OperationHomomorphism( G, P )
Group Homomorphisms) from the group G to the permutation group P, which
must be the result of a prior call to Operation
(see Operation) with
G or a group of which G is a subgroup (see IsSubgroup) as first
argument.
gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );; gap> h := Operation( g, [1..5] ); Group( (1,2,3), (3,4,5) ) gap> p := OperationHomomorphism( g, h ); OperationHomomorphism( Group( (1,2,3)(6,7), (3,4,5)(7,8) ), Group( (1,2,3), (3,4,5) ) ) gap> (1,4,2,5,3)(6,7,8) ^ p; (1,4,2,5,3) gap> h := Operation( g, Orbit( g, [1,6], OnPairs ), OnPairs ); Group( ( 1, 2, 3, 5, 8,12)( 4, 7, 9)( 6,10)(11,14), ( 2, 4)( 3, 6,11) ( 5, 9)( 7,10,13,12,15,14) ) gap> p := OperationHomomorphism( g, h );; gap> s := SylowSubgroup( g, 2 ); Subgroup( Group( (1,2,3)(6,7), (3,4,5)(7,8) ), [ (7,8), (7,8), (2,5)(3,4), (2,3)(4,5) ] ) gap> Images( p, s ); Subgroup( Group( ( 1, 2, 3, 5, 8,12)( 4, 7, 9)( 6,10)(11,14), ( 2, 4) ( 3, 6,11)( 5, 9)( 7,10,13,12,15,14) ), [ ( 2, 4)( 5, 9)( 7,12)(10,15)(13,14), ( 2, 4)( 5, 9)( 7,12)(10,15)(13,14), ( 2,14)( 3, 6)( 4,13)( 7,15)( 8,11)(10,12), ( 2,12)( 3, 8)( 4, 7)( 6,11)(10,14)(13,15) ] ) gap> OperationHomomorphism( g, Group( (1,2,3), (3,4,5) ) ); Error, Record: element 'operation' must have an assigned value
OperationHomomorphism
calls
P.operations.OperationHomomorphism( G, P )
and returns the value.
The default function called this way is GroupOps.OperationHomomorphism
,
which uses the fields P.operationGroup
, P.operationDomain
, and
P.operationOperation
(the arguments to the Operation
call that
created P) to construct a generic homomorphism h. This
homomorphism uses
Permutation(g,h.range.operationDomain,h.range.operationOperation)
to compute the image of an element g of G under h. It uses
Representative
to compute the preimages of an element p of P under
h. And it computes the kernel by intersecting the cores (see Core)
of the stabilizers (see Stabilizer) of representatives of the orbits of
G. Look under OperationHomomorphism in the index to see for which
groups and operations this function is overlaid.
GAP 3.4.4