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For the purposes of [K] and [KM] it became necessary to have 7 × 7 matrix generators
for a Sylow-3-subgroup of the Ree groups 2G2(q) and its normalizer. For example in [K] we
wanted to show that in a seven dimensional representation the Jordan canonical form of any
element of order nine is a single Jordan block of size 7. In [KM] we develop group recognition
algorithms. At some stage we need to identify a certain subset of group elements with the
Sylow-3-subgroup of 2G2(q). This is most easily done using a faithful matrix representation
of small dimension. In this note we provide matrix generators for two distinct Sylow-3-
subgroups of 2G2(q), thereby providing a matrix generating set for the whole group. Starting
with the Steinberg generators for a seven dimensional representation of G2(q) we construct
our matrices following Carter [C], chapters 12 and 13. The matrices for the Steinberg
generators of G2(q) were computed with the help of a computer program developed by the
second author.

For our setup we let G = G2(K), where K is the algebraic closure of a finite field of
characteristic 3. Let F a Frobenius endomorphism of G whose set of fixed points GF is a
Ree group of type 2G2(q), q = 32m+1. Let T be an F -invariant maximal torus of G, and
let B and B− be F -invariant Borel subgroups intersecting in T with unipotent radicals U
respectively U−. By N we denote the normalizer NG(T ). Let Φ be the root system of G
with respect to T and {a, b} its base given by B, where a is a short and b a long root. Now
U respectively U− is generated by subgroups Xr respectively X−r, where r ∈ Φ+ (the set
of positive roots). The groups Xr are isomorphic to the additive group of the field K. We
denote the elements of Xr by Xr(t) where t ∈ K.

The reductive group G has an irreducible 7-dimensional representation over K (with
highest weight (1, 0)) which can be found as follows: In characteristic 3, the 14-dimensional
adjoint representation V of G has a 7-dimensional irreducible submodule. This submodule
is spanned by those elements of the Chevalley basis of V which are labeled by short roots.
The restriction of this representation to 2G2(q) remains irreducible.

The second author has implemented a computer program which computes for an arbi-
trary Chevalley group explicit matrices for the root elements Xr(t) in its adjoint represen-
tation with respect to a Chevalley basis. Using this for type G2, we obtain the images of
the Xr(t) in the 7-dimensional representation with high weight (1, 0) by cutting out the
appropriate 7 × 7-blocks of the Xr(t). (By abuse of notation we also denote these images
by Xr(t) in the sequel.)
∗Most of this work was completed at Queen’s University. The third author wishes to thank the De-

partment of Mathematics and Statistics for its hospitality and support. The third author received partial
support from the NSA.
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These programs use the computer algebra packages GAP [GAP] and CHEVIE [GHLMP].
They work along the construction of the Chevalley groups as explained in Carters book [C].
It is planned to make them available to interested users as part of a larger package [L] for
computing characters and highest weight representations of reductive groups.

The following list gives the matrices Xr(t) for G. The reader can check that they satisfy
the Steinberg relations [C] 12.2.1, where the structure constants are chosen as in the table
on page 211 of [C]. (We denote zero entries by dots.)

Xa(t) =



1 t . . . . .
. 1 . . . . .
. . 1 t 2t2 . .
. . . 1 t . .
. . . . 1 . .
. . . . . 1 2t
. . . . . . 1

 , X−a(t) =



1 . . . . . .
t 1 . . . . .
. . 1 . . . .
. . 2t 1 . . .
. . 2t2 2t 1 . .
. . . . . 1 .
. . . . . 2t 1

 ,

Xb(t) =



1 . . . . . .
. 1 t . . . .
. . 1 . . . .
. . . 1 . . .
. . . . 1 2t .
. . . . . 1 .
. . . . . . 1

 , X−b(t) =



1 . . . . . .
. 1 . . . . .
. t 1 . . . .
. . . 1 . . .
. . . . 1 . .
. . . . 2t 1 .
. . . . . . 1

 ,

Xa+b(t) =



1 . 2t . . . .
. 1 . t . 2t2 .
. . 1 . . . .
. . . 1 . t .
. . . . 1 . t
. . . . . 1 .
. . . . . . 1

 , X−a−b(t) =



1 . . . . . .
. 1 . . . . .

2t . 1 . . . .
. 2t . 1 . . .
. . . . 1 . .
. 2t2 . 2t . 1 .
. . . . t . 1

 ,

X2a+b(t) =



1 . . 2t . . 2t2

. 1 . . 2t . .

. . 1 . . t .

. . . 1 . . 2t

. . . . 1 . .

. . . . . 1 .

. . . . . . 1

 , X−2a−b(t) =



1 . . . . . .
. 1 . . . . .
. . 1 . . . .
t . . 1 . . .
. 2t . . 1 . .
. . t . . 1 .

2t2 . . t . . 1

 ,

X3a+b(t) =



1 . . . 2t . .
. 1 . . . . .
. . 1 . . . t
. . . 1 . . .
. . . . 1 . .
. . . . . 1 .
. . . . . . 1

 , X−3a−b(t) =



1 . . . . . .
. 1 . . . . .
. . 1 . . . .
. . . 1 . . .

2t . . . 1 . .
. . . . . 1 .
. . t . . . 1

 ,

X3a+2b(t) =



1 . . . . 2t .
. 1 . . . . t
. . 1 . . . .
. . . 1 . . .
. . . . 1 . .
. . . . . 1 .
. . . . . . 1

 , X−3a−2b(t) =



1 . . . . . .
. 1 . . . . .
. . 1 . . . .
. . . 1 . . .
. . . . 1 . .

2t . . . . 1 .
. t . . . . 1

 .
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With our choice of structure constants the automorphism F has a particularly nice
form. Let π be the involution on Φ which permutes ±a and ±b, ±(a + b) and ±(3a + b),
and ±(2a+ b) and ±(3a+ 2b). Let θ = 3m. Now

F (Xr(t)) = Xπ(r)(tλ(π(r))θ),

where λ(π(r)) is 1 if π(r) is short and 3 if π(r) is long, see for example Proposition 12.4.1
of [C] and the discussion on page 225.

Now every element of U is of the form

Xa(t1)Xb(t2)Xa+b(t3)X2a+b(t4)X3a+b(t5)X3a+2b(t6)

with unique elements t1, . . . , t6 ∈ K. Following the proof of [C] Proposition 13.6.3(vii) we
confirm, using the computer program Maple, that

F (Xa(t1)Xb(t2)Xa+b(t3)X2a+b(t4)X3a+b(t5)X3a+2b(t6)) =
Xb(t3θ1 )Xa(tθ2)X3a+b(t3θ3 )X3a+2b(t3θ4 )Xa+b(tθ5)X2a+b(tθ6) = Xa(tθ2)Xb(t3θ1 ) ·
Xa+b(t3θ1 t

θ
2 + tθ5)X2a+b(t3θ1 t

2θ
2 + tθ6)X3a+b(−(t1t2)3θ + t3θ3 )X3a+2b(−t6θ1 t3θ2 + t3θ4 ).

Comparing the coefficients of the factors and using that for x ∈ K we have x3θ2
= xq = x

iff x ∈ Fq, we get the parametrization of the F -stable elements of U .
Set t = t2, u = t5 and v = t6. Then UF = {xS(t, u, v) | t, u, v ∈ Fq}, where

xS(t, u, v) =



1 tθ −uθ (tu)θ − vθ f1(t, u, v) f2(t, u, v) f3(t, u, v)
. 1 t uθ + tθ+1 −t2θ+1 − vθ f4(t, u, v) f5(t, u, v)
. . 1 tθ −t2θ vθ + (tu)θ f6(t, u, v)
. . . 1 tθ uθ (tu)θ − vθ
. . . . 1 −t uθ + tθ+1

. . . . . 1 −tθ

. . . . . . 1


with

θ = 3m,
f1(t, u, v) = −u− t3θ+1 − (tv)θ,
f2(t, u, v) = −v − (uv)θ − t3θ+2 − tθu2θ,

f3(t, u, v) = tθv − uθ+1 + t4θ+2 − v2θ − t3θ+1uθ − (tuv)θ,
f4(t, u, v) = −u2θ + tθ+1uθ + tvθ,

f5(t, u, v) = v + tu− t2θ+1uθ − (uv)θ − t3θ+2 − tθ+1vθ,

f6(t, u, v) = u+ t3θ+1 − (tv)θ − t2θuθ.

Using this we confirm, see [C] on page 236, that the group law for UF is as follows:

xS(t1, u1, v1)xS(t2, u2, v2) = xS(t1 + t2, u1 + u2 − t1t3θ2 , v1 + v2 − t21t3θ2 − t2u1 + t1t
3θ+1
2 ).
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Replacing positive roots by negative roots and proceeding as above we get that U−F =
{x′S(t, u, v) | t, u, v ∈ Fq}, where

x′S(t, u, v) =



1 . . . . . .
tθ 1 . . . . .

tθ+1 − uθ t 1 . . . .
(tu)θ + vθ −uθ −tθ 1 . . .
g1(t, u, v) (tu)θ − vθ −t2θ −tθ 1 . .
g2(t, u, v) g3(t, u, v) t2θ+1 + vθ tθ+1 − uθ −t 1 .
g4(t, u, v) g5(t, u, v) g6(t, u, v) (tu)θ + vθ uθ −tθ 1


with

θ = 3m,
g1(t, u, v) = t3θ+1 + t2θuθ − (tv)θ − u,
g2(t, u, v) = t3θ+2 + tθ+1vθ − uθt2θ+1 − (uv)θ + tu− v,
g3(t, u, v) = −tθ+1uθ − u2θ + tvθ

g4(t, u, v) = t4θ+2 + uθt3θ+1 + (tuv)θ − v2θ − uθ+1 + tθv,

g5(t, u, v) = t3θ+2 + tθu2θ − (uv)θ + v,

g6(t, u, v) = −t3θ+1 − (tv)θ + u.

Here the group law is as follows:

x′S(t1, u1, v1)x′S(t2, u2, v2) = x′S(t1 + t2, u1 + u2 + t1t
3θ
2 , v1 + v2 − t21t3θ2 + t2u1 + t1t

3θ+1
2 ).

We note that the form of the group law in UF differs from that of U−F by two minus signs.
We also remark here that if we let our matrices Xr(t) act on the right, rather than on the
left, then the form of the group law for UF changes to that of U−F and vice versa.

Following [C] Lemma 12.1.1 we define nr(t) as Xr(t)X−r(−t−1)Xr(t) and hr(t) =
nr(t)nr(−1). Now every element of T is of the form ha(t1)hb(t2). Then by Lemma 13.7.1
we have F (ha(t1))F (hb(t2)) = hb(t3θ1 )ha(tθ2). So by Theorem 13.7.4 an element of T is F -
invariant iff t1 = tθ2 and t2 = t3θ1 ; i.e. all the ha(t)hb(t3θ), where t ∈ Fq, are invariant. Let
t = t1, then TF = {h(t) | t ∈ F ∗q }, where

h(t) =



tθ . . . . . .
. t1−θ . . . . .
. . t2θ−1 . . . .
. . . 1 . . .
. . . . t1−2θ . .
. . . . . tθ−1 .
. . . . . . t−θ


.

4



Finally we note that NF is generated by TF and the matrix

n := na+b(1)n3a+b(1) =



. . . . . . −1

. . . . . −1 .

. . . . −1 . .

. . . −1 . . .

. . −1 . . . .

. −1 . . . . .
−1 . . . . . .


.
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