Frank Lübeck (Lehrstuhl D für Mathematik, RWTH Aachen)

Sage Days 23, Leiden, July 2010

Definitions	Motivation	Computation	Modified definition	Implementation
Definitions				

Motivation

Computation

Modified definition

Definitions	Motivation	Computation	Modified definition	Implementation		
Compatible Conceptors of Cualic Crowns						

Compatible Generators of Cyclic Groups

$m \in \mathbb{N},$ C_m : cyclic group of order m

Definition. Let *D* be a set of divisors of *m*, closed under gcd. We call $(a_d)_{d \in D}$ a set of compatible generators for *D*, if each $a_d \in C_m$ has order *d* and

$$a_d^{d/d'} = a_{d'}$$
 for all $d, d' \in D$ with $d' \mid d$.

Proposition. Assume $m \notin D$ and let $(a_d)_{d \in D}$ be a set of compatible generators for D. Then there exists $a_m \in C_m$ of order m with $a_m^{m/d} = a_d$ for all $d \in D$. If l = lcm(D) then $a_m^{m/l}$ is uniquely determined by the $(a_d)_{d \in D}$.

Definitions	Motivation	Computation	Modified definition	Implementation		
Compatible Generators of Cyclic Groups						
$m \in \mathbb{N}$,	C_m : cyclic gr	coup of order m				
Definition. Let <i>D</i> be a set of divisors of <i>m</i> , closed under gcd. We call $(a_d)_{d \in D}$ a set of compatible generators for <i>D</i> , if each $a_d \in C_m$ has order <i>d</i> and						
	$a_d^{d/d'} = a$	$a_{d'}$ for all $d, d' \in$	D with $d' \mid d$.			
Proposition. for <i>D</i> . Then t						

Definitions	Motivation	Computation	Modified definition	Implementation		
Compatible Generators of Cyclic Groups						

Definition. Let *D* be a set of divisors of *m*, closed under gcd. We call $(a_d)_{d \in D}$ a set of compatible generators for *D*, if each $a_d \in C_m$ has order *d* and

$$a_d^{d/d'} = a_{d'}$$
 for all $d, d' \in D$ with $d' \mid d$.

Proposition. Assume $m \notin D$ and let $(a_d)_{d\in D}$ be a set of compatible generators for D. Then there exists $a_m \in C_m$ of order m with $a_m^{m/d} = a_d$ for all $d \in D$. If l = lcm(D) then $a_m^{m/l}$ is uniquely determined by the $(a_d)_{d\in D}$.

Definitions	Motivation	Computation	Modified definition	Implementation	
Compatible Generators of Cyclic Groups					

Definition. Let *D* be a set of divisors of *m*, closed under gcd. We call $(a_d)_{d \in D}$ a set of compatible generators for *D*, if each $a_d \in C_m$ has order *d* and

 $a_d^{d/d'} = a_{d'}$ for all $d, d' \in D$ with $d' \mid d$.

Proposition. Assume $m \notin D$ and let $(a_d)_{d \in D}$ be a set of compatible generators for D. Then there exists $a_m \in C_m$ of order m with $a_m^{m/d} = a_d$ for all $d \in D$. If l = lcm(D) then $a_m^{m/l}$ is uniquely determined by the $(a_d)_{d \in D}$.

Definitions	Motivation	Computation	Modified definition	Implementation	
Compatible Generators of Cyclic Groups					

Definition. Let *D* be a set of divisors of *m*, closed under gcd. We call $(a_d)_{d \in D}$ a set of compatible generators for *D*, if each $a_d \in C_m$ has order *d* and

$$a_d^{d/d'} = a_{d'}$$
 for all $d, d' \in D$ with $d' \mid d$.

Proposition. Assume $m \notin D$ and let $(a_d)_{d \in D}$ be a set of compatible generators for D. Then there exists $a_m \in C_m$ of order m with $a_m^{m/d} = a_d$ for all $d \in D$. If l = lcm(D) then $a_m^{m/l}$ is uniquely determined by the $(a_d)_{d \in D}$.

Definitions	Motivation	Computation	Modified definition	Implementation		
Compatible Generators of Cyclic Groups						

Definition. Let *D* be a set of divisors of *m*, closed under gcd. We call $(a_d)_{d \in D}$ a set of compatible generators for *D*, if each $a_d \in C_m$ has order *d* and

$$a_d^{d/d'} = a_{d'}$$
 for all $d, d' \in D$ with $d' \mid d$.

Proposition. Assume $m \notin D$ and let $(a_d)_{d \in D}$ be a set of compatible generators for D. Then there exists $a_m \in C_m$ of order m with $a_m^{m/d} = a_d$ for all $d \in D$. If l = lcm(D) then $a_m^{m/l}$ is uniquely determined by the $(a_d)_{d \in D}$.

Definitions	Motivation	Computation	Modified definition	Implementation		
Compatible Generators of Cyclic Groups						

Definition. Let *D* be a set of divisors of *m*, closed under gcd. We call $(a_d)_{d \in D}$ a set of compatible generators for *D*, if each $a_d \in C_m$ has order *d* and

$$a_d^{d/d'} = a_{d'}$$
 for all $d, d' \in D$ with $d' \mid d$.

Proposition. Assume $m \notin D$ and let $(a_d)_{d\in D}$ be a set of compatible generators for D. Then there exists $a_m \in C_m$ of order m with $a_m^{m/d} = a_d$ for all $d \in D$. If l = lcm(D) then $a_m^{m/l}$ is uniquely determined by the $(a_d)_{d\in D}$.

Definitions	Motivation	Computation	Modified definition	Implementation
Finite Field	s			
p prime, n	$\in \mathbb{N}$			

- There exists finite field GF(pⁿ) of order pⁿ, unique up to isomorphism (GF(p) ≅ Z/pZ).
- $GF(p^n)^{\times}$ is cyclic of order $p^n 1$, generators are called primitive roots.
- ▶ $GF(p^n) \cong GF(p)[X]/(f(X))$ for any irreducible $f \in GF(p)[X]$ of degree *n*.
- ▶ $GF(p^d) \le GF(p^n)$ iff $d \mid n$, then $GF(p^d)^{\times} = \{x \in GF(p^n)^{\times} \mid x^{(p^d-1)} = 1\}.$
- ▶ For $d \mid n$ the extension $GF(p^n)/GF(p^d)$ is Galois with cyclic Galois group generated by $x \mapsto x^{(p^d)}$.

Definitions	Motivation	Computation	Modified definition	Implementation
Finite Fields				

p prime, $n \in \mathbb{N}$

- There exists finite field GF(pⁿ) of order pⁿ, unique up to isomorphism (GF(p) ≅ Z/pZ).
- $GF(p^n)^{\times}$ is cyclic of order $p^n 1$, generators are called primitive roots.
- ▶ $GF(p^n) \cong GF(p)[X]/(f(X))$ for any irreducible $f \in GF(p)[X]$ of degree *n*.
- ▶ $GF(p^d) \le GF(p^n)$ iff $d \mid n$, then $GF(p^d)^{\times} = \{x \in GF(p^n)^{\times} \mid x^{(p^d-1)} = 1\}.$
- ▶ For $d \mid n$ the extension $GF(p^n)/GF(p^d)$ is Galois with cyclic Galois group generated by $x \mapsto x^{(p^d)}$.

Dennitions	Notivation	Computation	Modified definition	Implementation
Finite Fiel	ds			
p prime.	$n \in \mathbb{N}$			

- There exists finite field GF(pⁿ) of order pⁿ, unique up to isomorphism (GF(p) ≅ ℤ/pℤ).
- $GF(p^n)^{\times}$ is cyclic of order $p^n 1$, generators are called primitive roots.
- ▶ $GF(p^n) \cong GF(p)[X]/(f(X))$ for any irreducible $f \in GF(p)[X]$ of degree *n*.
- ► $GF(p^d) \le GF(p^n)$ iff $d \mid n$, then $GF(p^d)^{\times} = \{x \in GF(p^n)^{\times} \mid x^{(p^d-1)} = 1\}.$
- ▶ For $d \mid n$ the extension $GF(p^n)/GF(p^d)$ is Galois with cyclic Galois group generated by $x \mapsto x^{(p^d)}$.

Definitions	Motivation	Computation	Modified definition	Implementation
Finite Fiel	lds			

p prime, $n \in \mathbb{N}$

- There exists finite field $GF(p^n)$ of order p^n , unique up to isomorphism $(GF(p) \cong \mathbb{Z}/p\mathbb{Z}).$
- $GF(p^n)^{\times}$ is cyclic of order $p^n 1$, generators are called primitive roots.

Deminuons	wouvation	Computation	woulled definition	Implementation
Finite Fiel	ds			

G.

p prime, $n \in \mathbb{N}$

- There exists finite field GF(pⁿ) of order pⁿ, unique up to isomorphism (GF(p) ≅ ℤ/pℤ).
- $GF(p^n)^{\times}$ is cyclic of order $p^n 1$, generators are called primitive roots.
- ► $GF(p^n) \cong GF(p)[X]/(f(X))$ for any irreducible $f \in GF(p)[X]$ of degree *n*.
- ► $GF(p^d) \le GF(p^n)$ iff $d \mid n$, then $GF(p^d)^{\times} = \{x \in GF(p^n)^{\times} \mid x^{(p^d-1)} = 1\}.$
- ▶ For $d \mid n$ the extension $GF(p^n)/GF(p^d)$ is Galois with cyclic Galois group generated by $x \mapsto x^{(p^d)}$.

Demittions	Iviotivation	Computation	Woullied definition	Implementation
Finite F	ields			

G.

 $p \text{ prime}, n \in \mathbb{N}$

- ► There exists finite field $GF(p^n)$ of order p^n , unique up to isomorphism $(GF(p) \cong \mathbb{Z}/p\mathbb{Z}).$
- $GF(p^n)^{\times}$ is cyclic of order $p^n 1$, generators are called primitive roots.
- ► $GF(p^n) \cong GF(p)[X]/(f(X))$ for any irreducible $f \in GF(p)[X]$ of degree *n*.
- ► $GF(p^d) \le GF(p^n)$ iff $d \mid n$, then $GF(p^d)^{\times} = \{x \in GF(p^n)^{\times} \mid x^{(p^d-1)} = 1\}.$
- ▶ For $d \mid n$ the extension $GF(p^n)/GF(p^d)$ is Galois with cyclic Galois group generated by $x \mapsto x^{(p^d)}$.

Definitions	Wouvation	Computation	woulled definition	implementation
Finite Fields				

G.

 $p \text{ prime}, n \in \mathbb{N}$

- ► There exists finite field $GF(p^n)$ of order p^n , unique up to isomorphism $(GF(p) \cong \mathbb{Z}/p\mathbb{Z}).$
- $GF(p^n)^{\times}$ is cyclic of order $p^n 1$, generators are called primitive roots.
- ► $GF(p^n) \cong GF(p)[X]/(f(X))$ for any irreducible $f \in GF(p)[X]$ of degree *n*.
- ► $GF(p^d) \le GF(p^n)$ iff $d \mid n$, then $GF(p^d)^{\times} = \{x \in GF(p^n)^{\times} \mid x^{(p^d-1)} = 1\}.$
- ► For $d \mid n$ the extension $GF(p^n)/GF(p^d)$ is Galois with cyclic Galois group generated by $x \mapsto x^{(p^d)}$.

Definitions	Motivation	Computation	Modified definition	Implementation

Definition. [R. Parker] A monic polynomial $C_{p,n}(X) \in GF(p)[X]$ of degree *n* is called Conway polynomial iff

- (1) $C_{p,n}(X)$ is irreducible and primitive (X has order $p^n 1$ modulo $C_{p,n}(X)$).
- (2) For $d \mid n$ we have $C_{p,d}(X^{(p^n-1)/(p^d-1)}) \equiv 0 \pmod{C_{p,n}(X)}$.

(3) C_{p,n}(X) is the smallest polynomial with (1), (2) with respect to a certain ordering of GF(p)[X] ("signed lexicographic").

Definitions	Motivation	Computation	Modified definition	Implementation

Definition. [R. Parker] A monic polynomial $C_{p,n}(X) \in GF(p)[X]$ of degree *n* is called Conway polynomial iff

- (1) $C_{p,n}(X)$ is irreducible and primitive (X has order $p^n 1$ modulo $C_{p,n}(X)$). (2) For $d \perp n$ we have $C_{-n}(X^{(p^n-1)/(p^d-1)}) = 0 \pmod{C_{-n}(X)}$
- (3) $C_{p,n}(X)$ is the smallest polynomial with (1), (2) with respect to a certain ordering of GF(p)[X] ("signed lexicographic").

Definitions	Motivation	Computation	Modified definition	Implementation

Definition. [R. Parker] A monic polynomial $C_{p,n}(X) \in GF(p)[X]$ of degree *n* is called Conway polynomial iff

- (1) $C_{p,n}(X)$ is irreducible and primitive (X has order $p^n 1$ modulo $C_{p,n}(X)$).
- (2) For $d \mid n$ we have $C_{p,d}(X^{(p^n-1)/(p^d-1)}) \equiv 0 \pmod{C_{p,n}(X)}$.
- (3) $C_{p,n}(X)$ is the smallest polynomial with (1), (2) with respect to a certain ordering of GF(p)[X] ("signed lexicographic").

Definitions Mo	lotivation	Computation	Modified definition	Implementation

Definition. [R. Parker] A monic polynomial $C_{p,n}(X) \in GF(p)[X]$ of degree *n* is called Conway polynomial iff

- (1) $C_{p,n}(X)$ is irreducible and primitive (X has order $p^n 1$ modulo $C_{p,n}(X)$).
- (2) For $d \mid n$ we have $C_{p,d}(X^{(p^n-1)/(p^d-1)}) \equiv 0 \pmod{C_{p,n}(X)}$.

(3) $C_{p,n}(X)$ is the smallest polynomial with (1), (2) with respect to a certain ordering of GF(p)[X] ("signed lexicographic").

Definitions M	Aotivation	Computation	Modified definition	Implementation

Definition. [R. Parker] A monic polynomial $C_{p,n}(X) \in GF(p)[X]$ of degree *n* is called Conway polynomial iff

- (1) $C_{p,n}(X)$ is irreducible and primitive (X has order $p^n 1$ modulo $C_{p,n}(X)$).
- (2) For $d \mid n$ we have $C_{p,d}(X^{(p^n-1)/(p^d-1)}) \equiv 0 \pmod{C_{p,n}(X)}$.
- (3) $C_{p,n}(X)$ is the smallest polynomial with (1), (2) with respect to a certain ordering of GF(p)[X] ("signed lexicographic").

Definitions M	Aotivation	Computation	Modified definition	Implementation

Definition. [R. Parker] A monic polynomial $C_{p,n}(X) \in GF(p)[X]$ of degree *n* is called Conway polynomial iff

- (1) $C_{p,n}(X)$ is irreducible and primitive (X has order $p^n 1$ modulo $C_{p,n}(X)$).
- (2) For $d \mid n$ we have $C_{p,d}(X^{(p^n-1)/(p^d-1)}) \equiv 0 \pmod{C_{p,n}(X)}$.
- (3) $C_{p,n}(X)$ is the smallest polynomial with (1), (2) with respect to a certain ordering of GF(p)[X] ("signed lexicographic").

Definitions	Motivation	Computation	Modified definition	Implementation
Motivatio	n			
(a) Conw $x_n \mapsto$	ay polynomials $exp(2\pi i/(p^n - 2\pi i))$ of empirical polynomials of empirical polynomials of empirical polynomials and the polynomials of empirical polynomials and the polynomials of empirical polynomials and the polynomials of empirical polynom	define an embedd 1)) for each $n \in$ igenvalues for Bran reduction of ordi- temp	ling $\overline{\mathrm{GF}(p)}^{\times} \to \mathbb{C}^{\times}$, \mathbb{N} . Let characters, mary characters mod p i for all, for example to recess, like the Adapted	with (i.e., a choice r data Résolution

► They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{\mathrm{GF}(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} .

- ► Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.

(c) Makes exchange of data containing finite field elements easier.

- The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
 They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a)
 Conway polynomials define an embedding GF(p) × → C×, with $x_n \mapsto \exp(2\pi i/(p^n-1))$ for each $n \in \mathbb{N}$.
 > Defines lifting of eigenvalues for Brauer characters.
 > Defines lifting of eigenvalues for Brauer characters.
 > Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
 > Useful to fix this embedding once and for all, for example for data

- Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.

(c) Makes exchange of data containing finite field elements easier.

- The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
 They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{GF(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.

 Defines lifting of eigenvalues for Brauer characters.
 \mathbb{C}^{\times} \mathbb{C}^{\times} \mathbb{C}^{\times}

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- ▶ Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some $GF(p^{n_i})$ and later embed easily all elements into a larger $GF(p^n)$ with $n_i \mid n$ for all *i*.

(c) Makes exchange of data containing finite field elements easier.

- The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
 They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a)
 Conway polynomials define an embedding $\overline{\mathrm{GF}(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n-1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} with \mathbb{C}^{\times} befines lifting of eigenvalues for Brauer characters.

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- ► Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...

(b) One can compute in some $GF(p^{n_i})$ and later embed easily all elements into a larger $GF(p^n)$ with $n_i \mid n$ for all *i*.

(c) Makes exchange of data containing finite field elements easier.

Remarks.

The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.

A list of (all) known Conway polynomials in on my Webpage.
 They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{\mathrm{GF}(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n-1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with \mathbb{C}^{\times} befines lifting of eigenvalues for Brauer characters.

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.

(c) Makes exchange of data containing finite field elements easier. **Remarks.**

- The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
- They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{\operatorname{GF}(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with \mathbb{C}^{\times} , we have \mathbb{C}^{\times} .
 \mathbb{C}^{\times} , we have \mathbb{C}^{\times} , we ha

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- ► Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.
- (c) Makes exchange of data containing finite field elements easier.

- ► The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
- They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{\operatorname{GF}(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with \mathbb{C}^{\times} , we have \mathbb{C}^{\times} .
 \mathbb{C}^{\times} , we have \mathbb{C}^{\times} , we ha

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- ► Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.
- (c) Makes exchange of data containing finite field elements easier.

- ► The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
- They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{GF(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with \mathbb{C}^{\times} , with \mathbb{C}^{\times} befines lifting of eigenvalues for Brauer characters.

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- ► Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.
- (c) Makes exchange of data containing finite field elements easier.

- The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
- ▶ They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{GF(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with \mathbb{C}^{\times} , with \mathbb{C}^{\times} befines lifting of eigenvalues for Brauer characters.

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- ► Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.
- (c) Makes exchange of data containing finite field elements easier.

- The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
- ▶ They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

 Definitions
 Motivation
 Computation
 Modified definition
 Implementation

 Motivation
 (a) Conway polynomials define an embedding $\overline{GF(p)}^{\times} \to \mathbb{C}^{\times}$, with $x_n \mapsto \exp(2\pi i/(p^n - 1))$ for each $n \in \mathbb{N}$.
 \mathbb{C}^{\times} , with \mathbb{C}^{\times} , with \mathbb{C}^{\times} befines lifting of eigenvalues for Brauer characters.

- Inverse map defines reduction of ordinary characters mod p (i.e., a choice of a p-modular system).
- ► Useful to fix this embedding once and for all, for example for data concerning representations of finite groups, like the Atlas of Brauer characters, collections of representations, ...
- (b) One can compute in some GF(pⁿⁱ) and later embed easily all elements into a larger GF(pⁿ) with n_i | n for all i.
- (c) Makes exchange of data containing finite field elements easier.

- The primitivity condition in the definition is needed for (a), while (b), (c) could be achieved easier.
- A list of (all) known Conway polynomials in on my Webpage.
- ▶ They are used in Sage, GAP, Magma, MeatAxe, Atlas, ...

Deminuons	Nouvation	Computation	Modified definition	Implementation
Primitivity				
Deinaitivity of a	monio nolumon	$f(\mathbf{V}) \in \mathbf{CE}(\mathbf{v})$	VI of dograd a cor	ha

Primitivity of a monic polynomial $f(X) \in GF(p)[X]$ of degree *n* can be checked using the following Lemma.

Lemma. f(X) is irreducible and primitive iff $X^{(p^n-1)/r} \neq 1 \pmod{f(X)}$ for all prime divisors r of $p^n - 1$.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of $p^n - 1$ is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of $p^n - 1$ is known (using collections of factors of numbers of form $a^k \pm 1$ by Cunningham, Brent, Montgomery, te Riele, and others—these are available in GAP and Magma).

Definitions	Motivation	Computation	Modified definition	Implementation

Primitivity of a monic polynomial $f(X) \in GF(p)[X]$ of degree *n* can be checked using the following Lemma.

Lemma. f(X) is irreducible and primitive iff $X^{(p^n-1)/r} \neq 1 \pmod{f(X)}$ for all prime divisors r of $p^n - 1$.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of $p^n - 1$ is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of $p^n - 1$ is known (using collections of factors of numbers of form $a^k \pm 1$ by Cunningham, Brent, Montgomery, te Riele, and others—these are available in GAP and Magma).

Definitions	Motivation	Computation	Modified definition	Implementation

Primitivity of a monic polynomial $f(X) \in GF(p)[X]$ of degree *n* can be checked using the following Lemma.

Lemma. f(X) is irreducible and primitive iff $X^{(p^n-1)/r} \neq 1 \pmod{f(X)}$ for all prime divisors r of $p^n - 1$.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of $p^n - 1$ is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of $p^n - 1$ is known (using collections of factors of numbers of form $a^k \pm 1$ by Cunningham, Brent, Montgomery, te Riele, and others—these are available in GAP and Magma).

Definitions	Motivation	Computation	Modified definition	Implementation

Primitivity of a monic polynomial $f(X) \in GF(p)[X]$ of degree *n* can be checked using the following Lemma.

Lemma. f(X) is irreducible and primitive iff $X^{(p^n-1)/r} \neq 1 \pmod{f(X)}$ for all prime divisors r of $p^n - 1$.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of $p^n - 1$ is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of $p^n - 1$ is known (using collections of factors of numbers of form $a^k \pm 1$ by Cunningham, Brent, Montgomery, te Riele, and others—these are available in GAP and Magma).

Definitions	Motivation	Computation	Modified definition	Implementation

Primitivity of a monic polynomial $f(X) \in GF(p)[X]$ of degree *n* can be checked using the following Lemma.

Lemma. f(X) is irreducible and primitive iff $X^{(p^n-1)/r} \neq 1 \pmod{f(X)}$ for all prime divisors r of $p^n - 1$.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of $p^n - 1$ is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of $p^n - 1$ is known (using collections of factors of numbers of form $a^k \pm 1$ by Cunningham, Brent, Montgomery, te Riele, and others—these are available in GAP and Magma).

Definitions	Motivation	Computation	Modified definition	Implementation

Primitivity of a monic polynomial $f(X) \in GF(p)[X]$ of degree *n* can be checked using the following Lemma.

Lemma. f(X) is irreducible and primitive iff $X^{(p^n-1)/r} \neq 1 \pmod{f(X)}$ for all prime divisors r of $p^n - 1$.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of $p^n - 1$ is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of $p^n - 1$ is known (using collections of factors of numbers of form $a^k \pm 1$ by Cunningham, Brent, Montgomery, te Riele, and others—these are available in GAP and Magma).

Definitions	Motivation	Computation	Modified definition	Implementation

Primitivity of a monic polynomial $f(X) \in GF(p)[X]$ of degree *n* can be checked using the following Lemma.

Lemma. f(X) is irreducible and primitive iff $X^{(p^n-1)/r} \neq 1 \pmod{f(X)}$ for all prime divisors r of $p^n - 1$.

(High powers are computed by repeated squaring method.)

Primitivity can only be checked if the prime factorization of $p^n - 1$ is known.

For p < 10000 there are about 24200 pairs (p, n) such that the factorization of $p^n - 1$ is known (using collections of factors of numbers of form $a^k \pm 1$ by Cunningham, Brent, Montgomery, te Riele, and others—these are available in GAP and Magma).

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- ▶ Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- ▶ Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- ▶ Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- ▶ Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- ▶ Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- ▶ Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

Two main methods:

- (a) Enumerate polynomials and check primitivity and compatibility.
- (b) Enumerate all compatible primitive roots, compute their minimal polynomial to find smallest.

- ▶ There are $(p^n 1)/\text{lcm}(p^d 1 \mid d \mid n, d < n)$ compatible elements.
- Compatibility for d = 1 determines the constant term of $C_{p,n}(X)$.
- ▶ Method (a) is good if *n* is a prime (about *n* polynomials to check). But:
- Only about 3800 Conway polynomials are known, they were computed in decades of CPU-time (R.Parker, T.Breuer, F.L., J.Bray, K.Minola).
- ► Further ones of non-prime degree are almost impossible to find.

Definitions	Motivation	Computation	Modified definition	Implementation

- **Idea.** Modify the definition of Conway polynomials such that they can be computed in practive whenever the factorization of $p^n 1$ is known.
- Substitute the minimality condition for Conway polynomials by a description of how to compute one compatible polynomial.
- We compute for each fixed prime *p* recursively modified polynomials $C'_{p,n}(X) \in GF(p)[X]$ and a set of compatible primitive roots of the $GF(p^n)$.

Definitions	Motivation	Computation	Modified definition	Implementation

Idea. Modify the definition of Conway polynomials such that they can be computed in practive whenever the factorization of $p^n - 1$ is known.

Substitute the minimality condition for Conway polynomials by a description of how to compute one compatible polynomial.

We compute for each fixed prime *p* recursively modified polynomials $C'_{p,n}(X) \in GF(p)[X]$ and a set of compatible primitive roots of the $GF(p^n)$.

Definitions	Motivation	Computation	Modified definition	Implementation

- **Idea.** Modify the definition of Conway polynomials such that they can be computed in practive whenever the factorization of $p^n 1$ is known.
- Substitute the minimality condition for Conway polynomials by a description of how to compute one compatible polynomial.
- We compute for each fixed prime *p* recursively modified polynomials $C'_{p,n}(X) \in GF(p)[X]$ and a set of compatible primitive roots of the $GF(p^n)$.

Definitions	Motivation	Computation	Modified definition	Implementation

Idea. Modify the definition of Conway polynomials such that they can be computed in practive whenever the factorization of $p^n - 1$ is known.

Substitute the minimality condition for Conway polynomials by a description of how to compute one compatible polynomial.

We compute for each fixed prime *p* recursively modified polynomials $C'_{p,n}(X) \in GF(p)[X]$ and a set of compatible primitive roots of the $GF(p^n)$.

- If $C_{p,n}(X)$ is known, or n = 4 or n is a prime: use old definition, $C'_{p,n}(X) = C_{p,n}(X).$
- ▶ If $n = l^a$ is a prime power (only one compatibility condition): Enumerate polynomials of degree *l* over $GF(p^{(l^{a-1})})$ with correct constant term and check primitivity. If found compute minimal polynomial $C'_{p,n}(X)$ of its zero over GF(p). Choose $X + C'_{p,n}(X)$ as primitive root.

Else $n = l_1^{a_1} \cdots l_k^{a_k}$ prime factorization of *n* with k > 1: Compute in

$$F = (\mathrm{GF}(p)[X_1]/(C'_{p,l_1^{a_1}}(X_1)))[X_2]/(C'_{p,l_2^{a_2}}(X_2))\dots$$

(*k* independent extensions of GF(p)), find primitive root in basis of $\{X_1^{i_1} \cdots X_k^{i^k}\}$.

- If $C_{p,n}(X)$ is known, or n = 4 or n is a prime: use old definition, $C'_{p,n}(X) = C_{p,n}(X).$
- ▶ If $n = l^a$ is a prime power (only one compatibility condition): Enumerate polynomials of degree *l* over GF($p^{(l^{a-1})}$) with correct constant term and check primitivity. If found compute minimal polynomial $C'_{p,n}(X)$ of its zero over GF(*p*). Choose $X + C'_{p,n}(X)$ as primitive root.

Else $n = l_1^{a_1} \cdots l_k^{a_k}$ prime factorization of *n* with k > 1: Compute in

$$F = (\mathrm{GF}(p)[X_1]/(C'_{p,l_1^{a_1}}(X_1)))[X_2]/(C'_{p,l_2^{a_2}}(X_2))\dots$$

(*k* independent extensions of GF(*p*)), find primitive root in basis of $\{X_1^{i_1} \cdots X_k^{i^k}\}$.

- If $C_{p,n}(X)$ is known, or n = 4 or n is a prime: use old definition, $C'_{p,n}(X) = C_{p,n}(X).$
- ▶ If $n = l^a$ is a prime power (only one compatibility condition): Enumerate polynomials of degree *l* over GF($p^{(l^{a-1})}$) with correct constant term and check primitivity. If found compute minimal polynomial $C'_{p,n}(X)$ of its zero over GF(*p*). Choose $X + C'_{p,n}(X)$ as primitive root.

Else $n = l_1^{a_1} \cdots l_k^{a_k}$ prime factorization of *n* with k > 1: Compute in

$$F = (\mathrm{GF}(p)[X_1]/(C'_{p,l_1^{a_1}}(X_1)))[X_2]/(C'_{p,l_2^{a_2}}(X_2))\dots$$

(*k* independent extensions of GF(p)), find primitive root in basis of $\{X_1^{i_1} \cdots X_k^{i^k}\}$.

Definitions	Motivation	Computation	Modified definition	Implementation

- By recursion write down in F primitive roots of maximal subfields of order p^{n_i}, n_i = n/l_i, 1 ≤ i ≤ k.
- Compute the unique compatible element t of order $l = lcm(p^{n_i} 1, 1 \le i \le k).$
- Using t search a primitive root z of F by a fixed algorithm.
- ▶ Compute a (pⁿ 1)/l-th root x'_n of t by a fixed algorithm (always easy, because gcd(l, (pⁿ 1)/l) is very small).
- ▶ Set $x_n = x'_n z^{ij}$ with minimal *j* such that x_n is primitive root. Then $C'_{p,n}(X)$ is the minimal polynomial of x_n over GF(*p*).

Definitions	Motivation	Computation	Modified definition	Implementation

Details for case
$$n = l_1^{a_1} \cdots l_k^{a_k}, k > 1$$
:

- By recursion write down in F primitive roots of maximal subfields of order p^{n_i}, n_i = n/l_i, 1 ≤ i ≤ k.
- Compute the unique compatible element t of order $l = lcm(p^{n_i} 1, 1 \le i \le k).$
- Using t search a primitive root z of F by a fixed algorithm.
- Compute a (pⁿ − 1)/l-th root x'_n of t by a fixed algorithm (always easy, because gcd(l, (pⁿ − 1)/l) is very small).
- ▶ Set $x_n = x'_n z^{ij}$ with minimal *j* such that x_n is primitive root. Then $C'_{p,n}(X)$ is the minimal polynomial of x_n over GF(*p*).

- By recursion write down in F primitive roots of maximal subfields of order p^{n_i}, n_i = n/l_i, 1 ≤ i ≤ k.
- Compute the unique compatible element t of order $l = \text{lcm}(p^{n_i} 1, 1 \le i \le k).$
- Using t search a primitive root z of F by a fixed algorithm.
- ► Compute a (pⁿ 1)/l-th root x'_n of t by a fixed algorithm (always easy, because gcd(l, (pⁿ 1)/l) is very small).
- ▶ Set $x_n = x'_n z^{lj}$ with minimal *j* such that x_n is primitive root. Then $C'_{p,n}(X)$ is the minimal polynomial of x_n over GF(*p*).

- By recursion write down in F primitive roots of maximal subfields of order p^{n_i}, n_i = n/l_i, 1 ≤ i ≤ k.
- Compute the unique compatible element t of order $l = \text{lcm}(p^{n_i} 1, 1 \le i \le k).$
- Using t search a primitive root z of F by a fixed algorithm.
- ► Compute a (pⁿ 1)/l-th root x'_n of t by a fixed algorithm (always easy, because gcd(l, (pⁿ 1)/l) is very small).
- ► Set $x_n = x'_n z^{lj}$ with minimal *j* such that x_n is primitive root. Then $C'_{p,n}(X)$ is the minimal polynomial of x_n over GF(*p*).

- By recursion write down in F primitive roots of maximal subfields of order p^{n_i}, n_i = n/l_i, 1 ≤ i ≤ k.
- Compute the unique compatible element t of order $l = \text{lcm}(p^{n_i} 1, 1 \le i \le k).$
- Using t search a primitive root z of F by a fixed algorithm.
- Compute a (pⁿ − 1)/l-th root x'_n of t by a fixed algorithm (always easy, because gcd(l, (pⁿ − 1)/l) is very small).
- Set $x_n = x'_n z^{l_j}$ with minimal j such that x_n is primitive root. Then $C'_{p,n}(X)$ is the minimal polynomial of x_n over GF(p).

- By recursion write down in F primitive roots of maximal subfields of order p^{n_i}, n_i = n/l_i, 1 ≤ i ≤ k.
- Compute the unique compatible element t of order $l = \text{lcm}(p^{n_i} 1, 1 \le i \le k).$
- Using t search a primitive root z of F by a fixed algorithm.
- Compute a (pⁿ − 1)/l-th root x'_n of t by a fixed algorithm (always easy, because gcd(l, (pⁿ − 1)/l) is very small).
- Set $x_n = x'_n z^{lj}$ with minimal j such that x_n is primitive root. Then $C'_{p,n}(X)$ is the minimal polynomial of x_n over GF(p).

Definitions	Motivation	Computation	Modified definition	Implementation

- With an implementation in Magma all 24200 cases of $C'_{p,n}(X)$ with p < 10000 and known factorization of $p^n 1$ could be computed over night.
- Since the known $C_{p,n}(X)$ are still needed as explicit list it seems sensible to precompute and distribute all known $C'_{p,n}(X)$ in a similar way.
- Keeping the known $C_{p,n}(X)$ as $C'_{p,n}(X)$ is necessary for backward compatibility: For example, it would be practically impossible to rewrite the character tables from the Modular Atlas in terms of another set of standard polynomials for finite fields.
- We keep $C'_{p,4}(X) = C_{p,4}(X)$ because there is a quick algorithm to find these Conway polynomials (Bray).

Definitions	Motivation	Computation	Modified definition	Implementation

With an implementation in Magma all 24200 cases of $C'_{p,n}(X)$ with p < 10000 and known factorization of $p^n - 1$ could be computed over night.

Since the known $C_{p,n}(X)$ are still needed as explicit list it seems sensible to precompute and distribute all known $C'_{p,n}(X)$ in a similar way.

Keeping the known $C_{p,n}(X)$ as $C'_{p,n}(X)$ is necessary for backward compatibility: For example, it would be practically impossible to rewrite the character tables from the Modular Atlas in terms of another set of standard polynomials for finite fields.

We keep $C'_{p,4}(X) = C_{p,4}(X)$ because there is a quick algorithm to find these Conway polynomials (Bray).

Definitions	Motivation	Computation	Modified definition	Implementation

- With an implementation in Magma all 24200 cases of $C'_{p,n}(X)$ with p < 10000 and known factorization of $p^n 1$ could be computed over night.
- Since the known $C_{p,n}(X)$ are still needed as explicit list it seems sensible to precompute and distribute all known $C'_{p,n}(X)$ in a similar way.
- Keeping the known $C_{p,n}(X)$ as $C'_{p,n}(X)$ is necessary for backward compatibility: For example, it would be practically impossible to rewrite the character tables from the Modular Atlas in terms of another set of standard polynomials for finite fields.
- We keep $C'_{p,4}(X) = C_{p,4}(X)$ because there is a quick algorithm to find these Conway polynomials (Bray).

Definitions	Motivation	Computation	Modified definition	Implementation

- With an implementation in Magma all 24200 cases of $C'_{p,n}(X)$ with p < 10000 and known factorization of $p^n 1$ could be computed over night.
- Since the known $C_{p,n}(X)$ are still needed as explicit list it seems sensible to precompute and distribute all known $C'_{p,n}(X)$ in a similar way.
- Keeping the known $C_{p,n}(X)$ as $C'_{p,n}(X)$ is necessary for backward compatibility: For example, it would be practically impossible to rewrite the character tables from the Modular Atlas in terms of another set of standard polynomials for finite fields.
- We keep $C'_{p,4}(X) = C_{p,4}(X)$ because there is a quick algorithm to find these Conway polynomials (Bray).

Definitions	Motivation	Computation	Modified definition	Implementation

- With an implementation in Magma all 24200 cases of $C'_{p,n}(X)$ with p < 10000 and known factorization of $p^n 1$ could be computed over night.
- Since the known $C_{p,n}(X)$ are still needed as explicit list it seems sensible to precompute and distribute all known $C'_{p,n}(X)$ in a similar way.
- Keeping the known $C_{p,n}(X)$ as $C'_{p,n}(X)$ is necessary for backward compatibility: For example, it would be practically impossible to rewrite the character tables from the Modular Atlas in terms of another set of standard polynomials for finite fields.
- We keep $C'_{p,4}(X) = C_{p,4}(X)$ because there is a quick algorithm to find these Conway polynomials (Bray).