ConjugateSubgroup( U, g )
ConjugateSubgroup
returns the subgroup <U>^<g> conjugate to U under
g, which must be an element of the parent group of G.
If present, the flags U.isAbelian
, U.isCyclic
,
U.isElementaryAbelian
, U.isFinite
, U.isNilpotent
,
U.isPerfect
, U.isSimple
, U.isSolvable
, and U.size
are
copied to <U>^<g>.
gap> s4 := Group( (1,2,3,4), (1,2) ); Group( (1,2,3,4), (1,2) ) gap> c2 := Subgroup( s4, [ (1,2)(3,4) ] ); Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2)(3,4) ] ) gap> ConjugateSubgroup( c2, (1,3) ); Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,4)(2,3) ] )
The default function GroupOps.ConjugateSubgroup
returns U if the set
of elements of U is known and g is an element of this set or if g
is a generator of U. Otherwise it conjugates the generators of U
with g.
If the set of elements of U is known the default function also conjugates and binds it to the conjugate subgroup.
GAP 3.4.4