## 3D4(q) for q = 0 mod 2

```
Labels of unipotent almost characters:
1:  [ [ 0, 1, 3 ], [ 1, 2, 3 ] ]
2:  [ [ 0, 1, 2, 3 ], [ 1, 2, 3, 4 ] ]
3:  [ [ 0, 3 ], [ 1, 2 ] ]
4:  [ [ 0, 2 ], [ 1, 3 ] ]
5:  [ [ 0, 1 ], [ 2, 3 ] ]
6:  [ [ 1 ], [ 3 ] ]
7:  [ [ 0 ], [ 4 ] ]
8:  [ [ 0, 1, 2, 3 ], [  ] ]

In row "i,j,k:" we give the scalar product of the tensor product of almost
characters i and j with almost character k, if this is nonzero and i >= j.
1, 1, 1:    q^5-q^3+2*q+1# NEGATIVE COEFF
1, 1, 2:    q^6-q^4+q^2# NEGATIVE COEFF
1, 1, 4:    q^3+1
1, 1, 5:    q^2+1
1, 1, 7:    1
2, 1, 1:    q^6-q^4+q^2# NEGATIVE COEFF
2, 1, 2:    q^7+q+1
2, 1, 3:    -q^3+q# NEGATIVE COEFF
2, 1, 4:    q^4+1
2, 1, 5:    q^3+1
2, 1, 6:    1
2, 2, 1:    q^7+q+1
2, 2, 2:    q^8+q^6+q^2+1
2, 2, 3:    -q^4+q^2# NEGATIVE COEFF
2, 2, 4:    q^5+q^3+q+2
2, 2, 5:    q^4+q^2+2
2, 2, 6:    q+1
2, 2, 7:    1
3, 1, 2:    -q^3+q# NEGATIVE COEFF
3, 2, 1:    -q^3+q# NEGATIVE COEFF
3, 2, 2:    -q^4+q^2# NEGATIVE COEFF
3, 3, 4:    q
3, 3, 7:    1
4, 1, 1:    q^3+1
4, 1, 2:    q^4+1
4, 1, 4:    1
4, 1, 5:    1
4, 2, 1:    q^4+1
4, 2, 2:    q^5+q^3+q+2
4, 2, 4:    q^2+2
4, 2, 5:    q+2
4, 2, 6:    1
4, 3, 3:    q
4, 4, 1:    1
4, 4, 2:    q^2+2
4, 4, 4:    q+2
4, 4, 5:    2
4, 4, 6:    1
4, 4, 7:    1
5, 1, 1:    q^2+1
5, 1, 2:    q^3+1
5, 1, 4:    1
5, 1, 5:    1
5, 2, 1:    q^3+1
5, 2, 2:    q^4+q^2+2
5, 2, 4:    q+2
5, 2, 5:    2
5, 2, 6:    1
5, 4, 1:    1
5, 4, 2:    q+2
5, 4, 4:    2
5, 4, 5:    2
5, 4, 6:    1
5, 5, 1:    1
5, 5, 2:    2
5, 5, 4:    2
5, 5, 5:    2
5, 5, 6:    1
5, 5, 7:    1
6, 1, 2:    1
6, 2, 1:    1
6, 2, 2:    q+1
6, 2, 4:    1
6, 2, 5:    1
6, 3, 6:    1
6, 4, 2:    1
6, 4, 4:    1
6, 4, 5:    1
6, 4, 6:    1
6, 5, 2:    1
6, 5, 4:    1
6, 5, 5:    1
6, 6, 3:    1
6, 6, 4:    1
6, 6, 6:    1
6, 6, 7:    1
7, 1, 1:    1
7, 2, 2:    1
7, 3, 3:    1
7, 4, 4:    1
7, 5, 5:    1
7, 6, 6:    1
7, 7, 7:    1
8, 7, 8:    1
8, 8, 7:    1
```

(C) 2005 Frank Lübeck