On p-singular Elements in Chevalley Groups in
Characteristic p

Robert M. Guralnick* and Frank Libeck

Abstract. We give upper bounds for the proportion of p-singular elements
in finite Chevalley groups in characteristic p.

1991 Mathematics Subject Classification: primary 20G40; secondary 20D60.

1. Introduction

Let G be a reductive algebraic group over an algebraic closure of a prime field
of characteristic p, defined over a finite field F,, with ¢ elements. Let ¢ denote
a (possibly twisted) Frobenius endomorphism of G with field of definition Fj.
We denote G = G(g) the the corresponding finite group of Fj-rational points
of G, i.e., the fixed points of o. Since we can take G to be simply connected
or adjoint (or anything in between) and since (as we see below) a center will
not change our computations, the finite groups we are considering are those
with J(¢) < G < InndiagJ(q) where J(q) is a simple finite group of Lie type
defined over Fj,.

Kantor and Seress [KS] have asked for an upper bound on the proportion
of p-singular elements (i.e., those elements whose order is divisible by p) in G.
As far as we know, Kantor was the first to conjecture that a bound of ¢/q was
likely. The motivation came from a specific need within computational group
theory. See also [NP] where estimates for some of the classical groups are
given (not necessarily simple).

Spaltenstein observed that one gets asymptotic results (at least for a fixed
characteristic) by counting the number of components of codimension 1 in the
hypersurface which is the complement of regular semisimple elements. Asymp-
totic results can also be obtained from results in [FJK98,FJ93,FJ93b,FJ94]
which give formulae for the number of regular semisimple classes.

The issue of a lower bound was addressed in [IKS95]. See also [NP].

Let S denote the set of p-singular elements in G (i.e., the unipotent part is
nontrivial). Let R denote the set of regular semisimple elements in G —1i.e., the
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set of elements whose connected centralizer is a (necessarily maximal) torus
or, equivalently, those elements which do not commute with any nontrivial
unipotent element. Clearly, R and S do not intersect. It is well known that R
is an open subset of G and so R’, the complement of R contains the closure of S.
In fact R’ is the closure of S: R’ consists of the elements which commute with a
nontrivial unipotent element — this implies that any element z in R’ commutes
with a root subgroup U (see Theorem 4.1) — then zU is an irreducible variety
and with at most one exception consists of p-singular elements; in particular,
x is in the closure of S.

So we define s(G) to be the proportion of p-singular elements in G and r(G)
to be the proportion of regular semisimple elements in G. Let r'(G) = 1—r(G).
So /(@) is the proportion of elements which commute with an element of order
p. Clearly, s(G) < 1'(G) and it is 7'(G) that we will obtain estimates for.

So if ¢ is the number of components of R’ of codimension 1, it follows from
the Lang-Weil estimates for the number of points on an absolutely irreducible
variety that

'(G) = R (q)|/|G(q)| < ¢/q+ O(q*/?).

As mentioned above, this approach was suggested by Spaltenstein. The
weakness of this approach is that one does not obtain effective bounds, only
asymptotic ones. In particular, the nature of the error term conceivably de-
pends on the characteristic of the underlying field. In this note, we obtain
effective bounds as follows.

Theorem 1.1. If G is simple then s(G(q)) < 7'(G(q)) < 3/(qg—1)+2/(g—1)2.

As noted above, this theorem applies to all groups G with J(q) < G <
InnDiag(J(q)), where J(q) is a simple finite group of Lie type defined over the
field of ¢ elements and InnDiag(.J(q)) is the full group generated by inner and
diagonal automorphisms (see [Car72] for definitions). Note if we take G to
be simply connected, then G = G(q) is almost always quasisimple. Since the
center is a p’-group, there is no harm in passing to the quotient in computing
either 7(q) or s(g). Similarly, if we take G to be the adjoint group, then G
will be the full group of inner and diagonal automorphisms of J(q).

In the main body of the paper, we give more precise bounds for each type
of group which are also asymptotically correct for growing g. One can modify
our methods to obtain asymptotic lower bounds with the correct main term;
see [NP]. In that paper, they also obtain results for fixed g as the rank tends
to infinity.

We handle the classical groups first. The method we use is to show that
any p-singular element commutes with a conjugate of one of a family of unipo-
tent subgroups (for algebraic groups, this family can be taken to be the root
subgroups). For the classical groups, we estimate how many elements are in
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the union of the set of conjugates of these subgroups. For exceptional groups,
one can compute exactly the number of p’-elements of G(g) and |R'(q)].

In section 4, we discuss asymptotic results for the variety of p-singular
elements and results for simple algebraic groups. In the final section, we make
some brief remarks about the general case of almost simple groups.

2. Classical Groups

In the case of GL, or SL,, the subset R is the collection of elements with
distinct eigenvalues — a condition that can be expressed by saying that the
discriminant of the characteristic polynomial is nonzero. There are similar
descriptions for the other classical groups.

Let J = G(q) denote a simple classical group (i.e., linear, unitary, symplec-
tic or orthogonal) over Fy, with ¢ = p*. Let J < G < A, where A is the full
group of inner and diagonal automorphisms. We view J, G and A all acting
on its natural module V' (since whatever center is allowed has order prime to
p, this has no effect on the proportion of p-singular elements or of elements
which commute with a nontrivial p-element). So the groups we are consider-
ing for J are PSL,(q),n > 2, PSp,(q),n > 4 and even, PSU,(q),n > 3 or
OX(q),n > 7 (where the latter group is the commutator subgroup of the or-
thogonal group). The natural module is defined over Fj except in the unitary
case where it is defined over Fia.

If x € G, we will let s, and u, denote the semisimple and unipotent parts
of x (so z is the commuting product of s, and u, and these element are the
p’ and p-parts of ).

Our strategy is as follows. We first identify semisimple elements in R’ in
terms of their module structure on the natural module. We then choose a
unipotent subgroup U which is contained in the center of a Sylow subgroup of
the centralizer of this semisimple element. It follows that any element of R’
with this given semisimple part commutes with a conjugate of U. Fortunately,
the choice of U (up to conjugacy) will not depend very much on the semisimple
element, but only on the homogeneous components of the semisimple element.
It follows that R’ is the union of the conjugates of the centralizers of these
families of unipotent subgroups and this is the estimate we use.

In the case of algebraic groups (and not just the classical groups), it turns
out that we need only consider U to be a root subgroup (so in case of one root
length, only one subgroup and in general at most two).

In this section we will repeatedly use the following easy lemmas.

Lemma 2.1. Let G be a finite group and U be a subgroup of G with t =
INg(U) : U|. Then |Ugeq U?| < |G|/t.
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Proof. There are |G|/|Ng(U)| = |G|/(t|U]) different subgroups U9, all of
order |U]. O

Lemma 2.2. Let ¢ > 1 a real number. Then

oo

D@ -1 <1/(a-1)+1/(a -1

e=1

Proof. This follows from

(=1 <) 1/(¢°—q)=1/(alg— 1)+ (1/q) D _1/(¢° = 1).
e=2 e=2 e=2

Recall that 7'(G) = |R'(¢)|/|G(q)|.
In the remaining part of this section, we prove the following;:

Theorem 2.3. If G is almost simple with socle J of classical type and G s
contained in the group of inner-diagonal automorphisms of J, then r'(G) is
bounded above as given in the following table:

J |G : J| | Upper Bound for r'(G)
PSL(q) 1 (2,¢-1)/(¢—1)
PSLz(q) 2 1/(g—1)

SLy(q), n 1/(g=1)+2/(g—1)
PS Un(q), n 1/(g—1)+4/(g— 1)
Spn(q), n—2k>2 q even 2/(qg—1)+1/(qg—1)2
PSp,(q),n=2k>2,q odd | 1 3/(q—1)+1/(g—1)2
PSp,(q),n=2k>2,q odd | 2 2/(q—1)+1/(qg—1)?
O3,,(q), n > 4 1/(g=1)+2/(g - 1)°
O2n11(q), n >3, q odd 2/(¢—=1)+2/(qg—1)?

Proof. Let v = su be the Jordan decomposition of x € R’. Since s is not
regular, it follows that s has a homogeneous component W on V' which has
multiplicity m > 1. Define e by Endg, (W) = M, (Fye).

Now Cg(s) leaves W (and each homogeneous component) invariant. In
particular, u does. If U is a central subgroup of a Sylow p-subgroup of C¢g(s),
then we see that the union of all G-conjugates of C¢(U) contains su. Thus,
choosing one U for each s and taking all conjugates covers all of R'. We will
see that in each case we can choose only a small number of U and that we can
bound the union of all these conjugates.

Case 1. J = PSLs(q).
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If G = SLs(q), we can get an exact formula. R’ is precisely the union of
elements of the form +u with « unipotent. Thus, 7/(G) = (2,q—1)q/(¢*—1) <
(2.0—1)/(q - 1).

If ¢ is odd and G/J has order 2, then R’ does not change but |G| = 2|J|.

Case 2. J = PSL,(q),n > 2

In this case, we choose U = U, to be a root subgroup of the centralizer
acting on W (note this centralizer is GL(m, ¢°) NG). Note that this conjugacy
class does not depend on m, but only on e.

Thus R’ is the union of the centralizers of the Fye-root subgroups. If
e < n/2, then |[Ng(U)/Cq(U)| > (¢¢ — 1) (because all elements in the root
subgroup are conjugate to a fixed one via some toral elements which normalize
U — just consider the group over the extension field ). If e = n/2, then similarly
we see that |[Ng(U)/Ce(U)| > (¢°—1)/(2,q—1). Thus, by 2.1 and U C C¢(U)
we have /(G) < (2,q — 1)/(¢"/? — 1) + Z;fl_l 1/(¢¢ — 1) if n is even and
"(G) < S D2 1 /(g¢ — 1) if m is odd.

e=1

This yields easily that
r(G) <1/(g—1) +1/(g—1)*
if ¢ is even or n # 4. In the remaining case,
r(G) <1/(g—1) +2/(qg— 1)

Case 3. J = PSU,(q),n > 2.

The first possibility is that W is nondegenerate. Then Cg(s) (acting on
W)is Uy, (¢¢/?) and we choose U to be the center of a root subgroup, so U
consists of transvections (over the larger field) and has order ¢*/2. Note that
e is even, the class of U is independent of m and that Ng(U)/Cg(U) has
order at least ¢¢/2 — 1 unless ¢ is odd, n is even and e = n. In that case
IN(U)/Ca(U)| > (¢°/? — 1)/2. Note that 1 < e/2 < n/2.

The other possibility is that W is totally singular with m > 2. In this case,
Ca(s) acts as SLy,(¢°) on W —so |U| = ¢¢ and |[Ng(U)/Ca(U)| > (¢¢ — 1)
or (¢¢° —1)/2if ¢ is odd, n is even and e = n.

Summing over all possible e, we obtain the estimates

r(G)<1/(a=1)+1/(g=1)*+1/(¢* = 1) +1/(¢* = 1)?
for n odd or ¢ even, and
(@) < 1/(g=1)+1/(g=1)*+1/(@ =)+ 1/(®—1)*+1/(¢" = 1) +1/(¢"/*~1)

for n even and ¢ odd.
In all cases, we obtain the inequality:

r(G) <1/(g—1) +4/(g— 1)
Case 4. J = PSp,(q), n = 2k > 2.
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There are various possibilities for the parameters in this case.

The first possibility is that W is nondegenerate and C¢(s) leaves invariant
an Fye-alternating form on W. Note in this case s = 1 on W. Soe=1. In
this case, we take U to be a long root subgroup of Sp(m,q) which is a long
root subgroup of G. So |[N;(U)/C;(U)| > (¢—1)/(2,q—1). If G # J, then
similarly we see that |[Ng(U)/Ca(U)| > (¢ — 1).

The second possibility is that W is totally singular. Then W is paired
with another totally singular homogeneous component, W* and C¢(s) acts as
GL(m,q°) on W (and via the dual on W*). In this case, we take U to be a
root subgroup of GL(m,q%). Again, we note that the conjugacy class of U is
independent of m. Note that Ng(U)/Cg(U) has order at least ¢° — 1.

The final possibility is that W is nondegenerate but that Cg(s) does not
preserve an alternating form over Fye on W. In this case, C(s) acts on W
as a unitary group over Fy. and we take U to be the center of a Sylow p-
subgroup of order ¢° consisting of unitary transvections (over the bigger field).
In particular, e is even. Again, this class is independent of m. Reducing to the
case m = 2, we see that this subgroup is actually contained in Us(¢¢) and that
it is a short root subgroup of Sps(q°), a class of subgroups already allowed
from the previous paragraph.

So as above, we obtain the estimates:

(@) <3/(g—1)+1/(¢—1)°
for ¢ odd and G = J, and
r(G) <2/(g-1)+1/(¢—1)?

for ¢ even or G/J of order 2.

Case 5. Orthogonal Groups, n > 7.

We may assume that ¢ is odd if n is odd (because otherwise the orthogonal
group is the symplectic group, a case already dealt with).

We first note some elementary facts. If = is semisimple and a is an eigen-
value of x, let V, denote the corresponding eigenspace (over the algebraic
closure). Then V,, and Vj, are orthogonal unless ab = 1. If ab = 1 and a® # 1,
then V, @V}, is nonsingular. In particular, @ and a~! have the same multiplicity.

These cases are all quite similar to the symplectic case. The possible com-
ponents of centralizers of semisimple elements that we have to deal with cor-
respond to the totally singular case where we get components of the form
GL(m,q°) and the nondegenerate case where the components are either of the
form O*(m, q) or U(m, ¢®/?).

In the first case, the class of U depends only on e and |[Ng(U)/Cq(U)| >
q° — 1 except that possibly if e is maximal, then only |Ng(U)/Ce(U)| >
(¢°—1)/(2,q9—1). In the last case, we see that the conjugacy class of U depends
only on e and not on m. Indeed, we see that we obtain the same conjugacy
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classes of U as in the totally singular case (these are ‘long root subgroups’ over

Fe/2). The usual argument shows that this gives a contribution bounded by

1/(g—1)+2/(g—1)%

If the centralizer is an orthogonal group, then e = 1 because the semisimple
element must be =1 on W. If it acts as —1, then m > 4 is even (it is even
because the determinant must be 1 and as noted above all eigenvalues are
paired with their inverses and m > 4 because otherwise there is no unipotent
element centralizing the semisimple element on that component). If m > 4,
then the center of a Sylow p-subgroup of Cg(s) is a long root subgroup and
if m = 4, a long root subgroup of G' embeds in OF and so is contained in the
center of a Sylow p-subgroup of Cg(s). So this class of subgroups is already
accounted for.

If it acts as 1, then n — m is even (because of the pairing of eigenvalues
noted above). Thus, if n is even, we obtain nothing new. If n is odd (and so
q is odd), we pick up the conjugacy class U of short root subgroups. In this
case, [Ng(U)/Ca(U)| = (¢ —1).

So we have shown that if J = O;En(q), n >4,

r(G) <1/(g—1)+2/(qg—1)?

and that if
J = O;_n—&-l(Q)vn Z 37

r(G) <2/(g-1)+2/(¢ - 1)*

This completes the proof of 2.3. (]

3. Exceptional Groups

In principal we could handle the exceptional groups in a similar way as the
classical ones. But it would become much more complicated to distinguish the
possible types of centralizers of semisimple elements.

Instead we use that for exceptional groups we can compute exactly the
number of semisimple and regular semisimple elements in G(g). We did this
with the help of computer programs written by the second named author. They
get as input a complete root datum which determines the algebraic group G
up to isomorphism and a twisting type of a Frobenius morphism of G. The
numbers we are interested in are then computed completely automatically.
They can be given in the form of polynomials in g, after distinguishing a finite
number of congruence classes for gq.
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Example: The number of semisimple elements of the exceptional groups of
type Ga(q) is given by:

number of semisimple elements if ¢ = ¢mod 6

2P g2 43¢ — 0 P +2¢ -2 -3+ + P+ 1
=2 "+ P — P2 - — P — P+ 1

G 2¢P 42 42 — g0 — B 424 245 —2¢° + ¢+ 1

gt —2¢3 43¢ — g — B +2¢ - -3+ P +1

= 2¢P 4 g2 g — 0 4 — P42 -2 — P+t — P+ 1

T W N =0

Details of the programs and their mathematical background are described
in [Liib]. It is planned to publish a version of these programs for general use
within the computer algebra package CHEVIE [GHL*96].

We remark that these results in the case of simply connected G could in
principal also be obtained from data which appear in the literature. This would
involve simple but extremely lengthy and tedious computations by hand.

Of course the same computations could also be done for classical groups
up to a certain rank (< 9, say) to improve the results of the last section.

Printing all the exact polynomials as in the example above would need a
lot of space and is probably not very useful. They are available for interested
readers from the authors. Instead we express for all types of simple exceptional
groups the quotient 7'(q) = |R'(q)|/|G(q)| in the form

iy — S 4
T(Q)_q—1+(q—1)2

(similar to the estimating expressions in section 2), taking for ¢ the asymptot-
ically correct value.
This leads to the following theorem.

Theorem 3.1. Let G be simple and of exceptional type. The table below gives
for each type constants c, x, y and d such that for all ¢ we have

¢/(g=1)+2/(g-1)> <7"(G(q) < ¢/(g—1) +y/(a—1)*

and such that

d= lim ('(G(q)) —¢/(a—1)) - (¢ = 1).

q—00

In case of the Suzuki and Ree groups substitute q by ¢* in these expressions.
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G clx |y d
Ba(g?), > =22t meN |1 |-1]| 0| 0
G2(q), q even 21-3|-1]-3
G2(q), q odd 21 4| -2 -4
2Go(¢?), > =3t meN | 2| -1| 0| -1
3D4(q) 1]-1] 01 -1
Fi(q) 24| -1 -4
2Fi(@®), ? =22 meN | 2| -2|-1]-2
Es(q) 1|-1] 0] -1
2E6(q) 1]-1] 0] -1
Ex(q) 1l-1] 0] -1
Es(q) 11|01

Note that the estimates in the theorem are always the same for groups of
simply connected and adjoint type (and hence they also hold for the corre-
sponding finite simple groups) — although the exact numbers of semisimple
elements do depend on the type of the group. Also, with the exception of
G2(q), the estimates do not depend on the congruence classes of ¢. Finally,
we remark that the lower bounds also estimate the complement of the set of
all (not just regular) semisimple elements.

4. Algebraic Groups

In this section, we show how our approach in section 2 applies in the case of
algebraic groups. As remarked in the introduction, these results will at least
provide good asymptotic estimates for the finite groups and will also verify that
the coefficient of 1/(¢ — 1), as given in the table in Theorem 2.3, is correct.
If we want the fixed points of the Frobenius endomorphism to be quasisimple,
we must consider simply connected algebraic groups.

For this section, we refer to [Car72] and [Bor91] for general references
about algebraic groups.

Let G be a reductive group over an algebraically closed field F' as in the
introduction. Recall that R’ is the set of elements which commute with a
unipotent element (i.e., R’ is the complement of the set of regular semisimple
elements in G).

Theorem 4.1. Let x € G, then x € R’ if and only if x centralizes a root
subgroup of G.
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Proof. Let x = s u, the Jordan decomposition of x, let B a Borel sub-
group of G containing z and T' a maximal torus in B containing s,. Let R
denote the set of positive roots with respect to T' C B. Order the positive set
of roots. Then u, =[] Rt Ua (to) where t,, € F and the product is taken in the
given ordering. This expression is unique. Since s, centralizes u, and normal-
izes each root subgroup, it follows that s, centralizes each root subgroup U,
with ¢, # 0. Let X denote the subgroup generated by these root subgroups.
Then X is a product of root subgroups and moreover its center contains a root
subgroup. So s, and u, centralize this root subgroup as desired. O

Now assume that G is a simply connected algebraic group. Let Z = Z, be
a root subgroup of G. There are 1 or 2 conjugacy classes of such subgroups
(depending upon the number of root lengths). Let X be the variety of elements
in G which commute with some conjugate of Z. Fix a maximal torus T in
N :=N(Z).

First observe that X has codimension 1 in G (to see this, note that a generic
element in the centralizer of a root subgroup U has centralizer SU where the
connected component of S is a maximal torus in the centralizer of U — so §
has codimension 1 in a maximal torus and the map from G x SU — R’ given
by (g, su) — (su)? has generic fiber of dimension 1 4 rank(G)).

First suppose that Z is a long root subgroup. Then N := N(Z) contains
a Borel subgroup and so is parabolic and in particular is connected. More-
over, N = N'T. Note that N’ centralizes Z and so must be the connected
component of C'(Z). Thus, the number of connected components of C(Z) is
precisely the number of connected components of C' := Cr(Z). The number
of connected components of C' is precisely the largest positive integer e rel-
atively prime to p such that a = ef for some (3 in the weight lattice of G.
It is straightforward (using the description of the root and weight lattices in
[Car72]) to see that e = 1 unless e = 2, p # 2 and one of the following holds:

G is of type A or

G is of type Cj, | > 2.

Thus, the number of irreducible components in the variety X of elements
which commute with a conjugate of Z is at most the number of components
in C. So except in the cases above, X is an irreducible variety of codimension
1in G.

In the two remaining cases one can check that the variety has 2 components.
In fact, if X is one component, then the other component is {A} x X; where
A is a generator of the center of G (and has order 2). Thus, both components
have codimension 1.

Now assume that Z is a short root subgroup. Using estimates for the
number of F,-rational points in R’ for exceptional groups, we see that the
number of components of R’ of codimension 1 in G is 1 for G = G4 or Fy.

If G = By (or Cy) with p = 2, we can argue as in the long root case
(because short roots and long roots are interchanged when considering G as
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By or Cy). So C(Z) is connected and so X is irreducible. Finally, assume that
p # 2and G = Cy or By. A straightforward computation shows that there are 2
connected components in C(Z) and so X has at most 2 connected components.
Indeed, we see that in fact there are two connected components for X. The
one corresponding to the identity component of C'(Z) has codimension 1 in G.

Suppose that G = Cy, £ > 2. A short root subgroup Z has a 2-dimensional
commutator space with the natural module which is a totally singular 2-space.
Thus, the normalizer of Z must stabilize this subspace and so N(Z) < P, the
corresponding parabolic subgroup which is the full stabilizer of the totally
singular 2-space. Since the radical @ of P is Abelian and contains the short
root subgroup, we see that C(Z) contains . The Levi complement of P
is GL(2) x Cy_o where the second factor acts trivially on @ and so also on
Q. The centralizer of Z in GL(2) is precisely the two dimensional orthogonal
group which has connected a 1-dimensional torus of index 2. Thus, we see the
two components and we see that any element not in the connected component
centralizes a long root element and so these elements are already accounted
for.

If G = By, ¢ > 2, then again a short root subgroup Z has a 2-dimensional
commutator space with the natural module. However, in this case, the radical
W of these space is 1-dimensional and is invariant under N(Z). Thus, N(Z) is
the contained in P, the parabolic subgroup stabilizing a 1-dimensional totally
singular subspace. One sees that the two components of C(Z) correspond to
whether the eigenvalue on W is £1. This implies that any element in C(Z)
has a triple eigenvalue either +1. The component corresponding to the case
of eigenvalue —1 must have —1 occurring with multiplicity at least 4 (because
the multiplicity of —1 is even). Restricting to the nonsingular subspace of
dimension at least 4 which is the —1 eigenspace of the semisimple part of an
element in C'(Z) shows that any element in the non-identity component of
C(Z) already centralizes a long root element (as in the Cy case).

So in all cases, we obtain a single component of codimension 1 of elements
centralizing a short root subgroup which is not contained in the centralizer of
a long root subgroup.

Putting these results together we get the following theorem.

Theorem 4.2. Let G be simple simply connected. Then the number of com-
ponents of R’ of codimension 1 is as given in the following table.

In particular the asymptotic results agree with the asymptotic estimates
obtained in sections 2 and 3 (since we are dealing with simply connected groups,
we must compare these estimates with the simple groups) — i.e., the first term
in our estimates for upper bounds for r'(G) cannot be improved.
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Group Number of Root Lengths | Number of Components
Ay 1 (2,p-1)
Ayl >2 1 1
B,1>3 2 2
Cp,l>2 2 1+ (2,p-1)
Dl >4 1 1
E;,1=6,7,8 1 1
Fy 2 2
Go 2 2

We also note the following result which we assume is known to the experts
in the field.

Theorem 4.3. If G is simple then the subset of nonregular semisimple ele-
ments has codimension 3 in G and the number of components of this variety
15 at most 3.

Proof. Let Y denote the set of semisimple elements which are not regular.
As in 4.1, we see that Y = Y7 UY5 where Y; are those semisimple elements
which centralize a long root subgroup (for ¢ = 1) and or a short root subgroup
(for i = 2). Arguing as above we see that Y7 is irreducible unless p # 2
and G = A; or Cp. In those cases, there are two components. A generic
element (in either component in the latter cases) has centralizer T A; where
T is a maximal torus and A; is the subgroup generated by a pair of long root
subgroups. Computing the dimension of the generic fiber of the conjugation
map shows that each component of Y; has codimension 3.

Similarly, we see that Y5 is irreducible of codimension 3. This completes
the proof. O

We remark that in the case of G = SL or Sp, the closure of this variety is
precisely the set of noncyclic matrices in each group.

5. Centers and Outer Automorphisms

In this section, we make some preliminary remarks about handling covering
groups and other extensions of simple groups. We hope to return to this topic
in a future article.

Fix a prime p. Let S(G) denote the set of p-singular elements of G. Let
s(G) = [S(G)/IG].

First consider the case that GG has a center Z. If Z has order prime to p,
then s(G) = s(G/Z) (indeed, this is true for any normal subgroup with order
prime to p). Furthermore, we note that:
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Lemma 5.1. Suppose that the center Z of G is a p-group. Then
s(G)=s(G/2)/|Z| +1-1/|Z|.

Proof. Let 7 : G — G/Z be the natural map. Note that the inverse image
of S(G/Z) is contained in S(G) and has cardinality | Z||S(G/Z). Suppose that
x € G is not p-singular in G/Z. If z € Z, then xz € S(G) if and only if z # 1.
Thus

IS(G)| = 1Z||1S(G/2)| + |S"(G/2)|(1Z] - 1) = |S(G/Z)| + |G/ Z|(|1Z] — 1).
Dividing by |G| yields:
s(G)=s(G/2)/|1Z)+1-1/|Z|.
O

Next we consider outer automorphisms. So let J be a finite simple group
and G almost simple with socle J. We will consider the proportion of p-singular
elements in a given coset zJ. So there is no harm in assuming that G/J is
cyclic and generated by xJ. If p divides |G/J|, then every element in the coset
xJ is p-singular.

So we shall assume that G/J is a p’-group. We restrict our attention to
the case that J is a finite group of Lie type over the field Fj, with ¢ a power
of p.

We have already handled the case of diagonal automorphisms. We do
not answer the question completely but show that the answer can change in
certain situations. Let p be a prime and let G be a simple algebraic group in
characteristic p. Let ¢p be a power of p and e a positive integer with ¢ = ¢§.
In a special case, we show that we can reduce the computation of the number
of p-singular elements in a given coset to the same question for a group over
the fixed field of a Frobenius map.

Theorem 5.2. Let G = G(q). Assume that e is relatively prime to |G(qo)|.
Let o be the Frobenius automorphism of order e on G(q). Set H = (G, o) and
C = Cg(0o). Note that C is a group of the same type as G defined over the
field of qo elements. The proportion of p-singular elements in the coset oG is
equal to s(C).

Proof. Our hypotheses imply that (e, |C|) = 1 (since C/G(qo) just involves
diagonal automorphisms).

Let y = og with g € G. It is easy to see ([GMS] using (7.2) in [GL83])
that y lies in a unique conjugate of D := (C, o).

Now assume that y € D (and so g € C). Thus, y is p-singular if and only
if g is. Thus, the number of p-singular elements in the coset oG is precisely
|S(C)]|G : C| and so the proportion of p-singular elements in the coset is s(C).
O
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Thus, since s(C') is asymptotically of the form ¢/qq for ¢ = 1,2 or 3 (depend-
ing upon the type of G), we see that the probability that a random element
in the given coset is p-singular is much higher than for the simple group.

If e is not relatively prime to the order of G(qp), the analysis becomes more

difficult.

For graph automorphisms, the main case is when G has type A (for groups
of type D, the involutory graph automorphism acts on the natural orthogonal
module and an analysis as in section 2 suffices). A modification of the methods
of section 2 show that the correct answer is still of the form ¢/q.
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