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1 Introduction

LetG be a finite simple group andl = 0 or l a prime number. We denote bydl(G)
the smallest degree of a non-trivial projective representation ofG over a field of
characteristicl.

In this note we consider thoseG arising from the exceptional groups of Lie
type, i.e., the finite simple groups in the following list:

2B2(22m+1), 2G2(32m+1), G2(q), 3D4(q), 2F4(22m+1),
F4(q), 2E6(q), E6(q), E7(q), E8(q),

wherem ∈ N andq is an arbitrary power of a primep.
For a groupG in this list let G̃ := G(q)sc be a corresponding finite group

of Lie type arising as group of fixed points under a Frobenius map of a simple
simply-connected algebraic group. Up to a finite number of exceptionsG̃ is the
universal covering group ofG andG ∼= G̃/Z(G̃). So, in this case, the smallest
degrees of non-trivial projective representations ofG are equal to the smallest
non-trivial degrees of representations ofG̃ (which is a perfect group).

As the main result of this note we determine in Section2 the first few small-
est non-trivial degrees of complex representations of the groupsG̃, together with
their multiplicities. We get these as an application of Deligne-Lusztig theory and
Lusztig’s classification of irreducible characters of finite groups of Lie type.

The groups with exceptional universal coverings (as well as the Tits group
2F4(2)′) are listed and dealt with in Section3. This completes the determination
of d0(G) for all groups in the above list.

In Section4 we collect for the first five types of groups some valuesdl(G) for
l a prime not equal top. The information is complete in the first three cases. This
improves the known lower bounds fordl(G), l 6= p, given by Land́azuri, Seitz and
Zalesskii in [LS74] and [SZ93].
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Frank Lübeck 2

Some related results.The case of classical groups andl = 0 was consid-
ered by Tiep and Zalesskii in [TZ96]. The introduction of that paper also gives a
motivation and explains some applications of smallest character degrees.

For the case of alternating groups see [Wag77].
For sporadic simple groupsG all dl(G) are known, up to a few cases for the

Baby Monster. There is a not yet published list of these results - which are due to
many people - prepared by C. Jansen1.

For simple groups of Lie typeG in characteristicp, minimal non-trivial de-
greesdp(G) in defining characteristic are given in [KL90, 5.4].

Acknowledgments. I wish to thank Pham Huu Tiep and Gunter Malle who
asked me to compute the results presented here. A large part of this note was
prepared during a conference onModular Representation Theory and Subgroup
Structure of Algebraic Groups and Related Finite Groupsat the Isaac Newton
Institute in Cambridge. I also thank the Isaac Newton Institute for its hospitality
and technical support.

2 Small degrees in characteristic0

In this section we describe the determination of the smallest non-trivial charac-
ter degrees in characteristic0 for all simple simply connected exceptional finite
groups of Lie type. We can actually computeall the degrees of irreducible com-
plex characters and their multiplicities for these groups. We give an overview how
this can be achieved.

We use Deligne-Lusztig theory and in particular Lusztig’s Jordan decompo-
sition of characters: LetG(q) be a finite group of Lie type, i.e., the group of
Fq-rational points of a connected reductive algebraic groupG defined over a fi-
nite fieldFq with q elements. We denote byG∗(q) its dual group. Then there is a
partition of the set of complex irreducible characters,

Irr(G(q)) =
.⋃

(s)

E(G(q), (s)),

where(s) runs over the semisimple conjugacy classes ofG∗(q). The sets of char-
actersE(G(q), (s)), calledLusztig series, have a parameterization which only de-
pends on the twisted Dynkin diagram of the connected componentC0

G∗(s) of the
centralizerCG∗(s) and the operation of the factor groupCG∗(s)/C

0
G∗(s) on the

set of so calledunipotent charactersof C0
G∗(s)(q). (These connected centralizers

are again connected reductive groups.)
1Seehttp://www.math.rwth-aachen.de/˜MOC/mindeg/ .
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In particular, if s, s′ ∈ G∗(q) have G∗(q)-conjugate centralizers, then
E(G(q), (s)) andE(G(q), (s′)) can be parameterized by the same set. We say
that a character inE(G(q), (s)) and a character inE(G(q), (s′)), corresponding to
the same parameter, belong to the samecharacter type.

Fix a semisimples ∈ G∗(q). Then the degrees of the characters in
E(G(q), (s)) can be expressed as polynomials inq.

In Lusztig’s book [Lus85, 4.26] there is a formula which expresses the charac-
ters inE(G(q), (s)) as linear combinations of so-called almost characters. This is
done under the assumption that the center ofG is connected (in this case the cen-
tralizersCG∗(s) are all connected). These almost characters are class functions
which have value0 on 1 ∈ G(q) or which are linear combinations of Deligne-
Lusztig virtual characters; see [Lus85, 3.7] for a formula. The values of the
Deligne-Lusztig characters on1 ∈ G(q) can be computed from the orders of
maximal tori inG(q), see [DL76, 7.2].

Since simply connected groupsG in general don’t have a connected center,
we also need the extension of these results given in [Lus88].

To evaluate the linear combinations of Deligne-Lusztig characters which form
the almost characters in [Lus85, 3.7] one needs to know the character tables of
the Weyl groups ofG and ofCG∗(s), extended by the Frobenius actions, and the
fusions of these groups into each other.

To evaluate the degrees of irreducible characters as linear combinations of the
values of the almost characters on1 ∈ G(q) as given in [Lus85, 4.26] one needs
Lusztig’s non-abelian Fourier transform matrices. These are described combina-
torically in a case by case manner in [Lus85, 4.].

Hence, for computing all character degrees of the groupsG(q) and their mul-
tiplicities we first determine the semisimple conjugacy classes of the dual group
G∗(q) and the types of the centralizers of their elements. After distinguishing a
finite number of congruence classes forq the number of conjugacy classes with
a centralizer of fixed type can also be expressed as a polynomial inq. In [Lüb]
we will describe this in detail. We then compute the degrees corresponding to the
different types of centralizers as indicated above.

Given all character degrees and their multiplicities as polynomials inq we first
specialize this list for a certain number of smallq. (We usually have to handle sev-
eral congruence classes ofq modulo some number, which depends on the Dynkin
type, separately.) This gives us a guess for the generic relative ordering of the
degrees for largerq and also a list of exceptional orderings for smallq. The guess
is proved by examining the differences of the degree polynomials; we compute
a bound for the zeros and just check for positivity by evaluating at all the prime
powers below the bound. We remark that in each Lusztig series there is one char-
acter whose degree divides all degrees of the other ones in the same series. This
reduces the number of necessary comparisons considerably.
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The actual computations where done by a collection of computer programs,
written by the author. They are based on the systemsGAP [S+97] andCHEVIE
[GHL+96]. The programs get as input a complete root datum describing a series
of finite groups of Lie type. The computations along the lines indicated above can
then be done with the available commands. (For technical reasons the programs
do not cover the Suzuki and Ree groups, but for these groups the generic charac-
ter tables are known ([Suz62], [War66], [Mal90]) and can be found inCHEVIE
[GHL+96].)

Theorem 2.1 Let G̃ be a finite group of Lie type arising from a simple simply
connected exceptional algebraic group. Then the tables in Section5 show the (at
least)7 non-trivial character types of̃G with the smallest degrees. All characters
not listed there have strictly bigger degrees than the listed ones. Except for the
cases handled in Section3, the first degree in these tables, which is not equal to1,
givesd0(G) for the simple finite groupG = G̃/Z(G̃).

3 Groups with exceptional universal covering

In some cases the simple groups considered in this paper don’t have the corre-
sponding simply connected group of Lie type as universal covering group. The
question of smallest degree projective representations for these groups is handled
in this section.

3.1 The groupsG2(2) and 2F4(2)

These simple groups are the derived subgroups of the corresponding groups of Lie
type in which they have index2. The simple groups have trivial Schur multiplier
and their character tables can be found in the Atlas [CCN+85].

3.2 The groupsG2(3),G2(4) and F4(2)

These groups have exceptional non-trivial coverings, whose character tables can
be found in the Atlas [CCN+85].

3.3 The group2E6(2)

The simply connected group of Lie type is a3-fold covering of this simple group,
but its Schur multiplier is an abelian group of type22 · 3. Clearly each char-
acter of the universal covering has a central subgroup of order2 in the kernel.
Furthermore the three factor groups of type6.2E6(2) are isomorphic via an outer
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automorphism. (See the corresponding information in the Atlas [CCN+85].) So,
we are interested in the smallest character degrees of6.2E6(2). Unfortunately the
character table of this group is not yet known but we can nevertheless determine
the two smallest non-trivial character degrees.

From our list in Section5 we get the smallest degrees of characters of6.2E6(2)
having the central subgroup of order2 in the kernel. The Atlas contains the table
of 2.2E6(2) and so gives the smallest degrees of characters having the central
subgroup of order3 in the kernel. The smallest non-trivial degrees found so far
are1938 and2432.

The following argument shows that the smallest degree of a character which
is faithful on the center is≥ 22464. It was pointed out to me by Jürgen M̈uller.
One uses the fact that a character which is faithful on the center, restricted to a
subgroup containing the center can only decompose into characters with the same
property. From the information in the Atlas we can show that the simple factor
2E6(2) contains a sporadic groupFi22 which lifts to a non-split extension6.F i22

in 6.2E6(2). Using the character table of this subgroup, which is in the Atlas,
we see that the degree of a character which is faithful on the center and smaller
than61776 must be a multiple of1728. Considering similarly a subgroup of type
2.F4(2) and comparing, one finds that the degree of such a character must be at
least22464.

3.4 The table of results

Here is a table of smallest character degrees of the groups considered in this sec-
tion. Bold entries indicate that these degrees do not occur in the lists given in
Section5.

G2(2)′ 6, 7, 7, 7, 14, 21, 21, 21
2F4(2)′ 26, 26, 27, 27, 78, 104, 104

3.G2(3) 14,27,27, 64, 64, 78

2.G2(4) 12, 65, 78,104,104, 300

2.F4(2) 52, 833, 1105, 1105, 1326, 1377

6.2E6(2) 1938,2432

4 Small degrees in prime characteristicl - q

In this section we collect some valuesdl(G) with l a prime not dividingq for
exceptional groups of Lie type. In the casesG2(q) and 2G2(32m+1) we find all
dl(G) and this result improves the lower bounds given in [LS74] and [SZ93] for
these cases. But in the higher rank cases we cannot determinedl(G).
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4.1 The Suzuki groups2B2(2
2m+1)

For Suzuki groupsG the ordinary character tables and all decomposition numbers
are known, see [Bur79] and [His93, D.1]. From this information and the ordinary
character degrees we can compute the modular character degrees in all cases as
polynomials inq. Comparing these polynomials as in Section2 we find that

dl(G) = d0(G), for all primesl 6= 2.

4.2 The Ree groups2G2(3
2m+1)

First let l 6= 2, 3. Then thel-Sylow group of a Ree groupG = 2G2(32m+1) is
cyclic and so thel-modular decomposition numbers are encoded in the Brauer
trees which are all determined in [His93, D.2]. In these cases we find again

dl(G) = d0(G), for all primesl 6= 2, 3.

For l = 2 the decomposition matrix of the principal block was determined in
[Fon74] and [LM80]. All other 2-blocks contain only ordinary characters which
all have the same degree, so their decomposition matrices are all trivial. Comput-
ing the degrees of the Brauer characters in the principal block we find

d2(G) = d0(G)− 1.

4.3 The groupsG2(q)

In this case the minimal degrees are determined and explicitly given in [His93,
9.2]. We have forG = G2(q):

dl(G) =

{
d0(G)− 1, if either l = 2, p = 3, q > 3 or l = 3 and3 | (q − 1)

d0(G), else

4.4 The groups3D4(q), q odd

A lot of information about the decomposition numbers of triality groupsG =
3D4(q) with oddq in non-defining characteristic was determined in [Gec91]. For
l 6= 2 all decomposition matrices are explicitly given up to a few entries. For the
missing entries there are at least lower bounds.

This is not sufficient to find the minimal non-trivial modular degrees. But
if we also find some good enoughupperbounds for the missing entries we can
check that the reductions of the complex representations of degreed0(G) modulo
l contain a large irreducible constituent which is the smallest non-trivial degree
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representation in characteristicl. And their degrees are determined by the known
parts of the decomposition matrices.

The idea to find upper bounds for entries of a decomposition matrix is to con-
struct projective representations modulol and to decompose them into (ordinary)
irreducible characters. These multiplicities give upper bounds for decomposition
numbers.

Some useful projective characters for this purpose are already given in [Gec91,
3.3 and 4.2], namely the (modified) generalized Gelfand-Graev characters ofG.
Others we find by considering tensor products of certain defect-0 characters with
other irreducible characters. Such characters and their scalar products with the ir-
reducible characters can be found and computed with a computer usingCHEVIE,
see [GHL+96]. This system contains the ordinary character table of the groups
3D4(q) and programs for computing with such tables without specializing the pa-
rameterq.

We find forl 6= 2 as result:

dl(G) =

{
d0(G)− 1 if l | q + 1

d0(G) else

For l = 2 much less information on decomposition numbers is known, see
again [Gec91], and our ad hoc method was not good enough to findd2(G).

4.5 The groups2F4(2
2m+1)

For the groupsG = 2F4(22m+1) again all Brauer trees are known, see [His93,
D.3]. But here for many primesl the l-Sylow subgroups are not cyclic and then
only very few information about the decomposition numbers is known. On the
other hand, for primesl 6= 2, 3 which divideφ12, φ′24 or φ′′24 (see notation in5.5)
we do have enough information from the Brauer trees and find that in these cases

dl(G) = d0(G).

4.6 The other exceptional groups

For exceptional groups of larger rank only few results on decomposition numbers
are known. They seem not to be enough to determine the correspondingdl(G).

In the examples above we found, that thel-modular representation of smallest
degree always is a component of the reduction modulol of a non-trivial represen-
tation of smallest degree in characteristic0. So, let us add a remark here, that one
can at least estimate how such a characteristic0 representation can decompose
modulol.
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Comparing the lower bounds fordl(G) given by Land́azuri, Seitz and Zalesskii
in [LS74] and [SZ93] with our d0(G) we see that the bounds are always bigger
thand0(G)/2. This shows that the reduction of a characteristic0 representation of
degreed0(G) modulol can only have one non-trivial irreducible constituent. In
some cases it is also relatively easy to find an upper bound for the number of trivial
constituents in this reduction. For example in the casesG = Er(q), r = 6, 7, 8,
one can use the projective character, coming from Harish-Chandra inducing the
regular representation of a maximally split torus, to find that there are at mostr
trivial constituents.

5 Tables of small degrees in characteristic0

In this section we give our main result from2.1 in the form of tables. The degree
polynomials are given in factored form,φi denotes thei-th cyclotomic polynomial
in q. We consider all finite groups of exceptional Lie typeG̃ = G(q)sc which arise
from simple simply connected algebraic groups. There is a subsection for each of
the series listed in the introduction. Sometimes we have to distinguish certain
congruence classes ofq.

Each table lists the character types with smallest possible degrees in increasing
order (leaving out the trivial representation). The degrees of representations are
given in columns labeledDegree. For convenience we also give the degrees of
these polynomials in the column labeledd. The columns labeledMult. show the
number of characters in the corresponding character type.

If a character lies in the Lusztig seriesE(G(q), (s)) we indicate the type of
the centralizerCG∗(s)(q) in the column labeledC(s). Most such centralizers
occurring in our tables are connected (there is an exception in5.9). In this case
the characters inE(G(q), (s)) can be parameterized by the unipotent characters of
CG∗(s)(q). In the column labeledChar.we give such a parameter to indicate the
corresponding character type. The notation for the unipotent characters is very
close to that of Carter’s book [Car85, Ch.13] respectively to that of the articles
cited above for the Suzuki and Ree groups.

5.1 The Suzuki groups2B2(q
2), q =

√
22m+1

Smallest non-trivial degrees:
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Degree d Mult. C(s) Char.

1/2
√

2qφ1φ2 3 1 2B2(q2) 2B2[b]

1/2
√

2qφ1φ2 3 1 2B2(q2) 2B2[a]

φ1φ2φ
′′
8 4 1/4 q(q +

√
2) A0(q2) χ6

q4 4 1 2B2(q2) St

φ8 4 1/2 (q −
√

2)(q +
√

2) A0(q2) χ5

φ1φ2φ
′
8 4 1/4 q(q −

√
2) A0(q2) χ7

(whereφ′8 = q2 +
√

2q + 1 andφ′′8 = q2 −
√

2q + 1)

5.2 The Ree groups2G2(q
2), q =

√
32m+1

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

φ12 4 1 A1(q2) ξ2

1/6
√

3qφ1φ2φ
′
12 5 1 2G2(q2) ξ8

1/6
√

3qφ1φ2φ
′
12 5 1 2G2(q2) ξ6

1/6
√

3qφ1φ2φ
′′
12 5 1 2G2(q2) ξ7

1/6
√

3qφ1φ2φ
′′
12 5 1 2G2(q2) ξ5

1/3
√

3qφ1φ2φ4 5 1 2G2(q2) ξ10

(whereφ′12 = q2 −
√

3q + 1 andφ′′12 = q2 +
√

3q + 1)
with the following exception for smallq:

q =
√

3:

Degree Mult. C(s) Char.

1 1 2G2(q2) ξ8

1 1 2G2(q2) ξ6

7 1 A1(q2) ξ2

7 1 2G2(q2) ξ7

7 1 2G2(q2) ξ5

8 1 2G2(q2) ξ10

8 1 2G2(q2) ξ9

8 1 A0(q2) η+
i
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5.3 The groupsG2(q)

Caseq ≡ 1 (mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

φ2φ6 3 1 A2(q) [3]

φ3φ6 4 1 A1(q)× Ã1(q) [2], [2]

1/6 qφ2
1φ6 5 1 G2(q) G2[1]

1/6 qφ2
2φ3 5 1 G2(q) φ2,1

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ]

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ2]

with the following exception for smallq:
q = 7:

Degree Mult. C(s) Char.

344 1 A2(q) [3]

1806 1 G2(q) G2[1]

2451 1 A1(q)× Ã1(q) [2], [2]

4256 1 G2(q) φ2,1

5376 1 G2(q) G2[θ]

5376 1 G2(q) G2[θ2]

Caseq ≡ 2 (mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

φ1φ3 3 1 2A2(q) [3]

1/6 qφ2
1φ6 5 1 G2(q) G2[1]

1/6 qφ2
2φ3 5 1 G2(q) φ2,1

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ]

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ2]

1/3 qφ3φ6 5 1 G2(q) φ′1,3
1/3 qφ3φ6 5 1 G2(q) φ′′1,3

with the following exception for smallq:
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q = 2:

Degree Mult. C(s) Char.

1 1 G2(q) G2[1]

6 1 G2(q) G2[θ]

6 1 G2(q) G2[θ2]

7 1 2A2(q) [3]

7 1 G2(q) G2[−1]

14 1 G2(q) φ′1,3
14 1 G2(q) φ′′1,3
14 1 2A2(q) [2, 1]

Caseq ≡ 3 (mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

φ3φ6 4 1 A1(q)× Ã1(q) [2], [2]

1/6 qφ2
1φ6 5 1 G2(q) G2[1]

1/6 qφ2
2φ3 5 1 G2(q) φ2,1

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ]

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ2]

1/3 qφ3φ6 5 1 G2(q) φ′1,3
1/3 qφ3φ6 5 1 G2(q) φ′′1,3

with the following exception for smallq:
q = 3:

Degree Mult. C(s) Char.

14 1 G2(q) G2[1]

64 1 G2(q) G2[θ]

64 1 G2(q) G2[θ2]

78 1 G2(q) G2[−1]

91 1 A1(q)× Ã1(q) [2], [2]

91 1 G2(q) φ′1,3
91 1 G2(q) φ′′1,3



Frank Lübeck 12

Caseq ≡ 4 (mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

φ2φ6 3 1 A2(q) [3]

1/6 qφ2
1φ6 5 1 G2(q) G2[1]

1/6 qφ2
2φ3 5 1 G2(q) φ2,1

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ]

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ2]

1/3 qφ3φ6 5 1 G2(q) φ′1,3
1/3 qφ3φ6 5 1 G2(q) φ′′1,3

with the following exception for smallq:
q = 4:

Degree Mult. C(s) Char.

65 1 A2(q) [3]

78 1 G2(q) G2[1]

300 1 G2(q) G2[θ]

300 1 G2(q) G2[θ2]

350 1 G2(q) φ2,1

364 1 G2(q) φ′1,3
364 1 G2(q) φ′′1,3

Caseq ≡ 5 (mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

φ1φ3 3 1 2A2(q) [3]

φ3φ6 4 1 A1(q)× Ã1(q) [2], [2]

1/6 qφ2
1φ6 5 1 G2(q) G2[1]

1/6 qφ2
2φ3 5 1 G2(q) φ2,1

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ]

1/3 qφ2
1φ

2
2 5 1 G2(q) G2[θ2]

with the following exception for smallq:
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q = 5:

Degree Mult. C(s) Char.

124 1 2A2(q) [3]

280 1 G2(q) G2[1]

651 1 A1(q)× Ã1(q) [2], [2]

930 1 G2(q) φ2,1

960 1 G2(q) G2[θ]

960 1 G2(q) G2[θ2]

5.4 The groups3D4(q)

For the computation the congruence classes ofq modulo4 must be distinguished.
The results only depend onq modulo2.

Caseq ≡ 0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ12 5 1 3D4(q) φ′1,3
1/2 q3φ2

1φ12 9 1 3D4(q) 3D4[1]

1/2 q3φ2
1φ

2
3 9 1 3D4(q) 3D4[−1]

1/2 q3φ2
2φ

2
6 9 1 3D4(q) φ2,1

1/2 q3φ2
2φ12 9 1 3D4(q) φ2,2

φ1φ3φ6φ12 9 1/2 q A1(q3)× φ2 [2]

with the following exception for smallq:
q = 2:

Degree Mult. C(s) Char.

26 1 3D4(q) φ′1,3
52 1 3D4(q) 3D4[1]

196 1 3D4(q) 3D4[−1]

273 1 A1(q3)× φ2 [2]

324 1 3D4(q) φ2,1

351 3 A2(q)× φ3 [3]
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Caseq ≡ 1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ12 5 1 3D4(q) φ′1,3
φ3φ6φ12 8 1 A1(q)× A1(q3) [2], [2]

1/2 q3φ2
1φ12 9 1 3D4(q) 3D4[1]

1/2 q3φ2
1φ

2
3 9 1 3D4(q) 3D4[−1]

1/2 q3φ2
2φ

2
6 9 1 3D4(q) φ2,1

1/2 q3φ2
2φ12 9 1 3D4(q) φ2,2

with the following exception for smallq:
q = 3:

Degree Mult. C(s) Char.

219 1 3D4(q) φ′1,3
3942 1 3D4(q) 3D4[1]

6643 1 A1(q)× A1(q3) [2], [2]

9126 1 3D4(q) 3D4[−1]

10584 1 3D4(q) φ2,1

13286 1 A1(q3)× φ2 [2]

5.5 The Ree groups2F4(q
2), q =

√
22m+1

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

1/2
√

2qφ1φ2φ
2
4φ12 11 1 2F4(q2) 2B2[b][1]

1/2
√

2qφ1φ2φ
2
4φ12 11 1 2F4(q2) 2B2[a][1]

q2φ12φ24 14 1 2F4(q2) ε′

φ1φ2φ
2
8φ24 18 1 2A2(q2) [3]

1/12 q4φ2
1φ

2
2φ
′′
8

2φ12φ
′′
24 20 1 2F4(q2) χ9

1/12 q4φ2
1φ

2
2φ
′
8

2φ12φ
′
24 20 1 2F4(q2) χ8

(whereφ′24 = q4 +
√

2q3 + q2 +
√

2q + 1 andφ′′24 = q4 −
√

2q3 + q2 −
√

2q + 1,
φ′8 andφ′′8 are defined under the table for the Suzuki groups)
with the following exception for smallq:
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q =
√

2:

Degree Mult. C(s) Char.

1 1 2F4(q2) χ9

27 1 2F4(q2) 2B2[b][1]

27 1 2F4(q2) 2B2[a][1]

27 1 2F4(q2) χ11

27 1 2F4(q2) χ12

52 1 2F4(q2) χ17

(Recall that2F4(2) is not a simple group, see Section3.)
q =
√

8:

Degree Mult. C(s) Char.

64638 1 2F4(q2) 2B2[b][1]

64638 1 2F4(q2) 2B2[a][1]

1839048 1 2F4(q2) ε′

13778800 1 2F4(q2) χ9

119275975 1 2A2(q2) [3]

133929936 1 2F4(q2) χ11

133929936 1 2F4(q2) χ12

5.6 The groupsF4(q)

For the computation the congruence classes ofq modulo12 must be distinguished.
The results only depend onq modulo2.

Caseq ≡ 0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

1/2 qφ2
1φ

2
3φ8 11 1 F4(q) [[2], []]

1/2 qφ4φ8φ12 11 1 F4(q) φ′′2,4
1/2 qφ4φ8φ12 11 1 F4(q) φ′2,4
1/2 qφ2

2φ
2
6φ8 11 1 F4(q) φ4,1

q2φ2
3φ

2
6φ12 14 1 F4(q) φ9,2

φ1φ3φ4φ6φ8φ12 15 1/2 q C3(q)× φ2 [[3], []]

φ1φ3φ4φ6φ8φ12 15 1/2 q B3(q)× φ2 [[3], []]
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with the following exception for smallq:
q = 2:

Degree Mult. C(s) Char.

833 1 F4(q) [[2], []]

1105 1 F4(q) φ′′2,4
1105 1 F4(q) φ′2,4
1326 1 F4(q) F II

4 [1]

1377 1 F4(q) φ4,1

21658 1 F4(q) F I
4 [1]

Caseq ≡ 1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

φ3φ6φ12 8 1 B4(q) [[4], []]

1/2 qφ2
1φ

2
3φ8 11 1 F4(q) [[2], []]

1/2 qφ4φ8φ12 11 1 F4(q) φ′′2,4
1/2 qφ4φ8φ12 11 1 F4(q) φ′2,4
1/2 qφ2

2φ
2
6φ8 11 1 F4(q) φ4,1

q2φ2
3φ

2
6φ12 14 1 F4(q) φ9,2

with the following exception for smallq:
q = 3:

Degree Mult. C(s) Char.

6643 1 B4(q) [[4], []]

83148 1 F4(q) [[2], []]

89790 1 F4(q) φ′′2,4
89790 1 F4(q) φ′2,4
96432 1 F4(q) φ4,1

5181540 1 B4(q) [[0, 1, 4], []]

5.7 The groups2E6(q)sc

For the computation the congruence classes ofq modulo6 must be distinguished.
The results only depend onq modulo2.
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Caseq ≡ 0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ8φ18 11 1 2E6(q) φ′2,4
φ3φ

2
6φ12φ18 16 q 2D5(q)× φ2 [[0, 5], []]

q2φ4φ8φ10φ12 16 1 2E6(q) φ4,1

1/2 q3φ8φ10φ12φ18 21 1 2E6(q) φ′1,12

1/2 q3φ2
4φ10φ12φ18 21 1 2E6(q) φ′′2,4

1/2 q3φ4
2φ

2
6φ10φ18 21 1 2E6(q) φ′8,3

with the following exception for smallq:
q = 2:

Degree Mult. C(s) Char.

1938 1 2E6(q) φ′2,4
46683 2 2D5(q)× φ2 [[0, 5], []]

48620 1 2E6(q) φ4,1

554268 1 2E6(q) φ′1,12

815100 1 2E6(q) φ′′2,4
1322685 1 2A5(q)× φ2 [6]

Caseq ≡ 1 (mod 2)

Generically smallest non-trivial degrees:

Degree A Mult. C(s) Char.

qφ8φ18 11 1 2E6(q) φ′2,4
φ3φ

2
6φ12φ18 16 q 2D5(q)× φ2 [[0, 5], []]

q2φ4φ8φ10φ12 16 1 2E6(q) φ4,1

φ3φ4φ6φ8φ12φ18 20 1 2A5(q)× A1(q) [6], [2]

1/2 q3φ8φ10φ12φ18 21 1 2E6(q) φ′1,12

1/2 q3φ2
4φ10φ12φ18 21 1 2E6(q) φ′′2,4

with the following exception for smallq:
q = 3:



Frank Lübeck 18

Degree Mult. C(s) Char.

172938 1 2E6(q) φ′2,4
32690203 3 2D5(q)× φ2 [[0, 5], []]

32863140 1 2E6(q) φ4,1

3465418113 1 2E6(q) φ′1,12

3829423780 1 2A5(q)× A1(q) [6], [2]

4226119650 1 2E6(q) φ′′2,4

5.8 The groupsE6(q)sc

For the computation the congruence classes ofq modulo6 must be distinguished.
The results only depend onq modulo2.

Caseq ≡ 0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ8φ9 11 1 E6(q) φ6,1

q2φ4φ5φ8φ12 16 1 E6(q) φ20,2

φ2
3φ6φ9φ12 16 (q − 2) D5(q)× φ1 [[0], [5]]

1/2 q3φ4
1φ

2
3φ5φ9 21 1 E6(q) D4[1]

1/2 q3φ5φ
2
6φ8φ9 21 1 E6(q) φ15,5

1/2 q3φ5φ8φ9φ12 21 1 E6(q) φ15,4

with the following exception for smallq:
q = 2:

Degree Mult. C(s) Char.

2482 1 E6(q) φ6,1

137020 1 E6(q) φ20,2

443548 1 E6(q) D4[1]

1384956 1 E6(q) φ15,5

1693965 1 A5(q)× φ2 [6]

2000492 1 E6(q) φ15,4
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Caseq ≡ 1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ8φ9 11 1 E6(q) φ6,1

q2φ4φ5φ8φ12 16 1 E6(q) φ20,2

φ2
3φ6φ9φ12 16 (q − 2) D5(q)× φ1 [[0], [5]]

φ3φ4φ6φ8φ9φ12 20 1 A5(q)× A1(q) [6], [2]

1/2 q3φ4
1φ

2
3φ5φ9 21 1 E6(q) D4[1]

1/2 q3φ5φ
2
6φ8φ9 21 1 E6(q) φ15,5

with the following exception for smallq:
q = 3:

Degree Mult. C(s) Char.

186222 1 E6(q) φ6,1

65187540 1 E6(q) φ20,2

65373763 1 D5(q)× φ1 [[0], [5]]

3343656888 1 E6(q) D4[1]

4123575820 1 A5(q)× A1(q) [6], [2]

4968496071 1 E6(q) φ15,5

5.9 The groupsE7(q)sc

For the computation the congruence classes ofq modulo12 must be distinguished.
The results only depend onq modulo2.

Caseq ≡ 0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ7φ12φ14 17 1 E7(q) φ7,1

q2φ2
3φ

2
6φ9φ12φ18 26 1 E7(q) φ27,2

φ3
1φ3φ5φ7φ9φ14 27 1/2 q 2E6(q)× φ2 φ1,0

q3φ7φ9φ14φ18 27 1 E7(q) φ21,3

φ3
2φ6φ7φ10φ14φ18 27 1/2 (q − 2) E6(q)× φ1 φ1,0

1/2 q3φ4
1φ

2
3φ5φ7φ9φ14 33 1 E7(q) D4[[3], []]
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with the following exception for smallq:
q = 2:

Degree Mult. C(s) Char.

141986 1 E7(q) φ7,1

86507701 1 2E6(q)× φ2 φ1,0

95420052 1 E7(q) φ27,2

181785768 1 E7(q) φ21,3

2422215628 1 E7(q) D4[[3], []]

3876501772 1 E7(q) φ21,6

Caseq ≡ 1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ7φ12φ14 17 1 E7(q) φ7,1

q2φ2
3φ

2
6φ9φ12φ18 26 1 E7(q) φ27,2

1/2φ3
1φ3φ5φ7φ9φ14 27 1 2E6(q).2× φ2 φ1,0

1/2φ3
1φ3φ5φ7φ9φ14 27 1 2E6(q).2× φ2 φ1,0

1/2φ3
2φ6φ7φ10φ14φ18 27 1 E6(q).2× φ1 φ1,0

1/2φ3
2φ6φ7φ10φ14φ18 27 1 E6(q).2× φ1 φ1,0

(In the cases of non-connected centralizers ofs there are two characters in the
Lusztig series corresponding to the trivial representation of the connected central-
izer. We don’t distinguish them with the given labels.)
with the following exception for smallq:

q = 3:

Degree Mult. C(s) Char.

130933749 1 E7(q) φ7,1

2847685879324 1 2E6(q).2× φ2 φ1,0

2847685879324 1 2E6(q).2× φ2 φ1,0

2895338589507 1 E7(q) φ27,2

5695371758648 1 2E6(q)× φ2 φ1,0

5743024468832 1 E6(q).2× φ1 φ1,0

5743024468832 1 E6(q).2× φ1 φ1,0
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5.10 The groupsE8(q)

For the computation the congruence classes ofq modulo60 must be distinguished.
The results only depend onq modulo2.

Caseq ≡ 0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ2
4φ8φ12φ20φ24 29 1 E8(q) φ8,1

q2φ5φ7φ10φ14φ15φ20φ30 46 1 E8(q) φ35,2

1/2 q3φ4
1φ

2
3φ

2
5φ7φ8φ9φ14φ15φ24 57 1 E8(q) D4[φ1,0]

1/2 q3φ2
4φ7φ8φ12φ14φ15φ18φ20φ24 57 1 E8(q) φ28,8

1/2 q3φ2
4φ7φ8φ9φ12φ14φ20φ24φ30 57 1 E8(q) φ84,4

1/2 q3φ4
2φ

2
6φ7φ8φ

2
10φ14φ18φ24φ30 57 1 E8(q) φ112,3

with the following exception for smallq:
q = 2:

Degree Mult. C(s) Char.

545925250 1 E8(q) φ8,1

76321227908420 1 E8(q) φ35,2

46453389380074796 1 E8(q) D4[φ1,0]

51320060161363500 1 E8(q) φ28,8

97697128859455125 1 E7(q)× φ2 φ1,0

144074197011621500 1 E8(q) φ84,4

Caseq ≡ 1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qφ2
4φ8φ12φ20φ24 29 1 E8(q) φ8,1

q2φ5φ7φ10φ14φ15φ20φ30 46 1 E8(q) φ35,2

φ3φ
2
4φ5φ6φ8φ10φ12φ15φ20φ24φ30 56 1 E7(q)× A1(q) φ1,0, [2]

1/2 q3φ4
1φ

2
3φ

2
5φ7φ8φ9φ14φ15φ24 57 1 E8(q) D4[φ1,0]

1/2 q3φ2
4φ7φ8φ12φ14φ15φ18φ20φ24 57 1 E8(q) φ28,8

1/2 q3φ2
4φ7φ8φ9φ12φ14φ20φ24φ30 57 1 E8(q) φ84,4
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with the following exception for smallq:
q = 3:

Degree Mult. C(s) Char.

68725813719000 1 E8(q) φ8,1

8986201692043878710595 1 E8(q) φ35,2

586314331934563526507166096 1 E8(q) D4[φ1,0]

589584816280450030203163000 1 E7(q)× A1(q) φ1,0, [2]

592864286827959851964151500 1 E8(q) φ28,8

1175890162013321512831618500 1 E8(q) φ84,4
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