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Abstract. We give estimates for the proportion of elements of order divisible
by a given number m in finite groups of Lie type which are defined over finite
fields with characteristic prime to m.
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1. Introduction

Let G be a connected reductive algebraic group over an algebraic closure of a
finite prime field Fp with p elements and let F be a Frobenius endomorphism
of G. Then some power of F , say F a, induces on the character group of an
F -stable maximal torus of G the map k · id, where k is some power of p. We
define q > 0 by qa = k and denote G(q) the group of F -fixed points of G.
This is a finite group of Lie type. (This definition includes the Suzuki and Ree
groups.) We will write W for the Weyl group of G.

Assume that G(q) contains an element of order m. We want to investigate
the proportion cG,m(q) = |MG,m(q)|/|G(q)|, with

MG,m(q) = {x ∈ G(q) | m divides the order |x| of x},

in the case where m is prime to p.
Our main statement is as follows (we denote by Φ the Euler Φ-function):

Let gcd(m, p) = 1. For each constant 0 ≤ c < Φ(m)/m and each l ∈ N there
exists q0 ∈ N, such that for all G(q) as above with q > q0 and rank at most l
we have cG,m(q) > c/(2l · |W |). We will also give an explicit q0 (which becomes
bigger for smaller differences (Φ(m)/m)− c).

We mention one consequence of this statement. If we fix the type of G (i.e.,
its root datum) and consider the case of a prime m which is different from p,
then there is a constant ε > 0 such that for all prime powers q the value of
cG,m(q) is either zero or at least ε (take some c < 1/2 above and for ε the
minimum of c/(2l · |W |) and all nonzero cG,m(q) with q ≤ q0). On the other
hand it is not difficult to see that cG,p(q) tends to zero when q becomes large.
See [GL99] for a more precise statement.
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This result has an interesting interpretation in computational group theory,
where one is often looking for certain elements by a random search. For a fixed
probability α < 1 there is a number n ∈ N, depending just on α and the root
datum of G, such that for any prime divisor m 6= p of |G(q)| any set of n
random elements from G(q) contains, with probability at least α, an element
whose order is divisible by m. On the other hand, for growing q it becomes
more and more difficult to find a p-singular element by a random search.

Acknowledgement. I would like to thank Bill Kantor for asking me to
write this note. He originally wanted to know an estimate for cG,m(q) in the
case of exceptional groups G and m a product of two prime powers.

2. A lower bound for finding elements of given order

In this section we will keep the notation from the introduction. Let G, p, F ,
q, W , m with gcd(m, p) = 1 as above. Recall that the rank of G, denoted
rank(G), is the dimension of a maximal torus of G.

Theorem 2.1. (a) Let l ∈ N and c < Φ(m)/m. There exists q0 ∈ N

with the following property: For all G(q) with rank of G at most l and
q > q0 which contain an element of order m, the proportion of regular
semisimple elements of order divisible by m is at least c/(2l · |W |) (and
so cG,m(q) > c/(2l · |W |)).

(b) In (a) we can take q0 such that for all q > q0 we have

2 · l2 · 2l−1 · ((q + 1)/(q − 1))l−1/((Φ(m)/m)− c) + 1 < q.

For example one can choose for q0 any number greater than

2l2 · 6l−1/((Φ(m)/m)− c) + 1.

To illustrate the statement we give an example of an application.

Corollary 2.2. Assume that m ∈ N has prime factorization of form ra1
1 ra2

2 ra3
3 ,

with different primes r1, r2, r3 not equal to p and given ai ≥ 0.

(a) Let G be of rank l and q > 2l · 6l−1 · 300/77 + 1. Further assume that
G(q) contains an element of order m. Then the proportion of regular
semisimple elements of G(q) which have order divisible by m is at least
1/(100 · 8l · l!).

(b) Let G be of rank at most 8 and q > 63848. Assume that G(q) contains an
element of order m. Then the proportion of regular semisimple elements
of G(q) which have order divisible by m is at least 1/(1.8 · 1013).
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Proof. First we note that Φ(m)/m ≥ (r1−1)/r1 ·(r2−1)/r2 ·(r3−1)/r3 ≥
1/2 · 2/3 · 4/5. For the application of Theorem 2.1 we choose c = 1/100 and
so we have (Φ(m)/m)− c ≥ 77/300.

Putting these numbers into the second formula in 2.1(b) and using the
estimate |W | < 4l · l!, we get part (a).

Taking now l = 8 a simple calculation shows that all q > 63848 fulfill the
first inequality in 2.1(b). The largest possible Weyl group of some G with rank
at most 8 is the one of type E8, which has a bit less than 7 · 108 elements.
Hence, in this case we see that c/(2l · |W |) in 2.1(a) is at least 1/(1.8 · 1013).
�

Note that in a statement like 2.2 it is necessary to fix an upper bound for
the number of different prime divisors of m since the sequence an =

∏n
i=1(ri−

1)/ri, ri being the i-th prime, tends to zero with growing n. In 2.3 we show that
the proportion of elements with order divisible by m can become arbitrarily
small, even for G a torus, when m has many different prime divisors.

Now we collect some propositions needed for the proof of the theorem.

Proposition 2.3. Let A be a finite Abelian group which contains an element
of order m. Then A contains at least Φ(m)/m · |A| elements whose order is
divisible by m.

Proof. In the case where A is a cyclic group of order ra, r a prime, it
contains Φ(ra) = (r−1)ra−1 elements of order ra, and hence of order divisible
by rb for all b ≤ a.

In the general case let m =
∏k
i=1 r

bi
i be the prime decomposition of m.

The Abelian group is isomorphic to a direct product of cyclic groups of prime
power order. For any rbii , i = 1, . . . , k, there must be a direct factor of A
which is cyclic of order raii with ai ≥ bi. The proposition follows from the
result for the special case above, applied to these factors, and from Φ(m)/m =∏k
i=1(ri − 1)/ri. �

Proposition 2.4. Let T be an F -stable torus of G of rank a. Then we can
estimate the number of elements of T (q) by

(q − 1)a ≤ |T (q)| ≤ (q + 1)a.

Proof. The order |T (q)| is the specialization at q of the characteristic
polynomial of a matrix of finite order (see, e.g., [Ca85], Proposition 3.3.8).
Such a polynomial is a product of linear terms X− ζ with ζ on the unit circle.
Since q is real and greater than 1 we have for each such factor q−1 ≤ |q−ζ| ≤
q + 1. �

Proposition 2.5. Let T be a maximal torus of G and t ∈ T .
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(a) Then the connected component C of the centralizer of t in G is generated
by T and the root subgroups Uα with α ∈ Ψ(t) = {α | α root with respect
to T, α(t) = 1}. The subgroup C is again a reductive group and it has
root system Ψ(t).

(b) Let Z = Z((G∗)′) be the center of the commutator subgroup of the dual
group of G. If T is F -stable and t ∈ T (q) then the index of C(q) in the
whole centralizer of t in G(q) is at most |Z|.

(c) Two elements of T which are conjugate in G are conjugate under an
element of the Weyl group of G with respect to T .

Proof. For these results we give references to [Ca85]. Part (a) is in
Theorem 3.5.3 and 3.5.4. Part (b) follows from [Ca85], Section 4.5, similar to
the proof of 4.5.8. And (c) is in 3.7.1. �

Proof (of Theorem 2.1). (1) An element of G(q) of order m with
gcd(m, p) = 1 is contained in an F -stable maximal torus T of G. From Propo-
sition 2.3 we know that at least Φ(m)/m · |T (q)| elements of T (q) have order
divisible by m.

(2) The semisimple part of the dual group of G has a center containing at
most 2l elements: For this it is enough to find an upper bound for the order
of the center for all simply connected groups of rank at most l. These groups
are direct products of simple simply connected groups. And a simple group
of rank k has at most k + 1 central elements (in case Ak). So the maximal
possible order of such a center is that of a direct product of groups of type A1

which all have centers of order 2.
(3) Let t ∈ T (q) be non-regular semisimple, i.e., its connected centralizer

is not the maximal torus T . It follows from 2.5(a) that there is a root α with
respect to T with α(t) = 1. Let Ψ be the smallest F -stable root subsystem
containing α and consider the subgroup GΨ generated by T and the root
subgroups Uβ with β ∈ Ψ. Then t is an element of the center Z of GΨ. The
connected component of Z is a torus S of rank smaller than rank(G). As in (2)
we see that the index (Z(q) : S(q)) is at most 2l−1.

The number of such subgroups GΨ is at most the number of positive roots
of G. And using the classification of root systems we can estimate this number
in all cases by 2 · rank(G)2.

From the upper bound for torus orders in 2.4, applied to the centers of
the GΨ(q), we find that T (q) contains at most 2 · l2 · 2l−1 · (q + 1)rank(G)−1

non-regular elements.
(4) We assume now that q fulfills the first inequality in 2.1(b). We subtract

1 and multiply by (q−1)l−1 in that inequality. Using the lower bound for |T (q)|
in 2.4 and (3) this shows that for such q the proportion of non-regular elements
in T (q) is at most (Φ(m)/m)−c. Together with (1) we see that the proportion
of regular elements in |T (q)| with order divisible by m is at least c.
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(5) We make the same assumption as in (4). We know from 2.5(b) and (2)
that each conjugacy class of a regular semisimple element in T (q) has at least
|G(q)|/(2l · |T (q)|) elements. Furthermore (4) and 2.5(c) say that there are at
least c/|W | · |T (q)| such conjugacy classes whose elements have order divisible
by m. This finishes the proof of the theorem. �

3. A refinement for classical groups

In our quite simple arguments of the last section all the estimates are very
rough. In particular we did not take into account that for a given m there can
be several non-conjugate maximal tori containing elements of order divisible
by m. In this section we will do this for the cases of simple groups G of classical
type.

We will use the same notation as in Section 2. Furthermore from now on
we assume that G is a simple group and of classical type. Let k be the number
of pairwise different prime divisors of m and define ck = 1

2

∏k
i=1

pi−1
pi

, where
pi is the i-th prime number.

Theorem 3.1. Let G, m, k as above, G of rank l. Assume that G(q) contains
an element of order m and q > 2l2 · 6l−1/ck + 1. Then the proportion of
regular semisimple elements of G(q) of order divisible by m is at least c(k, l) =
ck/(2(2l)k(l+1)). If we assume further that G is simply connected the estimate
can be improved to c(k, l) = ck/(2(2l)k).

Proof. (1) The smallest possible value of Φ(m)/m for an m as above is
2ck. Taking c = ck in Theorem 2.1, we get the statement as in the theorem
with c′(k, l) = ck/(2l · |W |) instead of c(k, l). The restriction on q given in the
theorem is taken from the second estimate in 2.1(b).

(2) The term 2l in c′(k, l) comes from estimating the number of connected
components of the center of the dual group ofG. Under our current assumption
that G is simple, this term can be replaced by (l + 1) - the worst case being
G = PGLl+1. If G is simply connected the dual group has trivial center
and hence this term can even be replaced by 1. (See part (2) of the proof of
Theorem 2.1.)

(3) The G(q)-conjugacy classes of F -stable maximal tori of G are parame-
terized by the F -conjugacy classes of W . Let T (q) be a maximal torus of G(q)
containing an element of order m and let T be parameterized by w ∈W .

The term |W | in c′(k, l) comes from estimating the number of elements in
T (q) which are G(q)-conjugate to a fixed regular semisimple element in T (q)
(see part (5) of the proof of Theorem 2.1). Using the w parameterizing T we
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can give the exact number of such elements; it is |CW,F (w)|, the order of the
F -centralizer of w in W . (See [Ca85], 3.3 and 3.7, for more details.)

(4) Let q be as in the theorem and w1, . . . , wr ∈ W be representatives of
the F -conjugacy classes of W parameterizing classes of tori T (q) containing
elements of order m. Adding up the contributions from the single classes of
tori as given in (3) we get that the proportion of regular semisimple elements
in G(q) whose order is divisible by m is at least ck/(l+1) ·

∑r
i=1 1/|CW,F (wi)|.

Hence, to prove the theorem, we have to show that the proportion of el-
ements of W parameterizing maximal tori T (q) which contain an element of
order m is at least 1/(2 · (2l)k). We will show this in the next step case by
case.

(5) (Type Al). We consider W with respect to a maximally split torus
T0, then F acts trivially on W . Here W is isomorphic to the symmetric group
Sn on n = l + 1 letters. Let w ∈ Sn be of cycle type (a1, . . . , ar). Then a
maximal torus T (q) parameterized by w is isomorphic to a direct product of
cyclic groups of order (qa1 − 1)/(q − 1), qa2 − 1, . . ., qar − 1. When T (q)
contains an element of order m then any prime power dividing m is a divisor
of one of the orders of the cyclic factors. Since m is a product of at most k
prime powers, we need to answer the following question: Given b1, . . . , bk ∈ N.
What is the proportion of elements of Sn with cycles whose lengths contain
multiples of b1, . . . , bk? (We must be a bit careful if a prime power dividing m
divides q − 1. But then all maximal tori contain elements with order divisible
by this prime power, except the case where n is prime and T (q) corresponds
to an n-cycle.)

By replacing b1, . . . , bk by multiples and deleting bj which divide others,
we may assume that l+ 1−

∑k
i=1 bi < bj for all j. In this case the number of

elements in Sn having cycles of length b1, . . . , bk is easily counted by:

n! (b1 − 1)!
(n− b1)! b1!

· (n− b1)! (b2 − 1)!
(n− b1 − b2)! b2!

· · ·

(n− b1 − . . .− bk−1)! (bk − 1)!
(n− b1 − . . .− bk)! bk!

· (n− b1 − . . .− bk)! =
n!

b1 · · · bk

Hence the proportion we are looking for can be estimated by 1/(b1 · · · bk) >
1/(l + 1)k.

(Type 2Al). Here the argument goes as in type Al, we only have to replace
q by −q and adjust signs.

(Type Bl, Cl). Here we consider W as a wreath product of a cyclic group
with 2 elements with a symmetric group on l letters. The maximal torus
parameterized by a w ∈W is a direct product of cyclic groups of order qa − 1
for a positive cycle of length a, respectively qa+1 for a negative cycle of length
a.
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The argument is now similar to the case of type Al−1, we only need to
adjust the sign of each cycle correctly, which gives the additional factor 1/2k.

(Type Dl). The Weyl group W of this type is a normal subgroup of the
Weyl group W ′ of type Bl of index 2. An element w ∈W ′ is in W , if and only
if the number of negative cycles is even. The argument is now similar to case
Bl, we only have to assure that we only count elements in the subgroup W of
W ′ in those cases where we count more than one conjugacy class. This gives
another factor 1/2 in the estimate.

(Type 2Dl). Here the F -conjugacy classes of W correspond to the conju-
gacy classes of W ′ outside W . The argument is exactly the same as for type
Dl. �
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