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1 Introduction

In this note we determine the Brauer trees of the cyclic unipotent blocks of the
Chevalley groups F4(q), and, except for one tree in case q 6≡ −1(mod 3), those
of the twisted Chevalley groups 2E6(q). The results show that the statements
of [6, Theorem 5.1] also hold for the groups considered here.

Our work is a contribution to the program of finding the Brauer trees for all
finite groups. As far as finite groups of Lie type are concerned, only the Brauer
trees of E7 and E8 remain to be found (and the one tree in 2E6(q) which we
were not able to determine here).

The methods are much the same as those used in the computation of the
Brauer tress for groups of type E6 in [6]. In particular, we make essential use
of the unipotent character tables for these groups.

For performing some computations we have used Maple [4] and GAP [7], as
well as CHEVIE [5], which is based on these two systems.

The results for F4(q) had previously been obtained by Elmar Wings [9] in
case q ≡ 1(mod 12) and by Donald White [8] in case q = 2. Also, Klaus Lux has
computed the Brauer trees of 2E6(2) (unpublished), using the explicit character
table available in GAP. The results in this paper have been announced at the
conference “Representation theory of finite groups,” Bad Honnef, August 26–30,
1996.

2 Results

The notation for the characters in the following theorems is taken from [3,
pp. 479,481]. The exceptional node of the Brauer tree is indicated by a black
circle. The corresponding characters are always non-unipotent.

∗This paper is a contribution to the DFG research project “Algorithmic Number Theory
and Algebra”
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Theorem 2.1 Let G be a simple algebraic group of type F4, defined and split
over a finite field Fq, and let F denote the corresponding Frobenius morphism.
Let ` > 3 be a prime not dividing q but dividing |GF | and write e for the
multiplicative order of q modulo `. Then e ∈ {1, 2, 3, 4, 6, 8, 12}.

(1) If e ∈ {1, 2, 3, 6}, there is no unipotent `-block with a non-trivial cyclic defect
group.

(2) If e = 4, there are exactly two unipotent `-blocks of GF with non-trivial
cyclic defect groups. Their Brauer trees are as follows.

g g g y gφ′2,4 φ′4,7 φ′2,16 B2,ε′

g g g y gφ′′2,4 φ′′4,7 φ′′2,16 B2,ε′′

(3) If e = 8, the principal `-block of GF is the only unipotent `-block with a
non-trivial cyclic defect group. It has the following Brauer tree.

g g g g g y g
g

g
φ1,0 φ9,2 φ16,5 φ9,10 φ1,24 F4[−1]

F4[i]

F4[−i]

(4) If e = 12, the principal `-block of GF is the only unipotent `-block with a
non-trivial cyclic defect group. It has the following Brauer tree.
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g g g g g y g g g
g
g
g
g

φ1,0 φ4,1 φ′′6,6 φ4,13 φ1,24 B2,ε B2,r B2,1

F4[λ]

F4[λ̄]

F4[µ]

F4[µ̄]

Here, {λ, µ} = {θ, i} (in other words, the planar embedding of the tree is not
determined).
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Theorem 2.2 Let G be a simple algebraic group of type E6, defined over a
finite field Fq, and let F denote the corresponding Frobenius morphism. Sup-
pose that GF is of twisted type 2E6. Let ` > 3 be a prime not dividing q
but dividing |GF | and write e for the multiplicative order of q modulo `. Then
e ∈ {1, 2, 3, 4, 6, 8, 10, 12, 18}.

(1) If e ∈ {2, 3}, there is no unipotent `-block with a non-trivial cyclic defect
group.

(2) If e = 1, there are exactly two unipotent `-blocks of GF with non-trivial
cyclic defect groups. Their Brauer trees are as follows.

g y2A5,1 g y2A5,ε

(3) If e = 4, there is exactly one unipotent `-block of GF with a non-trivial
cyclic defect group. Its Brauer tree is as follows.

g g y g gφ4,1 φ′′4,7 φ4,13 φ′4,7

(4) If e = 6, there is exactly one unipotent `-block of GF with a non-trivial
cyclic defect group. Its Brauer tree is as follows.

g g g yφ′8,3 φ16,5 φ′′8,9

(5) If e = 8, the principal `-block of GF is the only unipotent `-block with a
non-trivial cyclic defect group. It has the following Brauer tree.

g g g g y g g g gφ1,0 φ′8,3 φ′9,6 φ′2,16 φ1,24 φ′′8,9 φ′′9,6 φ′′2,4

(6) If e = 10, there are exactly two unipotent `-blocks of GF with non-trivial
cyclic defect groups. Their Brauer trees are as follows.
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g g g g y gφ1,0 φ′′8,3 φ′′9,6 φ′′2,16
2A5,ε

g g g g y gφ′2,4 φ′9,6 φ′8,9 φ1,24
2A5,1

(7) If e = 12, the principal `-block of GF is the only unipotent `-block with a
non-trivial cyclic defect group. If q ≡ −1(mod 3), it has the following Brauer
tree.

g g g g g y g g
g

g
g g gφ1,0 φ9,2 φ16,5 φ9,10 φ1,24 φ′′2,16 φ′′8,9 φ12,4 φ′8,3 φ′2,4

2E6[θ]

2E6[θ2]

If q 6≡ −1(mod 3), there are two possibilities for the Brauer tree. It either is
the one given above, or it is the tree with the same real stem but the nodes
corresponding to the non-real characters linked to φ′′2,16.

(8) If e = 18, the principal `-block of GF is the only unipotent `-block with a
non-trivial cyclic defect group. It has the following Brauer tree.

g g g g g y g g
g

g
φ1,0 φ4,1 φ′′6,6 φ4,13 φ1,24

2A5,ε
2A5,1

2E6[θ]

2E6[θ2]

3 Proofs

3.1 Preliminaries

The distribution of the unipotent characters into `-blocks, as well as the cor-
responding defect groups, can be determined from the results in [1, Theorem
5.24(1), Tables 1,2] and [2, Théorème 2.1]. The real stems of the Brauer trees
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are found by Harish-Chandra induction of suitable projective characters from
Levi subgroups (except that additional arguments are needed for the proof of
Parts (3) and (5) of Theorem 2.2). The computation of the Harish-Chandra in-
duced characters can of course be reduced to computations in the Weyl groups.
These were done with the InductionTable command of the CHEVIE-system
[5].

The following results on some scalar products of unipotent characters are
crucial for finding the location of the non-real characters on the trees. The
computations were also done with CHEVIE. We remark that we do not have
complete unipotent character tables for the groups of type F4 and 2E6, but the
known character values are sufficient for our purposes.

Lemma 3.1 (a) In F4(q) we have the following scalar products between unipo-
tent characters:

(φ4,1 ⊗ F4[θ], φ4,13) = 0,

(φ4,1 ⊗ F4[i], φ4,13) = 0.

If q ≡ 3(mod 12),
(B2,1 ⊗ F4[i], φ16,5) = 0,

(B2,1 ⊗ F4[i], F4[−i]) =
1
2

(q + 1).

(b) In 2E6(q) we have the following scalar products between unipotent char-
acters:

(φ4,1 ⊗ 2E6[θ], φ4,13) = 0,

(φ4,1 ⊗ 2E6[θ], φ′′2,16) = 0.

If q ≡ −1(mod 3), and if 2E6(q) = GF with G simply connected, then

(φ4,1 ⊗ 2E6[θ], 2E6[θ]) = 2.

3.2 Proof of Theorem 2.1

Let e = 8. It remains to determine the positions of the two complex conjugate
characters F4[i] and F4[−i] on the tree. The degree of F4[i] is congruent to −1
modulo `. It can thus be joined only to a character whose degree is congruent
to 1 modulo `, since two adjacent characters add up to a projective character
(the sum of the exceptional characters is considered to correspond to a single
node). Thus F4[i] can only be joined to one of φ16,5, φ1,24 or F4[−1]. However,
we have

F4[−1](1)
2(F4[i](1))

=

(
q4 − q2 + 1

) (
q2 + 1

)2
2 (q2 − q + 1)2 (q + 1)4 < 1

for all q, and
φ16,5(1)

2(F4[i](1))
=

(
q4 − q2 + 1

) (
q2 + 1

)2
2 (q2 + q + 1)2 (q − 1)4 < 1
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for all q > 3, and so F4[i] is connected to φ1,24 for q > 3. To rule out the
possibility φ16,5 in case q = 3, we argue as follows. Since B2,1 is a defect zero
character, the tensor product B2,1⊗F4[i] is projective. Now, by Lemma 3.1(a),
F4[−i] occurs in this projective character with a positive multiplicity, whereas
φ16,5 does not occur at all. Hence F4[−i] cannot be joined to φ16,5 on the Brauer
tree. It follows from [8] that the given tree is correct in case q = 2.

Now suppose that e = 12. We have to determine the positions of the two
non-real characters F4[θ] and F4[i] and their complex conjugates on the tree.
With similar arguments as above one shows that they can only be joined to
φ4,13 or to the exceptional node (this time there are no exceptions on the size
of q).

By Lemma 3.1(a) we know that none of F4[θ], F4[θ2], F4[i] or F4[−i] does
occur as constituents in the tensor product φ4,1 ⊗ φ4,13. Since φ1,0 + φ4,1 is
the character of the projective cover of the trivial module, the tensor product
(φ1,0 + φ4,1) ⊗ F4[θ] contains the projective cover of the irreducible module
corresponding to F4[θ]. Since φ4,13 is not a constituent of this tensor product,
F4[θ] cannot be joined to φ4,13 on the Brauer tree. Exactly the same argument
works for F4[i]. This completes the proof.

3.3 Proof of Theorem 2.2

Let e = 4. We have to show that the ordinary irreducible characters φ4,1 and φ′4,7
are located at leaves of the Brauer tree, i.e., that they are irreducible modulo `.
By standard arguments involving trivial source modules and cyclic block theory,
this is a consequence of the following fact. Let LF denote the Levi subgroup
of GF of type A2(q2)+A1(q). The restriction of RGL (1) to our block has ordinary
character φ4,1 + φ′4,7.

Now let e = 8. It follows as above that φ′′2,4 is irreducible modulo `. Namely,
let LF denote the Levi subgroup of type 2D4(q). Then the restriction to the
principal block of RGL (1) equals φ1,0 + φ′′2,4. The two branches of the tree are
easily determined by Harish-Chandra inducing projective characters.

Next let e = 12. Here, we assume that q ≡ −1(mod 3). By considering
degrees and their residues, it follows that 2E6[θ] can only be joined to φ1,24 or
to φ′′2,16, provided that q > 3. Now φ4,1 is a defect zero character, and hence
φ4,1 ⊗ 2E6[θ] is projective.

Let G denote the non-abelian simple composition factor of our group 2E6(q).
Assume for the moment that the latter arises from a simply connected algebraic
group, i.e., has shape 3.G. Then, as 2E6[θ] occurs in this tensor product by
Lemma 3.1(b), whereas φ′′2,16 does not, it follows that 2E6[θ] is joined to φ1,24.
(If q is any prime power and 2E6(q) arises from an algebraic group of adjoint
type, then the scalar product (φ4,1 ⊗ 2E6[θ], 2E6[θ]) equals zero.) For q = 2 one
can use computations with the character table, which is available in GAP [7], to
prove the assertion.

If 2E6(q) arises from an adjoint algebraic group, i.e., has shape G.3, the
Brauer tree of the principal block is the same as that of G, since every unipotent
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character of G.3 restricts irreducibly to G. The Brauer tree of the principal block
of G in turn is the same as that of the principal block of 3.G.

Finally let e = 18. Here the proof is exactly the same as in the corresponding
case for groups of type F4, using Lemma 3.1(b). We may omit further details.
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[6] G. Hiss, F. Lübeck, and G. Malle, The Brauer trees of the exceptional
Chevalley groups of type E6, Manuscripta Math. 87 (1995), 131–144.

[7] M. Schönert et al., GAP — Groups, Algorithms, and Programming,
Lehrstuhl D für Mathematik, RWTH Aachen, Germany, fourth ed., 1994.

[8] D. L. White, Brauer trees of 2.F4(2), Comm. Algebra 20 (1992), 3353–
3368.
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