 247
IsExtensionField, 1259
IsFFE, 426
IsField, 259
IsFieldHomomorphism, 266
IsFinite, 236

for ag groups, 531
for double cosets, 318
for right cosets, 314
for vector spaces, 359

IsFinite for rational matrix groups, 1133
IsFiniteDeterministic for integer matrix

groups, 1134
IsFixpoint, 342

IsFixpointFree, 342
IsFpAlgebra, 727
IsFpAlgebraElement, 729
IsFpPair, 1419
IsFreeModule, 743
IsGaussInt, 397
IsGaussRat, 397
IsGeneralMapping, 750
IsGeneric, 1259
IsGenericNearlySimple, 1259
IsGModule, 1234
IsGraph, 1113
IsGriesmerCode, 1214
IsGroup, 275
IsGroupElement, 271
IsGroupHomomorphism, 325
IsGroupTransformation, 1073
IsHomomorphism, 767

for fields, 266
for groups, 325

IsIdentical, 589
IsIdenticalPresentationFpGroup, 487
IsInjective, 751

for field homomorphisms, 267
for group homomorphisms, 326

IsInStandardForm, 1195
IsInt, 366
IsIntegralNearring, 1094
IsIntegralRing, 246
IsIrreducible, 250

for gaussians, 398
IsIrreducible for GModules, 1234
IsIrreducible for MeatAxe Modules, 1289
IsIrreducible for Row Modules, 745
IsIsomorphic, 1306
IsIsomorphicGraph, 1130
IsIsomorphicGroup, 1100
IsIsomorphicPGroup, 1017
IsIsomorphism, 769

for crossed modules, 1368
IsLatinSquare, 1197
IsLaurentPolynomialRing, 441
IsLeftCoset, 316
IsLinearCode, 1144
IsList, 582
IsLoopy, 1114
IsLowerTriangularMat, 1514
IsMapping, 750

1552 INDEX

for GroupHomomorphismByImages,
330

for GroupHomomorphismByImages
for permutation groups, 466

IsMat, 647
IsMatAlgebra, 734
IsMDSCode, 1155
IsMeatAxeMat, 1283
IsMeatAxePerm, 1286
IsMinimalNonmonomial, 949
IsModule, 742
IsMonomial

for characters, 948
for group orders, 948
for groups, 948

IsMonomorphism, 768
for crossed modules, 1368

IsNearfield, 1096
IsNearring, 1087
IsNewIndecomposable, 1326
IsNilNearring, 1093
IsNilpotent, 293

for ag group, 531
for character tables, 827

IsNilpotentFreeNearring, 1094
IsNilpotentNearring, 1094
IsNormal, 293

for ag groups, 531
for xmods, 1370

IsNormal for Ag Groups, 534
IsNormalCode, 1211
IsNormalExtension, 413
IsNormalized, 550
IsNormalizing, 1515
IsNormalSubXMod, 1370
IsNrMultiplication, 1084
IsNullGraph, 1118
IsNumberField, 402
isoclinic table, 839
IsomorphismGModule, 1237
IsomorphismPcpStandardPcp, 1016
Isomorphisms, 1307
IsParent, 273
IsPerfect, 294

for ag group, 531
IsPerfectCode, 1154
IsPerm, 447
IsPermChar, 878

IsPermGroup, 451
IsPlanarNearring, 1096
IsPNilpotent, 557
IsPolynomial, 434
IsPolynomialRing, 440
IsPpdElement, 1274
IsPrime, 250

for gaussians, 398
IsPrimeInt, 370
IsPrimeNearring, 1095
IsPrimePowerInt, 371
IsPrimitive, 352
IsPrimitive for Characters, 945
IsPrimitive for GModules, 1235
IsPrimitiveRootMod, 377
IsQuasiPrimitive, 944
IsQuasiregularNearring, 1095
IsRange, 624
IsRat, 381
IsRec, 786
IsReducedWordRWS, 1221
IsRegular, 345
IsRegular for Crossed Modules, 1393
IsRegularGraph, 1119
IsRegularNearring, 1096
IsRightCoset, 313
IsRing, 243
IsRModule

for xmods, 1366
IsRModule for crossed modules, 1366
IsRModule for groups, 1362
IsRowSpace, 636
IsRWS, 1217
IsScalar, 1276
IsSection, 1393
IsSelfComplementaryCode, 1213
IsSelfDualCode, 1155
IsSelfOrthogonalCode, 1155
IsSemidirectPair, 1419
IsSemiEchelonBasis, 639
IsSemigroup, 1077
IsSemiLinear, 1234
IsSemiRegular, 346

for Permutation Groups, 465
IsSet, 606
IsSetTransformation, 1073
IsSimple, 294

for character tables, 827

INDEX 1553

IsSimple for semigroups, 1080
IsSimpleGraph, 1115
IsSimpleModule, 1333
IsSimplyConnected, 1365
IsSolvable, 294

for character tables, 827
for Permutation Groups, 463

IsSpaceCoset, 641
IsSpaceGroup, 1039
IsString, 621
IsSubalgebra, 714
IsSubgroup, 295

for ag groups, 531
IsSubgroup for Ag Groups, 534
IsSubnormal, 295
IsSubnormallyMonomial, 946
IsSubset, 237

for ag groups, 527
for groups, 331
for sets, 608

IsSubsetBlist, 613
IsSubspace, 359
IsSubXMod, 1369
IsSupersolvable

for character tables, 827
IsSurjective, 751

for field homomorphisms, 267
for group homomorphisms, 326

IsSymmorphicSpaceGroup, 1040
IsTensor, 1235
IsTransformation, 1072
IsTransformationNearring, 1087
IsTransformationSemigroup, 1077
IsTransitive, 343
IsTrivial

for groups, 296
IsTrivial for Groups, 296
IsTrivialAction, 1365
IsUniqueFactorizationRing, 247
IsUnit, 248

for gaussians, 398
for matrix rings, 654

IsUnitalAlgebra, 713
IsUnknown, 420
IsVector, 629
IsVectorSpace, 358
IsVertex, 1113
IsVirtualCharacter, 936

IsWord, 476
IsWyckoffPosition, 1040
IsXMod, 1359
IsXModMorphism, 1367
IsZeroBoundary, 1365
iterate a function over a list, 602
Iterated, 602
Iwahori-Hecke algebras, 1473

Jacobi, 378
JenningsSeries, 286
JInductionTable, 1460
jInductionTable for

Macdonald-Lusztig-Spaltenstein
induction, 1459

JohnsonGraph, 1111

Kazhdan-Lusztig polynomials and bases,
1491

KazhdanLusztigCoefficient, 1493
KazhdanLusztigMue, 1494
KazhdanLusztigPolynomial, 1492
KB, 1220
KBMAG, 1215
kbmag, 1215
Kernel, 771

for blocks homomorphisms, 468
for fields, 267
for groups, 326
for OperationHomomorphism, 350
for xmod morphisms, 1371

Kernel for class functions, 933
Kernel for transformations, 1074
Kernel of a crossed module morphism,

1371
KernelChar, 868
KernelFieldHomomorphism, 267
KernelGroupHomomorphism, 326
Keywords, 202
Knuth-Bendix, 1220
Krawtchouk, 1198
KrawtchoukMat, 1192
Kronecker product, 837
KroneckerFactors, 1235
KroneckerProduct, 649
KroneckerProduct for MeatAxe matrices,

1285

1554 INDEX

KroneckerProduct for MeatAxe Modules,
1289

Lambda, 376
larger prime, 371
LargestMovedPointPerm, 447
LargestPrimeOrderElement, 1276
LargestPrimePowerOrderElement, 1276
last, 217
Lattice, 303
lattice base reduction, 882–884
Lattice for MeatAxe Modules, 1289
LaurentPolynomialRing, 440
Layers, 1121
Lcm, 255
LeadingCoefficient, 438
LeadingExponent, 520
LeftCellRepresentation, 1494
LeftCells, 1494
LeftCoset, 316
LeftCosets, 316
LeftDescentSet, 1438
LeftNormedComm

for group elements, 271
LeftQuotient

for group elements, 271
for words, 475

Legendre, 378
Length, 584
length

of a list, 584
of a string, 621
of a word, 477

LengthenedCode, 1180
LengthLexicographic, 1342
LengthString, 621
LengthWord, 477
LenstraBase, 407
Lexical Structure, 200
LexiCode, 1163
Lexicographic, 1342
libraries of character tables, 913
library of character tables, 916, 919, 923
library tables, 828, 913

add, 925
generic, 861

LibraryNearring, 1087
LibraryNearringInfo, 1096

LibrarySemigroup, 1082
Line Editing, 219
LinearCombination, 361

in vector space, 361
LinearIndependentColumns, 867
LinearOperation, 560
List, 582

for InverseDerivations, 1398
list

of primes, 370
List Assignment, 585
List Elements, 583
ListBlist, 612
ListERegulars, 1343
ListInnerDerivations, 1392
ListInverseDerivations, 1398
ListPerm, 448
Lists, 581

sublist, 1515
lists

boolean, 611
ListStabChain, 458
LittlewoodRichardsonRule, 1336
LLL, 884
LLL algorithm

for characters, 884
for Gram matrices, 883
for vectors, 882

LLLReducedBasis, 882
LLLReducedGramMat, 883
load

a file, 224
a library file, 225

Loading GUAVA, 1136
local, 211
LocalParameters, 1119
log

to a file, 226
log input

to a file, 226
logarithm

of a finite field element, discrete, 428
logarithm of an integer, 367
LogFFE, 428
logical, 773
logical operations, 774
LogInputTo, 226
LogInt, 367

INDEX 1555

LogTo, 226
LongestCoxeterElement, 1439
LongestCoxeterWord, 1439
loop

for, 210
read eval print, 217
repeat, 209
while, 209

LowerBoundCoveringRadiusCountingExcess,
1205

LowerBoundCoveringRadiusEmbedded1,
1205

LowerBoundCoveringRadiusEmbedded2,
1205

LowerBoundCoveringRadiusInduction,
1206

LowerBoundCoveringRadiusSphereCovering,
1203

LowerBoundCoveringRadiusVanWee1,
1204

LowerBoundCoveringRadiusVanWee2,
1204

LowerBoundMinimumDistance, 1190
LowerCentralSeries, 287

for ag groups, 530
for character tables, 827

LowestPowerFakeDegrees, 1451
LowestPowerGenericDegrees, 1451
LowIndexSubgroupsFpGroup, 488
Lucas, 801
Lue crossed module, 1405

Macintosh, 969
MacOS, 969
Main Loop, 217
MAKElb11, 857
MakeStabChain, 455
MakeStabChainStrongGenerators, 456
Manipulating Codes, 1175
map, 582

composition, 894
indeterminateness, 898
indirection by a, 909
inverse of a, 894
parametrize, 895
parametrized, 893

MappedExpression, 729
MappedWord, 479

Mapping Functions for Algebra
Homomorphisms, 721

Mapping Functions for Field
Homomorphisms, 267

Mapping Functions for Group
Homomorphisms, 326

Mapping Records, 765
MappingByFunction, 765
MappingPermListList, 449
Mappings, 749
maps, 893
Maps and Parametrized Maps, 893
Marks, 808
MatAlgebra, 735
MatAutomorphisms, 853
MatClassMultCoeffsCharTable, 846
MatGroupAgGroup, 539
MatGroupSagGroup, 577
MatGroupZClass, 701
Mathematical Introduction, 1050
MathieuGroup, 663
MatRepresentationsPGroup, 843
Matrices, 645

block decomposition of, 1514
direct sum of, 1513

matrix, 645
Matrix Algebras, 733
matrix automorphisms, 908, 909
Matrix Group Records, 657
Matrix Groups, 655
Matrix Representations of Finite

Polycyclic Groups, 843
Matrix Rings, 653
MatrixDecompositionMatrix, 1330
MatScalarProducts, 866
MatTom, 809
MatXPerm, 1442
MatYPerm, 1442
MaximalElement, 559
MaximalNormalSubgroups

for character tables, 827
MaximalSubgroups, 311
MaximalSubgroupsRepresentatives, 1039

for CrystGroups, 1039
Maximum, 601
maximum

of a list, 601
of integers, 601

1556 INDEX

MeatAxe Matrices, 1283
MeatAxe Matrix Algebras, 1288
MeatAxe Matrix Groups, 1287
MeatAxe Modules, 1289
MeatAxe Object Records, 1291
MeatAxe Package, 998
MeatAxe Permutations, 1286
MeatAxe.Unbind, 1291
MeatAxeMat, 1283
MeatAxePerm, 1286
membership test

for ag groups, 527
for algebraic extensions, 412
for domains, 236
for finite fields, 429
for gaussians, 397
for records, 784

Membership Test for Domains, 236
membershiptest

for groups, 333
MergedCgs, 550
MergedIgs, 551
mersenne primes, 373
MinBlocks, 1267
minimal polynom

of a field element, 263
MinimalGeneratingSet, 557
MinimalNonmonomialGroup, 949
MinimalSubGModules, 1265
Minimum, 602
minimum

of a list, 602
of integers, 602

MinimumDistance, 1152
MinPol, 263
MinpolFactors, 413
MinusCharacter, 873
Miscellaneous functions, 1197
Miscellaneous functions on modules, 1343
MissingIndecomposables, 1332
MOC

interface to, 857–859
MOCChars, 858
MOCTable, 858
Mod, 253
mod for character tables, 827
Modified Todd-Coxeter, 496
modular roots, 379

Module, 741
Module for MeatAxe Matrix Algebras,

1288
Module Functions for MeatAxe Modules,

1289
Module Homomorphism Records, 747
Module Homomorphisms, 745
ModuleAction, 1301
Modules, 739
ModulesSQ, 547
Moebius inversion function, 374
MoebiusMu, 374
MoebiusTom, 812
MolienSeries, 870
MOLS, 1194
MOLSCode, 1162
Monomial Representations of Finite

Polycyclic Groups, 843
Monomiality Questions, 941
More about Ag Groups, 525
More about Ag Words, 517
More about Algebras, 710
More about Boolean Lists, 615
More about Class Functions, 931
More about Crystallographic Groups,

1037
More about Cyclotomics, 385
More about Dispatchers, 231
More about Finitely Presented Algebras,

725
More about Generic Character Tables,

861
More about Groups and Subgroups, 272
More about Maps and Parametrized

Maps, 893
More about Matrix Algebras, 733
More about Modules, 739
More about Monomiality Questions, 941
More about Ranges, 624
More about Row Spaces, 631
More about Sets, 609
More about Special Ag Groups, 573
More about Tables of Marks, 805
More about the MeatAxe in GAP, 1280
More about Vector Enumeration, 1348
More about Vectors, 629
Morphism

for cat1-groups, 1382

INDEX 1557

for xmods, 1367
MS-DOS

features, 966
installation, 962
options, 966

MSDOS, 960
Mullineux, 1334
multiplicative order of an integer, 377
multiply

the elements of a list, 601
multisets, 605
Multivariate Polynomials, 433
Murnaghan components, 873, 874

Name
for cat1-groups, 1376
for cat1-morphisms, 1383
for xmod morphisms, 1368
for xmods, 1360

NaturalHomomorphism, 327
NaturalModule, 737
NaturalModule for MeatAxe Matrix

Algebras, 1288
Near-rings, 1084
Nearring, 1085
Nearring records, 1097
NearringIdeals, 1090
New code constructions, 1207
New miscellaneous functions, 1212
NewGroupGraph, 1128
newline, 201
NextClassPQp, 544
NextModuleSQ, 548
NextPrimeInt, 371
NF, 402
NilpotentElements, 1093
NilpotentQuotient, 1000
NK, 390
NofCyc, 388
NoMessageScalarProduct

for character tables, 827
NonsplitExtension, 1031
NordstromRobinsonCode, 1163
Norm, 264

for algebraic extensions, 414
for finite fields, 430
for gaussians, 398

norm

of a field element, 264
Norm for class functions, 933
normal subgroup

table of, 836
NormalBaseNumberField, 408
NormalClosure, 281

for character tables, 827
NormalIntersection, 281

for ag groups, 530
Normalize, 550
Normalized, 550
NormalizedAutomorphisms, 1305
NormalizedOuterAutomorphisms, 1305
NormalizedUnitsGroupRing, 1308
Normalizer, 281

for ag groups, 530
for finitely presented groups, 484
for matrix groups, 656
for Permutation Groups, 461

normalizer
in GL(d, ZZ), 1042
in affine group, 1043
in translation group, 1043

Normalizer for Ag Groups, 533
NormalizerGL, 1042
NormalizerTom, 811
NormalizerZClass, 702
NormalSubCat1s, 1387
NormalSubgroupClasses, 939
NormalSubgroups, 311

for character tables, 827
NormalSubXMods, 1370
NormedVector, 629
NormedVectors, 637
Norrie crossed module, 1405
not, 774
NotifyCharTable, 925
NQ Package, 1000
NrCombinations, 794
NrCrystalFamilies, 696
NrCrystalSystems, 696
NrDadeGroups, 704
NrDerangements, 797
NrOrderedPartitions, 799
NrPartitions, 798
NrPartitionsSet, 797
NrPermutationsList, 796
NrPolyhedralSubgroups, 848

1558 INDEX

NrQClassesCrystalSystem, 697
NrRestrictedPartitions, 799
NrSpaceGroupTypesZClass, 703
NrSubs, 808
NrTuples, 796
NrUnorderedTuples, 795
NrZClassesQClass, 700
NullAlgebra, 736
NullCode, 1173
NullGraph, 1110
NullMat, 648
NullspaceMat, 651
NullWord, 1141
Number, 596
number

Bell, 792
binomial, 792
of divisors of an integer, 373
of elements in a list, 596
Stirling, of the first kind, 793
Stirling, of the second kind, 793

Number Field Records, 402
number fields

Galois group, 406
Number Theory, 375
NumberAlgebraElement, 731
NumberConjugacyClasses, 557
NumberPerfectGroups, 677
NumberPerfectLibraryGroups, 678
NumberVector, 640
Numerator, 382
numerator

of a rational, 382

od, 210
Omega for characters, 933
One Cohomology Group, 564
OneCoboundaries, 564
OneCocycles, 565
OneIrreducibleSolvableGroup, 675
OnePrimitiveGroup, 666
OneSolvableGroup, 670
OneThreeGroup, 673
OneTwoGroup, 671
OnLeft, 338
OnLeftAntiOperation, 338
OnLeftCosets, 338
OnLeftInverse, 338

OnLines, 338
OnPairs, 338
OnPoints, 338
OnRight, 338
OnRightCosets, 338
OnSets, 338
OnTuples, 338
Operation, 349
Operation for Algebras, 720
Operation for Finitely Presented

Algebras, 1347
Operation for MeatAxe Matrix Groups,

1287
OperationCosetsFpGroup, 487
OperationHomomorphism, 350

for blocks, 467
for transitive constituents, 467

OperationHomomorphism for Algebras,
721

OperationHomomorphism for Modules,
745

OperationModule, 745
Operations, 206
operations

for booleans, 774
for groups, 333
for integers, 364
for lists, 591
for polynomials, 435
for rationals, 383
for vectors, 628

Operations and functions for Coxeter
groups, 1433

Operations and functions for Hecke
algebras, 1476

Operations and functions for Hecke
cosets, 1510

Operations for algebraic elements, 412
Operations for Algebras, 716
Operations for Automorphism Group

Elements, 1021
Operations for Booleans, 774
Operations for braid elements, 1465
Operations for cat1-groups, 1378
Operations for Codes, 1145
Operations for Codewords, 1139
Operations for complex reflection groups,

1470

INDEX 1559

Operations for crossed modules, 1363
Operations for cyclotomic Hecke

algebras, 1471
Operations for Cyclotomics, 389
Operations for derivations, 1392
Operations for Field Elements, 262
Operations for Finite Field Elements, 425
Operations for Gaussians, 396
Operations for Group Elements, 270
Operations for Groups, 333
Operations for Hecke elements of the T

basis, 1477
Operations for Integers, 364
Operations for Lists, 591
Operations for Mappings, 754
Operations for Matrices, 645
Operations for MeatAxe Matrices, 1284
Operations for MeatAxe Permutations,

1287
Operations for morphisms of

cat1-groups, 1383
Operations for morphisms of crossed

modules, 1368
Operations for Permutations, 446
Operations for Polynomials, 435
Operations for Quotient Spaces, 642
Operations for Rationals, 383
Operations for Records, 783
Operations for Ring Elements, 245
Operations for Row Modules, 743
Operations for Row Space Cosets, 640
Operations for Row Spaces, 634
Operations for sections, 1393
Operations for transformations, 1074
Operations for Unknowns, 421
Operations for Vectors, 628
Operations for Words, 475
Operations of Groups, 337
Operations of Permutation Groups, 465
Operations on decomposition matrices,

1325
Operations on partitions, 1339
operations record, 230
Operations Records for Character

Tables, 826
operators

for cyclotomics, 388, 389
Operators for Character Tables, 827

Operators for Class Functions, 932
Operators for Finitely Presented

Algebras, 728
options, 951

under MS-DOS, 966
under TOS, 974
under UNIX, 958

or, 774
Orbit, 346

for ag groups, 531
Orbitalgorithms of Ag Groups, 559
OrbitalGraphIntersectionMatrices, 1120
OrbitFusions, 907
OrbitLength, 347
OrbitLengths, 349
OrbitMat, 1271
OrbitPowermaps, 908
Orbits, 348
OrbitsCharacters, 937
Order, 272

for finitely presented groups, 484
for xmod morphisms, 1372

order
of a finite field element, 427
of a group element, 272
of the prime residue group, 376

Order for MeatAxe matrices, 1285
Order for MeatAxe Permutations, 1287
Order of a crossed module morphism,

1372
OrderedPartitions, 799
OrderFFE, 427
OrderGraph, 1113
ordering

of ag words, 518
of algebra elements, 722
of gaussians, 395
of group elements, 270
of group homomorphisms, 327
of records, 781

OrderMat, 650
OrderMat – enhanced, 1273
OrderMod, 377
Organisation of this manual, 1233
Organization of the Table Libraries, 923
OrthogonalComponents, 873
OrthogonalEmbeddings, 884

1560 INDEX

OrthogonalEmbeddingsSpecialDimension,
885

Other functions for CrystGroups, 1043
Other Operations, 338
Other utility functions, 1276
OuterAutomorphisms, 1305
OuterDistribution, 1153
output

suppressing, 217

p-regular table, 839
PadicCoefficients, 868
PAG system, 517
Pair

for automorphism groups, 1417
for FpGroups, 1418
for semidirect groups, 1419

paramap, 893
Parametrized, 895
parametrized maps, 893
Parent, 273
Parent Algebras and Subalgebras, 711
Parity check, 1175
part

of a string, 620
PartitionGoodNodeSequence, 1336
Partitions, 798
partitions, 791

improper, of an integer, 799
of a set, 797
of an integer, 798
ordered, of an integer, 799
restricted, of an integer, 799

Partitions in Specht, 1322
PartitionsSet, 797
PartitionTuples, 801
PCentralSeries, 287
PCore, 282
perfect groups, 677
PerfectGroup, 681
Permanent, 802
PermBounds, 880
PermBraid, 1466
PermCharInfo, 878
PermChars, 880
PermCharsTom, 812
PermCosetsSubgroup, 1459
PermCoxeterWord, 1436

PermGModule, 1271
PermGroup

for Imf matrix groups, 690
for matrix groups, 656
for perfect groups, 682

PermGroupAgGroup, 540
PermGroupImfGroup, 692
PermGroupOps.ElementProperty, 458
PermGroupOps.Indices, 457
PermGroupOps.LargestMovedPoint, 452
PermGroupOps.MovedPoints, 452
PermGroupOps.NrMovedPoints, 452
PermGroupOps.PgGroup, 460
PermGroupOps.SmallestMovedPoint, 452
PermGroupOps.StrongGenerators, 457
PermGroupOps.SubgroupProperty, 459
PermGroupRepresentation, 1271
PermList, 449
PermListList, 600
PermMatX, 1442
PermMatY, 1443
PermRep, 1032
Permutation, 341
permutation character, 903
Permutation Character Candidates, 878
permutation characters, 880

candidates for, 878
faithful candidates for, 881

Permutation Group Records, 470
Permutation Groups, 451
PermutationCharacter, 299, 462
Permutations, 445
permutations

fixpointfree, 797
list, 796

PermutationsList, 796
Permuted, 600
PermutedCode, 1177
PermutedCols, 1196
Phi, 376
PhiFactors, 1508
PiecewiseConstantCode, 1209
PoincarePolynomial, 1487
PointGraph, 1124
PointGroup, 1037

for color CrystGroups, 1046
of a CrystGroup, 1037

PointGroup for color CrystGroups, 1046

INDEX 1561

PointGroupsBravaisClass, 1042
PointsAndRepresentativesOrbits, 1513
PolyCodeword, 1140
PolyhedralGroup, 661
Polynomial, 434
PolynomialRing, 440
Polynomials, 431
Porting GAP, 977
Position, 592
PositionClass, 1512
PositionId and PositionSgn, 1452
PositionProperty, 594
PositionSet, 593
PositionSorted, 593
PositionWord, 478
Power, 877
power

of algebra elements, 722
of gaussians, 396
of group elements, 270
of records, 783
of words, 475

Powermap, 899
PowerMapping, 763
powermaps, 899–902, 905, 908, 909
PowermapsAllowedBySymmetrisations,

905
PowerMod, 254
PowerPartition, 800
powerset, 794
Powmap, 910
Pq, 1009
PqDescendants, 1010
PqHomomorphism, 1010
PqList, 1013
PQp, 544
PQuotient, 541
precedence, 206
Predefined groups, 1101
PrefrattiniSubgroup, 282
PreImage, 759

for blocks homomorphisms, 468
for field homomorphisms, 267
for group homomorphisms, 327
for OperationHomomorphism, 350

PreImages, 761
for field homomorphisms, 267
for group homomorphisms, 327

for transitive constituent
homomorphisms, 467

PreImagesRepresentative, 762
Presentation Records, 489
PresentationFpGroup, 489
PresentationNormalClosure, 499
PresentationNormalClosureRrs, 498
PresentationSubgroup, 498
PresentationSubgroupMtc, 496
PresentationSubgroupRrs, 495
PresentationViaCosetTable, 494
previous result, 217
PrevPrimeInt, 372
primary subgroup generators, 496, 497,

513
prime residue group, 375

exponent, 376
generator, 377, 378
order, 376

PrimeBlocks, 868
PrimeResidues, 375
Primes, 370
primes

mersenne, 373
primitive element, 412
primitive root modulo an integer, 378
PrimitiveGroup, 666
PrimitiveRootMod, 378
PrimitiveUnityRoot, 1198
Print, 225

for cat1-group morphism, 1383
for cat1-groups, 1376
for character tables, 827
for double cosets, 319
for lists, 1419
for right cosets, 315
for xmod morphisms, 1368
for xmods, 1359, 1364

print
to a file, 225

Print for crossed modules, 1364
PrintAmbiguity, 898
PrintArray, 652
PrintCharTable, 825
PrintClassSubgroupLattice, 307, 308
PrintDefinitionFpAlgebra, 729
PrintDynkinDiagram, 1430
Printing and Saving Codes, 1148

1562 INDEX

Printing of Records, 785
PrintLevelFlag, 1269
PrintList, 1419
PrintSisyphosInputPGroup, 1304
PrintSISYPHOSWord, 1303
PrintTo, 225
PrintToCAS, 860
PrintToLib, 925
PrintToMOC, 859
ProbabilityShapes, 416
Procedure Calls, 208
Product, 601
product

for double cosets, 319
for right cosets, 315
of a group and a group element, 333
of algebra elements, 722
of gaussians, 396
of group elements, 270
of list and algebra element, 722
of list and group element, 271, 475
of records, 783
of words, 475

Profile, 227
Projection

for subdirect products, 323
onto component of direct products,

320
onto component of semidirect

products, 321
ProjectionMap, 895
ProjectiveOrderMat, 1273
prompt, 217

partial, 217
Properties and Property Tests, 288
Property Tests for Algebras, 718
PRump, 554
PseudoRandom, 1274
PuncturedCode, 1176
PutStandardForm, 1195

QRCode, 1172
Quadratic, 391
quadratic irrationalities, 391
quadratic number fields, 391
quadratic residue, 378, 379
QuasiregularElements, 1095
QuoInt, 365

Quotient, 246
quotient

of gaussians, 396
of group elements, 270
of groups, 334
of list and group element, 271
of list and word, 475
of records, 783
of words, 475

Quotient Space Records, 644
Quotient Spaces, 633
QuotientGModule, 1264
QuotientGraph, 1125
QuotientMod, 253
QuotientRemainder, 252

for gaussians, 398
for polynomials, 441

Radical, 283
Random, 240

Methods for Permutation Groups,
468

for ag groups, 531
for algebraic Extensions, 412
for Conjugacy Classes, 301
for double cosets, 319
for finite fields, 429
for gaussians, 397
for matrix groups, 655
for Permutation Groups, 460
for right cosets, 315

random element
of a domain, 240

Random Methods for Permutation
Groups, 468

RandomCode, 1162
RandomIrreducibleSubGModule, 1264
RandomLinearCode, 1168
RandomList, 602
RandomOrders for MeatAxe Matrix

Algebras, 1288
RandomOrders for MeatAxe Matrix

Groups, 1287
RandomRelations, 1269
RandomSeed, 602
RangeEndomorphismDerivation, 1399
RangeEndomorphismSection, 1400
Ranges, 623

INDEX 1563

Rank for MeatAxe matrices, 1285
Rank for semigroups, 1082
Rank for transformations, 1074
RankMat, 650
rational characters, 393
RationalizedMat, 393
Rationals, 381
Read, 224
read

a file, 224
a library file, 225

read eval print loop, 217
Reading Sections, 221
ReadLib, 225
RealClassesCharTable, 847
RecFields, 789
ReciprocalPolynomial, 1198
RecogniseClassical, 1246
RecogniseClassicalCLG, 1256
RecogniseClassicalNP, 1259
RecogniseMatrixGroup, 1249
record

operations, 230
Record Assignment, 778
record fields

for algebraic extension fields, 415
for extension elements, 415

Records, 777
recursion, 211
recursive functions, 211
Redisplaying a Section, 223
Reduced, 870
Reduced Reidemeister-Schreier, 495
ReducedAgWord, 522
ReducedCoxeterWord, 1438
ReducedInCoxeterCoset, 1458
ReducedOrdinary, 871
ReducedRightCosetRepresentatives, 1459
ReduceStabChain, 456
ReduceWordRWS, 1221
Redundancy, 1152
ReedMullerCode, 1165
ReedSolomonCode, 1172
References, 1277
RefinedAgSeries, 540
RefinedSubnormalSeries, 554
Reflection subgroups, 1455
ReflectionCharValue, 1449

ReflectionDegrees, 1450
Reflections, 1438
ReflectionSubgroup, 1457
regular classes, 839
RegularDerivations, 1393
RegularElements, 1095
RegularSections, 1395
RelativeOrder, 520
remainder of a quotient, 365
RemInt, 365
remove

an element from a set, 607
RemovedElementsCode, 1178
RemoveEdgeOrbit, 1112
RemoveIndecomposable, 1331
RemoveRelator, 493
RemoveRimHook, 1339
RemoveSet, 607
ReorderGeneratorsRWS, 1218
Repeat, 209
repeat, 209
repeat loop, 209
RepetitionCode, 1174
representation

as a sum of two squares, 399
Representations of Iwahori-Hecke

algebras, 1483
Representative, 240
representative

of a domain, 240
RepresentativeOperation, 353

for matrix groups, 656
for Permutation Groups, 465

RepresentativeOperation for Matrix
Algebras, 735

RepresentativesFusions, 908
RepresentativesOperation, 354
RepresentativesPowermaps, 909
RequirePackage, 982
ResetRWS, 1217
residue

quadratic, 378, 379
ResidueCode, 1180
Restricted, 875

for character tables, 827
Restricted Special Ag Groups, 575
RestrictedModule, 1324
RestrictedPartitions, 799

1564 INDEX

RestrictedPerm, 449
Return, 213
return, 213
reverse the elements of a list, 595
ReverseCat1, 1384
Reversed, 595
ReverseDominance, 1342
ReverseIsomorphismCat1, 1384
Rewriting System Examples, 1222
rewriting systems

control parameters, 1218
creating, 1216
elementary functions, 1217
examples, 1222
setting the ordering, 1218

Right Cosets Records, 315
RightCoset, 313

for ag groups, 532
RightCoset for Ag Groups, 536
RightCosetGroupOps, 314
RightCosets, 312
RightDescentSet, 1438
RightNormedComm

for group elements, 271
Ring, 244
ring

for cyclotomic integers, 405
Ring Functions for Gaussian Integers,

398
Ring Functions for Integers, 369
Ring Functions for Laurent Polynomial

Rings, 443
Ring Functions for Matrix Rings, 654
Ring Functions for Polynomial Rings,

441
Ring Records, 256
Rings, 243
RModuleXMod, 1362
root

of 1 modulo an integer, 379
of an integer, 367
of an integer modulo another, 379
of an integer, smallest, 368

Root systems and finite Coxeter groups,
1425

RootInt, 367
RootMod, 379
RootOf, 412

roots of unity, 385
RootsCode, 1171
RootsOfCode, 1151
RootsUnityMod, 379
RoundCyc, 387
Row Module Records, 746
Row Modules, 740
Row Space Bases, 632
Row Space Basis Records, 643
Row Space Coset Records, 643
Row Space Cosets, 632
Row Space Records, 642
Row Spaces, 631
RowSpace, 634
Runtime, 226

Save, 543
for presentation records, 492

SaveDecompositionMatrix, 1329
SavePqList, 1014
ScalarProduct, 865

for character tables, 827
scalars, 627
ScanMOC, 857
Schaper, 1333
Schreier-Sims

Random, 468
Schur, 1318
SchurElement, 1488
SchurElements, 1487
SchurMultiplier, 1030
scope, 203
secondary subgroup generators, 496, 497,

513
SecondCohomologyDimension, 1030
SectionDerivation, 1396
Sections

all, 1395
regular, 1395

Select
for cat1-groups, 1380
for xmods, 1363

Selecting Library Tables, 915
Selection Functions, 663
selections, 791
Semi–standard and standard tableaux,

1345
SemidirectCat1XMod, 1379

INDEX 1565

SemidirectPair, 1419
SemidirectProduct, 321

for groups, 322
SemidirectProduct for Groups, 322
SemiEchelonBasis, 639
SemiLinearDecomposition, 1265
SemiStandardTableaux, 1346
sequence

bernoulli, 802
fibonacci, 801
lucas, 801

Series of Subgroups, 285
Set, 606
set difference

of domains, 239
Set Functions for Ag Groups, 527
Set functions for Algebraic Extensions,

412
Set Functions for Conjugacy Classes, 301
Set Functions for Double Cosets, 318
Set Functions for Finite Fields, 429
Set Functions for Finitely Presented

Groups, 482
Set Functions for Gaussians, 397
Set Functions for Groups, 331
Set Functions for Integers, 368
Set Functions for Matrix Groups, 655
Set Functions for Matrix Rings, 653
Set Functions for Permutation Groups,

460
Set Functions for Rationals, 384
Set Functions for Right Cosets, 314
Set Functions for Sets, 608
Set Functions for Subgroup Conjugacy

Classes, 309
Set Functions for Vector Spaces, 359
Set Theoretic Functions for Algebras, 717
Set Theoretic Functions for MeatAxe

Modules, 1289
SetCoveringRadius, 1202
SetOrderingRWS, 1218
SetPrintLevel, 305, 308
SetPrintLevelFlag, 1269
Sets, 605
Setting the ordering, 1218
SetupSymmetricPresentation, 1066
ShallowCopy, 788
Share Libraries, 981

short vectors spanning a lattice, 882, 884
ShortenedCode, 1179
ShortestVectors, 886
SiftedAgWord, 522
SiftedVector, 637
Sigma, 373
sign

of an integer, 366
SignInt, 366
SignPartition, 800
SignPerm, 448
SimpleDimension, 1332
SimplifiedFpGroup, 499
SimplifyPresentation, 500
SInducedModule, 1324
Sisyphos, 1303
SISYPHOS Package, 1003
Size, 237

for ag groups, 528
for cat1-groups, 1378
for character tables, 827
for Conjugacy Classes, 301
for conjugacy classes of subgroups,

310
for double cosets, 318
for finitely presented groups, 483
for matrix groups, 655
for Permutation Groups, 461
for right cosets, 314
for xmods, 1364
of vector spaces, 359

size
of a domain, 237

Size for Ag Groups, 528
Size for cat1-groups, 1378
Size for crossed modules, 1364
Size for MeatAxe Modules, 1289
Size for near-rings, 1089
Size for semigroups, 1078
SizeBlist, 612
SizeEnumerateRWS, 1222
SizeNumbersPerfectGroups, 678
SizeRWS, 1221
SizesConjugacyClasses

for character tables, 827
SizeScreen, 226
smaller prime, 372
SmallestGeneratingSystem, 1100

1566 INDEX

SmallestGeneratorPerm, 448
SmallestIdeal, 1080
SmallestMovedPointPerm, 448
SmallestRootInt, 368
SmashGModule, 1237
SolutionMat, 651
SolvableGroup, 670
SolvableQuotient, 545
Some functions for the covering radius,

1200
Some functions related to the norm of a

code, 1210
Some Notes on Character Theory in

GAP, 817
Some special vertex subsets of a graph,

1120
Sort, 598
sort a list, 598
SortCharactersCharTable, 850
SortCharTable, 852
SortClassesCharTable, 851
SortEnumerateRWS, 1222
Sortex, 599
SortingPerm, 600
SortParallel, 599
SourceEndomorphismDerivation, 1398
SourceEndomorphismSection, 1400
SourceXModXPModMorphism, 1373
space, 201
Space Groups, 1036
SpaceGroup, 706
SpaceGroupsPointGroup, 1040
Specht, 1314
SpechtDimension, 1332
SpechtDirectory, 1319, 1329
SpechtPrettyPrint, 1345
Special Ag Group Records, 576
Special Ag Groups, 573
special character sequences, 617
Special matrices in GUAVA, 1192
Specialized, 1343
SpecialLinearGroup, 662
SpecialUnitaryGroup, 662
SphereContent, 1197
SpinBasis, 1265
SpinorNorm, 1275
split classes, 840
SplitCharacters, 833

SplitECores, 1344
SplitExtension, 1031
SplittingField for MeatAxe Modules,

1289
Sq, 990
square root

of an integer, 367
SRestrictedModule, 1325
SrivastavaCode, 1167
StabChain, 454
StabChainOptions, 468
Stabilizer, 353

for ag groups, 532
for matrix groups, 656
for Permutation Groups, 466

Stabilizer Chains, 453
Stabilizer for Ag Groups, 534
StandardArray, 1158
StandardAssociate, 249

for gaussians, 398
for polynomials, 443, 444

StandardBasis for Row Modules, 744
StandardFormCode, 1183
StandardPresentation, 1014
StandardTableaux, 1346
StarCyc, 391
Statements, 206
Stirling number of the first kind, 793
Stirling number of the second kind, 793
Stirling1, 793
Stirling2, 793
StoreFusion, 856
Storing Subgroup Information, 938
Strategies for Double Coset

Enumeration, 1059
String, 619
Strings and Characters, 617
structure constant, 846, 847
Subalgebra, 713
SubCat1, 1386
SubdirectProduct, 323
Subfields of Cyclotomic Fields, 401
SubGModule, 1264
Subgroup, 275

for color groups, 1046
subgroup and permutation character, 878
Subgroup Conjugacy Class Records, 310
Subgroup for color groups, 1046

INDEX 1567

subgroup fusions, 855, 856, 899, 903–908
subgroup generators tree, 513
Subgroup Presentations, 495
SubgroupFusions, 899
Subgroups, 276
subgroups

polyhedral, 848
Subgroups and Properties of Ag Groups,

553
Sublist, 595
SublistUnbnd, 1515
Submodule, 741
Subnearrings, 1091
SubnormalSeries, 287
Subroutines of Decomposition, 867
subset test

for domains, 237
subsets, 611, 794
Subspace, 636
Subspaces and Parent Spaces, 633
SubstitutedWord, 478
SubString, 620
substring

of a string, 620
subtract

a boolean list from another, 614
a set from another, 608

SubtractBlist, 614
SubtractSet, 608
Subword, 477
SubXMod, 1369
Sum, 601
sum

of algebra elements, 722
of divisors of an integer, 373
of gaussians, 396
of list and algebra element, 722
of records, 783

SumAgGroup, 563
SumAgWord, 522
SumFactorizationFunctionAgGroup, 563
SumIntersectionSpaces for MeatAxe

matrices, 1285
SunOS, 953
SupersolvableResiduum

for character tables, 827
Support, 1141
Supportive Functions for Groups, 1098

SylowComplements, 555
SylowSubgroup, 283

for ag groups, 530
for matrix groups, 656
for Permutation Groups, 461

SylowSystem, 555
SylvesterMat, 1193
Symbols, 200
symmetric group

powermap, 800
SymmetricGroup, 661
SymmetricParts, 872
Symmetrisations, 872
symmetrizations

orthogonal, 873
symplectic, 874

SymplecticComponents, 874
SymplecticGroup, 662
SymTensorProductDecomposition, 1266
Syndrome, 1157
SyndromeTable, 1158
syntax errors, 217
System V, 953
SystemNormalizer, 556
SysV, 953

Table
for derivations, 1394
for RangeEndomorphismDerivations,

1399
for SourceEndomorphismDeriva-

tions,
1398

for WhiteheadGroup, 1397
for WhiteheadMonoid, 1397

table automorphisms, 905, 907, 908
table of factor group, 835
Table of Marks Records, 806
table of normal subgroup, 836
TableAutomorphisms, 854
TableOfMarks, 807
TableRangeEndomorphismDerivations,

1399
tables, 817, 828, 913

add to a library, 925
format, 819, 823
generic, 861, 862, 864
libraries of, 913

1568 INDEX

library, 916, 919, 923
sort, 850–852

Tables of Marks, 805
TableSourceEndomorphismDerivations,

1398
tabulator, 201
Tau, 373
tensor product, 837
Tensored, 871
TensorProductDecomposition, 1265
TensorProductGModule, 1271
TernaryGolayCode, 1170
test

for sections record, 1396
for a boolean, 775
for a cyclotomic, 387
for a cyclotomic field, 402
for a cyclotomic integer, 387
for a derivation, 1391
for a finite field element, 426
for a list, 582
for a power of a prime, 371
for a prime, 370
for a primitive root, 377
for a range, 624
for a rational, 381
for a set, 606
for a string, 621
for a vector, 629
for algebra element, 722
for algebraic element, 415
for algebraic extension, 412
for an integer, 366
for asherical xmod, 1365
for automorphism group, 1417
for automorphism pair, 1417
for automorphism xmod, 1365
for cat1-group morphism, 1382
for cat1-groups, 1376
for central extension xmod, 1365
for common transversal, 1420
for conjugation xmod, 1364
for derivations record, 1395
for Fp-pair, 1419
for gaussian integer, 397
for gaussian rational, 397
for group element, 271
for list elements, 786

for membership, 591
for normal extension, 413
for number field, 402
for record elements, 786
for records, 786
for regular cat1-groups, 1393
for regular xmods, 1393
for RModules, 1362
for sections, 1393
for semidirect pair, 1419
for set equality, 606
for simply connected xmod, 1365
for sub-xmod, 1369
for subsets, 608
for trivial action xmod, 1365
for xmod morphism, 1367
for xmods, 1359
for zero boundary xmod, 1365

TestCharTable, 825
TestConsistencyMaps, 904
TestHomogeneous, 943
TestInducedFromNormalSubgroup, 945
TestMonomial, 947
TestMonomialQuick, 947
TestQuasiPrimitive, 944
TestRelativelySM, 948
TestSubnormallyMonomial, 946
TestTom, 810
TeX

DecompositionMatrix, 1320
The 2-Groups Library, 671
The 3-Groups Library, 673
The automatic groups program, 1220
The Basic Groups Library, 660
The Crystallographic Groups Library,

693
The DCE Universe, 1055
The Developers of the matrix package,

1232
The Double Coset Enumerator, 1047
The Fock space and Hecke algebras over

fields of characteristic zero, 1317
The Irreducible Solvable Linear Groups

Library, 675
The Knuth-Bendix program, 1220
The Library of Finite Perfect Groups,

677
The Library of Tables of Marks, 806

INDEX 1569

The Matrix Package, 1231
The MeatAxe, 1279
The Polycyclic Quotient Algorithm

Package, 1295
The Prime Quotient Algorithm, 541
The Primitive Groups Library, 666
The Programming Language, 199
The record returned by

RecogniseMatrixGroup, 1269
The Solvable Groups Library, 670
The Solvable Quotient Algorithm, 545
The Specht Share Package, 1311
The Syntax in BNF, 213
The Transitive Groups Library, 668
The XGap Package, 1008
The XMod Function, 1358
then, 208
ThreeGroup, 673
Tietze options, 510
Tietze record, 489
Tietze Transformations, 500
Tietze word, 489
TietzeWordAbstractWord, 491
TomCyclic, 814
TomDihedral, 814
TomFrobenius, 815
TomMat, 809
TOS, 969

features, 974
installation, 970
options, 974

total length of a presentation, 500
Trace, 265

for algebraic extensions, 414
for gaussians, 398

trace
of a field element, 265

Trace for MeatAxe matrices, 1285
TraceMat, 649
TransferDiagram, 897
Transformation, 1072
Transformation records, 1075
Transformation semigroup records, 1083
Transformation Semigroups, 1076
Transformations, 1071
TransformationSemigroup, 1076
TransformingPermutations, 854

TransformingPermutationsCharTables,
855

TransitiveGroup, 668
TransitiveIdentification, 668
Transitivity, 344
TranslationNormalizer, 1043
TranslationsCrystGroup, 1038

add translations, 1038
check translations, 1038

Transposed for MeatAxe matrices, 1285
TransposedMat, 648
TransposedSpaceGroup, 708
TreatAsPoly, 1140
TreatAsVector, 1140
tree decoding, 513
TriangulizeMat, 650
TrivialActionXMod, 1361
TrivialSubalgebra, 720
TrivialSubgroup, 283
Tuples, 796
TwoGroup, 671
TwoSquares, 399
type

algebraic elements, 412
boolean, 773
cyclotomic, 385
gaussian integers, 395
gaussian rationals, 395
integer, 363
list, 581
matrices, 645
rationals, 381
records, 777
strings, 617
words, 473

TzEliminate, 502
TzFindCyclicJoins, 503
TzGo, 500
TzGoGo, 502
TzInitGeneratorImages, 508
TzPrint, 491
TzPrintGeneratorImages, 509
TzPrintGenerators, 490
TzPrintLengths, 510
TzPrintOptions, 510
TzPrintPairs, 510
TzPrintPresentation, 490
TzPrintRelators, 490

1570 INDEX

TzPrintStatus, 490
TzSearch, 502
TzSearchEqual, 503
TzSubstitute, 504, 505
TzSubstituteCyclicJoins, 508

ULTRIX, 953
Unbind, 787
UnderlyingGraph, 1125
UndirectedEdges, 1116
Union, 238
union

of boolean lists, 613, 614
of domains, 238
of sets, 607, 609

UnionBlist, 613
UnionCode, 1185
UnitalAlgebra, 712
UnitalSubalgebra, 714
UniteBlist, 614
UniteSet, 607
Units, 248

for gaussians, 398
UNIX

features, 958
installation, 953
options, 958

Unknown, 420
Unknowns, 419
UnorderedTuples, 795
until, 209
UpdateMap, 896
UpperBound, 1190
UpperBoundCoveringRadiusCyclicCode,

1207
UpperBoundCoveringRadiusDelsarte,

1206
UpperBoundCoveringRadiusGriesmerLike,

1206
UpperBoundCoveringRadiusRedundancy,

1206
UpperBoundCoveringRadiusStrength,

1206
UpperBoundElias, 1190
UpperBoundGriesmer, 1190
UpperBoundHamming, 1188
UpperBoundJohnson, 1189
UpperBoundMinimumDistance, 1191

UpperBoundPlotkin, 1189
UpperBoundSingleton, 1188
UpperCentralSeries, 288

for character tables, 827
Using the MeatAxe in GAP. An

Example, 1281
Using Vector Enumeration with the

MeatAxe, 1353
UUVCode, 1184

Value, 438
ValueMolienSeries, 870
Variables, 203
Vector Enumeration, 1347
Vector Enumeration Package, 1005
Vector Space Functions for Algebras, 718
Vector Space Functions for MeatAxe

Modules, 1289
Vector Space Records, 358
Vector Spaces, 357
VectorCodeword, 1139
Vectors, 627
VectorSpace, 357
VEInput, 1348
VEOutput, 1348
Vertex-Colouring and Complete

Subgraphs, 1128
VertexColouring, 1129
VertexDegree, 1114
VertexDegrees, 1114
VertexName, 1114
VerticalConversionFieldMat, 1196
Vertices, 1114
VirtualCharacter, 935

WedgeGModule, 1271
Weight, 545
WeightCodeword, 1142
WeightDistribution, 1153
WeightHistogram, 1199
WeightsTom, 808
WhatTypeXMod, 1366
While, 209
while, 209
while loop, 209
Whitehead

for xmods, 1403
Whitehead crossed module, 1403

INDEX 1571

WhiteheadGroupTable, 1397
WhiteheadMonoidTable, 1397
WhiteheadPermGroup, 1403
Whitespaces, 201
WholeSpaceCode, 1173
Why Group Characters, 929
Windows, 960

installation, 962
Word reduction, 1221
word reduction, 1221
WordBraid, 1467
WordLength, 1151
words, 473
Words in Abstract Generators, 473
Words in Finite Polycyclic Groups, 517
wreath product

character table, 838
WreathPower, 1271
WreathProduct, 323

for ag groups, 532
WreathProduct for Ag Groups, 535
WreathProduct for Groups, 324
Wyckoff Positions, 1040
WyckoffBasis, 1040
WyckoffLattice, 1041
WyckoffOrbit, 1041
WyckoffPosClass, 1040
WyckoffPositions, 1041
WyckoffPositionsByStabilizer, 1041
WyckoffPositionsQClass, 1041
WyckoffSpaceGroup, 1040
WyckoffStabilizer, 1040
WyckoffTranslation, 1040

X, 433
XMOD, 1355
XModCat1, 1378
XModDerivationByImages, 1391
XModEndomorphismDerivation, 1399
XModMorphism, 1367
XModMorphismAutoPerm, 1404
XModMorphismCat1Morphism, 1385
XModMorphismName, 1368
XModMorphismPrint, 1368
XModName, 1360
XModPrint, 1359
XModSelect, 1363
xxx

Coefficient, 1515

Z, 423
ZClassRepsDadeGroup, 704
Zero and One for Algebras, 717
Zero and One for Matrix Algebras, 734
ZeroMorphism, 1415

for groups, 1415
ZeroSymmetricElements, 1092
ZumbroichBase, 406

