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Abstract

Let G be a finite group of Lie type in odd characteristic defined over a field
with q elements. We prove that there is an absolute (and explicit) constant c such
that, if G is a classical matrix group of dimension n ≥ 2, then at least c/ log(n) of
its elements are such that some power is an involution with fixed point subspace
of dimension in the interval [n/3, 2n/3). If G is exceptional, or G is classical of
small dimension, then, for each conjugacy class C of involutions, we find a very
good lower bound for the proportion of elements of G for which some power lies
in C.

1 Introduction
In this paper we derive a lower bound for the proportion of elements, in a finite group
of Lie type in odd characteristic, for which some power is a special kind of involution.
For a finite group H and I ⊂ H a subset of involutions in H , let

P(H, I ) = {h ∈ H | |h| is even, h|h|/2 ∈ I } (1)

that is, the set of elements of H which “power up” to an involution in I . We determine
lower bounds for the proportion |P(H, I )|/|H | of such elements for certain groups H
which are closely related to the finite simple groups of Lie type in odd characteristic,
and certain sets I of involutions.

Our interest in these elements in classical groups was motivated by an algorithmic
application originating in work of Leedham-Green and O’Brien [LGO07] which is
discussed briefly at the end of this section. They consider the subset I of involutions,
in certain finite n-dimensional classical groups H in odd characteristic, that have a
fixed point subspace of dimension r , where n

3 ≤ r < 2n
3 . They prove in [LGO07,

Theorem 8.1] that there is an explicit constant c such that

|P(H, I )|
|H |

>
c
n
.

We consider a wider class of groups and show that there is a lower bound of the form
c/ log n. We denote by GSp2`(q), GUn(q) and GOn(q) the general symplectic, unitary,
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S X n
SL`+1(q) GL`+1(q) `+ 1
SU`+1(q) GU`+1(q) `+ 1
Sp2`(q) GSp2`(q) 2`
SO2`+1(q) GO2`+1(q) 2`+ 1
SO±2`(q) GO2`

±(q)0 2`

Table 1: Table for Theorem 1.1 and Corollary 1.2

and orthogonal groups, respectively, that is, the groups preserving the relevant forms
up to a scalar multiple; GO±2`(q)

0 denotes the connected general orthogonal group -
the index 2 subgroup of GO±2`(q) that does not interchange the two SO±2`(q)-classes of
maximal isotropic subspaces.

Theorem 1.1 Let q be a power of an odd prime and ` an integer with ` ≥ 2. Let
S, X, n be as in one of the lines of Table 1, so that n is the dimension of the natural
representation of X. Let H satisfy S ≤ H ≤ X and let I ⊂ H be the set of involutions
which have a fixed point subspace of dimension r with n/3 ≤ r < 2n/3. Then

|P(H, I )|
|H |

≥
1

5000 log2 `
.

Better bounds for medium rank groups may be obtained, for example, in the case
of groups in lines 1–2 of Table 1, by evaluating the expression in (5). We obtain similar
bounds for projective groups: note that, for X as in one of the lines of Table 1 and a sub-
group Z0 of the centre Z(X), since the subset I of involutions in Theorem 1.1 contains
no central elements, the set I := I Z0/Z0 is a subset of involutions in H Z0/Z0.

Corollary 1.2 Let q, `, H, I be as in Theorem 1.1 with S, X, n as in one of the lines
of Table 1. Let Z0 ≤ Z(X), set I := I Z0/Z0 and, for L ≤ X set L := L Z0/Z0. Then
S ≤ H ≤ X, and |P(H , I )|/|H | ≥ 1/(5000 log2 `).

In a third result we consider groups of Lie type of small rank in odd characteristic
(including all exceptional simple types) and I a subset of involutions with any fixed
type of centralizer.

Theorem 1.3 Let X = X`(q) be a finite group of Lie type of rank ` defined over a field
of odd order q, such that X and a positive real number c are as in one of the cases of
Table 2. Let I be a conjugacy class of involutions in X. Then |P(X, I )|/|X | ≥ c.

In Section 6 we describe precisely the groups X and involution classes we consider,
and we explain how we compute a quite precise lower bound for |P(X, I )|/|X |. A table
with more detail is given in Section 7.
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Type of X G2
2G2

3 D4 F4 E6
2 E6 E7 E8

c .375 .578 .578 .333 .328 .328 .168 .353
Type of X A` 2 A` B` C` D` 2 D`

Values for ` 1, 2, 3, 4 2, 3, 4 3, 4 2, 3, 4 4 4
c .171 .187 .134 .134 .105 .132

Table 2: Table for Theorem 1.3

Upper bounds and other groups

Our method to prove Theorem 1.1 does not give upper bounds. We did some numer-
ical experiments for small fixed q ∈ {3, 5, 9, 13} and groups from the theorem up to
dimension 1000. We computed many pseudo-random elements and checked if they
powered up to an involution with a fixed point space of dimension in the right range.
The proportion of these elements is not a monotonic function in the dimension, but the
trend was that the proportion was about 25% for small dimensions and went down to
about 15% in dimension 1000 (independently of the type of the group and q). Fur-
ther, statistical tests on the data from the groups H we sampled strongly indicates that
P(H, I )/|H | = O(1/ log(`)). This seems to suggest at least that we cannot expect
that there is a lower bound independent of the rank of the group.

From our concrete computations for small rank we also guess that Theorem 1.1 is
actually true for any finite group of Lie type G F corresponding to a simple algebraic
group G. But in some cases like the spin groups, or groups of type A` which are
not simply-connected or adjoint we do not have a sufficiently good description of the
maximal tori and the involutions they contain, along with the type of the involution
centralizers. Detailed information on the tori and involutions is used for the groups
mentioned above in our proof.

Algorithmic Application

In [LGO07], Leedham-Green and O’Brien introduce a Las Vegas algorithm to find
standard generators for a finite simple n-dimensional classical group H in odd charac-
teristic in its natural action. Their algorithm relies on finding an element in the set I
of ‘strong’ involutions, namely involutions having fixed point subspace of dimension
r with r ∈ [n/3, 2n/3), or equivalently (−1)-eigenspace of dimension in the interval
(n/3, 2n/3]. To do this, they search for elements in P(H, I ) by selection of indepen-
dent, uniformly distributed random elements.

The complexity of the algorithm of Leedham-Green and O’Brien (see [LGO07,
Theorem 1.1]) is currently O(nξ + n4 log n + n4 log q + nχ), where ξ is an upper
bound on the number of elementary field operations (that is, additions, multiplications
or inversions) required to produce an independent, uniformly distributed random el-
ement of H , and χ is an upper bound on the number of elementary field operations
required for one application of a discrete log oracle over Fq or Fq2 . In particular this
complexity involves a cost of O(nξ + n4 log n + n4 log q) to compute a strong invo-
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lution, see [LGO07, Theorem 8.27]. Using our lower bound reduces the complexity
of computing a strong involution by replacing the first factor n by log n. However, the
overall complexity of the algorithm remains unchanged because of one other costly
procedure involved in it.

Outline of the paper

In Section 2 we explain our strategy for counting elements that power up to involutions
in I . This involves detailed information about maximal tori in the groups S, and this
information is given in Section 3. Section 4 contains some preliminary results. We
prove Theorem 1.1 in Section 5, and in the last subsection (ix) we deduce Corollary 1.2
from Theorem 1.1. In Sections 6 and 7 we discuss the small rank counting strategy and
results.

2 Setup and Strategy

2.1 Setup for the groups
For the proof of Theorem 1.1 we consider finite groups of Lie type as follows.

Let G be a connected reductive algebraic group over an algebraic closure F̄q of a
finite field Fq with q elements and such that G is defined over Fq , and let F : G → G
be the corresponding Frobenius morphism. The subgroup G F

= {g ∈ G | F(g) = g}
of elements of G fixed under F is a finite group of Lie type. We denote by ` the
semisimple rank of G, that is, the rank of the root system of G.

By [Car93, p. 11], each element g ∈ G F has a unique Jordan decomposition
g = su = us, where s, u ∈ G F , s is semisimple and u is unipotent. The element s
is called the semisimple part of g and u is called the unipotent part of g. Unipotent
elements are p-elements, where p is the characteristic of Fq and semisimple elements
have order prime to p. A subgroup U of G is called F-stable if F(U ) = U. Further,
for g, t ∈ G and U a subgroup of G we denote gU = gUg−1 and gt = gtg−1.

For more details on groups of Lie type and their basic properties we refer to the
overview chapter [Car93, Chapter 1] or the book [Spr98].

For a positive integer n and a prime p we can write n = pam, such that p does not
divide m, for unique integers a and m. Then we denote (n)p := pa and (n)p′ := m,
called the p-part and p′-part of n respectively.

2.2 Strategy of counting
We now assume that q is odd. Let I ⊆ G F be some union of G F -conjugacy classes
of involutions. To count the elements in the set P(G F , I ) we adapt methods employed
in [IKS95, Section 6] for counting p-singular elements in finite groups of Lie type.
(We note that similar methods were used by Lehrer in [Leh92] for exploiting the char-
acter theory of Weyl groups to evaluate functions on F-stable maximal tori in Lie type
groups. The approach has been developed in a general setting in [NP08].) In addition
we apply a result of Erdős and Turán as refined in [BLGN+02, Theorem 2.3].
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We begin by noting that an element of G F lies in P(G F , I ) if and only if its
semisimple part lies in P(G F , I ), since by our assumption unipotent elements have
odd order.

Lemma 2.1 Let s ∈ G F be semisimple. Then the number of unipotent elements u ∈
G F such that su = us is equal to the number of F-stable maximal tori of G containing
s.

Proof. Unipotent elements commuting with s and maximal tori containing s are con-
tained in the connected component of the centralizer of s in G, which is a reductive
subgroup of G, see the proof of [Car93, Th.3.5.3]. The statement now follows from
two theorems of Steinberg which show that both numbers equal (|C F

|
2)p where p is

the defining characteristic of G and C the centralizer of s in G, see [Car93, 3.4.1,
6.6.1]. �

Using similar notation to [IKS95, p. 154], for a fixed semisimple element s ∈ G F ,
we define

X (s) := {g ∈ G F
| g = su, u ∈ G F unipotent and su = us},

the set of elements of G F with semisimple part s, and

Y (s) := {(s, T ) | T ⊂ G an F-stable maximal torus, s ∈ T }.

Lemma 2.1 shows that, for any fixed semisimple s ∈ G F , there exists some bijection
ϕs : X (s)→ Y (s).

This shows that there is a bijection

ϕ : P(G F , I ) =
⋃̇

s
X (s) −→

⋃̇
s
Y (s), (2)

where s runs over the semisimple elements in P(G F , I ), given by g = su 7→ ϕs(g).
The set P(G F , I ) is invariant under G F -conjugacy and so the number of pairs

(s, T ), for a fixed F-stable maximal torus T , depends only on the G F -conjugacy class
of T , and is equal to |T ∩ P(G F , I )|. Thus

|P(G F , I )| =
∑
T
|T |.|TT ∩ P(G F , I )|, (3)

where the sum is over G F -conjugacy classes T of F-stable maximal tori in G and TT
denotes a representative from T .

Fix an F-stable maximal torus T and consider the Weyl group W = NG(T )/T .
Since T is abelian the image of t ∈ T under conjugation by h ∈ NG(T ) depends only
on the coset w = hT ∈ W , and we denote this image by wt . Elements w,w′ ∈ W are
said to be F-conjugate if w′ = x−1wF(x), for some x ∈ W ; note that F-conjugacy is
an equivalence relation on W .

Lemma 2.2 Let G F , T,W be as above. Then the G F -conjugacy classes of F-stable
maximal tori of G are in bijection with the F-conjugacy classes of the Weyl group W
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of G as follows. If, for g ∈ G, the torus gT is F-stable, then w(g) := g−1 F(g)T ∈ W .
Another F-stable maximal torus h T , for h ∈ G, is G F -conjugate to gT if and only
if w(g) and w(h) are F-conjugate. Writing w := w(g), the torus (gT )F is mapped
under conjugation by g to T Fw−1

:= {t ∈ T | wF(t) = t}.

Proof. See [Car93, 3.3.3]. �

If C ⊂ W is an F-conjugacy class and TC a corresponding F-stable maximal torus,
then [Car93, 3.3.6] shows that the G F -conjugacy class of TC contains |G F

||C |/(|T F
C ||W |)

elements. Denote by mC the proportion of elements of T F
C lying in P(G F , I ), that is,

mC =
|T F

C ∩ P(G F , I )|

|T F
C |

. (4)

This yields a useful expression for the proportion of elements in P(G F , I ) in terms of
the F-conjugacy classes in W .

Lemma 2.3 With G, I as above we have

|P(G F , I )|
|G F |

=

∑
C

mC ·
|C |
|W |

,

where the sum on the right hand side is over the F-conjugacy classes C ⊂ W , and mC
is as in (4).

Proof. Let T be a G F -conjugacy class of F-stable maximal tori of G corresponding
to an F-conjugacy class C ⊂ W , and let TC ∈ T . By (3), the contribution to |P(G

F ,I )|
|G F |

from T is |T | |TC∩P(G F ,I )|
|G F |

. As discussed above, |T | = |G
F
||C |

|T F
C ||W |

, and the second factor

is mC
|T F

C |

|G F |
. Thus the contribution is

mC
|C |
|W |
|G F
||T F

C |

|T F
C ||G

F |
= mC

|C |
|W |

.

�

We obtain lower bounds for this proportion by showing that mC ≥ 1/2 for certain
F-conjugacy classes C , and by estimating the proportion of elements of W in such
classes C .

Remark 2.4 We may improve the first assertion of Theorem 5.2 of [IKS95] for finite
classical groups using Lemma 2.3 and our discussion in Section 5 on the structure of
maximal tori in these groups. Let I be the set of all involutions in a finite classical
group G in odd characteristic. Then, as we show in Section 5, each maximal torus in G
has even order, and hence at least half of its elements are in P(G, I ). Thus mC ≥ 1/2
for each class C in Lemma 2.3, and so that lemma yields |P(G, I )|/|G| ≥ 1/2 (whereas
[IKS95, Theorem 5.2] states |P(G, I )|/|G| ≥ 1/4 for these groups).
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3 Maximal tori and involutions in classical groups
The aim of this section is to describe the background information we require about the
structure of the maximal tori in the groups G F we consider, and to give a description
of the involutions and their centralizers.

For each Dynkin diagram of classical type we choose a group G and for the differ-
ent types of Frobenius actions on the Dynkin diagram we describe:

(i) an F-stable maximal torus T in G and the corresponding Weyl group W =

NG(T )/T ;

(ii) the roots as maps T → F̄×q ;

(iii) the action of the Weyl group W on T ;

(iv) the action of a Frobenius morphism F on T and W .

We also indicate how G is related to various simple algebraic groups with the same
Dynkin diagram.

For more details on the following descriptions see [DM91, Ch.15]. Recall that
F̄q is an algebraic closure of the finite field Fq . We use the information and notation
from Carter [Car93, pp.39-40] for the simply connected and adjoint types of the finite
classical groups.

3.1 Type A`.
Let n = `+1. We consider G = GLn(F̄q). Its diagonal matrices form a maximal torus
T . We write diag(a1, . . . , an) for a diagonal matrix with diagonal entries a1, . . . , an .
The upper triangular matrices in G form a Borel subgroup and this determines a set of
simple roots α1, . . . , α`. We number them such that αi (diag(a1, . . . , an)) = ai a−1

i+1.
The Weyl group W can be described by its action on T . Its elements permute the
diagonal entries (actually, an element of W is determined by its action on a single
element of T that has pairwise distinct entries). The generating reflection along αi
acts on elements t = diag(a1, . . . , an) of T by interchanging the coordinates ai and
ai+1, so W is isomorphic to Sn , the symmetric group on n points. In the untwisted
case G F

= GLn(q) we choose a Frobenius map F such that F(diag(a1, . . . , an)) =

diag(aq
1 , . . . , aq

n ). In the twisted (unitary) case G F
= GUn(q) we choose a Frobe-

nius map such that F(diag(a1, . . . , an)) = diag(a−q
1 , . . . , a−q

n ). In both cases F acts
trivially on W , so the F-conjugacy classes are the conjugacy classes and they are pa-
rameterized by partitions of n describing the cycle types of the permutations on n points
(and on the n diagonal entries of elements in T ).

The simply-connected algebraic group of type A` is G ′ = SLn(F̄q), and T ∩G ′ is a
maximal torus of G ′. We have G ′F ∼= SLn(q) in the untwisted case, and G ′F ∼= SUn(q)
in the twisted case.

If Z is the centre of G then G/Z ∼= PGLn(F̄q) is the adjoint simple group of type
A` and T/Z is a maximal torus. We have (G/Z)F ∼= G F/Z F which is isomorphic to
PGLn(q) in the untwisted case, and PGUn(q) in the twisted case.
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There are further simple groups Gd of type A` corresponding to each non-trivial
divisor d of n. These are homomorphic images of G ′ but there is no easy description
of the groups G F

d in terms of the finite groups mentioned so far. We do not consider
these groups in the sequel.

3.2 Type C`.
Here we consider the symplectic groups G = Sp2`(F̄q). We choose an ordered basis
(e1, . . . , e`, f`, . . . f1) of a 2`-dimensional F̄q -vector space, and a symplectic form
〈 , 〉 with 〈ei , ej 〉 = 〈 fi , f j 〉 = 0 and 〈ei , f j 〉 = δi, j for 1 ≤ i, j ≤ `, where δi, j = 0 if
i 6= j and 1 if i = j . Then G is the subgroup of GL2`(F̄q) consisting of all matrices
that leave this form invariant.

The diagonal matrices in G have the form t := diag(a1, . . . , a`, a−1
` , . . . , a−1

1 ) and
they form a maximal torus T . In this setup the upper triangular matrices of G are a
Borel subgroup and we number the corresponding simple roots α1, . . . , α` such that
αi (t) = ai a−1

i+1 for 1 ≤ i < ` and α`(t) = a2
` (so these are the restrictions of the first `

simple roots of GL2`(F̄q) to T ).
The Weyl group W = NG(T )/T acts naturally on {〈ei 〉, 〈 fi 〉 | 1 ≤ i ≤ `} pre-

serving the partition with blocks {〈ei 〉, 〈 fi 〉}, for 1 ≤ i ≤ `. We identify this set with
{1, . . . , `, ¯̀, . . . , 1̄}, via 〈ei 〉 7→ i and 〈 fi 〉 7→ ī , using the convention that ¯̄i = i. The
group W = S2 o S` consists of all the so-called signed permutations, that is, permuta-
tions w in S2` such that iw = (ī)w for all i .

As in Subsection 3.1, W can be described by its action on T . The elements of
W permute the diagonal entries. The generating reflection along αi , for 1 ≤ i < `,
interchanges the entries ai and ai+1 and also interchanges the entries a−1

i and a−1
i+1. The

reflection along α` interchanges the middle entries a` and a−1
` . Each element w ∈ W

leaves the set of pairs of entries {ai , a−1
i } invariant, and mapping w to its action on

these pairs describes a surjective homomorphism π : W → S` (the symmetric group
on these ` pairs of entries). The kernel of π is the subgroup of elements which leave
all pairs {ai , a−1

i } invariant.
We choose a Frobenius morphism F such that F(diag(a1, . . . , a`, a−1

` , . . . , a−1
1 ))

= diag(aq
1 , . . . , aq

` , a−q
` , . . . , a−q

1 ). Then F acts trivially on W and the F-conjugacy
classes of W are the conjugacy classes.

To w ∈ W we associate a pair of partitions (λ, µ) of total sum ` as follows. The
entries of the partitions are the cycle lengths of π(w) ∈ S`. A cycle of π(w) of length
m is called positive if it is the image of two w-cycles of length m, and negative if it is
the image of one w-cycle of length 2m. The partitions λ,µ are the multisets of lengths
of positive cycles, and negative cycles, respectively. Two elements of W are conjugate
if and only if the associated pair of partitions (λ, µ) is the same.

The group G = Sp2`(F̄q) is the simply-connected simple group of type C`. There
is a surjective homomorphism (of algebraic groups) G → Ḡ to the adjoint simple
group Ḡ of type C`. It has the centre of G as kernel, and for odd q, the image of G F

has index two in Ḡ F .
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3.3 Type B`.
Here we consider the special orthogonal groups G = SO2`+1(F̄q) in a similar manner
to the symplectic groups in case C`.We choose an ordered basis (e1, . . . e`, e0, f`, . . . f1)

of a (2` + 1)-dimensional vector space over F̄q and an orthogonal form 〈 , 〉 with
〈ei , f j 〉 = δi, j , 〈e0, e0〉 = 1 and 〈ei , ej 〉 = 〈 fi , f j 〉 = 0, for 0 ≤ i ≤ ` and
1 ≤ j ≤ `, where δi, j = 0 if i 6= j and 1 if i = j . Then G is the subgroup of
SL2`+1(F̄q) consisting of all matrices that leave this form invariant. The set of di-
agonal matrices in G is a maximal torus T and consists of all matrices of the form
diag(a1, . . . , a`, 1, a−1

` , . . . a−1
1 ). The description of the Frobenius morphism F , the

Weyl group W , its action on the simple roots, and the action of the generating reflec-
tions of W on this torus are almost the same as in the case of the symplectic groups
in type C`, except that we now have α`(diag(a1, . . . , a`, 1, a−1

` , . . . , a−1
1 )) = a`. In

particular, we still have W = S2 o S`.
Here G is the adjoint simple group of type B`. There is a surjective homomorphism

from the simply-connected groups Spin2`+1(F̄q) onto G with kernel of order 2 for odd
q . The image of the finite group Spin2`+1(q) in SO2`+1(q) has index 2.

3.4 Type D`.
Here we consider G = SO2`(F̄q) as a subgroup of SO2`+1(F̄q) by ‘forgetting’ the
middle basis vector. This is the group generated by the root subgroups for roots in the
subsystem of type D` of long roots in the root system of type B`. We use the same
maximal torus as in type B` and the roots and Weyl group action corresponding to the
long roots α1, . . . , α`−1 in type B`. The Weyl group W has index 2 in the Weyl group
W (B`) of type B` and an element of the latter is in W if and only if it has an even
number of negative cycles. Let w` ∈ W (B`) be the generating reflection along the
short simple root. Then w` /∈ W and W (B`) = W ∪̇Ww`.

In the untwisted case we take the same Frobenius morphism F as in the case of
B` so F-conjugacy classes coincide with conjugacy classes in W . (A few conjugacy
classes of W (B`) contained in W split into two W -classes, but we do not need the
details here.) The corresponding finite group is G F

= SO+2`(q).
For the twisted case we twist that Frobenius morphism with the reflectionw`. Then

the F-conjugacy classes of W are all the sets of the form Cw`, where C is a conju-
gacy class of W (B`) not contained in W . The surjection π : W (B`) → S` is still
surjective when restricted to W or to the coset Ww` (because w` is in the kernel). The
corresponding finite group is G F

= SO−2`(q).
The relationship between G and the simply-connected group of type D` is the same

as in type B`. However here G is not adjoint, and there is a surjection onto the adjoint
group of type D` which has as kernel the centre of G of order 2. For even ` there is
another type of simple group of type D`, namely the half spin groups, which are also
homomorphic images of the simply-connected groups with kernel of order 2.
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3.5 Involutions in classical groups
We can now describe the classes of involutions in the classical groups considered
above, and in their central quotients. Since we consider algebraic groups over fields of
odd characteristic, the involutions in our groups are semisimple elements. Therefore,
involutions are conjugate in the algebraic group G to elements in the torus T of diago-
nal elements considered above in the various cases of Subsections 3.1-3.4. An element
in T has order two if it is not trivial and the diagonal entries are all ±1.

In each case we see that we can sort the +1 and −1 entries by conjugation with
Weyl group elements. This shows that such a class of involutions is parameterized by
the dimension of its −1 eigenspace in the given (natural) representation.

The centralizer of such an involution is the intersection of G and the centralizer in
the general linear group in which G is embedded. The root system of the connected
component of the centralizer is easy to see: it consists of the roots which have the
element in their kernel, see [Car93, 3.5.3].

More precisely, we find the following types of centralizers in the algebraic group:
In type A` the centralizers are of type Ak−1+A`−k if the−1-eigenspace is k-dimensional.
In type C` the centralizers have type Ck + C`−k , in type B` we get B`−k + Dk , and in
type D` it is Dk + D`−k for k 6= 1 and D`−1.

If we also consider involutions in the central quotients of the G considered above,
we have to look at elements of T whose square is a scalar matrix. For such elements a
few additinal types of centralizer occur, namely centralizers of type A`−1 in groups of
type C` and D`, and centralizers of type D` and B`−1 in groups of type B`.

Note, that not all types of centralizers mentioned above occur for all ` and k (for
example, the number of −1 entries in elements of T is always even). And some of the
mentioned classes may not be F-stable for certain Frobenius actions and congruence
conditions on q . Much more detailed information about involutions and their central-
izers can be found in [GLS99, Chapter 4], but we do not need this here.

We see from this description of centralizers that we could also define the set of
involutions I in Theorem 1.1 as those involutions whose centralizer have a composition
factor of the same type as G and rank between 1/3 and 2/3 times the rank of G. This
description does not refer to a particular representation of G.

4 Preliminary results
In this section we collect some facts for later reference. Recall that, for i ≥ 1, the i-th
cyclotomic polynomial φi (X) over the rational numbers is recursively defined by the
property X i

− 1 =
∏

d|i φd(X).

Lemma 4.1 Let q be odd.

(a) Then φ1(q) = q − 1 and φ2(q) = q + 1 are divisible by 2 and exactly one of
them has 2-part 2, and for i > 2,

(φi (q))2 =

{
2 if i is a power of 2
1 otherwise.

10



(b) In particular

(qn
+ 1)2 =

{
2 if n is even
(q + 1)2 if n is odd

and if n = 2ak with k odd and a ≥ 1, then (qn
− 1)2 = (q2

− 1)2 · 2a−1.

(c) For positive integers k, n with (k)2 < (n)2 we have

(qn
− 1)2 > (qk

± 1)2.

Proof. (a) Let n, a, b be positive integers with n = ab. Then qn
− 1 = qab

− 1 =
(qa
− 1)(qa(b−1)

+ . . .+ qa
+ 1). If a = (n)2 the second factor has an odd number of

summands, and so is odd. This shows that (qn
− 1)2 = (qa

− 1)2. So the only integers
i for which φi (q) is even are the powers i = 2k with k ≥ 0. Since for k > 0 we have
φ2k (X) = X2k−1

+ 1, we see that, for k > 1, φ2k (q) ≡ 2 (mod 4).
(b) For the first part consider q2n

− 1 = (qn
− 1)(qn

+ 1). Only φ2(n)2(q) divides
qn
+1 and has a non-trivial 2-part. For the second part we have (qn

−1)2 = (q2a
−1)2

from the proof of part (a), and equality of this expression with (q2
− 1)2 · 2a−1 follows

from the first assertion of (b), just proved.
(c) This follows from part (b) if k is even. Also (b) implies (qn

− 1)2 > (qk
+ 1)2

if k is odd. Finally for k odd, by the proof of (a), (qk
−1)2 = (q−1)2 < (qn

−1)2. �

The next statement refers to some concepts defined in Subsection 3. Recall that the
Weyl group of type B` and C` is S2 o S`, and that the Weyl group W of type D` is an
index 2 subgroup of the Weyl group W (B`) of type B` that projects onto S`, namely,
W (B`) = W ∪̇Ww` with w` as defined in Subsection 3.4, and W = W (B`) ∩ Alt2`
(where Alt2` is the alternating group of degree 2`).

Lemma 4.2 Let n, λ, d be positive integers such that 2 ≤ d ≤ n/2, and let Sn be the
symmetric group on n points.

(a) The proportion p¬d(n) of elements of Sn with no cycle of length divisible by d
satisfies

1
4n1/d < p¬d(n) <

3
n1/d .

(b) If d divides λ, then the proportion of elements in Sn having a cycle of length λ,
and on the remaining n − λ points no cycles of length divisible by d, is p¬d(n −
λ)/λ.

(c) Let W be the Weyl group of type Bn , Cn or Dn . If d divides λ, then the proportion
of elements in W for which the projection to Sn has the properties of part (b) is
p¬d(n − λ)/λ.

(d) Let W be the Weyl group of type Bn , Cn or Dn . Let C be a conjugacy class in Sn
whose elements contain a cycle τ of length less than n. Let C̃ be the preimage of
C under the surjection W → Sn , or in case Dn under the surjection Wwn → Sn .
In either case the proportion of elements in C̃ which have τ as a positive cycle
is 1/2. Moreover if W is of type Bn then the proportion of elements in C̃ which
lie in the reflection subgroup of type Dn is 1/2.

11



Proof. (a) From [BLGN+02, Theorem 2.3(b)] we get the more precise lower and upper
bounds (the quotient of which converges to 1 for growing n):

c(d)
(

d
n

)1/d

(1−
1
n
) ≤ p¬d(n) ≤ c(d)

(
d
n

)1/d

(1+
2
n
),

where c(d) = 1
0(1−1/d) .

For 2 ≤ d ≤ n/2 we have 1/2 ≤ 1 − 1/d ≤ 1 and since the 0-function 0(x)
is decreasing for 0 < x ≤ 1 we have 1 ≤ 0(1 − 1/d) ≤ 0( 1

2 ) =
√
π < 2, hence

1
2 < c(d) ≤ 1. The real function x 7→ x1/x has its maximum at x = e and this yields
that 1 ≤ d1/d < 3/2 for all d ≥ 2. Furthermore, for n ≥ 2 we have 1/2 ≤ 1−1/n ≤ 1
and 1 ≤ 1+ 2/n ≤ 2.

(b) A λ-subset can be chosen in
(n
λ

)
ways and a λ-cycle on these points in (λ− 1)!

ways; a permutation on the remaining n − λ points with no cycles of length divisible
by d can be chosen in (n − λ)! p¬d(n − λ) ways. Thus the number of elements of Sn
with the required properties is n! p¬d(n − λ)/λ.

(c) The Weyl group W in this case is W = S2 o Sn < S2n , or a subgroup of index
2 that projects onto Sn in the case of Dn . Thus the first assertion follows immediately
from part (b).

(d) We define maps f, f ′ on each such C̃ . Let w ∈ C̃ , let σ be the corresponding
element of C , and let τ be a cycle of length less than n. In particular, σ has at least
two cycles. Let i be the least entry in the cycle τ , and define f (w) = (i, ī)w. Then
f (w) also projects to σ and all cycles of σ have the same sign for f (w) as for w,
except for the cycle τ which has changed sign. In the case of Bn or Cn , this implies
that f (w) ∈ C̃ . Moreover f is bijective and f interchanges the elements for which τ
is a positive cycle with those for which it is a negative cycle, proving the first assertion
of (d) for types Bn and Cn .

Now suppose that W is of type Dn so that W ′ = W ∪̇Wwn and W = W ′ ∩ Alt2n ,
where W ′ is the Weyl group of type Bn . Let C1,C2 be the preimages of C in W,Wwn ,
respectively. Then f maps even permutations to odd permutations, and vice versa, and
hence f interchanges C1 and C2, which implies the last assertion of (d). Choose k to
lie in a cycle of σ different from τ , and for w ∈ C1 ∪ C2 define f ′(w) = (k, k̄) f (w).
Then f ′(w) also projects to σ and f ′ maps even permutations to even permutations.
Hence f ′ fixes C1 and C2 setwise. Moreover, f ′ still interchanges the elements of
C1∪C2 for which τ is a positive cycle with those for which it is a negative cycle. Thus
f interchanges the set of elements of Ci (where i = 1, 2) for which τ is a positive
cycle with those for which it is a negative cycle. This proves the first assertion of (d)
for type Dn . �

Lemma 4.3 Let H be a finite group, I a union of conjugacy classes of involutions in
H and Z ≤ Z(H) a subgroup of the centre of H with I ∩ Z = ∅. Then

|P(H/Z , I Z/Z)|
|H/Z |

≥
|P(H, I )|
|H |

.

Proof. Note that every element of I Z/Z is an involution because I ∩ Z = ∅. The
canonical homomorphism H → H/Z maps elements h ∈ P(H, I ) (that is hk

∈ I for
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some k) to cosets hI ∈ P(H/Z , I Z/Z). Moreover, the image of P(H, I ) contains at
least |P(H, I )|/|Z | elements. So, |P(H, I )|/|Z | ≤ |P(H/Z , I Z/Z)| and the statement
follows on dividing by |H/Z |. �

Lemma 4.4 Let S be one of the groups Sp2`(q), SO2`+1(q) or SO±2`(q), and let X be
the corresponding group of matrices which map the defining bilinear form to a scalar
multiple of itself, namely GSp2`(q), GO2`+1(q) or GO±2`(q)

0, respectively. Let Z be
the centre of X and let S ≤ H ≤ G. Then the index of S(H ∩ Z) in H divides 4.

We prove in fact that |H : S(H ∩ Z)| ≤ 2 except in the case where S = SO±2`(q) or
SO2`+1(q) with q odd, H contains O±2`(q) or O±2`(q) respectively, and some element
of H multiplies the form by a non-square scalar. In this latter case, the index is 4.

Proof. Define the epimorphism π : X → F×q by g 7→ c if g maps the form defining S
to c times this form. Let K denote the kernel of π . Then K contains S, and K = S if
either q is even or S = Sp2`(q). In all other cases |K : S| = 2 (see for example, [KL90,
p.24, 2.5.11, 2.6.1]). The centre Z consists of the scalar matrices {a · id | a ∈ F×q },
and we have π(a · id) = a2.

Let S ≤ H ≤ X . If π(H) consists of squares in F×q then H ∩ Z contains repre-
sentatives of all cosets in H/(H ∩ K ), and hence H = (H ∩ K )(H ∩ Z) containing
S(H ∩ Z) as a subgroup of index at most 2. Suppose then that π(H) contains a non-
square, so that q is odd and (H ∩ K )(H ∩ Z) has index 2 in H . If S = H ∩ K then
again |H : S(H ∩ Z)| ≤ 2, while if S 6= H ∩ K then S is a special orthogonal group,
H contains the full orthogonal group, and |H : S(H ∩ Z)| = 4. �

5 Proof of Theorem 1.1

(i) Maximal tori in GLn(q) and GUn(q)

As introduced in Subsection 3.1, let G = GLn(F̄q), F the Frobenius morphism of G,
T the maximal torus of G, and W the Weyl group of G. The Frobenius map F raises
diagonal entries in elements of T to the εq-th power, where ε = 1 in the untwisted case
G F
= GLn(q) and ε = −1 in the twisted case G F

= GUn(q). Let w ∈ W .
By Lemma 2.2, the maximal tori of G F corresponding to the (F-)conjugacy class

of w are isomorphic to T Fw−1
= {t ∈ T |wF(t) = t}. We determine the structure of

this group as follows. Let t = diag(a1, . . . , an) ∈ T Fw−1
. For each cycle (i1, . . . , iλ)

of w, w permutes cyclically the diagonal entries b1 := ai1 , b2 := ai2 , . . . , bλ := aiλ of
t . The condition wF(t) = t yields for these diagonal entries the equations b2 = bεq1 ,

. . . , bλ = bεqλ−1 and b1 = bεqλ . Therefore, b(εq)
λ
−1

1 = 1 and bi = bεqi−1 for 1 < i ≤ λ.
Since distinct cycles of w act on disjoint sets of entries we get the following structure
of T Fw−1

: if (λ1, . . . , λr ) is the partition of n describing the cycle lengths of w, then
T Fw−1

is a direct product of cyclic groups of orders qλi − ελi , for 1 ≤ i ≤ r .
Note that, in the description of the w-action on t ∈ T Fw−1

, if the cycle length λ
is even then the corresponding cyclic direct factor of T Fw−1

has order qλ − 1, and the
involution in this direct factor has entry −1 precisely in positions i1, . . . , iλ.
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(ii) Maximal tori with mC ≥ 1/2 in GLn(q) and GUn(q)

Let a be a positive integer (which we specify in step (iv) below) and let M(a) ⊂ W be
the following union of conjugacy classes of W . An element w ∈ W is in M(a) if and
only if it contains a cycle of length 2ak, for some integer k such that n/3 < 2ak ≤ 2n/3,
and no other cycle has length divisible by 2a .

A maximal torus of G F corresponding to w ∈ M(a) has the form C × A, where C
is cyclic of order q2ak

− 1, and A is non-trivial and is a direct product of cyclic groups
of orders qr

± 1 for certain integers r with (r)2 < (2ak)2. By Lemma 4.1(c) and (a),
(qr
± 1)2 < (q2ak

− 1)2.
Now consider the subsets {x}× A ⊂ C× A such that |x | has maximal 2-part. There

are |C |/2 such elements x . Since all elements in A have 2-part of smaller order, all such
elements power up to the involution (z, 1) ∈ C× A, where z is the unique involution of
C . As we have seen above such an involution has−1 as an eigenvalue with multiplicity
2ak, so its centralizer in G is of type GL2ak(F̄q) × GLn−2ak(F̄q). Hence (z, 1) is an
involution in our set I .

In other words, using the notation mC introduced after Lemma 2.2, if C is a conju-
gacy class of W contained in M(a) then mC ≥ 1/2.

(iii) Estimating |P(G F, I)|/|G F| for GLn(q) and GUn(q)

We now obtain a lower bound for this proportion using Lemma 2.3 and considering
only the contributions from conjugacy classes of W contained in the subset M(a) de-
fined in (ii). For any positive integer a this yields:

|P(G F , I )|
|G F |

≥
1
2
·
|M(a)|
|W |

. (5)

By Lemma 4.2(b),
|M(a)|
|W |

=

∑
k

p¬2a (n − 2ak)
2ak

, (6)

where the sum is over all k such that n/3 < 2ak ≤ 2n/3.
By Lemma 4.2(a) and using 2ak ≤ 2n/3 we see that

p¬2a (n − 2ak)
2ak

≥
3

2n
p¬2a (n − 2ak) >

3
2n
·

1
4
·

1
(n − 2ak)1/2a >

3
8n
·

1
n1/2a .

The number of summands in (6) is at least (2n/3 − n/3)/2a
− 1 = n/(3 · 2a) − 1. If

(13/4) · 2a
≤ n, then this number is at least n/(39 · 2a).

Using these lower bounds for the summands in (5) we get

|P(G F , I )|
|G F |

>
1
2
·

3
8
·

1
n
·

1
n1/2a ·

n
39 · 2a =

1
208
·

1
2a · n1/2a , (7)

where a is any positive integer such that (13/4) · 2a
≤ n.
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(iv) Proof of Theorem 1.1 for GLn(q) and GUn(q)

If for growing n we evaluate the right hand side of (7) for a ∼ log2 log2 n we see that
|P(G F , I )|/|G F

| > c/ log2(n) for some constant c.
To get the explicit constant stated in Theorem 1.1 we must look a bit more closely.

Set f (a) = 2an1/2a
. Considering log2 f (a) = a + (log2 n)/2a as a function on real

numbers a ≥ 1, and computing its derivative, we find that this function has a minimum
at a0 = log2 ln 2+ log2 log2 n.

Now let c be the real number with −1/2 ≤ c < 1/2 such that a0 + c is an integer.
We evaluate log2 f (a0 + c) = log2 ln 2+ log2 log2 n+ c+ (log2 n)/(ln 2 · log2 n · 2c).
Thus

f (a0 + c) = ln 2 · 2c
· log2 n · 21/(2c ln 2)

= ln 2 · 2c
· e(1/2

c)
· log2 n < 3 log2 n (8)

(the factor 2c
· e(1/2

c) is maximal for c = −1/2 which yields the last inequality).
Computing a = a0 + c for some small values of n one can check that, for n ≥ 7,

we have a ≥ 1 and (13/4) · 2a
≤ n. For large n these properties clearly hold. So,

for n ≥ 7, we have found an a such that the last factor on the right hand side of (7) is
greater than 1/(3 log2 n) and so

|P(G F , I )|
|G F |

>
1

208
·

1
3 log2 n

=
1

624 log2 n
. (9)

Note that G is of type A` with n = ` + 1, and that for n > 2 we have 1/(log2 n) >
1/(2 log2 `).

For n < 7 we can easily check the statement of Theorem 1.1 by considering one
appropriate class of maximal tori directly. For example, if n = 6 consider the G F -
conjugacy class of maximal tori parameterized by the conjugacy class C of elements
in W with cycle type (4, 1, 1). A corresponding maximal torus is a direct product of
a cyclic group of order q4

− 1 and two cyclic groups of orders q ± 1. Thus the 2-
part of the order of the large cyclic factor is at least 4 times the 2-part of q ± 1, that
is mC ≥ 3/4. Furthermore |C |/|W | = 1/8. The theorem for this case follows by
applying Lemma 2.3 to this single summand which is large enough.

(v) Proof for SLn(q) ≤ H ≤ GLn(q) and SUn(q) ≤ H ≤ GUn(q)

We first consider, as in step (i) above, the cyclic subgroups of the groups T Fw−1
corre-

sponding to a cycle ofw of length λ. The corresponding diagonal entries of the element

t ∈ T Fw−1
are of the form b1, bεq1 , . . . , b(εq)

λ−1

1 , where bqλ−ελ
1 = 1. The product of

these diagonal entries is bk
1 where k = 1+εq+. . .+(εq)λ−1

= ελ−1
·(qλ−ελ)/(q−ε).

In particular, if b1 ∈ F̄×q has order qλ − ελ then this product has order q − ε and hence
is a generator of det(G F ).

In step (ii) we counted subsets of T Fw−1
of the form {(x, y) ∈ C × A | y ∈ A}

for certain x ∈ C . Each such subset is invariant under multiplication by elements from
A. Since A is not trivial we have just seen that A contains elements with any possible
determinant. Therefore, the sets we counted have the same number of elements in each
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coset of SLn(q) within GLn(q) in the untwisted case, and each coset of SUn(q) within
GUn(q) in the twisted case.

Now consider the elements of G F which are mapped under ϕ, as defined in equa-
tion (2), to the pairs (T, s)with s in one of the subsets {x}×A as above. These elements
are also equally distributed into the cosets with constant determinant because unipotent
elements have determinant 1.

This shows that the lower bound from step (iv) also holds for all groups H satisfy-
ing SLn(q) ≤ H ≤ GLn(q) or SUn(q) ≤ H ≤ GUn(q).

(vi) F-stable maximal tori in Sp2`(q), SO2`+1(q), and SO±2`(q)

First let G = Sp2`(F̄q). The description of maximal tori in G F is very similar to that
given in step (i), this time using the description of the Weyl group W and its action on
the torus of diagonal matrices given in Subsection 3.2.

Consider the action of an element w ∈ W on some element t ∈ T Fw−1
, say

t = diag(a1, . . . , a`, a−1
` , . . . , a−1

1 ). If the element π(w) ∈ S` has a positive cy-
cle τ = (i1, i2, . . . , iλ) of length λ, then w permutes λ independent diagonal entries
of t cyclically, say b1, b2, . . . , bλ, and in the same way permutes cyclically their in-
verses b−1

1 , b−1
2 , . . . , b−1

λ . (Here each bj = a±1
i j

.) The equation wF(t) = t restricted

to these diagonal entries describes a cyclic subgroup of order qλ − 1, just as in the
case of GLn(q). If τ is a negative cycle of π(w) then w permutes the 2λ entries

b1, b2, . . . , bλ, b−1
1 , . . . , b−1

λ cyclically. In this case we have b−1
1 = bq

λ = · · · = bqλ
1 ,

so the corresponding cyclic subgroup of T Fw−1
has order qλ + 1.

Again, the involution in the cyclic subgroup of T Fw−1
corresponding to the cycle

τ has entry −1 precisely in positions i j and 2`+ 1− i j , for 1 ≤ j ≤ λ.
The same description holds for the groups SO2`+1(q) described in Subsection 3.3

of type B`, and the groups SO±2`(q) described in Subsection 3.4 of type D` or 2 D`.

(vii) Proof of Theorem 1.1 for Sp2`(q), SO2`+1(q), and SO±2`(q)

We can carry over steps (ii), (iii) and (iv), now with ` instead of n, almost exactly. The
variation is that, in this case, we define M(a) as the subset of elements of W with a
positive cycle of length 2ak, such that k is odd and `/3 < 2ak ≤ 2`/3, and no other
(positive or negative) cycle has length divisible by 2a .

In the description of |M(a)|/|W | in equation (6) we now use Lemma 4.2(c) and (d)
which give an additional factor 1/2 (because we only consider positive cycles of length
2ak). The rest of the argument remains the same, so that we get, for ` ≥ 7,

|P(G F , I )|
|G F |

>
1

1248 log2 `
. (10)

That this inequality also holds for values of ` up to 6 can be checked by considering
appropriate single classes of tori as discussed at the end of step (iv).

16



(viii) Proof for groups H satisfying Sp2`(q) ≤ H ≤ GSp2`(q), or SO2`+1(q) ≤

H ≤ GO2`+1(q), or SO±2`(q) ≤ H ≤ GO2`
±(q)0

Set S := G F
= Sp2`(q), SO2`+1(q), or SO±2`(q), and let X be the corresponding

group as in Lemma 4.4 and Z := Z(X), so that S ≤ H ≤ X . As in Lemma 4.4 we can
write H , or a subgroup of H of index at most 4, as S(H ∩ Z) = {gz | g ∈ SF and
z ∈ H ∩ Z}. Note that in the proof of Theorem 1.1 for the groups S we only counted
elements g ∈ S with (|g|)2 ≥ (q2

− 1)2. For such an element g, and for all z ∈ H ∩ Z ,
the product gz powers up to the same involution as g does because z has 2-part at most
(q − 1)2. In particular, P(S(H ∩ Z), I )/|S(H ∩ Z)| = P(S, I )/|S| and, therefore,

P(H, I )
|H |

≥
P(S(H ∩ Z), I )
|S(H ∩ Z)|

1
|H : S(H ∩ Z)|

=
P(S, I )
|S|

1
|H : S(H ∩ Z)

≥
P(S, I )

4|S|
.

This completes the proof of Theorem 1.1.

(ix) Proof of Corollary 1.2

The information given by Lemma 4.3 is sufficient to enable us to deduce Corollary 1.2
from Theorem 1.1. Let H, I be as in Theorem 1.1 with X, S as in one of the lines
of Table 1. Let Z0 ≤ Z(X), so that S ≤ H ≤ X where L = L Z0/Z0 for L ≤ X .
Now H ∼= H/(H ∩ Z0), H ∩ Z0 ≤ Z(H) and (H ∩ Z0) ∩ I = ∅. The assertion of
Corollary 1.2 now follows from Lemma 4.3 and Theorem 1.1.

6 Method of computation for small rank cases
For the small rank cases in Theorem 1.1 we did computer calculations using the tools
provided by the CHEVIE [GHL+96] system.

To describe them we use the notation and descriptions from [Car93, 1.9, 1.11, 1.19,
3.1]. In CHEVIE a series of groups of Lie type G F is specified by a root datum
(X,8, Y,8∨) (as defined on [Car93, p.19]) with respect to some F-stable maximal
torus T ≤ G and a matrix F0 which describes the induced action of the Frobenius map
on the lattice Y . For elements w in the Weyl group W we also write w for its action
induced on Y . Maximal tori of G are isomorphic to Y ⊗Z Qp′/Z, where Qp′ is the
subgroup of the additive group of rational numbers consisting of those rationals with
denominators not divisible by the characteristic p of Fq .

In this setup the equation wF(t) = t , for t ∈ T , translates to a matrix equation
(q F0w

−1
− idY )t = 0 where the torus elements t are written as tuples with rank(Y )

entries in Qp′/Z with respect to the chosen basis of Y . We compute transformation
matrices L and R such that L(q F0w

−1
− idY )R has diagonal form. Then it is easy to

describe the solutions, and hence also the structure of T Fw−1
, as a product of cyclic

groups. By multiplication with R we also get the solutions in the original basis.
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Finding the involutions: All involutions have conjugates contained in T , and the G-
conjugacy classes of involutions are parameterized by the W -orbits on the involutions
in T , see [Car93, 3.7.1]. In our setup we can write down all the involutions in T as
all the non-zero tuples with entries 0, 1/2 ∈ Qp′/Z. CHEVIE can compute the W -
orbits on this set and, for a representative in each orbit, the stabilizer in W and the
system of roots having a representative in the kernel. This determines the G-classes of
involutions together with the Lie types of their centralizers, see [Car93, 3.5.3].

It turns out that we can compute the diagonalization above generically, that is,
without specializing q , if we distinguish a finite number of congruence classes for q
(modulo `+ 1 in type A`, modulo 3 in type E6 and modulo 2 or 4 in types B`, C`, E7
and D`, and nothing to distinguish in the remaining cases). The direct factors which
describe the maximal tori T Fw−1

always have orders a rational number times a product
of cyclotomic polynomials evaluated at q. For our estimates we further distinguish the
cases when q is congruent to 1 or 3 modulo 4 or, equivalently, when q − 1 or q + 1,
respectively, is divisible by 4 or some higher power of 2. We only consider involutions
with are non-trivial in the direct components with the maximal number of factors q−1
or q + 1, respectively, in their orders (since depending on q the orders of the other
direct factors can have an arbitrarily smaller 2-part).

Consider a direct product of cyclic groups C1×· · ·×Cr . The proportion of its ele-
ments which power up to the involution which is of order 2 in components C1, . . . ,Cs
and trivial on Cs+1, . . . ,Cr can be computed by counting, for each possible 2-part 2k ,
the elements in C1, . . . ,Cs for which the order has 2-part equal to 2k , and the elements
in Cs+1, . . . ,Cr for which the order has 2-part less than 2k . This can be done using the
following lemma.

Lemma 6.1 If C is a cyclic group of even order 2k
· m with m odd, and if 0 ≤ a < k,

then the proportion of elements in C for which the order has 2-part equal to 2k−a ,
and the proportion of elements for which the order has 2-part less than 2k−a , are both
1/2a+1.

Proof. Let C = 〈c〉. Then each odd power of c has order with 2-part equal to 2k , and
each even power of c has order with smaller 2-part. This proves the result for a = 0.
We now use induction on k. The case k = 1 is covered by the case a = 0. For k > 1
and a > 0, we use the inductive hypothesis for the group 〈c2

〉. �

For particular values of q we can always consider all cyclic factors for all classes
of tori and so compute the exact values of |P(G F , I )|, using Lemma 2.3.

7 Tables for small rank cases
The following table contains the detailed results for some small rank cases computed
as described in Section 6. We cover classical types up to rank 4. (We have done the
computations for all simple G of rank at most 8, but we do not print all the results.)
And we cover all exceptional simple types.

The first column describes the type of the group G F . We give the type of the root
system, prepended by the order of the Frobenius action on the Dynkin diagram if not

18



trivial. A further index indicates the isomorphism type of the algebraic group G within
its isogeny class. It is sc or ad for the simply connected or adjoint group, respectively.
In type D` there is also SO for the special orthogonal groups and for even ` there is
H S for the half spin groups. In type A` there is one isomorphism type for each divisor
d of ` + 1. If d is not 1 (corresponding to the simply connected groups) or ` + 1
(corresponding to the adjoint groups), we indicate the group by d as an index.

The second column lists the classes of involutions in G by specifying the types
of their centralizers. A component T1 specifies a one-dimensional torus in the centre
of the connected component of the centralizer. If the centralizer is not connected we
specify the order of the component group after a ‘dot’. In some cases there are several
classes with the same type of centralizer, but we do not want to give the precise root
datum and the representatives used in the computations. For the classical types we did
not try to identify the classes in terms of the natural representation.

The third column specifies a congruence condition on q for which the lower bound
of the proportion of elements in G F powering to an involution in the given class was
computed. The lower bound bI for this proportion is given in the fourth column.

Although we need to distinguish different congruence classes of q , depending on
the type of G, during the computations, we often find the same lower bounds in dif-
ferent cases, this simplifies the third column. (Even in cases where we find the same
lower bound for q ≡ 1 or 3 mod 4, the contribution from specific classes of tori can be
different.)

We leave out a few lines corresponding to classes of involutions in G which are not
F-stable (and so the proportion in the last column is 0).

A1(q)ad T1.2 – 0.6250
A1(q)sc A1 – 0.6250
A2(q)ad A1 + T1 1 mod 4 0.5937

3 mod 4 0.5625
A2(q)sc A1 + T1 1 mod 4 0.5937

3 mod 4 0.5625
2 A2(q)ad A1 + T1 1 mod 4 0.5625

3 mod 4 0.5937
2 A2(q)sc A1 + T1 1 mod 4 0.5625

3 mod 4 0.5937
C2(q)ad (A1 + A1).2 – 0.4140

( Ã1 + T1).2 – 0.3281
C2(q)sc C2 – 0.4140

A1 + A1 – 0.3281
G2(q) A1 + Ã1 – 0.5781
2G2(
√

32m+1) A1 + Ã1 – 0.3750
A3(q)ad A2 + T1 1 mod 4 0.3515

3 mod 4 0.1875

19



(A1 + A1 + T1).2 1 mod 4 0.4785
3 mod 4 0.5742

A3(q)sc A1 + A1 + T1 1 mod 4 0.2382
3 mod 4 0.2890

A3 1 mod 4 0.5917
3 mod 4 0.4726

A3(q)2 (A1 + A1 + T1).2 1 mod 4 0.2128
3 mod 4 0.2812

(A1 + A1 + T1).2 1 mod 4 0.2441
3 mod 4 0.2734

A3 1 mod 4 0.3574
3 mod 4 0.1718

2 A3(q)ad A2 + T1 1 mod 4 0.1875
3 mod 4 0.3515

(A1 + A1 + T1).2 1 mod 4 0.5742
3 mod 4 0.4785

2 A3(q)sc A1 + A1 + T1 1 mod 4 0.2890
3 mod 4 0.2382

A3 1 mod 4 0.4726
3 mod 4 0.5917

2 A3(q)2 (A1 + A1 + T1).2 1 mod 4 0.2812
3 mod 4 0.2128

(A1 + A1 + T1).2 1 mod 4 0.2734
3 mod 4 0.2441

A3 1 mod 4 0.1718
3 mod 4 0.3574

B3(q)ad (C2 + T1).2 – 0.2470
( Ã1 + A1 + A1).2 – 0.2587
A3.2 – 0.2646

B3(q)sc Ã1 + A1 + A1 – 0.2636
B3 – 0.5322

C3(q)ad C2 + A1 – 0.5263
( Ã2 + T1).2 – 0.2695

C3(q)sc C2 + A1 – 0.2587
C2 + A1 – 0.2470
C3 – 0.2646

A4(q)ad A3 + T1 1 mod 4 0.3999
3 mod 4 0.3613
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A2 + A1 + T1 1 mod 4 0.3505
3 mod 4 0.3476

A4(q)sc A2 + A1 + T1 1 mod 4 0.3505
3 mod 4 0.3476

A3 + T1 1 mod 4 0.3999
3 mod 4 0.3613

2 A4(q)ad A3 + T1 1 mod 4 0.3613
3 mod 4 0.3999

A2 + A1 + T1 1 mod 4 0.3476
3 mod 4 0.3505

2 A4(q)sc A2 + A1 + T1 1 mod 4 0.3476
3 mod 4 0.3505

A3 + T1 1 mod 4 0.3613
3 mod 4 0.3999

B4(q)ad (B3 + T1).2 – 0.2210
(C2 + A1 + A1).2 – 0.2080
(A3 + Ã1).2 – 0.1341
D4.2 – 0.2510

B4(q)sc C2 + A1 + A1 – 0.1881
D4 – 0.2443
B4 – 0.4060

C4(q)ad C3 + A1 – 0.3338
(C2 + C2).2 – 0.2803
( Ã3 + T1).2 – 0.2243

C4(q)sc C2 + C2 – 0.2080
C4 – 0.2510
C3 + A1 – 0.2210
C3 + A1 – 0.1341

D4(q)ad (A3 + T1).2 – 0.2243
(A1 + A1 + A1 + A1).4 – 0.2007
(A3 + T1).2 – 0.2243
(A3 + T1).2 – 0.2243

D4(q)sc A1 + A1 + A1 + A1 – 0.1408
D4 – 0.2443
D4 – 0.2443
D4 – 0.2443

D4(q)SO (A1 + A1 + A1 + A1).2 – 0.1807
(A3 + T1).2 – 0.2185
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(A3 + T1).2 – 0.1052
D4 – 0.3693

2 D4(q)ad (A3 + T1).2 – 0.4433
(A1 + A1 + A1 + A1).4 – 0.3598

2 D4(q)sc A1 + A1 + A1 + A1 – 0.2353
D4 – 0.5678

2 D4(q)SO (A1 + A1 + A1 + A1).2 – 0.2353
(A3 + T1).2 – 0.2236
(A3 + T1).2 – 0.1630
D4 – 0.1328
(A1 + A1 + A1 + A1).4 – 0.5781

3 D4(q)sc A1 + A1 + A1 + A1 – 0.5781
F4(q) B4 – 0.4060

C3 + A1 – 0.3338
E6(q)sc A5 + A1 1 mod 4 0.3288

3 mod 4 0.3289
D5 + T1 1 mod 4 0.4053

3 mod 4 0.3845
2 E6(q)ad D5 + T1 1 mod 4 0.3845

3 mod 4 0.4053
A5 + A1 1 mod 4 0.3289

3 mod 4 0.3288
2 E6(q)sc A5 + A1 1 mod 4 0.3289

3 mod 4 0.3288
D5 + T1 1 mod 4 0.3845

3 mod 4 0.4053
E7(q)ad (E6 + T1).2 – 0.1842

D6 + A1 – 0.4508
A7.2 – 0.1686

E7(q)sc D6 + A1 – 0.2669
D6 + A1 – 0.2155
E7 – 0.3211

E8(q) E7 + A1 – 0.3537
D8 – 0.3651
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