CHEVIE—A SYSTEM FOR COMPUTING AND PROCESSING
GENERIC CHARACTER TABLES

MEINOLF GECK, GERHARD HISS, FRANK LUBECK, GUNTER MALLE, AND GOTZ
PFEIFFER

1. INTRODUCTION

CHEVIE is a package based on the computer algebra systems GAP [43] and Maple
[10]. It consists of a library of data and programs for dealing with generic character
tables of finite groups of Lie type and associated structures such as finite Weyl groups
and Hecke algebras.

Preliminary versions of this system have already proved to be useful in various ap-
plications in constructive Galois theory, investigations on the subgroup structure and
the modular character theory of finite groups of Lie type. One of the motivations for us
was to provide an appropriate platform and environment for collecting known results,
for working out new results in a systematic manner, and for performing experiments on
substantial examples. Moreover, we found it most convenient to have electronic access
to large tables previously available only in printed form. Unfortunately, working with
such printed tables often is quite cumbersome due to occasional inaccuracies which are
difficult to spot. (Note that, e. g., a printed version of the generic character table of
CSps(q), g odd, which was computed in [29] and is now part of CHEVIE, would require
several hundred pages.) Thus, we also hope to provide a means for putting into print
results of this type, with the risk of misprints minimized.

One of our main inspirations was the idea underlying the famous Cambridge Atlas of
finite groups [11] which has become an important tool for investigating finite groups and
their representations. While the Atlas contains the character tables of individual groups
(like GL2(5)) our objective is to give one generic character table for all groups in a series
(like GLa(q), ¢ any prime power). First examples of such generic tables were already
computed by I. Schur (for SL2(q), see [44]) at the beginning of the century. J. A. Green
[23] completely described the irreducible characters of the finite general linear groups.
Explicit tables for other groups of small rank were determined by B. Srinivasan (for
Spa(q), see [47]) and B. Chang, R. Ree (for G2(q), see [9]). Using the description of finite
groups of Lie type as fixed point sets of connected reductive groups under a Frobenius
map, P. Deligne and G. Lusztig in [13] introduced new methods from algebraic geometry
and ¢-adic (intersection) cohomology in the study of irreducible representations of these
groups. This enabled Lusztig finally to give a classification of the irreducible characters
(see [31]) and a general procedure for constructing the irreducible characters in an
algorithmic fashion—at least in principle, and up to scalar multiples (see [33] and the
references there). Nevertheless, the explicit construction of a particular generic table
still requires a huge amount of work and detailed knowledge.

The authors Frank Liibeck and Gotz Pfeiffer acknowledge financial support by the Deutsche
Forschungsgemeinschaft.

1

2 CHEVIE

Finite Weyl groups, associated Hecke algebras and their representations play an im-
portant role in these theories. Certain specializations of Hecke algebras arise naturally
as endomorphism rings of representations obtained by Harish-Chandra induction from
Levi subgroups. However, results on representations of Hecke algebras also have an
independent interest as well as applications in other areas of mathematics (e.g., in
V. F. R. Jones” construction of a two-variable polynomial invariant of knots and links,
see [27]). Much of the first work on Hecke algebras was centered around the determi-
nation of the so-called generic degrees (see [2]). D. Kazhdan and G. Lusztig introduced
the new concepts of left cells and their geometric interpretation in terms of intersection
cohomology of Schubert varieties. Recently, general concepts in the representation the-
ory of Hecke algebras have been developed, and explicit results on character tables and
decomposition numbers were computed (see [22] and [18]).

We shall now give a brief sketch of the content and structure of CHEVIE, Version 2.1.

e Generic ordinary character tables for all series of finite groups of Lie type of
small rank.

e Tables of Green polynomials (for exceptional and classical groups of low rank,
and disconnected groups), and a program for calculating the Green polynomials
for groups of type A.

e Programs for working with these tables (scalar products, tensor products, struc-
ture constants), constructing new tables and viewing respectively printing them
in TEX format.

e Character tables of Hecke algebras for all types of rank at most 7, and recursive
algorithms for computing them for types A,, and B,,. Tables and programs for
the Weyl groups themselves are already available through GAP.

e Programs for computing Kazhdan—Lusztig polynomials, left cells and the cor-
responding representations for Weyl groups (effective for rank < 4).

The next release will also contain the character table of the Iwahori-Hecke algebra
of type Eg (recently computed in [21]) and character tables for cyclotomic algebras
associated to complex reflection groups, as well as programs for dealing with these. It
should also be noted that some of the functions and features described in this article
will only be available in that next release.

Our idea of using computer algebra systems such as Maple for performing symbolic
calculations with the characters of a whole series of groups of Lie type dates back in
1986. We determined decomposition numbers for the groups Ga(q) [25] and SUs(q)
[17] with the assistance of Maple. In another direction, problems of constructive Galois
theory motivated the computation of the unipotent characters of the Ree groups 2Fy(q?)
[35] and also Green functions for disconnected groups [37]. These calculations involved
the tedious work of typing existing tables into the computer, checking and correcting
them. The amount of data became so large that we were forced to think about a
systematic approach. At about 1990, a preliminary version of GAP was available. We
used it as a platform for programs dealing with finite Weyl groups and Hecke algebras.
(These are also available through GAP from Version 3, Release 1, on.) We then decided
to combine the various tables, GAP and Maple procedures into a single system with well
defined data structures: Version 1 of CHEVIE (unpublished).

CHEVIE is currently used by a PhD-student for the construction of the unipotent
characters of Fy(q). One of us (FL) is extending CHEVIE by programs which allow the

CHEVIE 3

automatic calculation of the head of a generic character table, and also of the Deligne—
Lusztig characters Ry 1. One of the applications of this will be the construction of the
unipotent characters of Fg(q).

CHEVIE can be obtained via anonymous ftp through one of the ftp-servers

ftp.math.rwth-aachen.de (Internet number: 137.226.152.6)
ftp.iwr.uni-heidelberg.de (Internet number: 129.206.104.40)

ftp to one of the servers mentioned above, login as user ftp and give your full e-mail
address as password. CHEVIE is in the directory pub/chevie. You will find the three
files README, chevie2r1V2 tar.Z and chevie2r1V3_tar.Z. The README file contains
detailed information on the installation of CHEVIE. For the use with Maple V Release
2 (or earlier) you need chevie2r1V2_tar.Z, and analogously for Maple V Release 3. In
uncompressed form, CHEVIE requires 6 MB of disc space.

We close by inviting the users of CHEVIE to communicate their suggestions, criticisms
and own contributions to the authors, as well as to inform us about results obtained
using CHEVIE.

2. FINITE WEYL GROUPS

It is the purpose of this section to describe the setup for a computational approach
to finite Weyl groups, their root systems, and the action of the groups on their roots.
A good reference for the theoretical background is [26], Chapter 1. Let us briefly recall
the main definitions.

Let V be a finite dimensional real vector space equipped with a positive definite
symmetric bilinear form (,). For each non-zero vector o € V the reflection s, with
root « is the isometry of V' given by

(a, v)
(@,)

A finite subset ® C V is called a root system (in the sense of [26], 1.2) if the following
conditions hold.

(R1) 0 ¢ ® and ® contains a basis for V.
(R2) If o, B € @ then s4(0) € ©.
(R3) If « € ® and X € R such that Ao € ® then A = £1.

We say that @ is crystallographic if, moreover, the following condition holds.
(R4) 2(a, B)/(a,cx) € Z for all @, B € .

The dimension of V' will also be called the rank of .

The root system ® will be called reducible if it can be decomposed into two proper
subsets ®;, 5 such that every root in ®; is orthogonal to every root in ®5. In this
case, both ®; and ®5 form a root system in the respective subspaces of V' which they
span. Otherwise, ® is called irreducible.

The Weyl group corresponding to the root system & is defined to be the subgroup
W = W(®) of the orthogonal group of (V, (,)) generated by the reflections s, o € .
(Note that we do not exclude the non-crystallographic types.) Condition (R2) implies
that every w € W induces a permutation of the elements in ®, and (R1) implies that
the corresponding permutation representation of W on @ is faithful. These groups,
together with their actions on the root systems, are our basic object of interest.

Sa(v) =v—2 a foralveV.

4 CHEVIE

2.1. The Weyl record. We are now looking for a suitable way to represent the above
data on a computer, within the computer algebra system GAP [43]. The principal idea
is to take a basis of V, and to express every root and every element of W by their
coordinate vectors respectively their matrices relative to this basis. By (R1), we may
assume that our basis consists of roots. Let us denote such a basis by A = {a; | i €
I} C @, where [is some finite index set with |I| = dim V. It is a general fact that we
can choose A such that every element o € ® can be written in the form o = Zie 1Ay
where either each A\; > 0 or each A; < 0. In the first case, a will be called a positive
root, otherwise « is a negative root. Thus, we have a partition of ® into the subsets &
and ®~ consisting of positive respectively negative roots. The elements in A will be
called simple roots.

The reflections corresponding to the simple roots will be called simple reflections.
For simplicity, we shall write s; := s,, for ¢ € I. It is now important to note that
given any element « € ® there exist finitely many simple reflections s;,,...,s;, such
that s;, ...s;, (o) € A. This also implies that W is already generated by the set
S = {s; | i € I} of simple reflections.

In summary, both & and W can be reconstructed from A and the action of the
elements of S on A. In order to describe this action, it is sufficient to know the
following matrix

C:= (2_(%-,@]-)) ,
(i @i)) jer

which we call the Cartan matriz of ®. (It is unique up to simultaneous permutation
of rows and columns.) Conversely, assume we are given a d X d-matrix C' which is the
Cartan matrix of some root system ®, with corresponding Weyl group W and a choice
of simple roots A. Then we can recover the coordinate vectors of the roots in ® and
the matrices of the elements of W, such that the action of W on @ is simply given by
multiplying a matrix by a vector. The coordinate vectors corresponding to the simple
roots are the standard d-tuples with d — 1 zeros and one entry equal to 1.

Now let I = {1,...,d} and C = (¢;;); jer be the Cartan matrix of an irreducible root
system. This matrix can be conveniently encoded by the associated Dynkin diagram
which is a graph with nodes labelled by the elements in I (which correspond to the
elements in A) and edges given as follows: Let 4,j € I, i # j. If ¢;; and ¢j; are integers
such that |c;;| > |ej;| the vertices are connected by |c;;| lines, and if |¢;;| > 1 then
we put an additional arrow on the lines pointing towards the node with label 7. In all
other cases, we simply put a single line equipped with the unique integer p;; > 1 such
that ¢;jej;; = cos?(m/pij). We now a give the complete list of these Dynkin diagrams
together with a numbering of the nodes.

CHEVIE 5

A 1 2 3 n B 1 2 3 n

n e—e—0— —o n @ e=e—e— —o
1
3 4 n 1 2 3 n

D, —o Cn e —o
2

G 1 2 o 1 2 3 4 Ee 1 3 4 5 6

I2
jo8 1 3 4 5 6 7 i 1 3 4 5 6 7 8
I2 I2
In(m) 1,2 H, 152 3 H, 152 3 4

In GAP the Cartan matrix corresponding to one of the above irreducible root systems
(with the specified labelling) is returned by the command CartanMat which takes as
input a string giving the type (e.g., "A", "B", ..., "I") and a positive integer giving
the rank. For type I2(m), we give as a third argument the integer m. Given two
Cartan matrices, their matrix direct sum (corresponding to the orthogonal direct sum
of the root systems) is produced by using the command DirectSumCartanMat. These
two functions return a matrix (i.e., a list of lists in GAP) with entries in Z or in a
cyclotomic extension of the rationals.

The function Weyl takes the Cartan matrix of any finite root system (irreducible or
not, and with any ordering of the simple roots) as input and produces a GAP record
with components containing basic information about the corresponding root system
®, the Weyl group W, and the action of W on ®. These components contain, for
example, the Cartan matrix itself, a name for the whole record, the rank, the number
of positive roots, the permutations corresponding to all the roots, the degrees of the
basic polynomial invariants, an operations record (as it should be in GAP), and several
others. We describe only three of them in more detail.

type: This component contains a list describing the types of the various irreducible
root systems involved in ®. The function PrintDynkinDiagram applied to this compo-
nent prints the corresponding Dynkin diagrams with the appropriate labelling of the
nodes. If the original Cartan matrix (which may be irreducible or not) was not obtained
through the function CartanMat then this is a convenient way to find out the actual
type of the root system and the Weyl group under consideration.

roots: This component contains a list with the coordinate vectors of all the roots
relative to the basis of simple roots. Assume there are d simple roots and N positive
roots. Then roots is a list of total length 2N. The ordering is such that the first
d entries are the standard d-tuples (1,0,...,0),...,(0,...,0,1) (corresponding to the
simple roots), followed by the remaining N — d positive roots. (The N-th entry is
the “highest” root of ®.) The last N entries are the negative roots in ® ordered
correspondingly to the positive roots. All other functions dealing with roots refer to
the ordering of the roots in this record component.

6 CHEVIE

permgens: This component contains a list of permutations describing the action of
the simple reflections in S on the roots ®. The i-th entry in this list is a permutation of
the set {1,...,2N} which gives exactly the effect of s; on the roots ®. Here, of course,
we have to refer explicitly to the ordering of the roots determined before. Note also
that, at this stage, we do not need to specify whether we act from the left or the right
since we are dealing only with involutions.

All this information is not stored individually for all the types but is actually com-
puted along the lines indicated above when the function Weyl is called.

The following example is the output taken from a session in GAP. We reproduce it
here to give an impression of how things look like on the computer. For a detailed
description of the program we refer to the CHEVIE manual [20].

gap> W:= Weyl(CartanMat("G", 2));

Weyl([[2,-11,[-3, 210D

gap> W.type;

cce", 01,2111

gap> PrintDynkinDiagram(last) ;

G2 1>2

gap> W.roots;

t (1, ol, [o, 11, (1, 1], [1, 2], [1, 3], [2, 3],
(-1, o1, (o, -1], [-1, -1], [-1, -2], [-1, -3], [-2, -3]]

gap> W.permgens;

[(1, »HC2, 3)(5, 6)(8, 9(11,12),
(1,802,803,)C7,11)C 9,10)]

2.2. Working with elements in Weyl groups. We now describe how actual compu-
tations with the elements of a finite Weyl group can be performed, along the approach
set up above.

A basic tool in dealing with W is the length function. Given w € W it is possible
to write w = s;, ...s;,, where 41,...,%, € I. If m is as small as possible we call the
expression of w as a product of simple reflections a reduced expression, and the integer
m the length of w, written I(w). Clearly, [(1) = 0 and I(s;) =1 for all ¢ € T.

A user might be interested to think of the elements of W as such words in the simple
reflections. In GAP, a word is simply represented as a list of integers corresponding
to the simply roots, e.g., [] is the identity element, and [1], [2], etc. represent the
reflection along the first, the second etc. simple root. For other purposes, it might
be better to see the permutation of an element w on the root vectors. Since this is
forced upon us by GAP we will assume throughout that W acts from the right on &,
and write this action as o, for o € ® and w € W. The functions WeylWordPerm and
PermWeylWord will do the conversion of one form into the other.

gap> W:= Weyl(CartanMat("D", 4));;
gap> PermWeylWord(W, [1, 3, 2, 1, 31);
(1,14,13, 2)(3,17, 8,18)(4,12)(5,20, 6,15)(7,10,11, 9)
(16,24) (19,22,23,21)
gap> WeylWordPerm(W, last);
[1, 3,1, 2, 3]
We notice that the word we started with and the one that we ended up with, are not
the same. But of course, they represent the same element of W. The reason for this
difference is that the function WeylWordPerm always computes a reduced word which is

CHEVIE 7

the lexicographically smallest among all possible expressions of an element of W as a
word in the simple reflections! The function ReducedWeylWord does the same but with
an arbitrary word as input (and not with a permutation). In particular, the element
used in the above example has length 5. Sometimes, it is not necessary to compute
a reduced word for an element w and one is only interested in the length [(w). The
crucial point of working with the permutation representation of W on ® is that the
length of an element w can be computed very fast and effectively by looking at its
effect on positive and negative roots. Since this will be of basic importance to us, we
summarize the results as follows. (For a proof, see [26], 1.6).

(a) The length of w € W is the number of a € ®% such that a® € ®~.
(b) For every simple reflection s; we have l(s;w) = l(w) £ 1, and I(s;w) = l(w) + 1
holds if and only if o’ € ®T.

Thus, if there are N positive roots and W is represented as a permutation group on
{1,...,2N} such that the first N numbers correspond to the positive roots (as described
in the previous section) then the length of an element w € W can be computed by
counting the number of 4 € {1,..., N} such that ¢ > N. This is what the function
WeylLengthPerm does.

gap> LongestWeylWord (W) ;

[1,2,3,1,2,3,4,3,1, 2,3, 4]

gap> PermWeylWord(W, last);

(1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)
(9,21)(10,22)(11,23) (12,24)

gap> WeylLengthPerm(W, last);

12

These are the most basic functions available. All the other commands, described
extensively in the CHEVIE manual, do build on these.

Another advantage of working with the permutation representation of W on & is
that all the algorithms in GAP designed for general permutation groups can be applied,
e.g., strong generating set, membership test, centralizer of elements, conjugacy test etc.

2.3. Weyl subgroups. We consider a subset) C @, and let V/ C V be the subspace
of V spanned by ®. Then the subgroup W’ C W generated by the reflections corre-
sponding to the roots in ® also is a finite Weyl group. Its root system & C V” is the set
of all ¥ for v € &, w € W'. A set of simple roots A’ C &', and hence a corresponding
set of simple reflections S" C W/, can be computed algorithmically as follows (see [26],
8.2). For any w € W let N(w) := {a € ®* | a¥ € &~ }. Clearly, if « € ®T then
a € N(sq). In particular, we have that a € N(s,) N @’ for all positive roots a € ¥.
Then
A :={a€® | N(sa) NP ={a}}

is a set of simple roots for ®’. Note that our preparations in the previous section ensure
that the set ®’ can simply be determined by a standard orbit algorithm, and the set
N (w) can indeed be computed efficiently using 2.2(a).

A record for such a Weyl subgroup is returned by the function WeylSubgroup which
takes the original record for W and a list of indices for the roots as input. The
record for the subgroup contains additional components the most important of which is

rootIndices which gives the fusion of the root system ®’ into the original root system
.

8 CHEVIE

gap> W:= Weyl(CartanMat("F", 4));
Weyl([[2, -1, 0,01, [-1, 2, -1, 01,
ro, -2,2,-11, 00,0, -1, 21
gap> PrintDynkinDiagram(last.type);
F4 1 -2>3-4
gap> W.roots[16];
[0, 1,2, 2]
gap> h:= WeylSubgroup(W, [1, 2, 3, 16]);
Weyl([[2, -1, -1, 01, [-1, 2, 0, -1 1,
[-1,0,2,01]1, [0, -2,0,211)
gap> PrintDynkinDiagram(last.type);
B4 4 <2-1-3
gap> h.rootIndices{[1..4]};
[1, 2, 16, 3]
The last line tells us that the four simple roots in A’ are, respectively, the 1., 2., 16.,
3. root in .
Ifd = {aj | j € J} for some subset J C I then W' is called a parabolic subgroup of
W. In this case, we can take A’ = ®. Moreover, there is a distinguished set of (right)
coset representatives of W' in W, defined as follows. Let

D :={we W |l(sjw) > l(w) for all j € J}.

15

Then every element w € W can be written uniquely in the form w = w'd where
w € W', d e D and l(w) = l(w") + I(d). The elements in D are the unique elements
of minimal length in the various right cosets of W’ in W. (See [26], 1.10.) The set D
can be computed recursively as follows. Let Dy be the set of elements in D of length
k > 0. We start with Dy := {1}. Now assume that Dj has already been computed,
for some k > 0. Then Dy is the set of all products ws; where w € Dy, i € I and
l(sjws;) > l(ws;) for all j € J. (Note that the condition on the length can be checked
very quickly using 2.2(b).) The set D can be computed in GAP using the function
WeylRightCosetRepresentatives.

2.4. Character tables and induce/restrict matrices. The ordinary complex char-
acter table of any finite Weyl group is computed in CHEVIE using the function
CharTable. This command first checks whether or not W is irreducible. For each irre-
ducible Weyl group a character table record is computed either using recursive formulas
(for the classical types) or read into the system from a library file (for the exceptional
types). Such a record is a usual character table record as defined in GAP, but with
some additional components.

It is important to note that the conjugacy classes and the irreducible characters of a
finite Weyl group each have a canonical labelling by certain combinatorial objects, and
that such labellings are contained in a consistent way in the tables of CHEVIE. For the
classes, these are partitions, pairs of partitions, or Carter’s admissible diagrams [6]. For
the characters, these are again partitions, pairs of partitions, or pairs of two integers
(n,e) where n is the degree of the character and e is the smallest symmetric power
of the natural reflection representation containing the given character as a constituent.
This information is contained in the record components classnames and irredinfo. It
is printed automatically when you display the character table in GAP. In the following
example, we are dealing with the Weyl group of type Az where the classes and characters
have a canonical labelling by the partitions of 4.

CHEVIE 9

gap> W:= Weyl(CartanMat("A", 3));;
gap> ct:= CharTable(W);;
gap> DisplayCharTable(ct);
H(A3)
2 3 2 3 .2
3 1 . . 1 .
1111 211 22 31 4
2P 1111 1111 1111 31 22
3P 1111 211 22 1111 4

1111 1 -1 1 1 -1
211 3 -1 -1 1
22 2 2 -1

31 3 1 -1 -1
4 1 1 1 1 1

Moreover, the record component classtext actually contains representatives of the
conjugacy classes given as words in the simple reflections. In the above example, this
reads as follows.

gap> ct.classtext;

cr 1,011, 041+,371,01,217,101,2,31]

In many applications it is useful to know the decomposition of the irreducible char-
acters of W when we restrict them from W to a Weyl subgroup W' (defined as in Sec-
tion 2.3). In order to apply the usual GAP functions for inducing and restricting charac-
ters and computing scalar products, we need to know the fusion map for the conjugacy
classes of W' into those of W. This is done with the function FusionConjugacyClasses.
The decomposition of induced characters into irreducibles then is a simple matter of
combining some functions which already exist in GAP. There is an additional function,
InductionTable, which performs this job. To illustrate this we give the following ex-
ample in which we consider the Weyl group of type G2 and a subgroup of type A; x Aj.

gap> W:= Weyl(CartanMat("G", 2));
Weyl([[2,-11,[-3,211)

gap> WeylSubgroup(W, [1, 4]);
Weyl([[2,01,[0,211)

gap> PrintArray(InductionTable(last, W));

o, o, o, 11,
[1, 0, 0, 01,
[o, o0, 1, 01,
[o, 1, 0o, 01,
o, 1, 1, 01,
[1, 0, 0, 111

The rows of this matrix correspond to the irreducible characters of W and the
columns to those of W’ as given by the command CharTable.

We shall have more to say about character table records in the section about Iwahori-
Hecke algebras.

10 CHEVIE

3. IWAHORI-HECKE ALGEBRAS

In this section we describe the basic functions dealing with the Iwahori-Hecke algebra
associated with a finite Weyl group W. As before, we denote by S = {s; | i € I} a set
of simple reflections in W. We shall now make essential use of the fact that there is a
nice way of writing down a presentation of W. For s,t € S let m4 be the order of the
element st € W. Then, clearly, the following relations hold:

s2=1 and (st)™*=1foralls,teS.

These actually form a set of defining relations for W. We can deform these relations
so as to get defining relations for the Iwahori-Hecke algebra associated with W. This
is done as follows.

Let R be any commutative ring with a fixed choice of elements gs € R for s € S
such that g = q; whenever s,t € S are conjugate in W. We then have a corresponding
Twahori-Hecke algebra H = Hp(q) over R with parameters q = (¢s | s € S5). It is
defined as the associative R-algebra with 1 = T3 generated by elements Ty, s € S,
subject to the following relations.

T? = ¢T1+(¢gs—1)Ts forse S
T.T,T,--- = T, T,T;--- for s,t € S, and my; factors on each side.

It is known that, if w = $1--- s, = s} -+, are two reduced expressions of w € W

as products of simple reflections s;,s; € S then the corresponding products of the
generators T, will give the same element of H, which we may therefore denote by T5,.
Then the elements {7y, | w € W} actually form a free R-basis of H.

There is a universal choice for R and q: Let us, s € S, be indeterminates over Q such
that us = u; whenever s,t € S are conjugate in W, and let Ay = Z[us | s € S] be the
corresponding polynomial ring. Then Hy := H 4, (u) is called the generic Iwahori-Hecke
algebra associated with W. If R and q are given as above then Hgr(q) can be obtained
by specialization from Hy: There is a unique ring homomorphism f : Ay — R such
that f(us) = gs for all s € S. Then we can view R as an Ag-module via f and we can
identify Hr(q) = R ®4, Ho.

If we choose R = Q and ¢; = 1 for all s € S, then the above construction yields
nothing but the group algebra of W over Q. In this sense, the algebra Hy is the generic
deformation of the group algebra of W.

3.1. Algebra elements and representations. Assume we are given a Weyl record of
W as described in Section 2. Assume, moreover, that we have defined in GAP elements
{¢s | s € S} in some commutative ring R. Then the command Hecke, applied to
that record and that list of elements, adds to the record an additional component T.
This component is a function which returns, for an element w € W, the corresponding
basis element T, in H. These elements can be added, multiplied etc. with the usual
operations +, =, * etc. The list of ring elements (¢s | s € S) is stored in the record
component parameter. Note that, in the original Weyl record, this list consists of 1’s.

As a GAP object, any such element is a record with two components basrep and
operations. The first one is a list of pairs (a,,w) where a,, is the coefficient of
T, in the given element. The second contains the functions implementing addition,
multiplication etc.

Let us give an example in which we perform some computations in the generic
Iwahori-Hecke algebra Hj associated with the Weyl group W of type As.

CHEVIE 11

gap> W:= Weyl(CartanMat("A", 3));

Weyl([[2, -1,01]1,[-1,2,-11,[0,-1,211)
gap> W.parameter;

[1, 1, 1]

gap> u:= Indeterminate(Rationals);; wu.name:= "u";;
gap> Hecke(W, u); W.parameter;

[u, u, ul

gap> T:= W.T;; T([11)"2;

(W*T(L 1)+Cu - D=*T(L 1 1)

gap> last.basrep;

(lu, [11, lu-1,0111]1

gap> T(LongestWeylWord(W))~2 = T([1, 2, 3])74;

true

In this way, we can work with arbitrary elements of the Iwahori-Hecke algebra H.
We point out explicitly that such computations can be carried out for H defined over
any commutative ground ring which can be constructed in GAP, and any choice of
parameters.

One of the main applications that we originally had in mind was the possibility of
working with representations of Iwahori-Hecke algebras. Assume we are given any set
of matrices A, € R**™ (s € S). The fact that H is given by generators and defining
relations immediately implies that there is a (unique) representation p : H — R™*"
such that p(Ts) = A for all s € S, if and only if the matrices A, satisfy the same
relations as those for the generators T of H.

A general approach for the construction of representations is in terms of W-graphs,
see [28], p.165. Any such W-graph carries a representation of H. Note that, for these
purposes, it is necessary to assume that the parameters of H are squares of some
elements of the ground ring. The simplest example, the standard W-graph defined in
[28], Example 6.2, yields a “deformation” of the natural reflection representation of W.
This can be produced in CHEVIE as follows.

gap> W:= Weyl(CartanMat("B", 2));

WeylC [[2,21, [-1,211)

gap> v:= Indeterminate(Rationals);; v.name:= "v";;
gap> Hecke(W, [v™2, v~2]);

gap> ref:= HeckeReflectionRepresentation(W) ;
[L[-v0, OxvvO], [-vv2, vv2 1 1],

L [v2, -2xvv0], [Oxv70, -v-0]]]
gap> WeylConjugacyClasses (W) ;
crt 1,011, 01,2,1,21, 021,011,211
gap> CharHeckeRepresentation(ref, last);

[2xv"0, v°2 - 1, -2*v"4, v°2 - 1, O*xv~0]

By the last command, we have also computed the character values of the natural
representation on elements T,, where w runs over a set of representatives of minimal
length of the conjugacy classes of W.

Another possibility to construct W-graphs is by using the Kazhdan-Lusztig theory
of left cells (see [28]). There are some programs in CHEVIE for computing Kazhdan-
Lusztig polynomials, left cells and the corresponding representations.

We continue the above example where W is of type Bs.

gap> cells:= LeftCells(W);;

12 CHEVIE

gap> List(last, i-> Length(i[1]));

[1, 3,1, 3]

gap> cells[2];

ccc11,02,121,01,2,111,
tfol, 1,073, 00,1,07171]1]

gap> LeftCellRepresentation(W, last, v);

L[[-voo, v, O0*xv~0],

[Oxv~0, v'2, O0%xv~0],

[Oxv~0, v, -v-0 11,

[[v"2, 0xv~0, O0x*v°0 1],

[v, -v°O0, v,

[Oxv~0, 0%v~O0, vc2 111
gap> CheckHeckeDefiningRelations(W, last);
true

Thus, we have computed all left cells of W. There are four such cells, containing 1, 3,
1, 3 elements, respectively. The result of LeftCells is a list of pairs (C, u) where C' is
the set of elements in a left cell of W, and p is the corresponding lower triangular matrix
of coefficients u(xz,y), for z,y € C (see [28], Definition 1.2). Then the corresponding
left cell representation is returned in the form of two matrices. The last command
checks that these matrices indeed satisfy the defining relations for H and, hence, define
a representation of H.

One should note, however, some limitations of these programs. They are designed
to deal with many elements for one fixed group. For this purpose, they compute, for
example, explicitly a complete list of all elements of W. Thus, it is reasonable to apply
these programs to groups of rank < 4. For groups of bigger rank, one should use a
special purpose program like the one provided by F. DuCloux [16].

Finally, we give a simple example of how various little programs can be combined
to check some properties of left cells. The following sequence of GAP and CHEVIE
commands checks that, for all irreducible crystallographic Weyl groups of rank 2, 3, 4,
the values u(x,y), for z,y in any left cell of W, are 0, 1.

gap> list:= [["A", 2], ["B", 2], ["G", 2], ["A", 3]’ ["B", 3]’

> ["a", 41, ["B", 4], ["D", 41, ["F", 411;;
gap> for tr in list do

> W:= Weyl(CartanMat (tr[1], tr[2]1));

> cells:= LeftCells(W);

> Print("(type, rank) = ", tr, ", ");

> Print("No. of cells = ", Length(cells), ": ");
> # display set of mu values.

> Print(Set(Flat(List(cells, i-> i[2]1))), "\n");
> od;

The result of this is as follows.

(type, rank) = ["A", 2], No. of cells =4: [0, 1]
(type, rank) = ["B", 2], No. of cells =4: [0, 1]
(type, rank) = ["G", 2], No. of cells =4: [0, 1]
(type, rank) = ["A", 3], No. of cells = 10: [0, 1]
(type, rank) = ["B", 3], No. of cells = 14: [0, 1]
(type, rank) = ["A", 4], No. of cells =26: [0, 1]

CHEVIE 13

(type, rank) = ["B", 4], No. of cells =50: [0, 1]
(type, rank) = ["D", 4], No. of cells = 36: [0, 1]
(type, rank) = ["F", 4], No. of cells =72: [0, 1]
gap> time;

15970760

The time given is in 1/1000 seconds, hence the whole computation took roughly 4
1/2 hours (on a HP 9000/725) most of which was spent, of course, on W of type Fy.

3.2. Minimal length representatives in conjugacy classes. We can use the GAP
functions for Weyl groups to verify a theorem about the conjugacy classes of a Weyl
group. In fact, these programs have been used to prove this theorem for crystallographic
Weyl groups of exceptional type in [22]. Using the Weyl group of type Hy as an example,
we show here that the theorem also holds for the non-crystallographic types. We thereby
also wish to demonstrate how the existing functions from CHEVIE can be combined into
little programs or sequences of commands which perform the necessary tasks.

Let w,w’ € W and s € S. Then either I(sws) = I(w) or I(sws) — l(w) = £2. We
write w > w’, or simply w — w’, if w’ = sws and [(w’) < l(w). The reflexive transitive
closure of this relation on W is also denoted by —. Moreover we write w ~ w’, if
there exists an @ € W such that v’ = rwz™!, [(w) = l[(w'), and I(zw) = I(z) + I(w)
or l(wz™') = l(w) + I(z~1). Again the transitive closure of this relation on W is also
denoted by ~. For each conjugacy class C' of W denote by Cpn the set of elements
of minimal length in C. Then the following holds (see [22], Theorem 1.1, for the
crystallographic case).

(a) For each w € C there exists an element w' € Cpin such that w — w'.
(b) For all w,w € Crin we have w ~ w'.

Given a particular Weyl group W, we can use the GAP programs for Weyl groups to
verify these statements for W. In order to verify the two statements we have to perform
several steps.

(1) For every conjugacy class C' of W we have to construct the set Cp,;, of elements
of minimal length.

(2) For each element w € W we have to find a sequence w = wy 2> wy — --- 25 w,
where w, has minimal length in the conjugacy class C' of w in W.

(3) We have to find a sufficient number of instances w ~ w’ via some = € W for
w,w’ € Cpin such that the transitive closure of these establishes part (b) of the
theorem.

We will achieve all of this by a slightly different strategy.

Let S; C S, let W; = (S1) be the corresponding parabolic subgroup of W and let
D be a subset of the set of distinguished right coset representatives of W7 in W such
that W — W1 Dy (i.e. for each w € W there exist elements wy € Wi, di € D; such that
w — widy). Moreover let Sy C S7, Wy = (Ss), and let Dy be the set of distinguished
right coset representatives of Wy in W7. Then W — W5 D where

D= {d2d1|d2 S Dg,dl € Dy, and l(dgdls) > l(dgdl) for all s € SQ} .

Note that if S; = S then D is the set of distinguished double coset representatives of
W2 in W

A tool to produce coset representatives according to the preceding remark is given
by the function SelectedCosets. It takes the Weyl group W, two sets I and J such

14 CHEVIE

that S; = {s;|i € I} and Sy = {s;|i € J} (in particular, J C T), and a list of coset
representatives as its arguments and returns the new list D of coset representatives.

SelectedCosets:= function(W, I, J, cos)
local ¢, d, x, W, new;

new:= [];
for d in WeylRightCosetRepresentatives(W, I, J) do
w:= PermWeylWord(W, d);
for ¢ in cos do
X:!= W ¥ C;
if ForAll(J, j-> j/x <= W.N) then
Add (new, x);
fi; od; od;
return new;
end;

If this function is applied along a chain of parabolic subgroups of W we end up with
a (relatively small) set L C W such that W — L.
The Weyl group W of type H; may serve as an example.

gap> h4:= Weyl(CartanMat ("H", 4));;

gap> cos:= [O 1;;

gap> cos:= SelectedCosets(h4, [1..4], [1..3], cos);;
gap> cos:= SelectedCosets(h4, [1..3], [1,2], cos);;
gap> cos:= SelectedCosets(h4, [1,2], [2], cos);;

gap cos:= SelectedCosets(h4, [2], [], cos);;

gap> Length(cos);

376

That means, instead of || = 14400 elements, we only have to consider 376 elements.

Suppose that the function TestCyclicShifts returns true for an element w € W if
l(w) = l(w') for all w’ € W with w — w’" and returns an element y such that w — y and
I(y) < l(w) otherwise, then the following lines of code produce a list min of elements
such that W — min and every element in min has minimal length with respect to the
relation —.

gap> min:= [];

gap> for w in cos do

> y:= TestCyclicShifts(hd, w);

> if y = true then

> AddSet (min, w);

> else

> if not y in min and not y in cos then
> Add(cos, y);

> fi; fi; od;
gap> Length(min) ;
112

With the aid of the GAP function ConjugacyClasses for permutation groups we
split that list into conjugacy classes and look at the lengths of the elements in one class.
gap> cc:= ConjugacyClasses(h4);;
gap> new:= List(cc, x-> [1);;

CHEVIE 15

gap> for m in min do

> Add (new[Position(cc, ConjugacyClass(h4, m))], m);
> od;

gap> List(new[2], x-> WeylLengthPerm(h4, x));

[18, 18, 18, 18, 18, 18]

All elements of min belonging to the second conjugacy class of W have the same
length! This turns out to be the case for all 34 conjugacy classes of W. So we have
shown that all elements which are minimal with respect to the relation — are in fact
of minimal length in their conjugacy class. Hence (a) holds for W of type Hy.

In order to verify (b) we define a function CyclicShifts which produces for any
element w € W the orbit of w under the equivalence relation which is generated by
w > w' for some s € S with I(w) = I(w’). It is easy to see that in such a case w ~ w'.

CyclicShifts:= function(W, w)
local orbit, x, y, i, s, n, N;

s:= W.permgens; N:= W.N; n:= W.dim;
orbit:= [w];
for x in orbit do
for i in [1..n] do
y:= s[i] * x;
if (i"x <= N and i/y > N) or (i"x > N and i/y <= N) then
y:=y * s[i];
if not y in orbit then
Add(orbit, y);
fi; fi; od; od;
return orbit;
end;

In most cases this test is sufficient in order to establish the relation ~ for a class of
elements in the list new.
gap> rest:= [];;
gap> for n in new do

> if not IsSubset(CyclicShifts(h4, n[1]), n) then
> Add(rest, n);

> fi; od;

gap> Length(rest);

3

We are left with three sets of elements, where the relation ~ still has to be established.
Application of the function WeylWordPerm to the lists of elements in the list rest reveals
that these are the sets

{817 52,83, 84};
{5183, 8184, 8284}, and
{5253, 8352, 354, 5453}

Now it is easy to see from the defining relations of W that, for instance the generators
s4 and s3 are conjugate via the element s3ss in such a way that s4 ~ s3. The other
cases follow by a similar argument. Hence the theorem is verified for the Weyl group
of type Hy.

16 CHEVIE

Similarly, the case of the Weyl group of type Hjs (in fact, of any particular finite
Weyl group) can be treated. Note that checking (a) and (b) for the dihedral groups of
type I2(m) is an easy exercise. In combination with the results in [22] we now see that
(a) and (b) hold for any finite Weyl group.

3.3. Character tables of Iwahori-Hecke algebras. In the previous section we have
defined two binary relations — and ~ on W. These allow us to define the analogue of
the ordinary character table of W for the corresponding Iwahori-Hecke algebra H. For
this purpose, we fix the following choice of a ground ring and for the parameters of H.
Let A = Z[vs | s € S] be a polynomial ring as in Section 3 and H be the Iwahori-Hecke
algebra over A corresponding to W and with parameters v = (v2 | s € S). Let K be
the field of fractions of A and Hy the algebra obtained by scalar extension from A to
K. Then it is known that Hk is semisimple and split (see [19]). This algebra plays the
analogous role as the group algebra of W over Q. Its representations and characters
will be called ordinary.

Let Irr(Hg) be the set of irreducible characters of Hg, and {C} be the set of con-
jugacy classes of W. For each class C' we choose an element we of minimal possible
length in C. Then the matrix of values

X(Twe), for x an irreducible character of Hx and C a class of W,

is called the generic character table of Hy.

On one hand, the relation ~ on W implies that this matrix is in fact independent
of the choice of representatives of minimal length. On the other hand, if w € W is any
element then there exist elements f,, ¢ € K such that

X(Tw) = Z fuw,c Xx(Twe) forall x € Irr(Hg),
C

where the sum is over all conjugacy classes C of W. Now the relation — implies that
the elements f,, ¢ actually lie in A and that they can be computed in an algorithmic
way. (See [22] for details.) They will be called the class polynomials of W.

The character tables of the Iwahori-Hecke algebras of all types are explicitly known.
For type Iz(m), they are easily constructed from [12], Theorem (67.14). For type Hs,
the W-graphs and explicit matrix representations are given in [30]. The table for Hy
has been computed by means of the W-graphs in [1]. The tables for the remaining
exceptional types are computed in [19], [18], [21], algorithms for computing the tables
for type A,, and B,, are contained in [42, 24], [40, 41], for type D,, see [24].

For each type, there is a function (e.g., HeckeCharTableG2) which takes as input a
list of parameters and returns the character table record of the corresponding generic
Iwahori-Hecke algebra Hg where the indeterminates have been specialized to the pre-
scribed values. (For type Io(m) there is a second argument specifying the value of m.)
The user has to take care of the right choice of parameters: For type Io(m), Go, Hs, Hy,
E;, Eg, the argument must be a list of square roots of the parameters for the Iwahori-
Hecke algebra, and for type Io(m), Hs, Hy one cannot work over the rationals but over
a suitable cyclotomic extension (e.g., the field containing the 5-th roots of unity for
type Hs, Hy4). As already explained in Section 2.4 the character table records contain
additional components which give canonical labellings for the classes and characters as
well as explicit representatives of minimal length in the conjugacy classes of W.

CHEVIE

17

In the following example we show how the class polynomials are actually used to
compute the character values on basis elements T, where w € W is not necessarily of
minimal length in its conjugacy class. We consider the Weyl group of type Gs.
gap> W:= Weyl(CartanMat("G", 2));
Weyl([[2,-11,[-3211)
gap> v:= Indeterminate(Rationals);;
gap> Hecke(W, [v"2, v76]);
gap> cc:= WeylConjugacyClasses(W);;

V.name:=

Ilvll ; ;

gap> elts:= List(Elements(W), i-> WeylWordPerm(W, i));

L[1, 2,1,2,1,21,[2]1,[2,1,2,1]1,[2,117,
(2,1,21, (11, 01,2,1,2,1,21,[1, 2,1, 2,11,
[1, 2171, [1,2,1,21,[1, 2,111

gap> cp:= List(last, i-> WeylClassPolynomials(W, cc, i));

[[vo, o, o, 0, 0, 01,

[0, 0, v'8, v8 -v'6, v'6 -1, o1,
[0, 0, v70, 0, 0, 01,
[0, 0, 0, 0, v~O0, 01,
[0, 0, 0, v~0, 0, 01,
[O0,ve6, 0, ve6-1, 0, 01,
[0, v7O0, o, 0, 0, 01,
[0, 0, 0, 0, 0, v-0 1,
[0, v°8, 0, v'8-v'2, v'2 - 1, 01,
[0, 0, 0, v~0, 0, 01,
[0, 0, 0, 0, v~O0, 01,
[o, 0, v°2, v’2 -1, 0, 011

The following commands will compute the character table of the corresponding
Iwahori-Hecke algebra H with parameters (v? v%), and then the values of the irre-

ducible characters on all basis elements T,,, w € W.

gap> ct:= HeckeCharTableG2([v, v~3]);
CharTable("H(G2)")
gap> ct.irreducibles * TransposedMat(cp * v~0);

We don’t print it here; please try it yourself!

4. GENERIC CHARACTER TABLES

In this section we shortly describe the theoretical background underlying the defini-
tion of a generic character table of a series of finite groups of Lie type.

4.1. Generic finite reductive groups. A general reference for finite reductive groups
and their representation theory are the books by Carter [8] and by Digne and Michel
[15].

The concept of a complete root datum was introduced by Broué and Malle in [3].
Here, we follow Broué, Malle and Michel [5], where a complete root datum is called
generic finite reductive group. A series of finite reductive groups is the collection of all
finite reductive groups associated to a generic finite reductive group.

A complete root datum or a generic finite reductive group is a pair G = (T', W¢),
where T' is a root datum, W its Weyl group and ¢ an automorphism of finite order
of T'. The group W as well as ¢ are contained in the common overgroup Aut(I') of
automorphisms of I', so that W¢ simply means a coset of W in Aut(T"). A root datum

18 CHEVIE

I'is a quadruple I’ = (X, ®,Y, ®V), where X and Y are free Z-modules of the same finite
rank endowed with a non-degenerate pairing X x Y — Z, written as (z,y) — (x,y).
Furthermore, ® and ®V are finite subsets of X and Y, respectively, and there is a
bijection a — " between ® and ®V such that (o, av) = 2, 8 — (8,a")a € ® and
BY —{a, V)oY € @Y for all a, 3 € ®. An automorphism ¢ of T' is an automorphism of
finite order of Y such that ®V is invariant under ¢ and @ is invariant under the adjoint
automorphism of ¢ on X.

For a € @ let s, be the automorphism of X defined by s,(z) = z — (x,a¥)a and
s the automorphism of Y defined by sY(y) = y — (o, y)a¥. Then sY is adjoint to s4
with respect to the given pairing. The Weyl group W of the root datum I' is defined
as the subgroup of the automorphism group of Y generated by the s for « € ®. In
particular, W is a subgroup of Aut(T).

Let V be the real vector space spanned by ®V in Y ®z R. Then W, considered as
a group of automorphisms of ¥ ®z R (by linear extension) leaves V' invariant. We can
endow V with a W-invariant positive definite symmetric bilinear form such that ®V is
a crystallographic root system in the sense of Section 2, and W is its Weyl group. For
details we refer to [46], 9.1.8.

Given a root datum I" and a prime number p, there exists a pair (G, T), where G
is a connected reductive group defined over I_Fp, the algebraic closure of the prime field
F,, and T is a maximal torus of G such that I" is the root datum associated to the pair
(G, T). The algebraic group G is uniquely determined by I" and p, up to isomorphism.
Given a complete root datum G = (I, W¢), a prime number p, a power ¢ of p and an
element ¢’ in the coset W¢, there is a Frobenius morphism F : G — G, such that T is
F-stable and F induces on Y the homomorphism ¢ - ¢’. The associated finite reductive
group, denoted by G¥ or G(q) is uniquely determined by G and ¢, up to isomorphism.
The collection of all groups G(q), ¢ = p/, f € N, p a prime number, is called the series
of finite reductive groups (or finite groups of Lie type) associated to G.

From a complete root datum G we get another complete root datum, called the dual
of G and denoted by G*, by changing the roles of X and Y (and so of ® and ®V) and
changing ¢ to its adjoint. We denote the associated connected reductive groups by G*.
The Frobenius morphism of G* corresponding to a power g of p is denoted by F*, and
G*(q) is called the dual group of G(q).

Example 4.1. Let X =Y = Z2, the pairing being the standard inner product on X.
Let @ := {(2,-1),(-1,2),(1,1),(-2,1),(1,-2),(-1,-1)} and ®"V := {(1,0), (0,1),
(1,1), (—1,0), (0, —1), (—=1,—1)}. If we map the i-th element of ® onto the i-th element
of ®V we get a root datum I'" which describes the reductive groups SLg(]Fp). This root
datum together with the identity map on Y or its negative define complete root data.
They describe the series {SLs(q)} or {SUs(q)}, respectively. The dual group of SL3(q)
is PGL3(q).

The definition of the Suzuki and Ree groups is slightly more complicated. Let us
content ourselves with the remark that the Suzuki groups Sz(¢?) = 2B2(¢?), ¢* = 2271,
and the Ree groups %Ga(q?), ¢* = 3*"*+1, respectively 2Fy(q¢?), ¢*> = 22"*1, each form a
series of finite reductive groups.

4.2. Semisimple class types. We fix a complete root datum G and use the notations
G, G(q) as above. Let s1,s2 € G(g) be semisimple elements. We say that s; and s9
have the same semisimple class type, if and only if their centralizers in the algebraic

CHEVIE 19

group G are conjugate by an element of G(q). It is clear that the semisimple elements
of one given semisimple class type form a union of conjugacy classes of G(q).

The semisimple class types of G(gq) for all prime powers ¢ can be parameterized
in terms of the complete root datum, i.e., independently of q. More precisely, there
exists a finite set C of labels ¢ of the form ¢ = (¥, W’ o), where ¥ C & is a closed
subset, W/ < W and o € W. (A subset ¥ C ® is called closed, if ZU NP = V.)
This classification of centralizers of semisimple elements in the special case of simply-
connected groups G was first obtained by Carter [7] and Deriziotis [14]. We do not
want to go into further details as to which triples actually occur as labels. Let us just
add a few comments. Given a prime p, and thus a connected reductive group G, the
first two components of the label ¢ specify a closed subgroup C of G. This group is
generated by T, the root subgroups of G with respect to T corresponding to ¥ and the
elements of Ng(T) mapping to W’. We have an exact sequence

1—=Wg —-W —C/C° -1,

where Wy denotes the Weyl group of ¥, and C° the connected component of C. (The
Weyl group of W is the subgroup of W generated by the s¥ for @ € ¥.) Distinct pairs
(U, W) give rise to distinct G-conjugacy classes of closed subgroups of G. Moreover, if
we choose a power ¢ of p, and thus a Frobenius morphism F' of G, the G(g)-conjugacy
classes of the F-stable elements in the G-class of C are distinguished by the third
component ¢ of the label (¥, W'). For each semisimple class type in G(q) there is a
unique label ¢ in C such that for each semisimple element s in this class type, C = Cg(s)
is in the G(g)-conjugacy determined by c.

There exists a positive integer m, and for each ¢ € Z and each ¢ € C, a polynomial
ne,i € Q[z] with the following property. If ¢ is a prime power with ¢ = i(mod m), and a
semisimple class type of G(q) corresponds to ¢ € C, then the number of G(g)-conjugacy
classes forming this class type is equal to n ;(q).

Example 4.2. We continue with the notation of Example 4.1. Let p be a prime and ¢
be the triple ({(2,-1),(=2,1)},{1,5(2,—1)},1). Then c determines the subgroup C of
the following elements in SL3(F,):

0
A 0 . A€ GLy(F)).
00 det(A)~!

Now let ¢ be a power of p. The elements of SL3(q) which have C as centralizer are
exactly the diagonal matrices diag(a, a,a™?) with a € Fy, a® # 1. Let ¢ be a generating
element of FX. Then we can parameterize the above elements as follows:

1<i<q—1, %144, if ¢ = 1(mod 3)

di ~i7 ~i’ F—21 ith
iag(C, ¢, ¢ wi {1 <i<q-—1,(¢g—1)14, otherwise

It is not difficult to see that different elements in this set are not conjugate in SLs(q).
So the number of conjugacy classes in the semisimple class type corresponding to the
G(q)-conjugacy class of ¢ is ¢ — 4, if ¢ = 1(mod 3), and ¢ — 2 for all other g. Thus

m=3, ne1(x) =z —4, and nco(z) = nes(x) =z — 2.

4.3. Lusztig series types of irreducible characters. We recall that we have a
partition of the set of irreducible (complex) characters of G(q) into rational Lusztig
series £(G(q), (5)g+(q)). Here (s)g«(q) runs through the conjugacy classes of semisimple
elements s in the dual group G*(¢). (This is explained, e.g., in [15], 13.16, 13.17, 14.41.)

20 CHEVIE

We say that two rational Lusztig series £(G(q), (51)g=(q)) and E(G(q), (s2)g=(q)) have
the same Lusztig series type if and only if s; and s, have the same semisimple class
type in the dual group G*(q).

The characters in the rational Lusztig series £(G(q), (1)g=(q)) are called unipotent
characters. Lusztig has shown that these can be parameterized in terms of G, indepen-
dently of q.

4.4. Unipotent conjugacy classes and Lusztig series. Fix G and let ¢ € C. Then
there exists a positive integer m, and for each ¢ € Z a finite set U, ; of “labels”, such
that the following holds. If p is a prime and ¢ a power of p with ¢ = i(mod m), then
the set of unipotent conjugacy classes of C" is in bijection with U, ;. Here, C is an
F-stable subgroup of G, determined by ¢, and G is the algebraic group determined by
G and p.

Let ¢* € C*, where C*, of course denotes the set of labels for the semisimple class
types of the dual group G*. There exists a finite set A« of “labels” with the following
property. For a semisimple element s € G*(¢) in the semisimple class type ¢*, the
irreducible characters in the Lusztig series £(G(q), (s)g=(q)) are in bijection with A...
This follows from Lusztig’s Jordan decomposition of characters [32]. In the special case
that the centralizer C* of s in G* is connected, the set A« may be taken to be the set
of labels of the unipotent characters of the complete root datum of C*.

4.5. Generic character tables. For a fixed complete root datum G let mg be a
positive integer which is divisible by all the numbers m appearing in 4.2 and 4.4, and
let 1 <k < mg. A generic character table associated to G and k describes the values
of the irreducible characters of all groups G(q) with ¢ = k(mod my). More precisely it
consists of the following data:

(a) Columns labelled by pairs (¢, u) with ¢ € C and u € U, j, such that n. g # 0.

(b) For each ¢ appearing in (a) a parameterization of the semisimple conjugacy
classes in G(g) having a representative with centralizer C determined by ¢
(they form a semisimple class type). This parameterization can be given in a
uniform way for all relevant prime powers q.

(c¢) Rows labelled by pairs (¢*, *) with ¢* € C* and A € A~ and nex p, # 0.

(d) For each ¢* appearing in (c) a parameterization of the semisimple conjugacy
classes in G*(¢) having a representative with centralizer C* determined by ¢*.

(e) The entries: for each column labelled by (¢, u) and row labelled by (c¢*, A*) there
is an entry which describes the character values for the characters labelled by
X in £(G(q), (s)g=(q)) Where s € G*(g) is in the class type with label c¢*, on
all elements of G(q) of the form tu’ where t is a semisimple element of type ¢,
and v’ is a unipotent element of Cq(¢)f lying in a conjugacy class with label u
(see 4.4). The values are described in terms of the parameters used in (b)

and (d).

In CHEVIE we realize (b) as follows. We parameterize those elements in the center of a
representative C as above whose centralizer in G is exactly C. In this way we do not
have unique representatives for the classes in the semisimple class type corresponding
to ¢, but each of these classes is represented by the same number of elements. (The
same holds for (d).)

To a column of the generic character table one can associate the set of conjugacy
classes of the elements tu’ as in (e). Such a set of conjugacy classes is called a class

CHEVIE 21

type. Similarly we call the set of characters corresponding to a row of the generic table
a character type.

We remark that it may happen that a conjugacy class lies in more than one class
type, and similarly for character types. For example, for a,b € F, the two elements

a 1 0 O b 0 0 O
0 a 0O 0 b 0 O
00 b 0]’ 0 0 a 1
0 0 0 b 0 0 0 a

are conjugate in GL4(q), their semisimple parts have the same centralizer, but if a # b,
the unipotent parts are not conjugate in this centralizer.

In the next section we will indicate how a generic character table is implemented in
CHEVIE.

4.6. Remarks. In this paper we describe a version of CHEVIE which contains a library
of known generic character tables and programs which support computations with these
tables. In a future version of CHEVIE there will also be programs which compute (at
least parts of) generic character tables, starting just from a given complete root datum.
These programs are developed by the third named author. A paper which explains the
methods used in these programs is in preparation. It will contain much more details
about the concepts introduced in this section.

5. EXAMPLES

In this section we show a sample session of the Maple part of CHEVIE, dealing with
generic character tables. We give examples for a lot of the CHEVIE commands and ex-
plain how they work. The screen output in the examples is sometimes slightly edited or
omitted to limit this section to reasonable length. For the same reason some commands
are only mentioned but not shown in the session.

5.1. Some basic commands. If CHEVIE is installed on your system, you can invoke
the Maple-part by typing cheviem in a UNIX-shell. This calls Maple and loads the
CHEVIE-programs. The welcome message tells you to try the command ?CHEVIE. This
shows you a list of all available CHEVIE commands as well as some general information
about CHEVIE. Similarly you get online help for each single CHEVIE command.

Now let us stick to the example of the last section, namely the groups SLz(q). The
number mg mentioned in 4.5 can be chosen to be equal to 3 in this case, hence the
generic character tables for these groups depend on the congruences of ¢ modulo 3.
The CHEVIE library of generic character tables contains two tables for SLs, they have
the names SL3.1 and SL3.n1; the first is for ¢ = 1(mod 3) and the second for the other
cases. Let us look at the first one. It can be read into the CHEVIE session with the
command GenCharTab(‘SL3.1¢); (don’t forget the ¢). The command GenCharTab() ;,
i.e., without arguments, shows a list of all tables available, in particular we can easily
find those corresponding to SL3(q).

With Status(‘SL3.1¢); we can see the size of this table, i.e., the number of class
and character types as well as the order of G(q).

We get information about the class types and the corresponding centralizers with
the command PrintInfoClass.

22 CHEVIE

> PrintInfoClass(‘SL3.19);
clt Information

[, [1, 0], [A_2, [1, 1, 1]1]]
., [, 11, [A_2, [2, 1]]]
., [1, 2], [A_2, [3]]]

L, [1, 3], [A_2, [3]]]

L, [1, 41, [A_2, [3]]]

L, [2, 0], [A_1, [1, 1]1]1]
(., [2, 11, [A_1, [2]]]

(., [3, 0], [A_0, [1]]]

(., [4, o], [A_0, [1]]]

10 [, [5, 01, [A_O, [1]1]1]

The rows of this information table correspond to the columns of the generic character
table. Each row is a list with a certain number of entries (three in the above example),
which may again be lists. For technical reasons, the first entry is empty. The third
entry contains information about the labels of the class types (4.2 and 4.4).

For example in the row beginning with 7 the last entry means that the semisimple
part of an element in the class type corresponding to the seventh column has Dynkin
diagram of type A; and the unipotent part corresponds to the class with Jordan block
of dimension 2 in this centralizer. The second entry of the information list is a list
with two components. The first of these numbers the G(g)-classes of centralizers of
semisimple elements and the second the unipotent classes in these centralizers.

Now let us look at the character values. We have two commands, one which prints
the values on the screen and one which produces a WTEX file with the table (or parts
of it) in a pretty printed form.

> PrintVal(‘SL3.1¢,9,7); # or PrintVal(‘SL3.1¢); for the whole table

© 00 NO O WN =

clt Value of character type 9 on class type clt
7 GEWZ1" (aA*nN-2*aA*mM)+GEWZ1~ (aA*mM-2*aA*nN)+GEWZ1"~ (aA*nN+aA*mM)

> PrintToTeX(‘SL3.1¢,9,7); # PrintToTeX(‘SL3.1¢); for the whole table

The latter command produces a IATEX file, and applies latex and a previewer to it,
if available on your system. The result looks as follows.

SL3(q) Cr(a)

Xg(n,m) Ciln—Qa’m _|_<izm—2an +<iln+am

(o= exp(%?\/?)

The expression GEWZ1 (or (; in pretty printed form) is called a generic root of unity.
You can find an explanation of the CHEVIE names for generic roots of unity by typing
?GEW.

Furthermore, the pretty printed table tells you that the conjugacy classes in the class
type of the seventh column are distinguished by a parameter a and the characters in
the ninth character type are distinguished by parameters n and m (we use the names
aA, nN, mM in the CHEVIE session to minimize an accidental use of these variables for
other purposes).

CHEVIE 23

More detailed information about these parameters (this is 4.5(b) and (d)) can be
obtained with the commands PrintClassParam and PrintCharParam.

> PrintClassParam(‘SL3.1¢,7);
clt Parameters Exceptions

7 [aA =1 .. g-1] [[aA, 1/3%q-1/3]]
> NrClasses(g,7); # number of classes in class type 7
q- 4

This means that the character values for all classes in this class type can be obtained
by specializing the parameter a (or aA) to the integers from 1 to ¢ — 1 except those
which are multiples of (¢ — 1)/3 (recall that we are in the case ¢ = 1(mod 3)). More
generally, the Fzceptions list consists of expressions of the form [x,y], and this means
that the parameters must satisfy y 1 z. (For ¢ € C as in 4.5 we parameterize under
Parameters the elements of the center of C¥ and under FEzceptions we describe those
elements whose centralizer in G is properly bigger than C; compare with Example 4.2.)

If we want to do some calculations with this generic table, we need a way to tell
the programs that (¢ — 1)/3 is an integer. This is done by defining for each table two
functions setCongruence.nr and unsetCongruence.nr where nr is an internal group
number stored in position [-2,0] of the table. In our example they are as follows.
> nr:=‘SL3.1°[-2,0];

nr := A2204

> print(setCongruence.nr) ;
proc() global qQ,q; 9Q := ’qQ’; q := 3*qQ+1l; NULL end
> print (unsetCongruence.nr) ;
proc() global q,qQ; q := ’q’; 9Q := 1/3%q-1/3; NULL end

The first function is called before and the second after any calculations with the
table. They cause the substitution of q by 3*qQ + 1 during these computations; the
programs assume that qQ is an integer.

Finally we mention that some general information about a table in the CHEVIE
library, for example references to the literature, can be obtained with PrintInfoTab.

5.2. Orthogonality relations. As an example for computations with a generic char-
acter table we explain the computation of some scalar products. We do this with the
(small) table for the groups SLy(q) with even g.
> GenCharTab(‘SL2.0¢);

output omitted
> PrintCharParam(‘SL2.0¢,3);
cht Parameters Exceptions

3 [nN=1..q-1] [[nN, g-11]
> NrChars(‘SL2.0¢,3);
1/2 q - 1

> Scalar(‘SL2.0¢,[3],¢SL2.0¢,[3]);
Possible Exceptions: {[oN1+nN2, q-1], [nNi-nN2, g-1]}
Scalar_SL2.0,SL2.0(3,3)=
0
> Norm(‘SL2.0¢,[3]);

24 CHEVIE

Possible Exceptions: {[2%nN, g-11%}
Norm_SL2.0(3)=
1

Here the characters y3(n) of the third character type are distinguished by a parameter
n, which must be an integer not divisible by ¢g—1. The function Scalar, called as above,
does the following. It first substitutes the parameter n in the values for the third
character type by n; and ns, respectively, and substitutes ¢ with the corresponding
setCongruence.nr function. Then it computes the scalar product via the usual formula

1

(x3(n1), x3(n2)) = [STa(9)] geg(q) x3(n1)(9)xs(n2)(g™").

But how can this sum be computed? For doing this, the CHEVIE tables contain two
additional types of information we have not yet mentioned. The first is the number
of elements in each conjugacy class or, equivalently, the centralizer orders. They only
depend on the class type and can be read off the table with CentOrd. This reduces the
above sum to a sum over the conjugacy classes. The second is a set of Maple procedures
which describe for each class type how to sum over all classes in this type. For example
the classes in the forth class type are distinguished by a parameter a.

> PrintClassParam(‘SL2.0°,4);
clt Parameters Exceptions

4 [ah =1 .. g+1] [[a4, g+11]
> NrClasses(‘SL2.0¢,4);
1/2 q
> nr:=‘SL2.0°[-2,0];
nr := A1202
> print(Klassen.nr.Summe.4) ;
proc(tt) local sl; sl := nesum(tt,aA =1 .. q); linkomb(1/2,s1) end

This summation procedure means that character values f(a) on the classes of this
class type can be added up by computing % ¢_, f(a). So this procedure contains
implicitly again the information we get with PrintClassParam and also how many
different parameters correspond to the same class.

During these computations an expression like Ef:_g x' is substituted by (z471 —
1)/(x — 1) if CHEVIE cannot simplify the subexpression x to 1, and it is substituted
by ¢ — 1 in the other case. In the first case the procedure also generates information,
printed as a Possible Exception, which describes the condition for x = 1. If for example
x = ¢F with ¢; a primitive (¢ — 1)-th root of unity we have x = 1 if and only if k is
divisible by ¢ — 1; the exception is printed as [kK, q-1].

In our example Scalar(‘SL2.0¢, [3], ‘SL2.0¢, [3]); we got 0 as the generic result.
But for two characters from the third character type the scalar product is 0 only if we
take two different characters from this type. Otherwise the scalar product is 1 and
so there must be some information about Possible Fxceptions. And we really get such
exceptions which tell us that the calculations are valid only if for fixed n; the parameter
ng or —ng is not congruent to 77 modulo ¢ — 1. These are exactly the two cases where
ny and ng correspond to the same character in this type.

We can compute the scalar product of a character with itself by using the command
Norm as demonstrated.

CHEVIE 25

Similarly it is possible to compute second orthogonality relations and class multipli-
cation coefficients. Here procedures which sum over all characters in a character type
are used. These functions are called Ortho2Norm, Ortho2Scalar and ClassMult.

5.3. A tensor product in SL3(¢q). We return to the groups SL3(gq), but now with
q # 1(mod 3). As an application of CHEVIE we demonstrate how to decompose a tensor
product of two characters generically. We load the corresponding generic character table
with GenCharTab(‘SL3.n1¢);.

The degrees of the irreducible characters of SL3(q) can be obtained with the com-
mand CharDeg.

Our aim is to decompose the tensor product of the irreducible character yo of degree
¢*+q with itself (use NrChars to see that this character type contains just one character).

Instead of typing ‘SL3.n1‘ we now just type g. This shortcut is always possible for
the last table loaded with GenCharTab.

We first produce a copy h of our table g on which the tensor product is to be stored,
then calculate the tensor product X2 - x2 and store it on h.

> Copy(g,h,[1,[1);
> Tensor(g,2,g,2,h);
Next we compute generic scalar products of all the characters on g with the character
on h.
> Scalar(g,h);
Scalar_SL3.n1,h(1,1)=

1
Scalar_SL3.n1,h(2,1)=

2
Scalar_SL3.n1,h(3,1)=

2
Possible Exceptions: {[2#nN1, g-11}
Scalar_SL3.n1,h(4,1)=

0
Possible Exceptions: {[2*nN1, g-11%}
Scalar_SL3.n1,h(5,1)=

0
Possible Exceptions: {[mM1-nN1, g-11, [mM1, g-1],

[nN1+mM1, qg-1], [-nN1+2#mM1, g-1], [mM1-2*nN1, gq-1], [nN1, g-1]1}
Scalar_SL3.n1,h(6,1)=

0
Possible Exceptions: {[nN1, g-11%}
Scalar_SL3.n1,h(7,1)=
0
Possible Exceptions: {[nN1xq, q~2+q+1], [nN1+nNlx*q, q~2+q+1]}
Scalar_SL3.n1,h(8,1)=
0

The sum of the degrees of the unipotent constituents of x3 equals 2¢> + 2¢* +2q¢ + 1,
which is smaller than x3(1) = ¢* + 2¢® + ¢*. Hence x3 must have some non-unipotent
constituents.

Generically, the inner product of x3 with the non-unipotent characters equals 0. In
order to find the non-unipotent constituents, we specify the character parameters to

26 CHEVIE

the values indicated by the Possible Fxceptions message and calculate inner products
again.
We look at the character parameters and their allowed ranges.

> PrintCharParam(g, [4..8]);
cht Parameters Exceptions

4 [oN=1 .. g-1] [[nN, g-1]1]

5 [N =1 .. g-1] [[nN, g-11]

6 [N =1 .. 9g-1, M =1 .. g-1] [[(nN-mM, g-1], [nN, g-1],
[mM, g-11]

[N =1 .. g~2-1] [[nN, q+1]]

8 [nN =1 .. g 2+q+1] [[nN, g 2+q+1]]

~

We see, for example, that the parameter n of the fourth character type may take
any value between 1 and ¢ — 1, which is not divisible by ¢ — 1. The inner product of
x4(n) with x3 is 0 except possibly if ¢ — 1 divides 2n. The only possible exception here
is n = (¢ — 1)/2, which only can occur if ¢ is odd.

We therefore distinguish the cases of even and odd ¢. Let us demonstrate the calcula-
tions in the case that ¢ is even. Then we only have to re-calculate the scalar products of
X3 with xg(n,m) and x7(n). We first have to tell the programs about these restriction
on the congruence class of g. The built in procedures which set or unset the congruence
classes are as follows.

> nr := g[-2,0];
nr := A2202
> print(setCongruence.nr);
proc() global qQ,q9; qQ := ’qQ’; q := gQ; NULL end
> print (unsetCongruence.nr) ;
proc() global q,qQ; q := ’q’; 9Q := q; NULL end

In other words, they do nothing (but renaming the parameters). This is reasonable
since in general there are no restrictions on the congruence class of ¢ modulo 2. We
therefore have to write new procedures (if we do not know how to do this, we can use
those of SLa(q)).

> setCongruenceA2202 :=

> proc() global qQ,q; 9Q := ’qQ’; q := 2*qQ; NULL end:
> unsetCongruenceA2202 :=
> proc() global q,qQ; q := ’q’; qQ := 1/2%q; NULL end:

The specializations are best performed on a copy of the original generic character
table g.

> Copy(g, new);
> SpecCharParam(new, 6, mM = -nN + (q - 1)*xX);
Substituted
{oM = -nN+(g-1)*xX}
in character type 6.
> Scalar(new, 6 , h);
Possible Exceptions: {[3*nN1, g-1], [2*nN1, g-1]%}
Scalar_new,h(6,1)=

CHEVIE 27

Since ¢ is even and not congruent to 1 modulo 3, the possible exceptions [3*nN1,
g-1], [2*nN1, g-1] for the parameter n; printed by the program do not occur in
the range of my. Substituting the parameter n of xg by a number which is congruent
to 2m (or m by a number congruent to 2n) modulo ¢ — 1 again gives exactly the same
character as the one just considered, so we do not have to repeat the calculation.

All remaining exceptions lead to parameter combinations which do not give irre-
ducible characters (see the output of PrintCharParam(g) above).

> Copy(g, new);
> SpecCharParam(new, 7, nN = (q - 1)*xX);
Substituted
{nN = (gq-1)*xX}
in character type 7.
> Scalar(new, 7 , h);
Scalar_new,h(7,1)=

1
We get the result
q—2 1 q
2 _
X5 =x1 +2X2+2X3+§;X6(n7q—1—”)+ §;X7(n(q—1))-

The factors 1/2 above are due to the fact that each irreducible character in the range
of the sums occurs twice.
With exactly the same methods we find for odd ¢

X3 = x1+2x2+2x3+xs((¢—1)/2)
) (g—3)/2 q—2
+3 > oxs(mg—1—-n)+ > x6(n,g—1—n)
n=1 n=(q+1)/2
L (g—1)/2 q
+3 xr(n(g—1)+ > xz(n(¢g—1))).
n=1 n=(a73)/2

We conclude this paragraph with a curious fact first noticed (by us) when playing
around with CHEVIE. Let G = SLy(q), with even ¢g. Then the square of the Steinberg
character y of G is exactly the sum of all irreducible characters of GG, each occuring
with multiplicity 1. We do not know of any other finite group G having an irreducible
character with this property.

5.4. Applications of multiplication constants. We conclude by giving two exam-
ples of applications of the generic calculation of structure constants. Let G be a finite
group, Cy, Ca, C3 three conjugacy classes of G. Then the structure constant me¢, c,,c;,
counts the number of triples (o1, 02, 03) of elements with o; € C; and 010903 = 1. The
knowledge of structure constants is important for example if one wants to prove par-
ticular types of generation of GG, say by a rigid class triple in the sense of constructive
Galois theory, or by a Hurwitz triple.

It is well known that there exists an easy character theoretic formula for the eval-
uation of m¢, c,,c5- This is implemented in CHEVIE for generic character tables. We
first look at groups G of type 2Gy. Using the commands PrintInfoTab, which shows
among other things the references to the literature, and PrintInfoClass we can find
out that the classes we are interested in are lying in class types 8, 2 and 12.

> GenCharTab(‘2G2¢);

28 CHEVIE

output omitted
> x:=ClassMult(g,8,2,12);
2 1/2
[@ +1-93 , {}]

X :
> factor(x[1]/Cent0Ord(g,12));
1

The preceding calculation shows that the normalized structure constant of G =
2G5 (q?) for the class triple (Cg, Cy, C12) equals 1. If one can prove moreover that any
triple (01, 09,03) as above even generates G, then this class triple is rigid in the sense
of constructive Galois theory. The latter was verified in [34], Theorem 2.1 (our class
triple corresponds to the class vector Cs in loc. cit.).

Continuing the above example, we calculate:
> x:=ClassMult(g,8,3,12) [1]/Cent0rd(g,12);

4 2 1/2
1/2q - q +1/2q3

X E
2 1/2
qQ *+1-q3
> x:=ClassMult(g,8,3,13) [1]/Cent0rd(g,13);
4 2
1/2 q +1/2 q
X = e
2
q +1

> x:=ClassMult(g,8,3,14) [1]/Cent0rd (g, 14);
4 2 1/2
1/2q - q -1/2q3

q +1+q3

Here the class Cg contains involutions and the class C3 contains elements of order 3.
Moreover, writing ¢ = 3*"*1 if n = 2,3 (mod 6), C12 represents a class of rational
elements of order 7, if n = 1,4 (mod 6), Ci3 represents such a class, and if n = 0,5
(mod 6), C14 represents a class of 7-elements. Thus for every congruence of n > 0,
the above yields a (2,3, 7)-structure constant different from 0. A look at the maximal
subgroups of G shows that in fact among these (2, 3, 7)-triples there must be generating
ones, proving that G is a Hurwitz group for n > 0 (see [36], Proposition 5, for the
details).

6. CycLOTOMIC ALGEBRAS AND GENERIC BLOCKS

The procedures and data files described in this section are available from CHEVIE
Version 3.0 on.

6.1. Generic Blocks. Let G(g) be a finite group of Lie type in characteristic p and £
a prime different from p. Then the distribution of the ordinary unipotent characters of
G(q) into ¢-blocks can conveniently be described by a generalization of Harish-Chandra
series, see [5]. We give a short description of this connection. The order of the generic

CHEVIE 29

finite reductive group G may be written as a polynomial in z, whose irreducible factors
are either equal to x or cyclotomic polynomials ®4(x):

G| = 2™ [[®alz)*™.
d

A generic subtorus T of G is called a ®4-torus if its generic order is a power of ®4(x).
A Levi subgroup L of G is called d-split if it is the centralizer of a ®4-torus. Let £(G)
be the set of (labels of) generic unipotent characters of G as introduced in Section 4.3.
Then v € £(G) is called d-cuspidal if |G|/(]Z(G)|y(1)) is not divisible by ®4(z) as
a polynomial in z, where (1) denotes the generic degree of the generic unipotent
character «v. A pair (IL, A) consisting of a d-split Levi subgroup L of G and a d-cuspidal
unipotent character v € £(LL) is called a d-cuspidal pair.

Now suppose that ¢ divides ®4(q) but no ®.(q) for other cyclotomic polynomials
®.(x) occurring in the order polynomial of G. By the results of [5], 5.24, there is
a natural bijection between the unipotent ¢-blocks of G(g) and the d-cuspidal pairs
(L,A) of G up to W-conjugation. Moreover, the unipotent characters in the ¢-block
parameterized by (L, A) are in bijection with the irreducible characters of the cyclotomic
Weyl group Wg (L, A), and this bijection maps induction in Wg (L, A) to the RP-functor
between the corresponding sets of generic unipotent characters (see [5], 3.2). The set of
constituents £(G, (L, X)) of RE(A), for (L, A) d-cuspidal, is called a d-Harish-Chandra
series. Hence in fact ¢-blocks (restricted to unipotent characters) coincide with d-Harish-
Chandra series.

Conjecturally this should be explained by cyclotomic algebras H(Wg (L, A)) as in-
troduced in [4].

6.2. Cyclotomic Weyl Groups and Cyclotomic Algebras. The cyclotomic Weyl
groups Wg(IL, A) occurring in the description of generic blocks of generic finite reductive
groups all are complex reflection groups. A special case is given by the real reflection
groups or finite Coxeter groups which occur in the cases d = 1,2. The CHEVIE-system
also implements properties of these complex reflection groups as well as of their asso-
ciated cyclotomic algebras. As for the real reflection groups, this is contained in the
GAP-part of CHEVIE. The basic data type in connection with cyclotomic algebras is the
character table record. It contains a generic character table of the cyclotomic algebra
and additional data like, for example, Schur elements (see [18] for a definition). They
are accessed via functions HeckeCharTableW , where W is the name of a primitive com-
plex reflection group according to the notation of Shephard and Todd [45]. These take
as input a list of parameters, and return the character table record of the corresponding
generic cyclotomic algebra H (W) where the indeterminates have been specialized to the
prescribed values. As in the case of Iwahori-Hecke algebras, the user has to take care
of the right choice of parameters: In most cases the arguments to HeckeCharTableW
must be a list of suitable roots of the parameters for the cyclotomic algebra, and these
have to be defined over suitable cyclotomic extensions of the rationals. As for a number
of types the complete table is not yet known, the function then just returns the ordinary
character table of W. Unfortunately, the theory of cyclotomic algebras is not as nice as
in the special case of real reflection groups, so not all procedures for Weyl groups and
Iwahori-Hecke algebras make sense for these new data types. In particular, at present
there is no well defined concept of character table for a generic cyclotomic algebra, since
there are several possible choices for the basis elements.

30 CHEVIE

The use of this data type is best illustrated on an example. Let G be a simple
group of type Eg. We want to study the unipotent ¢-blocks for primes ¢ > 2 dividing
®5(q). From [5], Table 3, we find that the principal block By belongs to the 8-cuspidal
pair (Lo, 1), where Ly is a torus of generic order ®g(z)? and 1 is the unique unipotent
character of this torus. In the notation introduced above, the unipotent part of By is just
E(G, (Lo, 1)). Further, by [5], Table 1, there exist 6 more blocks By, ... , Bg of positive
defect parameterized by the 8-cuspidal characters of the Levi subgroup L; = ®g - 2Dy,
while all other unipotent characters lie in blocks of defect zero.

The cyclotomic Weyl group Wg (Lo, 1) for the principal block By is the primitive

complex reflection group Gy (in the notation of [45]). The character table of the corre-
sponding cyclotomic algebra H is contained in the CHEVIE-system. The corresponding
specialization parameters for H in this situation are found in [39], Table 5.3:
gap> v:= X(Cyclotomics); v.name:="v";
gap> BO:= HeckeCharTableG9([1,v,v"2,v"3,1,v"4]);;
Here v denotes a square root of g. We may now determine the degrees of the unipotent
characters in By. This is done by dividing the index of Ly in G by the Schur elements
of H. Calculations with polynomials are best performed in Maple, so we first print out
the Schur elements and enter them into Maple.

gap> BO.schurelements;

Now leave chevieg and start cheviem:

> v:=sqrt(q);

> schurelements:= ... # input the Schur elements from GAP

> ind:= (q°2-1)*(q~8-1)*(q 12-1)*(q 14-1)*(q"18-1)*(q"20-1)
x(q"24-1)%(q"30-1)/(q"4+1)"2; # the p-prime part of the index

> for i to 32 do degrees[i]:= simplify(ind/schurelements[i]); od;

120
degrees[1] := q

4 2 12 10 8 6 4 2
degrees([2] :=-1/3 (q@q - q +1) (q +q9q +q +q +q +q +1)

12 6 16 12 8 4 12 10 6 2
(@ +q +1) (@ +q +q +q +1) (@ -qg +q -qg +1

24 18 12 6 32
(@ +q +q +q +1gq

Via the degrees, we may identify the characters in By with the notation of Lusztig.
According to Section 6.1, the decomposition of RE’O(I) is now given by:
> for i to 32 do RLG[i]:=
sign(lcoeff (degrees[i]))*simplify(subs(gq=Root0f (X"4+1) ,degrees[i]));
od;

RLG[1] :=1

CHEVIE 31

RLG[2] := -1

Similarly, the character degrees in the other non-trivial unipotent ¢-blocks By, ... , Bg
with cyclotomic Weyl group Zs may be obtained using the generic procedure
HeckeCharTableCyclic where the parameters in this case can be found in [4], Ta-
ble 8.1.

Next we want to determine the decomposition of Rﬁ (p) for those unipotent char-
acters p of the 8-split Levi subgroup IL; which are not 8-cuspidal. These characters lie
in the ¢-block by of L, parameterized by the 8-cuspidal pair (Lo, 1) in L;. As above,
we first identify the characters in £(ILL1, (ILg, 1)) with irreducible characters of the cy-
clotomic Weyl group Wi, (Lo, 1) & Z4, using chevieg:
gap> q:= X(Rationals); q.name:="q";
gap> b0:= HeckeCharTableCyclic(4,[1,972,974,976]1);;
gap> DisplayCharTable(b0);

H(Z(4))
2 2 2 2 2
la 4a 2a 4b
phi_{1,0} 1 1 1 1
phi_{1,1} 1972 q°4 q°6
phi_{1,2} 1974 q°8 q~712
phi_{1,3} 1976 q°12 q"18

gap> b0.schurelements;
[-1+97(-2) + q°(-4) - q°(-8) - q"(-10) + q~(-12),
Q"2 - 2 + 2xq"(-4) - q°(-6), -9"6 + 2%q"4 - 2 + q"(-2),
q°12 - q°10 - "8 + 94 + q°2 - 1]
and cheviem:
> ind:=(q"2-1)*(q"4-1)*(q"6-1);
> for i to 4 do degrees[i]:= simplify(ind/schurelements([i]); od;

12
degrees[1] := - q

6 4 2
degrees([2] :=q (q@ +q + 1)

2 4 2
degrees([3] :=-q (q +q + 1)

degrees[4] := 1
Let u € £(Ly, (Lo, 1)) denote the unipotent character of Ly of generic degree z5(z* +
22 +1). Then according to [5], 3.2, the decomposition of Rf’l (p) is given, up to sign,
by the decomposition of the induced of the second irreducible character of W, (Lo, 1)
to Wi (Lo, 1). We first indicate how to find the fusion.

gap> WG:= HeckeCharTableG9(1);;

32 CHEVIE

gap> WL1:= HeckeCharTableCyclic(4,1);;

gap> SubgroupFusions(WL1,WG);

tr1,13,2,131,01,9,3,81, [1,11,3,121,[1,8,3,91,
(1, 12,3, 111, (1,7,2,61, [1,6,2, 7], [1, 10, 2, 10]

gap> WL1.reflclasses;

[2]

gap> WG.reflclasses;

[8, 4]

The character table of the cyclotomic Weyl group itself is obtained with the parame-
ter 1. Possible fusions are determined by the GAP-command SubgroupFusions. The
list of classes of generating reflections of the cyclotomic Weyl group is stored in the
record-component reflclasses. Since generating reflections have to fuse to generating
reflections, the fourth of the above possible fusions is the right one. Now one can pro-
ceed as in Section 2.4 to find the decomposition of the induced of the second character
of W, (Lo, 1). The necessary signs to adjust the multiplicities obtained were already
computed above:

gap> tr:= Induced(WL1, WG, [WL1l.irreducibles[2]]1, [1, 8, 3, 9 1);
[[48’ o0, -8, 0, 0, 0, O, 8*E(4)’ _8*E(4), o0, o, 0, 0, 0, 0, 0, O, O,
0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,017]]1]

]

gap> dec:= Decompose (WG, tr);

ttol, tol, 011,013,001, 01,071,001, 1], [1],
tol,ftol, o1, o011, 011,011, 11, C11,CL01, [0],
tt+1, 011,011,011, o], L0, 11,011,011, [1],
(11,0111

gap> q:=v"2;

gap> ind:= (q"2-1)*(q~8-1)*(q~12-1)*(q~14-1)*(q~18-1)*(q~20-1)
*x(q~24-1)%(q"30-1)/(q"4+1)"2; # the p-prime part of the index
gap> degrees:= List(BO.schurelements, i -> ind/i);;
gap> rlg:= List([1..32],
i -> dec[i] * SignInt(LeadingCoefficient(degrees([i])));
ttol,tol,c-11,0-11, o011, 01,001, L0171, [-11,
(-+1, o1, 01, o011, o1, C-11,C-11,[-11,[11,
rol, o1, 011,011, [-t1, 011,01, 01, 11,
(11, 0-11,0-11, 011, [11]1]

This shows in particular that RF () is multiplicity-free.

6.3. Fake Degrees and Principal Series Degrees. The chevieg-package also con-
tains a routine for the computation of fake degrees of a complex reflection group given
by its character table. Let’s look at the example of the group Gsg:

gap> x:= X(Cyclotomics); x.name:="x";

gap> W:= HeckeCharTableG8(1);;

gap> FakeDegrees(W, W.reflchar, x);

[x70, x°6, x~12, x"18, x°5 + x, x°8 + x74, x"11 + x°7, x"11 + x°7,
x"14 + x~10, x717 + x~13, x710 + x°6 + x72, x712 + x"8 + x4,
x"14 + x710 + x76, x"16 + x"12 + x78, x715 + x"11 + X°7 + x”3,
x~13 + 2*x"9 + x75]

The reflection character of W is stored in the component W.reflchar.

CHEVIE 33

Conjecturally, many complex reflection groups possess a set of associated unipo-
tent degrees sharing many properties with the degrees of unipotent characters of
generic finite reductive groups (see for example [38]). Those degrees lying in the prin-
cipal 1-series can be computed directly from the Schur elements with the function
PrincipalSeriesDegrees:

gap> v:= X(Cyclotomics); v.name:="v"

gap> G8:= HeckeCharTableG8(v);;

gap> pdegrees:= PrincipalSeriesDegrees(G8, v~2);

[v0, (-1/12)*v"36 + (-1/4%E(4))*v~34 + (1/4)*v~"32 + (1/12)*v~28 +
(-1/4%E(4))*v~26 + (1/2)*v"24 + (1/4*E(4))*v"22 + (1/12)*v"20 +
(1/4)*v~16 + (1/4*%E(4))*v™14 + (-1/12)*v~12, (1/4)*v"36 +
(-1/4)*v~"34 + (1/4)*v~32 + (1/4)*v"28 + (-1/4)*v"26 + (1/2)*v"24
+ (-1/4)xv"22 + (1/4)*v"20 + (1/4)*v™16 + (-1/4)*v"14 + (1/4)*v~12,

Here v is a square root of q.

Acknowledgements. We wish to thank Jean Michel for much help in developing
a proper conceptual framework for the original Weyl group programs, and for many
extremely useful contributions of new programs, in particular those on Weyl subgroups.

REFERENCES

[1] Alvis, D., Lusztig, G.: The representations and generic degrees of the Hecke algebra of type Hj.
J. reine angew. Math. 336, 201-212 (1982); Correction: ibid. 449, 217-218 (1994)

[2] Benson, C.T., Curtis, C.W.: On the degrees and rationality of certain characters of finite Chevalley
groups. Trans. Amer. Math. Soc. 165, 251-273 (1972)

[3] Broué, M., Malle, G.: Théorémes de Sylow génériques pour les groupes réductifs sur les corps
finis. Math. Ann. 292, 241-262 (1992)

[4] —: Zyklotomische Heckealgebren. In: Représentations unipotentes génériques et blocs des
groupes réductifs finis, Astérisque, vol. 212, Société Mathématique de France, pp. 119-189 (1993)

[5] Broué, M., Malle, G., Michel, J.: Generic blocks of finite reductive groups. In: Représentations
unipotentes génériques et blocs des groupes réductifs finis, Astérisque, vol. 212, Société
Mathématique de France, pp. 7-92 (1993)

[6] Carter, R.W.: Conjugacy classes in the Weyl group. Compositio Math. 25, 1-59 (1972)

[7] ——: Centralizers of semisimple elements in finite groups of Lie type. Proc. London Math. Soc.
37, 491-507 (1978)

Finite groups of Lie type: Conjugacy classes and complex characters. New York: Wiley

1985
[9] Chang, B., Ree, R.: The characters of G2(q). Symposia Mathematica XIII, 395-413 (1974)

[10] Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., Watt, S.M.: Maple V,
Language Reference Manual. Springer 1991

[11] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups.
London: Oxford University Press 1984

[12] Curtis, C.W., Reiner, I.: Methods of representation theory, vol. I, II. New York: Wiley 1981/1987

[13] Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Annals of Math.
103, 103-161 (1976)

[14] Deriziotis, D.I.: Conjugacy classes and centralizers of semisimple elements in finite groups of Lie
type. Vorlesungen aus dem Fachbereich Mathematik der Universitat Essen, Heft 11, Germany
(1984)

[15] Digne, F., Michel, J.: Representations of finite groups of Lie type. Cambridge: Cambridge Univ.
Press 1991

[16] DuCloux, F.: Coxeter Version 1.0. Université de Lyon, France (1991)

[17] Geck, M.: Eine Anwendung von MAPLE in der Darstellungstheorie der unitidren Gruppen. Diplo-
marbeit, Lehrstuhl D fiir Mathematik, Rheinisch Westfélische Technische Hochschule, Aachen,
Germany (1988)

34

(18]

(19]

20]

21]

(22]
23]
24]

[25]
[26]

27]
(28]
29]

30]
(31]

(32]
33]
(34]
(35)
(36]
37)
(38]
(39]
[40]

[41]
42]

[43]
[44]
[45]

[46]
[47)

CHEVIE

Beitriage zur Darstellungstheorie von Iwahori-Hecke Algebren. Habilitationsschrift,
Lehrstuhl D fiir Mathematik, Rheinisch Westfélische Technische Hochschule, Aachen, Germany
(1993)

: On the character values of Iwahori-Hecke algebras of exceptional type. Proc. London
Math. Soc. 68, 51-76 (1994)
Geck, M., Hiss, G., Liibeck, F., Malle, G., Pfeiffer, G.: CHEVIE — Generic Character Tables of
Finite Groups of Lie Type, Hecke Algebras and Weyl Groups. Preprint 93-62, Interdisziplinares
Zentrum fiir wissenschaftliches Rechnen der Universitit Heidelberg, Germany (1993)
Geck, M., Michel, J.: On “good” elements in the conjugacy classes of finite Coxeter groups and
their eigenvalues on the irreducible representations of Iwahori-Hecke algebras. Submitted to: Proc.
London Math. Soc.
Geck, M., Pfeiffer, G.: On the irreducible characters of Hecke algebras. Adv. in Math. 102, 79-94
(1993)
Green, J.A.: The characters of the finite general linear groups. Trans. Amer. Math. Soc. 80,
402-447 (1955)
Halverson, T., Ram, A.: Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of
classical type. Preprint (1994)
Hiss, G.: On the decomposition numbers of G2(g). J. Algebra 120, 339-360 (1989)
Humphreys, J.E.: Reflections groups and Coxeter groups. Cambridge studies in advanced mathe-
matics, vol. 29, Cambridge Univ. Press 1990
Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Annals of
Math. 126, 335-388 (1987)
Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math.
53, 165-184 (1979)
Liibeck, F.: Charaktertafeln fur die Gruppen CSpg(g) mit ungeradem g und Spg(g) mit geradem q.
Dissertation, Universitiat Heidelberg, Germany (1993)
Lusztig, G.: On a theorem of Benson and Curtis. J. Algebra 71, 490-498 (1981)

: Characters of reductive groups over a finite field. Annals of Mathematical Studies, vol.
107, Princeton University Press 1985
: On the representations of reductive groups with disconnected centre. In: Orbites Unipo-
tentes et Représentationes, I. Groupes finis et Algebres de Hecke, Astérisque vol. 168, Société
Mathématique de France, pp. 157-166 (1988)
: Remarks on computing irreducible characters. J. Amer. Math. Soc. 5, 971-986 (1992)
Malle, G.: Exceptional groups of Lie type as Galois groups. J. reine angew. Math. 392, 70-109
(1988)

: Die unipotenten Charaktere von 2 F4(q?). Comm. Algebra 18, 2361-2381 (1990)

: Hurwitz groups and G2(g). Canad. Math. Bull. 33, 349-357 (1990)

: Generalized Deligne-Lusztig characters. J. Algebra 159, 64-97 (1993)

: Unipotente Grade imprimitiver komplexer Spiegelungsgruppen. J. Algebra, to appear

(1994)

: Degrés relatifs des algébres cyclotomiques associées aux groupes de réflexions complexes
de dimension deux. Submitted (1994)

Pfeiffer, G.: Young characters on Coxeter basis elements of Iwahori—-Hecke algebras and a
Murnaghan—Nakayama formula. J. Algebra 168, 525-535 (1994)

: Character values of Iwahori-Hecke algebras of type B. To appear (1994)

Ram, A.: A Frobenius formula for the characters of the Hecke algebras. Invent. Math. 1086,
461-488 (1991)

Schonert, M., et al.: GAP — Groups, Algorithms, and Programming. Lehrstuhl D fiir Mathematik,
Rheinisch Westfélische Technische Hochschule, Aachen, Germany, fourth ed., (1994)

Schur, I.: Untersuchungen iiber die Darstellung der endlichen Gruppen durch gebrochene lineare
Substitutionen. J. reine angew. Math. 132, 85-137 (1907)

Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274-304 (1954)
Springer, T.A.: Linear algebraic groups. Boston: Birkhauser 1981

Srinivasan, B.: The characters of the finite symplectic group Sp(4,q). Trans. Amer. Math. Soc.
131, 488-525 (1968)

M.G.: LEHRSTUHL D FUR MATHEMATIK, RWTH AACHEN, D-52062 AACHEN, GERMANY

CHEVIE 35
G.H.,F.L.,G.M.: IWR DER UNIVERSITAT HEIDELBERG, IM NEUENHEIMER FELD 368, D-69120 HEI-
DELBERG, GERMANY

G.P.: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ST. ANDREWS, NORTH HAUGH, ST. AN-
DREWS, FIFE KY16 9SS, SCOTLAND

