
Appendix: Practical Computation of Formal Degrees

Frank Lübeck, Aachen

1 Introduction

These remarks are an appendix to the preceding paper [6] by Mark Reeder. We will
report on the use of the computer algebra package CHEVIE [3] for carrying out some of the
computations explained in that paper.

CHEVIE is a collection of computer programs and data bases dealing with finite Coxeter
groups, Iwahori-Hecke algebras, finite reductive groups and their representations. It is
based on the more general purpose computer algebra systems GAP [7] and Maple [1]. Let
us mention that GAP, CHEVIE and the additional programs mentioned in this note are free
software, they are available with the complete source code and free of charge.1 In this note
we show that the system can be useful in related fields - like p-adic groups - too.

We will use the following notations from the beginning of the introduction of [6]: G, q,
Ĝ, x, Ax, ρ and Vx,ρ.

From now on we assume that the representation Vx,ρ of G is of Iwahori-spherical type. In
the following sections we describe the practical computation of the formal degree deg(Vx,ρ).

Acknowledgement. I wish to thank Mark Reeder for showing me his article and
explaining the background and some details of his work.

2 Summary of the method

We recall the basic statements from [6] which describe the calculations we have to do.
(2.1) The following notations are also similar to those in [6], except that we will use a

^-accent for structures associated to the complex dual group Ĝ.
Let T be a split maximal torus of the p-adic group G and T̂ a dual maximal torus of

Ĝ. We denote Σ′ a set of Coxeter generators of the affine Weyl group W ′ of G (,i.e., the
Coxeter group associated to the extended Dynkin diagram of G). For each proper subset
J ⊂ Σ′ let (PJ , UJ ,MJ) be the corresponding standard parahoric subgroup of G. Here MJ

is a split finite reductive group over the finite field with q elements.
(2.2) Let V = Vx,ρ be one of the representations we want to consider. For each J as

above the space V UJ of fixed points of V under UJ is finite dimensional; it is a represen-
tation of MJ whose irreducible constituents are unipotent discrete series representations.

1see http://www.math.rwth-aachen.de/~CHEVIE and the links given there
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Following Lusztig [4] these unipotent characters are parameterized by the irreducible char-
acters of the Weyl group WJ of MJ and their degrees are given by the generic degrees of
the Iwahori-Hecke algebra associated to WJ with all parameters equal to q.

(2.3) Writing Z(Ĝ) for the center of Ĝ and φW for the Poincaré polynomial of a finite
Coxeter group W we can describe the formal degree of V by the expression (see [6, (2.2)])

deg(V ) :=
(−1)rank(G)

|Z(Ĝ)|

∑
J⊂Σ′

(−1)|J |
dimV UJ

φWJ
(q)

.

(2.4) For our representations Vx,ρ let x = su ∈ Ĝ, s ∈ T̂ , be the Jordan decomposition

of x. Since Ĝ is simply connected the centralizer Ĝs of s in Ĝ is a connected reductive
group. So the representation ρ of Ax can be identified with a representation of Au (defined
inside Ĝs).

Denote Ŵ the Weyl group of Ĝ, similarly Ŵs ⊂ Ŵ the Weyl group of Ĝs and X̂ the
character group of T̂ . In our situation s is of finite order and can be identified with an
element s ∈ Hom(X̂,Ω) where Ω is the group of roots of unity in C.

The cohomology H(Bus ) of the u-fixed points of the flag variety Bs of Ĝs is a Ŵs ×Au-
module via the Springer correspondence. Let H(Bus )ρ be the ρ-isotypic part of the Au-

action. This Ŵs-module can be extended to a X̂Ŵs-module s⊗H(Bus )ρ where X̂ acts via
s.

We associate to the pair (x, ρ) a representation of the extended affine Weyl group X̂Ŵ
by

V̂x,ρ := ε⊗ indX̂Ŵ
X̂Ŵs

(s⊗H(Bus )ρ) ,

where ε is the sign representation on Ŵ and trivial on X̂.
(2.5) Consider the homomorphism ψ : W ′ −→ X̂Ŵ which maps the chosen Coxeter

generators of W to the corresponding ones in Ŵ and the remaining generator to (α̂0ŝ0)
where α̂0 is the highest short root of Ĝ and ŝ0 ∈ Ŵ the reflection along α̂0.

To compute the formal degrees by the formula in (2.3) we need to know for each J as
in (2.1) the character of WJ corresponding to V UJ as described in (2.2).

We know from [6, 8.] (where results of Lusztig and Kato are used) that this represen-
tation equals the restriction of V̂x,ρ to ψ(WJ) pulled back to WJ (note that ψ is injective
on each WJ).

3 Remarks on the computations

(3.1) In CHEVIE [3] Weyl groups can be entered in the form of a root datum. The groups
are realized as permutation groups acting on the set of roots - this makes many efficient
algorithms for general permutation groups applicable to them. Elements can be converted,
e.g., between permutations, reduced words and matrices acting on the root lattice. This
can be used to compute with explicit elements from the corresponding extended affine Weyl
group. For all Weyl groups appearing in our application one can find representatives of
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conjugacy classes, the (complex) character table, reflection subgroups and induce-restrict
matrices for the irreducible characters quite fast.

Also the Iwahori-Hecke algebras for finite Coxeter groups and their character tables are
available, in particular their generic degrees.

(3.2) To compute the restrictions to ψ(WJ) in (2.5) we have written a program which
gets as input the root datum of Ĝ, an element s ∈ T̂ ∼= Hom(X,Ω) and one of the ψ(WJ).
It returns the table of multiplicities〈

ε⊗ indX̂Ŵ
X̂Ŵs

(s⊗ χ) , φ
〉
ψ(WJ )

,

for all χ ∈ Irr(Ŵs) and φ ∈ Irr(ψ(WJ)).
A simple way to implement this is to apply the induction formula to a list of conjugacy

class representatives of ψ(WJ) (which is easy to find according to (3.1)): For y ∈ X̂Ŵ the
value of the induced character is

indX̂Ŵ
X̂Ŵs

(s⊗ χ) (y) =
∑

w∈R, wyw−1∈X̂Ŵs

(s⊗ χ)(wyw−1),

where R is a set of right coset representatives of Ŵs\Ŵ .
This is good enough to handle all the applications needed in [6] although in the worst

cases (like Ŵ of type E8 and Ŵs of Type A1A2A5 with index > 80000) the computation
takes several hours on a currently fast computer. To make the program more efficient
and interesting for further applications we have also implemented a version which uses the
Mackey formula, similar to [6, 8.2(a)].

This is more complicated to program, but when it becomes difficult like enumerating
double coset representatives and handling the cases where the intersection of some conju-
gate of X̂Ŵs with ψ(WJ) is not a reflection subgroup, we just fall back on using general
programs for permutation groups. This version turned out to handle the above mentioned
worst cases in a few minutes computation time.

(3.3) To evaluate the sum in (2.3) we use the method in (3.2) for maximal J only.
The following facts can be seen from [2, 70.6 and 70.24]. If J ′ ⊂ J ⊂ Σ′ then the MJ ′-
module V UJ′ is the Harish-Chandra restriction (or truncation) of the MJ -module V UJ .
This restriction is completely described in terms of the restrictions of the corresponding
characters of the Weyl groups WJ to WJ ′ . The term φWJ

(q)dimV UJ′/φWJ′
(q) equals the

degree of the Harish-Chandra induction of V UJ′ to MJ (note that φWJ
(q) is the maximal

divisor of the order of MJ which is prime to q).
So, knowing the V UJ for maximal J (in form of the corresponding character of WJ)

we get the remaining terms in the sum (2.3) from the induce-restrict matrices of parabolic
subgroups of these WJ . Since this is computed quickly by CHEVIE it is not necessary to
implement the use of Alvis-Curtis duality as described in [6, 3.]. Only in the final step we
need the generic degrees of the Iwahori-Hecke algebras of the WJ with maximal J . These
are available in CHEVIE.

(3.4) Putting together (3.2) and (3.3) we can evaluate for each irreducible character χ

of Ŵs the sum in (2.3) but using ε⊗ indX̂Ŵ
X̂Ŵs

(s⊗ χ) instead of Vx,ρ in (2.5).
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The formal degree degVx,ρ is then a linear combination of these rational functions

according to the decomposition of H(Bus )ρ into irreducible Ŵs-modules.

The structure of H(Bus )ρ as Ŵs-module can be computed by an algorithm described

by Lusztig in [5, 24.]. This algorithm needs as input the Springer correspondence for Ĝs.
We have implemented this algorithm as well as a data base of the (generalized) Springer
correspondence - which was mainly determined by Lusztig, Shoji and Spaltenstein. (For
certain technical reasons these programs are not yet distributed with CHEVIE.)

(3.5) To summarize, having CHEVIE available it was relatively straight forward to write
some additional programs which do the computations described in [6]: We implemented
an arithmetic for elements in the extended affine Weyl group, some programs to deal with
the rational functions appearing in this application and (most important and a bit tricky
in detail) we wrote programs to carry out the steps (2.5) and (2.3).

4 An example

To give the reader an idea how it looks like to use the programs mentioned above let us
consider the case G of type G2 which is left out in the tables in [6].

Here Ĝ has 4 conjugacy classes having empty intersection with any proper Levi sub-
group: The unipotent classes G2 and G2(a1) and two mixed classes of elements su with
Ĝs of type A1Ã1 or A2, respectively, and u regular unipotent in Ĝs. The corresponding
component groups are - in the same order - S1, S3, S2 (symmetric) and C3 (cyclic). They
have 0, 1, 1 and 2 irreducible characters corresponding to the 4 cuspidal unipotent repre-
sentations of G2(q). (Divide the degrees of the cuspidal unipotent representations by the
Poincaré polynomial of W (G2) to find the formal degrees in these cases.) The remaining
ones correspond to Iwahori-spherical representations which we handle now. We start to
define G.

gap> G2 := CoxeterGroup("G", 2);;

We write elements s ∈ T̂ as rank(G)-tuples of rational numbers. These numbers represent
elements of Q/Z ∼= Ω (via x 7→ exp(2πix)) which give the images of chosen basis elements
of the Z-lattice X̂. First consider s = 1. The following command produces data which
describe Ĝs and for all χ ∈ Irr(Ŵs) its possible contribution to a formal degree and to the
corresponding K-type (see [6, 14.]).

gap> fd_G2 := FormalDegreeSummands(G2, [0, 0]);;

Let’s look at the labels for the irreducible characters of Ŵs.

gap> DisplayCharsCoxeter(fd_G2[1]);

Characters of:

G2 2 > 1

1 phi_{1,0}

2 phi_{1,6}
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3 phi_{1,3}’

4 phi_{1,3}’’

5 phi_{2,1}

6 phi_{2,2}

The summands for the formal degrees are in fd_G2[3]. We know the cohomology of the
Bu from another program, mentioned above. We can read off the formal degrees as follows.
(Text after # is a comment.)

gap> # phi_{1,0} for x in class G_2, rho=1

gap> fd_G2[3][1];

phi1^2*phi5 / phi2^2*phi3*phi6

gap> # phi_{1,3}’ for x in class G_2(a_1), rho(1)=2

gap> fd_G2[3][3];

1/3*q*phi1^2 / phi2^2*phi3

gap> # phi_{1,0}+phi_{2,1} for x in class G_2(a_1), rho=1

gap> fd_G2[3][1] + fd_G2[3][5];

1/6*q*phi1^2 / phi2^2*phi3

A small utility gives equations (”linear” over Q/Z) for an s with centralizer of type dual
to WJ . We use a solution to find the summands for the formal degrees in the case Ĝs of
type A1Ã1.

gap> PrintArray(EquationsSemisimpleElement(G2, [0,1]));

[ [ 0, 1 ],

[ 2, -1 ] ]

gap> fd_A1A1 := FormalDegreeSummands(G2, [1/2, 0]);;

Here we only need the information for the trivial character of Ŵs. The corresponding
K-type is in the last column of the table below and we show the formal degree for this
class and ρ = 1.

gap> Display(fd_A1A1[2]);

K-type summands: ^W_s of type ~A1xA1 and W of type G2

| 11,11 11,2 2,11 2,2

_________________________________

phi_{1,0} | 1 . . .

phi_{1,6} | . . . 1

phi_{1,3}’ | . . 1 .

phi_{1,3}’’ | . 1 . .

phi_{2,1} | . 1 1 .

phi_{2,2} | 1 . . 1

gap> fd_A1A1[3][4];

1/2*q*phi1^2 / phi2^2*phi6
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And similarly for Ĝs of type A2.

gap> fd_A2 := FormalDegreeSummands(G2, [1/3, 0]);;

gap> fd_A2[3][3];

1/3*q*phi1^2 / phi3*phi6
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