
Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Symbolic Computation Software Composability
Protocol in GAP

Alexander Konovalov
(joint work with Steve Linton)

Supported by the EU FP6 project "SCIEnce – Symbolic Computation Infrastructure for Europe"

School of Computer Science and Centre for Interdisciplinary Research in
Computational Algebra, University of St Andrews, Scotland

GAP Packages Authors Workshop, Braunschweig, September 11-15, 2007

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

What do we want?
Existing solutions
The SCIEnce project

Modern needs of symbolic computations

Efficient tools for combining different computational
algebra systems to solve complex problems that require
capabilities not available in any single system
Web services client and server interfaces allowing
deployment of computer algebra systems as Web services
and local/remote calls of facilities of another system in
easy and efficient way
This may be used to combine several copies of the same
system in a parallel computing context of various scales
from multi-core to grids

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

What do we want?
Existing solutions
The SCIEnce project

Some existing developments for GAP

Interfaces:
Alnuth (Bjoern Assmann, Andreas Distler, Bettina Eick)
singular (Marco Costantini, Willem de Graaf)
GAP – polymake interface (Marc Röder)
if (Marco Costantini)
OpenMath (Marco Costantini, Andrew Solomon)

Web services (clients)
AtlasRep (John Bray, Thomas Breuer, Simon Nickerson,
Richard Parker, Robert Wilson)
QaoS (Sebastian Freundt, Sebastian Pauli)
UnitLib (A.K, Elena Yakimenko)

Parallel computing:
ParGAP (Gene Cooperman)
direct condensation (Frank Lübeck, Max Neunhöffer)

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

What do we want?
Existing solutions
The SCIEnce project

Most common restrictions:

interfaces do not support remote communication
transmission of large or complex objects may be difficult
Support of new system requires new I/O convertor. It relies
upon the I/O format, may be subject to parsing errors and
needs update if I/O format of the linked system changes
not enough deeply (syntax, cd) and widely (other CAS)
supported data encoding format (OpenMath)
not interactive, just database access (Web services)
not enough robust (ParGAP)
less efficient for irregular parallel computing (ParGAP)
shaped to deal with the particular problem (dc)
may not work in some operating systems
may be not easy customisable by the end-user

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

What do we want?
Existing solutions
The SCIEnce project

Example: maximal order of the number field
Alnuth uses the following KANT (KASH 2.5) session:
kash> f:=x^4+6*x^3+5*x^2-12*x-11;;
kash> o := OrderMaximal(f);

F[1]
|

F[2]
/

/
Q
F [1] Given by transformation matrix
F [2] x^4 + 6*x^3 + 5*x^2 - 12*x - 11
Discriminant: 3600

kash> b := List(Basis(o), EltToList);
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [2/7, 0, 1/7, 1/7]]

KASH3: changes of output, session format and function names
kash% f:=X^4+6*X^3+5*X^2-12*X-11;;
kash% o := MaximalOrder(f);
Maximal Order of _BO
Time: 0.026065 s
kash% b := BasisMatrix(o);
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[2/7 0 1/7 1/7]
Time: 0.481205 s

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

What do we want?
Existing solutions
The SCIEnce project

The SCIEnce project

The SCIEnce project address this difficulties by a programme
of standards developments and implementations for symbolic
computation software to use Web services and OpenMath
technologies, allowing them to be efficiently composed to solve
complex problems.

Participating systems:

GAP KANT/KASH

Maple MuPAD

Another direction of work is development of the middleware
for parallel symbolic computing on the Grid using GpH

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

Common protocol for communication

In the direction of the software composability, on the first step
we designed the Symbolic Computation Software Composibility
Protocol (SCSCP) by which a computer algebra system (CAS)
may offer services for the following clients:

A Web server which passes on the same services as Web
services using SOAP/HTTP protocols to another clients
Grid middleware
Another instance of the same CAS (in a parallel computing
context)
Another CAS running on the same computer or remotely

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

Current vision of SCSCP usage

CAS 3

SCSCP
server

OpenMath
functionality

CAS 1

Web
service
client

Web
services
server

Server
backend

=
SCSCP
client

CAS 2

SCSCP
client

Grid
middle-
ware

Web
service
client

Grid
middle-
ware

SCSCP
client

SCSCP messages

SCSCP messages

SCSCP
messages

Interrupt signal

Interrupt signal

HTTP/SOAP
requests

HTTP/SOAP
requests

Interrupt
signal

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

OpenMath inside

Protocol messages represented as OpenMath objects
Content Dictionary cascall1 developed for this purpose
SCSCP specification defines semantical and technical
descriptions and allowed sequences of
OpenMath-encoded messages to and from CAS:

remote procedure call
returning result of successfully completed procedure
returning a signal about procedure termination

Both transmission of actual mathematical objects and
references to them are supported
Flexibility: service designer can choose the data to be
OMSTR, OMB, OMFOREIGN, containing information in
some other format, including MathML

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

cascall1 CD defines:

three main kinds of messages: procedure_call,
procedure_completed, procedure_terminated
options that may be added to the procedure_call
message: option_runtime, option_debuglevel,
option_min_memory, option_max_memory,
option_return_object, option_return_cookie
information that may be supplied with the result:
info_runtime, info_memory, cookie
standard errors: error_runtime, error_memory,
error_system_specific

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

Example: procedure_call message
Identifuing permutation group in the GAP Small Groups Library
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="cascall1" name="call_ID"/>
<OMSTR>01-234567890@gap1</OMSTR>

</OMATP>
<OMA>

<OMS cd="cascall1" name="procedure_call"/>
<OMSTR>GroupIdentificationService</OMSTR>
<OMA>

<OMS cd="list1" name="list"/>
<OMA>

<OMS cd="permut1" name="Permutation"/>
<OMI> 2</OMI>
<OMI> 3</OMI>
<OMI> 1</OMI>

</OMA>
<OMA>

<OMS cd="permut1" name="Permutation"/>
<OMI> 2</OMI>
<OMI> 1</OMI>

</OMA>
</OMA>

</OMA>
</OMATTR>

</OMOBJ>

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

Example: procedure_completed message

The procedure GroupIdentificationService evaluated
the procedure_call message and determined that the
permutation group has the number [6,1]:

<OMOBJ>
<OMATP>

<OMS cd="cascall1" name="call_ID"/>
<OMSTR>01-234567890@gap1</OMSTR>

</OMATP>
<OMA>

<OMS cd="cascall1" name="procedure_completed"/>
<OMA>

<OMS cd="linalg2" name="vector"/>
<OMI> 6</OMI>
<OMI> 1</OMI>

</OMA>
</OMA>

</OMOBJ>

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

GAP implementation of the SCSCP

GAP Package SCSCP (in development)
Allows GAP to work as an SCSCP server and client
Uses GAP packages IO, GAPDoc and OpenMath.dev
Uses recent developments by Steve Linton for the
exception and error handling in GAP

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

Communication via TCP/IP protocol
On the server side:

creates a socket
binds local address to the socket
switches socket to listening
waits for an incoming network connection

On the client side:
creates a socket
connects to the remote socket

This interface is wrapped into InputOutputTCPstreams:
compatible with other kinds of GAP streams
transparent access from other stream-using code
usage of stream-based functionality of OpenMath and
GAPDoc packages

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

OpenMath functionality:
Writing and reading OpenMath messages into/from
InputOutputTCPStreams
Parsing OpenMath code using GAPDoc parsers for XML
encoding
Processing the result using our extensions from the
SCSCP package:

new symbols from the cascall1 OM CD
support of OM attributes (OMATTR, OMATP)
support of OM references (OMR)

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Common protocol for communication
OpenMath inside
GAP package for SCSCP

User-level functionality:
Installing procedures available as SCSCP services
Running the SCSCP server
Sending request to the server and getting result
Store/Retrieve procedures allowing to work with remote
objects

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

IdGroup for order 512
OEIS lookup
OR-parallelism
Store and retrieve

Example: identification of groups of order 512

The following function accepts an integer that is a code for pcgs
of a group of order 512 and returns the number of this group in
the GAP Small Groups library using the ANUPQ package:
IdGroup512ByCode:=function(code)
local g, f, h;
g := PcGroupCode(code, 512);
f := PqStandardPresentation(g);
h := PcGroupFpGroup(f);
return IdStandardPresented512Group(h);
end;

It is installed on the SCSCP server by the command

InstallSCSCPprocedure("IdGroup512ByCode", IdGroup512ByCode);

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

IdGroup for order 512
OEIS lookup
OR-parallelism
Store and retrieve

Example: identification of groups of order 512

The client’s counterpart takes the group in pc-presentation and
sends its pcgs code to the server to identify the group.
IdGroup512:=function(G)
local code, result;
if Size(G) <> 512 then
Error("G must be a group of order 512 \n");

fi;
code := CodePcGroup(G);
result := EvaluateBySCSCP("IdGroup512ByCode",

[code], "localhost", 26133);
return result.object;
end;

How it works:

gap> IdGroup512(DihedralGroup(512));
#I Creating a socket ...
#I Connecting to a remote socket via TCP/IP ...
#I Got connection initiation message SCSCP_VERSION 0 CAS_PID 1
#I Request sent, waiting for reply ...
[512, 2042]

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

IdGroup for order 512
OEIS lookup
OR-parallelism
Store and retrieve

Example: communicating with other software

A java program by Dan Roozemond searches in the On-Line
Encyclopedia of Integer Sequences.

What is the meaning of the following sequence:

1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14 ?

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

IdGroup for order 512
OEIS lookup
OR-parallelism
Store and retrieve

Example: communicating with other software

Of course, this is the number of groups of orders 1, 2, . . . , 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14

Here we obtain a record with the search result:
gap> EvaluateBySCSCP("OnLineEncyclopediaOfIntegerSequences",
> [[1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14]],
> "localhost", 26133);
#I Creating a socket ...
#I Connecting to a remote socket via TCP/IP ...
#I Got connection initiation message SCSCP_VERSION 0 CAS_PID 1
#I Request sent, waiting for reply ...
rec(object := [1, "A000001: Number of groups of order n."],
attributes := [["call_ID", "0"]])

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

IdGroup for order 512
OEIS lookup
OR-parallelism
Store and retrieve

Example: OR-parallelism with FactInt package

Continued Fraction Algorithm vs. Multiple Polynomial Quadratic
Sieve
gap> for i in [1..120] do r:=FactorsCFRAC(2^i+1); od; time;
4789
gap> for i in [1..120] do r:=FactorsMPQS(2^i+1); od; time;
3330

ParEvaluateBySCSCP applies various methods to the same
argument, waiting for the first available result. This example
was made with a dual core CPU:
gap> for i in [1..120] do
> r:=ParEvaluateBySCSCP(["WS_FactorsCFRAC", "WS_FactorsMPQS"],
> [2^i+1],
> ["localhost", "localhost"],
> [26133, 26134]);
> od; time;
532

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

IdGroup for order 512
OEIS lookup
OR-parallelism
Store and retrieve

Example: remote objects

On the SCSCP server:
InstallSCSCPprocedure("WS_IdGroup", IdGroup);
RunSCSCPserver("localhost", 26133);

On the SCSCP client:
gap> s:=StoreAsRemoteObject(SymmetricGroup(3), "localhost", 26133);
< remote object TEMPVarSCSCP1 at localhost:26133 >

gap> EvaluateBySCSCP("WS_IdGroup", [s], "localhost", 26133);
rec(object := [6, 1], attributes := [["call_ID", ""]])

gap> RetrieveRemoteObject(s);
Group([(1,2,3), (1,2)])

gap> UnbindRemoteObject(s);
true

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Advantages
What next?
References

What we have in the result

low-overhead (compensated by easy-to-use), robust,
cross-platforming, light-weight and reliable protocol
possibility of communication not only between CASs but
also between CAS and other software, including Web and
Grid services
besides the four participating systems (GAP, KANT, Maple
and MuPAD), we expect more systems joining SCSCP
framework later

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Advantages
What next?
References

Work in progress

Next steps:
Adding basic SCSCP implementations to all participating
systems
Identifying and developing new OpenMath content
dictionaries and other standards extensions needed
Adding support of selected OpenMath CDs in all
participating systems
Implementing higher level interfaces in all participating
systems

Short-term goals:
GAP-KANT interface in SCSCP for Alnuth
MS Windows support in the SCSCP package (we may
provide Windows binary for IO, Browse and Edim)

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

Introduction
SCSCP and its GAP implementation

Examples in GAP
Final remarks

Advantages
What next?
References

References

A. Konovalov, S. Linton. Symbolic Computation Software Composability Protocol Specification.
CIRCA preprint 2007/5, The University of St Andrews. http://www-circa.mcs.st-and.ac.uk/pre-prints.html

A. Konovalov, S. Linton. SCSCP — Symbolic Computation Software Composability Protocol.
GAP package, in development.

D. Roozemond. OpenMath Content Dictionary cascall1.
http://www.win.tue.nl/SCIEnce/cds/cascall1.html

Alexander Konovalov, Steve Linton Symbolic Computation Software Composability Protocol in GAP

	Introduction
	What do we want?
	Existing solutions
	The SCIEnce project

	SCSCP and its GAP implementation
	Common protocol for communication
	OpenMath inside
	GAP package for SCSCP

	Examples in GAP
	IdGroup for order 512
	OEIS lookup
	OR-parallelism
	Store and retrieve

	Final remarks
	Advantages
	What next?
	References

