dRrcA

General Preliminaries

= _
S ——

* Welcome!
* We have some unallocated time in technical sessions
later in the week

— If there are things you would like to hear about, tell us
now!

* If we are paying some or all of your expenses
— get a form from me
— keep receipts!

@ Braunschweig September 2007 1

dRCA

Exception and Error Handling
in GAP

Steve Linton

Centre for Interdisciplinary Research in
Computational Algebra

University of St Andrews

Braunschweig September 2007 o)

dRrcA

What Happens when
Something Gs Wrong?

* When the GAP kernel or library encounters some
condition it can't deal with “normally” it enters the break
loop.

— mathematical errors
— soft out of memory
~ AC
— Infinite recursion
* A great environment for debugging
— not so good in other environments

@ Braunschweig September 2007 3

dRrcA

changing break loop behaviour:
— -T command-line option
- QUITTING global variable
- OnBreak
— OnBreakMessage
= OnQuit
* all wrapped around the basic behaviour of break loop

and quit or return

@ Braunschweig September 2007 4

dRrcA

Why change?

* We want to be able to respond to errors in software
— eg a GAP server should redirect (most) error messages
to the client
* We want to introduce new kinds of interruption
— external signals, CPU time limits, even softer memory
limits
* Always good to move control from the kernel to the
library
— more transparent, more maintainers

@ Braunschweig September 2007 5

dRrcA
Necessary Kernel Support

something went wrong, back to somewhere that can

deal with it
- CALL_WITH_CATCH(<func>, <args>)
- JUMP_TO_CATCH(<payload>)

* CALL WITH_CATCH returns [true/, <result>]] if the
function complete or [false, <payload> | if
JUMP_TO CATCH was called.

* A way to run an interactive shell (the break loop)

- SHELL(<lots of arguments>)
@ * returns fail (after quit, QUIT or EOF) or [] or [<returned>]

Braunschweig September 2007 6

dRCA
Putting it Together — Error in GAP

BI ND GLOBAL("Errorlnner",
function(arg)
| ocal context, mayReturnVoid, mayReturnQbj, |ateMessage, earlyMessage,
X, pronpt, res, errorLVars, justQuit;
context := arg[1];

justQuit := arg[?2];

mayRet urnVoi d : = arg[3]; mayRet ur nQbj

| at eMessage : = arg[5]; ear | yMessage
argunent checks omtted.

Error Level Error Level +1;

err or Count error Count +1;

errorlLVars ErrorLVars;

ErrorLVars : = context;

argl 4];
arg{[6..Length(arg)]};

I f QUITTING or not BreakOnError then
PrintTo("*errout*","Error, ");
for x in earlyMessage do

Print To("*errout*", x);

od;
PrintTo("*errout*","\n");
ErrorLevel := ErrorlLevel -1;
ErrorLVars := errorlLVars;

JUWP_TO CATCH(0) ;
fi:

Braunschweig September 2007 7

dRrcA

Points to Note

= _
S SR

* Errorlnner is called to handle a range of kernel level

errors as well as the Error() function
— hence it has lots of options to tell it whether return or
return <obj> are allowed, what messages to print when,
etc.
* Real code checks the arguments
— ommitted here for brevity

@ Braunschweig September 2007]

Error Continued @R©A>

the Actual brk loop

PrintTo("*errout*","Error, ");
for x in earlyMessage do
Print To("*errout*", x);

od;
Print To("*errout*","\n");
I f I sBound(OnBreak) and | sFunction(OnBreak) then

OnBr eak() ;
fi;
i f IsString(lateMessage) then

PrintTo("*errout*",| ateMessage, "\ n");
elif | ateMessage then

I f | sBound(OnBreakMessage) and | sFuncti on(OnBreakMessage) then

OnBr eakMessage() ;

fi: fi;
If not justQuit then

If ErrorLevel > 1 then

pronpt := Concatenation("brk_ ", String(ErrorLevel),">");
el se
pronpt := "brk>";
fi;
res := SHELL(context, mayRet ur nVoi d, mayRet ur nCbj , 1, f al se,
pronpt, fal se,"*errin*","*errout*", fal se);

el se

res := fail;
fi:

Braunschweig September 2007 9

dRrRcA
Error in GAP part 3 -- Cleanup

ErrorLevel := ErrorlLevel -1;
ErrorLVars := errorlLVars;
if res = fail then
I f IsBound(OnQuit) and IsFunction(OnQuit) then

OnQuit();

fi;
Set UserHasQuit(1);
JUWP_TO CATCH(3) ;

fi;

I f Length(res) > 0 then
return res[1];

el se
return;

fi:

end) ;

BIND GLOBAL("Error",
function(arg)
Cal | FuncLi st (Errorl nner,
Concatenation([ParentLVars(GetCurrentLVars()), false, true, false,
true],arq));
end) ;

Braunschweig September 2007 10

dRrcA

Side benefit

* Having implemented SHELL it was easy to extend it so
it could handle the main GAP read-eval-view loop as
well

— so now Init.g actually includes lines to run the main loop
* another big chunk of code out of the kernel
* less repetition

* SHELL could be used for other interactions.

@ Braunschweig September 2007 11

dRCA
Customising Error Handling

* Previous customisations still work

* For more complete control, you can overwrite

Errorlnner and do whatever you want
- SHELL and JUMP_TO_CATCH are there if you want to
fall back to traditional behaviour

@ Braunschweig September 2007 12

dRrcA

Handling Other Events

* | plan soon to allow mstallatlon of GAP functlons as

handlers for

— external signals

— soft out-of-memory
— some Kkind of timeout

* Defaults will maintain current behaviour
* JUMP TO CATCH will allow these handlers to

interrupt program flow.

@ Braunschweig September 2007 13

dRrcA

Questions and Future Directions

* QUESTION: would it be useful to provide other options

for customising error handling? if so what?

* What events would it be useful to be able to trap?

* Longer term, the binary choice of returning fail or
Error() when something can't be handled nicely in the
library could be replaced by a more sophisticated

Exception mechanism (cf Java or Python or clu).
— any thoughts on design of such a setup?

@ Braunschweig September 2007 14

I@R@A>

Introduction to the GAP Kerne
and Coiler

Steve Linton

Centre for Interdisciplinary Research in
Computational Algebra

University of St Andrews

Braunschweig September 2007 15

dRrcA

The GAP Kernel

* The 150K line C program that
— provides the run-time environment and Ul
— Interprets the GAP language

— does arithmetic on basic types

— speeds up some things

* One access to kernel functionality is kernel functions
gap> Print(KERNEL_INFO,"\n");
function ()
<<compiled code>>
end

* Simplest form of kernel programming is to add kernel

functions
Braunschweig September 2007 1 6

dRrcA

Levels of Kernel Programming

* Four levels of sophistication
1. Add kernel functions manipulating existing data types
2.Use the “data object” type to add new binary data

structures in the kernel
3. Add new primitive data types (eg Float)
4. Add syntax to the language
* Try and give an idea of the first two today.

@ Braunschweig September 2007 17

dRrcA

Adding a Kernel Function

* Hello World

— a kernel function to print “Hello World!”
* takes no arguments, returns nothing

* The C handler — add somewhere in string.c:

Obj FuncHELLO_WORLD(Obj self) {
Pr("Hello World\n",0L, OL);
return (Obj) O;

}

* The table entry (in GvarFuncs in string.c).
{ "HELLO_WORLD", 0, "",
FuncHELLO_WORLD, "src/string.c:HELLO_WORLD" },

E * That's it! Compile and HELLO_WORLD(); will work.

Braunschweig September 2007 18

L [RCA
The Big Picture (kca,

interpreter/coder/expressions/statements/vars/funcs/calls/compiler

arithmetic lists calls/opers records Misc.

n

= 3
e w2 0 5
L 90w @ O
c L 2050 o
o= == Q_ (7))
8L @ g2 £
(@] o ©

{2 o

objects
gasman

system

Braunschweig September 2007 19

dRrRcA
Big Picture — Pomts to Note

* In the region within the thlck Imes kernel code sees the

same world as GAP code
— objects, with automatic memory management
— no unevaluated expressions or fragments of code
* The only difference is that kernel code can see into the
binary contents of the objects if it wants to
* Adding a kernel function is easy if it stays in that box
— le uses interfaces provided in white and yellow areas
— these interfaces provide kernel equivalents to basic GAP
functionality

@ Braunschweig September 2007 20

dRrcA

* Return a list containing an object, its square and cube

— X -> [x,x"2,x"3]

Obj FuncFoo(Obj self, Obj x) {
Obj x2;
Obj | = NEW_PLIST(T_PLIST_HOM+IMMUTABLE, 3);
SET _ELM_PLIST(l,1,x);
CHANGED_BAG(l);
x2 = PROD(x,x);
SET_ELM_PLIST(l,2,x2);
CHANGED_BAG(l);
SE2

@ Braunschweig September 2007 71

dRrcA

Bags

* The GAP memory manager GASMAN provides an API
dealing with “Bags”
— areas of memory with types and sizes that have stable
handles (of C type Bag) and can be resized
— when the heap is full inaccessible bags are automatically
reclaimed and live bags may be moved, but the handles
don't change
* handle is a pointer to a pointer to the actual data
— Bag references from C local variables are found
automatically, references from C statics and globals must

be declared.
Braunschweig September 2007 %)

dRrcA

Objects

* The kernel view of every GAP Object is an object of C
type ODbj
— most are Bags, represented by their handles
— small integers and small finite field elements are

represented by values that could not be valid handles
* note IS INTOBJ, INTOBJ INT and INT INTOBJ for small
Integer conversions
— Lots of kernel API for working with objects
* TNUM_OBJ (first level type), SIZE_OBJ, ADDR_OBJ (C
pointer to data), TYPE_OBJ (full type)
@ * IS_MUTABLE_OBJ, Makelmmutable,.....

Braunschweig September 2007 73

dRrcA

Other Kernel APls

* The second example uses several more kernel

interfaces
- NEW_PLIST, SET_ELM_PLIST, etc. for creating plain
lists
— PROD for arithmetic (see also SUM, DIFF, etc.)
* These are flexible (PROD will multiply anything).
— If you know what objects you will have it will be a bit
faster to call the multiplication directly.
* There are lots more — strings, general lists, calling
functions, too many to talk about them all.

@ Braunschweig September 2007 24

* Three golden rules:

— Real C pointers into objects (returned by ADDR_OBJ)
must not be held across anything that could cause a
garbage collection (GC)

- If you add a new object to another one (eg put it in a list)
you must call CHANGED BAG on the container.

* otherwise the new object may get lost in a GC
— Don't use malloc
* actually using it a little bit is usually safe, and it's safe if
you don't ever want to expand the GAP workspace

@ Braunschweig September 2007 o) 5

dRrcA

Common Kernel Gotchas

* More things can cause a garbage collection than you expect
— printing (might be to string stream)
— generic list or record access (might be handled by GAP
methods)
— Integer arithmetic (might overflow to large integers)
* Be careful of things like
- ELM_PLIST(l, 3) = <something that might cause GC>
— This expands in C to
* *((*)+3) = <something>
— The compiler is allowed to follow the inner * then evaluate the
RHS then the outer *.

* A GC breaks this
Braunschweig September 2007 o) 6

dRrcA

Data Objects

* Positional and Component objects are made from lists
and records using Objectify
— they contain their Type and data accessible with ![] and !.
* Data objects also contain their Types, but the data is
only accessible via kernel functions

— Data can be anything you like except bag references.
* the garbage collector doesn't see inside them
— At a minimum, construction and basic access functions

need to be written in the kernel.
* Compressed vectors are done this way.

@ Braunschweig September 2007 77

dRrcA

The GAP Compiler

* Converts GAP code into kernel functions.

— still has to do lots of checks, so not usually as fast as
hand-written C

— compiled code can be loaded into a running kernel (on
UNIX or Mac OS)

* Performance gain is significant for code that spends a
lot of time in loops, small integer arithmetic, etc.

— not significant if code spends most of its time in the
kernel or elsewhere in library.

@ Braunschweig September 2007 28

dRrcA

{caolila:17}cat foo.g
foo = x -> [x,x"2,x"3];

{caolila:18}gac -d -C foo.g <---- Compile to C file

{caolila;:19}gac -d foo.g <----- Compile to .so file
{caolila:20}Is -l foo.s0
-rwxr-xr-x 1 sal 158 4999 2007-09-11 10:19 foo.so”
{caolila:21} gap -b
GAP4, Version: 4.dev of today,
gap> LoadDynamicModule("./fo0.s0");
gap> Print(foo);
function (<<arg-1>>)
<<compiled code>>
endgap> foo(3);
[3,9,27]

Braunschweig September 2007 79

dRrcA

Compiled Code

A\ C | C

Freum [x, x 22, x" 3% ~—— Orjginal GAP code (more or
t 1 =NEW_PLIST(T_PLIST, 3);

SET LEN_PLIST(t 1,3); less) appears as comments

SET ELM PLIST(t 1,1,a x);
CHANGED BAG(t 1);

t 2=POW(a_x, INTOBJ INT(2));
SET ELM PLIST(t 1,2,t 2);
CHANGED_ BAG(t_1);

t 2=POW(a _x, INTOBJ INT(3));
SET ELM PLIST(t 1,3,t 2);
CHANGED_BAG(t_1);

RES BRK CURR_STATY();
SWITCH_TO_OLD_FRAME(oldFrame);
returnt 1;

"w—::\';\\'

Braunschweig September 2007 30

dRrcA

Exploiting the Compiler

* Apart from just compiling your code, you can
— compile your code and then hand-optimize critical
sections

* eg replace calls to POW by calls to PROD or even to the

product function for particular kinds of objects
- risk a segfault if you call your function with wrong arguments

— just use the compiler to generate a shell that can be

dynamically loaded then fill in your own C code
* done in browse, IO and EDIM packages
* need to make sure your code complies with rules

@ Braunschweig September 2007 3 1

dRrcA

Interfacing to GAP

Steve Linton

Centre for Interdisciplinary Research in
Computational Algebra

University of St Andrews

@ Braunschweig September 2007 32

dRrcA

From the GAP FAQ

8. Programming GAP

8.1: Can | call GAP functions from another programme?

The short answer is no. To explain a little more fully, essentially all the algebraic functionality
of the GAP system is written in the GAP language, and so needs the GAP interpreter to
run. The interpreter is written in C, but does not coexist happily with other code in the same
process for a number of reasons, so there is no sensible way to link GAP into a C, Java or
other program as a subroutine library.

What you can do is to run GAP in a child process and communicate with it using pipes,
pseudo-ttys, UNIX FIFOs or some similar device. We have done this successfully in a
number of projects, and you can contact the support list for more detailed advice if you
want to go down this route.

The GAP Group Last updated: Fri Apr 29 13:52:12 2005

Braunschweig September 2007 33

dRrcA

p— E—
* Torun a GAP process as a slave of some other (local
or remote) process
— might be a general purpose slave executing arbitrary
commands
— might be a specialist repeatedly doing a specific job (ie
checking whether a node in a search tree can be
excluded on symmetry grounds)

* To do this robustly

@ Braunschweig September 2007 3 4

dRrcA

Zeroth Approach

* Run a perfectly normal GAP process controlled through pipes

* Send GAP commands through one pipe (do remember to send
semicolon-newline at the end!)

* Try to separate the displayed results from the prompts, echos,
iInfo messages newlines and anything else being returned

* Parse the results and work out what values they represent
(making sure that you have them all).

* Make sure the pipes don't fill up!

* Try to stay out of the break loop!

* Horribly unstable

@ Braunschweig September 2007 3 5

dRrcA

* Command-line options
- -b-g-n-T
{caolila:11} gap-b-g-n-T
1+1;
2
* Carefully crafted commands
— Print(“++++++",FormattedResult(....),”*****"\n”);
— don't rely on the read-eval-view loop and mark the start and
end of the results unambiguously.
* This can work. Still issues with errors, random messages, pipes
filling up.

@ Braunschweig September 2007 3 6

First (historically) approach@R@A>
The xgap solution

* Use the -p commnd-line option
— Invented for xgap
— causes GAP to put special sequences (starting with @)
In the output stream

— Indicates whether output is
* echo
* results
* prompt
* error message
* help text

* garbage collector numbers
@ Braunschweig September 2007

37

dRrcA

XGAP mode Ctd

* @ codes are documented in pkg/xgap/src.x11/pty.

* pX. package mode version X

'@ a single '@’

> AL a control character
*"112''3','4''5','6" full garbage collection information
oS '%' &' partial garbage collection information
> e gap is waiting for error input

** e completion started

B error output

** 'h' help started

B | gap is waiting for input

*o'm' end of 'Exec'

*on' normal output

o the current input line follows

** 'sN' ACK for '@yN'

W a window command follows
o the current input line is empty

% -}

start of 'Exec'
Braunschweig September 2007 38

dRrcA

XGAP mode 3

* It's fairly easy to write code on the client S|de that uses
these sequences to sort out the GAP output stream and

associate results with requests.
- this is how the SAGE interface works (or worked in Jan
2006, anyway)

* Beware that the xgap package may try to autoload
* About the best solutions possible when talking to GAP
through stdin/stdout.

@ Braunschweig September 2007 39

dRrcA

A Better Approach

* Much better to separate communlca’uon W|th the client

program from stdin/stdout completely
* Have an infinite loop running in GAP reading input from
somewhere and writing results somewhere else
— you gain complete control of input and output formats
— especially good for a specialised server

— errors may be a problem
* see next talk

@ Braunschweig September 2007 40

dRrRcA
The GAP/eCLIiPse Interface

* eCLiPse is a constraint solver — essentially a backtrack
search
— using GAP to break symmetry in search space
* Create two fifos (names pipes) — togap and fromgap
* GAP in infinite loop
— reads data from togap (until end of file)
— writes results to fromgap
— closes fromgap

* Data can be in any format, opening and closing pipes
synchronises

Braunschweig September 2007 41

dRrcA

Future Plans

* See previous talk
* With Max's IO package, we can run GAP as a true
server, using sockets (or fifos or anything else)
— read input and send results in any format we choose
* New error handling functionality (see next talk) allows
us to catch errors and report them meaningfully to the
client, or recover locally.

@ Braunschweig September 2007 42

dRrcA

GAP in the Multi-core World
Questions, not Answers

\E_

Steve Linton

Centre for Interdisciplinary Research in
Computational Algebra

University of St Andrews

Braunschweig September 2007 43

o

dRrcA

Background

* ltis becoming hard to buy a single-core CPU
— dual core is standard, quad core is easily available
- Intel are talking about 80 cores! Sun processors are
optimised for running hundreds of threads
* Only way to exploit this at the moment is to run multiple
copies of GAP
— or GAP and other programs
* Various ways of coordinating them to distribute a
computation
- ParGAP, dc, SCSCP

Braunschweig September 2007 44

dRrcA

Problems

* You may not have that many independent problems to solve
* Modern multi-core processors share cache

— two copies of the GAP interpreter and key workspace data will

compete for the cache
* Passing data between processes with current tools is slow and
inefficient

— have to serialise

— lose Attributes and other context

— have to maintain two copies of possibly large data structures
* RAM may be the limit rather than CPU, so you can't have two
large GAP processes running at once

@ Braunschweig September 2007 4 5

Multi-threaded GAP ~ (URCA

the dream

* Exploit multiple CPUs in a smgle GAP process
— one workspace, one problem, solved sooner
* ldeally unchanged programs would compute correct
results twice as fast on twice as many cores
— rather optimistic
* Failing that, it should be really easy to adapt our
programs to work correctly in parallel
— going to depend on the programs (and on your notion of
easy).

@ Braunschweig September 2007 4 6

dRrcA

Parallel Programming

_e
N8 =
N S
Y N

What little | know
POSIX or Java threads
— totally explicit control by user, user has to ensure safety,
thread creation not cheap
OpenMP markup
— user annotates code to say things like
* “iterations of this loop are independent”
* “these two things can be done in any order”
Lightweight thread approaches
— very cheap to create, only become real threads if there is a
CPU to run them.

@ Braunschweig September 2007 47

dRrcA

Questions

* How important is this?

* Where do we put our effort?

— Into better communication between separate GAP
processes and maybe some general algorithms designed
for this?

— Into kernel (and maybe library) routines that can use

multiple cores for specific jobs only
* matrix multiply, Todd-Coxeter, collection,

— into letting users program with threads at GAP level?
— some more sophisticated parallel environment?

@ Braunschweig September 2007 48

dRrcA

More Questions

* Does anyone know more than me about this stuff?

* Does anyone want to help?

* Where do we begin?

* Does anyone have a clue how to parallelise any
interesting algebraic algorithms?

@ Braunschweig September 2007 49

