ConjugacyClassesSubgroups( G )
ConjugacyClassesSubgroups
returns a list of all conjugacy classes of
subgroups of the group G. The elements in the list returned are
conjugacy class domains as created by ConjugacyClassSubgroups
(see
ConjugacyClassSubgroups). Because conjugacy classes are domains, all
set theoretic functions can be applied to them (see Domains).
In fact, ConjugacyClassesSubgroups
computes much more than it returns,
for it calls (indirectly via the function
G.operations.ConjugacyClassesSubgroups( G )
) the Lattice
command
(see Lattice), constructs the whole subgroup lattice of G, stores it
in the record component G.lattice
, and finally returns the list
G.lattice.classes
. This means, in particular, that it will fail if
G is non-solvable and its maximal perfect subgroup is not in the
built-in catalogue of perfect groups (see the description of the
Lattice
command Lattice for details).
gap> # Conjugacy classes of subgroups of S4 gap> s4 := Group( (1,2,3,4), (1,2) );; gap> s4.name := "s4";; gap> cl := ConjugacyClassesSubgroups( s4 ); [ ConjugacyClassSubgroups( s4, Subgroup( s4, [ ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (1,2)(3,4) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (3,4) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (2,3,4) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (3,4), (1,2) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (1,2)(3,4), (1,4,2,3) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (2,3,4), (3,4) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (3,4), (1,2), (1,3)(2,4) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4), (2,3,4) ] ) ), ConjugacyClassSubgroups( s4, s4 ) ]
Each entry of the resulting list is a domain. As an example, let us take the seventh class in the above list of conjugacy classes of S_4.
gap> # Conjugacy classes of subgroups of S4 (continued) gap> class7 := cl[7];; gap> # Print the class representative subgroup. gap> rep7 := Representative( class7 ); Subgroup( s4, [ (1,2)(3,4), (1,4,2,3) ] ) gap> # Print the order of the class representative subgroup. gap> Size( rep7 ); 4 gap> # Print the number of conjugates. gap> Size( class7 ); 3
GAP 3.4.4