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Abstract. This is an extended version of the talk given by the first author

at the conference. We report on the outcome of some experiments with the

decomposition of products of (generalized) characters of some classical groups.
In particular some results of the PhD-thesis of Dirk Mattig on the products of

unipotent characters of general linear groups are presented and commented.
In order to obtain similar patterns for other classical groups it seems necessary

to replace unipotent characters by unipotent almost characters.

1. Introduction

The unipotent characters of the general linear group GLn(q) are parametrized
by partitions of n, independently of q. Let us fix n and consider three partitions
λ, µ, and ν of n. For each prime power q, there are three associated unipotent
characters χqλ, χqµ, and χqν of GLn(q). We may consider the multiplicity of χqλ
in the product χqµ · χqν , as a function in q. Following Mattig, we show that this
multiplicity function is a polynomial function over the rationals. Using CHEVIE,
Mattig has computed the corresponding polynomials for all 1 ≤ n ≤ 8 (and all
relevant triples of partitions). He found that in fact all these polynomials have
non-negative integral coefficients.

After a discussion of Mattig’s results, we present similar computations for the
general unitary groups GUn(q). We also consider the problem of extending our
observations to other series of classical groups. We suggest to replace unipotent
characters by unipotent almost characters.

Finally, we sketch some special results. For instance, we show that the constant
coefficient of the polynomial expressing the multiplicity of χqν in the square of
the Steinberg character, is equal to the degree of the irreducible character of the
symmetric group Sn corresponding to ν. This fact has been observed by Lux and
Malle on an example presented in the talk of the first author.

Let us close this introduction by introducing two notational conventions. Let X
be a subset of C and f : X → C, x 7→ f(x) a function, and let S ⊆ C. We say that f
is a polynomial in x over S, if there is a polynomial p ∈ C[X], with coefficients in S,
such that f(x) = p(x) for all x ∈ X.

If G is a finite group and if ϕ, ψ are class functions on G, we write

(1) (ϕ,ψ)G =
1
|G|

∑
g∈G

ϕ(g)ψ(g−1)

for the usual scalar product on the set of class functions of G.
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2 PRODUCTS OF CHARACTERS IN FINITE CLASSICAL GROUPS

2. Tensor product polynomials

Let n be a positive integer, q a prime power and let G denote one of the groups
GLn(q) or GUn(q). The unipotent characters of G form a distinguished subset of the
set of absolutely irreducible ordinary characters of G (over the complex numbers).

In caseG = GLn(q) the unipotent characters ofG are the irreducible constituents
of the permutation character 1BG, where B denotes the Borel subgroup of upper
triangular matrices of G. There is no elementary way to introduce the unipotent
characters in case G = GUn(q). Here, they are constructed as characters on `-
adic cohomology groups on Deligne-Lusztig varieties on which G acts (see, e.g., [2,
Chapter 12]).

There is, however, a common parametrization of the unipotent characters in
both cases. Namely, there is a bijection between the unipotent characters of G
and the partitons of n. In particular, the unipotent characters are parametrized
independently of q. Let us write χqλ for the unipotent character of G labelled by
the partiton λ of n. In this parametrization χq(n) denotes the trivial character 1G
and χq(1n) the Steinberg character StG of G.

If we fix n and three partitions λ, µ, and ν of n, we may consider the scalar
products

(2) tλ,µ,ν(q) = (χqλ, χ
q
µ · χqν)GLn(q) and t̄λ,µ,ν(q) = (χqλ, χ

q
µ · χqν)GUn(q)

as functions in q. Using the terminology introduced above, we can now state the
first result.
Proposition 2.1. (Mattig, [12, Propositon 3.1.6].) Let n be a positive integer and
let λ, µ, ν be partitions of n. Then tλ,µ,ν(q) and t̄λ,µ,ν(q), as functions on the set
of all prime powers q, are polynomials in q over Q.

Let us sketch a proof of this result. First of all, the conjugacy classes of G can be
grouped together into class types, and the class types can be classified independently
of q. Let us write gs and gu for the semisimple and unipotent part of an element
g ∈ G, respectively. Two elements g and h of G belong to the same class type, if
CG(gs) is conjugate to CG(hs) and if gu is conjugate in CG(gs) to a conjugate of
hu lying in CG(gs). (For a definition and more details on class types for general
series of groups of Lie type see [6, Section 4].)

Secondly, the unipotent characters of G are constant on class types, and thirdly,
the numbers of conjugacy classes inside a class type, the lengths of conjugacy classes,
and the values of the unipotent characters, viewed as functions of q, are polynomials
in q over the rationals. Finally, the order of G is a polynomial in q over the integers,
and hence, by (1), the scalar products (2) are rational functions in q. Since these
take integer values for all prime powers q, they are polynomials in q over Q.

Table 1 collects all the information that is needed to compute the tensor product
polynomials for n = 2. The first column of that table gives the number of conjugacy
classes of GL2(q) in each of the four class types, the second column gives the length
of each conjugacy class in a class type. The third and fourth columns give the
values of the two unipotent characters of GL2(q).

We call such a table a generic unipotent character table. The CHEVIE-system [6]
contains the generic unipotent character tables of GLn(q) and GUn(q) for 2 ≤ n ≤
8, of CSp4(q), CSp6(q), SO−8 (q), and Spin+

8 (q). Furthermore, CHEVIE includes
programs to compute with these character tables. As examples we have computed
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Table 1. The generic unipotent character table of GL2(q)

Nr. of Classes in Type Length χ(2) χ(12)

q − 1 1 1 q

q − 1 q2 − 1 1 0
1
2 (q − 1)(q − 2) q(q + 1) 1 1

1
2 (q − 1)q q(q − 1) 1 −1

the polynomials t(15),(15),ν(q) and t̄(15),(15),ν(q), where ν runs through the partitions
of 5. The result ist given in Table 2.

Dirk Mattig has used CHEVIE to compute the polynomials tλ,µ,ν(q) for all triples
of partitions of numbers up to 8. Let us write N for the set of non-negative integers.
Observation 2.2. (Mattig, [12].) Let λ, µ, ν be partitions of the integer n with
1 ≤ n ≤ 8. Then the function tλ,µ,ν(q) is a polynomial in q over N for all prime
powers q.

The same statement does not hold for the polynomials t̄λ,µ,ν(q) but the calcula-
tions with CHEVIE lead to the following observation.
Observation 2.3. Let λ, µ, ν be partitions of n, where n is an integer with 1 ≤
n ≤ 8. Then we have:

(a) The functions t̄λ,µ,ν(q) are polynomials in q over the integers.
(b) The difference functions tλ,µ,ν(q) − t̄λ,µ,ν(q) are polynomials in q over 2N,

that is the coefficients are even non-negative integers.
Remarks. There are formulae for the values of unipotent characters for GLn(q)

and GUn(q) which are closely related by an operation called Ennola duality. Roughly
speaking one has to substitute in the formulae for GL the parameter q by −q and
to adjust some signs.

But this does not lead to a simple relation between tλ,µ,ν(q) and t̄λ,µ,ν(q) (see
the example in Table 2), since there is no such simple correspondence between
the number of classes in class types (see the example in Table 3) and since the
mentioned adjustment of signs depends of the class type.

Note also that the polynomials do not specialize to the corresponding scalar
products of characters of the symmetric group Sn at q = 1. For example, if n = 2
we have (St,St · St)GL2(q) = 1. The Steinberg character of GL2(q) corresponds to
the alternating character of S2, whose square equals the trivial character.

3. Tensor Product Polynomials For Other Groups

Now let {G(q)| q a prime power} be an arbritrary series of groups of Lie type.
For example {Sp4(q)}, the symplectic groups on a 4-dimensional vector space over
Fq, or {2E6(q)sc} the twisted groups of type E6 in a simply-connected algebraic
group of this type. For a precise definition see [6, Section 4.1].

Again, each group G(q) has a distinguished set of unipotent characters which
are parametrized for all groups in the series independently of q (see, e.g., [2, Sec-
tions 13.8,13.9]). We write Λ for a set of parameters of the unipotent characters
and χqλ for the character of G(q) corresponding to λ ∈ Λ. The exact values of the
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Table 2. Some tensor products in GL5(q) and in GU5(q)

ν (StG,StG · χν) for G = GL5(q)

(5) 1
(4, 1) 4
(3, 2) q2 + 2 q + 5
(3, 12) q3 + 2 q2 + 4 q + 6
(22, 1) q4 + q3 + 3 q2 + 5 q + 5
(2, 13) q5 + q4 + 3 q3 + 3 q2 + 6 q + 4
(15) q6 + q4 + 2 q3 + q2 + 3 q + 1

(StG,StG · χν) for G = GU5(q)

1
0

q2 + 1
q3 + 2 q + 2

q4 − q3 + q2 + q + 1
q5 + q3 − q4 − q2

q6 + q4 + q2 + q + 1

Table 3. Numbers of conjugacy classes in class types

GL3(q) GU3(q)

q − 1 q + 1
q − 1 q + 1
q − 1 q + 1

(q − 1)(q − 2) (q + 1)q
(q − 1)(q − 2) (q + 1)q

1
6 (q − 1)(q − 2)(q − 3) 1

6q(q − 1)(q + 1)
1
2q(q − 1)2 1

2 (q − 2)(q + 1)2

1
3q(q − 1)(q + 1) 1

3q(q − 1)(q + 1)

unipotent characters are not yet known in all cases. But in those cases where they
are known a certain generalization of Proposition 2.1 can be proved with the same
arguments.

Unlike the case {GLn(q)} it is in general no longer true that just one generic
unipotent character table describes the values of the unipotent characters of G(q)
for all prime powers q. The smallest example for this is the series {SL2(q)}. For
odd q these groups have three unipotent conjugacy classes while for even q there
are only two.

It turns out that for each series {G(q)} there is a number m ∈ N such that for
any fixed 0 ≤ i ≤ m− 1 and all prime powers q ≡ i (mod m) the class types can be
parametrized independently of q and the number of classes in a class type is given
by a polynomial in q. Furthermore, the class length for all classes in a fixed class
type is described by a polynomial in q.

It is not clear a priori that the unipotent characters are constant on class types.
But this is true in all known cases. Moreover, in the known cases all values of
unipotent characters are given by polynomials in a square root q1/2 of q with coef-
ficients in some finite extension of Q which is independent of q within a congruence
class of q modulo m as described above.
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Thus, fixing an integer 0 ≤ i ≤ m− 1 such that the generic unipotent character
table of {G(q)| q ≡ i (mod m)} is known, we see as in Proposition 2.1 that the
multiplicities

tλ,µ,ν,i(q) = (χqλ, χ
q
µ · χqν)G(q)

for all prime powers q with q ≡ i (mod m) are polynomials in q over C.
If we compute these polynomials in the case {Sp4(q) | q even} (the character

values were first computed by Enomoto [5]), we quickly find polynomials with non-
integer coefficients. This shows that Observations 2.2 and 2.3 do not generalize
directly to other series of groups.

Almost Characters. To find such a generalization we have to look at the unipo-
tent almost characters instead. These are certain C-linear combinations, with co-
efficients independent of q, of the unipotent characters. Almost characters were
introduced by Lusztig when he described the parametrizations of unipotent char-
acters. The transforming matrices from irreducible characters to almost characters
are called Fourier transform matrices.

For linear groups (like GLn(q) and SLn(q)) the unipotent characters coincide
with the unipotent almost characters. For unitary groups (like GUn(q) and SUn(q))
they coincide up to sign. But for all other types of groups this is no longer true.

It is conjectured by Lusztig and proved in many cases by Lusztig and Shoji that
the almost characters are class functions associated to certain geometric objects
called character sheaves, see [10], [11] and [14].

Let Λ̃ be a set of parameters for the unipotent almost characters of the groups
G(q); for λ ∈ Λ̃ we write χ̃qλ for the corresponding almost character of G(q). For m
as above and 0 ≤ i ≤ m− 1 set t̃λ,µ,ν,i(q) = (χ̃qλ, χ̃

q
µ · χ̃qν)G(q), viewed as a function

on all prime powers q ≡ i (mod m). Then, in those cases where we know that
the tλ,µ,ν,i(q) are polynomials in q the t̃λ,µ,ν,i(q) are also polynomials in q over the
complex numbers.

We have computed the polynomials t̃λ,µ,ν,i(q) for all 0 ≤ i ≤ m − 1 in the
following cases.

Series m

{GLn(q)}, n ≤ 8 1
{SLn(q)}, n ≤ 8 n

{GUn(q)}, n ≤ 8 1
{SUn(q)}, n ≤ 8 n

{COn(q)}, n = 7, 9 2

Series m

{CSpn(q)}, n = 4, 6, 8 2
{Spn(q)}, n = 4, 6, 8 2

{Spin7(q)} 4
{Spin+

8 (q)} 2
{3D4(q)} 2

Note, that the case SLn(q) cannot easily be derived from the case GLn(q) al-
though the sets of unipotent characters are in bijection via restriction. To see
why, let us denote by ρ a linear character of GLn(q) generating the cyclic group
GLn(q)/SLn(q) of order q − 1. The unipotent characters of SLn(q) are exactly the
characters χqλ↓SLn(q)

, where λ runs through the partitions of n. Using Frobenius
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reciprocity and Clifford’s theorem we find

(χqλ↓SLn(q)
, χqµ↓SLn(q)

· χqν↓SLn(q))SLn(q) = ([χqλ↓SLn(q)
]GLn(q), χqµ · χqν)GLn(q)

=
q−2∑
i=0

(χqλ · ρ
i, χqµ · χqν)GLn(q)

= tλ,µ,ν(q) +
q−2∑
i=1

(χqλ · ρ
i, χqµ · χqν)GLn(q).

If the center Z(GLn(q)) is in the kernel of ρi, then (χqλ · ρi, χqµ · χqν)GLn(q) 6= 0 in
general, and thus contributes to the tensor product polynomial for SLn(q).

To give a specific example, t(13),(13),(13) = q + 1, whereas in case 3 | q − 1
the tensor product polynomial for SL3(q) corresponding to ((13), (13), (13)) equals
3q+ 1. This reflects the fact that (χq(13) · ρ

i, χq(13) ·χ
q
(13))GL3(q) = q for i = (q− 1)/3

and 2(q − 1)/3.
Some of these tables of unipotent characters were available in CHEVIE and com-

puted in [16], [5], [13], [4], [7], and [9]. The other non-linear group cases were
computed by the second author using the results from [15].
Observation 3.1. In all cases mentioned above, the functions t̃λ,µ,ν,i(q) are poly-
nomials in q over Z. Here, some negative coefficients occur in the cases GUn(q)
with 5 ≤ n ≤ 8, SUn(q) with 3 ≤ n ≤ 8 (for some i), 3D4(q) and Spin7(q) with
q ≡ 3 (mod 4).

This suggests that, if our observations are actually true for all series of groups
of Lie type, one has to consider character sheaves for an explanation. Comparing
the cases GL and GU it is interesting to know that the character sheaves leading to
the values of unipotent characters are the same geometric objects for GL and GU.
Maybe there is an interpretation of the coefficients of the tensor product polynomi-
als using the same non-negative numbers which have to be added up with different
signs.

There does not seem to be an obvious notion of tensor products of character
sheaves which correspond to the tensor products of the associated class functions.

4. Special results on the tensor product polynomials

When the first author gave the talk on these results in Gainesville, Klaus Lux
and Gunter Malle observed that the constant coefficient of the polynomial t(15),(15),ν

in the first half of Table 2 equals ζν(1), where ζν is the irreducible character of the
symmetric group S5 labelled by the partition ν. Gunter Malle observed furthermore,
that the constant coefficient of the polynomial t̄(15),(15),ν in the second half of
Table 2 equals 0, if χν does not lie in the principal series, and equals the degree
of the corresponding character of the Weyl group of GU5(q), otherwise. Here, the
Weyl group is a dihedral group of order 8.

During the conference a sketch of a proof for these facts emerged through dis-
cussions with Gunter Malle and Meinolf Geck. We give the details here.
Proposition 4.1. Let n be a positive integer and let ν be a partition of n. Write
ζν for the irreducible character of the symmetric group Sn labelled by ν. Put m :=
bn/2c.

(a) The constant coefficient of t(1n),(1n),ν equals ζν(1).
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(b) The constant coefficient of t̄(1n),(1n),ν equals |ζν(σ)|, where σ ∈ Sn is an
involution that is a product of m disjoint transpositions.

The value |ζν(σ)| also has the following interpretation. Let κ and (α, β) denote
the 2-core and the 2-quotient of ν, respectively. Then |ζν(σ)| equals 0, if |κ| > 1,
and ζ(α,β)(1), otherwise. Here, ζ(α,β) denotes the irreducible character of the Weyl
group of type Bm labelled by the bi-partition (α, β) of m.

Proof. For 0 6= f ∈ Q[X], f = X lg with l ≥ 0 and X - g, we write fX := X l

and fX′ := g = f/fX .
The proof is given simultaneously for the general linear and unitary groups. Let

ε be a parameter taking the values ±1. Let Gε denote the generic group giving rise
to the series GLn(q), if ε = 1, and to GUn(q), if ε = −1. We write |Gε| for the
order polynomial of Gε, i.e., the value of |Gε| at q is the order of the finite group
Gε := Gε(q). Letting N := n(n− 1)/2, we have

|Gε| = XN
n∏
i=1

(Xi − εi).

Let Ω̃ be a set of labels for the class types ofGε and let Ω ⊆ Ω̃ label the class types
of semisimple elements. Such sets can be chosen independently of ε. For ω ∈ Ω̃
we write Stε(ω) and χν,ε(ω) for the value polynomials of the Steinberg character
and the unipotent character χν , respectively. We also write nε(ω) and cε(ω) for
the numbers of conjugacy classes of class type ω and the numbers of elements of a
conjugacy class of class type ω, respectively. Finally, tε denotes t, if ε = 1, and t̄,
if ε = −1. We then have

tε(1n),(1n),ν |Gε| =
∑
ω∈Ω̃

nε(ω)cε(ω)Stε(ω)2χν,ε(ω).

This follows from Formula (1) with the above settings and the fact that χν,ε(ω) =
χν,ε(ω′), where ω′ denotes the class type containing the inverses of the elements of
class type ω.

If ω ∈ Ω̃ \ Ω, then Stε(ω) = 0, and if ω ∈ Ω, then Stε(ω) = ±(|Gε|/cε(ω))X
(see [2, Theorem 6.5.9]). Note that cε(ω) divides |Gε|, and that |Gε|/cε(ω) is
the centralizer order polynomial corresponding to the class type ω. Let us write
(|Gε|/cε(ω))X =: Xmω,ε . Then, dividing both sides of the equation above by XN ,
we have

tε(1n),(1n),ν |Gε|X′ =
∑
ω∈Ω

nε(ω)cε(ω)X′Xmω,εχν,ε(ω).

Now mω,ε = 0 for ω ∈ Ω, if and only if ω is a class type of regular semisimple
elements, i.e., the generic centralizer is a torus. So, only regular semisimple classes
contribute to the constant term of the polynomial tε(1n),(1n),ν .

Finally, we have to consider the polynomials nε(ω) for class types of regular
semisimple elements. Such class types are parametrized by the partitions of n
as follows. Given a regular semisimple element in Gε, it has n pairwise different
eigenvalues and the set of eigenvalues is permuted by raising these numbers to the
εq-th power. All such sets of eigenvalues occur and each set of eigenvalues occurs
for exactly one conjugacy class. The class type of the element is parametrized by
the cycle type of this permutation on the eigenvalues.
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Using induction one can see that the number of sets of eigenvalues as above for
a fixed cycle type is a polynomial in q which is divisible by q if there is:

– any cycle of length greater than one, if ε = 1.
– more than one cycle of length one or a cycle of length greater than two, if
ε = −1.

This shows that in each case there is only one class type, namely the one of the
regular elements in a maximally split torus, which contributes to the constant term
we are interested in. Let ω0 be the label of this class type. Then

tε(1n),(1n),ν |Gε|X′ ≡ nε(ω0)cε(ω0)X′χν,ε(ω0)(mod X).

Now, for ε = 1, i.e., for GLn(q), we find from the combinatorial interpretation
of n1(ω0) given above that

n1(ω0) =
1
n!

n∏
i=1

(X − i).

Since

c1(ω0)X′ =
∏n
i=1(Xi − 1)
(X − 1)n

=
|Gε|X′

(X − 1)n
,

it follows that the constant coefficient of t(1n),(1n),ν equals χν,1(ω0).
Now let ε = −1. In this case we have

n−1(ω0) =
1

2mm!
(X + 1)n−2m

m∏
i=1

(X2 −X − 2i),

and

c−1(ω0)X′ =
∏n
i=1(Xi − (−1)i)

(X + 1)n−2m
∏m
i=1(X2 − 1)

.

It follows that the constant coefficient of t̄(1n),(1n),ν equals χν,−1(ω0).
To determine the value of χν,ε(ω0) we use the character formula for the values of

Deligne-Lusztig generalized characters on semisimple elements (see [2, Proposition
7.5.3]), and the connection of unipotent characters with unipotent almost characters
as presented in [1, p. 45].

Let ψν,ε denote the unipotent almost character of Gε corresponding to ζν . Then
ψν,ε = χν,ε, if Gε = GLn(q), and ψν,ε = ±χν,ε, otherwise. Moreover, ψν,1(ω0) =
ζν(1), so we are done in case ε = 1. Let ε = −1. Then ψν,−1(ω0) = ζν(σ). Also, by
[8, Corollary 2.7.33], |ζν(σ)| = 0, if |κ| > 1, and |ζν(σ)| = ζ(α,β)(1), if |κ| ≤ 1. It
remains to show that the sign of ζν(σ) equals the sign of ψν,−1. By the definition
of the almost characters, the degree of ψν,−1 is obtained from the degree of ψν,1
by replacing q by −q. Thus ψν,−1 = χν,−1, if the generic degree polynomial has
even degree, and ψν,−1 = −χν,−1, otherwise. A formula for the generic degree
polynomial can be found in [2, p. 466]. The sign of ζν(σ) is determined in [8,
pp. 80–82]. Using these descriptions and induction on the 2-weight of ν, it follows
that ψν,−1 = −χν,−1 if and only if ζν(σ) is negative. �

Remark. Note that the property that all but one of the numbers of classes in
the class types of regular semisimple elements is divisible by q is a special property
of the series GLn(q) and GUn(q). Thus there is no generalization of Theorem 4.1
to other series of groups.
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Let us now fix the positive integer n and put G = GLn(q) for the remainder of
this section. The following result is also contained in Mattig’s PhD-thesis.
Proposition 4.2. (Mattig, [12, Theorem 6.4.8].) For all partitions µ, ν of n, the
polynomial t(n−1,1),µ,ν is constant (and hence a non-negative integer).

In order to prove this, Mattig considers the permutation characters 1Pλ
G on

parabolic subgroups Pλ. Here, λ again is a partition of n and Pλ denotes the
corresponding parabolic subgroup of G (whose Levi subgroup is the group of block
diagonal matrices with blocks of sizes given by the parts of λ).

Let us write Pn for the set of partitions of n. Given λ ∈ Pn, there are non-
negative integers aλ,µ, independent of q, such that

(3) 1Pλ
G =

∑
µ∈Pn

aλ,µ χ
q
µ

(see, e.g., [3, Theorem (70.24)]). Moreover, by [8, Section 2.2], the matrix of co-
efficients (aλ,µ)λ,µ∈Pn is invertible over the integers. In particular, the unipotent
characters χqλ can be expressed as Z-linear combinations of the permutation char-
acters 1Pµ

G. For example, χq(n−1,1) = 1P(n−1,1)
G − 1P(n)

G = 1P(n−1,1)
G − 1G.

It follows from Proposition 2.1 and Equation (3) that there are polynomials
rλ,µ,ν ∈ Q[X] such that

rλ,µ,ν(q) =
(
1Pλ

G, 1Pµ
G · 1PνG

)
GLn(q)

for all prime powers q. Another interpretation of these polynomials is provided by

(4)
(
1Pλ

G, 1Pµ
G · 1PνG

)
GLn(q)

=
∑

x∈Dµ,ν

|Pλ\G/Pµ ∩ xP ν |,

where Dµ,ν denotes the set of distinguished double coset representatives corre-
sponding to the parabolic subgroups Pµ and Pν . Note that Dµ,ν can be chosen,
independently of q, as a subset of distinguished double coset representatives of the
Weyl group Sn of G. Using (4), Mattig shows that r(n−1,1),µ,ν is constant for all
partitions µ, ν of n. The remarks following (3) now prove Proposition 4.2.

Of course, rλ,µ,ν ∈ N[X] if tλ,µ,ν ∈ N[X].
Let us consider a further special case, namely P(1n) = B. We have

(5) 1BG =
∑
λ∈Pn

ζλ(1)χqλ.

Moreover, by [2, Propositions 7.4.4 and 7.5.4] we have

1BG · StG = 1TG,

where T denotes the maximally split torus of G consisting of the diagonal matrices.
Using Proposition 2.1, and Equation (5), we see that there is a polynomial sn ∈
Q[X] such that

sn(q) = |B\G/T |
=

(
1BG, 1TG

)
G

=
(
1BG, 1BG · StG

)
G

=
∑

λ,µ∈Pn

ζλ(1) ζµ(1) tλ,µ,(1n)(q).
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Theorem 4.3. (Mattig, [12, Chapters 4 and 8].) The polynomials sn have integer
coefficients for all n ≥ 1. The degree of sn equals (n−1)(n−2)/2, and the coefficient
at Xi is positive for all 0 ≤ i ≤ (n− 1)(n− 2)/2. Moreover, sn is monic except for
n = 2.

As examples, we give the polynomials sn for 1 ≤ n ≤ 6.

s1 = 1
s2 = 3
s3 = X + 19
s4 = X3 + 6X2 + 36X + 211
s5 = X6 + 8X5 + 35X4 + 136X3 +

410X2 + 1253X + 3651
s6 = X10 + 10X9 + 54X8 + 209X7 +

685X6 + 1969X5 + 4951X4 + 11592X3 +
24415X2 + 50547X + 90921

Let us sketch the main arguments in the proof of Theorem 4.3. Let U denote the
set of upper unitriangular matrices of G so that B = UT . Let W denote the Weyl
group of G and w0 its longest element. For any w ∈W , put Uw := U ∩Uw0w. Then
Uw is invariant under conjugation by T , and R := {wu | w ∈ W,u ∈ Uw} is a set
of coset representatives of the right coset of B in G. Moreover, for wu,w′u′ ∈ R,
we have BwuT = Bw′u′T if and only if w = w′ and u and u′ are in the same orbit
of T on Uw, where T acts on Uw by conjugation.

This shows that it suffices to determine, for each w ∈ W , the number of orbits
of T on Uw as a function of q. Fix w ∈W and write V := Uw. Let ∆+ denote the
set of pairs {(i, j) | 1 ≤ i < j ≤ n}, which corresponds to the set of positive roots
of G. Then there is a subset Ξ ⊆ ∆+ such that

V = {(aij) ∈ Fn×nq | aii = 1 for 1 ≤ i ≤ n, and aij = 0 for i 6= j and (i, j) /∈ Ξ}
(see [2, Proposition 2.5.16]).

Choose an injective mapping ν : Ξ→ N. A subset Λ ⊆ Ξ can then be viewed as
a weighted undirected graph, by associating ν(i, j) to the edge (i, j) ∈ Λ. Since the
weight function is injective, Λ has a unique minimal spanning forest. Let X denote
the set of subsets of Ξ which arise as minimal spanning forests in this way. Then X
contains a unique maximal element Γmax.

For a subset Λ of Ξ let

V ∗Λ := {(aij) ∈ V | aij 6= 0 if and only if i = j or (i, j) ∈ Λ}.
For Γ ∈ X , let VΓ denote the union of the sets V ∗Λ , where Λ runs through the
subsets of Ξ which have Γ as their minimal spanning forest. Then, obviously, VΓ is
invariant under conjugation by T (since every V ∗Λ is T -invariant), and

V =
⋃

Γ∈X
VΓ,

a disjoint union.
The proof concludes by showing that the number of T -orbits on VΓ equals qnΓ ,

where nΓ = |Γmax| − |Γ|.



GERHARD HISS AND FRANK LÜBECK 11
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