IsSubnormal( G, U )
IsSubnormal
returns true
if the subgroup U of G is subnormal in
G and false
otherwise.
A subgroup U of G is subnormal if and only if there exists a series of subgroups <G> = G_0 > G_1 > ... > G_n = <U> such that G_i is normal in G_{i-1} for all i in {1, ..., n}.
Note that U must be a subgroup of G. The function sets and checks
U.isSubnormal
if G is the parent group of G.
gap> s4 := Group( (1,2,3,4), (1,2) ); Group( (1,2,3,4), (1,2) ) gap> c2 := Subgroup( s4, [ (1,2) ] ); Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2) ] ) gap> IsSubnormal( s4, c2 ); false gap> c2 := Subgroup( s4, [ (1,2)(3,4) ] ); Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2)(3,4) ] ) gap> IsSubnormal( s4, c2 ); true
The default function GroupOps.IsSubnormal
uses SubnormalSeries
(see
SubnormalSeries) in order to check if U is subnormal in G.
GAP 3.4.4