Agemo( G, p )
G must be a p-group. Agemo
returns the subgroup of G generated
by the p.th powers of the elements of G.
gap> d8 := Group( (1,3)(2,4), (1,2) ); Group( (1,3)(2,4), (1,2) ) gap> Agemo( d8, 2 ); Subgroup( Group( (1,3)(2,4), (1,2) ), [ (1,2)(3,4) ] )
The default function GroupOps.Agemo
computes the subgroup of G
generated by the p.th powers of the generators of G if G is
abelian. Otherwise the function computes the normal closure of the
p.th powers of the representatives of the conjugacy classes of G.
GAP 3.4.4