Matrix generators for the Ree groups ${ }^{2} G_{2}(q)$.

Gregor Kemper, Frank Lübeck, and Kay Magaard*

October 24, 2000

For the purposes of $[\mathrm{K}]$ and $[\mathrm{KM}]$ it became necessary to have 7×7 matrix generators for a Sylow-3-subgroup of the Ree groups ${ }^{2} G_{2}(q)$ and its normalizer. For example in $[\mathrm{K}]$ we wanted to show that in a seven dimensional representation the Jordan canonical form of any element of order nine is a single Jordan block of size 7. In [KM] we develop group recognition algorithms. At some stage we need to identify a certain subset of group elements with the Sylow-3-subgroup of ${ }^{2} G_{2}(q)$. This is most easily done using a faithful matrix representation of small dimension. In this note we provide matrix generators for two distinct Sylow-3subgroups of ${ }^{2} G_{2}(q)$, thereby providing a matrix generating set for the whole group. Starting with the Steinberg generators for a seven dimensional representation of $G_{2}(q)$ we construct our matrices following Carter [C], chapters 12 and 13. The matrices for the Steinberg generators of $G_{2}(q)$ were computed with the help of a computer program developed by the second author.

For our setup we let $G=G_{2}(K)$, where K is the algebraic closure of a finite field of characteristic 3. Let F a Frobenius endomorphism of G whose set of fixed points G^{F} is a Ree group of type ${ }^{2} G_{2}(q), q=3^{2 m+1}$. Let T be an F-invariant maximal torus of G, and let B and B^{-}be F-invariant Borel subgroups intersecting in T with unipotent radicals U respectively U^{-}. By N we denote the normalizer $N_{G}(T)$. Let Φ be the root system of G with respect to T and $\{a, b\}$ its base given by B, where a is a short and b a long root. Now U respectively U^{-}is generated by subgroups X_{r} respectively X_{-r}, where $r \in \Phi^{+}$(the set of positive roots). The groups X_{r} are isomorphic to the additive group of the field K. We denote the elements of X_{r} by $X_{r}(t)$ where $t \in K$.

The reductive group G has an irreducible 7 -dimensional representation over K (with highest weight $(1,0)$) which can be found as follows: In characteristic 3 , the 14 -dimensional adjoint representation V of G has a 7 -dimensional irreducible submodule. This submodule is spanned by those elements of the Chevalley basis of V which are labeled by short roots. The restriction of this representation to ${ }^{2} G_{2}(q)$ remains irreducible.

The second author has implemented a computer program which computes for an arbitrary Chevalley group explicit matrices for the root elements $X_{r}(t)$ in its adjoint representation with respect to a Chevalley basis. Using this for type G_{2}, we obtain the images of the $X_{r}(t)$ in the 7 -dimensional representation with high weight $(1,0)$ by cutting out the appropriate 7×7-blocks of the $X_{r}(t)$. (By abuse of notation we also denote these images by $X_{r}(t)$ in the sequel.)

[^0]These programs use the computer algebra packages GAP [GAP] and CHEVIE [GHLMP]. They work along the construction of the Chevalley groups as explained in Carters book [C]. It is planned to make them available to interested users as part of a larger package [L] for computing characters and highest weight representations of reductive groups.

The following list gives the matrices $X_{r}(t)$ for G. The reader can check that they satisfy the Steinberg relations [C] 12.2.1, where the structure constants are chosen as in the table on page 211 of [C]. (We denote zero entries by dots.)

$$
\begin{aligned}
& X_{b}(t)=\left(\begin{array}{ccccccc}
1 & . & . & . & . & . & . \\
. & 1 & t & . & . & . & . \\
. & . & 1 & . & . & . & . \\
. & . & . & 1 & . & . & . \\
. & . & . & . & 1 & 2 t & . \\
. & . & . & . & . & 1 & . \\
. & . & . & . & . & . & 1
\end{array}\right), \\
& X_{-b}(t)=\left(\begin{array}{ccccccc}
1 & . & . & . & . & . & . \\
. & 1 & . & . & . & . & . \\
. & t & 1 & . & . & . & . \\
. & . & . & 1 & . & . & . \\
. & . & . & . & 1 & . & . \\
. & . & . & . & 2 t & 1 & . \\
. & . & . & . & . & . & 1
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& X_{3 a+2 b}(t)=\left(\begin{array}{ccccccc}
1 & . & . & . & . & 2 t & . \\
. & 1 & . & . & . & . & t \\
. & . & 1 & . & . & . & . \\
. & . & . & 1 & . & . & . \\
. & \cdot & . & . & 1 & . & . \\
. & . & . & . & . & 1 & . \\
. & . & . & . & . & . & 1
\end{array}\right), \quad X_{-3 a-2 b}(t)=\left(\begin{array}{ccccccc}
1 & . & . & . & . & . & . \\
. & 1 & . & . & . & . & . \\
. & . & 1 & . & . & . & . \\
. & . & . & 1 & . & . & . \\
. & . & . & . & 1 & . & \cdot \\
2 t & . & . & . & . & 1 & . \\
. & t & . & . & . & . & 1
\end{array}\right)
\end{aligned}
$$

With our choice of structure constants the automorphism F has a particularly nice form. Let π be the involution on Φ which permutes $\pm a$ and $\pm b, \pm(a+b)$ and $\pm(3 a+b)$, and $\pm(2 a+b)$ and $\pm(3 a+2 b)$. Let $\theta=3^{m}$. Now

$$
F\left(X_{r}(t)\right)=X_{\pi(r)}\left(t^{\lambda(\pi(r)) \theta}\right)
$$

where $\lambda(\pi(r))$ is 1 if $\pi(r)$ is short and 3 if $\pi(r)$ is long, see for example Proposition 12.4.1 of $[\mathrm{C}]$ and the discussion on page 225.

Now every element of U is of the form

$$
X_{a}\left(t_{1}\right) X_{b}\left(t_{2}\right) X_{a+b}\left(t_{3}\right) X_{2 a+b}\left(t_{4}\right) X_{3 a+b}\left(t_{5}\right) X_{3 a+2 b}\left(t_{6}\right)
$$

with unique elements $t_{1}, \ldots, t_{6} \in K$. Following the proof of [C] Proposition 13.6.3(vii) we confirm, using the computer program Maple, that

$$
\begin{aligned}
& F\left(X_{a}\left(t_{1}\right) X_{b}\left(t_{2}\right) X_{a+b}\left(t_{3}\right) X_{2 a+b}\left(t_{4}\right) X_{3 a+b}\left(t_{5}\right) X_{3 a+2 b}\left(t_{6}\right)\right)= \\
& \quad X_{b}\left(t_{1}^{3 \theta}\right) X_{a}\left(t_{2}^{\theta}\right) X_{3 a+b}\left(t_{3}^{3 \theta}\right) X_{3 a+2 b}^{3 \theta}\left(t_{4}^{3 \theta}\right) X_{a+b}\left(t_{5}^{\theta}\right) X_{2 a+b}\left(t_{6}^{\theta}\right)=X_{a}\left(t_{2}^{\theta}\right) X_{b}\left(t_{1}^{3 \theta}\right) . \\
& \quad X_{a+b}\left(t_{1}^{3 \theta} t_{2}^{\theta}+t_{5}^{\theta}\right) X_{2 a+b}\left(t_{1}^{3 \theta} t_{2}^{2 \theta}+t_{6}^{\theta}\right) X_{3 a+b}\left(-\left(t_{1} t_{2}\right)^{3 \theta}+t_{3}^{3 \theta}\right) X_{3 a+2 b}\left(-t_{1}^{6 \theta} t_{2}^{3 \theta}+t_{4}^{3 \theta}\right) .
\end{aligned}
$$

Comparing the coefficients of the factors and using that for $x \in K$ we have $x^{3 \theta^{2}}=x^{q}=x$ iff $x \in F_{q}$, we get the parametrization of the F-stable elements of U.

Set $t=t_{2}, u=t_{5}$ and $v=t_{6}$. Then $U^{F}=\left\{x_{S}(t, u, v) \mid t, u, v \in F_{q}\right\}$, where

$$
x_{S}(t, u, v)=\left(\begin{array}{ccccccc}
1 & t^{\theta} & -u^{\theta} & (t u)^{\theta}-v^{\theta} & f_{1}(t, u, v) & f_{2}(t, u, v) & f_{3}(t, u, v) \\
. & 1 & t & u^{\theta}+t^{\theta+1} & -t^{2 \theta+1}-v^{\theta} & f_{4}(t, u, v) & f_{5}(t, u, v) \\
. & \cdot & 1 & t^{\theta} & -t^{2 \theta} & v^{\theta}+(t u)^{\theta} & f_{6}(t, u, v) \\
. & \cdot & . & 1 & t^{\theta} & u^{\theta} & (t u)^{\theta}-v^{\theta} \\
\cdot & \cdot & . & \cdot & 1 & -t & u^{\theta}+t^{\theta+1} \\
\cdot & \cdot & . & \cdot & \cdot & 1 & -t^{\theta} \\
. & . & . & . & . & . & 1
\end{array}\right)
$$

with

$$
\begin{aligned}
\theta & =3^{m} \\
f_{1}(t, u, v) & =-u-t^{3 \theta+1}-(t v)^{\theta} \\
f_{2}(t, u, v) & =-v-(u v)^{\theta}-t^{3 \theta+2}-t^{\theta} u^{2 \theta} \\
f_{3}(t, u, v) & =t^{\theta} v-u^{\theta+1}+t^{4 \theta+2}-v^{2 \theta}-t^{3 \theta+1} u^{\theta}-(t u v)^{\theta}, \\
f_{4}(t, u, v) & =-u^{2 \theta}+t^{\theta+1} u^{\theta}+t v^{\theta} \\
f_{5}(t, u, v) & =v+t u-t^{2 \theta+1} u^{\theta}-(u v)^{\theta}-t^{3 \theta+2}-t^{\theta+1} v^{\theta} \\
f_{6}(t, u, v) & =u+t^{3 \theta+1}-(t v)^{\theta}-t^{2 \theta} u^{\theta} .
\end{aligned}
$$

Using this we confirm, see [C] on page 236, that the group law for U^{F} is as follows:

$$
x_{S}\left(t_{1}, u_{1}, v_{1}\right) x_{S}\left(t_{2}, u_{2}, v_{2}\right)=x_{S}\left(t_{1}+t_{2}, u_{1}+u_{2}-t_{1} t_{2}^{3 \theta}, v_{1}+v_{2}-t_{1}^{2} t_{2}^{3 \theta}-t_{2} u_{1}+t_{1} t_{2}^{3 \theta+1}\right)
$$

Replacing positive roots by negative roots and proceeding as above we get that $U^{-F}=$ $\left\{x_{S}^{\prime}(t, u, v) \mid t, u, v \in F_{q}\right\}$, where

$$
x_{S}^{\prime}(t, u, v)=\left(\begin{array}{ccccccc}
1 & . & . & . & . & . & . \\
t^{\theta} & 1 & . & . & . & . & \cdot \\
t^{\theta+1}-u^{\theta} & t & 1 & . & . & \cdot & \cdot \\
(t u)^{\theta}+v^{\theta} & -u^{\theta} & -t^{\theta} & 1 & . & \cdot & \cdot \\
g_{1}(t, u, v) & (t u)^{\theta}-v^{\theta} & -t^{2 \theta} & -t^{\theta} & 1 & . & \cdot \\
g_{2}(t, u, v) & g_{3}(t, u, v) & t^{2 \theta+1}+v^{\theta} & t^{\theta+1}-u^{\theta} & -t & 1 & \cdot \\
g_{4}(t, u, v) & g_{5}(t, u, v) & g_{6}(t, u, v) & (t u)^{\theta}+v^{\theta} & u^{\theta} & -t^{\theta} & 1
\end{array}\right)
$$

with

$$
\begin{aligned}
\theta & =3^{m} \\
g_{1}(t, u, v) & =t^{3 \theta+1}+t^{2 \theta} u^{\theta}-(t v)^{\theta}-u \\
g_{2}(t, u, v) & =t^{3 \theta+2}+t^{\theta+1} v^{\theta}-u^{\theta} t^{2 \theta+1}-(u v)^{\theta}+t u-v \\
g_{3}(t, u, v) & =-t^{\theta+1} u^{\theta}-u^{2 \theta}+t v^{\theta} \\
g_{4}(t, u, v) & =t^{4 \theta+2}+u^{\theta} t^{3 \theta+1}+(t u v)^{\theta}-v^{2 \theta}-u^{\theta+1}+t^{\theta} v \\
g_{5}(t, u, v) & =t^{3 \theta+2}+t^{\theta} u^{2 \theta}-(u v)^{\theta}+v \\
g_{6}(t, u, v) & =-t^{3 \theta+1}-(t v)^{\theta}+u
\end{aligned}
$$

Here the group law is as follows:

$$
x_{S}^{\prime}\left(t_{1}, u_{1}, v_{1}\right) x_{S}^{\prime}\left(t_{2}, u_{2}, v_{2}\right)=x_{S}^{\prime}\left(t_{1}+t_{2}, u_{1}+u_{2}+t_{1} t_{2}^{3 \theta}, v_{1}+v_{2}-t_{1}^{2} t_{2}^{3 \theta}+t_{2} u_{1}+t_{1} t_{2}^{3 \theta+1}\right)
$$

We note that the form of the group law in U^{F} differs from that of U^{-F} by two minus signs. We also remark here that if we let our matrices $X_{r}(t)$ act on the right, rather than on the left, then the form of the group law for U^{F} changes to that of U^{-F} and vice versa.

Following [C] Lemma 12.1.1 we define $n_{r}(t)$ as $X_{r}(t) X_{-r}\left(-t^{-1}\right) X_{r}(t)$ and $h_{r}(t)=$ $n_{r}(t) n_{r}(-1)$. Now every element of T is of the form $h_{a}\left(t_{1}\right) h_{b}\left(t_{2}\right)$. Then by Lemma 13.7.1 we have $F\left(h_{a}\left(t_{1}\right)\right) F\left(h_{b}\left(t_{2}\right)\right)=h_{b}\left(t_{1}^{3 \theta}\right) h_{a}\left(t_{2}^{\theta}\right)$. So by Theorem 13.7.4 an element of T is F invariant iff $t_{1}=t_{2}^{\theta}$ and $t_{2}=t_{1}^{3 \theta}$; i.e. all the $h_{a}(t) h_{b}\left(t^{3 \theta}\right)$, where $t \in F_{q}$, are invariant. Let $t=t_{1}$, then $T^{F}=\left\{h(t) \mid t \in F_{q}^{*}\right\}$, where

$$
h(t)=\left(\begin{array}{ccccccc}
t^{\theta} & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & t^{1-\theta} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & t^{2 \theta-1} & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & t^{1-2 \theta} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & t^{\theta-1} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & t^{-\theta}
\end{array}\right)
$$

Finally we note that N^{F} is generated by T^{F} and the matrix

$$
n:=n_{a+b}(1) n_{3 a+b}(1)=\left(\begin{array}{ccccccc}
\cdot & \cdot & \cdot & . & . & . & -1 \\
\cdot & \cdot & \cdot & . & . & -1 & \cdot \\
\cdot & \cdot & \cdot & . & -1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot \\
. & \cdot & -1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & -1 & \cdot & . & . & \cdot & \cdot \\
-1 & \cdot & \cdot & . & . & \cdot & \cdot
\end{array}\right)
$$

References

[C] R. W. Carter, Simple Groups of Lie Type, John Wiley \& Sons, New York 1989.
[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.1; Aachen, St Andrews, 1999. (http://www-gap.dcs.st-and.ac.uk/~gap)
[GHLMP] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE - A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, AAECC 7, 1996.
[KM] W. Kantor and K. Magaard, Black box exceptional groups of Lie type, in preparation.
[K] G. Kemper, The Depth of Invariant Rings and Cohomology, with an appendix by Kay Magaard, preprint, Queen's University, Kingston, Ontario, 1999.
[L] F. Lübeck, Computation of characters and representations of reductive groups in defining characteristic, in preparation.

[^1]
[^0]: *Most of this work was completed at Queen's University. The third author wishes to thank the Department of Mathematics and Statistics for its hospitality and support. The third author received partial support from the NSA.

[^1]: Authors addresses:
 Gregor Kemper
 Department of Mathematics and Statistics
 Queen's University
 Kingston, Ontario K7L 3N6
 Canada
 Gregor.Kemper@IWR.Uni-Heidelberg.De
 Frank Lübeck
 Lehrstuhl D für Mathematik
 RWTH Aachen
 Templergraben 64
 D-52062 Aachen
 Germany
 Frank.Luebeck@Math.RWTH-Aachen.De
 Kay Magaard
 Department of Mathematics
 Wayne State University
 Detroit, Mi 48202
 USA
 kaym@math.wayne.edu

