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We describe a “semi-modular” algorithm which computes for a given integer matrix A
of known rank and a given prime p the multiplicities of p in the factorizations of the
elementary divisors of A. Here “semi-modular” means that we apply operations to the
integer matrix A but the operations are driven by considering only reductions of row
vectors modulo p.

1. Notations and introduction

Let A be an m X n-integer matrix of rank r. We denote the rows of A by aq,...,a,,. For
the following proposition there are many formulations, depending on the context. The
proof can be found in many textbooks, see, e.g., (van der Waerden, 1967, §85).

PROPOSITION 1.1.  (a) There exist invertible integer matrices L € GLy,(Z) and R €
GL,(Z), such that A = LAR is diagonal and the diagonal entries €; = (A);;, 1 <i <
min(m, n) fulfill the following properties:

(Z) e; € Ng
(i) €; | eiq1 for i < min(m,n) (in particular ¢, =0 fori>r)

(b) The ¢; are uniquely determined by the matrixz A. The product 6; = €1 ---&; equals
the (non-negative) greatest common divisor of all determinants of i X i-submatrices of A.

The ¢; are called the elementary divisors of A and A is called the Smith normal form
or elementary divisors form of A.

In Section 3 we give an algorithm for computing for a given matrix A, its rank r and
a prime p the p-parts of the elementary divisors of A. During the algorithm we perform
row operations on the matrix A which are driven by only considering certain reductions
of row vectors modulo p. The method does not give transforming matrices L and R as
in the proposition.

A crucial point for the application of our algorithm is that one needs to know the prime
numbers dividing &, (or §,). These are often known from the mathematical context. In
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Section 3.2 we shortly comment on an algorithm for computing the inverse of an invertible
matrix with rational entries using l-adic approximation for some prime [. Applying this
to a square integer matrix A of full rank we can compute the biggest elementary divisor
e, of A.

This note came out of an application concerning representations of reductive algebraic
groups. There we computed matrices describing integral bilinear forms on certain weight
spaces, the details of this will be given elsewhere. The matrices appearing in this context
are dense with small entries and many nontrivial elementary divisors which are products
of small primes (and these primes are known in advance). We wanted to compute the
elementary divisors of such matrices with rank up to a few thousands. But when a first
version of this note was written, in 1998, we had no implemented algorithm available
to handle cases with rank over 250. On the other hand a first implementation of the
algorithm described here could handle all of our cases.

In the meanwhile we developed a share package EDIM (Liibeck, 1999) for GAP (GAP,
1999), which contains implementations of several algorithms for Smith normal forms of
integer matrices. In Section 4 we describe these and some other new implementations. In
Section 5 we look at two (for us) typical examples.

Another application of our program was the computation of Jantzen filtrations of
Specht modules of symmetric groups. The results are contained in (Mathas, 1999, Ap-
pendix B.4).

Acknowledgements. I wish to thank George Havas for giving some hints to the liter-
ature on the computation of Smith normal forms and Arne Storjohann for his comments
and suggestions on the original version of this paper.

2. The key lemma

The main ingredient of our algorithm is the following lemma, which is a generalization
of the fact that the number of €; not divisible by p equals the rank of the reduction of A
modulo p over F,, the finite field with p elements.

DEFINITION 2.1. Let p be a prime number. We call the matrix A as above p-adjusted,
if there exist d € N and r; € Ny for —1 < j < d + 1 with the following properties.

(i) r-1=0<rg<...<rg=r<rgp1 =m.
(i) If 11 < i <7 then a; = plal for some row a} € Z".
(iii) The reductions of af,...,a,. modulo p are linearly independent over F,,.

Hence the rows a,, ,+1,..-,a,, are divisible by p! and if we divide the first r rows by
these p-powers, we get rows which are linearly independent modulo p.

For a p-adjusted matrix we can easily determine the multiplicity of p in the factoriza-
tions of the d; (and hence of the ;).

LEMMA 2.2. Let A be p-adjusted and ri—1 < i < r; < r. Then the multiplicity of p in
the factorization of d; is

m; = (r1—ro)+2(re—r1)+ -+ =1)(ry —r—1) +1(GE—r1-1)-



Computation of elementary divisors 3

PRrROOF. From the definition of p-adjusted it follows immediately that each determinant
of an ¢ x i-submatrix, and so J;, is divisible by p™¢ (even by higher powers of p if the
submatrix uses rows a; with j > r;).

On the other hand consider the matrix with the i rows af, ... a}. Since this has rank 4
modulo p it contains ¢ columns such that the determinant of the corresponding submatrix
is not divisible by p. Hence the corresponding submatrix of A divided by p™ is not
divisible by p. This shows that §; is not divisible by a higher power of p than p™:. O

3. The algorithm

The previous lemma shows that in order to find the highest p-powers dividing §; or &;
we only need to transform A into a p-adjusted matrix. This is achieved by the following
algorithm which uses only row operations and permutations of the columns of A. More
precisely we construct in the A-th main step of the algorithm rows a;  .4,...,a ,
k = 0,...,d, using the notation of Definition 2.1. In the following description of the
algorithm we consider matrices as lists of row vectors.

It is shortly explained as follows. We triangulize A modulo p in the obvious way by
row operations and column permutations. But all transformations are actually done with
the original rows of A. If we find a row vector which is zero modulo p we divide all its
entries by p and use it again in the next main step.

Here is a more detailed description.

ALGORITHM 3.1.

Input: An m X n-integer matrix A, its rank r and a prime p.
Output: d and rg,...,rq as in Definition 2.1

Initialization:

set A’ to the empty list (used to collect rows a, of p-adjusted transform of A)
set B to the input matrix A
set k to 0 (numbering the main steps, used as index for the ry)

Main loop: (we are done if A" has r rows)

while number of rows of A’ is smaller than r do

set B’ to the empty list (used to collect vectors for the next step)
for each row v = (v1,...,v,) in B do

(reduce v modulo p with rows of A’)
for 7 from 1 to number of rows of A’ do

let @ the i-th row of A’
determine ¢ € Z, |c| < p/2 with p divides i-th entry of v — ca
substitute v by v — ca),

/
4

end for
if all entries of v are divisible by p then

append % -v as new row to B’

else
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set i to the number of rows of A’ plus 1

determine minimal j such that p does not divide j-th entry of v
append v as new row to A’

if 4 # j then exchange the i-th and j-th column of A’, B and B’
(so A’ is always triangular modulo p)

end if

end for

set 73, to the number of rows of A’
set ktok+1

set B to B’

end while
set dtok—1
return d and rg,...,rq

3.1. REMARKS

(1) If we are not finished after step number k of the algorithm we see as in the proof
of Lemma 2.2 that each determinant of an r X r-submatrix of A is at least divisible by
p¥. This shows the termination of the algorithm.

(2) In practice we do not perform the column permutations in the algorithm but just
store a list which tells us the order in which the entries of the vectors v must be reduced.
To find the constants ¢ for the reductions we compute once for each diagonal entry of A’
its inverse modulo p (via the extended Euclidean algorithm) and store it.

(3) Instead of using the rank of A it is also possible to use the highest power of p
dividing 9, as a criterion for finishing the algorithm. In this case we can already stop the
algorithm after finding an r, = — 1.

(4) (Thanks to Arne Storjohann for this remark.) With a bit more overhead one can
further reduce the size of the matrix entries occurring during the computations in steps
where 7 —r,_1 is not too small: In the for-loop inside the Main loop do first all operations
with rows of B and A’ just modulo p. Do not append reduced vectors to A’ or B’ directly
but remember how they were computed as linear combinations of the rows of B and A’
from the previous step. Now reduce the coefficients of these linear combinations modulo
p in the range | — p/2, p/2] and use these to recompute the new vectors appended to A,
B’

(5) If we know a d’ > d (for example if we know &,. or 4,.) then we can reduce all matrix
entries modulo p? during the algorithm. It is clear that this will not change the output
of the algorithm. In practice it will be sufficient to do the reduction only from time to
time, e.g., before storing the reduced vector v in A’ or B’. Note that we can safely guess
some d’ and then try the algorithm. If after step number d’ — 1 the matrix A’ still has
less than r rows, our guess was too small and we have to redo the calculations with a
bigger d’.

(6) In the case that we know the highest p-power p™ dividing §, and m is at most 3
our algorithm is not needed. For m = 1 clearly only ¢, is divisible by p and for m = 2,3
it is sufficient to reduce the whole matrix modulo p and to compute its rank modulo p.

(7) It is not difficult to estimate the number of operations needed in Algorithm 3.1 and
the coefficient growth during the computation. We will do this in terms of the numbers

m,p,ro,...,7d-
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Neglecting some bookkeeping the algorithm consists of operations of type v — cw where
v,w € Z" are row vectors and ¢ € Z with |c¢| < p/2. In step k, 0 < k < d, we have to
reduce m — r,_1 rows in B’ with at most 7, rows from A’. Adding up we see that there
are less than

mro+ (m—ro)r1+ ...+ (m—rq_1)rq

such row operations during the algorithm.

Let M_; be the maximal absolute value of all entries in A and My, 0 < k < d,
the maximal absolute value of all entries in A’ and B’ after step k of the algorithm.
In step k we first have to reduce all rows in B’ with the rows in A’ which have been
found in the previous step. The resulting rows have entries of absolute value at most
My_1(1+rg_1p/2). These rows have then to be triangulized modulo p leading to ry —rk_1
new rows of A’. From this we see

My, < My—1(1 4 15—1p/2)(1 4 p/2)" 1.

With the variant of the algorithm given in (4) one must do all row operations twice,
one time modulo p and one time over the integers. But the entries in the new rows of A’
and B’ can be considerably smaller in steps with big r;, — rx_1. Here each of these new
rows is computed as linear combination of at most 7y, of the old rows and with coefficients
of absolute value at most p/2. In this case we have

My, < My_17rip/2.

And, of course, in the variant of the algorithm given in (5) each M) < pdl. This is
what we use mostly in practice.

3.2. FINDING THE RELEVANT PRIMES

For applying the modular methods discussed above it is necessary to know the (pos-
sible) prime divisors of 4, or &,. In many practical situations (like in those mentioned in
the Introduction) these are known from the mathematical context, but if not we need
some precomputation to find a set of primes to consider.

Note that in case one knows 6, or g, it still can be very difficult to find the prime
divisors of this number. But this will often not be necessary: Assume that we know those
small prime divisors of this number which are easy to obtain. Then it is very probable
(in particular for almost random matrices) that the prime divisors of a remaining big
factor m only appear in the last elementary divisor ¢,.. If this is true it can be proved by
computing the rank of the matrix modulo m (as if m was a prime) and finding r» — 1. It
doesn’t matter if we run into an error because some number is not invertible modulo m
(which will almost never happen) since in that case we have found a factor of m.

One idea for finding a multiple of §,. is to compute the greatest common divisor of some
r X r-submatrices of the given matrix. These can be computed without any problem
of entry explosion modulo sufficiently many primes and combined using the Chinese
remainder theorem. See (Havas and Sterling, 1979) and (Havas et al., 1993) for more
details.

Assume now that we are given a square integer matrix A of full rank r. Then the
biggest elementary divisor &, equals the least common multiple of the denominators of
the entries of the inverse matrix A~' where A is considered as matrix over the rational
numbers Q. Let | be a prime such that A is also invertible modulo [. In (Dixon, 1982)
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a method is described to compute the rational solution of a linear system xA = v for a
vector v with integer entries. One first computes the inverse of A modulo [/, then an l-adic
approximation to a solution and finally reconstructs the rational entries of the solution
vector with a variant of the extended Euclidean algorithm.

We found that this can be used for computing efficiently the inverse of large integer
matrices (and so their largest elementary divisor). The algorithm above is essentially ap-
plied to v running through the standard basis vectors. But instead of taking the standard
vectors themselves we always multiply them with the least common denominator of the
already determined entries of A~!. Very often we find the largest elementary divisor of
A already after computing the first or first few rows of A~'. From then on one finds the
next rows of A~! in the [-adic approximation step and the reconstruction step is not
necessary. In the manual of (Liibeck, 1999) we give some more details on this.

4. Implementations of algorithms for Smith normal forms

In this section we assume that the reader is familiar with the standard algorithm for
computing the Smith normal form. (One has to repeat steps of the kind: choose an entry
as pivot, permute rows and columns to get this entry to the upper left position and
reduce the other entries in the first row and column by row and column operations.)
We list here some interesting current implementations of algorithms for computing the
Smith normal form of integer matrices.

(1) Our software package EDIM (Liibeck, 1999) contains implementations of Algo-
rithm 3.1 and several variations mentioned in the Remarks 3.1. There is a particularly
well performing version of the variant 3.1(5) with reductions modulo pd/ which is used if
pd/‘|r1 fits into machine integers. (This is often the case for the matrices in our applica-
tions.)

(2) A good overview, including a long reference list, of methods for computing Smith
normal form is given in the article (Havas et al., 1993). It is explained that the main
problem in these computations is the effect of entry explosion, i.e., even if the entries of the
input matrix as well as the elementary divisors are small numbers, a naive implementation
of the standard algorithm can lead to very large numbers during the computation.

(3) There are also newer articles on the topic. See for example (Giesbrecht, 1995),
(Storjohann and Labahn, 1996) and (Storjohann, 1997) which contain asymptotically
fast algorithms including a complexity analysis. In particular the algorithms given by
Storjohann turn out to be of practical importance. They are now available in GAP (GAP,
1999) and there is also an implementation in form of a stand alone program (thanks to
Arne Storjohann for sending this).

(4) Another practical algorithm is given in (Havas and Majewski, 1997), where a cer-
tain pivoting strategy for the standard algorithm is discussed which tries to reduce the
coefficient growth during the computation. This is also available via GAP (GAP, 1999).

(5) In (Havas et al., 1998) the standard algorithm is combined with an LLL-lattice
reduction algorithm. This is particularly interesting for finding transforming matrices to
the Hermite and Smith normal form with small entries. Also all matrix entries stay small
during the computation. We have implemented this algorithm in (Liibeck, 1999).

(6) Another modular algorithm can be found in (Havas and Sterling, 1979). We have
implemented this algorithm (with a slight improvement) in (Liibeck, 1999), too. The idea
is as follows: Given an integer matrix A, a prime p and a d’ € N such that pdl does not
divide €, (similar to the setup in Remark 3.1(5)). Then we can essentially compute the
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p-parts of the elementary divisors using the standard algorithm, with two simplifications.
For the pivot search we only have to find an element with minimal p-part. The many
greatest common divisor computations in the standard algorithm are substituted by just
one for each pivot - the p’-prime part of the pivot is inverted modulo pd,. Furthermore all
computations can be done modulo p? . The inversion modulo p? in this algorithm causes
that most numbers appearing in the computation have roughly the same size as pd'. Note
that in this algorithm in the i-th main step the p-part of &; is computed, whereas in our
Algorithm 3.1 we work in the “orthogonal” direction and compute in the k-th main step
the number of ¢; divisible by p*.

It is crucial for this algorithm that pd/ is not too big. Its performance becomes worse
if large powers of p are concentrated in the last few elementary divisors.

To compare: In our Algorithm 3.1 all row reductions are made with coefficients of
absolute value less or equal p/2 and not those of size pdl or even §,. It even works
nicely for large matrices with small entries and small p in the bare version described in
Algorithm 3.1, i.e., without any reductions modulo some pd,.

(7) Finally we mention that Magma (Bosma et al., 1997) also contains an algorithm
for computing elementary divisors which performed well for examples we have tried. I
was told that the code is based on the experiences described in (Havas et al., 1993).

5. Examples

Since we are mainly interested in using our algorithm for large matrices we give here
some details how the implementations of elementary divisors algorithms mentioned in
the previous section behave for two of our typical input matrices. They have large rank
and many non-trivial small elementary divisors. (Such matrices with small e, also appear
in many examples in the articles cited above.)

Matrix A is a 242 x 242-matrix of full rank which is a Gram matrix of a weight space of
a highest weight representation of some reductive group. It has determinant 235732605122,
entries in the range [—63,178] and the largest elementary divisors are 23252

Matrix As is a 2002 x 2002-matrix of full rank which is the Gram matrix of the Specht
module of the symmetric group S15 parameterized by the partition (222222111) of 15. Tt
has determinant 2199303114255438171652 " entries in the range [—29030400, 261273600] and
the largest elementary divisors are 219365371,

All timings given below (in hours (h), minutes (m) and seconds (s)) are determined
on a 500MHz-Pentium III PC with 256 Megabyte of RAM, running under a GNU/Linux
operating system.

For both matrices we actually know the prime divisors of the determinant in advance
from the mathematical context. Ignoring this and using the idea described in 3.2 for
computing €, by p-adic approximation we could compute the largest elementary divisors
of A; and Ay within 5.6s respectively 9h07m10s. Actually we found all relevant primes
already after the computation of the first row of the inverse matrices, after 1.2s respec-
tively 3m27s. So, most of the time was needed to confirm them. (This approach works
particularly well in cases like here where the largest elementary divisor is very small
compared to that of a random matrix of similar size.)

In the following table we give running times of the programs mentioned above, when
determined. An entry not enough memory means that the program tried to use more than
the available 256 Megabytes. In such cases we stopped the computation. The modular
algorithm by Havas-Sterling, see Section 4(6), was tried with minimal possible exponents
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d’' - in this case all computations are done with machine integers - and with the power
of p appearing in the determinant, as suggested in (Havas and Sterling, 1979).

Algorithm Time for A; Time for A,

Section 4(3), Storjohann, GAP 1m32s not enough memory

Section 4(3), Storjohann, C 31.5s not enough memory

Section 4(7) Magma 140.5s 47h31m27s

Section 4(4), Havas et.al., GAP 3 days not enough memory
(after 5 days)

Section 4(5), LLL, EDIM 3h12m estimated several
weeks

Section 4(6), Havas-Sterling,
primes known, d’ minimal 30.4s 5h34m21s

Section 4(6), Havas-Sterling,

primes known, d’ from det 13m05s not enough memory

Algorithm 3.1, EDIM 29.8s 47m24s for p = 2,3,
not enough memory
forp=25,7

Algorithm 3.1, Remark 3.1(4), 9.8s 2h32m16s

EDIM, primes known

Algorithm 3.1, Remark 3.1(5), 0.6s 3m49s
EDIM, primes known

In the case of Algorithm 3.1, Remark 3.1(4), we have also determined the maximal
absolute values of entries in A’, as estimated in 3.1(7). For example for Az they were
between 132524100 for p = 2 and 76204800000 for p = 7. For A; and p = 5 the maximal
entry was 184340 whereas in the bare Algorithm 3.1 the maximal entry had 55 decimal
digits.

The matrix A; was one for which we did not have any program to compute its ele-
mentary divisors before we started to think about the algorithm presented in this note.
Remarkably, now all of the programs considered here could handle it. But from our ex-
amples it becomes clear that a modular approach is very appropriate for large matrices
of a similar type, whenever there is a chance to find the relevant primes in reasonable
time. Our algorithm in one of the variations is the only convenient one which still works
nicely for even larger cases (our largest practical case so far had dimension 7700, which
is the highest dimension of a Specht module of the symmetric group Si2).
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