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1 Introduction

In [11], Feit has shown that most trees do not occur as Brauer trees for cyclic
blocks of finite groups. In fact, he essentially reduced the problem of finding all
occurring Brauer trees to the case of simple groups and their covering groups.
The Brauer trees of the classical groups are known by the work of Fong and
Srinivasan [14, 13]. Those for the alternating groups can easily be determined
by the results in [21]. Up to a few exceptions, the trees for the sporadic simple
groups and their covering groups have been determined in [20]. Some series of
exceptional groups of Lie type have also been investigated [27, 28, 29, 19, 15, 31].
Finally, some exceptional covering groups of alternating groups and groups of
Lie type have been considered [22, 30].

In this note we determine the Brauer trees for the exceptional Chevalley
groups of type Eg. The only simple groups that remain to be considered are the
exceptional groups of Lie type Fy, Eg, E7 and F.

With two exceptions, the trees occurring in unipotent blocks of Eg have al-
ready been known (see [16]) or are easy to determine. The problem which can
not be solved from the results in [16] is to locate a pair of complex conjugate
cuspidal unipotent characters on the trees. The first of these remaining prob-
lems could be solved by viewing our group as Levi subgroup of a Chevalley
group of type Eg. In order to solve the second of these problems, we had to
compute some scalar products of unipotent characters with a tensor product of
unipotent characters. To be able to do this, the characters usually have to be
given explicitly as class functions. We can do with somewhat less information.
We show that in the groups we consider the tensor product of two uniform
functions is again uniform. This allows us to compute the relevant scalar prod-
ucts from a knowledge of the Deligne-Lusztig characters R%(l). These can be
computed explicitly with the tools provided by the CHEVIE-system [17].

*This paper is a contribution to the DFG research project “Algorithmic Number Theory
and Algebra”
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Similar methods could and will be tried for finding the trees for the remaining
exceptional groups of Lie type. We give a conjecture relevant to the primes
dividing the order of the Coxeter torus.

2 Computation of some unipotent characters

We shall need the values of some unipotent characters of a finite Chevalley
group of type Fg. To describe the necessary computations, we begin by defining
a reductive algebraic group G, defined over an algebraically closed field k, such
that G and its dual group G* have the following properties: They are of type Eg,
have connected centres, simply-connected derived subgroups and central factor
groups of adjoint type. The group G/k is determined up to isomorphism by a
root datum (X, ®,Y, ®Y) (in the notation of [6, 1.9]). We assume to have chosen
Z-bases of the free abelian groups X and Y which are dual with respect to the
natural pairing X x Y — Z. Then we can describe the root system ® and the

coroot system ®V by giving a set A = {aq,...,ag} of simple roots and the set
AV ={af,...,af} of corresponding coroots with respect to the chosen bases.
We write o, ..., ap as rows of a matrix A and o, ..., as rows of a matrix

AY. Let G be defined in this way by the following two matrices.

2 0 -1 0 0 0 1
0 2 0 -1 0 0 0
-1 0 2 -1 0 0 -1
0 -1 -1 2 —-1 0 0
0 0 0 -1 2 -1 0
0 0 0 0 -1 2 0

AY =

o O o o o =
o O O O©O = O
o o o = o O
o o = o o o
o = O O o O
- o O o o o
o o o o o o

The above stated properties of the group G can be checked by using the results
in [6, 1.9, 4.2, 4.5]: The Cartan matrix is (o, & )1<j,i<6, and X/Z® and Y/ZP"
are torsion free.

Now we assume that £ is the algebraic closure of a finite prime field F,,. To
define a Frobenius morphism F of G, it is sufficient to give the induced action
of F on X which is of the form ¢ - Fj, where ¢ is a power of p and Fj is an
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automorphism of finite order, since this determines the finite group G¥ up to
isomorphism. Here, we take the identity map for Fj.

We have general computer programs, written by the second author in the
languages of the computer algebra systems GAP [26] and Maple [7], which
compute for a root datum, given by matrices A and AV as above, and a map
F,, a parametrization of the conjugacy classes of G¥ and explicit tables of
Deligne-Lusztig characters of the form R$ (1) (generically in g). Details of these
programs will be explained elsewhere, some of them are already described in
[23]. They work for groups G for which all centralizers of semisimple elements
are connected. This condition is satisfied in our case, see [6, 3.5.6].

The resulting tables have a format defined in the system CHEVIE [17]. This
system allows to compute tensor products and scalar products of given class
functions.

Using these explicit computations we can show the following. Here, as usu-
ally, a class function on G¥" is called uniform, if it lies in the space spanned by
the Deligne-Lusztig characters RE(6).

Lemma 2.1 Let G be a group as defined above by the matrices in (1). Then
tensor products of uniform class functions of G¥ are uniform.

Proof. We define an equivalence relation ~ on G¥' such that the ~-classes
are unions of conjugacy classes of G and their characteristic functions form a
basis of the space of uniform class functions. Then the statement of the lemma
is clear because for two such characteristic functions p; and ps we have

p1 if p1=pa
® po = :
e {o if p1 # po

Let g1, go be elements of G and let ¢g; = s;u; = u;S;, s; semisimple, u;
unipotent, ¢ = 1,2, denote their Jordan decompositions. We say that g1 ~ g
if and only if there exists an € GF such that 7 's;z = sy and all Green
functions of the centralizer Cg(s2) have the same value on 2~ !u;2 and on us.
Note that GF'-conjugate elements are in the same ~-class.

We investigate the space U of class functions of G¥ spanned by the charac-
teristic functions on the ~-classes. We see from the character formula for the
Deligne-Lusztig characters RS () (see [6, 7.2.8]) that the uniform functions are
a subspace of U. We can compute the dimension of U from the parametrization
of semisimple conjugacy classes of G and the tables of Green functions for all
centralizers of semisimple elements, generically, as polynomials in ¢.

On the other hand we can compute the dimension of the space of uniform
functions: It follows from the orthogonality relations of Deligne-Lusztig char-
acters that the different RE(6) are parametrized by the GF-classes of pairs
(T,0) and that they are linearly independent, see [9, 11.15]. Furthermore the
GF-classes of pairs (T, ) are in bijective correspondence with G*F" _classes of
pairs (T*,s), where T* is an F*-stable maximal torus of G* and s € T*F" ([9,
13.13]). For a fixed semisimple element s € G*F~ with centralizer C' = Cg- ()
the G*F"-classes of pairs (T*,s) are described by the C* -classes of F*-stable
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maximal tori in C. We can determine the semisimple classes of G*¥" and the
numbers of rational classes of maximal tori in the corresponding centralizers by
using our programs for the dual group G* (i.e., by changing the roles of A and

AY).
The computations show that the dimension of the space of uniform functions
equals the dimension of /. So the two spaces themselves are equal. O

In the case of good characteristic for G, i.e., if ¢ is not a power of 2 or 3, one
could give a more conceptual proof Lemma 2.1. The idea of the above proof is to
show that a column of the table of Deligne-Lusztig characters, which is a linear
combination of some other columns, is in fact equal to some other column. This
result can also be proved with Lusztig’s theory of character sheaves and almost
characters. Applying this to other exceptional groups of Lie type, one sees that
the statement of Lemma 2.1 does not hold for groups of type Fy or Fs. (We are
indebted to Meinolf Geck for this remark.)

The uniform unipotent almost characters of G are the class functions R,

defined by
= RTW
e |W| w%:V

where W denotes the Weyl group of G, ¢ is an irreducible ordinary character
of W, and T, is an F-stable maximal torus of G in relative position w (see [6,
12.3]). Thus from the knowledge of the R%(1) and the irreducible characters
of W it is possible to compute the R,’s. All unipotent characters of G can be
expressed as linear combinations of these functions and some other unipotent
almost characters which are orthogonal to all uniform functions. The coefficients
for the linear combinations are explicitly given by certain Fourier transform
matrices ([6, 13.6]).

If we now compute a tensor product x of two uniform unipotent characters
we know from Lemma 2.1 that x is again uniform. In particular the scalar
product of x with all non-uniform unipotent almost characters is zero. So we
can determine all multiplicities of unipotent characters in x by computing its
scalar product with the R,’s. We used the computer algebra system CHEVIE
[17] for these computations.

Lemma 2.2 Let G be a connected reductive algebraic group, defined and split
over a finite field Fy, such that the centre Z(G) is connected and G/Z(G) is iso-
morphic to the simple group Gqq of adjoint type Eg. Let F be the corresponding
Frobenius morphism.

Then the cuspidal unipotent characters FEg[0] and Eg[02] of GI' do not appear
as constituents of the tensor product ¢¢1 ® ¢g 25 (notation of [6, p. 480]).

Proof. Since Z(G) is connected, we have GF'/Z(GF) = GF/Z(G)F = G,
Since the unipotent characters of G and those of GZ, correspond to each other
via inflation, the result is true for G if and only if it is true for Gfd. So it is
enough to prove the result for any one of the groups satisfying the assumptions
of the lemma. We have checked it for the group defined by (1) with the methods
described above. m|
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3 Results

The notation for the characters in the following theorem is taken from [6, p. 480].
The exceptional node of the Brauer tree is indicated by a black circle. The
corresponding characters are always non-unipotent.

Theorem 3.1 Let G be a simple algebraic group of type Eg, defined and split
over a finite field Fy, and let F' denote the corresponding Frobenius morphism.
Let £ > 3 be a prime not dividing q but dividing |G¥| and write e for the
multiplicative order of ¢ modulo . Then e € {1,...,6,8,9,12}.

(1) If e € {1,6}, there is no unipotent block with a non-trivial cyclic defect
group.

(2) If e = 2, there is exactly one unipotent {-block of G¥' with a non-trivial
cyclic defect group. Its Brauer tree is as follows.

64,4 $64,13
(3) If e = 3, there is exactly one unipotent (-block of G¥' with a non-trivial
cyclic defect group. Its Brauer tree is as follows.

Dy Dy, Dy
O O O o

(4) If e = 4, there is exactly one unipotent {-block of G¥' with a non-trivial
cyclic defect group. Its Brauer tree is as follows.

$20,2 P60,5 P60,11 $20,20
O O O O o

(5) If e = 5, there are exactly two unipotent £-blocks of GF' with non-trivial
cyclic defect groups. Their Brauer trees are as follows.

1,0 ¢246 Ps1,10 Pe4,13 D625
O O O O O—@
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P61 Peaa Psi,6  P2a.12 D1,36
@ O O O O o

(6) If e = 8, the principal (-block of G is the only unipotent (-block with a
non-trivial cyclic defect group. It has the following Brauer tree.

$1,0 @303 Ps16 Ps1,10 P30,15 D1,36 Dy Dy
M)

O—O0—0O0O—C0C—0—"0—@ O

(7) If e = 9, the principal {-block of G is the only unipotent (-block with a
non-trivial cyclic defect group. It has the following Brauer tree.

Es0]

D10  P20,2 Peaa Poos Bea13 P20,20 |D1,36
O O O O O O o

Eg[07%]

(8) If e = 12, the principal £-block of G is the only unipotent £-block with a
non-trivial cyclic defect group. It has the following Brauer tree.

Eg[0]
P10 P61 D155 P20,10 15,17 P25 P1,36 Dy Dsr Dy
O O O O O O O O O O
Fe[67]

We finally formulate a result which allows to determine the Brauer trees of
the non-unipotent blocks.

Theorem 3.2 Let G be the algebraic group of type Eg defined in Section 2 by
the two matrices A and A displayed in (1). Let £ > 3 be a prime not dividing q
and suppose that e > 3, where e denotes the multiplicative order of ¢ modulo £.
Finally, let s € G*F' be a semisimple V' -element.



Hiss, Liibeck, and Malle 7

Then there is a bijection (Jordan decomposition of characters) between
E(GT,5) and £(Cg- (), 1) preserving £-blocks with cyclic defect groups. More-
over, this bijection induces a tree isomorphism between the (planar embedded)
Brauer trees of corresponding blocks, which are therefore Morita equivalent.

Note that the Brauer trees for the unipotent blocks of the centralizers occurring
in Theorem 3.2 are all known by [13, 14, 15]. The theorem is probably also true
without the restriction on e. The proofs will be given in the next section.

4 Proofs

4.1 Proof of Theorem 3.1

Since the unipotent characters of G correspond bijectively to the unipotent
characters of Gfd via restriction (to the image of G in Gfd), we may assume
that G = G4 is the simple group of adjoint type Eg.

If e is one of 5, 8, 9 or 12, then a Sylow /-subgroup of G¥ is cyclic. It
follows by inspection that a unipotent character of G¥ either has ¢-defect 0,
or else its degree is not divisible by £. Thus the unipotent characters which lie
in blocks with non-trivial cyclic defect groups are exactly those whose degree
is not divisible by £. They can be read off from the table in [6, p. 480]. Their
distribution into blocks as well as the non-unipotent characters in a block can
be determined from the results in [3, Theorem 5.24(1), Tables 1,2].

This theorem also allows to find the unipotent ¢-blocks of G¥ in the cases
e=6ore<4ifl¢+#5. For ¢ =05 one can use [4, Théoréme 2.1]. The defect
groups are described in [3, Theorem 5.24(2)] for £ # 5 and in [4, Théoréme 2.1]
for £ = 5. It turns out that in each of the cases e € {2,3,4} there is a unique
unipotent ¢-block with a non-trivial cyclic defect group. There is none such in
the remaining cases e € {1,6}.

The branch of the real stem of the Brauer tree corresponding to the principal
series characters can be determined with the results of Dipper [10, Corollary
4.10] and Geck [16, Theorem 12.5(iv)], or, more easily, by Harish-Chandra induc-
tion of suitable characters from proper Levi subgroups. These methods already
determine the trees for e € {3,4,5,8}.

Now let e = 9. The real stem of the Brauer tree is completely determined
by the remarks above. It remains to determine the positions of the two com-
plex conjugate characters Eg[f] and Eg[0?] on the tree. (The two characters
correspond to a pair of complex conjugate eigenvalues of the Frobenius map
on a certain cohomology group (see [24, (7.3)]), and thus are indeed complex
conjugate.) The degree of Fglf] is congruent to —1 modulo £. It can thus be
joined only to a character whose degree is congruent to 1 modulo /¢, since two
adjacent characters add up to a projective character (the sum of the exceptional
characters is considered to correspond to a node). Thus E4[0] can only be joined
to one of ¢e4.4, P64,13 OF P1 36-

We have
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b64,4(1) _ 306(q)?P12(q) <3‘I)6((J)2‘I’12(Q)
2(E6[0])(1)  2¢3®1(q)°P2(q)P5(q) 2¢3®1(q)°

for all ¢, and so Eg[6] is connected to one of ¢ga,13 Or ¢1 36. Suppose that Eg[6)]
is joined to ¢g4,13. Then U := ¢g4,13 + Es[0] is a projective character.

Let H denote a simple group of Lie type FEjg, defined over F, with corre-
sponding Frobenius map F. Consider the ¢-block B of H¥ corresponding to
the 9-cuspidal pair (M, \), where M is the 9-split Levi subgroup of H of type
As(g) and X is the Steinberg character of M¥ (see [3, Table 1, Case 68]). The
unipotent characters of HY lying in B can be read off from [3, Table 2]. Let L
be a 1-split Levi subgroup of H of type Fg. We identify the unipotent charac-
ters of LT with those of G¥'. Since W is projective, so is R (¥), and also the
restriction to B of R (W). It follows that

<1

$2800,25 + 700,28 + E6 0], &) 3 + Es[0], ¢1,6

is a projective character of H¥ in B. In particular, the non-real character
Es[0], 1,6 is joined to one of the real characters ¢o2g00,25 Or ¢700,28 on the Brauer
tree of B. This is a contradiction, since

2(Es[0], ¢1,6)(1) > max{paso0,25(1), ¢700,28(1)}

for all q. Hence Eg[f)] is joined to ¢1 36 on the Brauer tree for GF.

Finally, suppose that e = 12. The non-exceptional characters on the real
stem either are in the principal series or in the Dj-series. By the remarks above,
the principal series branch of the tree is known, and by [18, Theorem 3.5], the
exceptional node is joined to the Steinberg character. Inducing the cuspidal
unipotent character of the Levi subgroup of type D4, we obtain a projective
character Dy 42Dy, + D41, and so Dy, is connected to Dy and Dy ;. Since
the degree of D, . is larger than the degree of Dy ,, the end node of the tree
is D41, whereas D, is connected to the exceptional node. We thus have the
following real stem of the Brauer tree.

$10 P61 G155 P20,10 P1517 Ps25 D136 Dy, Dy, Dyp
M\

O—O0—O0O—0C—0—0—0C—@—0O0—C0C0—=0

It remains to determine the positions of the two complex conjugate characters
Eg[0] and Eg[0?] on the tree. With similar arguments as in the case e = 9 one
shows that Eg[6] can only be joined to one of ¢ 1, 20,10, P6,25, Dar or to the
exceptional node.

We have ¢6,1(1)/(2(Es[0])(1)) < 1 for all ¢, and

)
$20,10(1) 1 B(q)*Py(q)
1

2B (D)~ 48y (q)0By(q)t

and
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Dir(1) 3 23(q)*®s(q)
2(E6l0])(1) 4 P1(q)*P2(q)*Palq)?

for ¢ > 2. Thus if ¢ > 2 the two cuspidal characters can only be joined to either
the exceptional node or to the node corresponding to ¢ 25. By Lemma 2.2 we
know that Es[f] and Eg[62] do not appear as constituents in the tensor product
6,1 ® Pe,25. Since P10+ ¢g,1 is the character of the projective cover of the trivial
module, the tensor product (¢1,0+ ¢6,1) Q@ Eg[0] contains the projective cover of
the irreducible module corresponding to Eg[6]. Since ¢g 25 is not a constituent
of this tensor product, Es[f] cannot be joined to ¢¢ 25 on the Brauer tree. We
use Fischer’s explicit character table of Fg(2) [12], the methods of [20], and the
CAS-system [25] to prove that the theorem is also true for ¢ = 2. This completes
the proof for the case that the order of ¢ modulo £ is 12.

<1

4.2 Proof of Theorem 3.2

Let s € G*F be a semisimple ¢/-element. We first assume that Cg-(s) is a 1-
split Levi subgroup of G*. Let L denote a 1-split Levi subgroup of G, dual to
Cg+(s). Then Harish-Chandra induction from L to G¥ induces a collection of
Morita equivalences between the block algebras of G in &(G¥,s) and those
of Cg+(s)F in E(Ce-(s)F, 1) (see [2, p. 62]). Since the defect group of a block
is cyclic, if and only if the block has finite representation type, the theorem is
proved in this case.

Now assume that Cg+(s) is not a 1-split Levi subgroup. Then the following
holds.

Lemma 4.1 For any pair (L, L*) of dual Levi subgroups with s € L*, there
exists a bijection £(Cp-(s)F, 1) — E(LF,s), A XQA, satisfying the following
conditions:

(1) xE5(1) = [L*7 - Op(5) "¢ A(D).

(2) If t € Z(L*)F and t is the linear character of LY defined by t and the
duality, then XSLt’)\ = tAXSL)\.

(3) For ally € E(Ca+(s)F,1) and X € E(CL-(s)F', 1), we have

Cax (s
eaeL(REXEAXE,) = €0g. (950 () (REST (M),
where e denotes the Fy-rank of G.

Proof. Since G and G* both have connected centre, the same is true for all Levi
subgroups of G and G* [6, Proposition 8.1.4]. It follows that the centralizers of
semisimple elements in all Levi subgroups of G and of G* are connected [6,
Theorem 4.5.9].

Since Cg+(s) is not a 1-split Levi subgroup, it is of type A or Dy (see [8,
Table III] for a classification of the semisimple conjugacy classes of a finite
group of simple, simply-connected Lie type Fj). In particular, every proper
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Levi subgroup of Cg=(s) is of type A. By [9, Theorems 13.23 and 13.25(ii)], this
implies that all parts of the lemma are true. a

Let L* be an e-split Levi subgroup of G*. Inspecting the list of e-split Levi
subgroups of G for e > 3, we see that no two distinct characters in £(Cp-(s), 1)
have the same degree. This, Lemma 4.1, and the fact that Cg«(s) is connected
implies that [5, Hypothesis 2.1] is satisfied for all pairs of e-split Levi subgroups
(L, L*). Hence we may apply [5, Theorems 3.4, 3.6] for the determination of
the cyclic £-blocks in £ (G, s). Note that £ € T'(G, F) [5, Notation 1.1], since
¢ > 3. Note also that these theorems are stated under the condition that [5,
Hypothesis 2.1] is satisfied for all Levi subgroups. In our case, however, it suffices
to assume this hypothesis for all e-split Levi subgroups. This follows from an
analysis of the proofs of [5, Theorems 3.4 and 3.6] and the fact that if d is an
integer with £ | ®4(q) and ®4(q) | |G¥|, then d = e. The latter is due to our
assumption ¢ > 3 and e > 3. By [5, Remark 3.7], we get the desired bijection
between the blocks in &(GF, s) and &(Cg-(s)F,1).

To prove the second part of the theorem, we argue as follows. Let b be a
unipotent ¢-block of Cg-(s) with a cyclic defect group. Choose a 1-split Levi
subgroup in Cg+(s) of the form Cp«(s), where L* is a 1-split Levi subgroup
of G*, and the following two conditions are satisfied:

(1) L* and Cpr~(s) are of type A.

(2) Harish-Chandra induction of suitable unipotent characters of C'«(s) to
Ce+(s) determines the Brauer tree of b.

In our case this is always possible.

Let L denote a 1-split Levi subgroup of G, dual to L*. Suppose that B is
the f-block of £(GY',s) which corresponds to b via the Jordan decomposition
of characters. Then Lemma 4.1(3) shows that the trees of b and B are equal (by
Harish-Chandra induction of suitable characters of £(L¥,s) to G'). The fact
that the planar embedded Brauer tree determines the Morita equivalence class
of a cyclic block is well known. This completes the proof of Theorem 3.2.

5 Brauer trees and /-adic cohomology

Inspection of the known Brauer trees for Coxeter primes ¢ (to be described
below) reveals a striking pattern. There seems to be a close connection between
the arrangement of the irreducible characters on the tree and their appearance
as composition factors in the ¢-adic cohomology groups of the Deligne-Lusztig
varieties associated to a Coxeter element.

Let G be a simple algebraic group of adjoint type, defined over some finite
field F, of characteristic p. Let F' denote the Frobenius morphism associated to
this F-rational structure of G and let G denote the corresponding finite group
of Lie type. Let ¢ be a prime dividing the order of the maximal torus T'F of G,
where T denotes the Coxeter torus of G as defined by Lusztig in [24, (1.15)], but
not dividing the order of the Weyl group of G. Then a Sylow ¢-subgroup of G’
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is cyclic and contained in TF up to conjugation. The set of unipotent characters
in the principal ¢-block By of G is equal to the set of irreducible constituents
of RE(1) [3, Theorem 5.24(a)]. With the notation from [24], this is the set
of irreducible characters of the representations of G on the f-adic cohomology
groups with compact support HE(X,Q;) of a suitable Deligne-Lusztig variety X
associated to the pair (G, T). If r denotes the dimension of the variety X, then
the cohomology groups H:(X,Qy) are 0 except for r < i < 2r [24, (2.9)].

Let § > 1 be the smallest integer such that F° acts as the identity on the
Weyl group G. Then F? acts semisimply on the cohomology groups H?(X,Q;),
and the eigenspaces of F° are exactly the irreducible Q,G¥-submodules [24].
The eigenvalues of F°® are of the form (q°"/?, where ¢ € Qy is a root of unity
and m is a non-negative integer. Thus the unipotent irreducible characters in
the principal ¢-block of G are labelled by such pairs (¢, m).

Theorem 5.1 Let G, ¢ and the notation be as above. Suppose that G #
’E6(q), E7(q), Es(q), and if GF = F4(q), assume that ¢ = 1(mod 12).

Let T'® denote the graph obtained from the Brauer tree of By by removing the
non-unipotent (exceptional) node and all edges incident to it. Then the following
holds:

(1) The connected components of T'® are straight lines.

(2) Two unipotent characters with labels (¢, m) and (¢',m’) lie on the same
connected component, if and only if ( = {'. Thus the connected components
of T'® are labelled by roots of unity.

(3) Let (¢,m1),...,({,ms) be all the labels of the characters lying on the con-
nected component It corresponding to ¢, and assume that my < mg <
- <mg. Then I'? is of the form

(Cv ml) (Ca m2) (Cv m3) (Ca mS)
O O e o ——0

Furthermore, the node with label ({,m1) is connected to the exceptional
node.

(4) The distance (in the graph theoretical sense) of a character x from the
exceptional node is i, if and only if x is the character of a representation
occurring in HIT "X, Qp), 1 <i<r+1.

(5) The connected components corresponding to the roots of unity £1 form
the real stem of the tree.

Proof. All parts follow by inspection of the known Brauer trees. For references
see the introduction. ]
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We conjecture that the theorem is also true in the cases where the trees
are not known yet. We hardly dare to make any conjecture about the planar
embedding of the tree, although, of course, one might speculate that the edges
surrounding the exceptional node are ordered according to the ordering of the
corresponding roots of unity in the complex numbers after a suitable identifica-
tion of the roots of unity in Q, with those in C.

By the results of Lusztig [24, (7.3)], the statements (3) and (4) of the theorem
are equivalent. Also, part (5) is known to be true in all cases, since the real stems
of all such trees are known.

By [24, (6.7), (7.3)], two unipotent characters of G occurring in H*(X, Q)
with labels (¢,m) and (¢’, m’) lie in the same Harish-Chandra series, if and only
if ¢ = ¢’. Thus, statement (2) is equivalent to the following.

(2") The nodes on a connected component of I'® are exactly the characters in
the intersection of By with one Harish-Chandra series of ordinary charac-
ters of GF'.

It is quite certain that in order to give a conceptual proof of the theorem and
the conjecture, one will have to make use of properties of the f-adic cohomology
groups Hi(X,Zy) and H.(X,Z/("Z).

We expect, however, that before the appearance of such a conceptual proof,
the method used in this paper for the e = 12 case will provide a positive answer
to our conjecture, at least in the remaining cases for type Fy and for 2E4 and
E7. The conjecture is already known to be true for F,;(2) and 2E(2).

Not much is known about the planar embeddings of the trees. There is
nothing to prove, of course, in a classical group, since the tree is a real stem. If
I'* has four connected components, then, by complex conjugation, the planar
embedding is also as conjectured. The only non-trivial cases occur in Fy, Fr,
Es, G and 2F,. In the latter two cases, the trees have been determined and
some of the possible orderings around the exceptional node have been ruled out
as possible planar embeddings [19]. The conjectural embeddings are still among
the possible ones.
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