7.73 ConjugacyClassesSubgroups

ConjugacyClassesSubgroups( G )

ConjugacyClassesSubgroups returns a list of all conjugacy classes of subgroups of the group G. The elements in the list returned are conjugacy class domains as created by ConjugacyClassSubgroups (see ConjugacyClassSubgroups). Because conjugacy classes are domains, all set theoretic functions can be applied to them (see Domains).

In fact, ConjugacyClassesSubgroups computes much more than it returns, for it calls (indirectly via the function G.operations.ConjugacyClassesSubgroups( G )) the Lattice command (see Lattice), constructs the whole subgroup lattice of G, stores it in the record component G.lattice, and finally returns the list G.lattice.classes. This means, in particular, that it will fail if G is non-solvable and its maximal perfect subgroup is not in the built-in catalogue of perfect groups (see the description of the Lattice command Lattice for details).

    gap> # Conjugacy classes of subgroups of S4
    gap> s4 := Group( (1,2,3,4), (1,2) );;
    gap> s4.name := "s4";;
    gap> cl := ConjugacyClassesSubgroups( s4 );
    [ ConjugacyClassSubgroups( s4, Subgroup( s4, [  ] ) ),
      ConjugacyClassSubgroups( s4, Subgroup( s4, [ (1,2)(3,4) ] ) ),
      ConjugacyClassSubgroups( s4, Subgroup( s4, [ (3,4) ] ) ),
      ConjugacyClassSubgroups( s4, Subgroup( s4, [ (2,3,4) ] ) ),
      ConjugacyClassSubgroups( s4, Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4)
         ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4,
        [ (3,4), (1,2) ] ) ), ConjugacyClassSubgroups( s4, Subgroup( s4,
        [ (1,2)(3,4), (1,4,2,3) ] ) ),
      ConjugacyClassSubgroups( s4, Subgroup( s4, [ (2,3,4), (3,4) ] ) ),
      ConjugacyClassSubgroups( s4, Subgroup( s4,
        [ (3,4), (1,2), (1,3)(2,4) ] ) ),
      ConjugacyClassSubgroups( s4, Subgroup( s4,
        [ (1,2)(3,4), (1,3)(2,4), (2,3,4) ] ) ),
      ConjugacyClassSubgroups( s4, s4 ) ] 

Each entry of the resulting list is a domain. As an example, let us take the seventh class in the above list of conjugacy classes of S_4.

    gap> # Conjugacy classes of subgroups of S4 (continued)
    gap> class7 := cl[7];;
    gap> # Print the class representative subgroup.
    gap> rep7 := Representative( class7 );
    Subgroup( s4, [ (1,2)(3,4), (1,4,2,3) ] )
    gap> # Print the order of the class representative subgroup.
    gap> Size( rep7 );
    4
    gap> # Print the number of conjugates.
    gap> Size( class7 );
    3 

Previous Up Top Next
Index

GAP 3.4.4
April 1997