15.7 GeneratorsPrimeResidues
GeneratorsPrimeResidues( n )
returns a record with fields
primes
:
the set of prime divisors of the integer n,
exponents
:
the corresponding exponents in the factorization of n and
generators
:
generators of the group of prime residues: For each odd prime p
there is one generator, corresponding to a primitive root of the
subgroup (Z/p^{nu_p})^{ast} of (Z/nZ)^{ast}, where nu_p is
the exponent of p in the factorization of n; for p = 2, we
have one generator in the case that 8 does not divide n, and a
list of two generators (corresponding to
= (Z/2^{nu_2})^{ast})
else.
gap> GeneratorsPrimeResidues( 9 ); # 2 is a primitive root
rec(
primes := [ 3 ],
exponents := [ 2 ],
generators := [ 2 ] )
gap> GeneratorsPrimeResidues( 24 ); # 8 divides 24
rec(
primes := [ 2, 3 ],
exponents := [ 3, 1 ],
generators := [ [ 7, 13 ], 17 ] )
gap> GeneratorsPrimeResidues( 1155 );
rec(
primes := [ 3, 5, 7, 11 ],
exponents := [ 1, 1, 1, 1 ],
generators := [ 386, 232, 661, 211 ] )
Previous Up Top Next
Index
GAP 3.4.4
April 1997