ConjugacyClassesMaximalSubgroups( G )
ConjugacyClassesMaximalSubgroups
returns a list of conjugacy classes of
maximal subgroups of the group G.
A subgroup H of G is maximal if H is a proper subgroup and for all subgroups I of G with H < I leq G the equality I = G holds.
gap> s4 := SymmetricGroup( AgWords, 4 );; gap> ss4 := SpecialAgGroup( s4 );; gap> ConjugacyClassesMaximalSubgroups( ss4 ); [ ConjugacyClassSubgroups( Group( g1, g2, g3, g4 ), Subgroup( Group( g1, g2, g3, g4 ), [ g2, g3, g4 ] ) ), ConjugacyClassSubgroups( Group( g1, g2, g3, g4 ), Subgroup( Group( g1, g2, g3, g4 ), [ g1, g3, g4 ] ) ), ConjugacyClassSubgroups( Group( g1, g2, g3, g4 ), Subgroup( Group( g1, g2, g3, g4 ), [ g1, g2 ] ) ) ]
The generic method computes the entire lattice of conjugacy classes of subgroups (see Lattice) and returns the maximal ones.
MaximalSubgroups
(see MaximalSubgroups) computes the list of all
maximal subgroups.
GAP 3.4.4