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Compatible Generators of Cyclic Groups

m ∈ N, Cm : cyclic group of order m

Definition. Let D be a set of divisors of m, closed under gcd. We call (ad)d∈D

a set of compatible generators for D, if each ad ∈ Cm has order d and

ad/d ′

d = ad ′ for all d, d ′ ∈ D with d ′ | d.

Proposition. Assume m /∈ D and let (ad)d∈D be a set of compatible generators
for D. Then there exists am ∈ Cm of order m with am/d

m = ad for all d ∈ D.
If l = lcm(D) then am/ l

m is uniquely determined by the (ad)d∈D.

Idea of proof. Let c be any generator of Cm and express each ad = (cm/d)rd .
With the ansatz am = ci translate the conditions on am to congruence equations
for i modulo all d ∈ D and m/ l/ gcd(l,m). The compatibility conditions of
the ad ensure that the Chinese remainder theorem yields a solution. A solution
can be constructed using the extended Euclidean algorithm.
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Frank Lübeck: Modified Conway Polynomials Sage Days 23



Definitions Motivation Computation Modified definition Implementation

Compatible Generators of Cyclic Groups

m ∈ N, Cm : cyclic group of order m

Definition. Let D be a set of divisors of m, closed under gcd. We call (ad)d∈D

a set of compatible generators for D, if each ad ∈ Cm has order d and

ad/d ′

d = ad ′ for all d, d ′ ∈ D with d ′ | d.

Proposition. Assume m /∈ D and let (ad)d∈D be a set of compatible generators
for D. Then there exists am ∈ Cm of order m with am/d

m = ad for all d ∈ D.
If l = lcm(D) then am/ l

m is uniquely determined by the (ad)d∈D.

Idea of proof. Let c be any generator of Cm and express each ad = (cm/d)rd .
With the ansatz am = ci translate the conditions on am to congruence equations
for i modulo all d ∈ D and m/ l/ gcd(l,m). The compatibility conditions of
the ad ensure that the Chinese remainder theorem yields a solution. A solution
can be constructed using the extended Euclidean algorithm.
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Finite Fields

p prime, n ∈ N

I There exists finite field GF(pn) of order pn, unique up to isomorphism
(GF(p) ∼= Z/pZ).

I GF(pn)× is cyclic of order pn
− 1, generators are called primitive roots.

I GF(pn) ∼= GF(p)[X ]/( f (X)) for any irreducible f ∈ GF(p)[X ] of
degree n.

I GF(pd) ≤ GF(pn) iff d | n, then
GF(pd)× = {x ∈ GF(pn)× | x (pd

−1)
= 1}.

I For d | n the extension GF(pn)/GF(pd) is Galois with cyclic Galois
group generated by x 7→ x (pd ).
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Frank Lübeck: Modified Conway Polynomials Sage Days 23



Definitions Motivation Computation Modified definition Implementation

Finite Fields

p prime, n ∈ N

I There exists finite field GF(pn) of order pn, unique up to isomorphism
(GF(p) ∼= Z/pZ).

I GF(pn)× is cyclic of order pn
− 1, generators are called primitive roots.

I GF(pn) ∼= GF(p)[X ]/( f (X)) for any irreducible f ∈ GF(p)[X ] of
degree n.

I GF(pd) ≤ GF(pn) iff d | n, then
GF(pd)× = {x ∈ GF(pn)× | x (pd

−1)
= 1}.

I For d | n the extension GF(pn)/GF(pd) is Galois with cyclic Galois
group generated by x 7→ x (pd ).
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Conway polynomials

Definition. [R. Parker] A monic polynomial Cp,n(X) ∈ GF(p)[X ] of degree n
is called Conway polynomial iff

(1) Cp,n(X) is irreducible and primitive (X has order pn
− 1 modulo Cp,n(X)).

(2) For d | n we have Cp,d(X (pn
−1)/(pd

−1)) ≡ 0 (mod Cp,n(X)).

(3) Cp,n(X) is the smallest polynomial with (1), (2) with respect to a certain
ordering of GF(p)[X ] (“signed lexicographic”).

Remark. Conway polynomials exist: In algebraic closure K of GF(p)
construct recursively for n = 1, 2, . . . compatible primitive roots xn of
GF(pn)× with respect to the divisors {pd

− 1 | d | n, d < n}. In each step
choose a compatible element with the smallest minimal polynomial over
GF(p) (in ordering mentioned in (3)). The minimal polynomials of the xn over
GF(p) are the Conway polynomials.
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Motivation
(a) Conway polynomials define an embedding GF(p)

×

→ C×, with
xn 7→ exp(2π i/(pn

− 1)) for each n ∈ N.
I Defines lifting of eigenvalues for Brauer characters.
I Inverse map defines reduction of ordinary characters mod p (i.e., a choice

of a p-modular system).
I Useful to fix this embedding once and for all, for example for data

concerning representations of finite groups, like the Atlas of Brauer
characters, collections of representations, . . .

(b) One can compute in some GF(pni ) and later embed easily all elements
into a larger GF(pn) with ni | n for all i .

(c) Makes exchange of data containing finite field elements easier.
Remarks.

I The primitivity condition in the definition is needed for (a), while (b), (c)
could be achieved easier.

I A list of (all) known Conway polynomials in on my Webpage.
I They are used in Sage, GAP, Magma, MeatAxe, Atlas, . . .
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Primitivity

Primitivity of a monic polynomial f (X) ∈ GF(p)[X ] of degree n can be
checked using the following Lemma.
Lemma. f (X) is irreducible and primitive iff X (pn

−1)/r
6= 1 (mod f (X)) for

all prime divisors r of pn
− 1.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of pn
− 1 is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of
pn
− 1 is known (using collections of factors of numbers of form ak

± 1 by
Cunningham, Brent, Montgomery, te Riele, and others—these are available in
GAP and Magma).

We would like to know the Conway polynomials in all these 24200 cases.
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Frank Lübeck: Modified Conway Polynomials Sage Days 23



Definitions Motivation Computation Modified definition Implementation

Primitivity

Primitivity of a monic polynomial f (X) ∈ GF(p)[X ] of degree n can be
checked using the following Lemma.
Lemma. f (X) is irreducible and primitive iff X (pn

−1)/r
6= 1 (mod f (X)) for

all prime divisors r of pn
− 1.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of pn
− 1 is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of
pn
− 1 is known (using collections of factors of numbers of form ak

± 1 by
Cunningham, Brent, Montgomery, te Riele, and others—these are available in
GAP and Magma).

We would like to know the Conway polynomials in all these 24200 cases.
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Computation of Conway polynomials

Two main methods:

(a) Enumerate polynomials and check primitivity and compatibility.

(b) Enumerate all compatible primitive roots, compute their minimal
polynomial to find smallest.

Remarks.
I There are (pn

− 1)/lcm(pd
− 1 | d | n, d < n) compatible elements.

I Compatibility for d = 1 determines the constant term of Cp,n(X).
I Method (a) is good if n is a prime (about n polynomials to check). But:
I Only about 3800 Conway polynomials are known, they were computed in

decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
I Further ones of non-prime degree are almost impossible to find.
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Modified Conway polynomials

Idea. Modify the definition of Conway polynomials such that they can be
computed in practive whenever the factorization of pn

− 1 is known.

Substitute the minimality condition for Conway polynomials by a description
of how to compute one compatible polynomial.

We compute for each fixed prime p recursively modified polynomials
C ′p,n(X) ∈ GF(p)[X ] and a set of compatible primitive roots of the GF(pn).
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I If Cp,n(X) is known, or n = 4 or n is a prime: use old definition,
C ′p,n(X) = Cp,n(X).

I If n = la is a prime power (only one compatibility condition): Enumerate
polynomials of degree l over GF(p(la−1)) with correct constant term and
check primitivity. If found compute minimal polynomial C ′p,n(X) of its
zero over GF(p). Choose X + C ′p,n(X) as primitive root.

I Else n = la1
1 · · · l

ak
k prime factorization of n with k > 1: Compute in

F = (GF(p)[X1]/(C ′p,la1
1
(X1)))[X2]/(C ′p,la2

2
(X2)) . . .

(k independent extensions of GF(p)), find primitive root in basis of
{X i1

1 · · · X
ik

k }.
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Details for case n = la1
1 · · · l

ak
k , k > 1:

I By recursion write down in F primitive roots of maximal subfields of
order pni , ni = n/ li , 1 ≤ i ≤ k.

I Compute the unique compatible element t of order
l = lcm(pni − 1, 1 ≤ i ≤ k).

I Using t search a primitive root z of F by a fixed algorithm.
I Compute a (pn

− 1)/ l-th root x ′n of t by a fixed algorithm (always easy,
because gcd(l, (pn

− 1)/ l) is very small).
I Set xn = x ′nzl j with minimal j such that xn is primitive root. Then C ′p,n(X)

is the minimal polynomial of xn over GF(p).
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Frank Lübeck: Modified Conway Polynomials Sage Days 23



Definitions Motivation Computation Modified definition Implementation

Details for case n = la1
1 · · · l

ak
k , k > 1:

I By recursion write down in F primitive roots of maximal subfields of
order pni , ni = n/ li , 1 ≤ i ≤ k.

I Compute the unique compatible element t of order
l = lcm(pni − 1, 1 ≤ i ≤ k).

I Using t search a primitive root z of F by a fixed algorithm.
I Compute a (pn

− 1)/ l-th root x ′n of t by a fixed algorithm (always easy,
because gcd(l, (pn

− 1)/ l) is very small).
I Set xn = x ′nzl j with minimal j such that xn is primitive root. Then C ′p,n(X)

is the minimal polynomial of xn over GF(p).
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Implementation

With an implementation in Magma all 24200 cases of C ′p,n(X) with
p < 10000 and known factorization of pn

− 1 could be computed over
night.
Since the known Cp,n(X) are still needed as explicit list it seems
sensible to precompute and distribute all known C ′p,n(X) in a similar
way.
Keeping the known Cp,n(X) as C ′p,n(X) is necessary for backward
compatibility: For example, it would be practically impossible to rewrite
the character tables from the Modular Atlas in terms of another set of
standard polynomials for finite fields.
We keep C ′p,4(X) = Cp,4(X) because there is a quick algorithm to find
these Conway polynomials (Bray).
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