ChineseRem( moduli, residues )
ChineseRem returns the combination of the residues modulo the
moduli, i.e., the unique integer c from [0..Lcm(moduli)-1] such
that c = residues[i] modulo moduli[i] for all i, if it
exists. If no such combination exists ChineseRem signals an error.
Such a combination does exist if and only if
residues[i]=residues[k] mod Gcd(moduli[i],moduli[k])
for every pair i, k. Note that this implies that such a combination
exists if the moduli are pairwise relatively prime. This is called the
Chinese remainder theorem.
gap> ChineseRem( [ 2, 3, 5, 7 ], [ 1, 2, 3, 4 ] );
53
gap> ChineseRem( [ 6, 10, 14 ], [ 1, 3, 5 ] );
103
gap> ChineseRem( [ 6, 10, 14 ], [ 1, 2, 3 ] );
Error, the residues must be equal modulo 2
GAP 3.4.4