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Abstract. We study two aspects of generation of large exceptional groups of Lie type.
First we show that any finite exceptional group of Lie rank at least four is (2, 3)-

generated, i.e., a factor group of the modular group PSL2(Z). This completes the
study of (2, 3)-generation of groups of Lie type. Secondly we complete the proof that
groups of type E7 and E8 over fields of odd characteristic occur as Galois groups of
geometric extensions of Qab(t), where Qab denotes the maximal abelian extension field

of Q. Finally, we show that all finite simple exceptional groups of Lie type have a pair
of strongly orthogonal classes. The methods of proof in all three cases are very similar
and require the Lusztig theory of characters of reductive groups over finite fields as well
as the classification of finite simple groups.

1. Introduction

A group G is called a (2, 3)-group if it can be generated by an involution and
an element of order 3. This is equivalent to saying that G is a factor group of
PSL2(Z), which is the free product of two cyclic groups of order two and three. Thus
every (2, 3)-group corresponds to a normal (in general: non-congruence) subgroup of
SL2(Z). There has recently been some interest in determining the (2, 3)-generated
finite simple groups (see for example [3, 5, 12], and the references cited there). For
the simple exceptional groups of Lie type, the question has been settled positively for
2G2(q) and G2(q) in [11], for 3D4(q) and 2F4(q) in [12]. In this paper we consider
the five families of exceptional groups of large rank.

Theorem 1.1. The simple groups of types F4(q), E6(q), 2E6(q), E7(q), E8(q), q =
pn, p a prime, are (2, 3)-generated.

In [11, 12] the (2, 3)-generation property was proved for exceptional groups of
small rank (apart from 2B2(22n+1) and G2(2)′). Thus all exceptional groups of Lie
type (apart from the exceptions mentioned) are (2, 3)-generated. Since the subgroup
of ⟨σ, τ | σ2 = τ3 = 1⟩ generated by {σ, στ , στ2} respectively {τ, τσ} has index 3
respectively 2, we immediately obtain the following consequence, the first part of
which strengthens [21, Theorem B]:
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Corollary 1.2. Let G be an exceptional simple group of Lie type different from
2B2(22n+1) and G2(2)′.
(a) G is generated by three conjugate involutions.
(b) G is generated by two conjugate elements of order 3.

Together with previous results of Liebeck and Shalev [5] for classical groups, the
second author for exceptional groups [11, 12] and of Miller [15] for alternating groups
Theorem 1.1 completes the determination of finite simple (2, 3)-groups, up to finitely
many open cases:

Corollary 1.3. Let G be a finite nonabelian simple group different from Sp4(2n),
Sp4(3n), 2B2(22n+1). Then, up to a finite number of possible exceptions, G is (2, 3)-
generated.

With similar methods we show that certain exceptional groups of Lie type in bad
characteristic occur as Galois groups over Qab(t):

Theorem 1.4. The groups E7(3n), E8(3n) and E8(5n) occur as Galois groups of
geometric field extensions of Qab(t).

Together with previous results of the second author [10] this implies:

Corollary 1.5. Let G be an exceptional group of Lie type in odd characteristic. Then
G occurs as the Galois group of a geometric field extension of Qab(t).

A pair (C1, C2) of conjugacy classes of a finite group G is called strongly orthogonal
if there exist only two irreducible characters χ of G that such χ(C1)χ(C2) ̸= 0. We
show that pairs of strongly orthogonal classes exist for exceptional groups and use
this to prove:

Corollary 1.6. Let G be a finite simple exceptional group of Lie type. Then G has
a conjugacy class C such that G = C2 ∪ C3.

2. Methods of the proof

Let G be a finite group and C := (C1, C2, C3) a triple of conjugacy classes of G.
Then

(2.1) n(C) :=
∑

χ∈Irr(G)

|G|
χ(1)

3∏
i=1

χ(σi)
|CG(σi)|

, where σi ∈ Ci,

where χ runs over the set Irr(G) of complex irreducible characters of G, is called
the normalized structure constant of the class vector C. If moreover no non-trivial
element of G has centralizer intersecting all three classes of C, then n(C) equals the
cardinality of the set

Σ̄(C) := {(σ1, σ2, σ3) | σi ∈ Ci, σ1σ2σ3 = 1}

modulo G-conjugation. In this case this quantity can hence be calculated from the
ordinary character table of G.
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We always choose C2 to be a class of involutions and C3 a class of elements of
order 3. Then we show for suitable C1 that

1. n(C) > 0 and
2. not all triples from Σ̄(C) generate proper subgroups of G.

From this it follows that G is (2, 3)-generated. For the existence of Galois realizations
we show more precisely that n(C) = 1, so that C is a rigid class vector.

To show 2. we will use results on maximal subgroups of G and sometimes compute
structure constants inside those subgroups.

We now describe the computation of the structure constants n(C) in some detail.
Let G be a connected reductive algebraic group defined over Fq, q a power of a prime,
and G = G(q) the corresponding finite group of Lie type. We refer the reader to [1,
6–9] for more information on Lusztig’s theory.

In [6] and [8] Lusztig gives a parameterization of the complex irreducible characters
of G in terms of semisimple classes of the dual group G∗ = G∗(q). There is still no
general method known to compute all character values of G, but we can compute
those values we need for our applications, using the following ideas.

A class function on G is called uniform if it is a linear combination of Deligne-
Lusztig characters RT,θ. We always choose classes C for our class triples which have
the following property:

(*) The characteristic function χC : G → C, χC(σ) =
{

1 for σ ∈ C,

0 else,
is uniform.

Hence the class functions of G orthogonal to all RT,θ take value zero on these
classes. It follows that we can compute all values of the irreducible characters on these
classes from the values of the Deligne-Lusztig characters, if we know the decomposition
of the RT,θ. This decomposition is described explicitly in [6] for groups with connected
center and refined to the general case in [8].

In fact the conjugacy classes in our class triples will always either be semisimple
or unipotent. Semisimple classes always satisfy property (*), see [1, Prop. 7.5.5], and
the values of RT,θ on such classes can be computed by using [1, Prop. 7.5.3].

For unipotent classes the values of the RT,θ are given by the Green functions QG
T ,

see [1, Cor. 7.2.9]. Up to one problem, which will be described presently, these Green
functions can now be calculated by a general method: In [7, 24.] Lusztig describes an
algorithm to compute Green functions associated to character sheaves of the algebraic
group G. Later it was shown by Lusztig [9] and Shoji [20] that the Green functions
computed by this algorithm in fact coincide with the Green functions QG

T appearing
in the formula for the Deligne-Lusztig characters. (The QG

T were previously already
known for exceptional groups in good characteristic by work of Shoji and Beynon-
Spaltenstein, and they had been computed by the second author for F4(2n) and
E6(2n), and by Porsch for E6(3n). But the results cited above cover the other bad
characteristic cases, too, which is important for our applications.)

The problem with computing Green functions mentioned above is the following:
for the classes C = uG considered in our applications, we can in general compute the
values QG

T (u) only up to a complex scalar of absolute value one (which is the same
for all T ). (In general, the functions Yi appearing in [7, 24.2.3] are only known up
to such a scalar.) But our class vectors will contain at most one unipotent class and
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so we can determine this unknown scalar from a structure constant n(C) ̸= 0 by the
condition n(C) > 0.

For the unipotent classes in our class triples the property (*) follows from two facts,
satisfied in all cases: First, using the character formula [1, Thm. 7.2.8] for RT,θ, it is
easy to see that

1
|T |

∑
θ∈T̂

RT,θ(σ) =
{

QG
T (σ) for σ unipotent,

0 else.

for a maximal torus T of G with character group T̂ . Secondly, we check in each case
that the characteristic function on the relevant class is a linear combination of QG

T ’s.
The actual computations of the structure constants were done using computer

programs written by the first named author. These programs are written in the
programming language of the computer algebra system GAP [17] and they will become
part of the CHEVIE package [4].

All statements about semisimple classes which appear in the rest of the paper were
checked (and sometimes found) during these computations.

In the sequel we specify semisimple classes by giving the Dynkin type of the cen-
tralizers of their elements. For unipotent classes we give references where explicit
representatives can be found.

The orders of elements in unipotent classes from our class triples are always prime.
This can be checked in each case by using explicit representatives. In many cases these
are given as products of elements of pairwise commuting root subgroups with respect
to some maximally split torus. The order of elements of such a root subgroup is
equal to the characteristic of the ground field. In the remaining cases the order of the
representatives can be calculated directly, using the commutator relations described
in the cited papers.

For semisimple classes we get explicit representatives from our calculations. So the
orders can easily be determined.

3. The groups F4(q)

Theorem 3.1. The groups F4(q), q = pn, p a prime, are (2, 3)-generated.

Proof. We use the strategy of proof outlined in Section 2. For the first conjugacy
class C1 in G := F4(q) we choose the class of a generator of a cyclic Coxeter torus T
of order q4 − q2 + 1 of G. Thus elements of C1 are semisimple and moreover regular,
since all non-identity elements of T are regular.

We will see that this choice of C1 has two advantages: There are only a few
maximal subgroups of G containing T (and they are known), and there are only a few
Deligne-Lusztig characters having nonzero value on all three classes simultaneously.

If p ̸= 2, G has two (semisimple) classes of involutions, one with centralizer of type
B4(q), the other with centralizer of type C3(q) ◦ A1(q). We let C2 be the class of an
involution with centralizer C3(q)◦A1(q). If p ̸= 3, G has a class of elements of order 3
with centralizer of type A2(q) ◦ A2(q), if q ≡ 1 (mod 3) or 2A2(q) ◦ 2A2(q), if q ≡ 2
(mod 3). Let C3 be the class of such an element.
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In even characteristic, we let C2 be the (unipotent) class of an involution with
centralizer of order q20(q2 − 1)2, denoted x4 in [18]. In characteristic 3, we define C3

to be the unipotent class with centralizer of order q14(q2 − 1), denoted x11 in [19].
Let C be the class vector consisting of the three conjugacy classes defined above.

We show that only unipotent characters can contribute to the structure constant given
by (2.1). First we see from the character formula [1, Thm. 7.2.8] that a Deligne-
Lusztig character RT ′,θ is zero on the class C1 unless T ′ ∼ T . In the present case for
G the dual group G∗ is isomorphic to G and T ∗ is isomorphic to T . Since all non-
identity elements of T are regular this shows that also all non-identity elements of
the dual torus T ∗ are regular. Hence for θ ̸= 1 either RT,θ or −RT,θ is an irreducible
character of G. But if p ̸= 2 the centralizer of an element from C2 does not contain
a conjugate of T , so all RT,θ vanish on C2. Similarly for p ̸= 3 all RT,θ vanish on C3.
Thus we are left to consider the unipotent characters.

Calculation now yields the structure constants given in Table 3.2.

Table 3.2. Normalized (2, 3)-structure constants in F4(q)

q (mod 6) n(C)

1 q8 + 4q6 + 2q5 + 8q4 + 2q3 + 4q2 + 1

2 q2(q6 + 4q4 − 2q3 + 7q2 − 2q + 2)

3 q2(q6 + 3q4 + 5q2 − 1)

4 q2(q6 + 4q4 + 2q3 + 7q2 + 2q + 2)

5 q8 + 4q6 − 2q5 + 8q4 − 2q3 + 4q2 + 1

Clearly this shows n(C) > 0 for all q.
By the remarks in Section 2 it remains to prove generation. Assume first that

q ≥ 4. Then by [21, 4(f)] the only proper subgroups of G containing the Coxeter
torus T lie inside maximal subgroups isomorphic to M := 3D4(q).3. There is one such
class of maximal subgroups if q is odd and there are two if q is even. Assume that
a triple (σ1, σ2, σ3) ∈ Σ̄(C) generates a subgroup of (some conjugate of) M . Then
there exists a class vector C′ = (C ′

1, C
′
2, C

′
3) of M with n(C′) > 0. It hence suffices

to show that the sum of all structure constants in M of class vectors C′ is strictly
smaller than that in G (respectively half of that in G), where the sum runs over all
class triples such that C ′

1 is a fixed conjugacy class in the intersection of C1 with M ,
C ′

2 is the unique class of involutions of M if p is odd, and runs through the 2 classes
of involutions of M in even characteristic, and C ′

3 runs over the conjugacy classes of
elements of order 3 in M . (Note that we need not consider classes outside the simple
socle M ′ := 3D4(q) of M , since the other two classes in C are certainly contained
in M ′.) Table 3.3 contains the sum of the structure constants for those class vectors
C′ = (C ′

1, C
′
2, C

′
3) of M . These values are computed from the generic character table

for the groups 3D4(q) contained in CHEVIE [4].
It is an easy exercise to check that the difference of the F4-structure constant and

the 3D4-structure constant is always positive. This proves the claim for q ≥ 4.
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Table 3.3. Normalized (2, 3)-structure constants in 3D4(q)

∑
C′ n(C′)

q ≡ 0 (mod 3) q2 + 1

q ̸≡ 0 (mod 3) 2q2 + 2

The maximal subgroups of F4(2) are explicitly known [2]. The only ones with order
divisible by |T | = 13 are two classes of 3D4(2).3, one class of 2F4(2) and one class
L4(3).22. From the Atlas [2] we find that the (2, 3, 13)-structure constants of 2F4(2)
add up to 18, while those of L4(3).22 give 14. The structure constants for 3D4(2).3
are contained in Table 3.3. Since n(C) = 552 by Table 3.1 the result follows in this
case.

If q = 3, then by [21, 4(f)] the only other possibility for a maximal subgroup of
G containing T would be an almost simple group with derived group isomorphic to
U3(9). But the centralizer order in U3(9) of an involution is divisible by 52, while the
elements in class C2 of F4(3) have centralizer order only divisible by 5 to the first
power. Thus the involutions of a possible subgroup of type U3(9) do not fuse into C2

and a triple from C cannot lie inside such a subgroup. The rest of the proof is as in
the case q ≥ 4. ¤

4. The groups E6(q)

Theorem 4.1. The groups E6(q)sc and the simple groups E6(q), q = pn, p a prime,
are (2, 3)-generated.

Proof. It is sufficient to show that G := E6(q)sc is (2, 3)-generated (by non-central
elements) since E6(q) = G/Z(G).

Let C1 be the conjugacy class of a generator of a cyclic torus T of G of order
q6 +q3 +1. If p ̸= 2 let C2 be the class of an involution with centralizer A5(q)◦A1(q).
If p ̸= 3, G has a class of elements of order 3 with centralizer of type A2(q)3 or
A2(q2) ◦ 2A2(q), depending on the congruence of q (mod 3). Let C3 be the class of
such an element.

In even characteristic, we let C2 be the class of an involution with centralizer of
order q31(q2 −1)2(q3 −1), denoted 3A1 in [16, Table 1]. In characteristic 3, we define
C3 to be the unipotent class with centralizer order q22(q2 − 1), denoted 2A2 + A1.

Let C be the class vector consisting of the three conjugacy classes defined above
and T ∗ ⊂ G∗ = E6(q)ad the dual torus of T .

If q ̸≡ 1 (mod 3) then T ∗ \ Z(G∗) consists of regular elements. Similar consider-
ations to those in the case of F4 show that the only irreducible characters that can
contribute to n(C) are among the unipotent ones.

If q ≡ 1 (mod 3) then T ∗ additionally contains elements from two classes with
centralizer of type A2(q3).3. Let θ be a character of T corresponding to an element
of T ∗ with centralizer H of type A2(q3).3. There is only one torus S of G, up to
conjugacy, which contains representatives of C3 and whose dual S∗ is contained in H.
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So, for this θ, the only Deligne-Lusztig character which can have nonzero value on C3

is RS,θ. But the explicit computation shows that the value of RS,θ on C3 is zero, too,
for non regular θ. We get again that only unipotent characters contribute to n(C).

The normalized structure constants n(C) are given in Table 4.2.

Table 4.2. Normalized (2, 3)-structure constants in E6(q)sc

q (mod 6) n(C)

1 (q2 + 1)(q8 + 3q6 + 3q5 + 5q4 + 3q3 + 3q2 + 1)

2 q(q2 − q + 1)(q7 + q6 + 2q5 + q3 − 2q2 − q − 1)

3 q2(q2 + 1)(q6 + q4 + 2q2 − q − 1)

4 q(q9 + 4q7 + 3q6 + 7q5 + 5q4 + 6q3 + 2q2 + 2q − 1)

5 (q2 + 1)(q2 − q + 1)(q6 + q5 + q4 − q3 + q2 + q + 1)

By [21, 4(g)] a maximal subgroup of G containing a conjugate of the maximal
torus T is isomorphic to SL3(q3).3, and there exists just one such class in G. In
order to show that not all triples in Σ̄(C) lie inside such a subgroup we calculate the
corresponding normalized structure constant in the derived group SL3(q3). This can
again be done with CHEVIE [4]. It turns out that the structure constant is equal to 1
in all cases. Thus there exist generating triples in Σ̄(C) for all q. ¤

5. The groups 2E6(q)

Theorem 5.1. The groups 2E6(q)sc and the simple groups 2E6(q), q = pn, p a prime,
are (2, 3)-generated.

Proof. It is sufficient to prove that G := 2E6(q)sc is (2, 3)-generated.
Let C1 be the conjugacy class of a generator of a cyclic torus T of order q6 − q3 +1

of G. If p ̸= 2 let C2 be the class of an involution with centralizer 2A5(q) ◦ A1(q).
If p ̸= 3, G has a class of elements of order 3 with centralizer of type 2A2(q)3 or
A2(q2) ◦ A2(q), depending on the congruence of q (mod 3). Let C3 be the class of
such an element.

In even characteristic, we let C2 be the class of an involution with centralizer of
order q31(q2 −1)2(q3 +1), denoted 3A1 in [16, Table 1]. In characteristic 3, we define
C3 to be the unipotent class with centralizer of order q22(q2 − 1), denoted 2A2 + A1.

Let C be the class vector consisting of the three conjugacy classes defined above. By
considerations very similar to those in case E6(q) we obtain the normalized structure
constants n(C) given in Table 5.2. (Here for q ≡ −1 (mod 3) we have to exclude
the possibility that elements in G∗ with centralizer of type 2A2(q3).3 give a non-zero
contribution.)

Again by [21, Table I and 4(h)] for q ≥ 4 the subgroup lattice in G above the
maximal torus T has SU3(q3).3 as unique maximal element. The structure constant
inside SU3(q3) for those class vectors which can possibly fuse into C is computed to
be equal to 1, using CHEVIE.
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Table 5.2. Normalized (2, 3)-structure constants in 2E6(q)sc

q (mod 6) n(C)

1 (q2 + 1)(q2 + q + 1)(q6 − q5 + q4 − q3 + q2 − q + 1)

2 q(q9 + 4q7 − 3q6 + 7q5 − 5q4 + 6q3 − 2q2 + 2q + 1)

3 q2(q2 + 1)(q6 + q4 + 2q2 + q − 1)

4 q(q2 + q + 1)(q7 − q6 + 2q5 + q3 + 2q2 − q + 1)

5 (q2 + 1)(q8 + 3q6 − 3q5 + 5q4 − 3q3 + 3q2 + 1)

Thus it remains to deal with the cases q ∈ {2, 3}. By the arguments in [10, §7] it
follows that a maximal subgroup containing the group M generated by a triple from
Σ̄(C) is the normalizer of a non-abelian simple subgroup S of G. More precisely,
either S is one of the simple groups listed in [10, Lemma 6.1], or it is of Lie type
in characteristic p. The first possibility can be excluded since none of the relevant
groups contains elements of order q6 − q3 + 1 in its automorphism group. If on the
other hand S is of Lie type in the same characteristic as G, then by the reasoning in
[10] we conclude that S = U3(q3). The argument in [21, 4(f)] now shows that there is
a unique class of such subgroups in G. Thus we can conclude as above by comparing
structure constants. ¤

It may be noticed that the structure constants for 2E6(q) in Table 5.2 are obtained
from those for E6(q) in Table 4.2 by formally replacing q by −q. This is a consequence
of the so-called Ennola-duality.

6. Galois realizations for E7(3n)

In [10, Thm. 8.2] it was shown that the simple groups E7(q), q = pn with p ≥ 5,
occur as the Galois groups of geometric field extensions of Qab(t). (A field extension
N/Qab(t) is called regular if Qab is algebraically closed in N .) Here we show that
this remains true for p = 3. For this we verify that E7(q) has a rigid class vector C
and then apply the rigidity criterion of Belyi, Matzat, and Thompson. We refer the
reader to [14, 10] for details on constructive Galois theory.

We start by defining the conjugacy classes for the class vector C. Let p be an
odd prime and G := E7(q)ad. The simple group G′ = E7(q) then has index 2 in G.
Let C1 be the class of a generator of a maximal torus of order (q + 1)(q6 − q3 + 1)
of G. Choose C2 so as to contain involutions from G\G′. More precisely, in the
case q ≡ 1 (mod 4) an involution with (non-connected) centralizer 2A7(q).2 is not
contained in G′, and in the case q ≡ −1 (mod 4) the one with centralizer A7(q).2 lies
outside G′. For q ≡ ϵ (mod 4), ϵ ∈ {1,−1}, let the class Cϵ

2 consist of such elements.
Define Cp to be the unipotent class denoted 4A1 in [16, Table 2] with centralizer
order q51(q2 − 1)(q4 − 1)(q6 − 1).

Proposition 6.1. The class vector C = (C1, C
ϵ
2, Cp) of E7(q)ad, q = pn for an odd

prime p, satisfies n(C) = 1.
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Proof. This structure constant was computed in [10, Prop. 8.1] in the case p > 3. In
fact, the whole calculation remains the same for p = 3. For this it suffices to check
that the values of the Green functions on Cp are given by the same polynomials in q
for all odd p, which is the case.

(Of course, it would not be difficult to redo the whole calculation in the framework
of this paper.) ¤

Theorem 6.2. The groups E7(q)ad and the simple groups E7(q), q = 3n, possess
Galois realizations over Qab(t).

Proof. The corresponding statement was shown for p > 3 in [10, Ths. 8.1 and 8.2].
By the rigidity criterion [14, II, §4, Satz 2] it suffices to exhibit a rigid class vector of
G := E7(q)ad. By Proposition 6.1 the class vector C satisfies n(C) = 1. It remains to
prove that any triple (σ1, σ2, σ3) ∈ Σ̄(C) generates G. Let H := ⟨σ1, σ2, σ3⟩ for such
a triple. We follow the argument in [10], which can now be shortened considerably
by using the information in [21]. The element σ1 ∈ C1 generates a maximal torus T
of G of order (q + 1)(q6 − q3 + 1). By [21, 4(i)] for q > 3 the only maximal overgroup
of the torus T in G is a subgroup M ∼= ((q + 1). 2E6(q)).2. If H ≤ M , then consider
H̄ := H/(H ∩ M1) with the normal subgroup M1

∼= 2E6(q) of M . Since M/M1 has
order prime to p, H̄ has a (2, 2, 1) or a (1, 1, 1)-generating system. Thus H is contained
in an extension of M1 of degree 2. But such a group does not contain elements of
order (q+1)(q6−q3 +1). This contradiction shows that H = G. Hence C is rigid and
there exists a geometric Galois extension N/Qab(t) with group G ramified at three
points.

The simple group G′ := E7(q) has index 2 in G. The standard descent argument
now proves that the fixed field of N under G′ is a rational function field Qab(u), so
that N/Qab(u) yields a geometric Galois extension with group G′.

For the case q = 3 we may first apply [10, Lemma 1.2] to restrict the possible types
of maximal subgroups M of G containing ⟨σ1⟩. The reasoning in [10, §8] then shows
that any such M has a normal non-abelian simple subgroup S of order divisible by
q6 − q3 + 1. Again as in loc.cit. we can only have S = U3(27) or S = 2E6(3). But
in both cases Aut(S) does not contain elements of order (q + 1)(q6 − q3 + 1), so if
H ≤ NG(S) then CG(S) is nontrivial and contains an element of order prime to 3. The
centralizers of semisimple elements are known and it follows that any S as above is
contained in a subgroup of type ((q+1). 2E6(q)).2. We may now proceed as before. ¤

Since C2 contains involutions and Cp contains elements of order p the preceding
proof also shows that E7(3n)ad is (2, 3)-generated. But since E7(3n) has index 2 in
E7(3n)ad, this cannot be used to yield (2, 3)-generation for the simple group.

7. (2, 3)-generation for E7(q)

Theorem 7.1. The groups E7(q)sc and the simple groups E7(q), q = pn > 2, p a
prime, are (2, 3)-generated.

Proof. Let δ = δ(q) be defined to be −1 if q ≡ −1 (mod 3), and to be 1 if q ≡ 0, 1
(mod 3). Let C1 be the conjugacy class of a generator of a cyclic torus T of order
(q + δ)(q6 − δq3 + 1) of G := E7(q)sc. If p ̸= 2 let C2 be the class of an involution
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with centralizer of type A7(q) if q ≡ 1 (mod 4), respectively of type 2A7(q) if q ≡ −1
(mod 4). If p ̸= 3 let C3 be the class of an element of order 3 with centralizer of type
A5(q) ◦A2(q) if q ≡ 1 (mod 3), respectively of type 2A5(q) ◦ 2A2(q) if q ≡ 2 (mod 3).

In even characteristic, we let C2 be the class of an involution with centralizer of
order q51(q2 − 1)(q4 − 1)(q6 − 1), denoted 4A1 in [16, Table 2]. In characteristic 3,
we define C3 to be the unipotent class with centralizer of order q39(q2 − 1)2, denoted
2A2 + A1.

Let C be the class vector consisting of the three conjugacy classes defined above.
In Table 7.2 we list the types of centralizers of semisimple elements s in the torus

T ∗ dual to T . Here E(H, 1) denotes the set of unipotent characters of H, and −δE6(q)
is to be interpreted as E6(q) if δ = −1 and 2E6(q) if δ = 1.

Table 7.2. Centralizers of elements in T ∗

CG∗(s) # classes |E(CG∗(s), 1)|

E7(q)ad 1 76

((q + δ).−δE6(q)).2
{

1 q odd
0 q even

60

(q + δ).−δE6(q)
{

(q − 2 + δ)/2 q odd
(q − 1 + δ)/2 q even

30

T ∗ (q7 + δ q6 − δ q4 − q3)/18 1

The characters of G corresponding to the regular elements (those with centralizer
T ∗) do not contribute to the structure constant n(C), because no conjugate of T lies
in the centralizer of semisimple elements in C2 and C3.

In the cases q ≡ 1, 9, 11 (mod 12) a maximal torus in the centralizer of an element
in C2 is never conjugate to a torus which is dual to some torus in a centralizer
with connected component of type E6. So, in these cases only unipotent characters
contribute to the structure constant.

For all other congruences we must explicitly compute the values of the Deligne-
Lusztig characters and their constituents corresponding to the centralizers of type E6

on the classes in C. For the computation of the structure constants the possibilities for
the congruence of q modulo 24 had to be distinguished. In all cases these characters
give non-zero contributions to the structure constant. The results turn out to depend
only on the congruence of q modulo 12. The normalized structure constants n(C) are
given in Table 7.3.

In [21, 4(i)] the maximal overgroups M of T are classified for all q ≥ 4. The only
possibilities are either a maximal parabolic subgroup of type E6 or the normalizer of
a Levi factor of type E6 or 2E6. Let H denote the group generated by a triple of
elements from Σ̄(C). By our choice of δ the order of elements from C1 is not divisible
by 3. Thus the commutator factor group H/H ′ of H has order at most 2, so H ′

contains elements of order |T |/2 (respectively |T | if p = 2). On the other hand, the
derived group of a maximal parabolic subgroup of G of type E6 does not contain
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Table 7.3. Normalized (2, 3)-structure constants in E7(q)sc

q (mod 12) n(C)
1 q20 − q19 + 3 q18 + q17 + 4 q16 + 5 q15 + 11 q14 + 9 q13 + 19 q12 + 18 q11

+24 q10 + 18 q9 + 19 q8 + 9 q7 + 11 q6 + 5 q5 + 4 q4 + q3 + 3 q2 − q + 1
2, 8 (q19 + q18 + 3 q17 + 5 q15 − q14 + 11 q13 − 3 q12 + 13 q11 − 11 q10

+10 q9 − 9 q8 + 6 q7 − q4 − 2 q3 − 2 q2 − 2 q − 1)q
3 q4(q2 − q + 1)(q12 + q10 − q9 + 3 q8 − 3 q7 + 3 q6 − 4 q5 + 3 q4 − q3

−5 q2 + 2 q − 2)(q2 + 1)
4 q(q19 − q18 + 3 q17 + 5 q15 + q14 + 11 q13 + 3 q12 + 13 q11 + 11 q10

+10 q9 + 9 q8 + 6 q7 + q4 − 2 q3 + 2 q2 − 2 q + 1)
5 (q2 + 1)(q2 + q + 1)(q16 + q14 − q13 + 4 q12 + 5 q10 − 3 q9 + 6 q8

−3 q7 + 5 q6 + 4 q4 − q3 + q2 + 1)
7 (q2 + 1)(q2 − q + 1)(q16 + q14 + q13 + 4 q12 + 5 q10 + 3 q9 + 6 q8

+3 q7 + 5 q6 + 4 q4 + q3 + q2 + 1)
9 q6(q14 − q13 + 3 q12 − q11 + 5 q10 − q9 + 8 q8 + q7 + 7 q6 + 6 q5 + 3 q4

+8 q3 − 4 q2 + 2 q − 3)
11 q20 + q19 + 3 q18 − q17 + 4 q16 − 5 q15 + 11 q14 − 9 q13 + 19 q12 − 18 q11

+24 q10 − 18 q9 + 19 q8 − 9 q7 + 11 q6 − 5 q5 + 4 q4 − q3 + 3 q2 + q + 1

elements of that order unless q = 3. Also, the normalizer of a Levi subgroup of type
E6 or 2E6 in G does not contain such elements for q ̸= 3.

For the remaining case G = E7(3)sc we may argue as in the proof of Theorem 6.2
to show generation. ¤

Proposition 7.4. The group E7(2) is (2, 3)-generated.

Proof. For this proof let q := 2. We choose C1 to be the class of a generator of the
cyclic torus T of order q7 +1. Further, as above we let C2 be the class of an involution
with centralizer of order q51(q2−1)(q4−1)(q6−1), denoted 4A1 in [16, Table 2], and
C3 the class of an element of order 3 with centralizer of type 2A5(q) ◦ 2A2(q). The
structure constant of the corresponding class vector C = (C1, C2, C3) turns out to be
n(C) = 1605916.

We next determine the possible maximal subgroups M of G = E7(2) which might
contain a triple from Σ̄(C). Using [10, Lemma 1.2] and arguments similar to those
in [10, proof of Thm. 8.1] we find that either M is local, or M is contained in the
normalizer of a simple subgroup of G of order divisible by 43 = (27 + 1)/3.

If M is a simple subgroup of G of order divisible by 43 then by [10, Lemma. 8.1]
it is contained in the following list:

{U3(7), U7(2), U8(2)}.

(Note that the orders of J4 and O−
14(2) do not divide the order of G.) By considering

element orders and centralizer orders it can be seen that only the unipotent class of
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U8(2) having four Jordan blocks of size 2 in the natural representation can fuse into
C2. But all (2, 3, 3.43)-structure constants of U8(2) involving this class of involutions
vanish. Further, neither U3(7) nor U7(2) contain elements of order 3.43 in their
automorphism group. Hence if they are involved in M then their centralizer is non-
trivial, i.e., they lie inside the centralizer of a 3-element. Thus we are left to consider
the local subgroups. If M is local then either M = NG(T ) or M is the normalizer in
G of a subgroup 3 × U7(2). There exists one class of each in G. Clearly no subgroup
of NG(T ) is (2, 3, 3.43)-generated. It is known that G contains at least one class of
subgroups U8(2) and this in turn contains a 3×U7(2). But we already saw that U8(2)
does not contribute, and since there exists just one class of 3×U7(2), it also gives no
contribution. So G is (2, 3)-generated. ¤

8. Galois realizations for E8(3n) and E8(5n)

Let G := E8(q), q = pn with p ̸= 2. In [10, Thm. 9.1] it was shown that G occurs
as the Galois group of a geometric field extension of Qab(t) unless p ≤ 5. Here we
extend this result to cover the cases p = 3, 5 as well by exhibiting a rigid class vector
C of G.

For this let C1 be the conjugacy class of a generator of a cyclic torus T of order
Φ30(q) = q8 +q7−q5−q4−q3 +q+1 of G. Denote by C2 the class of involutions of G
with centralizer of type D8 and by Cp the class of unipotent elements with centralizer
order q100(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1), denoted 4A1 in [16, Table 3].

Proposition 8.1. The class vector C = (C1, C2, Cp) of E8(q), q = pn, p ≥ 3 a
prime, satisfies n(C) = 1.

Proof. In [10, Prop. 9.1] this was proved under the restriction p ≥ 7 since at that time
only the Green functions in good characteristic were known. By the recent results of
Lusztig and Shoji cited above the same calculation holds in characteristic 3 and 5.
The only thing we have to check is that the values of the Green functions on Cp are
given by the same polynomials in q for all odd p, which is the case. ¤
Theorem 8.2. The groups E8(q), q = pn, p ̸= 2, possess Galois realizations over
Qab(t).

Proof. By the rigidity criterion ([14, II, §4, Satz 2]) and Proposition 8.1 above it
suffices to prove that any triple (σ1, σ2, σ3) ∈ Σ̄(C) generates G := E8(q). By [21,
4(j)] the only maximal overgroup of the torus T = ⟨σ1⟩ in G is the normalizer N of
T in G. But N is solvable of order 30|T |, while the group generated by a triple from
Σ̄(C) is perfect, since the element orders in C1, C2, Cp are pairwise coprime (see [10,
Lemma 1.6] for example). This proves the theorem. ¤

Note that in the case p = 3 this shows that E8(3n) is (2, 3)-generated.

9. (2, 3)-generation for E8(q)

Theorem 9.1. The groups E8(q), q = pn, p a prime, are (2, 3)-generated.

Proof. By the result of Theorem 8.2 above we may assume that p ̸= 3. Let C1 be
the conjugacy class of a generator of the cyclic torus T of order Φ30(q) = q8 + q7 −
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Table 9.2. Normalized (2, 3)-structure constants in E8(q)

q(6) n(C)
1 q40 − q39 + 2 q38 + 3 q36 + q35 + 6 q34 + 3 q33 + 12 q32 + 7 q31 + 19 q30 + 16 q29

+32 q28 + 26 q27 + 48 q26 + 42 q25 + 69 q24 + 56 q23 + 87 q22 + 69 q21 + 98 q20

+69 q19 + 87 q18 + 56 q17 + 69 q16 + 42 q15 + 48 q14 + 26 q13 + 32 q12

+16 q11 + 19 q10 + 7 q9 + 12 q8 + 3 q7 + 6 q6 + q5 + 3 q4 + 2 q2 − q + 1
2 q4(q2 − q + 1)(q34 + q32 − q31 + 3 q30 − q29 + 6 q28 − 4 q27 + 11 q26 − 9 q25

+20 q24 − 16 q23 + 35 q22 − 29 q21 + 49 q20 − 45 q19 + 68 q18 − 48 q17

+75 q16 − 52 q15 + 62 q14 − 40 q13 + 43 q12 − 25 q11 + 14 q10 − 9 q9

−4 q8 + q7 − 10 q6 + 5 q5 − 9 q4 + 4 q3 − 5 q2 + q − 2)
3 q8(q32 − q31 + 2 q30 − q29 + 4 q28 − 2 q27 + 6 q26 − 2 q25 + 11 q24 − 5 q23

+17 q22 − 6 q21 + 25 q20 − 8 q19 + 29 q18 − 4 q17 + 31 q16 + 4 q15

+19 q14 + 20 q13 + 5 q12 + 27 q11 − 12 q10 + 19 q9 − 15 q8 + 11 q7

−10 q6 + q5 − 2 q4 − 3 q3 + 2 q2 − 2 q + 1)
4 q5(q35 − q34 + 2 q33 + 3 q31 + q30 + 6 q29 + 3 q28 + 11 q27 + 8 q26 + 16 q25

+17 q24 + 27 q23 + 26 q22 + 39 q21 + 41 q20 + 54 q19 + 53 q18 + 65 q17

+63 q16 + 69 q15 + 60 q14 + 55 q13 + 46 q12 + 34 q11 + 32 q10 + 17 q9

+16 q8 + 5 q7 + 8 q6 + 2 q4 − 1)
5 q40 − q39 + 2 q38 − 2 q37 + 5 q36 − 5 q35 + 10 q34 − 11 q33 + 22 q32 − 25 q31

+43 q30 − 48 q29 + 80 q28 − 90 q27 + 134 q26 − 146 q25 + 205 q24 − 206 q23

+261 q22 − 241 q21 + 286 q20 − 241 q19 + 261 q18 − 206 q17 + 205 q16

−146 q15 + 134 q14 − 90 q13 + 80 q12 − 48 q11 + 43 q10 − 25 q9 + 22 q8

−11 q7 + 10 q6 − 5 q5 + 5 q4 − 2 q3 + 2 q2 − q + 1

q5 − q4 − q3 + q + 1 of G := E8(q). If p ̸= 2 let C2 be the class of an involution
with centralizer of type D8(q). Finally, let C3 be the class of an element of order 3
with centralizer of type A8(q) if q ≡ 1 (mod 3), respectively of type 2A8(q) if q ≡ 2
(mod 3).

In even characteristic, we let C2 be the class of an involution with centralizer of
order q100(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1), denoted 4A1 in [16, Table 3].

Let C be the class vector consisting of the three conjugacy classes defined above.
The normalized structure constants n(C) are given in Table 9.2. As in the case F4(q)
only unipotent characters contribute to n(C), so this can be computed from the values
of the RT,1.

Thus n(C) > 0 for all q. To show generation we can invoke [21, 4(j)] as in the
proof of Theorem 8.2 since elements from the class C1 again generate a maximal torus
of order Φ30(q). ¤
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10. Strongly orthogonal classes for exceptional groups

A pair (C1, C2) of conjugacy classes of a finite group G is called strongly orthogonal
if there exist only two irreducible characters χ of G that such χ(C1)χ(C2) ̸= 0.

It was shown in [13] that pairs of strongly orthogonal classes exist for all simple
classical groups of Lie type with the possible exception of groups O+

4n(q). Here we
extend this result to exceptional groups:

Theorem 10.1. Let G be a finite simple exceptional group of Lie type. Then G has
a pair of strongly orthogonal classes, and at least one of the classes is real.

Proof. Let G = G(q) be an exceptional simple group of Lie type and let T1, T2 be
the two maximal tori of G of the orders indicated in Table 10.2 (where Φi stands for
the i-th cyclotomic polynomial evaluated at q). Then it can be checked that both
tori contain regular elements for all q. Let C1, C2 be classes of regular elements of
T1, T2. Since both classes contain semisimple elements it is easy to verify that only
the trivial and the Steinberg character simultaneously take non-zero values on both
classes, using the Deligne-Lusztig theory. (Candidates for the maximal tori were
found by considering the values of unipotent characters of G on regular semisimple
classes. Then it was checked that no centralizer of a non-central semisimple element
in the dual group G∗ contains T ∗

1 and T ∗
2 simultaneously.) Thus C1, C2 are strongly

orthogonal in the sense introduced above. For the cases missing in Table 10.2, i.e.,
G = 2G2(3)′, G = G2(2)′ and G = 2F4(2)′, we take the pairs of classes (3A, 7A),
(7A, 8A), and (12A, 13A) respectively, in Atlas notation [2].

The Weyl groups of type G2, F4, E7, E8 contain −1, so any semisimple element in
groups of those types is real. Furthermore, for 2B2(q2), 2G2(q2), 2F4(q2) and 3D4(q)
it is easy to see that the elements from C2 are real. Finally, for E6 and 2E6 we choose
elements in T2 of order Φ8 = q4 + 1. These are contained in the subgroup F4(q),
hence they are real by the above argument. Moreover, elements of this order in T2

are also regular since no unipotent element has centralizer order divisible by Φ8. This
completes the proof. ¤

As in [13, Thm. 3.2] the existence of a a pair of strongly orthogonal classes, one of
which is real, allows to conclude that there exists a conjugacy class C such that G is
covered by C2 ∪ C3 (Corollary 1.6):

Proof of Corollary 1.6. Let (C1, C2) be the pair of strongly orthogonal classes for G
from Theorem 10.1, with C2 real. Then only two characters χ1 = 1, χ2 contribute
to the normalized structure constant n(C1, C2, C3) for any class C3 of G. But 1 =
χ1(C1)χ1(C2) = −χ2(C1)χ2(C2), and |χ2(C3)| < χ2(1) for 1 /∈ C3 since G is simple,
so n(C1, C2, C3) > 0 for all non-trivial classes C3. In particular, choosing C3 = C2 we
see that any element in C1 lies in C2

2 . Since moreover C2 is real, the identity is also
contained in C2

2 . Together we hence obtain G ⊂ C2
2 ∪ C3

2 . ¤
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