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1 Introduction

Let G be a finite simple group arld= 0 or [ a prime number. We denote bBy(G)
the smallest degree of a non-trivial projective representatiard ofer a field of
characteristic.

In this note we consider thogé arising from the exceptional groups of Lie
type, i.e., the finite simple groups in the following list:

232(22771—1—1), 2G2(32m+1>7 G2(q>7 3D4(Q)> 2F4(22m+1>7
Fi(q), *Es(q), Es(q), Ex(q), Es(q),

wherem € N andgq is an arbitrary power of a prime

For a groupG in this list let G := G(q).. be a corresponding finite group
of Lie type arising as group of fixed points under a Frobenius map of a simple
simply-connected algebraic group. Up to a finite number of exceptibissthe
universal covering group o andG = G/Z(G). So, in this case, the smallest
degrees of non-trivial projective representationszofire equal to the smallest
non-trivial degrees of representationgdfwhich is a perfect group).

As the main result of this note we determine in Secfdhe first few small-
est non-trivial degrees of complex representations of the gréupsgether with
their multiplicities. We get these as an application of Deligne-Lusztig theory and
Lusztig’s classification of irreducible characters of finite groups of Lie type.

The groups with exceptional universal coverings (as well as the Tits group
2F4(2)") are listed and dealt with in Sectiéh This completes the determination
of dy(G) for all groups in the above list.

In Section4 we collect for the first five types of groups some valdgs:) for
[ a prime not equal tp. The information is complete in the first three cases. This
improves the known lower bounds féi(G), | # p, given by Landzuri, Seitz and
Zalesskii in LS74] and [SZ93.
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Some related results. The case of classical groups ahd 0 was consid-
ered by Tiep and Zalesskii imfZ96]. The introduction of that paper also gives a
motivation and explains some applications of smallest character degrees.

For the case of alternating groups se&p77.

For sporadic simple grougs all d;(G) are known, up to a few cases for the
Baby Monster. There is a not yet published list of these results - which are due to
many people - prepared by C. Jansen

For simple groups of Lie typé& in characteristipp, minimal non-trivial de-
greesd,(G) in defining characteristic are given iKI[90, 5.4].

Acknowledgments. | wish to thank Pham Huu Tiep and Gunter Malle who
asked me to compute the results presented here. A large part of this note was
prepared during a conference btodular Representation Theory and Subgroup
Structure of Algebraic Groups and Related Finite Grogtgthe Isaac Newton
Institute in Cambridge. | also thank the Isaac Newton Institute for its hospitality
and technical support.

2 Small degrees in characteristi@

In this section we describe the determination of the smallest non-trivial charac-
ter degrees in characteristicfor all simple simply connected exceptional finite
groups of Lie type. We can actually compuatié the degrees of irreducible com-
plex characters and their multiplicities for these groups. We give an overview how
this can be achieved.

We use Deligne-Lusztig theory and in particular Lusztig’s Jordan decompo-
sition of characters: LeG(q) be a finite group of Lie type, i.e., the group of
F,-rational points of a connected reductive algebraic gréugefined over a fi-
nite field[F, with ¢ elements. We denote W (q) its dual group. Then there is a
partition of the set of complex irreducible characters,

I(G(a)) = |J E(Ga), (5)),
(s)

where(s) runs over the semisimple conjugacy classe&bfq). The sets of char-
acters£(G(q), (s)), calledLusztig serieshave a parameterization which only de-
pends on the twisted Dynkin diagram of the connected compdiignis) of the
centralizerCq-(s) and the operation of the factor grodf-(s)/C&.(s) on the
set of so calledinipotent charactersf C. (s)(q). (These connected centralizers
are again connected reductive groups.)

1Seehttp://www.math.rwth-aachen.de/"MOC/mindeg/
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In particular, if s,s € G*(q) have G*(¢)-conjugate centralizers, then
E(G(q), (s)) and&(G(q), (s')) can be parameterized by the same set. We say
that a character i6i(G(q), (s)) and a character ifi(G(q), (s')), corresponding to
the same parameter, belong to the safmeracter type.

Fix a semisimples € G*(¢). Then the degrees of the characters in
E(G(q), (s)) can be expressed as polynomialgin

In Lusztig’s book [us85 4.26] there is a formula which expresses the charac-
tersin€(G(q), (s)) as linear combinations of so-called almost characters. This is
done under the assumption that the centd&aa$ connected (in this case the cen-
tralizersCg-(s) are all connected). These almost characters are class functions
which have valu#) on1 € G(g) or which are linear combinations of Deligne-
Lusztig virtual characters; seé&(s85 3.7] for a formula. The values of the
Deligne-Lusztig characters oh € G(gq) can be computed from the orders of
maximal tori inG(q), see PL76, 7.2].

Since simply connected grougs in general don't have a connected center,
we also need the extension of these results givehungq.

To evaluate the linear combinations of Deligne-Lusztig characters which form
the almost characters inis85 3.7] one needs to know the character tables of
the Weyl groups ofz and of Cg-(s), extended by the Frobenius actions, and the
fusions of these groups into each other.

To evaluate the degrees of irreducible characters as linear combinations of the
values of the almost characters b G(q) as given in [us85 4.26] one needs
Lusztig’s non-abelian Fourier transform matrices. These are described combina-
torically in a case by case manner inug85 4.].

Hence, for computing all character degrees of the gr&kfg and their mul-
tiplicities we first determine the semisimple conjugacy classes of the dual group
G*(¢) and the types of the centralizers of their elements. After distinguishing a
finite number of congruence classes fothe number of conjugacy classes with
a centralizer of fixed type can also be expressed as a polynomjallim[LUb]
we will describe this in detail. We then compute the degrees corresponding to the
different types of centralizers as indicated above.

Given all character degrees and their multiplicities as polynomiajsve first
specialize this list for a certain number of smal(We usually have to handle sev-
eral congruence classesgimodulo some number, which depends on the Dynkin
type, separately.) This gives us a guess for the generic relative ordering of the
degrees for largey and also a list of exceptional orderings for smalllhe guess
is proved by examining the differences of the degree polynomials; we compute
a bound for the zeros and just check for positivity by evaluating at all the prime
powers below the bound. We remark that in each Lusztig series there is one char-
acter whose degree divides all degrees of the other ones in the same series. This
reduces the number of necessary comparisons considerably.
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The actual computations where done by a collection of computer programs,
written by the author. They are based on the systeé®B [S"97] and CHEVIE
[GHL"96]. The programs get as input a complete root datum describing a series
of finite groups of Lie type. The computations along the lines indicated above can
then be done with the available commands. (For technical reasons the programs
do not cover the Suzuki and Ree groups, but for these groups the generic charac-
ter tables are known fuz63, [War6q, [Mal9(0]) and can be found iCHEVIE
[GHL™96].)

Theorem 2.1 Let G be a finite group of Lie type arising from a simple simply
connected exceptional algebraic group. Then the tables in Segsbiow the (at
least)7 non-trivial character types off with the smallest degrees. All characters
not listed there have strictly bigger degrees than the listed ones. Except for the
cases handled in Secti@pthe first degree in these tables, which is not equal to
givesd,(G) for the simple finite grou® = G/Z(G).

3 Groups with exceptional universal covering

In some cases the simple groups considered in this paper don’'t have the corre-
sponding simply connected group of Lie type as universal covering group. The
guestion of smallest degree projective representations for these groups is handled
in this section.

3.1 The groupsG,(2) and 2Fy(2)

These simple groups are the derived subgroups of the corresponding groups of Lie
type in which they have indeX The simple groups have trivial Schur multiplier
and their character tables can be found in the AtizSIfI 85].

3.2 The groupsG,(3), G2(4) and Fy(2)

These groups have exceptional non-trivial coverings, whose character tables can
be found in the Atlas¢CN"85].

3.3 The group?Fg(2)

The simply connected group of Lie type is-dold covering of this simple group,
but its Schur multiplier is an abelian group of typé- 3. Clearly each char-
acter of the universal covering has a central subgroup of &derthe kernel.

Furthermore the three factor groups of typ&F(2) are isomorphic via an outer
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automorphism. (See the corresponding information in the A@43\"85].) So,
we are interested in the smallest character degre@sif(2). Unfortunately the
character table of this group is not yet known but we can nevertheless determine
the two smallest non-trivial character degrees.

From our list in Sectio® we get the smallest degrees of charactefsd; (2)
having the central subgroup of ordem the kernel. The Atlas contains the table
of 2.2E4(2) and so gives the smallest degrees of characters having the central
subgroup of ordes in the kernel. The smallest non-trivial degrees found so far
are1938 and2432.

The following argument shows that the smallest degree of a character which
is faithful on the center i$> 22464. It was pointed out to me byidgen Miller.
One uses the fact that a character which is faithful on the center, restricted to a
subgroup containing the center can only decompose into characters with the same
property. From the information in the Atlas we can show that the simple factor
2Fs(2) contains a sporadic groupi,, which lifts to a non-split extensio6. Fis,
in 6.2FE4(2). Using the character table of this subgroup, which is in the Atlas,
we see that the degree of a character which is faithful on the center and smaller
than61776 must be a multiple of 728. Considering similarly a subgroup of type
2.F,(2) and comparing, one finds that the degree of such a character must be at
least22464.

3.4 The table of results

Here is a table of smallest character degrees of the groups considered in this sec-
tion. Bold entries indicate that these degrees do not occur in the lists given in
Section5.

Go(2)  6,7,7,7,14,21,21,21

2F,(2) 26,26,27,27,78,104, 104
3.Go(3) 14,27,27,64,64,78

2.Go(4) 12,65,78,104,104, 300
2.Fy(2) 52,833,1105,1105, 1326, 1377
6.2E5(2) 1938,2432

4 Small degrees in prime characteristid 1 ¢

In this section we collect some valuégG) with [ a prime not dividingg for
exceptional groups of Lie type. In the casgg(q) and?G,(3*™*1) we find all
d,(G) and this result improves the lower bounds givenli& {4 and [SZ93 for
these cases. But in the higher rank cases we cannot detefjfiine
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4.1 The Suzuki groups’B,(22m+1)

For Suzuki groups- the ordinary character tables and all decomposition numbers
are known, seequr79 and [His93 D.1]. From this information and the ordinary
character degrees we can compute the modular character degrees in all cases as
polynomials ing. Comparing these polynomials as in Sectiowe find that

d;(G) = dy(G), for all primesl # 2.

4.2 The Ree groupgG,(32mH)

First let/ # 2,3. Then thel-Sylow group of a Ree groug’ = 2G,(3*"*1) is
cyclic and so thé-modular decomposition numbers are encoded in the Brauer
trees which are all determined iRiE93 D.2]. In these cases we find again

d,(G) = do(G), for all primesi # 2, 3.

For! = 2 the decomposition matrix of the principal block was determined in
[Fon74 and [LM80]. All other 2-blocks contain only ordinary characters which
all have the same degree, so their decomposition matrices are all trivial. Comput-
ing the degrees of the Brauer characters in the principal block we find

ds(G) = do(G) — 1.

4.3 The groupsGs(q)

In this case the minimal degrees are determined and explicitly giveAigd§
9.2]. We have folG = G5(q):

0(G) = do(G) — 1, ifeitherl=2 p=3, ¢>30ori=3and3|(¢g—1)
T do(@), else

4.4 The groups®Dy(q), ¢ odd

A lot of information about the decomposition numbers of triality grodps=

3D, (q) with odd q in non-defining characteristic was determined@ef9]. For

[ # 2 all decomposition matrices are explicitly given up to a few entries. For the
missing entries there are at least lower bounds.

This is not sufficient to find the minimal non-trivial modular degrees. But
if we also find some good enougipperbounds for the missing entries we can
check that the reductions of the complex representations of dégr€é¢ modulo
[ contain a large irreducible constituent which is the smallest non-trivial degree
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representation in characteristicAnd their degrees are determined by the known
parts of the decomposition matrices.

The idea to find upper bounds for entries of a decomposition matrix is to con-
struct projective representations moduknd to decompose them into (ordinary)
irreducible characters. These multiplicities give upper bounds for decomposition
numbers.

Some useful projective characters for this purpose are already giveead[,

3.3 and 4.2], namely the (modified) generalized Gelfand-Graev charactéts of
Others we find by considering tensor products of certain défebiaracters with

other irreducible characters. Such characters and their scalar products with the ir-
reducible characters can be found and computed with a computerCiSiBY 1E,

see [FHL'96]. This system contains the ordinary character table of the groups
3D, (q) and programs for computing with such tables without specializing the pa-
rameterg.

We find forl # 2 as result:

[ do(G) =1 ifl]g+1
WG = { do(G) else

For ! = 2 much less information on decomposition numbers is known, see
again [5ec9], and our ad hoc method was not good enough todisidr).

4.5 The groups?Fy(22m+1)

For the groupsi = 2F,(2*™*1) again all Brauer trees are known, sé&sp3

D.3]. But here for many primekthe [-Sylow subgroups are not cyclic and then
only very few information about the decomposition numbers is known. On the
other hand, for primes # 2, 3 which divide ¢y, ¢5, or ¢4, (see notation irb.5)

we do have enough information from the Brauer trees and find that in these cases

4.6 The other exceptional groups

For exceptional groups of larger rank only few results on decomposition numbers
are known. They seem not to be enough to determine the correspaih(ifg

In the examples above we found, that theodular representation of smallest
degree always is a component of the reduction modafa non-trivial represen-
tation of smallest degree in characteristicSo, let us add a remark here, that one
can at least estimate how such a characteristiepresentation can decompose
modulol.
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Comparing the lower bounds fdy(G) given by Lanézuri, Seitz and Zalesskii
in [LS74] and [SZ9] with our dy(G) we see that the bounds are always bigger
thand,(G) /2. This shows that the reduction of a characterigtiepresentation of
degreed,(G) modulo/ can only have one non-trivial irreducible constituent. In
some cases it is also relatively easy to find an upper bound for the number of trivial
constituents in this reduction. For example in the cases FE,(q), r = 6,7,8,
one can use the projective character, coming from Harish-Chandra inducing the
regular representation of a maximally split torus, to find that there are atrmost
trivial constituents.

5 Tables of small degrees in characteristio

In this section we give our main result frotal in the form of tables. The degree
polynomials are given in factored form; denotes theé-th cyclotomic polynomial
in ¢. We consider all finite groups of exceptional Lie ty@e= G(q)s. which arise
from simple simply connected algebraic groups. There is a subsection for each of
the series listed in the introduction. Sometimes we have to distinguish certain
congruence classes @f

Each table lists the character types with smallest possible degrees in increasing
order (leaving out the trivial representation). The degrees of representations are
given in columns labele®egree For convenience we also give the degrees of
these polynomials in the column labelédThe columns labeleMult. show the
number of characters in the corresponding character type.

If a character lies in the Lusztig seri€$G(q), (s)) we indicate the type of
the centralizetCg-(s)(q) in the column labeled’(s). Most such centralizers
occurring in our tables are connected (there is an exceptiérO)n In this case
the characters ii(G(q), (s)) can be parameterized by the unipotent characters of
Ca+(s)(q). In the column labele€har. we give such a parameter to indicate the
corresponding character type. The notation for the unipotent characters is very
close to that of Carter’'s bookCar85 Ch.13] respectively to that of the articles
cited above for the Suzuki and Ree groups.

5.1 The Suzuki groups’Bs(¢?), ¢ = v/22m+1

Smallest non-trivial degrees:
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Degree d Mult. C(s) Char.
1/2V2q¢10 3 1 °By(¢*) *Ba[b]
1/2V2q¢142 3 1 ’Bs(q*) *Bslal
P120g 4 1/4q(q+v?2) Ao(¢®)  xe
q4 4 1 2Bg(qQ) St
P8 4 1/2(q—V2)(q+v2) Aud®) x5
1020 4 1/4q9(¢ - V2) Ao(¢*) xr

(Whereg; = ¢* +v/2q + 1 and¢y

=q¢ —V2q+1)

5.2 The Ree groupgGs(q?), ¢ = v/ 32+l

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
®12 4 1 Al(q2> &2
1/6 V3qp1¢2¢y, 5 1 °Ga(q®) &
1/6 \/§Q¢1¢2¢/12 5 1 *Ga(q?) &
1/6 V3qp102¢], 5 1 *Ga(q?) &
1/6 \/§Q¢1¢2¢/1,2 5 1 2G2(q2) &s
1/3V3qp1¢2¢s 5 1 *Gy(q®) o

(whereg, = ¢* — V3¢ + 1 and¢f, = ¢* + /3¢ + 1)
with the following exception for smalj:

¢=V3

Degree Mult. C(s)

Char.

0 00 W N~ I — =

VL (U T T G G G W

€s
€6
&
&
&5
§10
€o
7
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5.3 The groupsGs(q)
Caseg=1 (mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
P26 31 As(q) 3]
b306 4 1 Ai(q) x Al(Q) 2], [2]
1/6qpigs 5 1 Ga(q) Go[1]
1/6qp5¢3 5 1 Ga(q) $2,1
1/3q¢1¢3 5 1 G2(q) G
1/3qdi¢5 5 1 Ga(q) Go[0?
with the following exception for smalj:
q="1:
Degree Mult. C(s) Char.
344 1 As(q) [3]
1806 1 G2(q) Go[1]
2451 1 Ag) x Ai(a) [2],[2]
4256 1 G2(q) D21
5376 1 Ga(q) Ga[6]
5376 1 G2(q) G, [6?]

Caseq =2 (mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
P13 31 *As(q) 3]
1/6qdigs 5 1 Ga(q) Ga[l]
1/6qp5¢5 5 1 Ga(q) @21
1/3 Q¢%¢% 5 1 Ga(q)  Galf)]
1/3qpi05 5 1 Ga(q)  Gaf6”]
1/3qpsps 5 1 Ga(q) ¢
1/3qpsps 5 1 Ga(q) @13

with the following exception for smaij:
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Degree Mult. C(s) Char.
1 1 Ga(q) Go[l]
6 1 Ga(q)  Galb]
6 1 Ga(q)  Gal0?]
7 1 2142(61) [3]
7 1 Gaq)  Ga[—1]
14 1 G2(Q) /1,3
14 1 Ga(q) 973
14 1 2A2((]) (2,1]
(mod 6)
Generically smallest non-trivial degrees:
Degree d Mult. C(s) Char.
36 41 Alg) x Ai(g) 21,12
1/6g¢ids 5 1 Ga(q) Ga[1]
1/6qd5ps 5 1 Ga(q) P21
1/3 qqﬁ%qﬁ% 5 1 Gz(CI) G [9]
1/3qpi¢5 5 1 Ga(q) G207
1/3qp3ds 5 1 Ga(q) 13
1/3qpsds 5 1 Ga(q) 13
with the following exception for smalj:
Degree Mult. C(s) Char
14 1 G2(q) Gh[1]
64 1 Ga(q) Ga[0]
64 1 Galq) Go[0?]
78 1 G2(q) Ga[—1]
91 1 Ag) x Aig) [2,12]
91 1 Ga(q) 13
91 1 Ga(q) 13
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Generically smallest non-trivial degrees:

q=4.

12

Degree d Mult. C(s) Char.
P26 31 As(q) [3]
1/6q¢igs 5 1 Ga(q) Ga[l]
1/6q¢5¢3 5 1 Ga(q) é21
1/3q¢7¢5 5 1 Ga(q) Galf)]
1/3 Cﬂ?%(ﬁ% 5 1 Ga(q) G2[92]
1/3qdsps 5 1 Ga(q) 15
1/3qdsps 5 1 Galq) 913
with the following exception for smaij:

Degree Mult. C(s) Char

65 1 As(q) 3]

78 1 Ga(q) Go[l]

300 1 Ga(q) G1lf]

300 1 Ga(q) Ga2l6?]

350 1 Gz(Q) $2.1

364 1 Ga(q) )3

364 1 Go(q) 15

Caseq =5

(mod 6)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
G103 3 1 2142(‘]) 3]
G396 4 1 Ai(g) x Ai(q) [2.[2]
1/6qpigs 5 1 Ga(q) Go[1]
1/6qp5¢3 5 1 Ga(q) P21
1/3 Qﬁﬁbg 5 1 Ga(q) G |0]
1/3q¢7¢3 5 1 G (q) Ga[0°]

with the following exception for smal}:
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q=>5:

Degree Mult. C(s) Char.
124 1 *As(q) 3]
280 1 G2 (q) Go[1]
651 1 Aug) x Aile) [2.[2]
930 1 G2(q) D21
960 1 Ga(q) G,10]
960 1 Ga(q) Ga[0?]

5.4 The groups®D,(q)

For the computation the congruence classesrabdulo4 must be distinguished.
The results only depend @rmodulo2.

Caseq =0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
qP12 5 1 3D4(Q) /1,3
1/2¢°¢1d1a 9 1 °Dy(q) Dy[1]
1/2 q3¢%¢:2a 9 1 3D4(C]) 3D4[—1]
1/2¢°b5¢05 9 1 *Dy(q) $2,1
1/2¢°¢3¢12 9 1 *Da(q) G2,
P19306012 9 1/2¢ Ai(¢®) x ¢ [2]
with the following exception for smal}:
q=2:

Degree Mult. C(s) Char

26 1 °Dilg) s

52 1 3D4(q) 3D,[1]

196 1 3D4(q) 3D, [—1]

273 1 A(@®) x ¢ [2]

324 1 *Dy(q) $2,1

351 3 As(q) x ¢35 [3]
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Caseg=1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
qP12 5 1 *Dy(q) 13
306012 8 1 Ai(q) x Ai(q®) [2],[2]
123312 9 1 *Da(q) *Da[1]
1/2 Q3¢%¢§ 9 1 3D4(Q) 3D4[_1]
1/2¢°p505 9 1 *Dy(q) G2,1
1/2¢°¢5¢12 9 1 *Dy(q) G2,
with the following exception for smalj:
q=3:
Degree Mult. C(s) Char.
219 1 3D4(q 13
3942 1 3D4(q 3Dy (1]
6643 1 Ai(q) x Ai(¢®) [2], 2]
9126 1 3D4(q) 3D, [—1]
10584 1 3D4(q) 21
13286 1 A1 (g*) X ¢ 2]

5.5 The Ree groupsFy(q?), ¢ = v22m+1

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
1/2V2q¢ 19203612 1T 1 *Fy(q®) *Bo[b)[1]
1/2v2q¢1¢203¢12 11 1 °Fi(q®) *Belal[1]
¢* P120024 14 1 Fuq®) ¢
D123 P24 18 1 “As(q®) (3]
1/12¢* 010508 diadyy 20 1 2Fu(¢®) xo
L/12¢* 31505 dradhy 20 1 °Fu(@®) xs

(Whereg,, = ¢* + v2¢* + ¢ + V2q + 1 and¢l, = ¢* — V2¢° + ¢* — V2q + 1,
¢y andgy are defined under the table for the Suzuki groups)
with the following exception for smaij:
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q=V72
Degree Mult. C(s)  Char.
1 1 Fi(q®) xo
27 1 2Fu(q?) 2Bay[b][1]
27 1 ’Fi(q®) 2Bs[a][1]
27 1 2Fi(¢®) xn
27 1 2F4(q2) X12
52 1 *Fa(q®) xar
(Recall thatF,(2) is not a simple group, see Sectidn
q=V8:
Degree Mult. C(s) Char.
64638 1 2Fy(q?) 2Bo[b][1]
64638 1 2Fy(q?) 2Bsla)[1]
1839048 1 2Fu(q?) €
13778800 1 2F4(q?) X0
119275975 1 245(4%) [3]
133929936 1 2Fu(¢®) xu
133929936 1 2Fu(q®)  xa2

5.6 The groupsFy(q)

For the computation the congruence classesobdulo12 must be distinguished.
The results only depend @grmodulo2.

Caseq =0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
1/2q¢i¢30s 11 1 Fi(q) [121, 1]
1/2qpspspra 11 1 Fy(q) 54
1/2qpspspr 11 1 Fy(q) P4
1/2 qd3¢50s 11 1 Fy(q) Ga1
P P305012 14 1 Fy(q) ®9,2
P1930ad60s12 15 1/2q Cs(q) x ¢ [[3],[]]
19304060312 15 1/2q Bs(q) x ¢o [[3],[]]
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with the following exception for smalj:
q=2:

Degree Mult. C(s) Char.

833 1 Fu(q) 2], 1]
1105 1 Fi(q) ¢,
1105 1 Fy(q) by
1326 1 Fy(q) FI)
1377 1 Fi(q)  dan
21658 1 Fi(q) FiQ]
Caseg =1 (mod 2)
Generically smallest non-trivial degrees:
Degree d Mult. C(s) Char.
P3P6P12 8 Bu(q) [[4],]]

1/2q¢id3¢s 11
1/2 qpadsra 11
1/2 qpadsdra 11
1/2q¢305¢s 11
¢ P3P 012 14

with the following exception for smal}:
q=3:

(21, 1]

/!
2,4

(q)

(q)

(Q) ¢/2,4
(@) ¢an
(¢)

1
1
1
1
1
1 ®9,2

Degree  Mult. C(s) Char.

6643 1 By(q) [[4],1]]
83148 1 Fy(q) [[2],1]]
89790 1 Fi(q) ¢34
89790 1 Fi(q) o954
96432 1 Fi(q) ¢
5181540 1 Ba(q) [[0,1,4],[]]

5.7 The groups?Eg(q)s.

For the computation the congruence classesrabdulo6 must be distinguished.
The results only depend gnmodulo2.
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Caseqg =0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
qPsdis 11 1 *E(q) P4
P30¢D12018 16 ¢ Ds(q) x @2 [[0,5], []]
@* P13 Pr0012 16 1 *Es(q) Pu,1
1/2 P pspropradis 21 1 *E(q) 112
1/2 q3¢421¢10¢12¢18 21 1 2E6(Q) /2/,4
1/2 q3¢§1¢%¢10¢18 21 1 °Eg (q) ¢§,3
with the following exception for smal}:
q=2:
Degree  Mult. C(s) Char.
1938 1 ’Fs(q) P54
46683 2 2Ds(q) x ¢2 [[0.5],[]]
48620 1 2Fs(q) G121
554268 1 ’Fs(q) 112
815100 1 2Fs(q) 54
1322685 1 245(q) x ¢y 6]
Caseg=1 (mod 2)
Generically smallest non-trivial degrees:
Degree A Mult. C(s) Char.
qPs P18 11 1 *Es(q) P54
P3PED12018 16 ¢ *Ds(q) x ¢2 [0, 5], []]
@*Padsdrodrz 16 1 *F(q) Ga1
030406P8P12018 20 1 *As(q) x Ai(q) (6], [2]
1/2 ¢ pspropradns 21 1 °Es(q) 112
1/2¢°¢ibr0pragns 21 1 *Fs(q) 54

with the following exception for smalj:
q=3:
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Degree Mult. C(s) Char.
172938 1 *Es(q) P4
32600203 3 Ds(q) x ¢2  [[0,5],[]]
32863140 1 *Es(q) bu1
3465418113 1 *Fs(q) 112
3820423780 1 ?A5(q) x Ai(q) (6], [2]
4226119650 1 *E(q) b4

5.8 The groupsEg(q)se

For the computation the congruence classesrmabdulo6 must be distinguished.
The results only depend @nmodulo2.

Caseqg =0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
qPsPy 11 1 Es(q) ®6,1
10505012 16 1 FEs(q) $20,2
P306P9P12 16 (¢—2) Ds(q) x ¢ [[0],[5]]
1/2¢*¢1630509 21 1 Es(q) Dy[1]
1/2¢°ps 50809 21 1 Es(q) ®15,5
1/2 ¢ psspodra 21 1 FEs(q) D154
with the following exception for smalj:
q=2:
Degree  Mult. C(s) Char.
2482 1 Eg(q) P61
137020 1 Es(q) $o0.2
443548 1 Es(q) Dy[1]
1384956 1 Es(q) P155
1693965 1 As(q) x ¢o  [6]
2000492 1 Es(q) br5.4
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Caseg=1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.

qPs P9 11 1 Es(q) ®s,1

@ Pa05 03012 16 1 Es(q) ®20,2

P30600P12 16 (¢—2) Ds(q) X ¢ [[0], [5]]

030406PsPoP12 20 1 As(q) x Ay(q) [6],[2]

1/2¢°61d3¢5¢9 21 1 Es(q) Da[1]

1/2 P psdgdsde 21 1 Es(q) G155

with the following exception for smaij:
q=3:

Degree Mult. C(s) Char.
186222 1 Es(q) P61
65187540 1 Es(q) $20.2
65373763 1 Ds(q) X ¢y [[0], [5]]
3343656888 1 Es(q) Dy[1]
4123575820 1 As(q) x Ai(q) [6],]2]
4968496071 1 E(q) D155

5.9 The groupsEr(q)s.

For the computation the congruence classesobdulo12 must be distinguished.
The results only depend grmodulo2.

Caseg=0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
qP7912914 17 1 Eq(q) o7
D305 PoP12P18 26 1 Eq(q) Par,2
DT P35 7914 27 1/2q ’Fe(q) X ¢2 b10
Cdrpodradns 27 1 E+(q ®21,3

(q)
P3yddrdr001418 27 1/2(q—2) Es(q) x ¢ ¢10
1/2 P ¢1¢350507091a 33 1 Eq(q) Dy[[3], []]




Frank Liibeck 20

with the following exception for smalj:

q=2:

Degree Mult. C(s) Char.
141986 1 E:(q) b7
86507701 1 *Es(q) X b2 d10
95420052 1 Exz(q) Pt
181785768 1 E:(q) P13
2422215628 1 E:(q) Dy[[3], []]
3876501772 1 E(q) b21,6

Caseg =1 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
qP7¢12014 17 1 Eq(q) o7
P30 PoP12018 26 1 Eq(q) Gar2
1/2 ¢pssdrdodra 27 1 *Es(q)-2 X ¢2 ¢10
1/2 §3dspsdrons 27 1 *Es(q)-2 X ¢2 ¢10
1/2 ¢§¢6¢7¢10¢14¢18 27 1 Ees(q).2 x ¢1 10
1/2 p3d6prdropraprs 27 1 Es(q)2 X ¢1 ¢10

(In the cases of non-connected centralizers thiere are two characters in the
Lusztig series corresponding to the trivial representation of the connected central-
izer. We don’t distinguish them with the given labels.)
with the following exception for smalj:

q=3:
Degree Mult. C(s) Char.
130933749 Er(q) b7
2847685879324 ’F6(q).2 X ¢ ®1,0

1
1

2847685879324 1 2E6(q)-2 X ¢2 ¢r0
2895338589507 1 Ez(q) $a12
5695371758648 1 2Es(q) X ¢2 10
5743024468832 1 Es(q)2 X 1 10
5743024468832 1 Es(q)2 % 1 10
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5.10 The groupsEs(q)

For the computation the congruence classesddulo60 must be distinguished.
The results only depend @nmodulo2.

Caseq =0 (mod 2)

Generically smallest non-trivial degrees:

Degree d Mult. C(s) Char.
g3 D3 P12020024 29 1 Es(q) ¢sa
P dsPrP10012015P20030 46 1 Es(q) ¢35,
1/2 P ¢l 0302 D789 Prad15024 57 1 Es(q) Dyl
1/2 957 dsdrodradisdrsdaodos 57 1 Es(q) ¢osg
1/2 ¢* 937 dsdodradradandasddsy 57 1 Es(q) ¢saa
1/2 > 9308 h708 07 Pradrsdaaddso 57 1 Es(q) énas
with the following exception for smaij:
q=2:
Degree Mult. C(s) Char.
545925250 1 Es(g) -
76321227908420 1 Es(q) $a5.9
46453380380074796 1 Ex(q) Da[é1]
51320060161363500 1 Es(q) $2g 8
07607128850455125 1 En(q) X o o
144074197011621500 1 Eg(q) G4
Caseg=1 (mod 2)
Generically smallest non-trivial degrees:
Degree d Mult. C(s) Char.
g3 PsP12P20 024 29 1 Ex(q) ®s,1
@ D5 07P10014015P20 P30 46 1 Es(q) $35.2
P305D5P60sP10012015020024030 56 1 Eq(q) x Ai(q) 10, (2]
1/2 P p1 0502 D7 o3P P14015P24 o7 1 FExs(q) Dy[¢10]
1/2 > i 07 s hpr2014015018¢020024 57 1 Es(q) P28,8
1/2 P 01drdsdodrodradaodoadpso 5T 1 Es(q) Pg4.4
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with the following exception for smalj:

q=3:

Degree Mult. C(s) Char.

68725813719000
8986201692043878710595
586314331934563526507166096
589584816280450030203163000
592864286827959851964151500
1175890162013321512831618500

(q) P81

(q) $35,2

(q) Diy[é1,0]
Er(q) x Ai(q) 1,0, [2]

(q) Pas.8

(¢) P44
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