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Abstract

Let G be a finite group of Lie type in odd characteristic defined over a field with q elements. We prove
that there is an absolute (and explicit) constant c such that, if G is a classical matrix group of dimension
n � 2, then at least c/ log(n) of its elements are such that some power is an involution with fixed point
subspace of dimension in the interval [n/3,2n/3). If G is exceptional, or G is classical of small dimension,
then, for each conjugacy class C of involutions, we find a very good lower bound for the proportion of
elements of G for which some power lies in C.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we derive a lower bound for the proportion of elements, in a finite group of Lie
type in odd characteristic, for which some power is a special kind of involution. For a finite group
H and I ⊂ H a subset of involutions in H , let

P (H, I) = {
h ∈ H

∣∣ |h|is even, h|h|/2 ∈ I
}

(1)
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Table 1
Table for Theorem 1.1 and Corollary 1.2

S X n

SL�+1(q) GL�+1(q) � + 1
SU�+1(q) GU�+1(q) � + 1
Sp2�(q) GSp2�(q) 2�

SO2�+1(q) GO2�+1(q) 2� + 1
SO±

2�
(q) GO±

2�
(q)0 2�

that is, the set of elements of H which “power up” to an involution in I . We determine lower
bounds for the proportion |P (H, I)|/|H | of such elements for certain groups H which are closely
related to the finite simple groups of Lie type in odd characteristic, and certain sets I of involu-
tions.

Our interest in these elements in classical groups was motivated by an algorithmic application
originating in work of Leedham-Green and O’Brien [LGO07] which is discussed briefly at the
end of this section. They consider the subset I of involutions, in certain finite n-dimensional
classical groups H in odd characteristic, that have a fixed point subspace of dimension r , where
n
3 � r < 2n

3 . They prove in [LGO07, Theorem 8.1] that there is an explicit constant c such that

|P (H, I)|
|H | >

c

n
.

We consider a wider class of groups and show that there is a lower bound of the form c/ logn.
We denote by GSp2�(q), GUn(q) and GOn(q) the general symplectic, unitary, and orthogonal
groups, respectively, that is, the groups preserving the relevant forms up to a scalar multiple;
GO±

2�(q)0 denotes the connected general orthogonal group—the index 2 subgroup of GO±
2�(q)

that does not interchange the two SO±
2�(q)-classes of maximal isotropic subspaces.

Theorem 1.1. Let q be a power of an odd prime and � an integer with � � 2. Let S,X,n be as in
one of the lines of Table 1, so that n is the dimension of the natural representation of X. Let H

satisfy S � H � X and let I ⊂ H be the set of involutions which have a fixed point subspace of
dimension r with n/3 � r < 2n/3. Then

|P (H, I)|
|H | � 1

5000 log2 �
.

Better bounds for medium rank groups may be obtained, for example, in the case of groups
in lines 1–2 of Table 1, by evaluating the expression in (5). We obtain similar bounds for pro-
jective groups: note that, for X as in one of the lines of Table 1 and a subgroup Z0 of the centre
Z(X), since the subset I of involutions in Theorem 1.1 contains no central elements, the set
I := IZ0/Z0 is a subset of involutions in HZ0/Z0.

Corollary 1.2. Let q, �,H, I be as in Theorem 1.1 with S,X,n as in one of the lines of Table 1.
Let Z0 � Z(X), set I := IZ0/Z0 and, for L � X set L := LZ0/Z0. Then S � H � X, and
|P (H, I)|/|H | � 1/(5000 log2 �).

In a third result we consider groups of Lie type of small rank in odd characteristic (including
all exceptional simple types) and I a subset of involutions with any fixed type of centralizer.
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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Table 2
Table for Theorem 1.3

Type of X G2
2G2

3D4 F4 E6
2E6 E7 E8

c .375 .578 .578 .333 .328 .328 .168 .353

Type of X A�
2A� B� C� D�

2D�

Values for � 1,2,3,4 2,3,4 3,4 2,3,4 4 4
c .171 .187 .134 .134 .105 .132

Theorem 1.3. Let X = X�(q) be a finite group of Lie type of rank � defined over a field of odd
order q , such that X and a positive real number c are as in one of the cases of Table 2. Let I be
a conjugacy class of involutions in X. Then |P (X, I)|/|X| � c.

In Section 6 we describe precisely the groups X and involution classes we consider, and we
explain how we compute a quite precise lower bound for |P (X, I)|/|X|. A table with more
details is given in Section 7.

Upper bounds and other groups

Our method to prove Theorem 1.1 does not give upper bounds. We did some numerical ex-
periments for small fixed q ∈ {3,5,9,13} and groups from the theorem up to dimension 1000.
We computed many pseudo-random elements and checked if they powered up to an involution
with a fixed point space of dimension in the right range. The proportion of these elements is not
a monotonic function in the dimension, but the trend was that the proportion was about 25% for
small dimensions and went down to about 15% in dimension 1000 (independently of the type of
the group and q). Further, statistical tests on the data from the groups H we sampled strongly
indicate that P(H, I)/|H | = O(1/ log(�)). This seems to suggest at least that we cannot expect
that there is a lower bound independent of the rank of the group.

From our concrete computations for small rank we also guess that Theorem 1.1 is actually true
for any finite group of Lie type GF corresponding to a simple algebraic group G. But in some
cases like the spin groups, or groups of type A� which are not simply-connected or adjoint we
do not have a sufficiently good description of the maximal tori and the involutions they contain,
along with the type of the involution centralizers. Detailed information on the tori and involutions
is used for the groups mentioned above in our proof.

Algorithmic application

In [LGO07], Leedham-Green and O’Brien introduce a Las Vegas algorithm to find standard
generators for a finite simple n-dimensional classical group H in odd characteristic in its natural
action. Their algorithm relies on finding an element in the set I of ‘strong’ involutions, namely
involutions having fixed point subspace of dimension r with r ∈ [n/3,2n/3), or equivalently
(−1)-eigenspace of dimension in the interval (n/3,2n/3]. To do this, they search for elements
in P (H, I) by selection of independent, uniformly distributed random elements.

The complexity of the algorithm of Leedham-Green and O’Brien (see [LGO07, Theorem 1.1])
is currently O(nξ + n4 logn + n4 logq + nχ), where ξ is an upper bound on the number of el-
ementary field operations (that is, additions, multiplications or inversions) required to produce
an independent, uniformly distributed random element of H , and χ is an upper bound on the
number of elementary field operations required for one application of a discrete log oracle over
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
J. Algebra (2008), doi:10.1016/j.jalgebra.2008.05.009
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Fq or Fq2 . In particular this complexity involves a cost of O(nξ +n4 logn+n4 logq) to compute
a strong involution, see [LGO07, Theorem 8.27]. Using our lower bound reduces the complexity
of computing a strong involution by replacing the first factor n by logn. However, the over-
all complexity of the complete algorithm in [LGO07] remains unchanged because of one other
costly procedure involved in it.

Outline of the paper

In Section 2 we explain our strategy for counting elements that power up to involutions in I .
This involves detailed information about maximal tori in the groups S, and this information
is given in Section 3. Section 4 contains some preliminary results. We prove Theorem 1.1 in
Section 5, and in the last subsection (9) we deduce Corollary 1.2 from Theorem 1.1. In Sections 6
and 7 we discuss the small rank counting strategy and results.

2. Setup and strategy

2.1. Setup for the groups

For the proof of Theorem 1.1 we consider finite groups of Lie type as follows.
Let G be a connected reductive algebraic group over an algebraic closure F̄q of a finite field

Fq with q elements and such that G is defined over Fq , and let F :G → G be the corresponding
Frobenius morphism. The subgroup GF = {g ∈ G | F(g) = g} of elements of G fixed under F

is a finite group of Lie type. We denote by � the semisimple rank of G, that is, the rank of the
root system of G.

By [Car93, p. 11], each element g ∈ GF has a unique Jordan decomposition g = su = us,
where s, u ∈ GF , s is semisimple and u is unipotent. The element s is called the semisimple part
of g and u is called the unipotent part of g. Unipotent elements are p-elements, where p is the
characteristic of Fq and semisimple elements have order prime to p. A subgroup U of G is called
F -stable if F(U) = U. Further, for g, t ∈ G and U a subgroup of G we denote gU = gUg−1

and gt = gtg−1.

For more details on groups of Lie type and their basic properties we refer to the overview
chapter [Car93, Chapter 1] or the book [Spr98].

For a positive integer n and a prime p we can write n = pam, such that p does not divide m,
for unique integers a and m. Then we denote (n)p := pa and (n)p′ := m, called the p-part and
p′-part of n respectively.

2.2. Strategy of counting

We now assume that q is odd. Let I ⊆ GF be some union of GF -conjugacy classes of in-
volutions. To count the elements in the set P (GF , I ) we adapt methods employed in [IKS95,
Section 6] for counting p-singular elements in finite groups of Lie type. (We note that similar
methods were used by Lehrer in [Leh92] for exploiting the character theory of Weyl groups to
evaluate functions on F -stable maximal tori in Lie type groups. The approach has been devel-
oped in a general setting in [NP08].) In addition we apply a result of Erdős and Turán as refined
in [BLGN+02, Theorem 2.3].

We begin by noting that an element of GF lies in P (GF , I ) if and only if its semisimple part
lies in P (GF , I ), since by our assumption unipotent elements have odd order.
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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Lemma 2.1. Let s ∈ GF be semisimple. Then the number of unipotent elements u ∈ GF such
that su = us is equal to the number of F -stable maximal tori of G containing s.

Proof. Unipotent elements commuting with s and maximal tori containing s are contained in
the connected component of the centralizer of s in G, which is a reductive subgroup of G, see
the proof of [Car93, Theorem 3.5.3]. The statement now follows from two theorems of Steinberg
which show that both numbers equal (|CF |2)p where p is the defining characteristic of G and C

the centralizer of s in G, see [Car93, 3.4.1, 6.6.1]. �
Using similar notation to [IKS95, p. 154], for a fixed semisimple element s ∈ GF , we define

X(s) := {
g ∈ GF

∣∣ g = su, u ∈ GF unipotent and su = us
}
,

the set of elements of GF with semisimple part s, and

Y(s) := {
(s, T )

∣∣ T ⊂ G an F -stable maximal torus, s ∈ T
}
.

Lemma 2.1 shows that, for any fixed semisimple s ∈ GF , there exists some bijection
ϕs :X(s) → Y(s).

This shows that there is a bijection

ϕ : P
(
GF , I

) =
⋃̇
s

X(s) −→
⋃̇
s

Y (s), (2)

where s runs over the semisimple elements in P (GF , I ), given by g = su �→ ϕs(g).
The set P (GF , I ) is invariant under GF -conjugacy and so the number of pairs (s, T ), for a

fixed F -stable maximal torus T , depends only on the GF -conjugacy class of T , and is equal to
|T ∩ P (GF , I )|. Thus

∣∣P (
GF , I

)∣∣ =
∑
T

|T |.∣∣TT ∩ P
(
GF , I

)∣∣, (3)

where the sum is over GF -conjugacy classes T of F -stable maximal tori in G and TT denotes a
representative from T .

Fix an F -stable maximal torus T and consider the Weyl group W = NG(T )/T . Since T is
abelian the image of t ∈ T under conjugation by h ∈ NG(T ) depends only on the coset w =
hT ∈ W , and we denote this image by wt . Elements w,w′ ∈ W are said to be F -conjugate if
w′ = x−1wF(x), for some x ∈ W ; note that F -conjugacy is an equivalence relation on W .

Lemma 2.2. Let GF ,T ,W be as above. Then the GF -conjugacy classes of F -stable maximal
tori of G are in bijection with the F -conjugacy classes of the Weyl group W of G as follows. If, for
g ∈ G, the torus gT is F -stable, then w(g) := g−1F(g)T ∈ W . Another F -stable maximal torus
hT , for h ∈ G, is GF -conjugate to gT if and only if w(g) and w(h) are F -conjugate. Writing
w := w(g), the torus (gT )F is mapped under conjugation by g to T Fw−1 := {t ∈ T | wF(t) = t}.

Proof. See [Car93, 3.3.3]. �

Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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If C ⊂ W is an F -conjugacy class and TC a corresponding F -stable maximal torus,
then [Car93, 3.3.6] shows that the GF -conjugacy class of TC contains |GF ||C|/(|T F

C ||W |) ele-
ments. Denote by mC the proportion of elements of T F

C lying in P (GF , I ), that is,

mC = |T F
C ∩ P (GF , I )|

|T F
C | . (4)

This yields a useful expression for the proportion of elements in P (GF , I ) in terms of the F -
conjugacy classes in W .

Lemma 2.3. With G,I as above we have

|P (GF , I )|
|GF | =

∑
C

mC · |C|
|W | ,

where the sum on the right hand side is over the F -conjugacy classes C ⊂ W , and mC is as
in (4).

Proof. Let T be a GF -conjugacy class of F -stable maximal tori of G corresponding to an

F -conjugacy class C ⊂ W , and let TC ∈ T . By (3), the contribution to |P (GF ,I )|
|GF | from T is

|T | |TC∩P (GF ,I )|
|GF | . As discussed above, |T | = |GF ||C|

|T F
C ||W | , and the second factor is mC

|T F
C |

|GF | . Thus the

contribution is

mC

|C|
|W |

|GF ||T F
C |

|T F
C ||GF | = mC

|C|
|W | . �

We obtain lower bounds for this proportion by showing that mC � 1/2 for certain F -
conjugacy classes C, and by estimating the proportion of elements of W in such classes C.

Remark 2.4. We may improve the first assertion of Theorem 5.2 of [IKS95] for finite classical
groups using Lemma 2.3 and our discussion in Section 5 on the structure of maximal tori in
these groups. Let I be the set of all involutions in a finite classical group G in odd characteristic.
Then, as we show in Section 5, each maximal torus in G has even order, and hence at least
half of its elements are in P (G, I). Thus mC � 1/2 for each class C in Lemma 2.3, and so that
lemma yields |P (G, I)|/|G| � 1/2 (whereas [IKS95, Theorem 5.2] states |P (G, I)|/|G| � 1/4
for these groups).

3. Maximal tori and involutions in classical groups

The aim of this section is to describe the background information we require about the struc-
ture of the maximal tori in the groups GF we consider, and to give a description of the involutions
and their centralizers.

For each Dynkin diagram of classical type we choose a group G and for the different types of
Frobenius actions on the Dynkin diagram we describe:
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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(i) an F -stable maximal torus T in G and the corresponding Weyl group W = NG(T )/T ;
(ii) the roots as maps T → F̄×

q ;
(iii) the action of the Weyl group W on T ;
(iv) the action of a Frobenius morphism F on T and W .

We also indicate how G is related to various simple algebraic groups with the same Dynkin
diagram.

For more details on the following descriptions see [DM91, Chapter 15]. Recall that F̄q is an
algebraic closure of the finite field Fq . We use the information and notation from Carter [Car93,
pp. 39–40] for the simply connected and adjoint types of the finite classical groups.

3.1. Type A�

Let n = � + 1. We consider G = GLn(F̄q). Its diagonal matrices form a maximal torus T .
We write diag(a1, . . . , an) for a diagonal matrix with diagonal entries a1, . . . , an. The upper
triangular matrices in G form a Borel subgroup and this determines a set of simple roots
α1, . . . , α�. We number them such that αi(diag(a1, . . . , an)) = aia

−1
i+1. The Weyl group W can

be described by its action on T . Its elements permute the diagonal entries (actually, an ele-
ment of W is determined by its action on a single element of T that has pairwise distinct
entries). The generating reflection along αi acts on elements t = diag(a1, . . . , an) of T by
interchanging the coordinates ai and ai+1, so W is isomorphic to Sn, the symmetric group
on n points. In the untwisted case GF = GLn(q) we choose a Frobenius map F such that
F(diag(a1, . . . , an)) = diag(a

q

1 , . . . , a
q
n). In the twisted (unitary) case GF = GUn(q) we choose

a Frobenius map such that F(diag(a1, . . . , an)) = diag(a
−q

1 , . . . , a
−q
n ). In both cases F acts triv-

ially on W , so the F -conjugacy classes are the conjugacy classes and they are parameterized by
partitions of n describing the cycle types of the permutations on n points (and on the n diagonal
entries of elements in T ).

The simply-connected algebraic group of type A� is G′ = SLn(F̄q), and T ∩ G′ is a maximal
torus of G′. We have G′F ∼= SLn(q) in the untwisted case, and G′F ∼= SUn(q) in the twisted case.

If Z is the centre of G then G/Z ∼= PGLn(F̄q) is the adjoint simple group of type A� and
T/Z is a maximal torus. We have (G/Z)F ∼= GF /ZF which is isomorphic to PGLn(q) in the
untwisted case, and PGUn(q) in the twisted case.

There are further simple groups Gd of type A� corresponding to each non-trivial divisor d

of n. These are homomorphic images of G′ but there is no easy description of the groups GF
d in

terms of the finite groups mentioned so far. We do not consider these groups in the sequel.

3.2. Type C�

Here we consider the symplectic groups G = Sp2�(F̄q). We choose an ordered basis
(e1, . . . , e�, f�, . . . f1) of a 2�-dimensional F̄q -vector space, and a symplectic form 〈,〉 with
〈ei, ej 〉 = 〈fi, fj 〉 = 0 and 〈ei, fj 〉 = δi,j for 1 � i, j � �, where δi,j = 0 if i 
= j and 1 if i = j .
Then G is the subgroup of GL2�(F̄q) consisting of all matrices that leave this form invariant.

The diagonal matrices in G have the form t := diag(a1, . . . , a�, a
−1
� , . . . , a−1

1 ) and they form
a maximal torus T . In this setup the upper triangular matrices of G are a Borel subgroup and
we number the corresponding simple roots α1, . . . , α� such that αi(t) = aia

−1
i+1 for 1 � i < � and

α�(t) = a2 (so these are the restrictions of the first � simple roots of GL2�(F̄q) to T ).
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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The Weyl group W = NG(T )/T acts naturally on {〈ei〉, 〈fi〉 | 1 � i � �} preserving the par-
tition with blocks {〈ei〉, 〈fi〉}, for 1 � i � �. We identify this set with {1, . . . , �, �̄, . . . , 1̄}, via

〈ei〉 �→ i and 〈fi〉 �→ ī, using the convention that ¯̄i = i. The group W = S2 � S� consists of all the
so-called signed permutations, that is, permutations w in S2� such that iw = (ī)w for all i.

As in Section 3.1, W can be described by its action on T . The elements of W permute the
diagonal entries. The generating reflection along αi , for 1 � i < �, interchanges the entries ai

and ai+1 and also interchanges the entries a−1
i and a−1

i+1. The reflection along α� interchanges

the middle entries a� and a−1
� . Each element w ∈ W leaves the set of pairs of entries {ai, a

−1
i }

invariant, and mapping w to its action on these pairs describes a surjective homomorphism π :
W → S� (the symmetric group on these � pairs of entries). The kernel of π is the subgroup of
elements which leave all pairs {ai, a

−1
i } invariant.

We choose a Frobenius morphism F such that F(diag(a1, . . . , a�, a−1
� , . . . , a−1

1 )) =
diag(a

q

1 , . . . , a
q
� , a

−q
� , . . . , a

−q

1 ). Then F acts trivially on W and the F -conjugacy classes of
W are the conjugacy classes.

To w ∈ W we associate a pair of partitions (λ,μ) of total sum � as follows. The entries of
the partitions are the cycle lengths of π(w) ∈ S�. A cycle of π(w) of length m is called positive
if it is the image of two w-cycles of length m, and negative if it is the image of one w-cycle of
length 2m. The partitions λ,μ are the multisets of lengths of positive cycles, and negative cycles,
respectively. Two elements of W are conjugate if and only if the associated pair of partitions
(λ,μ) is the same.

The group G = Sp2�(F̄q) is the simply-connected simple group of type C�. There is a surjec-
tive homomorphism (of algebraic groups) G → Ḡ to the adjoint simple group Ḡ of type C�. It
has the centre of G as kernel, and for odd q , the image of GF has index two in ḠF .

3.3. Type B�

Here we consider the special orthogonal groups G = SO2�+1(F̄q) in a similar manner to
the symplectic groups in case C�. We choose an ordered basis (e1, . . . , e�, e0, f�, . . . , f1) of
a (2� + 1)-dimensional vector space over F̄q and an orthogonal form 〈,〉 with 〈ei, fj 〉 = δi,j ,
〈e0, e0〉 = 1 and 〈ei, ej 〉 = 〈fi, fj 〉 = 0, for 0 � i � � and 1 � j � �, where δi,j = 0 if i 
= j and
1 if i = j . Then G is the subgroup of SL2�+1(F̄q) consisting of all matrices that leave this form
invariant. The set of diagonal matrices in G is a maximal torus T and consists of all matrices
of the form diag(a1, . . . , a�,1, a−1

� , . . . , a−1
1 ). The description of the Frobenius morphism F , the

Weyl group W , its action on the simple roots, and the action of the generating reflections of W

on this torus are almost the same as in the case of the symplectic groups in type C�, except that
we now have α�(diag(a1, . . . , a�,1, a−1

� , . . . , a−1
1 )) = a�. In particular, we still have W = S2 �S�.

Here G is the adjoint simple group of type B�. There is a surjective homomorphism from the
simply-connected groups Spin2�+1(F̄q) onto G with kernel of order 2 for odd q . The image of
the finite group Spin2�+1(q) in SO2�+1(q) has index 2.

3.4. Type D�

Here we consider G = SO2�(F̄q) as a subgroup of SO2�+1(F̄q) by ‘forgetting’ the middle
basis vector. This is the group generated by the root subgroups for roots in the subsystem of type
D� of long roots in the root system of type B�. We use the same maximal torus as in type B� and
the roots and Weyl group action corresponding to the long roots α1, . . . , α�−1 in type B�. The
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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Weyl group W has index 2 in the Weyl group W(B�) of type B� and an element of the latter is
in W if and only if it has an even number of negative cycles. Let w� ∈ W(B�) be the generating
reflection along the short simple root. Then w� /∈ W and W(B�) = W ∪̇ Ww�.

In the untwisted case we take the same Frobenius morphism F as in the case of B� so F -
conjugacy classes coincide with conjugacy classes in W . (A few conjugacy classes of W(B�)

contained in W split into two W -classes, but we do not need the details here.) The corresponding
finite group is GF = SO+

2�(q).
For the twisted case we twist that Frobenius morphism with the reflection w�. Then the F -

conjugacy classes of W are all the sets of the form Cw�, where C is a conjugacy class of W(B�)

not contained in W . The surjection π :W(B�) → S� is still surjective when restricted to W or to
the coset Ww� (because w� is in the kernel). The corresponding finite group is GF = SO−

2�(q).
The relationship between G and the simply-connected group of type D� is the same as in

type B�. However here G is not adjoint, and there is a surjection onto the adjoint group of type
D� which has as kernel the centre of G of order 2. For even � there is another type of simple
group of type D�, namely the half spin groups, which are also homomorphic images of the
simply-connected groups with kernel of order 2.

3.5. Involutions in classical groups

We can now describe the classes of involutions in the classical groups considered above, and
in their central quotients. Since we consider algebraic groups over fields of odd characteristic,
the involutions in our groups are semisimple elements. Therefore, involutions are conjugate in
the algebraic group G to elements in the torus T of diagonal elements considered above in the
various cases of Sections 3.1–3.4. An element in T has order two if it is not trivial and the
diagonal entries are all ±1.

In each case we see that we can sort the +1 and −1 entries by conjugation under the action
of the Weyl group. This shows that such a class of involutions is parameterized by the dimension
of its −1 eigenspace in the given (natural) representation.

The centralizer of such an involution is the intersection of G and the centralizer in the gen-
eral linear group in which G is embedded. The root system of the connected component of the
centralizer is easy to see: it consists of the roots which have the element in their kernel, see
[Car93, 3.5.3].

More precisely, we find the following types of centralizers in the algebraic group. In type A�

the centralizers are of type Ak−1 + A�−k if the −1 eigenspace is k-dimensional. In type C� the
centralizers have type Ck + C�−k , in type B� we get B�−k + Dk , and in type D� it is Dk + D�−k

for k 
= 1 and D�−1.
If we also consider involutions in the central quotients of the group G considered above, we

have to look at elements of T whose square is a scalar matrix. For such elements a few additional
types of centralizer occur, namely centralizers of type A�−1 in groups of type C� and D�, and
centralizers of type D� and B�−1 in groups of type B�.

Note, that not all types of centralizers mentioned above occur for all � and k (for example, the
number of −1 entries in elements of T is always even). And some of the classes mentioned above
may not be F -stable for certain Frobenius actions and congruence conditions on q . Much more
detailed information about involutions and their centralizers can be found in [GLS99, Chapter 4],
but we do not need this here.

We see from this description of centralizers that we could also define the set of involutions
I in Theorem 1.1 as those involutions whose centralizers have a composition factor of the same
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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type as G and of rank between 1/3 and 2/3 times the rank of G. This description does not refer
to a particular representation of G.

4. Preliminary results

In this section we collect some facts for later reference. Recall that, for i � 1, the ith cy-
clotomic polynomial φi(X) over the rational numbers is recursively defined by the property
Xi − 1 = ∏

d|i φd(X).

Lemma 4.1. Let q be odd.

(a) Then φ1(q) = q − 1 and φ2(q) = q + 1 are divisible by 2 and exactly one of them has
2-part 2, and for i > 2,

(
φi(q)

)
2 =

{
2 if i is a power of 2,

1 otherwise.

(b) In particular

(
qn + 1

)
2 =

{
2 if n is even,

(q + 1)2 if n is odd

and if n = 2ak with k odd and a � 1, then (qn − 1)2 = (q2 − 1)2 · 2a−1.
(c) For positive integers k, n with (k)2 < (n)2 we have

(
qn − 1

)
2 >

(
qk ± 1

)
2.

Proof. (a) Let n,a, b be positive integers with n = ab. Then qn − 1 = qab − 1 = (qa − 1)×
(qa(b−1) + · · · + qa + 1). If a = (n)2 the second factor has an odd number of summands, and so
is odd. This shows that (qn − 1)2 = (qa − 1)2. So the only integers i for which φi(q) is even
are the powers i = 2k with k � 0. Since for k > 0 we have φ2k (X) = X2k−1 + 1, we see that, for
k > 1, φ2k (q) ≡ 2 (mod 4).

(b) For the first part consider q2n − 1 = (qn − 1)(qn + 1). Only φ2(n)2(q) divides qn + 1 and
has a non-trivial 2-part. For the second part we have (qn − 1)2 = (q2a − 1)2 from the proof of
part (a), and equality of this expression with (q2 − 1)2 · 2a−1 follows from the first assertion of
(b), just proved.

(c) This follows from part (b) if k is even. Also (b) implies (qn − 1)2 > (qk + 1)2 if k is odd.
Finally for k odd, by the proof of (a), (qk − 1)2 = (q − 1)2 < (qn − 1)2. �

The next statement refers to some concepts defined in Section 3. Recall that the Weyl group
of type B� and C� is S2 � S�, and that the Weyl group W of type D� is an index 2 subgroup
of the Weyl group W(B�) of type B� that projects onto S�, namely, W(B�) = W ∪̇ Ww� with
w� as defined in Section 3.4, and W = W(B�) ∩ Alt2� (where Alt2� is the alternating group of
degree 2�).

Lemma 4.2. Let n,λ, d be positive integers such that 2 � d � n/2, and let Sn be the symmetric
group on n points.
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(a) The proportion p¬d(n) of elements of Sn with no cycle of length divisible by d satisfies

1

4n1/d
< p¬d(n) <

3

n1/d
.

(b) If d divides λ, then the proportion of elements in Sn having a cycle of length λ, and on the
remaining n − λ points no cycles of length divisible by d , is p¬d(n − λ)/λ.

(c) Let W be the Weyl group of type Bn, Cn or Dn. If d divides λ, then the proportion of elements
in W for which the projection to Sn has the properties of part (b) is p¬d(n − λ)/λ.

(d) Let W be the Weyl group of type Bn, Cn or Dn. Let C be a conjugacy class in Sn whose
elements contain a cycle τ of length less than n. Let C̃ be the preimage of C under the
surjection W → Sn, or in case Dn under the surjection Wwn → Sn. In either case the
proportion of elements in C̃ which have τ as a positive cycle is 1/2. Moreover if W is of
type Bn then the proportion of elements in C̃ which lie in the reflection subgroup of type Dn

is 1/2.

Proof. (a) From [BLGN+02, Theorem 2.3(b)] we get the more precise lower and upper bounds
(the quotient of which converges to 1 for growing n):

c(d)

(
d

n

)1/d(
1 − 1

n

)
� p¬d(n) � c(d)

(
d

n

)1/d(
1 + 2

n

)
,

where c(d) = 1
�(1−1/d)

.
For 2 � d � n/2 we have 1/2 � 1 − 1/d � 1 and since the �-function �(x) is decreasing for

0 < x � 1 we have 1 � �(1 − 1/d) � �( 1
2 ) = √

π < 2, hence 1
2 < c(d) � 1. The real function

x �→ x1/x has its maximum at x = e and this yields that 1 � d1/d < 3/2 for all d � 2. Further-
more, for n � 2 we have 1/2 � 1 − 1/n � 1 and 1 � 1 + 2/n � 2.

(b) A λ-subset can be chosen in
(
n
λ

)
ways and a λ-cycle on these points in (λ − 1)! ways; a

permutation on the remaining n − λ points with no cycles of length divisible by d can be chosen
in (n − λ)!p¬d(n − λ) ways. Thus the number of elements of Sn with the required properties is
n!p¬d(n − λ)/λ.

(c) The Weyl group W in this case is W = S2 �Sn < S2n, or a subgroup of index 2 that projects
onto Sn in the case of Dn. Thus the first assertion follows immediately from part (b).

(d) We define maps f,f ′ on each such C̃. Let w ∈ C̃, let σ be the corresponding element
of C, and let τ be a cycle of length less than n. In particular, σ has at least two cycles. Let i be
the least entry in the cycle τ , and define f (w) = (i, ī)w. Then f (w) also projects to σ and all
cycles of σ have the same sign for f (w) as for w, except for the cycle τ which has changed sign.
In the case of Bn or Cn, this implies that f (w) ∈ C̃. Moreover f is bijective and f interchanges
the elements for which τ is a positive cycle with those for which it is a negative cycle, proving
the first assertion of (d) for types Bn and Cn.

Now suppose that W is of type Dn so that W ′ = W ∪̇ Wwn and W = W ′ ∩ Alt2n, where W ′
is the Weyl group of type Bn. Let C1,C2 be the preimages of C in W,Wwn, respectively. Then
f maps even permutations to odd permutations, and vice versa, and hence f interchanges C1
and C2, which implies the last assertion of (d). Choose k to lie in a cycle of σ different from τ ,
and for w ∈ C1 ∪ C2 define f ′(w) = (k, k̄)f (w). Then f ′(w) also projects to σ and f ′ maps
even permutations to even permutations. Hence f ′ fixes C1 and C2 setwise. Moreover, f ′ still
interchanges the elements of C1 ∪ C2 for which τ is a positive cycle with those for which it is a
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negative cycle. Thus f interchanges the set of elements of Ci (where i = 1,2) for which τ is a
positive cycle with those for which it is a negative cycle. This proves the first assertion of (d) for
type Dn. �
Lemma 4.3. Let H be a finite group, I a union of conjugacy classes of involutions in H and
Z � Z(H) a subgroup of the centre of H with I ∩ Z = ∅. Then

|P (H/Z, IZ/Z)|
|H/Z| � |P (H, I)|

|H | .

Proof. Note that every element of IZ/Z is an involution because I ∩ Z = ∅. The canonical
homomorphism H → H/Z maps elements h ∈ P (H, I) (that is hk ∈ I for some k) to cosets
hI ∈ P (H/Z, IZ/Z). Moreover, the image of P (H, I) contains at least |P (H, I)|/|Z| elements.
So, |P (H, I)|/|Z| � |P (H/Z, IZ/Z)| and the statement follows on dividing by |H/Z|. �
Lemma 4.4. Let S be one of the groups Sp2�(q), SO2�+1(q) or SO±

2�(q), and let X be the
corresponding group of matrices which map the defining bilinear form to a scalar multiple of
itself, namely GSp2�(q), GO2�+1(q) or GO±

2�(q)0, respectively. Let Z be the centre of X and let
S � H � G. Then the index of S(H ∩ Z) in H divides 4.

We prove in fact that |H : S(H ∩Z)| � 2 except in the case where S = SO±
2�(q) or SO2�+1(q)

with q odd, H contains O±
2�(q) or O±

2�(q) respectively, and some element of H multiplies the
form by a non-square scalar. In this latter case, the index is 4.

Proof. Define the epimorphism π :X → F#
q by g �→ c if g maps the form defining S to c times

this form. Let K denote the kernel of π . Then K contains S, and K = S if either q is even or
S = Sp2�(q). In all other cases |K : S| = 2 (see for example, [KL90, p. 24, 2.5.11, 2.6.1]). The
centre Z consists of the scalar matrices {a · id | a ∈ F#

q}, and we have π(a · id) = a2.
Let S � H � X. If π(H) consists of squares in F#

q then H ∩ Z contains representatives of
all cosets in H/(H ∩ K), and hence H = (H ∩ K)(H ∩ Z) containing S(H ∩ Z) as a sub-
group of index at most 2. Suppose then that π(H) contains a non-square, so that q is odd and
(H ∩ K)(H ∩ Z) has index 2 in H . If S = H ∩ K then again |H : S(H ∩ Z)| � 2, while if
S 
= H ∩ K then S is a special orthogonal group, H contains the full orthogonal group, and
|H : S(H ∩ Z)| = 4. �
5. Proof of Theorem 1.1

(i) Maximal tori in GLn(q) and GUn(q)

As introduced in Section 3.1, let G = GLn(F̄q), F the Frobenius morphism of G, T the
maximal torus of G, and W the Weyl group of G. The Frobenius map F raises diagonal entries
in elements of T to the εqth power, where ε = 1 in the untwisted case GF = GLn(q) and ε = −1
in the twisted case GF = GUn(q). Let w ∈ W .

By Lemma 2.2, the maximal tori of GF corresponding to the (F -)conjugacy class of w are
isomorphic to T Fw−1 = {t ∈ T | wF(t) = t}. We determine the structure of this group as follows.
Let t = diag(a1, . . . , an) ∈ T Fw−1

. For each cycle (i1, . . . , iλ) of w, w permutes cyclically the
diagonal entries b1 := ai , b2 := ai , . . . , bλ := aiλ of t . The condition wF(t) = t yields for these
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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diagonal entries the equations b2 = b
εq

1 , . . . , bλ = b
εq

λ−1 and b1 = b
εq
λ . Therefore, b

(εq)λ−1
1 = 1

and bi = b
εq

i−1 for 1 < i � λ. Since distinct cycles of w act on disjoint sets of entries we get the

following structure of T Fw−1
: if (λ1, . . . , λr ) is the partition of n describing the cycle lengths

of w, then T Fw−1
is a direct product of cyclic groups of orders qλi − ελi , for 1 � i � r .

Note that, in the description of the w-action on t ∈ T Fw−1
, if the cycle length λ is even then

the corresponding cyclic direct factor of T Fw−1
has order qλ −1, and the involution in this direct

factor has entry −1 precisely in positions i1, . . . , iλ.

(ii) Maximal tori with mC � 1/2 in GLn(q) and GUn(q)

Let a be a positive integer (which we specify in step (iv) below) and let M(a) ⊂ W be the
following union of conjugacy classes of W . An element w ∈ W is in M(a) if and only if it
contains a cycle of length 2ak, for some integer k such that n/3 < 2ak � 2n/3, and no other
cycle has length divisible by 2a .

A maximal torus of GF corresponding to w ∈ M(a) has the form C × A, where C is cyclic
of order q2ak − 1, and A is non-trivial and is a direct product of cyclic groups of orders qr ± 1
for certain integers r with (r)2 < (2ak)2. By Lemma 4.1(c) and (a), (qr ± 1)2 < (q2ak − 1)2.

Now consider the subsets {x}×A ⊂ C ×A such that |x| has maximal 2-part. There are |C|/2
such elements x. Since all elements in A have 2-part of smaller order, all such elements power up
to the involution (z,1) ∈ C × A, where z is the unique involution of C. As we have seen above
such an involution has −1 as an eigenvalue with multiplicity 2ak, so its centralizer in G is of
type GL2ak(F̄q) × GLn−2ak(F̄q). Hence (z,1) is an involution in our set I .

In other words, using the notation mC introduced after Lemma 2.2, if C is a conjugacy class
of W contained in M(a) then mC � 1/2.

(iii) Estimating |P (GF , I )|/|GF | for GLn(q) and GUn(q)

We now obtain a lower bound for this proportion using Lemma 2.3 and considering only the
contributions from conjugacy classes of W contained in the subset M(a) defined in (ii). For any
positive integer a this yields:

|P (GF , I )|
|GF | � 1

2
· |M(a)|

|W | . (5)

By Lemma 4.2(b),

|M(a)|
|W | =

∑
k

p¬2a (n − 2ak)

2ak
, (6)

where the sum is over all k such that n/3 < 2ak � 2n/3.
By Lemma 4.2(a) and using 2ak � 2n/3 we see that

p¬2a (n − 2ak)

2ak
� 3

2n
p¬2a

(
n − 2ak

)
>

3

2n
· 1

4
· 1

(n − 2ak)1/2a >
3

8n
· 1

n1/2a .

The number of summands in (6) is at least (2n/3 − n/3)/2a − 1 = n/(3 · 2a) − 1. If (13/4) ·
2a � n, then this number is at least n/(39 · 2a).
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Using these lower bounds for the summands in (5) we get

|P (GF , I )|
|GF | >

1

2
· 3

8
· 1

n
· 1

n1/2a · n

39 · 2a
= 1

208
· 1

2a · n1/2a , (7)

where a is any positive integer such that (13/4) · 2a � n.

(iv) Proof of Theorem 1.1 for GLn(q) and GUn(q)

If for growing n we evaluate the right hand side of (7) for a ∼ log2 log2 n we see that
|P (GF , I )|/|GF | > c/ log2(n) for some constant c.

To get the explicit constant stated in Theorem 1.1 we must look a bit more closely. Set f (a) =
2an1/2a

. Considering log2 f (a) = a + (log2 n)/2a as a function on real numbers a � 1, and
computing its derivative, we find that this function has a minimum at a0 = log2 ln 2+ log2 log2 n.

Now let c be the real number with −1/2 � c < 1/2 such that a0 + c is an integer. We evaluate
log2 f (a0 + c) = log2 ln 2 + log2 log2 n + c + (log2 n)/(ln 2 · log2 n · 2c). Thus

f (a0 + c) = ln 2 · 2c · log2 n · 21/(2c ln 2) = ln 2 · 2c · e(1/2c) · log2 n < 3 log2 n (8)

(the factor 2c · e(1/2c) is maximal for c = −1/2 which yields the last inequality).
Computing a = a0 + c for some small values of n one can check that, for n � 7, we have

a � 1 and (13/4) · 2a � n. For large n these properties clearly hold. So, for n � 7, we have found
an a such that the last factor on the right hand side of (7) is greater than 1/(3 log2 n) and so

|P (GF , I )|
|GF | >

1

208
· 1

3 log2 n
= 1

624 log2 n
. (9)

Note that G is of type A� with n = � + 1, and that for n > 2 we have 1/(log2 n) > 1/(2 log2 �).
For n < 7 we can easily check the statement of Theorem 1.1 by considering one appropriate

class of maximal tori directly. For example, if n = 6 consider the GF -conjugacy class of max-
imal tori parameterized by the conjugacy class C of elements in W with cycle type (4,1,1).
A corresponding maximal torus is a direct product of a cyclic group of order q4 − 1 and two
cyclic groups of orders q ± 1. Thus the 2-part of the order of the large cyclic factor is at least 4
times the 2-part of q ± 1, that is mC � 3/4. Furthermore |C|/|W | = 1/8. The theorem for this
case follows by applying Lemma 2.3 to this single summand which is large enough.

(v) Proof for SLn(q) � H � GLn(q) and SUn(q) � H � GUn(q)

We first consider, as in step (i) above, the cyclic subgroups of the groups T Fw−1
corresponding

to a cycle of w of length λ. The corresponding diagonal entries of the element t ∈ T Fw−1
are

of the form b1, b
εq

1 , . . . , b
(εq)λ−1

1 , where b
qλ−ελ

1 = 1. The product of these diagonal entries is bk
1

where k = 1 + εq + · · · + (εq)λ−1 = ελ−1 · (qλ − ελ)/(q − ε). In particular, if b1 ∈ F̄#
q has order

qλ − ελ then this product has order q − ε and hence is a generator of det(GF ).
In step (ii) we counted subsets of T Fw−1

of the form {(x, y) ∈ C × A | y ∈ A} for certain
x ∈ C. Each such subset is invariant under multiplication by elements from A. Since A is not
trivial we have just seen that A contains elements with any possible determinant. Therefore, the
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sets we counted have the same number of elements in each coset of SLn(q) within GLn(q) in the
untwisted case, and each coset of SUn(q) within GUn(q) in the twisted case.

Now consider the elements of GF which are mapped under ϕ, as defined in Eq. (2), to the pairs
(T , s) with s in one of the subsets {x} × A as above. These elements are also equally distributed
into the cosets with constant determinant because unipotent elements have determinant 1.

This shows that the lower bound from step (iv) also holds for all groups H satisfying SLn(q) �
H � GLn(q) or SUn(q) � H � GUn(q).

(vi) F -stable maximal tori in Sp2�(q), SO2�+1(q), and SO±
2�(q)

First let G = Sp2�(F̄q). The description of maximal tori in GF is very similar to that given
in step (i), this time using the description of the Weyl group W and its action on the torus of
diagonal matrices given in Section 3.2.

Consider the action of an element w ∈ W on some element t ∈ T Fw−1
, say t = diag(a1, . . . ,

a�, a
−1
� , . . . , a−1

1 ). If the element π(w) ∈ S� has a positive cycle τ = (i1, i2, . . . , iλ) of length
λ, then w permutes λ independent diagonal entries of t cyclically, say b1, b2, . . . , bλ, and in the
same way permutes cyclically their inverses b−1

1 , b−1
2 , . . . , b−1

λ . (Here each bj = a±1
ij

.) The equa-

tion wF(t) = t restricted to these diagonal entries describes a cyclic subgroup of order qλ − 1,
just as in the case of GLn(q). If τ is a negative cycle of π(w) then w permutes the 2λ entries

b1, b2, . . . , bλ, b
−1
1 , . . . , b−1

λ cyclically. In this case we have b−1
1 = b

q
λ = · · · = b

qλ

1 , so the corre-

sponding cyclic subgroup of T Fw−1
has order qλ + 1.

Again, the involution in the cyclic subgroup of T Fw−1
corresponding to the cycle τ has entry

−1 precisely in positions ij and 2� + 1 − ij , for 1 � j � λ.
The same description holds for the groups SO2�+1(q) described in Section 3.3 of type B�, and

the groups SO±
2�(q) described in Section 3.4 of type D� or 2D�.

(vii) Proof of Theorem 1.1 for Sp2�(q), SO2�+1(q), and SO±
2�(q)

We can carry over steps (ii)–(iv), now with � instead of n, almost exactly. The variation is that,
in this case, we define M(a) as the subset of elements of W with a positive cycle of length 2ak,
such that k is odd and �/3 < 2ak � 2�/3, and no other (positive or negative) cycle has length
divisible by 2a .

In the description of |M(a)|/|W | in Eq. (6) we now use Lemma 4.2(c) and (d) which give an
additional factor 1/2 (because we only consider positive cycles of length 2ak). The rest of the
argument remains the same, so that we get, for � � 7,

|P (GF , I )|
|GF | >

1

1248 log2 �
. (10)

That this inequality also holds for values of � up to 6 can be checked by considering appropriate
single classes of tori as discussed at the end of step (iv).

(viii) Proof for groups H satisfying Sp2�(q) � H � GSp2�(q), or SO2�+1(q) � H � GO2�+1(q),
or SO±

2�(q) � H � GO2�
±(q)0
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Set S := GF = Sp2�(q), SO2�+1(q), or SO±
2�(q), and let X be the corresponding group as in

Lemma 4.4 and Z := Z(X), so that S � H � X. As in Lemma 4.4 we can write H , or a subgroup
of H of index at most 4, as S(H ∩ Z) = {gz | g ∈ SF and z ∈ H ∩ Z}. Note that in the proof of
Theorem 1.1 for the groups S we only counted elements g ∈ S with (|g|)2 � (q2 − 1)2. For such
an element g, and for all z ∈ H ∩ Z, the product gz powers up to the same involution as g does
because z has 2-part at most (q − 1)2. In particular, P(S(H ∩ Z), I )/|S(H ∩ Z)| = P(S, I )/|S|
and, therefore,

P(H, I)

|H | � P(S(H ∩ Z), I )

|S(H ∩ Z)|
1

|H : S(H ∩ Z)|
= P(S, I )

|S|
1

|H : S(H ∩ Z)

� P(S, I )

4|S| .

This completes the proof of Theorem 1.1.

(ix) Proof of Corollary 1.2

The information given by Lemma 4.3 is sufficient to enable us to deduce Corollary 1.2 from
Theorem 1.1. Let H,I be as in Theorem 1.1 with X,S as in one of the lines of Table 1. Let
Z0 � Z(X), so that S � H � X where L = LZ0/Z0 for L � X. Now H ∼= H/(H ∩ Z0), H ∩
Z0 � Z(H) and (H ∩ Z0) ∩ I = ∅. The assertion of Corollary 1.2 now follows from Lemma 4.3
and Theorem 1.1.

6. Method of computation for small rank cases

For the small rank cases in Theorem 1.1 we did computer calculations using the tools provided
by the CHEVIE [GHL+96] system.

To describe them we use the notation and descriptions from [Car93, 1.9, 1.11, 1.19, 3.1]. In
CHEVIE a series of groups of Lie type GF is specified by a root datum (X,Φ,Y,Φ∨) (as defined
on [Car93, p. 19]) with respect to some F -stable maximal torus T � G and a matrix F0 which
describes the induced action of the Frobenius map on the lattice Y . For elements w in the Weyl
group W we also write w for its action induced on Y . Maximal tori of G are isomorphic to
Y ⊗Z Qp′/Z, where Qp′ is the subgroup of the additive group of rational numbers consisting of
those rationals with denominators not divisible by the characteristic p of Fq .

In this setup the equation wF(t) = t , for t ∈ T , translates to a matrix equation (qF0w
−1 −

idY )t = 0 where the torus elements t are written as tuples with rank(Y ) entries in Qp′/Z with
respect to the chosen basis of Y . We compute transformation matrices L and R such that
L(qF0w

−1 − idY )R has diagonal form. Then it is easy to describe the solutions, and hence
also the structure of T Fw−1

, as a product of cyclic groups. By multiplication with R we also get
the solutions in the original basis.

Finding the involutions: All involutions have conjugates contained in T , and the G-conjugacy
classes of involutions are parameterized by the W -orbits on the involutions in T , see [Car93,
3.7.1]. In our setup we can write down all the involutions in T as all the non-zero tuples with
entries 0,1/2 ∈ Qp′/Z. CHEVIE can compute the W -orbits on this set and, for a representative
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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in each orbit, the stabilizer in W and the system of roots having a representative in the kernel.
This determines the G-classes of involutions together with the Lie types of their centralizers,
see [Car93, 3.5.3].

It turns out that we can compute the diagonalisation above generically, that is, without special-
izing q , if we distinguish a finite number of congruence classes for q (modulo � + 1 in type A�,
modulo 3 in type E6 and modulo 2 or 4 in types B�, C�, E7 and D�, and nothing to distinguish
in the remaining cases). The direct factors which describe the maximal tori T Fw−1

always have
orders a rational number times a product of cyclotomic polynomials evaluated at q . For our esti-
mates we further distinguish the cases when q is congruent to 1 or 3 modulo 4 or, equivalently,
when q − 1 or q + 1, respectively, is divisible by 4 or some higher power of 2. We only consider
involutions which are non-trivial in the direct components with the maximal number of factors
q − 1 or q + 1, respectively, in their orders (since depending on q the orders of the other direct
factors can have an arbitrarily smaller 2-part).

Consider a direct product of cyclic groups C1 × · · · × Cr . The proportion of its elements
which power up to the involution which is of order 2 in components C1, . . . ,Cs and trivial
on Cs+1, . . . ,Cr can be computed by counting, for each possible 2-part 2k , the elements in
C1, . . . ,Cs for which the order has 2-part equal to 2k , and the elements in Cs+1, . . . ,Cr for
which the order has 2-part less than 2k . This can be done using the following lemma.

Lemma 6.1. If C is a cyclic group of even order 2k · m with m odd, and if 0 � a < k, then the
proportion of elements in C for which the order has 2-part equal to 2k−a , and the proportion of
elements for which the order has 2-part less than 2k−a , are both 1/2a+1.

Proof. Let C = 〈c〉. Then each odd power of c has order with 2-part equal to 2k , and each even
power of c has order with smaller 2-part. This proves the result for a = 0. We now use induction
on k. The case k = 1 is covered by the case a = 0. For k > 1 and a > 0, we use the inductive
hypothesis for the group 〈c2〉. �

For particular values of q we can always consider all cyclic factors for all classes of tori and
so compute the exact values of |P (GF , I )|, using Lemma 2.3.

7. Tables for small rank cases

The following table contains the detailed results for some small rank cases computed as de-
scribed in Section 6. We cover classical types up to rank 4. (We have done the computations for
all simple G of rank at most 8, but we do not print all the results.) And we cover all exceptional
simple types.

The first column describes the type of the group GF . We give the type of the root system,
prepended by the order of the Frobenius action on the Dynkin diagram if not trivial. A further
index indicates the isomorphism type of the algebraic group G within its isogeny class. It is sc

or ad for the simply connected or adjoint group, respectively. In type D� there is also SO for the
special orthogonal groups and for even � there is HS for the half spin groups. In type A� there
is one isomorphism type for each divisor d of � + 1. If d is not 1 (corresponding to the simply
connected groups) or � + 1 (corresponding to the adjoint groups), we indicate the group by d as
an index.

The second column lists the classes of involutions in G by specifying the types of their
centralizers. A component T1 specifies a one-dimensional torus in the centre of the connected
Please cite this article in press as: F. Lübeck et al., Finding involutions in finite Lie type groups of odd characteristic,
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component of the centralizer. If the centralizer is not connected we specify the order of the
component group after a ‘dot.’ In some cases there are several classes with the same type of
centralizer, but we do not want to give the precise root datum and the representatives used in the
computations. For the classical types we did not try to identify the classes in terms of the natural
representation.

The third column specifies a congruence condition on q for which the lower bound of the
proportion of elements in GF powering to an involution in the given class was computed. The
lower bound bI for this proportion is given in the fourth column.

Although we need to distinguish different congruence classes of q , depending on the type
of G, during the computations, we often find the same lower bounds in different cases, this
simplifies the third column. (Even in cases where we find the same lower bound for q ≡ 1 or 3
mod 4, the contribution from specific classes of tori can be different.)

We leave out a few lines corresponding to classes of involutions in G which are not F -stable
(and so the proportion in the last column is 0).

A1(q)ad T1.2 – 0.6250
A1(q)sc A1 – 0.6250
A2(q)ad A1 + T1 1 mod 4 0.5937

3 mod 4 0.5625
A2(q)sc A1 + T1 1 mod 4 0.5937

3 mod 4 0.5625
2A2(q)ad A1 + T1 1 mod 4 0.5625

3 mod 4 0.5937
2A2(q)sc A1 + T1 1 mod 4 0.5625

3 mod 4 0.5937
C2(q)ad (A1 + A1).2 – 0.4140

(Ã1 + T1).2 – 0.3281
C2(q)sc C2 – 0.4140

A1 + A1 – 0.3281
G2(q) A1 + Ã1 – 0.5781
2G2(

√
32m+1) A1 + Ã1 – 0.3750

A3(q)ad A2 + T1 1 mod 4 0.3515
3 mod 4 0.1875

(A1 + A1 + T1).2 1 mod 4 0.4785
3 mod 4 0.5742

A3(q)sc A1 + A1 + T1 1 mod 4 0.2382
3 mod 4 0.2890

A3 1 mod 4 0.5917
3 mod 4 0.4726

A3(q)2 (A1 + A1 + T1).2 1 mod 4 0.2128
3 mod 4 0.2812

(A1 + A1 + T1).2 1 mod 4 0.2441
3 mod 4 0.2734

A3 1 mod 4 0.3574
3 mod 4 0.1718

2A3(q)ad A2 + T1 1 mod 4 0.1875
3 mod 4 0.3515
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(A1 + A1 + T1).2 1 mod 4 0.5742
3 mod 4 0.4785

2A3(q)sc A1 + A1 + T1 1 mod 4 0.2890
3 mod 4 0.2382

A3 1 mod 4 0.4726
3 mod 4 0.5917

2A3(q)2 (A1 + A1 + T1).2 1 mod 4 0.2812
3 mod 4 0.2128

(A1 + A1 + T1).2 1 mod 4 0.2734
3 mod 4 0.2441

A3 1 mod 4 0.1718
3 mod 4 0.3574

B3(q)ad (C2 + T1).2 – 0.2470
(Ã1 + A1 + A1).2 – 0.2587
A3.2 – 0.2646

B3(q)sc Ã1 + A1 + A1 – 0.2636
B3 – 0.5322

C3(q)ad C2 + A1 – 0.5263
(Ã2 + T1).2 – 0.2695

C3(q)sc C2 + A1 – 0.2587
C2 + A1 – 0.2470
C3 – 0.2646

A4(q)ad A3 + T1 1 mod 4 0.3999
3 mod 4 0.3613

A2 + A1 + T1 1 mod 4 0.3505
3 mod 4 0.3476

A4(q)sc A2 + A1 + T1 1 mod 4 0.3505
3 mod 4 0.3476

A3 + T1 1 mod 4 0.3999
3 mod 4 0.3613

2A4(q)ad A3 + T1 1 mod 4 0.3613
3 mod 4 0.3999

A2 + A1 + T1 1 mod 4 0.3476
3 mod 4 0.3505

2A4(q)sc A2 + A1 + T1 1 mod 4 0.3476
3 mod 4 0.3505

A3 + T1 1 mod 4 0.3613
3 mod 4 0.3999

B4(q)ad (B3 + T1).2 – 0.2210
(C2 + A1 + A1).2 – 0.2080
(A3 + Ã1).2 – 0.1341
D4.2 – 0.2510

B4(q)sc C2 + A1 + A1 – 0.1881
D4 – 0.2443
B4 – 0.4060

C4(q)ad C3 + A1 – 0.3338
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(C2 + C2).2 – 0.2803
(Ã3 + T1).2 – 0.2243

C4(q)sc C2 + C2 – 0.2080
C4 – 0.2510
C3 + A1 – 0.2210
C3 + A1 – 0.1341

D4(q)ad (A3 + T1).2 – 0.2243
(A1 + A1 + A1 + A1).4 – 0.2007
(A3 + T1).2 – 0.2243
(A3 + T1).2 – 0.2243

D4(q)sc A1 + A1 + A1 + A1 – 0.1408
D4 – 0.2443
D4 – 0.2443
D4 – 0.2443

D4(q)SO (A1 + A1 + A1 + A1).2 – 0.1807
(A3 + T1).2 – 0.2185
(A3 + T1).2 – 0.1052
D4 – 0.3693

2D4(q)ad (A3 + T1).2 – 0.4433
(A1 + A1 + A1 + A1).4 – 0.3598

2D4(q)sc A1 + A1 + A1 + A1 – 0.2353
D4 – 0.5678

2D4(q)SO (A1 + A1 + A1 + A1).2 – 0.2353
(A3 + T1).2 – 0.2236
(A3 + T1).2 – 0.1630
D4 – 0.1328
(A1 + A1 + A1 + A1).4 – 0.5781

3D4(q)sc A1 + A1 + A1 + A1 – 0.5781
F4(q) B4 – 0.4060

C3 + A1 – 0.3338
E6(q)sc A5 + A1 1 mod 4 0.3288

3 mod 4 0.3289
D5 + T1 1 mod 4 0.4053

3 mod 4 0.3845
2E6(q)ad D5 + T1 1 mod 4 0.3845

3 mod 4 0.4053
A5 + A1 1 mod 4 0.3289

3 mod 4 0.3288
2E6(q)sc A5 + A1 1 mod 4 0.3289

3 mod 4 0.3288
D5 + T1 1 mod 4 0.3845

3 mod 4 0.4053
E7(q)ad (E6 + T1).2 – 0.1842

D6 + A1 – 0.4508
A7.2 – 0.1686

E7(q)sc D6 + A1 – 0.2669
D6 + A1 – 0.2155
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E7 – 0.3211
E8(q) E7 + A1 – 0.3537

D8 – 0.3651
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